
LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY

LIBRARY
AUTHOR/FILING TITLE

. . c.o L l..oT'T Mc..'
""- - ------- ----- ---- ----'----- ----------- -------

. --A(:C-ES-SI(iNjCOPY--NO~"------- -- --- ----- ---------

O'to-o \'30 (,5'
. ----------------- ---------------------------------!

VOt. NO. CLASS MARK

- 5 . t; 1990

040013065 3

11111111111111111111 11111111111

'--- :'":'\

This book was bound by

Badminton Press
18 Half Croft, Syston, Leicester, LE7 8LD
Telephone: Leicester (05331 602918.

:~---:-----
l

I

SPECIFICATION AND IMPLEMENTATION OF

COMPUTER NETWORK PROTOCOLS

BY

MICBAEL C. COLLETT, B.Sc.

A Master's Thesis

Submitted in partial fulfilment of the requirements

for the award of Master of Philosophy

of Loughborough University of Technology

May 1986.

Supervisor: M.C. Woodward, B.Sc. Ph.D.

Department of Computer Studies.

C by Michae1 C. Co11ett 1986.

! ~h un;:;; \
of Tachno!oQy :!WIIY ;

~-'--~_~_';.i ... '" __

CiOSO

SPECIFICATION AND IMPLEMENTATION OF

COMPUTER NETWORK PROTOCOLS

ABSTRACT

A reliable and effective computer network can only be

achieved by adopting efficient and error-free communication proto

cols. Therefore, the protocol designer should produce an unambi

guous specification meeting these requirements. Techniques for

producing protocol specifications have been the subject of intense

interest over the last few years. This is partly due to the

advent of an international standard for networking. A variety of

methods have been employed, some of which are described in detail

in this thesis.

However, even when the specification has been produced there

still remains the task of implementation. A particular network may

be used by machines with widely varying instruction sets. The

initial implementation is often rewritten into several different

languages and assembly codes. Hence there is considerable dupli

cation of effort, and discrepancies can easily arise between the

software on the different machines.

This thesis begins with a detailed analysis of current prac

tice in the field of communication protocols and protocol specifi

cation. Following this, automatic generation of protocol software

is considered. The work presented here concentrates on low-level

protocols. Two specification languages are presented together with

the concepts used in the language designs. The first language was

implemented as part of a protocol modeling system, and the second

language was used as the source language for a retargetable proto

col compiler.

ACKNOWLEDGEMENTS

I wish to express my gratitude to my supervi

sor, Dr. M.C. Woodward, for his invaluable gui

dance and encouragement during the period of my

research and his help in the preparation of this

thesis.

I would also like to thank Prof. D.J. Evans

for his help and support.

Thanks also go to Mr S. Bedi, Systems Manager

of the VAX computer in the Computer Studies

Department at Loughborough, for his valuable

assistance and to my present employers, the Cripps

Computing Centre of Nottingham University, for

allowing me to use their text processing facili

ties for the production of this thesis.

Last, but not least, I wish to acknowledge

the contribution that my parents have made to this

work, by their consistent support and encourage

ment.

{., j

CONTENTS

PAGE

CHAPTER 1: INTRODUCTION 1

1.1 COMPUTER NETWORKS 2

1.1.1 Wide Area Networks 2

1.1.2 Local Area Networks 3

1 . 2 NETWORK PROTOCOLS 4

1 . 3 NETWORK ARCHITECTURE 6

1.4 REFERENCE MODELS 6

1.4.1 The ISO Reference Model 6

1.4.2 IEEE Standard 802 8

1.4.3 Systems Network Architecture 11

1.5 SERVICE SPECIFICATION 11

1.6 PROTOCOL SPECIFICATION 13

1. 7 ERROR AND FLOW CONTROL 13

1.7.1 Transmission Errors 13

1.7.2 Error Control 14

1.7.3 Flow Control 15

1.8 SUMMARY 16

CHAPTER 2: PROTOCOr. SPECIFICATION 17

2.1 INTRODUCTION 18

2.2 LOGICAL SPECIFICATION 20

2.3 PROCEDURAL SPECIFICATION 20

2.4 A SURVEY OF PROTOCOL SPECIFICATION METHODS 22

2.4.1 Introduction 22

2.4.2 An Example Protocol 22

2.4.3 State Transition Methods 23

2.4.3.1 Finite state Machines 23

2.4.3.2 Petri Nets 29

2.4.3.3 Synthesis 31

2.4.3.4 Extended State Transition Methods 34

2.4.4 Sequence Expression Methods 36

2.4.4.1 Calculus of Communicating Systems 36

2.4.5 Temporal Logic 39

2.4.6 Summary 40

2.5 PROTOCOL SPECIFICATION LANGUAGES 41

2.5.1 ESTELLE 41

2.5.2 IBM's FAPL 42

2.5.3 LOTOS 42

2.6 SUMMARY 44

PAGE

CHAPTER 3: AN ALTERNATIVE APPROACH TO PROTOCOL SPECIFICATION 45

3.1 INTRODUCTION 46

3.2 PSL/1 47

3.3 EXAMPLES 48

3.4 SUMMARY 53

CHAPTER 4: A PROTOCOL MODELING SYSTEM 59

4.1 INTRODUCTION 60

4.2 DESCRIPTION 60

4.3 GENERATING AN ENTITY MODEL 62

4.4 CONCLUSION 63

CHAPTER 5: NETWORKING USING ASYNCHRONOUS INTERCONNECTION 67

5.1 INTRODUCTION 68

5.2 NETWORK TOPOLOGIES 68

5.3 CLEARWAY 69

5. 4 PROTOCOL STANDARDS 72

5.5 FRAME REPRESENTATION 73

5 • 6 PROCEDURAL ASPECTS 75

5.7 SUMMARY 76

CHAPTER 6: PROTOCOL IMPLEMENTATION 77

6.1 INTRODUCTION 78

6.2 USE OF HIGH LEVEL LANGUAGES 78

6.3 PROTOCOL COMPILERS 82

6.4 PORTABLE AND RETARGETABLE COMPILERS 83

6.5 CONCLUSION 86

CHAPTER 7: A RETARGETABLE COMPILER 87

7.1 INTRODUCTION 88

7.2 PSL/2 89

7 . 3 THE ABSTRACT MACHINE 96

7.4 I-CODE 99

7.4.1 Allocation Instructions 99

7.4.2 Arithmetic Two Operand Instructions 100

7.4.3 Arithmetic One Operand Instructions 101

7.4.4 Control Instructions 101

7.4.5 An Example 102

7.5 PRODUCTION OF I-CODE 103

7.6 TARGET ASSEMBLER SPECIFICATION

7.7 I-CODE TO TARGET ASSEMBLER TRANSLATION

7.8 MACHINE-DEPENDENT INTERFACE ROUTINES

7.9 IMPLEMENTATION AND MAINTENANCE

7.10 CONCLUSION

CHAPTER 8: CONCLlJSION

8.1 REVIEW

8.2 FURTHER WORK

8.3 FINAL REMARKS

APPENDIX: FORMAL SYNTAX OF SPECIFICATION AND

INTERMEDIATE LANGUAGES

REFERENCES

110

126

126

130

134

136

137

138

139

140

154

LIST OF FIGURES

1.1 A LOCAL AREA NETWORK

1.2 LAYERING OF PROTOCOLS

1.3 THE ISO REFERENCE MODEL

1.4 THE IEEE STANDARD 802

1.5 THE SNA REFERENCE MODEL

2.1 A BLOCK DIAGRAM

2.2 A RECORD STRUCTURE

2.3 GRAMMAR FORM

2.4 AN EXAMPLE PROTOCOL (SENDER)

2.5 AN EXAMPLE PROTOCOL (RECEIVER)

2.6 FINITE STATE MACHINES FOR PROTOCOL ENTITIES

2.7 FINITE STATE MACHINE FOR COMMUNICATION MEDIUM

2.8 COMPOSITE MACHINE FOR EXAMPLE PROTOCOL

2.9 A SIMPLE PETRI NET

2.10 PETRI NET FOR THE EXAMPLE PROTOCOL

2.11 A CCS TREE

2.12 EQUIVALENT TREES

2.13 SEQUENCING

2.14 CHOICE

2.15 CONCURRENT COMPOSITIONS

2.16 HIDING

2.17 AN EXAMPLE FAPL FINITE STATE MACHINE

PAGE

5

7

9

10

12

21

21

21

24

25

27

28

30

32

33

36

36

37

37

37

38

43

3.1 SLIDING WINDOW STRUCTURES 49

3.2 AN ALTERNATING BIT PROTOCOL IN PSL/l 50

3.3 A POSITIVE ACKNOWLEDGEMENT RETRANSMISSION PROTOCOL 54

3.4 A ONE BIT SLIDING WINDOW PROTOCOL 55

3.5 PIPELINING 56

3.6 A NON-SEQUENTIAL RECEIVE PROTOCOL 57

4.1 PRODUCTION OF THE PROTOCOL MODELING SYSTEM 61

4.2 CLASS AND FRAME DEFINITIONS 64

4.3 SIMULATION RESULTS 66

5.1 USING A CIRCUIT SWITCH FOR NETWORKING 70

7.1 A PROTOCOL ENTITY 90

7.2 PSL/2 EXAMPLE 92

7.3 FINITE STATE MACHINE FOR PSL/2 EXAMPLE 94

7.4 PSL/2 TEMPLATE 105

7.5 PSL/2 TRANSLATION - LDT 111

7.6 I-CODE PROGRAM WITH MACROS 112

7.7 I-CODE PROGRAM WITH MACROS EXPANDED 116

7.8 TEXAS TARGET ASSEMBLER SPECIFICATION 127

7.9 PSL/2 TRANSLATION - MDT 129

7.10 UNIX SYSTEMS INTERFACE 131

7.11 PROTOCOL IMPLEMENTATION USING PSL/2 133

CHAPTER ONE

J:NTRODUCTJ:ON

2

1.1. COMPUTER NETWORKS

The ability to share information, that is to communicate, has

played a vital role in the development of the human race. Modern

telecommunication systems have extended this ability by allowing

rapid communication over long distances. As computers came to be

used in an ever increasing number of areas of human activity, it

seemed desirable that they should also be given this ability. Com

puter networks were devised to fulfill this need.

Once computers 'could communicate this affected the develop

ment of computing methods. The old model of a single machine serv

ing all the needs of an organisation has been replaced by a new

model where several separate, but interconnected computers, do the

job. Tanenbaum(1981) defines a computer network as:

an interconnected collection of autonomous computers.

He also discusses the related term of distributed system. While

he states that there is considerable confusion in the literature,

he himself defines a distributed system as

a special case of a network, one with a high degree of

cohesiveness and transparency.

Ideally, the user of a dist~ibuted system need not know that there

are multiple processors; it should behave like a single processor

system.

In recent years network technologies have diversified, and

there are now two main categories of computer network: local and

wide area networks.

1.1.1. WIDE AREA NETWORKS

The first networks connected computers over a large geograph

ical areas using land-line, radio or satellite communications.

They were characterised by low data transfer rates between comput

ers and, since distances were large, long delays between transmis

sion and reception of messages within the network. Such networks

usually connected multiple sites within a single organisation such

as a business company. Alternatively, they were used by co-

-- -_. ------------------- -

3

operating

lishments.

organisations such as. Universities and research estab

Such networks are known as long haul or

wide area networks.

The topology of many wide area networks is similar to a tele

phone network. Selected major sites are linked together using

high-speed lines to form a trunk system. The remaining sites are

each linked to the trunk system via a connection to one of these

selected sites. Thus each site in the network can communicate

with every other site.

1.1.2. LOCAL AREA NETWORKS

About ten years ago, there was growing interest in intercon

necting computers within a localised environment. This was partly

due to a desire to interconnect various types of office 'equipment

such as mini- and micro- computers, word processing systems and

printers. There was also interest in taking advantage of cheaper

computing based on smaller processor units.

Before this time those local networks that had existed had

been miniature wide area networks. Various alternative strategies

were explored, which included buses and rings. This work revealed

that using the latest technologies it was possible to achieve a

moderately high data rate on the communications medium and also

relatively low costs. This possibility resulted

development and the emergence of local area networks as

today.

in further

they are

Local Area Networks (LANs) are generally considered to have

the following features (Clark,l978).

(1) Restricted geographical area (for example, a few kilometers).

(2) Moderately high data rates (typically 1-10 Mbit/s on the com

munication medium).

(3) Relatively low cost communications.

(4) A wide range of attached devices.

(5) Ownership of the LAN by a single organisation.

.------------~.--

4

There are three main types of local area network. There are

the bus, ego Ethernet (Metcalf,1976), and the token ring

(Saltzer,1979), which were both developed in the USA, and the

slotted ring, ego Cambridge Ring (Wilkes,1979), developed in the

UK.

The typical use of a LAN is to link various computer hosts

and user terminals in a large educational establishment or within

a single site of a commercial organisation. Figure 1.1 shows that

such a network might also include personal work stations with

their own local processing power and that it can allow expensive

resources such as high-speed printers and plotters to be shared.

The LAN communication subsystem could be realised by any of the

local area network types mentioned above, providing suitable

hardware and software exists on the computing hosts connected to

the network.

L 2 • NETWORK PROTOCOLS

In the context of computer networks, the meaning of the word

"protocol" is more restricted than in, say, the diplomatic con

text. A suitable working definition is this:

A protocol is a set of rules designed to enable

interaction between two or more communicating parties

This definition clearly has certain prerequisites: there must be

at least two parties, and these parties must be linked by a com

munications medium. To interact the two parties will exchange

messages via the communication medium. This exchange will not be

arbitrary; format and meaning of each message and the sequence in

which the are exchanged will be governed by a set of mutually

agreed rules. This set of rules is a communications protocol.

At the highest level, users may wish to transfer files

between computers, send electronic mail to colleagues in other

places or access remote databases. At the lowest level, these

functions must be carried out by electronic signals. There are

clearly fundamental differences between communicating at these two

levels. Owing to these differences, systems that provides network

services are often built in several levels or layers. This

...

!
PERSONAL
WORKSTATION

GATEWAY
TO WAN

MAINFRAME
COMPUTER

L A N

OISCS

MINI
COMPUTER

C 0 M M U N I CAT ION

S U 8 - S Y S T E M

PRINTER
SERVER

PLOTTER
SERVER

FIGURE 1.1 - A LOCAL AREA NETWORK

5

TERMINAL
CONCENTRATORS

6

st,uctured approach limits the complexity of each individual piece

of protocol software, which makes design, implementation and

maintenance of protocol software much easier. The general struc

ture of a networking system is called the network architecture.

1.3. NETWORK ARCHITECTURE

A network architecture consists of layers of protocol. Each

layer will have some clearly defined function. Communication

within that layer is conducted between protocol entities resident

on different machines. Communicating entities on different

machines within a layer are known as peer entities. This is illus

trated in figure 1.2. In reality no data is directly transferred

between peer entities except at the lowest level. Instead, each

layer passes data and control information to the layer below,

until the lowest layer is reached. At the lowest level there is

physical communication, as opposed to the virtual communication

used by the higher layers. In figure 1.2., virtual communication

is represented by dotted lines and physical communication is

represented by solid lines.

Both standards organisations and computer manufacturers have

produced generalised network architectures, which are known as

reference models. Examples of reference models produced by stan

dards organisation are the ISO reference model, and the IEEE 802

Standard for local area networks. An example of a reference model

'produced by a manufacturer is IBM's System ·Network Architecture

(SNA).

1.4. REFERENCE MODELS

1. 4 .1. THE ISO REFERENCE MODEL

A reference model for Open Systems Interconnection (OSI) has

been devised by the International Standards Organisation (ISO).

This is described in Zimmerman(1980) and Tanenbaum(1981). It was

developed as a first step towards an international standard for

network architecture. Each layer is listed below together with a

brief summary of its function.

n+1

n

LAYERS

n-1

o

PROCESS ON
MACHINE A

-

PROCESS ON
MACHINE B

7

~I NTERFACE

-

r--

FIGURE 1.2 - LAYERING OF PROTOCOLS

-

..L

PROTOCOL
ENTITY

8

(1) THE PHYSICAL LAYER

This is concerned with transmitting raw bits over a communi

cation channel.

(2) THE DATA LINK LAYER

The task of this layer is to take the transmission facility

provided by the physical layer and transform it in such a way

that it appears free from transmission errors to the network

layer.

(3) THE NETWORK LAYER

This layer controls the operation of the communications sub

net. It deals with the routing of messages through the net

work.

(4) THE TRANSPORT LAYER

This layer accepts data from the session layer, splits it up

into smaller units and passes them to the network layer and

ensures that pieces arrive correctly at the other end.

(5) THE SESSION LAYER

This layer sets up and manages communication paths between

processes and hosts.

(6) THE PRESENTATION LAYER

This layer provides services frequently required on a network

such as file transfer, data security and data compression.

(7) THE APPLICATION LAYER

These are the application programs that use the network ser

vices.

This information is illustrated in figure 1.3.

1.4.2. IEEE STANDARD 802

With a variety of local area network topologies becoming

available a standard was needed to accommodate them. The IEEE

Standard 802 defines a family of communication protocols for bus

and ring LANs. The basic approach was to split the data link

layer of the ISO model into two parts: the network access method,

as dictated by the LAN type, and the logical link control indepen

dent of the particular network technology used. The logical link

9

APPLICATION APPLI CA TION
LAYER LAYER

PRESENTATION PRESENT A nON
LAYER LAYER

SESSION SESSION
LAYER LAYER

TRANSPORT TRANSPORT
LAYER LAYER

NETWORK NETWORK
LAYER LAYER

OATA LINK DATA LINK
LAYER LAYER

PHYSICAL PHYSICAL
LAYER LAYER

~ /

FIGURE 1.3 - THE ISO REFERENCE MODEL

-~--

10

layer provides services similar to those provided by the High

level Data Link Control (HDLC) standard that has been adopted for

the data link layer of the ISO model. This approach is illustrated

in figure 1. 4.

1.4.3. SYSTEMS NETWORK ARCHITECTURE

The Systems Network Architecture (SNA) has been developed by

IBM to allow its customers to construct their own networks. What

follows is a brief introduction to SNA, a fuller discussion is

found in Schultz(1980). SNA can be viewed as a five layer model:

(1) DATA LINK CONTROL LAYER

The takes the raw transmission facility and makes it appear

error-free. Thus has the same function as the data link

layer in the ISO model.

(2) PATH CONTROL LAYER

This layer manages routing and flow control throughout the

network.

(3) TRANSMISSION CONTROL LAYER

This layer creates, manages and deletes end-to-end connec

tions.

(4) DATA FLOW CONTROL LAYER

This layer is primarily concerned with maintaining the

correct sequence of data across a connection.

(5) NETWORK SERVICES LAYER

This layer provides the user interface to the network and

encompasses the functions of both the session and presenta

tion layers of the ISO model.

This is illustrated in figure 1.5.

1.5. SERVICE SPECIFICATION

Between each pair of adjacent layers in any of these refer

!ence models there is an service definition. This defines the pri

mative operations and services the lower layer offers to the upper

layer. Each layer uses the service, provided by the layer below,

adds some functionality of its own, and thus provides a more con-

---- -- -

..J

0

a:
....
z
0

U

,.
z
....
..J

..J

<t
u
....
t!I

0

..J

C!J
Z ...
a:
w
C!J
Q
a:
<XI
:E

~

t!I
Z
a:
z ...
'" 0

.... ...
z
a: ...
z

o
o
z
....
lJJ

Z

""
Cl:

o
3
....
lJJ

Z

..J
-<
U
.... a:
tnlJJ
>->
=-<
1l...J

FIGURE 1.4 - THE IEEE STANDARD 802

11

12

NETWORK NETWORK
SERVICES SERVICES

DATA FLOW DATA FLOW
CONTROL CONTROL

TRANSMISSION
I

TRANSMISSION I
I CONTROL CONTROL

I
I

I ,
I i

PATH PATH I
CONTROL CONTROL

DATA LINK DATA LINK I CONTROL CONTROL

/

FIGURE 1.5 - THE SNA REFERENCE MODEL

13

venient interface that can be used to construct a higher layer.

i The upper most ,layer provides services for direct use (through

appropriate software interfaces) by a "user". The "userll may be a

person using network facilities via an operating system command

language or a process running under the control of the operating

system.

1.6. PROTOCOL SPECIFICATION

The specification of the actions of the protocol entities

'within a particular layer is called the protocol specification.

These actions will be taken in response to external stimuli such

as commands from the layer above and messages from the layer

below.

Protocol specification is the subject of the next chapter and

will be discussed in detail there.

1.7. ERROR AND FLOW CONTROL

Several techniques are widely used to overcome transmission

.errors and control the flow of packets of information between peer

entities.

The reasons why transmission errors occur will be examined

first. Following this, there will be an examination of the effect

that these errors have on blocks of data being transmitted through

a network.

discussed.

Finally, methods for error and flow control will be

1.7.1. TRANSMISSION ERRORS

Other pieces of electronic equipment, power lines and faul~;1
power supplies can interfere with transmissions. Such interfer-:

I

,ence is often r~ferred to as noise. Noise tends to come in bursts, I
I

!that is, it effects a string of bits, rather than individual bits
I

in isolation. This characteristic of noise has both advantages:

and disadvantages when it comes to error control. On the ad van

.tage side, since the data is usually sent in blocks of bits, only'

·a few blocks will be effected by the occasional burst error. Sup-

.pose the block

0.001 per bit.

size is 1000 bits and the error probability is

If errors were independent, most blocks would con-:

tain an error. However, if errors come in bursts of 100 bits,'

14

!only one or two blocks in every hundred would be effected. The

disadvantage of burst errors is that they are harder to detect and'

correct than isolated errors. Studies of protocol efficiency,

such as Field(1977) ,have_traditionally considered both indepen

dent and burst ertors.

1.7.2. ERROR CONTROL

Before we can eliminate errors, we must first detect that

,they have occurred. Errors can be detected by adding redundancy

in the form of checksums. A check sum is an additional field added

to the end of a block of data. It is calculated by an agreed for

mula from the contents of the block. The check sum can be recalcu

lated at the other end of a transmission and if it is incorrect a

transmission error has occurred. Check sums may be either error

detecting or error-correcting. Error-detecting codes are usually

chosen because error-correction techniques can not cope with total

loss of a message and only work in situations where the probabil

ity of error is low.

A popular form of error detection is the Cyclic Redun-

dancy Check (CRC). The checksum is calculated by dividing the

message, treated as One long bit stream, by a constant divisor.

The receiver repeats the division, compares the locally generated

remainder with the received CRC and accepts the message if they

are identical. The length of the remainder, and hence of the CRC,

depends on the divisor that is used. Given a suitable divisor the

probability of an undetected error can be made very small.

The receiver can detect whether a packet has been transmitted

correctly. In addition, the sender needs to know the result of

his transmissions to decide whether to retransmit if an error has

occurred. This is usually done by an acknowledgement system. The

receiver sends some form of acknowledgement for each packet he

correctly receives. He sends a positive acknowledgement to inform

the sender that the packet has been successful transmitted. In

some systems he can also send a negative acknowledgement if a

check sum error has been detected.

It is possible that a noise burst' could destroy one or more

whole packets in transit. Some agreed form of reference is

-

15

required between sender and receiver to identify each message.

This is because duplicate and missing messages must be detected by

the receiver. Hence each data block is usually proceeded by a

header containing a sequence number. The header, data block and

checksum together form a data frame.

A popular system of error control is known as positive ack

nowledgement and retransmission (PAR). In this system the sender

sends a data frame and waits for a positive acknowledgement from

the receiver. If one is not received within a certain time limit

the frame is retransmitted. This system guards against the loss

of acknowledgements as well as loss of data frames. Since the

sender waits for each transmitted message to be acknowledged

before sending another, this type of protocol is also known as a

send-and-wait protocol.

1.7.3. FLOW CONTROL

A PAR system also controls the flow of data between sender

and receiver. Since the sender waits for each message to be ack

nowledged before proceeding, a slow receiver cannot be swamped by

data from a faster sender. However, if the propagation delay is

high very little of the bandwidth is actually used. Hence, the

idea of a sliding window protocol was devised.

Under a sliding window protocol- the sender is allowed to send

a number of data frames up to an agreed maximum. The set of

unacknowledged frames is called the send window. As the frames

are acknowledged at the bottom of the window, the window "slides"

allowing more messages to be sent.

This type of protocol system can be implemented in several

different ways. The differences result from varying strategies

that can be employed to handle packet loss and corruption. Two

strategies will be outlined here.

(1) GO BACK N

Under this strategy, if a frame in the send window remains

unacknowledged for longer than the timeout interval, that

frame and all other frames sent after it are retransmitted.

On the receiver side all frames after a checksum error and

16

those arriving out of sequence are discarded until the next

frame in the sequence is received with no errors. The

receiver maintains a receive window only large enough to hold

a single packet.

(2) SELECTIVE REJECT

Under this strategy. as soon the receiver detects a missing

packet or checksum error it sends a negative acknowledgement

to the sender. However. the receiver continues to collect

all the good messages following the bad one in a receive win

dow. It waits till the missing message is received and then

forwards the contents of the receive window to the layer

above. The receiver can maintain a receiver window equal to

the size of the send window used by the sender.

A fuller discussion of these issues can be found in Tanen-

baum(l9Bl) •

1. B. SUMMARY

In this chapter some of the basic terms of computer networks

have been defined and some key concepts have been outlined. The

various components of a network architecture have presented

together with some examples of reference models. Finally. the

important topics of error and flow control were discussed.

1

CHAPTER TWO

PROTOCOL SPECIFICATION

18

2 .1. INTRODUCTION

computer communication has many parallels with human communi

cation. Both consist of an exchange of messages and both require

a language known to both parties. The study of human language is

known as linguistics. Those interested in the area of comparative

programming languages have used many terms originating in linguis

tics in their work. Thus the words grammar, syntax and semantics

are known to most people working in computer science. Unfor

tunately, workers in the field of communication protocols have

adopted a different set of terms which are not generally under

stood.

For example, Davies(1979) differentiated between the logical

and procedural specification of a protocol. In language there are

only two basic mechanisms for conveying information. One way to

convey information is through the content of various units, be

they words, sentences, flowchart symbols or protocol packets. The

other way is by arranging these units according to some set of

rules. For example, the sentences "the cat sat on the mat" and

"the cat mat on the sat" contain an identical set of words, but

the first is constructed according to the rules of grammar while

the second is not.

The logical specification is concerned with the first mechan

ism, the format and meaning of messages in the protocol language.

For example, the third and fourth byte of a message may give the

source of a message and the last two may be a checksum. The mes

sage as a whole may be a block of data or have some other meaning.

The other mechanism is the subject of the

procedural specification. This is concerned with the interaction

of peer entities which takes the form of an exchange of messages.

The rules governing the sequence of the messages exchanged within

a given protocol are sometimes known as the rules of procedure.

Both specifications are concerned with syntactic and semantic

issues. Brown(l984) describes a useful distinction between

literal, functional and pragmatic meanings as they relate to human

language:-

The literal meaning of an utterance is its meaning taken

in isolation from any context in which it is spoken.

The functional meaning is the meaning intended by the

speaker and the purpose behind the utterance.

The pragmatic meaning is the meaning derived by the hearer

in a particular context which may result in a certain

course of action on his part.

19

The statement "It is raining" may be a simple statement of

about the weather; its literal meaning. In response to the ques

tion "shall we go out for a walk?", it may have be a way of pol

itely declining the invitation, and this would be a functional

meaning. However, if this statement is spoken to a housewife with

washing drying in the garden this statement may have the meaning

"My washing is getting wet!" and cause her to go outside to bring

it in, even though the speaker may not have intended this to hap

pen. This would be a pragmatic meaning.

In the same way message number 34 followed by a valid check

sum is on the surface a simple data block. If the last message

received by an entity was numbered 33 the entity may 'simply pass

the text to the layer above. Alternatively, if the last message

received was numbered 32 this may imply a message has been lost
and result in completely' di.fferent actions on the part of the

receiver.

The literal meaning of a message can be founded by referring

to the logical specification of the protocol, while the functional

and pragmatic meaning can only be derived by referring to both the

procedural specification and the history of the current exchange.

This last statement introduces us to the fact that a protocol

entity needs to maintain some information resulting from previous

transactions. This information is usually called the state of the
I' entity. The process of changing states is kno"n as a transition.

Thus, the most popular forms of protocol specification method are

known as state-transition methods.

However, before a discussion of these methods can take place,

the basic protocol data units must be defined. This is the task

20

of the logical specification.

2.2. LOGICAL SPECIFICATION

The specification of messages is relatively straightforward.

We need to consider what is the lowest level of data representa

tion we are to consider. If the data units are expressed in terms

of binary, it is a bit-oriented protocol. Alternatively, if they

are expressed in terms of characters, it is a character

oriented protocol.

The format of a data unit or frame can be presented in the

form of a block diagram as in figure 2.1. Such a representation

is equivalent to a record structure found in high-level program

ming languages as in figure 2.2. Alternatively, a grammar nota

tion, such as Backus-Naur form, could be used as in figure 2.3.

This later form is especially useful where there are classes of

frames with a similar structure, as is found in HDLC.

2.3. PROCEDURAL SPECIFICATION

There are many different approaches to procedural specifica

tion in the literature. Harangozo(1977) describes a protocol by

specifying the set of all legal exchanges using grammars. This

level of abstraction is useful in the design stage. However, it

is not very useful for those interested in producing software to

implement the protocol. This is because complex processing is

required to translate this type of specification into algorithmic

form. Hence, most authors have specified protocols by describing

protocol entities which conform to the rules of procedure of that

protocol. Examples of this approach can be found in

Bochmann(1977a & b) and Alfonzetti(1982).

These two approachs are complementary, since both forms of

specification will be required at different stages of the develop

ment of a protocol. The specification methods in the next section

can, in general, be applied in both these approaches.

1 SEO. NUMBER DATA

FIGURE 2.1 - A BLOCK DIAGRAM

record
id 0 .. 1;

end

seq 0 .. 7;
data array [1 •. 10) of char;
checksum: 0 .• 255;

FIGURE 2.2 - A RECORD STRUCTURE

2l

CHECK SUM

<frame> ::= <identifier><sequence number><data><check sum> •

<identifier> ::= 1 I 0

<sequence number> ::= 0 1 2 I 3 141 5 I 6 17.
<data> ::= <character list>

<character list> ::= <character list><character>

where <character> is an ASCII character
and <check sum> is a single byte.

FIGURE 2.3 - GRAMMAR FORM

22

2.4. A SURVEY OF PROTOCOL SPECIFICATION ~ODS

2.4.1. INTRODUCTION

Many surveys describing various specification methods have

been published. These include Bochmann(1980), Danthine(1980),

LeLann(1978), Merlin(1979), Stenning(1979) & Sunshine(1978,1979).

The first protocols

diagrams of frame

were described chiefly in prose with a few

structures. unfortunately, the ambiguity

inherent in natural languages lead to the specifications being

interpreted in different ways by different implementors. Thus

various types of tables and diagrams were employed to enhance the

prose description. A good example of this type of specification

is the document "Cambridge Ring 82 - Protocol Specification" (Lar-

mouth,1982).

using BNF

This contains prose description, frame descriptions

notation and time sequence diagrams to show possible

message exchange sequences. These methods were a great improve

ment on straight prose, but there has been a desire to introduce a

much greater degree of formality into specifications. Greater

formality would enable a protocol specification language to be

developed which could be used in protocol design and implementa

tion tools.

There are two main types of formal specification methods

identified in Piatkowski(1983).

(1) State-transition methods in which input/output behaviour of a

system is defined indirectly by specifying a state variable,

possibly with a number of components, and a series of transi

tions involving input/output.

(2) Sequence expression methods in which input/output behaviour

is defined directly without recourse to internal state vari

ables.

These two approaches will be considered in turn. In addi-

tion, temporal logic will be discussed. This is an extension to

boolean algebra useful in protocol specification.

23

2. 4.2. AN EXAMPLE PROTOCOL

An example protocol is introduced for subsequent discussion.

The protocol is at the data link level of the ISO model. As a

simplification an error-free transmission medium is assumed.

Therefore, the frames have no check sum and timeouts have not been

included. The physical layer provides a half-duplex link, which

means that frames can be transferred in both directions but not

simultaneously. Flowcharts of a suitable protocol are given in

figure 2.4 and 2.5.

2.4.3. STATE TRANSITION METllODS

There are two main state transition methods: Finite State

Machines and Petri Nets. Firstly, the classical versions of these

techniques will be introduced together with applications to the

example protocol. Secondly, several extensions to these methods

will be discussed which increase the power of these techniques and

make automatic implementation possible.

2.4.3.1. FINITE STATE MACHINE

A (deterministic) finite state machine M consists of a set of

5 components (Cooke,1984).

a) Q a non-empty set of states.

b) A a finite alphabet.

c) t a mapping 0 x A -> Q of transitions.

d) qO' a member of Q, the initial state.

e) F, a subset of Q, the set of final states.

In a protocol specification the alphabet, A, is a set of

events such as sending a message, receipt of a packet or timeout.

The set of states, Q, can be either the state of an individual

entity or the composite state of a pair of entities and the under

lying medium. The machine, M, can be represented by a diagram.

The elements of Q are represented by nodes on a directed graph.

Each member of Q is drawn as a small circle enclosing the state

name. Elements of F have an additional circle drawn around then.

For each element ((qi,aj),qk) in t, an arc is drawn from qi to qk

-
24

START

FETCH NEW
DATA FROM

USER

TRANSMIT

/ DATA

AWAIT
RESPONSE

/
READ /

ACK

FIGURE 2.4 - AN EXAMPLE PROTOCOL (SENDER)

.-

25

(START)

AWAIT
MESSAGE

READ
DATA

RELEASE
DATA TO

USER

SEND
ACK

FIGURE 2.5 - AN EXAMPLE PROTOCOL (RECEIVER)

,

26

which is labeled aj. qO is identified by an arrow pointing to it.

As an example of this method, state transition diagrams for

the example protocol are given in figures 2.6. In this case F is

the empty set, ie there is no final machine. In addition, the

characteristics of the communication medium must be defined. This

can be done using a third finite state machine. This machine is

illustrated in figure 2.7.

The overall system is now mode led by three finite state

machines. Since a transition on one machine may cause a transi-

tion on another, the transitions on these machines are interdepen-

dent. For example, the transition SEND DATA on the sender is

related to the transition CARRY DATA on the communications medium,

which is itself is related to the transition READ DATA on the

receiver. Any two transitions which are related in this way are

said to be directly-coupled. Furthermore, any two machines with

directly-coupled transitions can also be said to be directly-

coupled. For example, the sender entity is directly-coupled with

the communications medium, and so is the receiver. However, the

sender and receiver are not directly-coupled since there is no

direct coupling of the transitions of these machines. Transitions

which are caused by a transition on another machine are said to be

dependent transitions. Transitions which are not dependent are

said to be spontaneous.

If we consider all transitions to be atomic, it is possible

to combine these three machines into a single composite machine

using a fairly simple procedure. Firstly, the first state of the

composite machine is. defined to be a tuple made up from the ini

tial states of the three machines. Hence it is written (1,1,1).

The next step is to examine each machine for a spontaneous transi

tion starting from state 1. The only possible transition is the

FETCH DATA transition on the sender machine. Hence the next com

posite state is (2,1,1). Each machine must now again be inspected

for spontaneous transitions, and also for transitions directly

coupled with.with FETCH DATA. The only possible transition is the

spontaneous transition SEND DATA on the sender machine. Hence the

next composite state is (3,1,1). At this stage there are no spon-

taneous transitions. However, the transition CARRY DATA on the

- - --------------------------------......

READ ACK

SEND ,loCK

FETCH DATA

SENDER
PROCESS

READ DATA

RECEIVER
PROCESS

27

SEND DATA

RELEASE DATA

FIGURE 2.6 - FINITE STATE MACHINE FOR PROTOCOL ENTITIES

I

I

I

-~

CARRY
ACK

28

CARRY
DATA

FIGURE 2.7 - FINITE STATE MACHINE FOR COMMUNICATION MEDIUM

.....

29

communication medium is directly-coupled with the SEND DATA tran

sition· on the sender. Thus the next state is (3,2,1). This pro

cedure continues until the state is once again (1,1,1) and all

possible paths back to that state have been explored. Figure 2.8

shows the complete composite machine for the example protocol.

Composite machines like this are useful for validating pro to

cols. For example, a node with no successors indicates a possible

deadlock.

2.4.3.2. PETRI NETS

An alternative method of modeling protocols is the use of

Petri Nets (Diaz,1982). A basic Petri Net C consists of a set of

four elements (Peterson,1977).

a) P, the set of places.

b) T, the set of transitions.

c) I, the input mapping T -> 2P , ie., the set of input places

for each transition.

d) 0, the output mapping T -> 2P , ie., the set of output places

for each transition.

The Petri Net C can be represented by a diagram. Places and

transitions are represented by nodes on a graph. A place is

denoted by a circle and a transition by a short line. I and 0 are

represented by directed edges. Whereas in a finite state machine

the nodes represent states and the edges represent possible tran

sitions, in a Petri Net possible transitions are represented by

transition bars, and state information is represented by the pres

ence of tokens at places. The state of a net is given by the

token distribution known as the marking. Formally, a marking is a

mapping of the set of places into the set of natural numbers,

diagrammatically it is shown using dots to represent tokens.

These dots are placed in the circles denoting the places. A tran

sition can fire (occur) when each of its input places holds at

least one token. When the transition fires it removes a single

token from its input places and deposits a single token at each of

its output places.

30

1 1 1

311

3 2 1 3 1 1·

3 2 3 3 2 1

3 2 2

FIGURE 2.8 - COMPOSITE MACHINE FOR EXAMPLE PROTOCOL

3l

Consider the simple Petri Net in figure 2.9. The marking

indicates that the initial state has a single token at place S.

The presence of this token indicates that transition 1 can fire.

When the transition fires it removes the token from place Sand

deposits one token in place A and one token at place B. Transi-

tion 2 can now fire since there is a token at both place A and

, place B. These tokens are now removed from these places and a

single token is deposited in place X. Thus the final marking is a

single token at ~lace X and no tokens in any other places.

A Petri Net can conveniently be used to represent a protocol.

Certain places are used to represent discrete states of the indi

vidual entities. The presence of a token in one of these places

indicates that a particular entity is in a certain state. Other

places represent particular frame types and the presence of a

token at such a place indicates that a frame is in transit in a

particular direction. If several of that type are in transit

simultaneously then several tokens will be present at that partic

ular place.

A Petri Net for the example protocol is given in figure 2.10.

The places at the left of the Net represent the states of the

sende,r entity, the places at the right represent the states of the

receiver entity, and the places in the centre represent frames in

transit. A single diagram has been used to model the structure of

the system. Starting at the modeLS initial marking we can con-

struct a finite state machine to model the behaviour of the sys

tem. Such a machine is called a token machine. Its structure is

the same as the composite machine in figure 2.8.

2.4.3.3. SYNTHESIS

The discussion of state transition methods began with a

definition of deterministic finite state machine. This definition

was used together with some other concepts to show how a collec

tion of linked finite state machines can model a protocol layer.

A construction was then outlined to combine these machines into a

single machine for protocol analysis. Following this the classi

cal Petri Net was described.

32

s

A B

x

FIGURE 2.9 - A SIMPLE PETRI NET

33

M2
R2

RJ

FIGURE 2.10 - PETRI NET FOR THE EXAMPLE PROGRAM

-_. ----------------------------- -

34

It will be noted that the classical Petri Net contains no

equivalent to the alphabet in the finite state machine. This is

because the firing of transitions is only dependent on the current

marking. However, each transition can be labelled with the name

of the event, or events, it represents. A transition may, for

example, represent the entity sending a particular frame type to a

peer. In this case two parts of the system, an entity and the

underlying communications medium are involved. Such an interac

tion is equivalent to a directly coupled transition of a system of

directly-coupled finite state machines. A Petri Net can be decom

posed into separate Petri Nets with coupled transitions. This is

achieved by allowing an optional condition or predicate to be

added to each transition. In this case a transition that can fire

as a result of the current marking will only fire when this predi

cate is met. Such a predicate may represent the reception of a

particular frame type or the availability of data. Hence it can

be seen that finite state machines are in fact a subclass of Petri

Nets suitable for modeling sequential processes.

The choice of a suitable representation of protocols will

depend on the particular application envisaged. This thesis is

concerned with automated protocol implementation so the represen

tation chosen has to be suitable for this work. The representa

tions discussed so far are not suitable for input to a computer.

This is partly due to their graphical nature, but is also due to

incompleteness. Hence, various extensions need to be considered.

2.4.3.4. EXTENDED STATE TRANSITION METHODS

The basic strategy adopted in the literature has been to

expand the definition of a transition to include a programming

language style description. Keller(l976) proposed a model of this

form for representing parallel programs. His model consists of a

Petri Net complemented with a set of variables X. Each transition

t has associated with it an enabling predicate Pt' depending on

some variables in X, and an action At, assigning new values to

some variables in X. The state of the modelled system is deter

mined by the number of tokens that reside in different places and

the value of variables. A certain transition is said to be

enabled, that is it can fire, when all its input places have at

- - ._------------------

35

least one token and its enabling predicate Pt is true. When a

transition fires the corresponding action At is executed and

tokens are redistributed according to the rules of Petri nets.

This model has following characteristics.

(1) The control structure is represented by the interconnection

of places and transitions, and some variables of the set X.

(2) The semantic structure is represented by the variables,

predicates and actions associated with the transitions.

Bochmann(1977b) adapted this approach and used it in protocol

specification. A protocol layer can be modeled as a system of

extended finite state machines. An extended finite state machine

is a finite state machine complemented by variables, predicates

and actions according to Keller's approach. Each protocol entity

will contain:

a) Definitions of variables

b) A finite state machine

c) A collection of associated predicates and actions.

Ayache(1982) further refined this approach by introducing an

additional type of predicate called the reception predicate RPt.

If a reception predicate is associated with a transition it can

only fire if the message type or types specified by the predicate

are received by this entity. Therefore, an extended finite state

machine can be written as a list of transitions in the form:

(pre-state),(reception predicate),(predicate)

-> (action),(post-state)

where the pre- and post- state are the names of states in the fin-

ite state machine. It can be noted that this is similar to the

standard form of an operation presented in Jones(1980).

(pre-condition) -> (action),(post-condition)

Extended state transition methods represent a good basis for the

design of a protocol specification language. There are, however,

other approaches which must be considered before these methods are

36

discussed in greater detail.

2.4.4. SEQUENCE EXPRESSION METHODS

An alternative approach to the problem of describing the

behaviour of system has been devised by Milner(1980). He calls

this system a Calculus of Communicating Systems (CCS).

2.4.4.1. CALCULUS OF COMMUNICATING SYSTEMS"

The following discussion is based on Milner's work. although

some of the terminology has been changed to relate more closely

with that used in the rest of this Thesis. A system can be decom

posed into a number of parts or entities. Activities within enti

ties are called actions and actions involving two entities are

called events.

CCS allows us to model the execution of an entity or process

by describing the sequence of events. Since we shall again con

sider events to be atomic. parallelism can be modeled by an arbi-

trary interleaving of events. A process can be mode led by a

tree-like object with labelled edges. The nodes of a tree

represent the process state while the edges correspond to events.

as in fig 2.11.

a I
b / \ c

Figure 2.11 - A CCS tree.

These trees do not model processes perfectly since two different

trees can describe the same behaviour as in figure 2.12.

a / \ a I a

Figure 2.12 - Equivalent trees.

We can describe a number of operations on processes represented in

this way.

(1) Sequence (;)

/ \
/ p \

/_._._\

Figure 2.13 - Sequencing.

=
/ \

/ p \
/ .. \

7q7q,\
/j_._\

(2) Choice ([1) (or the alternative composition)

/~)
/-

[1

Figure 2.14 - Choice.

(3) Concurrency (I I)

= /)\
. /p q\
/_-

a) processes which do not interact

a/ \b 11 c

d

b) processes that may interact

al 11 la

Id

= a / I b \c

c/c/ a/ lb \d

d/·d/ dl dl a/·\b

= a/ la \1

a/ a/ \d \d

d/ dl al

Figure 2.15 - concurrent compositions.

37

When two processes that may interact are the subject of a

concurrent composition there is no constraint forcing them to

interact with each other. This is because they may alterna

tively interact with other processes outside the composition.

The label 1 in the last diagram of figure 2.14 indicates the

case where they do in fact interact. This interaction is

internal to the composite process and is not "externally

visible" and could therefore be deleted from the tree. If we

wish to constrain concurrent processes so they are forced to

interact we need to use the hiding operator.

38

(4) Hiding (\)

To exclude other processes from participation in a given set

of events these events must be hidden.

al 11 al) \ (a) = 11
dl dl

Figure 2.16 - Hiding.

TO illustrate the power of thjs method we shall again refer

to the example protocol. The three processes that were earlier

represented by a finite state machine interact in the following

ways.

a) Sender fetches data from the user.

b) This data is passed to the communication medium.

c) The communication medium passes the data to the receiver.

d) The receiver passes the data to the user.

e) The receiver passes an acknowledgement to the communication

medium.

f) The communication medium passes this acknowledgement to the

sender.

The three process can be described thus:

R = c~d:e:R

where S is the sender process, M is the communications medium, and

R is the receiver process.

Note that since these processes are non-terminating these expres-

sions are recursive. The expression for deriving the external

behaviour of these process is:

c = \ (b,c,e,f)

39

One of the main advantages of the approach is that the various

composition operators facilitate a modular approach, in which

processes can be described as compositions of subprocesses.

2.4.5. TEMPORAL LOGIC

Another approach to protocol specification is the use of tem

poral logic as described in Hailpern(1983) and Schwart(1982).

This is basically an extension to the system of boolean algebra.

The time dimension is added into the system by means of three

additional operators: 0, () and!!!1lli. The unary operator Q (hen

ceforth) on a predicate implies that if the predicate is true in

the current state it will remain true for all future states. The

unary operator 0 (eventually) implies that a predicate is true in

the current state or will be true in some future state. Given any

two predicates A and B, A ~ B implies that A must be true

until the first state in which B is true. For example (a=l) until

(b=2) implies that the value of a will be 1 at least until the b

becomes 2. It can be noted that

and that, strictly speaking, until is the only operator needed

since

OP; P until false.

Many properties of systems can be stated using these opera-

tors. If I is invariant throughout a systems execution, that is,

it is always true, this is written Or.

causes 0 to subsequently occur one

satisfied infinitely often this can be

TO state that P

writes IJ(P)OQ).

expressed as OOP.

always

If P is

This

says that for every pOint in the computation there is a future

point at which P is true.

Temporal logic can be used in a variety of ways depending on

the underlying model chosen. As has been previously stated infor

mation can be encoded in content of units and also by the sequence

in which these units occur. The particular unit involved here are

states or events. The differences between the various temporal

logic approachs result from the way information is distributed

between these two encoding mechanisms. Schwart(1982) discusses

--~

40

three categories of temporal logic specification.

(1) Bound-State specifications consist of temporal logic asser

tions based on state representations which have a finite set

of possible values.

(2) Unbound-State specifications, as proposed in Hailpern(1983),

are based on state representations which have an infinite set

of possible values. These values reflect the complete his

tory of the process up to any given point in time.

(3) Event-sequence specifications contain no state component and

are expressed on the externally visible behaviour of the

entities.

Due to its flexibility, temporal logic is a powerful tool

when it is used in conjunction with a more operational approach.

Lamport(1983) describes an integrated approach which combines

state transition methods and temporal logic assertions.

2.4.6. SUMMARY

The various methods which have been presented here can be

assessed on a number of criteria. A specification should, as far

as is possible, be implementation independent. This means that

the various methods should not be constrained to a less than

optimal solution implementation because of the structure of the

specification. On the other hand, a specification method that

leads the implementor towards an optimal solution may be of con

siderable benefit. A specification method that supports modular

ity is to be preferred.

Some types of specification, such as Petri Nets, have well

known analytical properties and can be used far modeling and simu-

lation of a complete protocol system. Others, such as finite

state machines, have well-known implementation strategies, but

require special composition techniques before analysis can begin.

No particular method seems to have a clear overall advantage

over all the other methods. Therefore, it is not surprising that

the literature contains details of various formal languages based

on many of the methods described. Two of these languages are of

41

particular note. They are the ESTELLE language produced as part of

the work on ISO OSI standards, and the Format And Protocol

Language (FAPL) developed by IBM.

2.5. PROTOCOL SPECIFICATION LANGUAGES

2.5.1. ESTELLE

The ESTELLE protocol specification was produced as part of

the work of the ISO TC97!SC16!WGl ad hoc group on formal descrip

tion techniques. This group was established in October 1978 to

devise formal description techniques for Open Systems Interconnec

tion protocols. Three subgroups were formed in February 1981.

They are called A,B and C and have the following briefs.

A) Definition of architectural concepts.

B) Finite state machine techniques.

C) Sequence expression techniques.

The chairmen of these groups are Gregor v. Bochmann, Richard

L. Tenney and Chris Visser respectively. The work of subgroup B

produced ESTELLE as reported in Tenney(1983). ESTELLE is based

upon extended finite state machines. In an ESTELLE specification

a variable called state must be declared which models the state of

the transaction as is perceived by an entity. The finite state

machine is represented by a list of conditions in the form men

tioned earlier, namely:

(pre-state),(reception predicate), (predicate)

-> (action),(post-state)

Each part of the transaction is introduced by a keyword as indi

cated in the table below.

pre-sta~e
post-state

- "from"

- "to"

reception predicate - "when U

predicate - "provided"

action - "begin", terminated by !lend".

In addition, an optional "priority" may be assigned to a transi-

tion. If two transitions are enabled, the one with the highest

42

priority will be used. Tne actions are expressed in tne Pascal

programming language.

Furtner details and an example .can be found in Tenney(l983).

A similar language based on Petri Nets is suggested in

Ayacne(1982).

2.5.2. IBM'S FAPL

FAPL is described in Schultz(1980), Pozefsky(1982) and

Nash(1983). It is basically an extended version of PL/1, incor

porating finite state machines and more powerful data types.

Extended finite state machines are presented in a tabular form.

Columns are headed with state name and rows are labeled with a

series of input conditions. At the intersection of the row whose

conditions are all met and the column labeled with the name of the

current state there is an indication of the next state. The nypen

code () indicates nothing is to be done, an integer is a new

state, a greater-than symbol (>) indicates an error and a divide

sign I) indicates an impossible sequence of events. There is

also an optional action code which is an identifier in

parenthesis. An example of a FAPL finite state machine is given

in figure 2.17.

TwO additions to the data types of PL/l are supported. These

are the entity and the list. A list is a linked structure con

structed from entities. Various list processing facilities are

provided for manipulating these types. A fuller description of

FAPL and examples of its use can be found in the literature.

Despite a rather complex . format FAPL has been used success

fully for the validating and implementing SNA products. However,

its general acceptance by the computing community seems doubtful,

since it lacks the elegance of ESTELLE.
J _

2.5.3. LOTOS

The LOTOS protocol description technique was devised as a

result of the activities of subgroup C of the ISO working group

developing formal description techniques. It is based on Calculus

of Communicating Systems as devised by Milner and described in

section 2.4.4.1. It also incorportes the abstract data types

43

STATE NAMES-------> RESET AWAITING
STATE NUMBERS-----> 1 2

INPUTS

s, RQ, FIRST IN WINDOW 2 (PACRQ) \
S, RQ, -FIRST=IN=WINDOW -(NOPAC) -(NOPAC)

R, RSP, PAC >(PACERR) l(PACRSP)

OUTPUT FUNCTION
CODE

PACRQ PI = "PAC;

NOPAC PI = -PAC;

PACERR CALL LOG ('UNEXPECTED PACING RSP')

PACRSP PACING_CNT = PACING_CNT+WINDOW_SIZE

FIGURE 2.17 - AN EXAMPLE FAPL FINITE STATE MACHINE

44

language ACT ONE as described in Ehrig(1983).

The basic constructs of LOTOS allow modelling of sequencing,

concurrency and non-determinism in an entirely unambiguous way and

can model both synchronous and asynchronous communication. LOTOS

may be used to describe the allowed behaviours of a system either

with. or without describing the particular mechanisms which achieve

these 'behaviours.

Modularity is an important characteristic of LOTOS. A system

as a whole is a single process that consists of several interact

ing processes. These characteristics are, of course, derived from

CCS. LOTOS is described more fully in ISO/DP8807(1985).

2.6. SUMMARY

Protocol specification is an area of considerable debate.

The main dispute is between protagonists of the traditional state

approach and the alternative sequence expression approach. Other

methods such as temporal logic have properties which are useful in

protocol analysis. The first two formal languages presented were

both based on finite state machines. LOTOS, a language based on

the sequence expression approach was also described.

As development tools different languages may used appropri

ately at different stages in the development stage. For example

LOTOS is appropriate at the early stages while Estelle and FAPL

are appropriate at later stages.

-~-- ~ ~---------------------------------

CHAPTER THREE

AN ALTERNATIVE APPROACH TO

PROTOCOL SPECIFICATION

46

3.1. INTRODUCTION

Several protocol specification techniques from the literature

have been outlined, and the reason for increasing formality in

this area have been discussed.

The techniques described so far concentrate on the procedural

specification. treating the logical specification as a separate

issue. However, the logical and procedural aspects of a protocol

specification are interdependent and a protocol specification

should disclose this relationship. Clarity can also be increased

by eliminating implementation details, such as buffer management

and frame assembly which can be deduced from more fundamental

aspects of the protocol.

In order to explore these aspects of protocol specification,

it was proposed that a new protocol specification language should

be devised. The logical specification could be brought into the

main specification and made the central pillar around which the

specification is written. A study of various protocols revealed

that the packet (or frame) structure of many protocols are

hierarchical in nature. In such protocols frames are grouped into

classes. In HDLC, for example, there are control, information and

supervisory classes. Thus a two-tier system seemed desirable for

frame structures.

It was also observed that the simple protocols such as send

and wait protocols are a special class of sliding window proto

cols. In the case of send and wait protocols the size of the send

window is one. Thus most protocols can be modelled as sliding

window protocols.

The need to maintain state information was discussed in the

introduction to the previous chapter. A state is a collection of

variables which describe the current state of the transaction

between the peer entities as it is understood by a particular

entity. Jones(l980) uses a state concept based around a set of

variables which could be employed in a specification language.

The language devised with these concepts is called PSL/l.

(NB: PSL stands for Protocol Specification Language.)

-- ---~~.-------

47

3.2. PSL/l

This language combines a particular procedural approach with

special data types. The packet or frame structure is central to

the specification of each protocol. PSL/l employs a two-tier sys

tem of frame structure declarations. Overall class formats are

defined and fields within these formats can be redefined within

frame declarations.

The state information consists of a set of variables. Two

data types can be used for these variables. They are fields and

integers. A field is a fixed length bit string which can only be

incremented according to modulo arithmetic. The modulo of this

arithmetic can be derived from the field length by the formula

For example, a three bit field is restricted to modulo 8 arith

metic. Fields are generally used for frame sequence numbers.

An integer is of the type found in most high-level languages.

The range of values it can take is dictated by the particular

machine on which the protocol is being implemented. They are,

however, chiefly used as boolean variables or flags.

In PSL/I all specifications are expressed as sliding window

protocols with both a send and a receive window. The size of

these windows is specified in the parameters section of the

specification. Also specified in this section are two time inter

vals. One is the frame timeout interval, that is, the maximum

period that a sender will wait for an acknowledgement before

retransmitting a frame. Frame timeouts are initiated and handled

by the underlying protocol system. The other time interval is for

the user-initiated timer. This is under the control of the user

and an appropriate timeout action can be specified.

The interface between the protocol layer being specified and

the layer above is a pair of bit streams, one for input and one

for output. The interface with the layer below is expressed in

terms of frames. The stream of bits from above is assembled into

a data frame according to the frame structure specification and is

then placed in the send window.

48

The send window is a variable length queue of elements con

taining a frame copy, a frame identification and a timer-count.

Si~~e the structure is a queue, elements can only be added to the

back and removed from the front on a first-in first-out basis.

The length of the queue will depend on the availability of data

from the layer above, but it will be restrained to the maximum

size specified in the parameters section. Immediately after it is

placed in the queue a frame is sent to the layer below. The timer

count in the queue element for the frame is perioaically decre

mented until the frame element is removed from the queue or it

reaches zero. Should the counter go to zero the frame copy is

sent to the layer below for retransmission.

When a frame is received it is placed in the receive window.

The receive window is also a queue, but unlike the send window it

is of constant length. Each element contains a buffer for the

received frame, a field giving the frame identification of the

frame to be placed in this element and an accepted flag which is

set when the frame has arrived. The data portions of received

frames are passed to the layer above in the correct sequence. The

formats for both the send and receive windows are illustrated in

figure 3.1.

3.3. EXAMPLES

This generalised model of the operation of a protocol is

quite flexible and can be tailored to many different types of pro

tocol. An example of a simple alternating bit protocol is given

in figure 3.2. Following the example set in Blumer(1980), the

specification is for an entity that will fulfill the role of both

receiver and sender. This may result in a certain amount of

redundancy in a particular implementation, but this must be bal

anced against the duplication involved in producing two separate

specifications.

The specification begins.with a title identifying the specif-

ication. This is followed by the parameters section. In this

case, both the send and receive window sizes are set to one and

the timer interval has been specified at ten. In the next section

of the specification the two state variables are defined. There

>-a.
0
U

LU
::E
<
Cl:

CI:
LUZ

~i3
.... U

LU
UCI:
ZLU
LUCD

50!!
LUZ

'"

3 o
o
z
3
Cl
Z
LU

'"

>-a.
0
U

LU
::E
<
Cl:

Cl
LU
.... (!I
0.<
LU-'
U
U
<

LU
UCI:
ZLU
LUCD
:J:E
C3":J
LUZ

'"

FIGURE 3.1 - SLIDING WINDOW STRUCTURES

3
g
Z
3

LU
>
LU
U
LU
Cl:

49

protocol alt_hit /* alternating-hit protocol */

parameters {
send window:=l:
receTve window:=l,

/* size of send window */

}
retran_Interyal:= •• 1

/* size of receive window */
/* retransmission interval */

state {

}

class

}

class

}

A seq num:="O":
B:secL:num:="1";

control direct {
format{

}
frame

}

110 11 ;

seq_ num [111

ack{
action(receive){

if check sum error
then -

else
if seq_num=A_se~num
then

cancel(A se~nurn)1
inc(A_seCLnum) 1

else

info windowed{
format{

}
frame

}

"l";
seq num[ll
infTl011

dat{
action(receive){

if check sum error
then -

else

fi;

/* do nothing */

if se~num<>B_se~num
then

fi;

accept 1
inc(B_se~num)1

} send(ack) 1

action(send){

}

se~num:=A seq num;
inf:=data1- -

ontimeout{

}
single_retran;

FIGURE 3.2 - AN ALTERNATING BIT PROTOCOL IN PSL/l

50

51

is a sequence number for the sending role and another for the

receiving role.

This specification describes two classes of frame, the con

trol class and the info class. The control class is specified as

being direct. This implies that all frames in that class do not

pass through the window mechanism. They are assembled away from

the send window and a copy is not kept for retransmission. The

info class is windowed, that is it is transmitted via the send and

receive window as has previously been described.

Each class is identified by the leading bit, zero indicates a

control frame and one an info frame. This is specified in the

format sections of each class specification. The second bit in

both classes is a sequence number. In the windowed info frame

this is indicated by the word frame_id. This is necessary so that

the protocol compiler knows how each frame is to be identified as

it passes through the window mechanism.

In the info frame there is a field called infaJ which is the

data portion of the frame. The maximum length of this field is

specified, in this case ten, but the field may be assigned values

of any length up to this maximum.

For each frame type there are two actions: a receive action

and a send action. The receive action is executed after that

frame type is received, and the send action is executed before it

is sent. The actions are constructed using familiar high-level

language constructs.

cedure calls are

The statements which resemble Pascal pro-

invocations

internal data structures. The

of primitive actions defined on

retran primitive retransmits a

frame from the send window, and the cancel primitive deletes an,

element from that window. The accept primitive in the receive

. action for info, sets the accepted flag in the receive window for

: the frame whose arrival caused this action to be executed. The

receive window management system will pass the data to the layer

above in the correct sequence at a later stage. The inc primitive

.may be used to increment state variables of the type field. The.

; assignment to the data portion of the info frame is from the

'predefined variable called "data" which contains bits from the

52

layer above.

The final part of the specification is the timeout action.

This is executed when a timer count expires. The timeout action

in this case specifies that a single frame, the one causing the

timeout is to be retransmitted. There is an optional section that

is not used in this example. It is used to specify the action to

be taken if the user-initiated timer expires. This will be dis

cussed later.

It is important to note that while the scope of state vari

ables is global, the scope of fields within class and frame struc

tures is limited to the class or frame in which it is defined. A

full specification of the syntax of PSL/l can be found in the

appendix.

To illustrate how PSL/l can be used to specify the various

protocols, a series of examples will be presented. The develop

ment of these examples will parallel the discussion of data link

layer protocols in Tanenbaum(1981). Tanenbaum uses a series of

examples written in an extended form of Pascal.

The first of these examples, in figure 3.3, is a positive

acknowledgement / retransmission protocol. Each information frame

is acknowledged by a single zero bit. Figure 3.4 shows a 1 bit

sliding window protocol with piggy-backing. In a situation where

data is flowing in both directions information and acknowledgement

frames can be combined. The ack is said to ride piggy-back on the

data frame. The,protocol in Figure 3.5. introduces the concept of

pipelining. This allows multiple outstanding frames. The "go

back nU approach is adopted for retransmission.

The final example in Figure 3.6 illustrates the "selective

reject" approach to retransmission. It also uses the user-

initiated timer, which was mentioned earlier, to ensure data flow

in one direction is not held up as a result of there being no flow

in the other direction. After each data frame is received the

timer is started using the start_timer primative. This timer is

stopped as soon as a frame is sent to the other entity using the

stop_timer primative. If there is no traffic in that direction

for the specified timer interval, the timer will expire and an

" ,

53

acknowledgement is sent. Notice also that a third type of action

called a retransmission, or retran, action is used to ensure any

retransmitted frame contains the sequence number of the most

recent info frame accepted by this side of the protocol and not

the last frame accepted when the frame was originally sent.

3.4. SUMMARY

An alternative approach to protocol specification has been

presented together with some examples of its application. This

approach was used in the development of the protocol modeling sys

tem that will be discussed in the next chapter.

prqtocol par

/* A Positive Acknowledgement/Retransmission protocol */
/* Tanenbaum protocol 3 page 147 */

parameters {
. /* size of send window */

}

. state{

}

send window:=l.
receive window;=l-

t
~ ,

re ran_,nterval:=lO;

NextFrarneToSend: =110";
FrameExpected:=1I01l;

I /* size of receive window 0/
/* retransmission interval 0/

class control direct r-
format{ "0"; }

}

class

}

frame ack{
action(receive){

}
}

if check sum error
then -

else

fi:

retran;

cancel;

info windowed {
format{

}
frame

}

Ill" :
seq[l] frame id;
info[la] ; -

info{
action(receive){

if check sum error
then -

else

fi·

/* do nothing */

if seq=FrameExpected
then

accept;
inc(FrameExpected);

fi;
send(ack);

} ,
action(send){

seq:=NextFrameToSend;
inc(NextFrameToSend);
info:=data;

}

ontimeout{

}
single_retran;

54

FIGURE 3.3 - A POSITIVE ACKNOWLEDGEMENT RETRANSMISSION PROTOCOL

55

protocol.onebit_window

It A i-bit sliding window protocol with piggybacking */
1* Tanenbaum Protocol 4 page 152 *1

parameters {

}

state {

}

send window:=l~
recelve window:=l~
retran_Tnterva1:=10;

1* size of send window *1
1* size of receive window *1
1* retransmission interval *1

NextFrameToSend:=1I0";
FrameExpected::IIO II

;

LastFrameAccepted:="l"; 1* = 1 - FrameExpected *1

class in!'; windowed{

}

format{

}
frame

}

seq[11 frame id;
ack [11; -
inf[101;

info{
action(receive)(

if check sum error
then -

else
1* do nothing *1
if seq=FrameExpected
then

fi;

accept:
LastFrameAccepted:=seq;
inc(FrameExpected);

if ack=NextFrameToSend
then

fit

cancel;
inc(NextFrameToSend);

}
action(send)(

seq:=NextFrameToSend;
ack:=LastFrameAccepted;
inf:=data;

}
action(retran)(

}
ack:=LastFrameAccepted;

on timeout{

}
- single_retran;

FIGURE 3.4 - A ONE BIT SLIDING WINDOW PROTOCOL

protocol pipelining

/* Sliding window protocol with pipelining, */
/* allows multiple outstanding frames */
/* Tanenbaum Protocol 5 page 158-159 */

parameters {'
send window:=4~
receTve window:=l~

/* size of send window */

}

state {

retran_lnterval:=lO;

NextFrameToSend:=UOO"~
FrameExpected:="0Q";
LastFrameAccepted:=lIllu;
AckExpected:="QQ";

/* size of receive window */
/* retransmission interval */

, }
I .
classliifo -windowed{

format{

}
frame

}
}

on Hmeout{

seq[21 frame id;
ack [21; -
inf[lOl;

info{
action(receive){

if check sum error
then -

else
/* do nothing */

if seq=FrameExpected
then

accept;
LastFrameAccepted:=seq;
inc(FrameExpected);

fi;
cancel(AckExpected,ack);
AckExpected:=ack;
inc(AckExpected);

}
action(send){

seq:=NextFrameToSend;
inc(NextFrameToSend);
ack:=LastFrameAccepted;
inf:=data;

}
action(retran){

}
ack:=LastFrameAccepted;

}
- multiple_retran;

FIGURE 3.5 - PIPELINING

56

protocol nonseq_recv

/* Nonsequential receive protocol - frames */
/* frames can be accepted out of sequence */
/* Tanenbaum Protocol 6 page 162-163 */

parameters {
send window:=2;
receTve window:=2~
retran interval:=lO;

/* size of send window */

}
timer_interval:=5;

/* size of receive window */
/* retransmission interval */
/* timer interval */

state {

}

class

}

class

NextFrameToSend:="OO";
FrameExpected:="OO";
LastFrameAccepted:="ll":
AckExpected :="00"1
NoNak:=l;

control direct{
format{

}
frame

"0":
kind[l];
ack[2];

ack{
kind=format{"O'" }
action(receive)t

if check sum error
then - -

else
/* do nothing */

cancel(AckExpected,ack);
AckExpected:=ack;
inc(AckExpected);

} fi;

action(send){
ack:=LastFrameAccepted;

} stop_timer;

frame nak{
kind=format{"l"'}
action(receive)t

}

if check sum error
then - -

else

fi' } ,
action(send){

/* do nothing */

cancel(AckExpected,ack);
AckExpected:=ack;
inc(AckExpected);
retran(AckExpected);

NoNak=O;
ack:=LastFrameAccepted;
stop_timer;

info windowed {
format{

}
frame

Ill" ;
seq[2] frame id;
ack[2];
inf[lO];

info{
action(receive){

if check sum error
then -

if NoNak=l;
then

FIGURE 3.6 - A NON-SEQUENTIAL RECEIVE PROTOCOL

57

}
}

else

fi·

fi;
send(nak);

cancel(AckExpected,ack);
AckExpected:=ack;
inc(AckExpected);
if seq=FrameExpected
then

else

fi;

accept;
NoNak: =1;
LastFrameAccepted:=seq;
inc(FrameExpected);
start_timer;

if NoNak=l;
then

send (nak) ;
fi;

} ,
action(send)(

seq:=NextFrameToSend;
inc(NextFrameToSend);
ack:=LastFrameAccepted;
inf:=data;
stop timer; } -

action(retran)(
ack:=LastFrameAccepted;

}
stop_timer;

on timeout{
- single retran;

} -

on timer expired(

}
- send(ack);

FIGURE 3.6 - A NON-SEQUENTIAL RECEIVE PROTOCOL (Cont.)

58

...

CHAPTER FOUR

A PROTOCOL MODELING SYSTEM

60

4.1. INTRODUCTION

Given a physical connection between two computers, it will be

possible to design several different protocols which will satisfy

the basic requirement for an error-free communication path.

Choosing a particular design will require some measure of the

efficiency of each protocol. The effective transfer rate· is one

such measure. This measures the speed at which data is

transferred across the link between the two machines, taking into

account retransmissions due to errors and delays waiting for ack

nowledgements.

Traditionally estimates of protocol performance have been

derived using traffic and queuing theory. Two examples of this

approach are Field(1976) and Fraser(1977). Reiser(1982) is a

comprehensive survey of this and other methods. More recently

research has been conducted into predicting performance directly

from formal protocol specifications. This can be done via simula

tion. Bauerfield(1982) discusses two formal isms which contain

enough information for a simulation model to be automatically gen

erated. One is a graphical representation called Function Nets

which are related to Petri Nets, while the other is a high-level

language called Hybrid Model.

-
Work was undertaken to show that PSL/l could be used to gen-

erate simulations for protocol performance prediction.

4.2. DESCRIPTION

This work was conducted on the Departmental Vax 11/750 run

ning the UNIX operating system. The model took the form of a sys

tem of communicating processes, with both protocol entities and

communication channels being represented by individual processes.

The channel model was directly written in the C programming

language, while the entity models were generated into C from PSL/l

specifications. At run time the complete system is produced from

a single channel model using the fork and exec system calls. The

single initial process spawned the entity models and finally

. forked itself to produce a full-duplex transmission model. This

sequence of events is illustrated in Figure 4.1.

61

f--:.----~ CHANNEL +-_'--__ -1
MODEL

FIGURE 4.1 - PRODUCTION OF THE PROTOCOL MODELING SYSTEM

62

Slight modifications to the. original design for PSL/l were

required. The parameters section of PSL/l specification was

reduced in size so that timer intervals could be specified at run

time. In addition, the length of the data portion of the informa

tion frame could also be varied without recompiling the specifica

tion.

Three connection characteristics could also be specified at

run-time. These were entity-to-entity propagation delay, line

speed and bit error probability. These parameters could be varied

from run to run to investigate their relationship with overall

efficiency of a given protocol.

".3. GENERATING AN ENTITY MODEL

The availability of compiler writing tools under UNIX eased,

the task of producing a PSL/l to C translator. These tools are

called YACC and LEX. YACC stands for "Yet Another Compiler-

Compiler" (Johnson,1978b). It is a parser generator accepting

specifications written in a grammar notation with embedd~d actions

written in C. LEX (Lesk,1978) is a lexical analyer generator in

many ways similar to YACC, but accepting regular expressions

together with actions. With these it was possible to build a one

pass translator for PSL/l.

The basic strategy taken was to generate five data structures

from the specification.

(1) The symbol table

This is a linked list of elements containing a record struc

ture with the following fields.

a) Variable name.

b) Variable type.

c) if b) = field then field length else zero fi.

d) An initial value.

(2) Class and frame definitions.

These are complicated structures of linked lists. At the top

level we have a linked list of classes. For each class there

is a list of frames in that class, and a linked list of

63

fields. For each frame in a class there may be a linked list

of field redefinitions, each consisting of a list of fields.

The field redefinitions will have a pointer to the field in

the class definition they are redefining. This is illus

trated in figure 4.2. These linked lists contain all the

details required to manipulate the frame structures.

(3) A text file containing the send frame routine in C. This

takes the form of a switch statement with a case for each

frame type.

(4) A text file containing the receive frame routine again in C.

This takes the from of a switch statement with a case for

each frame type.

(5) A structure containing various miscellaneous details.

When the specification has been parsed and these five data

structures are complete the output program can be produced. The

initial C declarations are written to a file using information

from the symbol table, frame and class definitions and miscellane

ous details. Following this the main procedure is written. The

send and receive routines are then appended to this file. A

number of procedures were written to implement primative actions.

These had to be combined with the output from the translator to

produce an entity model which could then be compiled into execut

able code.

4.4. CONCLUSION

The approach presented above was successfully used to gen

erate simulation models for a large variety of protocols similar

to those presented in the last chapter. Unfortunately, restric

tions imposed by UNIX made simulations very slow. This was

because timer intervals could only be specified in seconds using

the alarm system call. Therefore other timing, such as propaga

tion delay, had also to be expressed on the same scale. Thus

simulating a large data transfer would be very slow indeed.

Results from simulations which were carried out proved to be

fairly erratic. In order to assess the affect of differing frame

sizes a number of simulations were conducted. Each simulation

o
t'l
"l
H
Z
H
"l
H
o
Z
m

CLASS 1

,

FIELD
DEFINITION

FIELD
DEFINITION

FIELD
DEFINITION

I

~

~

.

FRAME 1 IN
CLASS 1

FIELD RE-
~ DEFINITION

fIELD RE-
DEFINITION

I

CLASS 2

FRAME 2 IN '-- FRAME 1 IN
CLASS CLASS 2 • 1

t ..
FIELD RE- FIELD FIELD RE-
DEFINITION DEFINITION - DEFINITION

2ND FIELD IN FIELD 2ND FIELD IN
REDEF INITIDN DEFINITION REDEFINITION

!
FIELD. 3RD FIELD IN
DEFINITION REDEFINITION

.1

65

consisted of a transfer of 50,000 bits. The error rate was set at

10-4 and the propagation delay was set to five. The line speed

was set to 9600 baud. The test was repeated 20 times for each

frame size and an average taken. The results are summarised in

figure 4.3. The results fail to show any clear trend when the

frame size is greater than 4000 bits. The standard deviation

within the set of tests for each frame size increased as the frame

size increased. This last observation is predictable as a single

error will have a greater impact on a transfer when the frame size

is high.

However, PSL/l had been shown to be a practical specification

language for protocol simulation. The resulting simulation also

proved to be a very useful tool for debugging protocol specifica-

tions. This was done by printing a message to a trace file every

time a frame was sent or received. By increasing the error rate

the protocol could be tested under extreme conditions and deadlock

situations identified. As a consequence of this encouraging

result, work began to apply this specification method to other

areas of protocol design and implementation.

<-
::l
<l.
J:
co
."
0
Cl!
J:
<-

+
120

+

100

80 +

60

40

20

2000

+ +

+

5200'
8LOC,", S17E

+

66

+
+

+

·,00e0

FIGURE 4,3 - SIMULATION RESULTS

CHAPTER FIVE

NETWORKING USING ASYNCHRONOUS

INTERCONNECTION

68

5.1. INTROOQCTION

The work discussed in the previous two chapters was bit

orientated rather than byte-orientated. This is the approach that

was adopted in most recent networking standards such as X.25, DEC

NET and SNA. Older networks such as ARPANET used a byte

orientated approach. The general adoption of bit-orientated pro

tocols has been due to the desire to make network standards

independent of any particular byte or word structure.

This approach is feasible where expensive networking equip

ment is available. However, users who only need communication

facilities occasionally cannot justify such expenditure. Some

computers, particularly microcomputers, can not be directly con

nected to a network. Hence, there is a need for a simple and

cheap method of interconnection. The most readily available

method is asynchronous character transmission via the ubiquitous

V.24 interface.

5.2. NETWORK TOPOLOGIES

Asynchronous connection can be achieved in several ways. The

simplest method is by linking each machine to every other by using

an appropriately wired cable connection. However, this is only a

practical solution where the number of machines(n) to be intercon

nected is small. Each machine will require n-l ports dedicated to

network traffic and a total of n(n-l)/2 cables. Where three

machine are to be connected together the network will take up two

ports on each machine and three cables in total. If the network

grows to involve four machines, three ports will be required on

each plus six cables. Five machines will require four ports on

each machine and ten cables. At this stage the network is already

consuming a significant quantity of resources. Hence, to conserve

ports for terminal use and reduce the amount of cable required

there needs to be some sharing of resources by the machines.

Many sites with multiple computer systems will already use a

circuit switch to allow individual terminals to be connected to a

different machine in each terminal session. Such a switch can

also be used to allow computers to share ports and lines with each

other and also with terminals. Each machine can be connected to a

69

switch .as if it were a terminal. Hence each machine can login to

any other machine providing a line from the switch to that machine

is available. This situation is illustrated in figure 5.1. Once

this has been done file transfers can be initiated between

processes running on each machine.

An alternative approach is to use a local area network with

an RS-232 asynchronous interface. An example of such a system is

a low cost local area network called Clearway (Bidmead,1982 &

RTDL,1984).

5.3. CLEARWAY

A Clearway system consists of several access units, or nodes,

daisy-chained together into a ring. Each unit has an address in

the range 1-99 and can be configured to initiate calls to other

nodes. Alternatively, it can be configured to receive calls from

an other node. Thus the roles of master and slave can be assigned

to each node as required. One possible use of this system is to

allow computers, particularly micro-computers to share resources

such as printers. In this type of system a node attached to a

computer will be permanently configured as a master node while a

node attached to the printer will be permanently configured as a

slave. Terminals may also be connected directly into a network

via a node. Thus a Clearway network may be used in a similar way

to a circuit switch, allowing an individual terminal to access

more than one machine. In this case the nodes on the computer

will be configured as slaves.

Under some operating systems it may be possible to use a node

connected to a V.24 terminal port on a computer for incoming and

outgoing connections at different times. In the normal situation

the node is configured as a slave and the port is treated as an

ordinary terminal port by the computer. In this situation, a ter-

minal driver handles incoming connections. When the port is

required for outgoing connections and there is no current incoming

connection, the terminal driver can be disabled. The node can

then be reconfigured as a master by the computer and an outgoing

connection made. When the outgoing connection is no longer

required the node can be restored to is original configuration and

MACHINES

LINES

PORTS

TERMINALS

FIGURE 5.1 - USING A CIRCUIT SWITCH FOR NETWORKING

70

71

the terminal driver re-enabled.

Invisible to the user of Clearway there is a packet protocol

operating between nodes. The data field of the packet can be up

to 33 bytes long. Other fields contain sender and recipient iden

tification, a sequence number, packet size indicator and a check

character. After each packet is transmitted the sender waits for

an acknowledgement before transmitting the next packet.

The ring speed is around 4500 characters per second (50K

baud). This is slow compared to most local area networks. How

ever cost factors must be considered. An Ethernet node costs

between 250 and 300 pounds, and an interface to connect a computer

to an Ethernet using an RS-232 interface will cost in excess of

1000 pounds. A parallel interface such as a DEUNA board for a VAX

would cost at least three times that amount. On the other hand a

Clearway node costs around 175 pounds. These figures have been

enough to ensure wide spread use of this system.

With such a system one might argue it would be possible to

send data at relatively high-speed, say 9600 baud, between con

nected computers. However, the RS-232 interfaces can be a problem

area. The hardware of many computers has not been designed to

coped with large amounts of high-speed incoming traffic such as

that generated by a file transfer. Although they can receive data

at that speed, there may be insufficient buffering or an inade

quate interrupt handling system and hence they are unable to cope

with an uninterrupted stream of bytes. With multi-user systems

the computers ability to handle traffic may fluctuate depending on

the load being placed upon it. With some computers XON-XOFF can

be used across the RS-232 interface to increase reliability. How

ever, some hosts do not support this type of flow control, or can

not be relied upon to operate it without error. In these cir

cumstances it is likely that characters will be lost by the reci

pient. Thus it is important to provide a layer of host to host

protocol on top of that employed by Clearway to ensure reliable

transfer of information.

It was decided that a Clearway network would be set up within

the Department of Computer Studies at Loughborough University.

72

Initially, two mini-computers would be involved in the project, a

Digital VAX 11/750 running UNIX and a system based on Texas

Insttuments 990/10s. The latter machine is a multi-processor sys

tem with four processors. In addition, some terminals in staff

members offices would be attached to nodes allowing them access to

use both the VAX and the TEXAS machines. The network would be

required to handle both terminal access and file transfers.

The TEXAS machine was found to have particularly poor commun

ication facilities. A program was written on the TEXAS machine to

send a packet of data of variable length around the ring and read

it back, comparing what was received with what was sent. This was

tested at 9600 baud and it was discovered that the link became

unreliable when the packet size became greater than ten. The

TEXAS machine, therefore, requires an unusually short frame length

if it is to receive the data intact. Reliability would also vary

with the load on the machine, so a suitable protocol had to be

found to ensure that data transfers could be achieved without loss

of data.

5.4. PROTOCOL STANDARDS

Owing to the lack of suitable standards for communication

over asynchronous links most systems of this type have been ad hoc

responses to local needs. Often they have lacked even the most

rudimentary error detection and recovery. They have also had a

limited range of applications (eg file transfer only) and have

only allowed interconnection of a small range of machines.

There is a pressing need for a standard for asynchronous net-

working. As yet no such standard has emerged, but two responses

to the need are worthy of examination. These responses are the

Kermit Protocol produced at Columbia University, New York (da

Cruz,1983) and the proposals of the Transport Service Implementors

Group of the British Telecom New Networks Technical Forum (BT,83)

for an Asynchronous Transport Service (ATS).

The Kermit Protocol has been implemented on several diffetent

multi-user environments and on a large variety of personal comput

ets. The user runs the Kermit on his local machine, connects to

the remote machine and logs in. He then initiates the Kermit on

[, ,

73

the remote machine and escapes back to the local machine by typing

an escape sequence. At this point file transfers can begin

between the two machines. When he has completed his transfers he

must reconnect to the remote machine to logout.

The ATS proposals attempt to integrate asynchronous transfers

into the ISO OSI framework. The proposals cover the data link,

network and transport layers. They are based on the UK interim

standard "Yellow book" Transport Service. At the lowest level a

byte-orientated approach must be adopted due to the nature of the

underlying communication channel, but above that level they try to

follow ISO and UK standards as closely as possible.

5.5. FRAME REPRESENTATION

Simply adopting a byte-orientated approach is not sufficient

to ensure correct transmission of characters. In many cases the

hardware or software of the basic link does not allow transmission

of all possible 8 bit codes. Some systems demand parity of some

description or particular framing characters, such as Carriage

Return or ETX, to ensure forwarding of the input from a front-end

processor to a main frame or possibly low-level flow control such

as XON-XOFF.

If the data to be transmitted only consists of 7-bit ASCII

characters it is a fairly simple matter to code the control char

acters (octal 0-37) and the DEL character (octal 177) using escape

sequences. The Kermit Protocol uses a special "quote" character

to indicate that the next character is a coded control character.

This coded control character can be decoded (and encoded) by

exclusively ORing it with octal 100. The quote character can be

any character in the range octal 41-76 and 140-176, although' is

the default value. A quote character is transmitted by preceding

it by another quote character. If full eight-bit transmission is

required another different quote character (default &) must be

introduced to indicate that the following character, which may an

encoded control character, has the eighth bit set. Thus up to

three characters may be needed to transmit a single byte.

The ATS proposals offer a choice of two very different

approaches. The first called transparent framing can only be used

74

in situations where the full range of eight-bit patterns can be

transmitted. Each frame is preceded by a 3-byte header sequence.

Byte 1: octal 20

Byte 2: octal 202

Byte 3: length in bytes of the frame, including checksum.

The first two bytes were chosen since together they violate all

four standard conventions for the eighth-bit (odd, even, mark,

space). This may help to improve error recovery after loss or

damaged characters has caused loss of frame boundary synchronisa

tion. However, this is only true if text is being transmitted

with consistent treatment of the parity bit. There is no way of

improving error recovery if binary data is being transmitted.

ATS also provides another method of frame representation

called hex-coded framing for links which are not fully tran

sparent. The full eight bits are coded as two characters in the

ranges 0-9 and A-F which together represent the hexadecimal value

of the byte we are transmitting. In addition OZ,JZ,OX and JX are

used as frame markers. This method should work for most connec

tions since it does not require the ability to send or receive any

non-alphanumeric characters. The specification allows for link-

dependent variations whichever framing technique is used.

The Clearway network is not suitable for Transparent Framing

since at least One character must not be sent across the network.

This is the reset character which will put the node on the

sender's side into configuration mode. It would be possible to

implement Hex-coding Framing, but since two bytes need to be sent

for each character we wish 'to transmit, this is very inefficient.

A frame representation similar to that used in the Kermit

protocol was chosen for the Clearway network. Control characters

in the data are coded into two bytes. The first byte is the Data

Link Escape character, DLE, and the second is the character we

wish to send ORed with octal 0100. Each packet is introduced by a

control character. This must not be either DLE or the reset char

acter. This scheme was chosen to aid error recovery by ensuring

that frame boundaries could be easily restored.

75

Three numeric fields must be transmitted: a sequence number,

a byte count and a check sum. The sequence number was constrained

to be in the range 0-63. It is increased by 64 before transmis

sion to ensure it is not a control character. The byte count

could require one or two bytes depending on the maximum length of

the data field. Similarly, the check sum could be either two or

three bytes long, depending on the frame size. Such flexibility

was introduced because of the restrictions placed on the overall

,frame size by the Texas Instruments machine.

Where the length of the data field in a frame must be less

than 64, a single byte is sufficient for the byte count. The

seventh bit is set before transmission to exclude control charac

ters. Two bytes must be used for frames with data fields longer

than 64 bytes, but shorter than the maximum of 4095 bytes. The

byte count is divided into two six-bit quantities which have the

seventh bit set before transmission. The checksum is simply the

sum of all the bytes in the frame. It is treated in a similar way

to the byte count in that it is divided into six-bit quantities

and converted to printable characters.

An optional terminator may be used to ensure forwarding of

frames. This was included because the Berkeley Network Discipline

requires a newline to terminate each message. This scheme was not

designed to carry binary data.

5.6. PROCEDURAL ASPECTS

As has been previously mentioned the ATS proposals follow the

ISO OSI approach as closely as possibly. The designers of the

Kermit Protocol, however, were free to devise their own pro

cedures. One feature of the Kerrnit approach is that each side can

configure the other by informing it of its particular needs when

transmissions are initiated. The Kermit protocol was designed to

operate over both full and half duplex connections, but in a half

duplex manner. Hence, Kermit is a send and wait protocol.

For the Clearway network it was felt that the possibility of

a full sliding window protocol was required, but one that was

simpler than X.25. In order that the individual characteristics

of each pair of hosts could be used to allow the most efficient

76

protocol possible to be used for each connection, an initial

exchange of information is required between hosts. This is simi

lar to the Kermit Protocol. In the protocol for the Clearway Net

work, the host which is to be the receiver must specify the max

imum send window size and the maximum frame size. In addition it

indicates whether it requires a terminating character on each

frame it receives and, if this is so, which character is required.

5.7. SUMMARY

The special problems of networking over asynchronous line has

been discussed, together with strategies for overcoming them. The

Clearway networking system has been presented together with an

outline of the protocol chosen to operate on it. The rest of this

thesis will be concerned with how such a protocol can be imple

mented across a network in way that is both efficient and easy to

maintain.

CHAPTER SIX

PROTOCOL IMPLEMENTATION

78

6.1. INTRODUCTION

By the time a protocol specification is approved a lot of

hard work will have gone into the design and validation of the

protocol. However, at this stage of development there has still

been no change to the computers that will be involved in the net

work, which will still be operating an old protocol or isolated

from each other. There is still a great deal of work to be done

before the protocol is fully implemented.

How much work remains to be done will depend on the number of

different types of computer involved. If the network involves

machines of exactly the same type then there is only one implemen

tation of the protocol required. If all the machines in a network

are from the same manufacturers range it may not be too difficult

to adapt the initial implementation to run on the other machines.

However, many networks involve machines from a wide range of ven

dors, and this can result in a lot of extra work. The purpose of

this chapter is to consider ways to implement protocols on this

type of network avoiding excessive duplication of effort.

6.2. USE OF HIGH LEVEL LANGUAGES

If the process of producing an implementation on a new

machine can be made fairly mechanical, the probability of intro

ducing errors can be reduced. One way to do this is to use a

high-level language which is available on a wide range of

machines. The most common high-level language which might con

ceivable be used is Fortran. However, many versions of Fortran do

not allow sufficient access to the operating system to make this

feasible.

The two languages commonly used for system programming are

PL/I and C. PL/I was devised by IBM, but it is also used by

Honeywell in their Multics system. C is the language which is

used to write much of UNIX. UNIX is a portable operating system,

not tied to any particular manufacturer. It has been implemented

on to a large number of machines, including DEC PDP and VAX

machines, GEC computers, Perk in Elmer machines and a host of

micros and work stations. The XENIX system produced by Microsoft

is essentially the same operating system but on a smaller scale.

79

However, C is not restricted to UNIX, it is available under TOPS-

20, VMS and also on IBM, Amdahl and Honeywell machines.

The different implementations of C are, however, not without

system dependent characteristics. In fact, this is inevitable

because of the access the language gives to the machine and

operating system on which it is implemented. UNIX provides a

large library of both source and object code which can be used for

input/output and other common tasks. Some manufacturers provide

an equivalent library which can be used with their particular C

compiler. This is particularly true of VMS where UNIX system

calls can be emulated using a set of routines with the same inter

face. Hence C programs can become highly portable.

Where differences are unavoidable, owing to differences

between terminal drivers, the C macro-processor has a conditional'

compilation facility which can be used to allow different sections

,of code to be used on different machines. There is a C version of,

the Kermit Program which was written so that only a simple change'

is required before it will compile on one of the other supported

machine. This change is simply to swap two characters in the;

source file. The source for this Kermit contains the following

lines very close to the beginning of the text.

/* Conditional compilation for different machines */

/* and operating systems */

/* One and only one of the following should be 1 */

#define UCB4X 1 /* Berkeley 4.x UNIX */

#define TOPS_20 ° /* TOPS_20 */

#define IBM_UTS 0 /* Amdahl UTS on IBM systems */

#define VAX_VMS 0 /* VAX/VMS (not yet implemented) */

The position of the 1 in the four #define lines determines the

operating system under which the program will be compiled. Code

appropriate to a particular operating system can then be selected

for compilation at certain places in the program. However, there

still be problems with supposedly portable languages, like C,

which relate to how they fit into a particular operating system.

The alarm system call can be used to generate a signal after a

80

certain number of seconds. This can be used to timeout .an entity

that has not received an acknowledgement. The programmer writes a

signal system call specifying a routine which will handle the sig

nal. This is followed by an alarm ~all specifying the timeout
,

interval. This will be followed by a read which waits for the

acknowledgement. A signal results in the specified routine being

called. Under UNIX, on returning from this routine the read sys-

tern call terminates, returning with an error code. The signal

handler can in this case be a do nothing function. The following

sections of code illustrate this approach.

#define OK 0

#define TIMEOUT 1

#define SYSERROR -1

alarmcatch(){}

signal(SIGALRM,alarmcatch):

alarm(lO): /* 10 second timeout */

while(read(net,buf,sizeof(buf»==SYSERROR)

{

}

retran(last_frame):

signal(SIGALRM,alarmcatch):

alarm(lO): /* 10 second timeout */

alarm(O): /* turn off alarm */

However, under VMS when control returns from alarmcatch the system

call continues to wait for input. The use of the setjmp and

longjmp facilities from the standard libraries would appear at

first to offer a way round this problem by avoiding the normal

return. However, the C compiler release notes for VMS indicate

that the setjmp and longjmp can not be used in this way. VMS

appears to require the following technique.

alarmcatch()

(

}

retran(last_frame),

signal(SIGALRM,alarmcatch),

alarm(lO), /* 10 second timeout */

signal (SIGALRM,alarmcatch),

alarm(lO), /* 10 second timeout 0/

if(read(net,buf,sizeof(buf)==SYSERROR)

{
/* we have a real system error ! *f

}
alarm(O), /* turn off alarm */

81

This code will not work under UNIX. However, a small change will

render it portable.

alarmcatch()

(

}

retran(last_frame),

signal(SIGALRM,alarmcatch),

alarm(lO), f* 10 second timeout of

signal(SIGALRM,alarmcatch),

alarm(lO), /* 10 second timeout */

while(read(net,buf,sizeof(buf)==SYSERROR),

alarm(O), /* turn off alarm *f

As long as their are no real system errors this code will be

alright. For safety a limit on the number of retries would need

to be incorporated into the code.

An alternative approach would be to use conditional compila

tion to compile a different system call for VMS instead of the

UNIX read.

A language like C may be useful if it is available on all the

machines in the network. Sadly this is not usually the case. The

82

TEXAS machine on the departmental network had only an assembler

and Fortran and Pascal compilers. Hence TEXAS assembler was

chosen as the most suitable language for an implementation on that

machine.

6.3. PROTOCOL COMPILER

Although it does not solve the portability problem, using a

protocol compiler to implement a protocol in an automated fashion

can greatly reduce the the amount of work involved. There have

been two major pieces of work concerned with protocol compilers.

One approach was used by rBM to allow its users to generate

software for SNA, while another has been used on an early version

of the ISO subgroup B language.

The work done by IBM is principally described in Nash(l983).

The language used was FAPL (Format and Protocol Language), which

was described in Chapter 2. The target language was PLII,

although several different dialects of PL/I could be produced.

The compilers on each individual machine were used to produce exe

cutable code. The variations between dialects were obtained by

writing the code generation phase in such a way that it uses a set

of code generation macros. These could be varied to cater for

each different dialect and systems environment. The macros have

well defined interfaces and functions. Sample versions are sup

plied to the user who can the tailor them to his own particular

requirements. The macros are written in REX, a PL/r-like general

purpose language. There are about 40 such macros. There are some

FAPL functions that can not easily be coded into the target

language. In this case run-time support routines are used.

The basic principles used here represent a sound approach to

the implementation of protocols on a range of machines. Its main

weakness is that the approach has only been applied within a par

ticular manufacturers range, and it has only been used to produce

code in dialects of the same language.

The other work in this field was described in Blumer(l982).

A protocol compiler was constructed for an early version of

ESTELLE, using the YACC and LEX programs. The target language was

Pascal. A finite state machine can be represented by a set of

83

tables which guide program execution depending on external events.

The YACC and LEX systems are built using this principle. For YACC

and LEX the external event is reading a character or token, and

the appropriate action will be updating internal structure or out

putting some code. This same principal can be applied to protocol

programs. The external events in this case will include frame

arrivals, the arrival of data from the layer above, and timeouts

and the appropriate actions would include sending a frame and

closing down a connection.

Hence, in this work the protocol compiler outputs a set of

tables from the specification and adds code to traverse them.

These tables are the same for all protocols. A set of actions is

also produced from the specification. The latter can be done with

the minimum of processing since the actions in the specification

are already written in Pascal. These three items together can be

compiled into a protocol program.

This work shares the same weakness as the work using FAPL in

that it requires a Pascal compiler to be available on all the

machines in a network. The portability problem has still not been

tackled.

Neither of these approaches is sufficient to ease the problem

of implementing software on the Clearway network, since they have

only tackled translation to a high-level language. There is a gap

to be bridged from the high-level language to the assembler code.

This gap is usually filled by a compiler. This suggests the pos

sibility of using a portable or retargetable compiler to produce

the final code.

6.4. PORTABLE AND RETARGETABLE COMPILERS

Suppose there is a compiler for language A operating on

machine X, which we wish to move to machine Y. Further suppose

that this compiler is written in a language B for which there is a

compiler on machine Y. We can transfer the source code for the

compiler from machine X to machine Y, compile it, and we should

have a compiler that accepts language A on machine Y. Unfor

tunately, it will still produce code for machine X. Hence the

source for this compiler will need to be altered to generate code

84

for machine Y. How simply this can be done will depend on the

internal structure of the compiler. A compiler that has been

designed so it can easily be moved to another computer and adapted

to generate a different target code is known as a

portable compiler.

A retarqetable compiler is essentially the same except that

it is not intended to move the compiler onto a new machine but

generate code for another machine on the original machine. A

retargetable compiler can be used where there is not a compiler

for language B on machine Y. In some cases it may not even be

possible for machine Y to support any compilers owing to limita

tions on memory space. Thus a program can be compiled on a main

frame or mini-computer and down line loaded on to a small

microprocessor.

Compilers of this type need to be structured in such a way

that it is easy to adapt the code-generation phase to a new

machine. There needs to be a clear separation between the

language dependent and machine dependent parts of the compiler.

One approach

generators(CGG) in a

has been

similar

to produce code-generator

way to compiler-compilers such as

YACC and LEX. Some type of specification language is accepted by

the CGG to produce code for the code generation phase of a com

piler. The specification language can take one of two forms:

(1) A specification of the target machine and its instruction

set.

(2) A specification of the translation process between some form

of intermediate code and the target assembler.

The first approach would be preferable if some form of stan

dard machine description was provided with each machine. However,

a standard machine description language has not been adopted and

devising such a language would be a major task in itself. This

approach is discussed in Cattell(1980) and was found to be very

complex.

The second approach requires that the user knows enough about

his particular machine to see how intermediate code concepts can

85

be translated into machine code. This approach is described in

Granville(1978). In this work, a series of code templates, sirni-

lar to the macros used in the FAPL work, were used as the basis

for the specification. Associated with the templates were coded

instructions indicating were each template was to be applied. The

. intermediate form used as the starting point can be either an

intermediate language or a code tree. Granville(1978) uses an

algebraic notation as the specification language. The C portable

compiler (Johnson,1978a) uses a code tree as its starting point.

Poole(1974), Colman(1974) and Waite(1970) describe a system

based on a linear intermediate code. Poole(1974) describes the

concept of abstract machine modelling which underlies the work in

these three papers. An abstract machine is a generalised machine

architecture designed to be a common sub-set of as wide a range of

machines as possible. A family of abstract machines called JANUS

was devised and a well structured abstract machine code defined.

The basic approach adopted was to clearly divide the compiler

into language and machine dependent parts. The former they called

the language dependent translator (LOT), and the latter they

called the machine dependent translator (MOT).

The LOT contains all the lexical and syntactic analysis

necessary for the particular source language. If a program is

parsed successfully the compiler will determine what actions are

I-required· to execute the program and then pass a specification of I
these actions to the MOT. To keep the LOT machine-independent the

actions it produces must not rely on a particular target computer~

they must be fundamental operations which can be implemented on

any computer. The MOT must translate these operations into the

assembly code for a particular machine. The information flow from

the LOT to the MDT is in the form of abstract machine code. A

program called STAGE2 (Waite,1970) was used as the MOT. This was

driven by a set of translation rules supplied by the user.

The data types of JANUS are high-level entities such as

integers, addresses and real numbers. The operations on the other

hand were the lowest form possible, such as load a, add b, etc.

86

6.5. CONCLUSION

Three areas have been investigated in the search for tech

niques to simplify protocol implementation. The use of high-level

languages, despite possible pitfalls, was shown to be a useful

approach. A protocol compiler would reduce the effort required to

convert the specification into a suitable high-level language. A

portable compiler could be used to implement the high-level

language chosen.

An obvious course of action was to retarget the existing

portable C compiler to produce TEXAS assembler. However, experi

ence within the department had shown that this was a lengthy pro

cess which would probably not be cost-effective. TEXAS assembler

has a fairly asymmetric instruction set which might have proved

difficult to mould into a DEC-orientated code generation system.

Hence, an alternative approach was chosen. This was to pro

duce a retargetable protocol compiler on the VAX which would pro

duce code for a variety of machine types.

CHAPTER SEVEN

A RETARGETABLE PROTOCOL

COMPILER

~-------

88

7.1. INTROPUCTION

The discussion in the preceding chapters has examined various

aspects of protocol specification and implementation. The prob

lems that can arise implementing protocol entities on a range of

machines have been presented and the last chapter suggested that a

retargetable compiler might represent a step forward in this area.

The compiler would adopt the approach described in section 6.4.

Hence an abstract machine would be used as an interface between

language dependent and machine dependent parts of a compiler. The

task of producing a retargetable compiler can be divided into

several steps.

(1) PROTOCOL LANGUAGE REVISION

There were several reasons for doing this. Firstly, PSL/l

had been developed for bit-orientated protocol whereas byte

orientated protocols were now required. Owing to this change

of direction, the interfaces with the layers above and below

had to be redesigned. Experience had shown that the two-tier

frame declaration system employed in PSL/l was unwieldy and

unnecessarily complicated since only simple protocols were

required. There were several other changes made to the pro-

tocol specification language which will be described later.

The resulting language was called PSL/2.

(2) ABSTRACT MACHINE DESIGN

This step consisted of designing an abstract machine together

with an associated assembly code. The JANUS abstract machine

could be taken as a starting point. However, this machine

was devised without taking into consideration microprocessor

architectures so the basic structure of the abstract machine

required some modification.

(3) LANGUAGE DEPENDENT TRANSLATOR

A protocol compiler had to be written to translate protocol

specifications written in PSL/2 into programs written in the

assembly code of the abstract machine. The assembly code for

the abstract machine is called I-code.

(4) MACHINE DEPENDENT TRANSLATOR

Another translator was required to produce the equivalent of

- -- -- -- -- -----------------------------------

89

a~ abstract machine program in a wide range of assembler

codes.

(5) DESIGN OF A MACHINE INDEPENDENT OPERATING SYSTEM INTERFACE

A set of interface routines are required for each different

machine type to implement machine dependent aspects of the

protocol entities.

The rest of this chapter will examine each of these steps in

detail.

7.2. PSL/2

The switch to a byte-orientated approach made it necessary to

make various changes to the interface with the layer above. In

PSL/I bit streams had been used to send data to the layer above

and receive data from it. In PSL/2 these bit streams became byte

streams.

In addition some requests and indications were defined on the

interface with the layers above and below. The layer above and

the layer below both require some means of indicating to this

entity that a connection has been established with a peer entity.

This is done by means of an OPEN_REQUEST. The entity does not

establish the connection, so this must be done by another piece of

software. The layer above requires some means of telling the pro

tocol entity that data had been made available. The

CHARACTER_ABOVE indication was defined for this purpose. The

layer above also requires some means of instructing the layer

below to close the transaction with the peer once all outstanding

data has been transmitted and acknowledged. This was done by

defining the CLOSE_REQUEST. If an entity receives frames which

break the rules of the protocol it can communicate this fact to

the layer above by sending an error indication. A primative

action called ERROR is provided in the PSL/2 language for this

purpose.

The interface with the layer below is similar to that which

was used in PSL/l except that frames are now made up of bytes not

bits. The interface with the layers above and below are illus

trated in Figure 7.1.

.

OPEN CHARACTER CHARACTERS CHARACTERS CLOSE
REquEST INO~~~~;ON FROM ABOVE TO ABOVE REquEST

PROTOCOL

ENT I T Y

. !...
OPEN REQUEST FRAMES

FIGURE 7.1 - A PROTOCOL ENTITY

90

ERROR
INDICATION

!'

91

An explicit state variable was introduced into PSL/2 which

brought the language closer to existing extended finite state

machine languages such as ESTELLE and FAPL. This variable is

similar to the enumerated type found in C and Pascal. The specif

ier defines a limited set of values it can take in the form of

alphanumeric names. The value of the state variable is changed

using the NEW_STATE primative. Associated with each value there

will be expectations regarding peer entity behaviour. These

expectations will be reflected in the specification.

The two-tier frame declaration system was replaced with a

record structure style of declaration. However, each frame is not

described as a partitioned section of memory, but as a concatena

tion of constants and variables. This type of declaration can be

viewed as a set of assembly and disassembly instructions for each

frame, thereby eliminating the need for assignment statements.

The integer type was dropped, in favour of a type called

FLAG. This is equivalent to a boolean variable in Pascal. The

type called SEQ_FIELD replaced the FIELD type of PSL/l. This is a

field of undefined length, but it was expected to be implemented

as a single byte. The field ID FIELD is a byte length field which

has to appear at the beginning of a frame declaration and can

appear nowhere else. It is used to identify a frame when it

arrives.

In addition some purely cosmetic changes were made to the

syntax. For example, some redundant characters such as semi-

colons and brackets were removed.

An example of a specification written in PSL/2 can be found

in figure 7.2. It is incomplete, but it helps to illustrate the

changes that were made. Some finite state machines illustrating

the construction of the example are presented in figure 7.3. A

full syntax of the language is given in the appendix.

PSL/2 is not case sensitive, therefore upper-case can be used

to highlight the reserved words of the language. This has been

done in the example. The first line identifies the protocol,

which is a positive acknowledgement retransmission protocol. Fol

lowing this sequence number variables are declared. They are

PROTOCOL Par

SEQ_FIELD NextFrameToSend,LastFrameSent,ReceivedFrame

STATE estab,ack_wait

WINDOWED FRAME info

ID_FIELD 'STX'

92

SEQ_FIELD ON_RECEIPT ReceivedFrame ON_SEND NextFrameToSend

DATA

CHECK_SUM

ENDJRAME

DIRECT FRAME ack

ID_FIELD 'ACK'

CHECK_SUM

ENDJRAME

EVENTS

ON_OPEN_REQUEST

OPEN_R_WINDOW

NEW_STATE estab

DEC LastFrameSent

ON_CHARACTER_ABOVE

IF estab THEN

SEND_BELOW info

INC LastFrameSent

INC NextFrameToSend

IF S_WINDOW_FULL THEN

DISABLE_ABOVE

FI

NEW_STATE ack_wait

ELSE

ERROR

FI

ON_CLOSE_REQUEST

ON_CHARACTER_BELOW

[infol:

IF estab THEN

RECEIVE

FIGURE 7.2 - PSL/2 EXAMPLE

[ack J :

ELSE

FI

IF IN_R_WINDOW THEN

SEND_ABOVE

FI

SEND_BELOW ack

DISCARD

IF ack_wait THEN

RECEIVE

ELSE

CANCEL LastFrameSent LastFrameSent

ENABLE_ABOVE

NEW_STATE estab

DISCARD

FI

ON_TIMER_EXPIRED

END_EVENTS

FIGURE 7.2 - PSL/2 EXAMPLE (cont.)

93

ACK
FRAME

RECEIVED

EST

SENDERCS'

SUR

INFO
FRAME
SENT

=
ACK

FRAME
RECEIVED

94

INFD FRAME
RECEIVED;
ACK FRAME
SENT

(J
EST

RECEIVER (R)

INFO FRAME
RECEIVED;
ACK FRAME
SENT

INFO
FRAME
SENT

FIGURE 7.3 - FINITE STATE MACHINES FOR PSL/2 EXAMPLE

- -- -- --

95

automatically set to zero at the start of each transaction. Next

the state variable is declared. There are two possible values of

this variable: estab and aCk_wait.

The info frame is declared next. This is an example of the

new style of frame declaration. Following the ID_FIELD there is a

sequence number. When an info frame is sent the value

field is obtained from the variable NextFrameToSend.

when an info frame is received the value of this field

for this

Similarly,

is placed

in the variable ReceivedFrame. Following this field there is a

DATA field. Finally there is a CHECKSUM.

The rest of the specification consists of a list of request

and indication events and associated actions which are executed

when these events occur. The ON_OPEN_REQUEST event occurs when

ever the entity is invoked at the start of a transaction. This

event occurs irrespective of whether the entity is to send or

receive data. It is not necessary that there be any mechanism for

informing the entity which role it is to take, since the arrival

of data from above will automatically nominate the sender.

The next event is called ON_CHARACTER_ABOVE. This event

occurs when a character is made available by the layer above. A

SEND_BELOW operation within the action associated with this event

will collect such characters until it reaches the maximum frame

size Or no character is made available for a specified interval.

The event ON_CHARACTER_BELOW occurs when a character is made

available by the layer below. This should indicate the start of a

frame from the peer entity. The character read is compared with

the ID_FIELD of each frame type listed for the event. Each ele

ment in this list is enclosed in square brackets followed by a

colon. If a match is found the action associated with that frame

type is executed. If no match is found characters are read until

a match is found or there are no more characters to read. An

entity can disable the ON_CHARACTER_ABOVE event by using the

DISABLE_ABOVE primative. When an entity is again ready to receive

characters the ENABLE_ABOVE primative can be used.

The ON_TIMER_EXPIRED event has the same function as the event

of the same name in PSL/l. There is no ON_TIMEOUT event, and only

96

single frame retransmission is supported. Multiple retransmission

is achieved by repeated timeout on the sender side.

Many of the primitive actions of PSL/2 are equivalent to

those of PSL/l or are the same as PSL/l primatives with a dif

ferent name. The SEND_BELOW primitive in PSL/2 is equivalent to

the SEND primative in PSL/l. Similarly, the SEND_ABOVE primitive

in PSL/2 is the same as the PSL/l ACCEPT primative. The CANCEL,

RETRAN, START_TIMER, STOP_TIMER, INC and DEe primitives are

exactly the same as in PSL/l.

There are some fundamental differences between PSL/l and

PSL/2 in the way frames received by an entity are processed. In

PSL/l frames were considered to be indivisible, whereas in PSL/2

they are treated as a sequence of characters. When a valid

ID_FIELD is found there are two choices: the entity can either

RECEIVE the frame, that is accept it, or it can DISCARD it and

search for a new ID_FIELD value. A frame may be discarded if it

arrives out of context. In the example if an ack is received when

there are no info frames outstanding, it can probably be dis

carded.

The OPEN_R_WINDOW primative is used to initially set up the

receive window. A FLAG is set to true using the SET primitive and

it is set to false using the UNSET primitive.

The range of conditional expressions was extended in PSL/2 by

the addition of OR, AND and NOT operators. Some special condi

tions were also added. S_WINDOW_FULL is true if the send window

is open to its full extent. IN_R_WINDOW is true if the sequence

number of the last frame received is within the receive window.

7.3. THE ABSTRACT MACHINE

The concept of an abstract machine was discussed in section

6.4. An abstract machine should have a common subset of the

features of a wide variety of existing machines and acts as an

interface between language and machine dependent parts of a com

piler. Formulating such a machine is difficult due to the tremen

dous differences there are between different machines. For exam

ple, the number and characteristic of registers varies greatly

I. .

97

from machine to machine. In order to avoid problems in this area

an abstract machine was devised which has no general registers.

The instructions written in the abstract machine code may well

require the use of registers on a real machine, but at this level

no attempt is made to generalise.

There is, however, an index register that can be used to

address array elements. The abstract machine has a stack which

can be used for parameter passing. A set of condition codes were

defined as part of the machine.

These codes are:

·eq - equal,

ne - not equal,

It - less than,

gt - greater than,

le - less than or equal,

ge - greater than or equal,

true,

false.

A symbolic assembly language is associated with this machine.

This language is called I-code. The syntax of this language is

described in the appendix. Four types of instruction are defined

in I-code. They are:

(1) Allocation instructions.

These are either variable instructions for simple variables

or array instructions for more complex structures.

(2) Arithmetic two operand instructions.

These include addition, subtraction and move instructions.

(3) Arithmetic one operand instructions.

These include instructions for incrementing variables and

stack manipulation.

(4) Control instructions.

These include segment delimiters and branch instructions.

It was envisaged that at some point in the translation pro

cess I-code would need to be expressed in a very simple form.

98

Thus a five element tuple was designed for this purpose. Most

instructions are represented by a single tuple, except arithmetic

two operand instructions which require a pair of tuples. In each

tuple the first element is either an operator or a zero. A zero

indicates this is the second tuple of a pair. The remaining

ments usually specify an operand of the instruction.

ele

If the

instruction does not required an operand these elements are zero

filled.

The second element is usually the type of the operand. The

are four types defined:

char - character,

seq - sequence number,

addr - address,

int - integer.

(The type "sequence number" is used to represent the addressing

unit used to store frame sequence numbers.) However, in jp

instructions this second element is used as an optional qualifier

to the operand.

The third element is the mode of access, which is used

together with the next two elements to access the storage already

defined in allocation instructions. The next element is an iden

tifier and the last element is a constant integer value.

There are six possible modes: variable, inx_use, inx_offset,

inx, param and const.

(ll The variable mode implies that the operand is found at the

address associated with the identifier which follows it. The

identifier will have been defined by a variable instruction.

(2) The inx_use mode implies that the value in the index register

is used to determine the location of the operand.

{3l The inx_offset mode implies that both the value of the index

register and the value of the final element of the tuple are

added together to give the exact location of the operand.

This offset is expressed in terms of bytes.

99

(4) The mode inx refers to the index register itself. This mode

may only be used in a tuple in which the second element is

set to addr.

(5) The param mode refers to parameters located on the stack. If

this mode is used, the final element is used as an index into

the stack. A value of 0 refers to the top of the stack,

while a value of 1 the next element down, and so on.

(6) The final mode is the const mode. The value of the operand

is contained in the last element of the tuple and there is no

identifier in the fourth field.

Programming using five element tuples would be very tedious,

hence, the symbolic code for the abstract machine is not written

in this form. However, an I-code program should be seen as a con

venient shorthand for a sequence of tuples. The I-code for each

type of instruction will now be discussed in detail. ,

7.4. I-CODE

7.4.1. ALLOCATION INSTRUCTIONS

The most complex structures we want to manipulate are the

send and receive windows. These are fixed length arrays of fixed

length structures. Therefore, only two types of allocation

instructions are needed: the variable instruction for simple

variables and the array instructions for the more complex struc

tures. A variable instruction specifies the type, name and ini

tial value of a variable. The initial value may be omitted, in

which case a default of zero is assumed. The number of bytes

allocated can be calculated using the formula

bytes = len(type)

where the len function gives the number of bytes used to represent

that type on a particular machine. The array instruction speci

fies the type, name and length in terms of the number of elements

of an array. The number of bytes allocated can be calculated

using the formula

bytes = len(type) x length of array.

100

7.4.2. ARITHMETIC TWO OPERAND INSTRUCTIONS

An arithmetic two operand instruction consists of an operator

followed by a pair of operands separated by a comma. The format

of the operand depends on the mode of access employed. If the

variable mode is used, the operand will just consist of the iden

tifier name. If the inx_use mode is used the operand is written

as "[inxJ", and if the inx_offset mode is used the operand is as

"<offset>[inxJ", where <offset> is an integer constant referring

to a number of bytes. If the param mode is used the operand is

written "<offset>[paramJ", where <offset> is an optional integer

constant referring to a stack element number. If the offset is

omitted the operand is at the top of the stack.

An operand with the const mode can be written in one of two

ways. If the constant is a character it can be enclosed by a pair

of single primes and the conversion to the ASCII character code is

achieved during translation. Any other form of constant can be

written as an integer. When the index register is used as an

operand this a written as 'linx'l .

In order to generate the correct assembler code from an i

code instruction it is necessary to know the type of each operand.

For operands of the variable mode this is recorded in the variable

instruction that declared it. The type of a character constant is

also obvious from the form in which it"~s written. However, for

other modes the type is not immediately obvious from any single

operand. Normally, however, the type of an operand will be the

same as that of the other operand in the instruction. Therefore,

if the type of a operand is not known the type of the other

operand is assumed. However, in some cases the other operand will

also be of unknown type. This would be the case, for example, if

a non-character constant was being assigned to a operand with

inx_use mode. In such a case one or both of the operands must be

cast. A cast precedes an operand and consists of the required

type enclosed in parenthesis. For example:

(char) [inxJ

Casts may be used at any time to overrule defaults.

101

There are five operators defined: mov, add, sub, cmp and gad.

In each case the source operand is the right operand, while desti

nation operand is on the left. The purpose of the first three

operators can easily be deduced from their names. The mov opera

tor copies the source operand to the destination operand. The add

operator adds the source operand to the destination operand, while

the sub operator subtracts the source from the destination. The

cmp operator compares operands and sets condition codes. For

example, if the left operand is greater than the right operand the

condition codes ne, gt and ge will be set and the eq, It, le con

dition codes will be unset. The true and false codes will be

unaffected. The cmp instruction is used in conjunction with the

The final operator is gad, which stands for Get

instruction of this type loads the address of the

jp instruction.

ADdress. An

right operand into the left operand which must be of type addr.

Note that in the mov, add and sub instructions there is no

requirement that both operands be of the same type. Thus charac

ters can be added to integers in checksum calculations.

7.4.3. ARITHMETIC ONE OPERAND INSTRUCTIONS

An arithmetic one operand instruction consists of an operator

followed by a single operand. The operand has the same format as

that used in two operand instructions. There are four operators :

inc, dec, clr and arg. The inc operator increments its operand

and the dec operator decrements it. The clr operator zero fills

its operand. The arg operator places its operand onto the stack

in preparation for a subroutine call.

7.4.4. CONTROL INSTRUCTIONS

There are many different control operators. Some are segment

delimiters or markers. This type of operator has no operands.

The beg operator marks the beginning of a subroutine. The data

operator introduces a section of allocation instructions, while

the text operator introduces a section of program code. These

instructions are necessary since some machines, notably the VAX,

require that programs and the variables they access be in dif

ferent segments of memory. The endf marker denotes the end of the

source file.

102

Labels are placed in a column to the left of the program code.

and are followed by a colon. When they are translated into a

tuple they take the form

lab 0 0 <identifier> 0

There are three instructions which use labels: call, callc

and jp. The call instruction consists of the operator followed by

the label and an integer value. A call instruction branches to a

subroutine and saves the return address on the stack. The

instruction for returning from a subroutine is called ret and has

no operands. The integer value in the call instruction contains

the number of arguments. This was included because the calls

instruction in VAX assembler requires this information as one of

its operands. The callc instruction has the same format as the

call instruction, but it is used to call logical functions which

set the conditions codes true and false. The instruction for

returning from a logical function is called retc. A retc instruc

tion has one operand, true or false, depending on the required

return value. If true is specified the true condition code is set

and the false condition code is unset, and if false is specified

false is set and true is unset.

The jump instruction, jp, consists of the operator followed

by an optional qualifier followed by a label. If the qualifier is

omitted this is an unconditional jump. However, if the qualifier

is present it will be the name of one of the condition codes

defined earlier which will have been set by a cmp instruction.

1.4.5. AN EXAMPLE

To conclude this discussion of the abstract machine an exam

ple program now follows. It adds a constant and a variable called

avar to an integer whose address is 2 bytes into a character

array.

prog:

data
array char 100 store
variable int avar 3
text
beg
gad inx,store
add 2[inxl.(int)1
add 2[inxl.avar
ret

This program can be expanded into the

data 0 0 0
array char 100 store
variable int 0 avar
text 0 0 0
lab 0 0 prog
beg 0 0 0
gad addr inx 0
0 char variable store
add int inx offset 0
0 int const 0
add int inx offset 0
0 int varIable avar
ret 0 0 0

7.5. PRODUCTION OF I-CODE

103

following tuples.

0
0
3
0
0
0
0
0
2
1
2
0
0

The first stage in the translation process for PSL/2 is the

production of I-code from the PSL/2 specification. This transla

tion process can itself be divided into a number of steps.

The first step consists of producing an internal representa

tion of the PSL/2 specification to serve as a database for I-code

production. This internal representation is made up of a set of

linked lists and trees. Firstly. there is a linked list contain

ing an element for each frame type. Each element will contain a

pointer to a linked list of field definitions and a pOinter to a

code tree of the receive action for this frame. There are also

trees of events such as CLOSE_REQUEST and TIMER_EXPIRED. Finally.

there is a symbol table which is a linked list of elements con

taining the following fields:

a) variable name

b) variable type - STATE. FLAG or SEQ_FIELD.

c) short name - for use in the target program.

The short name in each element is generated by the system

Once again LEX and YACC were used to generate a lexical ana

lyser and a parser for PSL/2. The actions within the YACC specif

ication contain code to build the structures described above.

104

Once the database has been constructed an algorithm is required to

produce I-code from this information. As has been mentioned pre

viously the FAPL compiler uses a set of macros to direct transla

tion into PL/I. A similar approach was adopted for PSL/2. A col

lection of macros, collectively called a program template were

written to translate the constructs of PSL/2 into the constructs

of the abstract machine.

A program template consists of a list of keywords written in

upper case identifying PSL/2 concepts together with templates of

the I-code equivalent. In addition, comment lines may be included

beginning with a single upper case letter C. An example template

can be found in figure 7.4. In this example, a series of three

dots indicates that text has been omitted. The order in which the

sections are given is important and should be as described in the

example. This is necessary as processing of later sections

depends upon information contained in earlier sections.

The first section is where symbolic constants, such as buffer

sizes, can be defined. The backslash at the end of a line

supresses the trailing newline character, which would normally be

part of the template. Following this the templates for the primi~

tive actions of PSL/2 are defined. These templates may include

calls to subroutines which are defined elsewhere.

After this templates are given for the comparison operators

supported in PSL/2. These operators are equals (= and not

equals (<». The template for the equals comparison is intro

duced by the token EO, and the template for the not equals com

parison is introduced by the token NE. Following this the tem

plates for the logical operators OR, AND and NOT and the logical

functions S_WINDOW_FULL and IN_R_WINDOW are given.

The section following this contains two templates for each

type of field found in frame definitions. The SEND_CHARACTER and

RECEIVING_CHARACTER templates are concerned with character con

stants. The following template describes the actions necessary to

assemble a character constant into a frame for output. The tem-

plate labeled RECEIVING_CHARACTER describes the actions required

when a particular character is expected in a frame. The other

C
C 1) DEFINED CONSTANTS
C -------------------
C
BUFN
3000\
BUFZ
300\
C
C 2) PRIMITIVE ACTIONS
C --------------------
C
OPEN R WINDOW

- - call openrw 0
NEW STATE

- call stelr 0

SET

UNSET

INC

mov <state name>,l

mov <flag name>,l

mov <flag name>,O

inc <sequence field>
ENABLE_ABOVE

/* call enable 0 user
DISABLE_ABOVE

call disble 0 /* user
SEND_ABOVE

call sendab 0
SEND_BELOW

call sdb<frame name> 0
CANCEL

defined

defined

arg <first parameter name>
arg <second parameter name>
call cancel 2

RETRAN
arg <first parameter name>
arg <second parameter name>
call retran 2

RECEIVE
call rec<frame name> 0

DISCARD
call discrd 0

START TIMER
call statim 0 /* user

STOP_TIMER
call stptim 0 /*

ERROR
HALT
C
C
C
C
EO

user

3a) COMPARISONS

mov <old stack top>,O
cmp <left>,<right>
jp ne <label>
mov <old stack top>,l

<label>:\
NE

mov <old stack top>,O
cmp <left>,<right>
jp eq <label>
mov <old stack top>,l

<label>:\
C
C 3b) LOGICAL OPERATIONS
C ----------------------
C
OR

mov <old stack top>,l
cmp <left>,l
jp eq <label>
cmp <right>,l
jp eq <label>

defined

defined

primative

primative

primative

primative

FIGURE 7.4 - A PROGRAM TEMPLATE

105

*/

*/

*/

*/

mov <old stack top>,O
<label>:\
AND

mov <old stack top>,O
cmp <left>,l
jp ne <label>
cmp <r ight>, 1
jp ne <label>
mov <old stack top>,l

<label>:\
NOT

mov <old stack top>,l
cmp <operand>,l
jp ne <label>
mov <old stack top>,O

<label>:\
C
C 3c) LOGICAL FUNCTIONS
C ---------------------
C
S WINDOW FULL

- mov <old stack top>,O
callc swfull 0
jp false <label>
mov <old stack top>,l

<label>:\
IN_R_WINDOW

mov <old stack top>,O
callc inrwnd °
jp false <label>
mov <old stack top>,l

<label>:\
C
C 4) FRAME FIELDS
C ---------------
C
SENDING CHARACTER

-mov [inx),(char)<character>
inc maxsm
add calcks,[inx)
inc inx

SENDING VARIABLE
-mov [inx),<variable,name>

add (char)[inx),64 /* character stuffing */
inc maxsrn
add calcks,[inx)
inc inx

SENDING DATA
-call sdata °

SENDING PARAMS
-call sndpar °

SENDING CHECK SUM
-call "cks °

RECEIVING CHARACTER
arg (int)l
arg inx
call readb 2
add calcks,[inxj
inc inx

RECEIVING VARIABLE
arg (int)l
arg inx
call readb 2
add calcks,[inxj
sub (char)[inxj,64
mov <variable name>,[inxj

RECEIVING DATA
call rdata 0

RECEIVING PARAMS
call getpar 0

RECEIVING CHECK SUM
callc rcks °

C
C 5) DECLARATIONS
C ---------------
C

FIGURE 7.4 - A PROGRAM TEMPLATE (Cont.)

106

107

SEQ FIEI,D
- variable seq <low-level name>

FLAG
/* <high-level name> */

variable char <low-level name> /* <high-level name> */
STATE

variable char <low-level name> /* <high-level name> */
C
C 6) STANDARD DECLARATIONS
C ------------------------
C
STANDARD DCLS

array char BUFN swind
array char BUFN rwind
array char BUFZ inpbuf
array char BUFZ outbuf
variable addr bsw -1
variable addr tsw -1

/* send window buffer variable */
/* receive window buffer variable */
/* input buffer */

C
C
C
C
POLLING
tmain:

mOl:

open:

loop:

11:

12 :

close:

7) OVERALL PROGRAM

beg
mbeg
gad swinde,swind
add swinde,BUFN
gad rwinde,rwind
add rwinde,BUFN
call enable 0
jp mOl

{ON OPEN REQUEST}
calTc onca 0
jp false 11
lON CHARACTER ABOVE}
calTc oncb 0 -
jp false 12
lON CHARACTER BELOW}
calTc ctime 0-
jp false loop
lON TIMER EXPIRED}
jp Toop -

{ON CLOSE REQUEST}
ret- -

EVENT_DRIVEN

tmain: mbeg
stim
gad swinde,swind
add swinde,BUFN
gad rwinde,rwind
add rwinde,BUFN
call enable 0
{ON OPEN REQUEST}

mOl: jp mOl -

close: {ON CLOSE REQUEST}
ret- -

chara: {ON CHARACTER ABOVE}
ret- -

charb: {ON CHARACTER BELOW}
ret- -

time: {ON TIMER EXPIRED}
ret- -

USER ROUTINES
C -

/* out~ut buffer */
/* begInning of send window *f
/* top of send window *f

C 8) USER DEFINED ROUTINES
C ------------------------
C

1***** sndpar - send parameters *****/

FIGURE 7.4 - A PROGRAM TEMPLATE (Cont.)

snCipar: beg
aIg maxrw
arg lnx
call pi2 2
add calcks,[inx]
inc inx
add calcks,[inx]
inc inx
arg maXIm
arg inx
call pi2 2
add calcks,[inx]
inc inx
add calcks,[inx]
inc inx
mov [inx], t indr
add calcks,[inx]
inc inx
mov [inx],termr
add (char)[inx],64
add calcks,[inx]
inc inx
ret

108

/* put max window into buffer */

/* put max message into buffer */

/* put into buffer terminator indication */

/* put terminator into buffer */
/* stuff terminator */

FIGURE 7.4 - A PROGRAM TEMPLATE (Cont.)

109

templates in this section have similar functions.

After this can be found the formats of declarations for each

PSL/2 variable type. Following this space is provided for stan

dard variable declarations used in the code for the protocol

entity.

Penultimately, there is a section concerned with the overall

control structure of the program. Different target environments

are supported by providing a choice of templates. Two types of

possible environment were identified. These were the

polling environment and the event-driven environment. In the pol

ling environment the entity is being used within a substantial

operating system which controls input and output buffering and

allows polling of input queues. Supervisor or subroutine calls

are used to interface with the operating system. The event-driven

environment can be used where the host operating system provides a

suitable interface or where the entity will be part of a device

driver or it is to be run on a computer without an operating sys

tem.

The final section contains service routines which are suffi

ciently machine-independent to be expressed in I-code. These rou

tines are referenced in the previous sections.

The format of the templates themselves is fairly straightfor

ward. They are sections of I-code in which various substitution

strings have been placed. These substitutions strings are simply

comments describing the substitution enclosed by braces, < and >.

The content of the comment is unimportant since substitutions are

made in a set order. In addition PSL/2 event names such as

ON CLOSE_REQUEST may be enclosed in curly brackets, {and }, and

inserted into the template for the overall control structure. At

these points within the template, code will be generated from the

code tree for the actions associated with these events.

In the following stage of the translation process, a file is

produced which combines information from the PSL/2 specification

and the program template. This file consists of macro defini

tions, i-code instructions and macro calls. This file is later

presented to the m4 macro-processor (Kernighan,1978). which

110

produces an i-code program. A systems flowchart summarising this

activity can be found in figure 7.5.

In the stage one program, the constants, primative actions,

comparisons, logical operations and functions, and declarations

from the program template are translated into macros. Following

this the code trees for the actions associated with events from

the PSL/2 specification are converted into macros. This second

set of macros contains calls to the first set. The remaining tem

plates are processed and appended to these macros. The event

names surrounded by curly brackets are converted into macro calls

to the macros produced from the code trees. Finally, routines for

sending and receiving each frame are generated. These routines

use the macros generated from section 4 of the template. An exam

ple of an I-code program containing m4 macros is contained in fig

ure 7.6. An example of an I-code program with the macros expanded

is contained in figure 7.7.

7.6. TARGET ASSEMBLER SPECIFICATION

Given an abstract machine code program for a protocol entity,

it is still necessary to translate it into the assembly code for a

particular machine. As has been previously discussed in section

6.4, there is a need for a method of specifying this translation

process. For PSL/2 a system was devised based upon pattern match

ing. A series of tables are supplied by the user which contain

templates for target assembler translations of abstract machine

instructions. During the translation I-code is transformed into

tuples and each tuple or tuple pair is processed by reference to

these tables. This is achieved, firstly, by using the operator to

access the appropriate table and, secondly, by using the type and

mode elements of the tuple to search for the correct template

within that table.

The target assembler specification itself consists of two

sections. In the first section composite modes and types can be

defined. These are groups of modes and types connected by the OR

symbol I. This is similar to a macro facility, since it enables

the specifier to define names that will be expanded during the

translation process.

PROTOCOL
SPECIFICATION

STAGE 1
PROGRAM

I-CODE
tr MACROS

M4

I-CODE

FIGURE 7.5 - PSL/2 TRANSLATION - LDT

PROGRAM
TEMPLATES

111

undefine('index')
undef ine (, len')
undefine('eval')

112

define(BUFN,'3000')
define(BUFZ e'300')
define(OCC, 0')
define(SEQU,~l')
define(TIMER, '2')
define(LEN,'6')
define(FRAME, '10')
~efine(OPEN_R_WINDOW,

--[Beginning of first set of macros

call openrw 0 .)
~efine(NEW_STATE,

call stclr 0
mov Sl,l .)

~efine(EQ,

S6: ')

mov Sl,O
cmp S2,S3
jp ne S4
mov S5,1

/* 'SO' */

/* 'SO' */

/* 'SO' */

define(SENDING CHARACTER,
, - /* 'SO' * /

,)

mov [inx),(char)Sl
inc maxsm
add calcks,[inx)
inc inx

define(SENDING VARIABLE,
, - /* 'SO' * /

mov [inx) ,Sl
add (char)[inx),64 /* character stuffing */
inc maxsm
add calcks,[inx)
inc inx ,)

~efine(SENDING_DATA,
/* 'SO' */

call sdata 0 ,)
define(SEQ FIELD,' variable seq Sl /* S2 */
') -
define(FLAG,' variable char Sl /* S2 */ ,)
define(STATE, , variable char Sl /* S2 */ ,)
~efine(ON_OPEN_REQUEST, --[Beginning of second set of macros

/* 'SO' */
OPEN R WINDOW
DISAnLE ABOVE
SEND BEtOW(02)
START TIMER
NEW STATE(stOO)
') -
define(ON CHARACTER BELOW,
, - - /*

if 03 :

then03:

gad inx,inpbuf
arg inx
call reada 1
cmp (char)[inx),2
ip ne ocbOO
mov tvOO,stOl
cmp tvOO,l
ip ne else03

RECEIVE(OO)

'SO' * /

if04:IN R WINDOW(tvOO,lab05,tvOO,lab05)
-crop tvOO,l

ip ne fi04
then04:
SEND ABOVE

FIGURE 7.6 - I-CODE PROGRAM WITH MACROS

INC(seq03)
fi04:
SEND BELOW(Ol)
elseU3:
DISCARD
fi03:
ocbOO:

if 06 :

then06:

cmp (char)[inx),6
jp ne ocbOl
mov tvOO,stOl
cmp tvOO,l
jp ne elseOG

113

RECEIVE(Ol)
if07:NE(tvOO,seq02,seq04,lab08,tvOO,lab08)

then07 :

cmp tvOO,l
jp ne fi07

CANCEL(seq02,seq02)
INC(seq04)
ENABLE ABOVE
fi07: -
else06:
DISCARD
fi06:
ocb04:

ifl7:

then17:
HALT
else17:
DISCARD
fil7:
ocbOS:')

cmp (char)[inx),S
jp ne ocbOS
mov tvOO,st02
cmp tvOO,l
jp ne else17

data
array char BUFN swind
array char BUFN rwind
array char BUFZ inpbuf
array char BUFZ outbuf
variable addr bsw -1
variable addr tsw -1

FLAG(tvOO)
FLAG(tvOl)
FLAG(tv02)
SEQ FIELD(seqOO,send no)
SEQ:FIELD(SeqOl,recv:no)
SEQ_FIELD(seq02,ack_no)
SEQ FIELD(seq03,exp no)
SEQ-FIELD(seq04,ack-exp no)
FLA~(flOO,i know) - -
FLAG(flOl,i-am known)
STATE(stOO,opeoing)
STATE(stOl,data transfer)
STATE(st02,closTng)

text
tmain: beg

gad swinde,swind
add swinde,BUFN
gad rwinde,rwind
add rwinde,BUFN
call enable 0

mOl: jp mOl

open:

loop:

11:

12 :

ON OPEN REQUEST
caIlc ooca 0
jp false 11
ON CHARACTER ABOVE
caIlc oncb 0-
jp false 12
ON CHARACTER BELOW
caIlc ctime U
jp false loop
ON TIMER EXPIRED
jp-loop -

/* send window buffer variable */
/* receive window buffer variable */
/* input buffer */
/* output buffer */
/* begInning of send window */
/* top of send window */

FIGURE 7.6 - I-CODE PROGRAM WITH MACROS (Cont.)

114

close: ON CLOSE REQUEST
ret -

I"'" sndpar - send parameters ""'1
sndpar: beg

arg maxrw
arg inx
call pi2 2
add calcks,[inx]
inc inx
add calcks,[inx]
inc inx
arg maXIm
arg inx
call pi2 2
add calcks,[inx]
inc inx
add calcks,[inx]
inc inx
mov [inx],tindr
add calcks,[inx]
inc inx
mov [inx],termr
add (char)[inx],64
add calcks,[inx]
inc inx
ret

I' put max window into buffer '1

•

I' put max message into buffer '1

I' put into buffer terminator indication '1

I' put terminator into buffer '1
I' stuff terminator '1

/***** clear state variables ""'1
stclr: beg

clr stOO
clr stOl
clr st02
ret

/***** receive info *****/

recOO: beg
gad inx,inpbuf
mov seqno.[inx]

RECEIVING VARIABLE(seqOl)
RECEIVING-DATA
RECEIVING-CHECK SUM

ret -

/***** receive ack *****/

recOl: beg
gad inx,inpbuf

RECEIVING VARIABLE(seq02)
RECEIVING-CHECK SUM

ret -

I ••••• discrd - routine to skip until frame id ····'1
discrd:
disOl:

dis02:

beg
gad tema,ch
arg tema
call rcb 1
jp disOl
ret

I"". sending info ·····1
sdbOO:

sOO:

beg
add tsw,BUFZ
cmp tsw,swinde
jp ne sOO
<;lad tsw,swind
lne actsw
mov inx,tsw

FIGURE 7.6 - I-CODE PROGRAM WITH MACROS (Cont.)

mov (char)OCC[inx),l
mov SEQU[inx),se900
mov TIMER[inx),tlmint
add inx,FRAME
mov begf, inx

SENDING CHARACTER(2)
SENDING-VARIABLE(seqOO)
SENDING-DATA
SENDING-CHECK SUM

-mov renf, inx
sub inx,begf
mov inx,tsw
mov LEN[inx),lenf
arg begf
arg lenf
call rddb 2
ret

1***** sending ack *****/

sdbOl: beg
gad inx,outbuf
mov begf, inx

SENDING CHARACTER(6)
SENDING=VARIABLE(seqOl)
SENDING CHECK SUM

-mov renf, inx
sub inx,begf
arg begf
arg lenf
call rddb 2
ret

FIGURE 7.6 - I-CODE PROGRAM WITH MACROS (Cont.)

115

data
array char 3000 swind
array char 3000 rwind
array char 300 inpbuf
array char 300 outbuf
variable addr bsw -1
variable addr tsw -1

variable char tvOO

variable char tvOl

variable char tv02

variable seq seqOO

variable seq seqOl

variable seq seq02

variable seq seq03

variable seq seq04

variable char flOO

variable char flOl

variable char stOO

variable char stOl

variable char st02

text

116

/* send window buffer variable */
/* receive window buffer variable */
/* input buffer */
/* out~ut buffer */
/* beglnning of send window */
/* top of send window */

/* */

/* */

/* */

/* send_no */

/* recv_no */

/* ack_no */

/* exp_no */

/* ack_exp_no '/

/* i_know */

/* i_am_known */

/* opening */

/* data_transfer '/

/* closing */

tmain: beg
mbeg
gad swinde,swind
add swinde,3000
gad rwinde,rwind
add rwinde,3000
call enable 0

mOL: jp mOL

open:

call openrw 0

call disble 0

call sdb02 0

call statim 0

call stclr 0
mov stOO,l

loop: callc onca 0
jp false 11

if 00: mov tvOO,stOl
cmp tvOO,l
jp ne elseOO

thenOO:

call sdbOO 0

if 01:
mov tvOO,O

/* ON OPEN REQUEST
/* OPEN_R_WINDOW *7

*/

/* DISABLE ABOVE */
/* user deYined primative */

/* SEND_BELOW */

/* START TIMER */
1* user aefined primative */

/* NEW_STATE */

FIGURE 7.7 - AN I-CODE PROGRAM WITH MACROS EXPANDED

lab02:

thenOl:

fiOl:
elseOO:

fiOO:

11 :

callc swfull 0
jp false lab02
mov tvOO,l

cmp tvOO,l
jp ne fiOl

call disble 0

callc oncb 0
jp false 12

gad inl<, inpbuf ari inx
ca 1 reada 1

1* DISABLE ABOVE *1
1* user defined primative *1

1* ERROR *1

1* ON_CHARACTER_BELOW

cmp (char)[inx],2

if 03 :
jp ne ocbOO
mov tvOO,stOl

then03:

cmp tvOO,l
jp ne else03

1* RECEIVE *1
call recOO 0

if 04: 1* IN_R_WINDOW
mov tvOO,O
callc inrwnd 0
jp false lab05
mov tvOO,l

lab05:

then04:

cmp tvOO,l
jp ne fi04

1* SEND_ABOVE
call sendab 0

1* INC *1
inc seq03

fi04:
1* SEND_BELOW

call sdbOl 0

else03:
1* DISCARD *1

call discrd 0

fi03:
ocbOO:

ifOG:

cmp (char)[inxj,G
jp ne ocbOl
mov tvOO,stOl

thenOG:

H07:

lab08 :

cmp tvOO,l
jp ne elseOG

call recOl 0

mov tvOO,O
cmp seq02,seq04
jp eq lab08
mov tvOO,l

cmp tvOO,l
jp ne fi07

then07:

arg seq02
arg seq02

1* RECEIVE *1

1* NE *1

1* CANCEL *1

*1

*1

*1

*1

FIGURE 7.7 - AN I-CODE PROGRAM WITH MACROS EXPANDED (cont.)

117

call cancel 2

/* INC */
inc seq04

/* ENABLE ABOVE */
call enable 0 /* user defined primative

fi07 :
else06:

call discrd 0
/* DISCARD */

fi06 :
ocbOl: cmp (char)[inx],l

H09:
jp ne ocb02
mov tvOO,stOO
cmp tvOO,l
jp ne else09

then09:
/* RECEIVE */

call rec02 0

/* SEND_BELOW */
call sdb03 0

call statim 0
/*
/*

START TIMER */
user oefined primative

/* SET */
mov flOO,l

iflO: mov tvOl,flOl
mov tv02,flOO

/* AND */
mov tvOO,O
cmp tv02,1
jp ne labll
cmp tvOl,l
jp ne labll
mov tvOO,l

labll :
cmp tvOO,l
jp ne filO

thenlO:
/* NEW_STATE */

call stclr 0
mov stOl,l

/* ENABLE ABOVE */
call enable 0 /* user defined primative

call stptim 0
/*
/*

STOP TIMER */
user-defined primative

filO:
else09:

call discrd 0
/* DISCARD */

fi09:
ocb02: cmp (char)[inx],3

jp ne ocb03
if12: mov tvOO,stOO

thenl2:

ifl3 :

cmp tvOO,l
jp ne else12

call rec03 0

mov flOl, 1

mov tvOl,flOl
mov tv02,flOO

/* RECEIVE */

/* SET */

/* AND */

*/

*/

*/

*/

FIGURE 7.7 - AN I-CODE PROGRAM WITH MACROS EXPANDED (cont.)

118

lab14:

then13:

fU3 :
else12:

fil2 :
ocb03:

iflS:

lab16:

thenlS:

filS:
ocb04:

ifl7 :

then17:

else17:

fil7:
ocbOS:
12:

iflS:

thenlS:

filS:

mov tvOO,O
cmp tv02,1
jp ne lab14
cmp tvOl,l
jp ne lab14
mov tvOO,l

cmp tvOO,l
jp ne fil3

call stclr °
mov stOl,l

call enable °
call stptim °

call discrd °

/* ENABLE ABOVE */
/* user defined primative */

/* STOP TIMER */
/* user-defined primative */

/* DISCARD */

cmp (char) [inx] ,4
jp ne ocb04

/* RECEIVE */
call rec04 °

/* NE */
mov tvOO,O
cmp seqOl,seq03
jp eq lab16
mov tvOO,l

cmp tvOO,l
jp ne filS

/* SEND_BELOW */
call sdbOS °

/* HALT */

cmp (char)[inx],S
jp ne ocbOS
mov tvOO,st02
cmp tvOO,l
jp ne else17

call discrd °
callc ct ime °
jp false loop

mov tvOO,stOO
cmp tvOO,l
jp ne filS

call sdb02 0

call statim °
jp loop

/* HALT */

/* DISCARD */

/* SEND_BELOW */

/* START TIMER */
/* user aefined primative */

FIGURE 7.7 - AN I-CODE PROGRAM WITH MACROS EXPANDED (cont.)

119

close:

call sdb04 0

call stclr 0
mov st02,l

ret

I' ON CLOSE REQUEST '1
I' SEND_BELOW-*I -

/***** sndpar - send parameters *****/

sndpar: beg

120

arg maxrw
arg inx
call pi2 2

I' put max window into buffer '1

add calcks,[inx]
inc inx
add calcks,[inx]
inc inx
arg maxrm
arg inx
call pi2 2
add calcks,[inx]
inc inx
add calcks,[inx]
inc inx
mov [inx], t indr
add calcks,[inx]
inc inx
mov [inx], termr
add (char)[inx],64
add calcks,[inx]
inc inx
ret

I' put max message into buffer '1

I' put into buffer terminator indication *1

I' put terminator into buffer '1
I' stuff terminator '1

I·· •• · clear state variables ·····1
stclr: beg

clr stOO
clr st01
clr st02
ret

/***** receive info *****/

recOO: beg
gad inx, inpbuf
mov seqno, [inx]

arg (int)l
arg inx
call readb 2

1*

add calcks,[inx]
sub (char)[inx],64
mov seqOl,[inx]

RECEIVING_VARIABLE '1

call rdata 0
1* RECEIVING_DATA '1

callc rcks 0

ret

/***** receive ack *****1
recOl: beg

gad inx,inpbuf

arg (int)l
I' RECEIVING_VARIABLE '1

arg inx
call readb 2

FIGURE 7.7 - AN I-CODE PROGRAM WITH MACROS EXPANDED (cont.)

add calcks,[inx]
sub (char)[inx],64
mov seq02,[inx]

callc rcks 0

ret

I discrd - routine to skip until frame id ·····1
discrd:
disOl:

dis02:

beg
gad tema,ch
arg tema
call rcb 1
jp disOl
ret

/***** sending info *****/

sdbOO:

sOO:

beg
add tsw,300
crop tsw,swinde
jp ne sOO
<;lad tsw,swind
lnc actsw
mov inx,tsw
mOv (char)O[inx],l
mov l[inx],seqOO
mov 2[inx],timint
add inx,lO
mov begf,inx

I'
mov [inx],(char)2
inc maxsm
add calcks,[inx]
inc inx

I'
mov [inx],seqOO
add (char) [inx] ,64
inc maxsrn
add calcks, [inx]
inc inx

call sdata 0

call scks 0

mov lenf,inx
sub inx,begf
mov inx,tsw
mov 6 [inx] ,lenf
arg begf
arg lenf
call rddb 2
ret

I'

1*

1***** sending ack *****/
sdbOl: beg

gad inx,outbuf
mov begf,inx

I'
mOv [inx],(char)6
inc maxsm
add calcks, [inx]
inc inx

I'
mov [inx] ,seqOl
add (char) [inx] ,64
inc maxsm

SENDING_CHARACTER '1

SENDING_VARIABLE '1
I' character stuffing

SENDING_DATA '1

SENDING_CHECK_SUM *1

SENDING_CHARACTER '1

SENDING_VARIABLE '1

I' character stuffing

'1

'1

FIGURE 7.7 - AN I-CODE PROGRAM WITH MACROS EXPANDED (cont.)

121

add calcks,[inxj
inc inx

call scks 0

mov lenf,inx
sub inx,begf
arg begf
arg lenf
call rddb 2
ret

FIGURE 7.7 - AN I-CODE PROGRAM WITH MACROS EXPANDED (cont.)

122

123

The seconq section contains the tables of template and pat

tern matching information. A template is a string of characters

surrounded by double quotes. The string may contain two types of

special character sequence. Firstly, there are notations for the

unprintable characters tab and newline.

language conventions:

\t - tab character

\n - newline character

These follow the C

Secondly, there are substitutions. These are introduced by a

question mark and are defined independently for each table. The

exact format of the pattern matching information depends on the

particular group of instructions covered by the table.

The table for allocation instructions is called ALLOC. In

this table the matching information is simply the particular type

or types to which this template can be applied. For example, if a

character and a sequence number are both represented by a single

byte on a particular machine and both addresses and integers are

held in a single word, the user may have specified the composite

types byte and word using the following definitions.

DEF TYPE byte = CHARISEO

DEF_TYPE word = ADDRIINT

The alloc table might be written as:

TABLE ALLOC
ARRAY,CHAR,"?n ass ?l\n"
VARIABLE,byte,"?n BYTE ?v\n"
VARIABLE,word,"7n DATA ?v\n"

END_TABLE

In this example, only character arrays are being supported, while

simple variables of all types are supported. If the two composite

types had not been defined the table would have had to be written

as:

TABLE ALLOC
ARRAY,CHAR,II?n BSS ?l\nll
VARIABLE,CHARISEO'''?n BYTE
VARIABLE,ADDR INT,"?n DATA

END TABLE

?v\n"
?v\n"

This example illustrates the placing of substitution code within

templates. There are three codes defined for allocation

124

instructions. The code ?n is the name of an identifier, while the

code ?l is the length of an array and the code ?v is the initial

value of an variable.

The table for arithmetic two operand operators is called

ARITH_TWO_OP. Each line of this table requires a pair of type and

mode definitions for each template. The first pair is concerned

with the left operand, while the second pair is concerned with the

right operand. The substitution codes are ?l for the left operand

and ?2 for the right operand. The actual form of the substitution

will be deduced from a separate table called SUBS. The structure

of a complete table would be

TABLE ARITH TWO OP
MOV7byte,VARIINX_USEIINX_OFF!

byte,VAR INX_USE INX_OFF PARAM,
"MOVB 12 ?l \n"

MOV,byte,VAR!INX_USE\INX_OFF,
byte ,CONST ,
"L! RO,?2

GAD,ADDR,anymode,anytype,VAR,
"LI RO,12\n MOV RO,?l\n"

END TABLE

The table for arithmetic one operand operators is called

Each line contains a single set of type and mode

definitions. The substitution code for the single operand is ?

There is a table for JP instructions where each template is

accessed by qualifier name. The word ANY is used to signify the

template which is to be used for unconditional branch instruc

tions. A JP table is given below:

TABLE JP
ANY," JMP ?\n"
EQ, ., JEQ ?\n 11

NE, .. JNE ?\n"
LT, " JLT ?\n"
GT, " JGT ?\n"
LE, " JGE ?\nll
GEt 11 JGE ?\n ll

TRUE, 11 JEQ ?\n"
FALSE," JNE ?\n"

END TABLE

The RETC table has the same format as the JP table, except

that the only qualifiers allowed are TRUE and FALSE.

125

Some operators are not qualified by type and mode information

or condition code qualifiers. For these operators single entry

tables introduced by the word TEMPLATE are used. The operators

which use this type of table are beg, call, callc, ret, text, data

and endf. Of these operators only call and callc require substi

tution codes. The codes used are ?l denoting the position of the

name of the subroutine and ?a denoting the number of arguments.

Example templates for beg and call are given below.

TEMPLATE BEG ".word OxOO\n"

TEMPLATE CALL "calls $?a,?l\n"

Templates are required for label declaration and label use.

These templates are called LAB_DCL and LAB_USE respectively. The

template for label declaration defines the format of label

declarations in the target assembler, for example, whether they

are followed by a colon or some other character. The substitution

code ? yields the name of the label. The template for label use

defines the format of labels when they appear as operands in

branch instructions and uses the same substitution code as is used

for label declaration.

TEMPLATE LAB_DCL "_?:\n"

TEMPLATE LAB_USE" ?"

·The SUBS table mentioned earlier is similar to the LAB_USE

template. It is indexed by the six access modes and caters for

the differing formats of addressing modes within the target assem-

bler. The table below gives details of substitution codes for

each mode.

mode substitution value
code

variable ? identifier name

inx_use no substitution

inx offset ? offset

inx no substitution

param ? parameter number

const ? constant value

126

Two templates must be provided. The first template is used to

indicate instructions that must precede the translation of the

current instruction. This template may be used to set up indices.

The second template indicates the format of the translation of the

current instruction.

TABLE SUBS
VlUl.,
INX USE,
INX-OFF,
INX7
PlUl.AM,
CONST,

END_TABLE

U 11 U ? I1 , ..
"",II*R6"
1I1f,".?(R6)"
"","R6"
" MOV R12,RO\n AI RO,-6-?-?\n MOV *RO,RO","RO"
1111 , II?II

An example of a target assembler specification for a Texas

Instruments computer is given in figure 7.8.

7.7. r-CODE TO TlUl.GET ASSEMBLER TRANSLATION

The second stage translation has to be repeated for each type

of machine in the network. The first part of this stage consists

of reading the target assembler specification and producing a

database for I-code translation. YACC and LEX were once again

used to generate a lexical analysis and a parser for the target

assembler specification. Once this specification has been read and

validated a set of internal tables should contain all that is

necessary to produce a target assembler version of the I-code pro

gram.

YACC and LEX were used to generate a lexical analyser and a

parser for the I-code language. The I-code program is converted

into a fi've-element tuple form. For each tuple or tuple pair the

appropriate tables are searched for a match on certain elements of

the tuple. When the appropriate template is found it is written

to the output file and the specified substitutions are made. A

system flowchart for this stage of the translation process can be

,found in figure 7.9.

7.8. MACHINE-DEPENDENT INTERFACE ROUTINES

The user is required to provide a set of routines to act as

an interface with the host operating system. The exact require

ments will depend upon the contents of the program template. Rou

tines for reading from and writing to the communications medium

DEF_TYPE byte=CHARISEQ

DEF_TYPE word=ADDRIINT

DEF_TYPE anytype=bytelword

DEF_MODE gen=vARIINX_USEIINX_OFF

DEF_MODE anymode=genlPARAMIINX

TABLE ALLOC
ARRAY,CHAR,"?n BSS ?l\n"
VARIABLE,byte,"?n BYTE ?v\n"
VARIABLE,word,"?n DATA ?v\n"

END_TABLE

TABLE ARITH TWO OP

127

MOV,byte,gen,byte,genlPARAM, "MOVB ?2,?1\n"
MOV,byte,genjbyte,cONST, " LI RO,?2\n SWPB RO MOVB RO,?l\n"
MOV,word,gen INX,word,anymode," MOV?2,?1\nn
MOV,word,gen INX,WOrd!CONST, "LI RO,?2\n MOV RO,?l\n"
ADD,byte,gen,byte,gen PARAM, "AB ?2,?l\n"

ADD,word,gen INX,word,anyrnode," A ?2,?1\n" .
ADD,byte,genjbyte,CONST, " LI RO,?2\n SWPB RO AB RO,?l\n"

ADD,word,gen INX,word,CONST, "LI RO,?2\n A RO,?l\n"
ADD, INT, gen, CHAR, gen, " MOVB ?2, RO\n SRL RO, 8\n A RO,?l \n"
ADD,INT,gen,CHAR,CONST, " LI RO,?2\n A RO,?l\n"
SUB,byte,gen,byte,genIPARAM, "SB ?2,?l\n"
SUB,byte,genjbyte,CONST, " LI RO,?2 SWPB RO\n SB RO,?l\n"
SUB,word,gen INX,word,anymode,1I S ?2,71\n ll

SUB,word,gen INX,WOrd!CONST, "LI RO,?2\n S RO,?l\n"
CMP,byte,gen,byte,gen PARAM, "CB ?2,?l\n"
CMP, byte, gen 1 byte, CONST, " LI RO, ?2\n SWPB RO\n CB RO,?l \n"
CMP,word,gen INX,word,anymode," C ?2,?1\n"
CMP,word,gen INX,word,CONST, "LI RO,?2\n C RO,?l\n"
GAD,ADDR,anymode,anytype,VAR ," LI RO,?2\n MOV RO,?l\n"
GAD,ADDR,anymode,anytype,INX USE "MOV R6,?l\n"

END_TABLE -

TABLE ARITH ONE OP
INC,byte,gen!" MOVB ?,RO\n SRL RO,8\n INC RO\n SWPB RO\n MOVB RO,?\n"
INC,word,gen INX," INC ?\n"
DEc,byte,gen!" MOVB ?,RO\n SRL RO,8\n DEC RO\n SWPB RO\n MOVB RO,?\n"
DEC,word,gen INX," INC 7\n"
ARG,byte,anymode," CLR RO\n MOVB ?,RO\n MOV RO,*R10+\n"
ARG,word,genIINX," MOV ?,*R10+\n"
ARG,word,CONST ," LI RO,?\n MOV RO,*RIO+\n"
CLR,byte,gen ," CLR RO\n MOVB RO,?"
CLR,word,genIINX," CLR ?\n"

END_TABLE

TABLE JP
ANY, I1 JMP ?\n"
EO ,If JEQ ?\n"
NE ," JNE ?\n"
LT , I1 JLT ?\n"
GT ," JGT ?\n"
LE ," JLE ?\n"
GE ," JGE ?\n"
TRUE ," JEQ ?\n"
FALSE," JNE ?\n"

END_TABLE

TABLE RETC
TRUE ," LI RO,l\n RT\n"
FALSE," CLR RO\n RT\n"

END_TABLE

TEMPLATE LAB_DCL "?\n"

TEMPLATE LAB_USE "?"

TEMPLATE BEG" MOV Rll,*RlO+\n MOV R10,R12\n"

TEMPLATE CALL" LI RO, ?a+?a\n MOV RO, *R10+\n BL .?1 \n"

FIGURE 7.8 - TEXAS TARGET ASSEMBLER SPECIFICATION

128

TEMPLATE CALLC " LI RO,?a+?a\n MOV RO,*R10+\n BL .?l\n Cl RO,O\n"

TEMPLATE RET " DECT R10\n MOV *R10,Rll\n DECT R10\n S *R10,R10\n RT\n"

TEMPLATE TEXT ""

TEMPLATE DATA ""

TEMPLATE ENDF ""

TABLE SUBS
VAR ,"I1,II.?"
INX USE,"","*R6"
INX-OFF,"",".?(R6)1I
INX- ,"11, IIR6"
PARAM ," MOV R12,RO\n AI RO,-6-?-?\n MOV *RO,RO","RO"
CONST 1111, "?"

END_TABLE

FIGURE 7.8 - TEXAS TARGET ASSEMBLER SPECIFICATION (cont.)

I-CODE

STAGE 2
PROGRAM

TARGET
PROGRAM

0-

TARGET
ASSEMBLER

SPEC. ---

FIGURE 7.9 - PSL/2 TRANSLATION - MDT

129

130

and routines for communicating with the layer above would cer

tainly be necessary. An example set of routines is given in fig

ure 7.10. They are written in the C programming language for the

UNIX operating system.

7.9. IMPLEMENTATION AND MAINTENANCE

The system· as outlined here has a number of strengths. It

has been devised in such a way that different people can use their

own expertise in part of the design and implementation of the pro

tocol, without needing to know about every aspect of the work.

This is illustrated in figure 7.11. The protocol designer can

produce a specification without knowing how PSL/2 is implemented

in terms of I-code. Such implementation details are tackled by

the protocol implementation designer. The implementation designer

will also produce a specification of the routines to interface

with the host op~rating system. An expert in the assembler of a

particular machine can implement these routines and produce a tar

get assembler specification. Thus protocol implementation is

split into several discrete tasks, according to the old maxim

"divide and conquer".

The initial implementation of a network can proceed as fol-

lows:

(1) A protocol is designed and specified.

(2) A program template is written.

(3) A target assembler specification is written for each machine

together with a set of operating system interface routines.

(4) The protocol specification and program template are submitted

to the first stage of the retargetable compiler and an i-code

program is produced.

(5) Each target assembler specification is submitted to the

second stage of the compiler together with the i-code program

produced in the first stage. This produces an assembler

equivalent of the i-code program for each machine in the net

work.

Einclude <stdio.h>
Einclude <sgtty.h>

typedef union {
struct {

unsigned p3
unsigned p2
unsigned pl
unsigned

} div,
int word;

6,
6,
6,
14;

int above; /. switch for above ./

/ •••••• LISTEN TO ABOVE •••••• /

int

}

onca() {
int temp;
if(ioctl(O,FIONREAD,&temp)==-l)return(O),
if(temp>O) return(l),
else return(O);

/ •••••• LISTEN TO BELOW •••••• /

int
tnt

}

oncb(count)
count;

int temp,
if(ioctl(3,FIONREAD,&temp)==-1)return(0),
if(temp>=cQunt) return(l),
else return(O),

/ •••••• READ CHARACTER FROM ABOVE •••••• /

rca(dest)
char *dest;
{

}
read(O,dest,l),

/ •••••• SEND CHARACTER TO ABOVE •••••• /

sca(dest)
char 'dest,
{

}
write(l,dest,l),

/ •••••• READ FROM BELOW •••••• /

readb(dest,cQunt)
char *dest;
int count;
{

}
read(3,dest,cQunt),

/ •••••• SEND TO BELOW •••••• /

sddb(sQurce,cQunt)
char *source;
int count;
{

}

write(5,sQurce,CQunt);
write(4,source,count),

/ •••••• ENABLE ABOVE •••••• /

enable () {

}
above=l,

FIGURE 7.10 - UNIX SYSTEMS INTERFACE

131

I""" DISABLE ABOVE ""'*1
disable(){

}
above=O;

1****** GET ONE BYTE STUFFED INTEGER '**"'1
g il (buf, dest)
char *bufi-
WORD DIV *dest;
{ -

dest->word=O;
rddb(buf,l);

}
dest->div.p3=(int)(·buf&077);

1***'" GET TWO BYTE STUFFED INTEGER *······1
gi2(buf,dest)
char 'buf;
WORD DIV 'dest; { -

}

dest->word=O;
rddb(buf,l);
dest->div.p2=(int) ('buf++&077);
rddb(buf,l);
dest->div.p3=(int)(*buf&077);

1.*···· GET THREE BYTE STUFFED INTEGER ······1
gi3(buf,dest)
char 'buf;
WORD DIV 'dest;
{ -

}

dest->word=O;
rddb(buf,l);
dest->div.pl=(int)(·buf++&077);
rddb(buf,l);
dest->div.p2=(int)(·buf++&077);
rddb(buf,l);
dest->div.p3=(int)(·buf&077);

I .. ···• PUT ONE BYTE STUFFED INTEGER ······1
pil (buf, source)
char *buf~
WORD DIV source; { -
} ·buf++=«char)(source.div.p3»10100;

I .. ···· PUT TWO BYTE STUFFED INTEGER ······1
pi2(buf,source)
char 'buf;
WORD DIV source; { -

}

'bUf++=«Char)(SOUrce.div. P2»!0100;
*buf++=«char){source.div.p3» 0100;

I .. ···· PUT THREE BYTE STUFFED INTEGER ······1
pi) (buf, source)
char 'buf;
WORD DIV source;
{ -

}

'buf++=«char) (source.div.pl»\0100;
*buf++=«char)(source.div.p2» 0100;
'buf++=«char)(source.div.p3» 0100;

FIGURE 7.10 - UNIX SYSTEMS INTERFACE (Cont.)

132

PROTOCOL
DESIGNER

PROTOCOL
SPECIF ICA TION

PROTOCOL
IMPLEMENTATION

DESIGNER

_ _~ INTERFACE f OIS

. ",,----S ~PEC.

PROTOCOL
TEMPLATE

-_-1''/

RETARGET
-ABLE

COMPILER

TARGET
PROGRAM

--....,,,/

TARGET
ASSEMBLER

SPEC. _
--~,/

TARGET
ASSEMBLER

LOAD
MODULE

FIGURE 7.11 - PROTOCOL IMPLEMENTATION USING PSL/2

133

ASSEMBLER
EXPERT

I

,

OIS
INTERFACE

134

(6) The assembler programs are transferred onto their target

machines. This may involve using magnetic tape, floppy disks

or communication lines.

(7) The operating system interface routines are input to their

target machines.

(8) The assembler programs and interface routines on each machine

are assembled and linked producing a protocol program for

each machine.

The modularity of this system makes maintenance straightfor

ward. The addition of a new machine to the network requires that

a new target assembler specification is written, together with a

set of interface routines. Only stage two of the protocol com

piler will need to be run in order to produce a protocol program

in the assembler of the new machine.

Changes in protocol will involve changes to the protocol

specification and possibly the. program template. All network

software will have to be regenerated following the steps outlined

above.

7.10. CONCLUSION

This chapter has described the work undertaken to produce a

retargetable protocol compiler. It has also described the way

this compiler could be used to implement and maintain a computer

network.

As can be seen from figure 7.10, the amount of code that has

to be hand written on each machine can be made very small. Hence

new machines can be added to the network more quickly. This is

probably the biggest single advantage of this system. Using this

system, major protocol changes can be made much quicker. This is

useful since protocol standards can be volatile until they reach

maturity.

Any distribution of a compiler based on this design would be

enhanced by the provision of a library of i-code routines. In

addition, a set of target assembler specifications could be pro

vided. Alternatively, the compiler could be used by a software

135

house to ptoduce new implementations of standatd ptotocols fot

theit customets. There is clearly much scope fot futthet develop

ment of these ideas.

CHAPTER EIGHT

CONCLUSION

137

8.1. REVIEW

This Thesis has considered the problems of protocol specifi-

cation and implementation. The introductory chapters discussed

basic network principles and described some current practice in

the area of protocol specification. The concepts of Wide Area and

Local Area Networks were outlined together with some of the tech

niques used in computer network protocols. Some of the standards

which are currently used were briefly discussed.

In the following chapter on protocol specification the two

mains types of formal specifications were discussed. These are

state transitions specifications and sequence expression specifi

cations. State transition methods include finite state machines

and Petri Nets, while sequence expression methods include Calculus

of Communicating Systems. Temporal logic was also discussed.

State transition methods are more established than sequence

expression methods and look to remain so for some time to come.

The work of ISO and IBM has produced two protocol specification

languages based on one particular state transition approach, the

finite state machine. These languages, called ESTELLE and FAPL

respectively, have been used in protocol implementation.

Following this background material an alternative approach to

protocol specification was described. The data structures of the

protocol messages are central to this approach. This differs from

the usual approach which is centred on the flow of control

within the protocol entities. The feasibility of this approach

was explored by developing a protocol modeling system to predict

protocol performance. The resulting system proved to be too slow

for extensive use. This was due to the characteristics of the

host operating system rather than any deficiences in the overall

approach.

In the following chapter the problem of the small scale com

munications user were discussed. The user who only requires

inter-host communication occasionally can not justify expenditure

on expensive Local Area Networking equipment. He is therefore

forced to use asynchronous connection through V.24 ports using the

RS232 interface. Various protocols have been devised to run over

138

asynchronous connections. These include the. Kermit and ATS proto

cols described in this thesis. The requirements for a protocol

for the Clearway Network run by the Computer Studies Department at

Loughborough University were presented and a general framework for

such a protocol was given.

Existing practice in the realm of protocol implementation was

then discussed. The problems encountered by implementors of

multi-vendor networks were discussed. These include differences

in machine architecture, operating system and assembly languages.

High-level languages can sometimes be used for protocol implemen

tation, but problems can arise even when using supposedly portable

languages such as C. A retargetable protocol compiler was sug

gested as a possible step forward in this area.

The penultimate chapter describes the design and implementa

tion of a retargetable protocol compiler. The protocol language

used in this work differed from previous work in that it did not

employ an existing high-level language to specify protocol

actions. Hence, the constructs used could be more application

specific which enables a more concise description of a protocol

than would be otherwise possible. The language design was such

that it was fairly simple to produce a protocol compiler, and this

compiler has produced code for several target computers. The

problems encountered by the protocol implementor are also enCoun

tered by the designer of a protocol compiler. The main difficulty

lies in producing a general program structures for the program

entity. A choice of program structures is available under the

protocol compiler.

8.2. FORTHER WORK

Further work is required to verify that the approach adopted

in this thesis is entirely practical. The program templates need

further development and output programs need to be tested across

the Clearway Network.

One possible future application for this work would be

automated production of new versions of the Kermit file transfer

program. If the specification language could be used to specify

the Kermit protocol and suitable program templates developed new

139

versions of Kermit could be produced quicker and more easily.

8.3. FINAL REMARKS

Although the protocol compiler described in this thesis should

be considered as a prototype version, it is has been shown that

the principles used in the design are worthy of further considera-

tion. If this system proves to be practical the result would be

more accurate and less costly protocol implementation, which would

be of great benefit to the networking community. It is hoped that

this thesis will stimulate further work in this area.

APPENDIX

SYNTAX OF SPECIFICATION AND

INTERMEDIATE LANGUAGES

141

1.1. SYMBOLS AND ABBREVIATIONS

The meta-language used in this document to specify the syntax

of the various specification and intermediate languages is based

on Backus-Naur Form. The meaning of the various meta-symbols is

defined in the followIng table.

Meta-symbol

=

[xl

(x}

(xly)

UxyxU

meta_ident ifier

Meaning

shall be defined to be

alternatively

end of definition

o or 1 instance of x

o or more instance of x

grouping: either x or y

the terminal symbol xyz

a non-terminal symbol

A meta-identifier shall be a sequence of letters and under

scores beginning with a letter.

A sequence of terminals and non-terminal symbols in a produc

tion impiles the concatenation of the text they ultimately

represent.

1.2. PSL/l

The terminal symbols :

field_ident

integer_ident

frame_ident

class_ident

represent elements of disjoint sets of identifers.

142

An identifier is an alphanumeric string beginning with a letter.

The terminal symbol:

field_const

is defined as a sequence of ones and zeros enclosed in double quotes.

The terminal symbol

integer_constant

is an integer number.

Specification body

specification =

Parameters

parameters =

=

=

"protocol" protocol_name

parameters

state

class

{ class }

timer_out_action

{ timer_action}

"parameters" "{I'

param_def

{ param_def }

"l" .

param_narne ":=" integer_constant

"send_window"

"receive_window"

"retran_interval"

"timer interval"

11 • 11 ,

State declaration

state =

=

=

integer_def =
Class declaration

class =

Frame declaration

frame =

=

Format declaration

format =

) .

"state" !I{"

variable_def

{ variable_def }

11 } 11 •

" • 11 ,

field_ident ":=" field_const

field_ident If [" integer_const "] If

integer_ident n:=1I integer_const .

"class" class_ident [frame_type) "{,,

format

frame

{ frame }

II} 11 •

"frame" frame_ident [frame_type 1 "{,,

refinement

{ refinement }

action

{ action }

II} 11 •

("direct" I "windowed ") •

, format 'If" I

frame field def ".11 - - ,

II} 11 •

143

Refinement declaration

refinement =

Actions

action =

=

=

primitive_action =

condition =

=

=

=

144

field_const

field ident 11[" integer_const "]11 ["frame_id"

field_ident "=" format .

"action" 11(" act_type 11)" I'{1t

(Ilsend" I "receive ll I l'retran'l) ..

primitive_action ";"

(primitive_action 11 • 11 , } .

) .

"ifll condition

"then" actbody

["else" actbody

"fill

Ilsend" "(" frame_ident "lit

lIaccept"

"cancelli U(II range 11)11

"retran" tI(" range ")"

"start_timer"

"stop_timer"

assignment

"inc'I 1'(11 field_ident ")"

!Idee" "(I' field_ident 11)'1

field ident field_lop field_ident

"=" "<>") ..

U=" "<>" I ~'<'I I ">11 I "<=11 I ">=") ..

=

range =

assignment =

Timeout action

=

Timer action

=

11_1,

"(" integer_exp ")"

integer_ident

integer_const

11+" "_1' I "*" I "/") •

field_ident

field ident "," field_ident

field_ident ":=" field_ident

field ident 11:=" "data"

integer ident := integer_exp

"on_timeout" "{,,

"} 11 •

"single_retran" 11 • 11 ,
"multiple_retran" 11 • 11 ,

,,}It •

145

1.3. PSL/2

The terminal symbols:

seq_field_ident

flag_ident

state_ident

represent elements of disjoint sets of identifiers.

146

An identifier is an alphanumeric string beginning with a letter.

The terminal symbol

char_const

is defined as an ascii character code enclosed in single quotes.

Mnemonics for unprintable characters are written in upper case.

State declarations

state_declarations =

variable list =

=

=

=

Frame declarations

frame_declarations =

var iable_list

{var iable_list}

"seq_field" seq_field_list

"flag" flag_list

"state" state_list

seq_field_ident

seq_field_list

flag_ident

flag_ident

state_ident

state_ident

frame

{ frame } .

" 11 ,

11 .. ,

11 11 ,

frame =

=

field_declaration =

rule =

Events

events =

receive_action =

=

frame_type "frame" frame_ident

"id_field" char_const

field_declaration

(field_declaration}

"windowed U I IldirectU) •

"data"

"field" char const

Itcheck_sum"

"params"

seq_field_ident

Ilon_sendl! s~q_field_ident

"on_receipt" seq_field_ident

"on_receipt" seq_field_ident

"on_send" seq_field __ ident

lIevents"

147

"start_up" [act_body]

"on_open_request" [act_body]

"on_close_request" [act_body]

"on_character_above" [act_body]

lIon_character_below" receive_action

(receive_action}

"on_timer_expired" [act_body]

nend_events" .

"(" frame_ident "1:" act_body.

primitive_action

(primative_action } •

primitive_action =

condition =

lop =

range =

"if" condition

"then" act_body

["else" act_body]

"fi"

"send_below" frame_ident

"send_above"

"receive"

"discard"

"cancel" range

"retran" range

"start_timer"

"stop_timer"

"enable_above"

"disable_above"

"open_I_window"

Ilnew_state" state_ident

I'set" fla9_ident

lIunset" flag_ident

"incl! field_ident

!Idee" field_ident

condition "or" condition

condition nand" condition

"not" condition

"(" condition I')"

state ident

flag_ident

seq_field_ident lop seq_field_ident

'I s_window_full"

"in_I_window"

11=" I 11<>").

148

--.------

1. 4. I -CODE AND TARGET ASSEMBLER SPECIFICATIONS

1.4.1. BASIC NON-TERMINALS

type =

mode =

"char" 1 "seqll I "addr" I Ilint").

"variable"

lIinx"

I1 inx_usel!

IlparamU

11 inx_offset I1

"const ll

149

qualifier = "eq" I "ne" I "It" I"gt" 11I1e" I"ge" I "true" I "false").

operator =

a _2_op =

a _l_op =

marker =

cntl _op =

alloc_op

a_2_op

a_l_op

cntl_op

"array" I I'variable")

"mev"

tline"

marker

"call"

"calIc n

"jp"

IIret"

"rete"

"add" "sub" "cmp"

"dee" "arg tl
) •

"data" I "text" I "endf")

1. 4.2. I -CODE AND THE FIVE ELEMENT TUPLE

Five element tup1e

The terminal symbol

identifier

is an element of the set of alphanumeric strings which begin

with a letter and are less than seven characters in length.

150

The terminal symbols

length

offset

value

are integer numbers.

tuple = tuple_op (typelqualifier) (mode I length) identifier (valueloffset).

tuple_op = (operator I "lab") .

I-code

operand =

cast =

program =

line =

instruction =

identifier

[cast] [offset] "[inx]"

[cast] [offset] "[param]"

[cast] integer

char_const

inx

" (11 type 11) " .

line

{ line }

label

instruction

) .
alloc ins -
a 2 ins

a _1_ ins

cntl ins -

Allocation instructions

= ("array" type length identifier

I"variable" type identifier value

) .

151

Arithmetic two operand instructions

=

Arithmetic one operand instructions

=

Control instructions

= { marker

I "call" identifier value

I "callc" identifier value

I "jp" [qualifier 1 identifier

"ret"

Ilrete" ("true" I "false")

152

1.4.3. TARGET ASSEMBLER SPECIFICATION

A template is a string of characters surrounded by double

quotes as described in the main text.

spec

camp_type

camp_mode

definition

table

= {definition}

=

=

=

{ (table I single_template) } •

type identifier { 11 I It type identifier

mode ident if ier) { "I" (mode identifier

("def _type" identifier U=ff camp_type

I "def_mode" identifier ,,=11 camp_mode

= "table t' "alloc"
11 U , 11 " , template)

"end_table" .

"table" I'arith_two_op"

{ a_2_op .. , .. camp_type n,1I camp_mode ",n

camp_type

"end_table"

" 11 , 11 11 , template }

"table" "arith_one_op"

{ a_I_Op "," camp_type 11,11 camp_mode

template }

"end_table"

"table" "jpll

{ qualifier

lIend_table"

"table" "retell

{ ("true ll

"end_table!!

11 11 , template }

I "false") 11 11 , template }

{ mode " " template 11 11 , template }

'Iend_table"

11 11 ,

single_temp = "template" temp_name template •

}

)

"lab_use lt

1I1ab_dcl ll

"beg ll

"call"

"callc ll

"ret"

"text ll

"datal!

"endf"

153

REFERENCES

----------------- -_. -------- --

Abbreviations :-

ACM

CACM

- Association for Computer Machinery.

- Communications of ACM.

155

ACM Toplas - ACM Transactions on Programming Languages and Systems.

ICC - International Conference on Communications.

IEEE - Institute of Electical and Electronics Enginneers.

IEEE Trans. Comm.

- IEEE Transactions On Communication.

IFIP - International Federation for Information Processing.

ALFONZETTI 5., 1982, From Formalism to Implementation of OSI

Entities, 15th International Conference on System Sciences,

Hawaii, Jan 1982, pp 414-442.

AYACHE J.M., COURTIAT J.P., DIAZ M., 1982, A Specification

Language for the Design of Multi-Layer Protocols, 15th

International Conference on System Sciences, Hawaii, Jan

1982, pp 404-413.

BAUERFIELD W.L., 1983, Performance Prediction of Computer Network

Protocols, Proc. ICC 1983 Boston, Mass., June 1983, E4.5.1-

E.4.5.5.

BIDMEAD C., 1982, Review, Practical Computing, September 1982,

pp 61-64.

BLUMER P.T. & R.L.TENNEY, 1982, A Formal Specification Technique

and Implementation Method for Protoco1s, Computer Networks

Vol 6., July 1982, pp 201-217.

BOCBMAN G.V. & CRONG R.J., 1977a, A Formal Specification of HDLC

Classes of Procedures, Proc. National Telecommunications

Conference, 1977, Reprinted in CHU W.W., 1979, Advances in

Computer communication and Networking, Dedham, Mass, Artech

House, pp 519-530.

BOCBMANN G.V. & GEeSEI J., 1977b, A Unified Method for the

Specification and Verification of Protocols, Proc. IFIP.

Congress 1977, Toronoto, pp 229-234.

156

BOCIIMANN G.V. , SUNSHINE C.A., 1980, Formal Methods in

Communication Protocol Design, IEEE Trans. Comm. Vol COM-28,

April 1980, pp 624-631.

BROWN K., Linguistics Today, Fontana.

BT, 1983, Networking over Asynchronous lines, Prepared by the

British Telecom New Networks Technical Forum, Feb 1983.

CATTELL R.G.G., 1980, Automatic Derivation of Code Generators from

Machine Descriptions, ACM Toplas, Vol 2. No.2, April 1980, pp

173-190.

CLARK 0.0., POGRAN K.T. and REED D.P., 1978, An Introduction to

Local Area Networks, Proc IEEE Vol. 66, No. 11, Nov 1978, pp

1497-1517.

COLEMAN S.S., POOLE P.C. & WAITE W.M., 1974, The Mobile

Programming System, JANUS, Software, Practice & Experience,

Vol 4, 1974, pp 5-23.

COOKE D.J. & BEZ H.E., 1984 Computer Mathematics, Cambridge

University Press, 1984, pp 321-328.

DA CRUZ F. & CATCH B., 1984 Kermit: A File-Transfer Protocol for

Universities, Byte, No. 6, June 1984, pp 255-278, and No. 7,

July 1984, pp 143-145 & 400-403.

DANTHINE A.A.S, 1980, Protocol Representation with Finite State

Models, IEEE Trans. Comm., Vol. COM-28, April 1980, pp 632-

643.

DAVIES D.W., BARBER D.L.A., PRICE W.L. & SOLOMONES C.M., 1979,

Computer Networks and their Protocols, John Wiley & Sons Ltd,

1979.

DIAZ M., 1982, Modeling and Analysis of Communication and Co

operation Protocols using Petri Net Based Models, Computer

Networks, Vol. 6, No. 6, Dec 1982, pp 419.

DP8807, 1985, LOTOS - A Formal Description Technique Based on the

Temporal Ordering of Observation Behaviour, ISO Draft

Proposal 8807, March 1885.

EHRIG H., FREY W. & HANSEN H., ACT ONE: An Algebraic Specification i

Language with two levels of semantics, Bericht Nr 83-03,

Technische Universitaet Berlin,

FIELD J.A., 1976, Efficient Computer-Computer Communication, Proc.

lEE vol. 123, Aug 1976, pp 756-760.
-- --"---------- ... _----- ----

FRASER A.G., 1977, Delay and Error Control In packet Switched

Network Proc. ICC 1977, P 22.4-121 - 22.4-125.

GRANVILLE R.S. & GRABAM S.L., 1978, A New Method of Compiler Code

Generation, Proc. 5th Conf. on Principles of Programming

Languages, Jan 1978, pp 231-240.

BAILPERN B.T. & OWICKI S., 1983, Modular Verfification of Computer

Communication Protocols, IEEE Trans. Comm., Vol COM-31, No.

1, Jan 1983, pp 56-69.

HARANGOZO J., 1977 An Approach to Describinq a Link Level Protocol

with a Formal Lanquage, Proc. 5th Data Comm. Symposium. Utah,

1977, pp 4-37 to 4-49.

JOHNSON S.C., 1978a, A Tour through the Portable C Compiler, Unix

Programmers Manual, 7th Edition, Vol 2, 1978.

JOHNSON S.C., 1978b, Yacc: Yet Another Compiler-Compiler, Unix

Programmers Manual, 7th Edition, Vol 2, 1978.

JONES C., 1980, Software Development - A Rigorous Approach,

Prentice-Hall.

KELLER R.M., 1969, Formal Verification of Parallel Programs, CACM

Vol. 12, No. 7, 1969, pp 371-384.

KERNIGBAN B.W. & RITCHIE D~M., 1978, The M4 Macro Processor, Unix

Programmers Manual, 7th Edition, Vol 2, 1978.

LAMPORT L., 1983, Specifying Concurrent Program Modules, ACM

Toplas, Vol 5., No. 2., April 1983, pp 190-222.

LARMOUTH J., 1982, Cambridge Ring 82 - Protocol Specification,

Joint Network Team of the Computer Board and Research

Councils, Nov 1982.

LE LANN G. & LE GOFF H., 1978, Verification & Evaluation of

Communication Protocols, Computer Networks, Vol 2, Feb 1978,

pp 50-60.

LESK M.E. & SCHMIT E., 1978, Lex - A lexical Analyser Generator,

Unix Programmers Manual, 7th Edition, Vol 2, 1978.

158

MERLIN P.M., 1979 Specification and Validation of Protocols, IEEE

Trans. Comm., Vol COM-27, Nov 1979, pp 1671-1680.

METCALF R.M. & BOGGS D.R., 1976, Ethernet: Distributed Packet

Switching for Local Computer Networks, CACM Vol 19, No 7,

July 1976, pp 395-404.

MILHER R., 1980, A Calculus of Communicating Systems, Lecture

Notes in Computer SCience, No 92, Springer-Verlag, 1980.

NASH S.C., 1983, Automated Implementation of SNA Communication

. Protocols, Proc. ICC 83, Boston Mass., June 1983, pp 1316-

l322.

PETERSON J.L., 1977, Petri Nets, ACM Computer Surveys, Sept 1977,

pp 223-252.

PIATKOWSRI T.F., 1983, Protocol Engineering, Proc. ICC 83, Boston

Mass., June 1983, E4.8.1-E4.8.5.

POOLE P.C., 1974, Portable & Adaptable Compilers, In Compiler

Construction - An Advanced Course, Lecture Notes in Computer

Science, Vol. 21, Springer-Verlag, New York 1974, pp 427-497.

POZEFSRY D.P. & SMITH F.D., 1982, A Meta-Implementation for

Systems Network Arcitecture, IEEE Trans. Comm., Vol CCM-30,

No. 6, June 1982, pp 1348-1355.

REISER M., 1982, Performance Evaluation of Data Communication

Systems, Proc. IEEE, Vol. 70, No. 2, 1982.

RTDL, 1984, Clearway User Guide, Issue 7, Real Time Developments

Ltd., October 1984.

SALTZER J.N. & POGRAN R.T., 1979, A Star Shaped Ring Network with

High Maintainability, Proc. Local Area Communication Network

Symposium, Mitre Corp., Boston, May 1979, pp 179-190.

SCHULTZ G.D., ROSE D.S., WEST C.B. & GRAY J.P., Executable

Description and Validation of SNA, IEEE Trans. Comm., Vol.

COM-28, No. 4, April 1980, pp 661-676.

159

SCHWART R.L. & P.M. MELLIAR-SMITH, 1982, From Finite State

Machines to Temporal Logic, IEEE Trans. Comm., Vol. COM-30,

No. 12, Dec 1982.

STENNING N.V., 1979, Definition and Verification of computer

Network Protocols, NPL Report DNACS 15/78, Feb 1979.

SUNSHINE C.A., 1978, Survey of Protocol Definition and

Verification Technigues, Computer Networks, Vol 2, No 4/5,

Sept/Oct 1978, pp 346-350.

SUNSHINE C.A., 1979, Formal Techniques for Protocol Specification

and Verification, Computer, Vol. 12, Sept 1979, pp 20-27.

TANENBAUM A.S., 1981, Computer Networks, Prentice-Ha11 Inc., 1981.

TENNEY R.L., 1983, One Formal Description Technique for ISO OSI,

Proc. ICC 83, Boston, Mass., June 1983,

WAITE W.M •• 1970, The Mobile Programming System: STAGE2, CACM Vol.

13, July 1970, pp 415-421.

WILKES M.V. & WHEELER D.J., 1979, The Cambridge Digital

Communication Ring, Proc. Local Area Communication Network

Symposium, Mitre Corp, Boston, May 1979, pp 47-60.

ZIMMERMAN H., 1980, OSI Reference Model - The ISO Model of

Architecture for Open Systems Interconnection, IEEE Trans.

Comm, Vol COM-28, April 1980, pp 425-432.

l

