
LOUGHBOROUGH 
UNIVERSITY OF TECHNOLOGY 

LIBRARY 
AUTHOR/FILING TITLE 

. . c.o L l..oT'T Mc..' 
""- - ------- ----- ---- ----'----- ----------- -------

. --A(:C-ES-SI(iNjCOPY--NO~"------- -- --- ----- ---------

O'to-o \'30 (,5' 
. ----------------- ---------------------------------! 

VOt. NO. CLASS MARK 

- 5 . t; 1990 

040013065 3 

11111111111111111111 11111111111 

'--- :'":'\ 

This book was bound by 

Badminton Press 
18 Half Croft, Syston, Leicester, LE7 8LD 
Telephone: Leicester (05331 602918. 



:~---:-----
l 

I 



SPECIFICATION AND IMPLEMENTATION OF 

COMPUTER NETWORK PROTOCOLS 

BY 

MICBAEL C. COLLETT, B.Sc. 

A Master's Thesis 

Submitted in partial fulfilment of the requirements 

for the award of Master of Philosophy 

of Loughborough University of Technology 

May 1986. 

Supervisor: M.C. Woodward, B.Sc. Ph.D. 

Department of Computer Studies. 

C by Michae1 C. Co11ett 1986. 



! ~h un;:;; \ 
of Tachno!oQy :!WIIY ; 

~-'--~_~_';.i ... '" __ 

CiOSO 



SPECIFICATION AND IMPLEMENTATION OF 

COMPUTER NETWORK PROTOCOLS 

ABSTRACT 

A reliable and effective computer network can only be 

achieved by adopting efficient and error-free communication proto

cols. Therefore, the protocol designer should produce an unambi

guous specification meeting these requirements. Techniques for 

producing protocol specifications have been the subject of intense 

interest over the last few years. This is partly due to the 

advent of an international standard for networking. A variety of 

methods have been employed, some of which are described in detail 

in this thesis. 

However, even when the specification has been produced there 

still remains the task of implementation. A particular network may 

be used by machines with widely varying instruction sets. The 

initial implementation is often rewritten into several different 

languages and assembly codes. Hence there is considerable dupli

cation of effort, and discrepancies can easily arise between the 

software on the different machines. 

This thesis begins with a detailed analysis of current prac

tice in the field of communication protocols and protocol specifi

cation. Following this, automatic generation of protocol software 

is considered. The work presented here concentrates on low-level 

protocols. Two specification languages are presented together with 

the concepts used in the language designs. The first language was 

implemented as part of a protocol modeling system, and the second 

language was used as the source language for a retargetable proto

col compiler. 
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1.1. COMPUTER NETWORKS 

The ability to share information, that is to communicate, has 

played a vital role in the development of the human race. Modern 

telecommunication systems have extended this ability by allowing 

rapid communication over long distances. As computers came to be 

used in an ever increasing number of areas of human activity, it 

seemed desirable that they should also be given this ability. Com

puter networks were devised to fulfill this need. 

Once computers 'could communicate this affected the develop

ment of computing methods. The old model of a single machine serv

ing all the needs of an organisation has been replaced by a new 

model where several separate, but interconnected computers, do the 

job. Tanenbaum(1981) defines a computer network as: 

an interconnected collection of autonomous computers. 

He also discusses the related term of distributed system. While 

he states that there is considerable confusion in the literature, 

he himself defines a distributed system as 

a special case of a network, one with a high degree of 

cohesiveness and transparency. 

Ideally, the user of a dist~ibuted system need not know that there 

are multiple processors; it should behave like a single processor 

system. 

In recent years network technologies have diversified, and 

there are now two main categories of computer network: local and 

wide area networks. 

1.1.1. WIDE AREA NETWORKS 

The first networks connected computers over a large geograph

ical areas using land-line, radio or satellite communications. 

They were characterised by low data transfer rates between comput

ers and, since distances were large, long delays between transmis

sion and reception of messages within the network. Such networks 

usually connected multiple sites within a single organisation such 

as a business company. Alternatively, they were used by co-
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operating 

lishments. 

organisations such as. Universities and research estab

Such networks are known as long haul or 

wide area networks. 

The topology of many wide area networks is similar to a tele

phone network. Selected major sites are linked together using 

high-speed lines to form a trunk system. The remaining sites are 

each linked to the trunk system via a connection to one of these 

selected sites. Thus each site in the network can communicate 

with every other site. 

1.1.2. LOCAL AREA NETWORKS 

About ten years ago, there was growing interest in intercon

necting computers within a localised environment. This was partly 

due to a desire to interconnect various types of office 'equipment 

such as mini- and micro- computers, word processing systems and 

printers. There was also interest in taking advantage of cheaper 

computing based on smaller processor units. 

Before this time those local networks that had existed had 

been miniature wide area networks. Various alternative strategies 

were explored, which included buses and rings. This work revealed 

that using the latest technologies it was possible to achieve a 

moderately high data rate on the communications medium and also 

relatively low costs. This possibility resulted 

development and the emergence of local area networks as 

today. 

in further 

they are 

Local Area Networks (LANs) are generally considered to have 

the following features (Clark,l978). 

(1) Restricted geographical area (for example, a few kilometers). 

(2) Moderately high data rates (typically 1-10 Mbit/s on the com

munication medium). 

(3) Relatively low cost communications. 

(4) A wide range of attached devices. 

(5) Ownership of the LAN by a single organisation. 
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There are three main types of local area network. There are 

the bus, ego Ethernet (Metcalf,1976), and the token ring 

(Saltzer,1979), which were both developed in the USA, and the 

slotted ring, ego Cambridge Ring (Wilkes,1979), developed in the 

UK. 

The typical use of a LAN is to link various computer hosts 

and user terminals in a large educational establishment or within 

a single site of a commercial organisation. Figure 1.1 shows that 

such a network might also include personal work stations with 

their own local processing power and that it can allow expensive 

resources such as high-speed printers and plotters to be shared. 

The LAN communication subsystem could be realised by any of the 

local area network types mentioned above, providing suitable 

hardware and software exists on the computing hosts connected to 

the network. 

L 2 • NETWORK PROTOCOLS 

In the context of computer networks, the meaning of the word 

"protocol" is more restricted than in, say, the diplomatic con

text. A suitable working definition is this: 

A protocol is a set of rules designed to enable 

interaction between two or more communicating parties 

This definition clearly has certain prerequisites: there must be 

at least two parties, and these parties must be linked by a com

munications medium. To interact the two parties will exchange 

messages via the communication medium. This exchange will not be 

arbitrary; format and meaning of each message and the sequence in 

which the are exchanged will be governed by a set of mutually 

agreed rules. This set of rules is a communications protocol. 

At the highest level, users may wish to transfer files 

between computers, send electronic mail to colleagues in other 

places or access remote databases. At the lowest level, these 

functions must be carried out by electronic signals. There are 

clearly fundamental differences between communicating at these two 

levels. Owing to these differences, systems that provides network 

services are often built in several levels or layers. This 
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st,uctured approach limits the complexity of each individual piece 

of protocol software, which makes design, implementation and 

maintenance of protocol software much easier. The general struc

ture of a networking system is called the network architecture. 

1.3. NETWORK ARCHITECTURE 

A network architecture consists of layers of protocol. Each 

layer will have some clearly defined function. Communication 

within that layer is conducted between protocol entities resident 

on different machines. Communicating entities on different 

machines within a layer are known as peer entities. This is illus

trated in figure 1.2. In reality no data is directly transferred 

between peer entities except at the lowest level. Instead, each 

layer passes data and control information to the layer below, 

until the lowest layer is reached. At the lowest level there is 

physical communication, as opposed to the virtual communication 

used by the higher layers. In figure 1.2., virtual communication 

is represented by dotted lines and physical communication is 

represented by solid lines. 

Both standards organisations and computer manufacturers have 

produced generalised network architectures, which are known as 

reference models. Examples of reference models produced by stan

dards organisation are the ISO reference model, and the IEEE 802 

Standard for local area networks. An example of a reference model 

'produced by a manufacturer is IBM's System ·Network Architecture 

(SNA). 

1.4. REFERENCE MODELS 

1. 4 .1. THE ISO REFERENCE MODEL 

A reference model for Open Systems Interconnection (OSI) has 

been devised by the International Standards Organisation (ISO). 

This is described in Zimmerman(1980) and Tanenbaum(1981). It was 

developed as a first step towards an international standard for 

network architecture. Each layer is listed below together with a 

brief summary of its function. 
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(1) THE PHYSICAL LAYER 

This is concerned with transmitting raw bits over a communi

cation channel. 

(2) THE DATA LINK LAYER 

The task of this layer is to take the transmission facility 

provided by the physical layer and transform it in such a way 

that it appears free from transmission errors to the network 

layer. 

(3) THE NETWORK LAYER 

This layer controls the operation of the communications sub

net. It deals with the routing of messages through the net

work. 

(4) THE TRANSPORT LAYER 

This layer accepts data from the session layer, splits it up 

into smaller units and passes them to the network layer and 

ensures that pieces arrive correctly at the other end. 

(5) THE SESSION LAYER 

This layer sets up and manages communication paths between 

processes and hosts. 

(6) THE PRESENTATION LAYER 

This layer provides services frequently required on a network 

such as file transfer, data security and data compression. 

(7) THE APPLICATION LAYER 

These are the application programs that use the network ser

vices. 

This information is illustrated in figure 1.3. 

1.4.2. IEEE STANDARD 802 

With a variety of local area network topologies becoming 

available a standard was needed to accommodate them. The IEEE 

Standard 802 defines a family of communication protocols for bus 

and ring LANs. The basic approach was to split the data link 

layer of the ISO model into two parts: the network access method, 

as dictated by the LAN type, and the logical link control indepen

dent of the particular network technology used. The logical link 



9 

APPLICATION APPLI CA TION 
LAYER LAYER 

PRESENTATION PRESENT A nON 
LAYER LAYER 

SESSION SESSION 
LAYER LAYER 

TRANSPORT TRANSPORT 
LAYER LAYER 

NETWORK NETWORK 
LAYER LAYER 

OATA LINK DATA LINK 
LAYER LAYER 

PHYSICAL PHYSICAL 
LAYER LAYER 

~ / 

FIGURE 1.3 - THE ISO REFERENCE MODEL 



-~------------------------------------------------------------------------------------------

10 

layer provides services similar to those provided by the High

level Data Link Control (HDLC) standard that has been adopted for 

the data link layer of the ISO model. This approach is illustrated 

in figure 1. 4. 

1.4.3. SYSTEMS NETWORK ARCHITECTURE 

The Systems Network Architecture (SNA) has been developed by 

IBM to allow its customers to construct their own networks. What 

follows is a brief introduction to SNA, a fuller discussion is 

found in Schultz(1980). SNA can be viewed as a five layer model: 

(1) DATA LINK CONTROL LAYER 

The takes the raw transmission facility and makes it appear 

error-free. Thus has the same function as the data link 

layer in the ISO model. 

(2) PATH CONTROL LAYER 

This layer manages routing and flow control throughout the 

network. 

(3) TRANSMISSION CONTROL LAYER 

This layer creates, manages and deletes end-to-end connec

tions. 

(4) DATA FLOW CONTROL LAYER 

This layer is primarily concerned with maintaining the 

correct sequence of data across a connection. 

(5) NETWORK SERVICES LAYER 

This layer provides the user interface to the network and 

encompasses the functions of both the session and presenta

tion layers of the ISO model. 

This is illustrated in figure 1.5. 

1.5. SERVICE SPECIFICATION 

Between each pair of adjacent layers in any of these refer

!ence models there is an service definition. This defines the pri

mative operations and services the lower layer offers to the upper 

layer. Each layer uses the service, provided by the layer below, 

adds some functionality of its own, and thus provides a more con-
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venient interface that can be used to construct a higher layer. 

i The upper most ,layer provides services for direct use (through 

appropriate software interfaces) by a "user". The "userll may be a 

person using network facilities via an operating system command 

language or a process running under the control of the operating 

system. 

1.6. PROTOCOL SPECIFICATION 

The specification of the actions of the protocol entities 

'within a particular layer is called the protocol specification. 

These actions will be taken in response to external stimuli such 

as commands from the layer above and messages from the layer 

below. 

Protocol specification is the subject of the next chapter and 

will be discussed in detail there. 

1.7. ERROR AND FLOW CONTROL 

Several techniques are widely used to overcome transmission 

.errors and control the flow of packets of information between peer 

entities. 

The reasons why transmission errors occur will be examined 

first. Following this, there will be an examination of the effect 

that these errors have on blocks of data being transmitted through 

a network. 

discussed. 

Finally, methods for error and flow control will be 

1.7.1. TRANSMISSION ERRORS 

Other pieces of electronic equipment, power lines and faul~;1 
power supplies can interfere with transmissions. Such interfer-: 

I 

,ence is often r~ferred to as noise. Noise tends to come in bursts, I 
I 

!that is, it effects a string of bits, rather than individual bits 
I 

in isolation. This characteristic of noise has both advantages: 

and disadvantages when it comes to error control. On the ad van

.tage side, since the data is usually sent in blocks of bits, only' 

·a few blocks will be effected by the occasional burst error. Sup-

.pose the block 

0.001 per bit. 

size is 1000 bits and the error probability is 

If errors were independent, most blocks would con-: 

tain an error. However, if errors come in bursts of 100 bits,' 
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!only one or two blocks in every hundred would be effected. The 

disadvantage of burst errors is that they are harder to detect and' 

correct than isolated errors. Studies of protocol efficiency, 

such as Field(1977) ,have_traditionally considered both indepen

dent and burst ertors. 

1.7.2. ERROR CONTROL 

Before we can eliminate errors, we must first detect that 

,they have occurred. Errors can be detected by adding redundancy 

in the form of checksums. A check sum is an additional field added 

to the end of a block of data. It is calculated by an agreed for

mula from the contents of the block. The check sum can be recalcu

lated at the other end of a transmission and if it is incorrect a 

transmission error has occurred. Check sums may be either error

detecting or error-correcting. Error-detecting codes are usually 

chosen because error-correction techniques can not cope with total 

loss of a message and only work in situations where the probabil

ity of error is low. 

A popular form of error detection is the Cyclic Redun-

dancy Check (CRC). The checksum is calculated by dividing the 

message, treated as One long bit stream, by a constant divisor. 

The receiver repeats the division, compares the locally generated 

remainder with the received CRC and accepts the message if they 

are identical. The length of the remainder, and hence of the CRC, 

depends on the divisor that is used. Given a suitable divisor the 

probability of an undetected error can be made very small. 

The receiver can detect whether a packet has been transmitted 

correctly. In addition, the sender needs to know the result of 

his transmissions to decide whether to retransmit if an error has 

occurred. This is usually done by an acknowledgement system. The 

receiver sends some form of acknowledgement for each packet he 

correctly receives. He sends a positive acknowledgement to inform 

the sender that the packet has been successful transmitted. In 

some systems he can also send a negative acknowledgement if a 

check sum error has been detected. 

It is possible that a noise burst' could destroy one or more 

whole packets in transit. Some agreed form of reference is 
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required between sender and receiver to identify each message. 

This is because duplicate and missing messages must be detected by 

the receiver. Hence each data block is usually proceeded by a 

header containing a sequence number. The header, data block and 

checksum together form a data frame. 

A popular system of error control is known as positive ack

nowledgement and retransmission (PAR). In this system the sender 

sends a data frame and waits for a positive acknowledgement from 

the receiver. If one is not received within a certain time limit 

the frame is retransmitted. This system guards against the loss 

of acknowledgements as well as loss of data frames. Since the 

sender waits for each transmitted message to be acknowledged 

before sending another, this type of protocol is also known as a 

send-and-wait protocol. 

1.7.3. FLOW CONTROL 

A PAR system also controls the flow of data between sender 

and receiver. Since the sender waits for each message to be ack

nowledged before proceeding, a slow receiver cannot be swamped by 

data from a faster sender. However, if the propagation delay is 

high very little of the bandwidth is actually used. Hence, the 

idea of a sliding window protocol was devised. 

Under a sliding window protocol- the sender is allowed to send 

a number of data frames up to an agreed maximum. The set of 

unacknowledged frames is called the send window. As the frames 

are acknowledged at the bottom of the window, the window "slides" 

allowing more messages to be sent. 

This type of protocol system can be implemented in several 

different ways. The differences result from varying strategies 

that can be employed to handle packet loss and corruption. Two 

strategies will be outlined here. 

(1) GO BACK N 

Under this strategy, if a frame in the send window remains 

unacknowledged for longer than the timeout interval, that 

frame and all other frames sent after it are retransmitted. 

On the receiver side all frames after a checksum error and 
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those arriving out of sequence are discarded until the next 

frame in the sequence is received with no errors. The 

receiver maintains a receive window only large enough to hold 

a single packet. 

(2) SELECTIVE REJECT 

Under this strategy. as soon the receiver detects a missing 

packet or checksum error it sends a negative acknowledgement 

to the sender. However. the receiver continues to collect 

all the good messages following the bad one in a receive win

dow. It waits till the missing message is received and then 

forwards the contents of the receive window to the layer 

above. The receiver can maintain a receiver window equal to 

the size of the send window used by the sender. 

A fuller discussion of these issues can be found in Tanen-

baum(l9Bl) • 

1. B. SUMMARY 

In this chapter some of the basic terms of computer networks 

have been defined and some key concepts have been outlined. The 

various components of a network architecture have presented 

together with some examples of reference models. Finally. the 

important topics of error and flow control were discussed. 

1 



CHAPTER TWO 

PROTOCOL SPECIFICATION 
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2 .1. INTRODUCTION 

computer communication has many parallels with human communi

cation. Both consist of an exchange of messages and both require 

a language known to both parties. The study of human language is 

known as linguistics. Those interested in the area of comparative 

programming languages have used many terms originating in linguis

tics in their work. Thus the words grammar, syntax and semantics 

are known to most people working in computer science. Unfor

tunately, workers in the field of communication protocols have 

adopted a different set of terms which are not generally under

stood. 

For example, Davies(1979) differentiated between the logical 

and procedural specification of a protocol. In language there are 

only two basic mechanisms for conveying information. One way to 

convey information is through the content of various units, be 

they words, sentences, flowchart symbols or protocol packets. The 

other way is by arranging these units according to some set of 

rules. For example, the sentences "the cat sat on the mat" and 

"the cat mat on the sat" contain an identical set of words, but 

the first is constructed according to the rules of grammar while 

the second is not. 

The logical specification is concerned with the first mechan

ism, the format and meaning of messages in the protocol language. 

For example, the third and fourth byte of a message may give the 

source of a message and the last two may be a checksum. The mes

sage as a whole may be a block of data or have some other meaning. 

The other mechanism is the subject of the 

procedural specification. This is concerned with the interaction 

of peer entities which takes the form of an exchange of messages. 

The rules governing the sequence of the messages exchanged within 

a given protocol are sometimes known as the rules of procedure. 

Both specifications are concerned with syntactic and semantic 

issues. Brown(l984) describes a useful distinction between 

literal, functional and pragmatic meanings as they relate to human 

language:-



The literal meaning of an utterance is its meaning taken 

in isolation from any context in which it is spoken. 

The functional meaning is the meaning intended by the 

speaker and the purpose behind the utterance. 

The pragmatic meaning is the meaning derived by the hearer 

in a particular context which may result in a certain 

course of action on his part. 
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The statement "It is raining" may be a simple statement of 

about the weather; its literal meaning. In response to the ques

tion "shall we go out for a walk?", it may have be a way of pol

itely declining the invitation, and this would be a functional 

meaning. However, if this statement is spoken to a housewife with 

washing drying in the garden this statement may have the meaning 

"My washing is getting wet!" and cause her to go outside to bring 

it in, even though the speaker may not have intended this to hap

pen. This would be a pragmatic meaning. 

In the same way message number 34 followed by a valid check 

sum is on the surface a simple data block. If the last message 

received by an entity was numbered 33 the entity may 'simply pass 

the text to the layer above. Alternatively, if the last message 

received was numbered 32 this may imply a message has been lost 
and result in completely' di.fferent actions on the part of the 

receiver. 

The literal meaning of a message can be founded by referring 

to the logical specification of the protocol, while the functional 

and pragmatic meaning can only be derived by referring to both the 

procedural specification and the history of the current exchange. 

This last statement introduces us to the fact that a protocol 

entity needs to maintain some information resulting from previous 

transactions. This information is usually called the state of the 
I' entity. The process of changing states is kno"n as a transition. 

Thus, the most popular forms of protocol specification method are 

known as state-transition methods. 

However, before a discussion of these methods can take place, 

the basic protocol data units must be defined. This is the task 
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of the logical specification. 

2.2. LOGICAL SPECIFICATION 

The specification of messages is relatively straightforward. 

We need to consider what is the lowest level of data representa

tion we are to consider. If the data units are expressed in terms 

of binary, it is a bit-oriented protocol. Alternatively, if they 

are expressed in terms of characters, it is a character

oriented protocol. 

The format of a data unit or frame can be presented in the 

form of a block diagram as in figure 2.1. Such a representation 

is equivalent to a record structure found in high-level program

ming languages as in figure 2.2. Alternatively, a grammar nota

tion, such as Backus-Naur form, could be used as in figure 2.3. 

This later form is especially useful where there are classes of 

frames with a similar structure, as is found in HDLC. 

2.3. PROCEDURAL SPECIFICATION 

There are many different approaches to procedural specifica

tion in the literature. Harangozo(1977) describes a protocol by 

specifying the set of all legal exchanges using grammars. This 

level of abstraction is useful in the design stage. However, it 

is not very useful for those interested in producing software to 

implement the protocol. This is because complex processing is 

required to translate this type of specification into algorithmic 

form. Hence, most authors have specified protocols by describing 

protocol entities which conform to the rules of procedure of that 

protocol. Examples of this approach can be found in 

Bochmann(1977a & b) and Alfonzetti(1982). 

These two approachs are complementary, since both forms of 

specification will be required at different stages of the develop

ment of a protocol. The specification methods in the next section 

can, in general, be applied in both these approaches. 



1 SEO. NUMBER DATA 

FIGURE 2.1 - A BLOCK DIAGRAM 

record 
id 0 .. 1; 

end 

seq 0 .. 7; 
data array [1 •. 10) of char; 
checksum: 0 .• 255; 

FIGURE 2.2 - A RECORD STRUCTURE 

2l 

CHECK SUM 

<frame> ::= <identifier><sequence number><data><check sum> • 

<identifier> ::= 1 I 0 

<sequence number> ::= 0 1 2 I 3 141 5 I 6 17. 
<data> ::= <character list> 

<character list> ::= <character list><character> 

where <character> is an ASCII character 
and <check sum> is a single byte. 

FIGURE 2.3 - GRAMMAR FORM 
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2.4. A SURVEY OF PROTOCOL SPECIFICATION ~ODS 

2.4.1. INTRODUCTION 

Many surveys describing various specification methods have 

been published. These include Bochmann(1980), Danthine(1980), 

LeLann(1978), Merlin(1979), Stenning(1979) & Sunshine(1978,1979). 

The first protocols 

diagrams of frame 

were described chiefly in prose with a few 

structures. unfortunately, the ambiguity 

inherent in natural languages lead to the specifications being 

interpreted in different ways by different implementors. Thus 

various types of tables and diagrams were employed to enhance the 

prose description. A good example of this type of specification 

is the document "Cambridge Ring 82 - Protocol Specification" (Lar-

mouth,1982). 

using BNF 

This contains prose description, frame descriptions 

notation and time sequence diagrams to show possible 

message exchange sequences. These methods were a great improve

ment on straight prose, but there has been a desire to introduce a 

much greater degree of formality into specifications. Greater 

formality would enable a protocol specification language to be 

developed which could be used in protocol design and implementa

tion tools. 

There are two main types of formal specification methods 

identified in Piatkowski(1983). 

(1) State-transition methods in which input/output behaviour of a 

system is defined indirectly by specifying a state variable, 

possibly with a number of components, and a series of transi

tions involving input/output. 

(2) Sequence expression methods in which input/output behaviour 

is defined directly without recourse to internal state vari

ables. 

These two approaches will be considered in turn. In addi-

tion, temporal logic will be discussed. This is an extension to 

boolean algebra useful in protocol specification. 
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2. 4.2. AN EXAMPLE PROTOCOL 

An example protocol is introduced for subsequent discussion. 

The protocol is at the data link level of the ISO model. As a 

simplification an error-free transmission medium is assumed. 

Therefore, the frames have no check sum and timeouts have not been 

included. The physical layer provides a half-duplex link, which 

means that frames can be transferred in both directions but not 

simultaneously. Flowcharts of a suitable protocol are given in 

figure 2.4 and 2.5. 

2.4.3. STATE TRANSITION METllODS 

There are two main state transition methods: Finite State 

Machines and Petri Nets. Firstly, the classical versions of these 

techniques will be introduced together with applications to the 

example protocol. Secondly, several extensions to these methods 

will be discussed which increase the power of these techniques and 

make automatic implementation possible. 

2.4.3.1. FINITE STATE MACHINE 

A (deterministic) finite state machine M consists of a set of 

5 components (Cooke,1984). 

a) Q a non-empty set of states. 

b) A a finite alphabet. 

c) t a mapping 0 x A -> Q of transitions. 

d) qO' a member of Q, the initial state. 

e) F, a subset of Q, the set of final states. 

In a protocol specification the alphabet, A, is a set of 

events such as sending a message, receipt of a packet or timeout. 

The set of states, Q, can be either the state of an individual 

entity or the composite state of a pair of entities and the under

lying medium. The machine, M, can be represented by a diagram. 

The elements of Q are represented by nodes on a directed graph. 

Each member of Q is drawn as a small circle enclosing the state 

name. Elements of F have an additional circle drawn around then. 

For each element ((qi,aj),qk) in t, an arc is drawn from qi to qk 
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START 

FETCH NEW 
DATA FROM 

USER 

TRANSMIT 

/ DATA 

AWAIT 
RESPONSE 

/ 
READ / 

ACK 

FIGURE 2.4 - AN EXAMPLE PROTOCOL (SENDER) 
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( START ) 

AWAIT 
MESSAGE 

READ 
DATA 

RELEASE 
DATA TO 

USER 

SEND 
ACK 

FIGURE 2.5 - AN EXAMPLE PROTOCOL (RECEIVER) 
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which is labeled aj. qO is identified by an arrow pointing to it. 

As an example of this method, state transition diagrams for 

the example protocol are given in figures 2.6. In this case F is 

the empty set, ie there is no final machine. In addition, the 

characteristics of the communication medium must be defined. This 

can be done using a third finite state machine. This machine is 

illustrated in figure 2.7. 

The overall system is now mode led by three finite state 

machines. Since a transition on one machine may cause a transi-

tion on another, the transitions on these machines are interdepen-

dent. For example, the transition SEND DATA on the sender is 

related to the transition CARRY DATA on the communications medium, 

which is itself is related to the transition READ DATA on the 

receiver. Any two transitions which are related in this way are 

said to be directly-coupled. Furthermore, any two machines with 

directly-coupled transitions can also be said to be directly-

coupled. For example, the sender entity is directly-coupled with 

the communications medium, and so is the receiver. However, the 

sender and receiver are not directly-coupled since there is no 

direct coupling of the transitions of these machines. Transitions 

which are caused by a transition on another machine are said to be 

dependent transitions. Transitions which are not dependent are 

said to be spontaneous. 

If we consider all transitions to be atomic, it is possible 

to combine these three machines into a single composite machine 

using a fairly simple procedure. Firstly, the first state of the 

composite machine is. defined to be a tuple made up from the ini

tial states of the three machines. Hence it is written (1,1,1). 

The next step is to examine each machine for a spontaneous transi

tion starting from state 1. The only possible transition is the 

FETCH DATA transition on the sender machine. Hence the next com

posite state is (2,1,1). Each machine must now again be inspected 

for spontaneous transitions, and also for transitions directly

coupled with.with FETCH DATA. The only possible transition is the 

spontaneous transition SEND DATA on the sender machine. Hence the 

next composite state is (3,1,1). At this stage there are no spon-

taneous transitions. However, the transition CARRY DATA on the 
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SEND DATA 

RELEASE DATA 

FIGURE 2.6 - FINITE STATE MACHINE FOR PROTOCOL ENTITIES 
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communication medium is directly-coupled with the SEND DATA tran

sition· on the sender. Thus the next state is (3,2,1). This pro

cedure continues until the state is once again (1,1,1) and all 

possible paths back to that state have been explored. Figure 2.8 

shows the complete composite machine for the example protocol. 

Composite machines like this are useful for validating pro to

cols. For example, a node with no successors indicates a possible 

deadlock. 

2.4.3.2. PETRI NETS 

An alternative method of modeling protocols is the use of 

Petri Nets (Diaz,1982). A basic Petri Net C consists of a set of 

four elements (Peterson,1977). 

a) P, the set of places. 

b) T, the set of transitions. 

c) I, the input mapping T -> 2P , ie., the set of input places 

for each transition. 

d) 0, the output mapping T -> 2P , ie., the set of output places 

for each transition. 

The Petri Net C can be represented by a diagram. Places and 

transitions are represented by nodes on a graph. A place is 

denoted by a circle and a transition by a short line. I and 0 are 

represented by directed edges. Whereas in a finite state machine 

the nodes represent states and the edges represent possible tran

sitions, in a Petri Net possible transitions are represented by 

transition bars, and state information is represented by the pres

ence of tokens at places. The state of a net is given by the 

token distribution known as the marking. Formally, a marking is a 

mapping of the set of places into the set of natural numbers, 

diagrammatically it is shown using dots to represent tokens. 

These dots are placed in the circles denoting the places. A tran

sition can fire (occur) when each of its input places holds at 

least one token. When the transition fires it removes a single 

token from its input places and deposits a single token at each of 

its output places. 
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3 2 3 3 2 1 

3 2 2 

FIGURE 2.8 - COMPOSITE MACHINE FOR EXAMPLE PROTOCOL 
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Consider the simple Petri Net in figure 2.9. The marking 

indicates that the initial state has a single token at place S. 

The presence of this token indicates that transition 1 can fire. 

When the transition fires it removes the token from place Sand 

deposits one token in place A and one token at place B. Transi-

tion 2 can now fire since there is a token at both place A and 

, place B. These tokens are now removed from these places and a 

single token is deposited in place X. Thus the final marking is a 

single token at ~lace X and no tokens in any other places. 

A Petri Net can conveniently be used to represent a protocol. 

Certain places are used to represent discrete states of the indi

vidual entities. The presence of a token in one of these places 

indicates that a particular entity is in a certain state. Other 

places represent particular frame types and the presence of a 

token at such a place indicates that a frame is in transit in a 

particular direction. If several of that type are in transit 

simultaneously then several tokens will be present at that partic

ular place. 

A Petri Net for the example protocol is given in figure 2.10. 

The places at the left of the Net represent the states of the 

sende,r entity, the places at the right represent the states of the 

receiver entity, and the places in the centre represent frames in 

transit. A single diagram has been used to model the structure of 

the system. Starting at the modeLS initial marking we can con-

struct a finite state machine to model the behaviour of the sys

tem. Such a machine is called a token machine. Its structure is 

the same as the composite machine in figure 2.8. 

2.4.3.3. SYNTHESIS 

The discussion of state transition methods began with a 

definition of deterministic finite state machine. This definition 

was used together with some other concepts to show how a collec

tion of linked finite state machines can model a protocol layer. 

A construction was then outlined to combine these machines into a 

single machine for protocol analysis. Following this the classi

cal Petri Net was described. 
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FIGURE 2.9 - A SIMPLE PETRI NET 
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FIGURE 2.10 - PETRI NET FOR THE EXAMPLE PROGRAM 
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It will be noted that the classical Petri Net contains no 

equivalent to the alphabet in the finite state machine. This is 

because the firing of transitions is only dependent on the current 

marking. However, each transition can be labelled with the name 

of the event, or events, it represents. A transition may, for 

example, represent the entity sending a particular frame type to a 

peer. In this case two parts of the system, an entity and the 

underlying communications medium are involved. Such an interac

tion is equivalent to a directly coupled transition of a system of 

directly-coupled finite state machines. A Petri Net can be decom

posed into separate Petri Nets with coupled transitions. This is 

achieved by allowing an optional condition or predicate to be 

added to each transition. In this case a transition that can fire 

as a result of the current marking will only fire when this predi

cate is met. Such a predicate may represent the reception of a 

particular frame type or the availability of data. Hence it can 

be seen that finite state machines are in fact a subclass of Petri 

Nets suitable for modeling sequential processes. 

The choice of a suitable representation of protocols will 

depend on the particular application envisaged. This thesis is 

concerned with automated protocol implementation so the represen

tation chosen has to be suitable for this work. The representa

tions discussed so far are not suitable for input to a computer. 

This is partly due to their graphical nature, but is also due to 

incompleteness. Hence, various extensions need to be considered. 

2.4.3.4. EXTENDED STATE TRANSITION METHODS 

The basic strategy adopted in the literature has been to 

expand the definition of a transition to include a programming 

language style description. Keller(l976) proposed a model of this 

form for representing parallel programs. His model consists of a 

Petri Net complemented with a set of variables X. Each transition 

t has associated with it an enabling predicate Pt' depending on 

some variables in X, and an action At, assigning new values to 

some variables in X. The state of the modelled system is deter

mined by the number of tokens that reside in different places and 

the value of variables. A certain transition is said to be 

enabled, that is it can fire, when all its input places have at 

- - ._------------------
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least one token and its enabling predicate Pt is true. When a 

transition fires the corresponding action At is executed and 

tokens are redistributed according to the rules of Petri nets. 

This model has following characteristics. 

(1) The control structure is represented by the interconnection 

of places and transitions, and some variables of the set X. 

(2) The semantic structure is represented by the variables, 

predicates and actions associated with the transitions. 

Bochmann(1977b) adapted this approach and used it in protocol 

specification. A protocol layer can be modeled as a system of 

extended finite state machines. An extended finite state machine 

is a finite state machine complemented by variables, predicates 

and actions according to Keller's approach. Each protocol entity 

will contain: 

a) Definitions of variables 

b) A finite state machine 

c) A collection of associated predicates and actions. 

Ayache(1982) further refined this approach by introducing an 

additional type of predicate called the reception predicate RPt. 

If a reception predicate is associated with a transition it can 

only fire if the message type or types specified by the predicate 

are received by this entity. Therefore, an extended finite state 

machine can be written as a list of transitions in the form: 

(pre-state),(reception predicate),(predicate) 

-> (action),(post-state) 

where the pre- and post- state are the names of states in the fin-

ite state machine. It can be noted that this is similar to the 

standard form of an operation presented in Jones(1980). 

(pre-condition) -> (action),(post-condition) 

Extended state transition methods represent a good basis for the 

design of a protocol specification language. There are, however, 

other approaches which must be considered before these methods are 
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discussed in greater detail. 

2.4.4. SEQUENCE EXPRESSION METHODS 

An alternative approach to the problem of describing the 

behaviour of system has been devised by Milner(1980). He calls 

this system a Calculus of Communicating Systems (CCS). 

2.4.4.1. CALCULUS OF COMMUNICATING SYSTEMS" 

The following discussion is based on Milner's work. although 

some of the terminology has been changed to relate more closely 

with that used in the rest of this Thesis. A system can be decom

posed into a number of parts or entities. Activities within enti

ties are called actions and actions involving two entities are 

called events. 

CCS allows us to model the execution of an entity or process 

by describing the sequence of events. Since we shall again con

sider events to be atomic. parallelism can be modeled by an arbi-

trary interleaving of events. A process can be mode led by a 

tree-like object with labelled edges. The nodes of a tree 

represent the process state while the edges correspond to events. 

as in fig 2.11. 

a I 
b / \ c 

Figure 2.11 - A CCS tree. 

These trees do not model processes perfectly since two different 

trees can describe the same behaviour as in figure 2.12. 

a / \ a I a 

Figure 2.12 - Equivalent trees. 

We can describe a number of operations on processes represented in 

this way. 
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Figure 2.13 - Sequencing. 

= 
/ \ 

/ p \ 
/ .. \ 

7q7q,\ 
/j_._\ 

(2) Choice ([1) (or the alternative composition) 

/~) 
/-

[ 1 

Figure 2.14 - Choice. 
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Figure 2.15 - concurrent compositions. 
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When two processes that may interact are the subject of a 

concurrent composition there is no constraint forcing them to 

interact with each other. This is because they may alterna

tively interact with other processes outside the composition. 

The label 1 in the last diagram of figure 2.14 indicates the 

case where they do in fact interact. This interaction is 

internal to the composite process and is not "externally 

visible" and could therefore be deleted from the tree. If we 

wish to constrain concurrent processes so they are forced to 

interact we need to use the hiding operator. 
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(4) Hiding (\) 

To exclude other processes from participation in a given set 

of events these events must be hidden. 

al 11 al ) \ (a) = 11 
dl dl 

Figure 2.16 - Hiding. 

TO illustrate the power of thjs method we shall again refer 

to the example protocol. The three processes that were earlier 

represented by a finite state machine interact in the following 

ways. 

a) Sender fetches data from the user. 

b) This data is passed to the communication medium. 

c) The communication medium passes the data to the receiver. 

d) The receiver passes the data to the user. 

e) The receiver passes an acknowledgement to the communication 

medium. 

f) The communication medium passes this acknowledgement to the 

sender. 

The three process can be described thus: 

R = c~d:e:R 

where S is the sender process, M is the communications medium, and 

R is the receiver process. 

Note that since these processes are non-terminating these expres-

sions are recursive. The expression for deriving the external 

behaviour of these process is: 

c = \ (b,c,e,f) 
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One of the main advantages of the approach is that the various 

composition operators facilitate a modular approach, in which 

processes can be described as compositions of subprocesses. 

2.4.5. TEMPORAL LOGIC 

Another approach to protocol specification is the use of tem

poral logic as described in Hailpern(1983) and Schwart(1982). 

This is basically an extension to the system of boolean algebra. 

The time dimension is added into the system by means of three 

additional operators: 0, () and!!!1lli. The unary operator Q (hen

ceforth) on a predicate implies that if the predicate is true in 

the current state it will remain true for all future states. The 

unary operator 0 (eventually) implies that a predicate is true in 

the current state or will be true in some future state. Given any 

two predicates A and B, A ~ B implies that A must be true 

until the first state in which B is true. For example (a=l) until 

(b=2) implies that the value of a will be 1 at least until the b 

becomes 2. It can be noted that 

and that, strictly speaking, until is the only operator needed 

since 

OP; P until false. 

Many properties of systems can be stated using these opera-

tors. If I is invariant throughout a systems execution, that is, 

it is always true, this is written Or. 

causes 0 to subsequently occur one 

satisfied infinitely often this can be 

TO state that P 

writes IJ(P)OQ). 

expressed as OOP. 

always 

If P is 

This 

says that for every pOint in the computation there is a future 

point at which P is true. 

Temporal logic can be used in a variety of ways depending on 

the underlying model chosen. As has been previously stated infor

mation can be encoded in content of units and also by the sequence 

in which these units occur. The particular unit involved here are 

states or events. The differences between the various temporal 

logic approachs result from the way information is distributed 

between these two encoding mechanisms. Schwart(1982) discusses 
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three categories of temporal logic specification. 

(1) Bound-State specifications consist of temporal logic asser

tions based on state representations which have a finite set 

of possible values. 

(2) Unbound-State specifications, as proposed in Hailpern(1983), 

are based on state representations which have an infinite set 

of possible values. These values reflect the complete his

tory of the process up to any given point in time. 

(3) Event-sequence specifications contain no state component and 

are expressed on the externally visible behaviour of the 

entities. 

Due to its flexibility, temporal logic is a powerful tool 

when it is used in conjunction with a more operational approach. 

Lamport(1983) describes an integrated approach which combines 

state transition methods and temporal logic assertions. 

2.4.6. SUMMARY 

The various methods which have been presented here can be 

assessed on a number of criteria. A specification should, as far 

as is possible, be implementation independent. This means that 

the various methods should not be constrained to a less than 

optimal solution implementation because of the structure of the 

specification. On the other hand, a specification method that 

leads the implementor towards an optimal solution may be of con

siderable benefit. A specification method that supports modular

ity is to be preferred. 

Some types of specification, such as Petri Nets, have well

known analytical properties and can be used far modeling and simu-

lation of a complete protocol system. Others, such as finite 

state machines, have well-known implementation strategies, but 

require special composition techniques before analysis can begin. 

No particular method seems to have a clear overall advantage 

over all the other methods. Therefore, it is not surprising that 

the literature contains details of various formal languages based 

on many of the methods described. Two of these languages are of 
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particular note. They are the ESTELLE language produced as part of 

the work on ISO OSI standards, and the Format And Protocol 

Language (FAPL) developed by IBM. 

2.5. PROTOCOL SPECIFICATION LANGUAGES 

2.5.1. ESTELLE 

The ESTELLE protocol specification was produced as part of 

the work of the ISO TC97!SC16!WGl ad hoc group on formal descrip

tion techniques. This group was established in October 1978 to 

devise formal description techniques for Open Systems Interconnec

tion protocols. Three subgroups were formed in February 1981. 

They are called A,B and C and have the following briefs. 

A) Definition of architectural concepts. 

B) Finite state machine techniques. 

C) Sequence expression techniques. 

The chairmen of these groups are Gregor v. Bochmann, Richard 

L. Tenney and Chris Visser respectively. The work of subgroup B 

produced ESTELLE as reported in Tenney(1983). ESTELLE is based 

upon extended finite state machines. In an ESTELLE specification 

a variable called state must be declared which models the state of 

the transaction as is perceived by an entity. The finite state 

machine is represented by a list of conditions in the form men

tioned earlier, namely: 

(pre-state),(reception predicate), (predicate) 

-> (action),(post-state) 

Each part of the transaction is introduced by a keyword as indi

cated in the table below. 

pre-sta~e 
post-state 

- "from" 

- "to" 

reception predicate - "when U 

predicate - "provided" 

action - "begin", terminated by !lend". 

In addition, an optional "priority" may be assigned to a transi-

tion. If two transitions are enabled, the one with the highest 
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priority will be used. Tne actions are expressed in tne Pascal 

programming language. 

Furtner details and an example .can be found in Tenney(l983). 

A similar language based on Petri Nets is suggested in 

Ayacne(1982). 

2.5.2. IBM'S FAPL 

FAPL is described in Schultz(1980), Pozefsky(1982) and 

Nash(1983). It is basically an extended version of PL/1, incor

porating finite state machines and more powerful data types. 

Extended finite state machines are presented in a tabular form. 

Columns are headed with state name and rows are labeled with a 

series of input conditions. At the intersection of the row whose 

conditions are all met and the column labeled with the name of the 

current state there is an indication of the next state. The nypen 

code ( ) indicates nothing is to be done, an integer is a new 

state, a greater-than symbol ( > ) indicates an error and a divide 

sign I) indicates an impossible sequence of events. There is 

also an optional action code which is an identifier in 

parenthesis. An example of a FAPL finite state machine is given 

in figure 2.17. 

TwO additions to the data types of PL/l are supported. These 

are the entity and the list. A list is a linked structure con

structed from entities. Various list processing facilities are 

provided for manipulating these types. A fuller description of 

FAPL and examples of its use can be found in the literature. 

Despite a rather complex . format FAPL has been used success

fully for the validating and implementing SNA products. However, 

its general acceptance by the computing community seems doubtful, 

since it lacks the elegance of ESTELLE. 
J _ 

2.5.3. LOTOS 

The LOTOS protocol description technique was devised as a 

result of the activities of subgroup C of the ISO working group 

developing formal description techniques. It is based on Calculus 

of Communicating Systems as devised by Milner and described in 

section 2.4.4.1. It also incorportes the abstract data types 
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STATE NAMES-------> RESET AWAITING 
STATE NUMBERS-----> 1 2 

INPUTS 

s, RQ, FIRST IN WINDOW 2 (PACRQ) \ 
S, RQ, -FIRST=IN=WINDOW -(NOPAC) -(NOPAC) 

R, RSP, PAC >(PACERR) l(PACRSP) 

OUTPUT FUNCTION 
CODE 

PACRQ PI = "PAC; 

NOPAC PI = -PAC; 

PACERR CALL LOG ('UNEXPECTED PACING RSP') 

PACRSP PACING_CNT = PACING_CNT+WINDOW_SIZE 

FIGURE 2.17 - AN EXAMPLE FAPL FINITE STATE MACHINE 
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language ACT ONE as described in Ehrig(1983). 

The basic constructs of LOTOS allow modelling of sequencing, 

concurrency and non-determinism in an entirely unambiguous way and 

can model both synchronous and asynchronous communication. LOTOS 

may be used to describe the allowed behaviours of a system either 

with. or without describing the particular mechanisms which achieve 

these 'behaviours. 

Modularity is an important characteristic of LOTOS. A system 

as a whole is a single process that consists of several interact

ing processes. These characteristics are, of course, derived from 

CCS. LOTOS is described more fully in ISO/DP8807(1985). 

2.6. SUMMARY 

Protocol specification is an area of considerable debate. 

The main dispute is between protagonists of the traditional state 

approach and the alternative sequence expression approach. Other 

methods such as temporal logic have properties which are useful in 

protocol analysis. The first two formal languages presented were 

both based on finite state machines. LOTOS, a language based on 

the sequence expression approach was also described. 

As development tools different languages may used appropri

ately at different stages in the development stage. For example 

LOTOS is appropriate at the early stages while Estelle and FAPL 

are appropriate at later stages. 



-~-- ~ ~---------------------------------

CHAPTER THREE 

AN ALTERNATIVE APPROACH TO 

PROTOCOL SPECIFICATION 
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3.1. INTRODUCTION 

Several protocol specification techniques from the literature 

have been outlined, and the reason for increasing formality in 

this area have been discussed. 

The techniques described so far concentrate on the procedural 

specification. treating the logical specification as a separate 

issue. However, the logical and procedural aspects of a protocol 

specification are interdependent and a protocol specification 

should disclose this relationship. Clarity can also be increased 

by eliminating implementation details, such as buffer management 

and frame assembly which can be deduced from more fundamental 

aspects of the protocol. 

In order to explore these aspects of protocol specification, 

it was proposed that a new protocol specification language should 

be devised. The logical specification could be brought into the 

main specification and made the central pillar around which the 

specification is written. A study of various protocols revealed 

that the packet (or frame) structure of many protocols are 

hierarchical in nature. In such protocols frames are grouped into 

classes. In HDLC, for example, there are control, information and 

supervisory classes. Thus a two-tier system seemed desirable for 

frame structures. 

It was also observed that the simple protocols such as send 

and wait protocols are a special class of sliding window proto

cols. In the case of send and wait protocols the size of the send 

window is one. Thus most protocols can be modelled as sliding 

window protocols. 

The need to maintain state information was discussed in the 

introduction to the previous chapter. A state is a collection of 

variables which describe the current state of the transaction 

between the peer entities as it is understood by a particular 

entity. Jones(l980) uses a state concept based around a set of 

variables which could be employed in a specification language. 

The language devised with these concepts is called PSL/l. 

(NB: PSL stands for Protocol Specification Language.) 
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3.2. PSL/l 

This language combines a particular procedural approach with 

special data types. The packet or frame structure is central to 

the specification of each protocol. PSL/l employs a two-tier sys

tem of frame structure declarations. Overall class formats are 

defined and fields within these formats can be redefined within 

frame declarations. 

The state information consists of a set of variables. Two 

data types can be used for these variables. They are fields and 

integers. A field is a fixed length bit string which can only be 

incremented according to modulo arithmetic. The modulo of this 

arithmetic can be derived from the field length by the formula 

For example, a three bit field is restricted to modulo 8 arith

metic. Fields are generally used for frame sequence numbers. 

An integer is of the type found in most high-level languages. 

The range of values it can take is dictated by the particular 

machine on which the protocol is being implemented. They are, 

however, chiefly used as boolean variables or flags. 

In PSL/I all specifications are expressed as sliding window 

protocols with both a send and a receive window. The size of 

these windows is specified in the parameters section of the 

specification. Also specified in this section are two time inter

vals. One is the frame timeout interval, that is, the maximum 

period that a sender will wait for an acknowledgement before 

retransmitting a frame. Frame timeouts are initiated and handled 

by the underlying protocol system. The other time interval is for 

the user-initiated timer. This is under the control of the user 

and an appropriate timeout action can be specified. 

The interface between the protocol layer being specified and 

the layer above is a pair of bit streams, one for input and one 

for output. The interface with the layer below is expressed in 

terms of frames. The stream of bits from above is assembled into 

a data frame according to the frame structure specification and is 

then placed in the send window. 
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The send window is a variable length queue of elements con

taining a frame copy, a frame identification and a timer-count. 

Si~~e the structure is a queue, elements can only be added to the 

back and removed from the front on a first-in first-out basis. 

The length of the queue will depend on the availability of data 

from the layer above, but it will be restrained to the maximum 

size specified in the parameters section. Immediately after it is 

placed in the queue a frame is sent to the layer below. The timer 

count in the queue element for the frame is perioaically decre

mented until the frame element is removed from the queue or it 

reaches zero. Should the counter go to zero the frame copy is 

sent to the layer below for retransmission. 

When a frame is received it is placed in the receive window. 

The receive window is also a queue, but unlike the send window it 

is of constant length. Each element contains a buffer for the 

received frame, a field giving the frame identification of the 

frame to be placed in this element and an accepted flag which is 

set when the frame has arrived. The data portions of received 

frames are passed to the layer above in the correct sequence. The 

formats for both the send and receive windows are illustrated in 

figure 3.1. 

3.3. EXAMPLES 

This generalised model of the operation of a protocol is 

quite flexible and can be tailored to many different types of pro

tocol. An example of a simple alternating bit protocol is given 

in figure 3.2. Following the example set in Blumer(1980), the 

specification is for an entity that will fulfill the role of both 

receiver and sender. This may result in a certain amount of 

redundancy in a particular implementation, but this must be bal

anced against the duplication involved in producing two separate 

specifications. 

The specification begins.with a title identifying the specif-

ication. This is followed by the parameters section. In this 

case, both the send and receive window sizes are set to one and 

the timer interval has been specified at ten. In the next section 

of the specification the two state variables are defined. There 
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protocol alt_hit /* alternating-hit protocol */ 

parameters { 
send window:=l: 
receTve window:=l, 

/* size of send window */ 

} 
retran_Interyal:= •• 1 

/* size of receive window */ 
/* retransmission interval */ 

state { 

} 

class 

} 

class 

} 

A seq num:="O": 
B:secL:num:="1"; 

control direct { 
format{ 

} 
frame 

} 

110 11 ; 

seq_ num [ 111 

ack{ 
action(receive){ 

if check sum error 
then -

else 
if seq_num=A_se~num 
then 

cancel(A se~nurn)1 
inc(A_seCLnum) 1 

else 

info windowed{ 
format{ 

} 
frame 

} 

"l"; 
seq num[ll 
infTl011 

dat{ 
action(receive){ 

if check sum error 
then -

else 

fi; 

/* do nothing */ 

if se~num<>B_se~num 
then 

fi; 

accept 1 
inc(B_se~num)1 

} send(ack) 1 

action(send){ 

} 

se~num:=A seq num; 
inf:=data1- -

ontimeout{ 

} 
single_retran; 

FIGURE 3.2 - AN ALTERNATING BIT PROTOCOL IN PSL/l 
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is a sequence number for the sending role and another for the 

receiving role. 

This specification describes two classes of frame, the con

trol class and the info class. The control class is specified as 

being direct. This implies that all frames in that class do not 

pass through the window mechanism. They are assembled away from 

the send window and a copy is not kept for retransmission. The 

info class is windowed, that is it is transmitted via the send and 

receive window as has previously been described. 

Each class is identified by the leading bit, zero indicates a 

control frame and one an info frame. This is specified in the 

format sections of each class specification. The second bit in 

both classes is a sequence number. In the windowed info frame 

this is indicated by the word frame_id. This is necessary so that 

the protocol compiler knows how each frame is to be identified as 

it passes through the window mechanism. 

In the info frame there is a field called infaJ which is the 

data portion of the frame. The maximum length of this field is 

specified, in this case ten, but the field may be assigned values 

of any length up to this maximum. 

For each frame type there are two actions: a receive action 

and a send action. The receive action is executed after that 

frame type is received, and the send action is executed before it 

is sent. The actions are constructed using familiar high-level 

language constructs. 

cedure calls are 

The statements which resemble Pascal pro-

invocations 

internal data structures. The 

of primitive actions defined on 

retran primitive retransmits a 

frame from the send window, and the cancel primitive deletes an, 

element from that window. The accept primitive in the receive 

. action for info, sets the accepted flag in the receive window for 

: the frame whose arrival caused this action to be executed. The 

receive window management system will pass the data to the layer 

above in the correct sequence at a later stage. The inc primitive 

.may be used to increment state variables of the type field. The. 

; assignment to the data portion of the info frame is from the 

'predefined variable called "data" which contains bits from the 
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layer above. 

The final part of the specification is the timeout action. 

This is executed when a timer count expires. The timeout action 

in this case specifies that a single frame, the one causing the 

timeout is to be retransmitted. There is an optional section that 

is not used in this example. It is used to specify the action to 

be taken if the user-initiated timer expires. This will be dis

cussed later. 

It is important to note that while the scope of state vari

ables is global, the scope of fields within class and frame struc

tures is limited to the class or frame in which it is defined. A 

full specification of the syntax of PSL/l can be found in the 

appendix. 

To illustrate how PSL/l can be used to specify the various 

protocols, a series of examples will be presented. The develop

ment of these examples will parallel the discussion of data link 

layer protocols in Tanenbaum(1981). Tanenbaum uses a series of 

examples written in an extended form of Pascal. 

The first of these examples, in figure 3.3, is a positive 

acknowledgement / retransmission protocol. Each information frame 

is acknowledged by a single zero bit. Figure 3.4 shows a 1 bit 

sliding window protocol with piggy-backing. In a situation where 

data is flowing in both directions information and acknowledgement 

frames can be combined. The ack is said to ride piggy-back on the 

data frame. The,protocol in Figure 3.5. introduces the concept of 

pipelining. This allows multiple outstanding frames. The "go 

back nU approach is adopted for retransmission. 

The final example in Figure 3.6 illustrates the "selective 

reject" approach to retransmission. It also uses the user-

initiated timer, which was mentioned earlier, to ensure data flow 

in one direction is not held up as a result of there being no flow 

in the other direction. After each data frame is received the 

timer is started using the start_timer primative. This timer is 

stopped as soon as a frame is sent to the other entity using the 

stop_timer primative. If there is no traffic in that direction 

for the specified timer interval, the timer will expire and an 
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acknowledgement is sent. Notice also that a third type of action 

called a retransmission, or retran, action is used to ensure any 

retransmitted frame contains the sequence number of the most 

recent info frame accepted by this side of the protocol and not 

the last frame accepted when the frame was originally sent. 

3.4. SUMMARY 

An alternative approach to protocol specification has been 

presented together with some examples of its application. This 

approach was used in the development of the protocol modeling sys

tem that will be discussed in the next chapter. 



prqtocol par 

/* A Positive Acknowledgement/Retransmission protocol */ 
/* Tanenbaum protocol 3 page 147 */ 

parameters { 
. /* size of send window */ 

} 

. state{ 

} 

send window:=l. 
receive window;=l-

t 
~ , 

re ran_,nterval:=lO; 

NextFrarneToSend: =110"; 
FrameExpected:=1I01l; 

I /* size of receive window 0/ 
/* retransmission interval 0/ 

class control direct r-
format{ "0"; } 

} 

class 

} 

frame ack{ 
action(receive){ 

} 
} 

if check sum error 
then -

else 

fi: 

retran; 

cancel; 

info windowed { 
format{ 

} 
frame 

} 

Ill" : 
seq[l] frame id; 
info[ la] ; -

info{ 
action(receive){ 

if check sum error 
then -

else 

fi· 

/* do nothing */ 

if seq=FrameExpected 
then 

accept; 
inc(FrameExpected); 

fi; 
send(ack); 

} , 
action(send){ 

seq:=NextFrameToSend; 
inc(NextFrameToSend); 
info:=data; 

} 

ontimeout{ 

} 
single_retran; 
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FIGURE 3.3 - A POSITIVE ACKNOWLEDGEMENT RETRANSMISSION PROTOCOL 
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protocol.onebit_window 

It A i-bit sliding window protocol with piggybacking */ 
1* Tanenbaum Protocol 4 page 152 *1 

parameters { 

} 

state { 

} 

send window:=l~ 
recelve window:=l~ 
retran_Tnterva1:=10; 

1* size of send window *1 
1* size of receive window *1 
1* retransmission interval *1 

NextFrameToSend:=1I0"; 
FrameExpected::IIO II

; 

LastFrameAccepted:="l"; 1* = 1 - FrameExpected *1 

class in!'; windowed{ 

} 

format{ 

} 
frame 

} 

seq[11 frame id; 
ack [11; -
inf[101; 

info{ 
action(receive)( 

if check sum error 
then -

else 
1* do nothing *1 
if seq=FrameExpected 
then 

fi; 

accept: 
LastFrameAccepted:=seq; 
inc(FrameExpected); 

if ack=NextFrameToSend 
then 

fit 

cancel; 
inc(NextFrameToSend); 

} 
action(send)( 

seq:=NextFrameToSend; 
ack:=LastFrameAccepted; 
inf:=data; 

} 
action(retran)( 

} 
ack:=LastFrameAccepted; 

on timeout{ 

} 
- single_retran; 

FIGURE 3.4 - A ONE BIT SLIDING WINDOW PROTOCOL 



protocol pipelining 

/* Sliding window protocol with pipelining, */ 
/* allows multiple outstanding frames */ 
/* Tanenbaum Protocol 5 page 158-159 */ 

parameters {' 
send window:=4~ 
receTve window:=l~ 

/* size of send window */ 

} 

state { 

retran_lnterval:=lO; 

NextFrameToSend:=UOO"~ 
FrameExpected:="0Q"; 
LastFrameAccepted:=lIllu; 
AckExpected:="QQ"; 

/* size of receive window */ 
/* retransmission interval */ 

, } 
I . 
classliifo -windowed{ 

format{ 

} 
frame 

} 
} 

on Hmeout{ 

seq[21 frame id; 
ack [21; -
inf[lOl; 

info{ 
action(receive){ 

if check sum error 
then -

else 
/* do nothing */ 

if seq=FrameExpected 
then 

accept; 
LastFrameAccepted:=seq; 
inc(FrameExpected); 

fi; 
cancel(AckExpected,ack); 
AckExpected:=ack; 
inc(AckExpected); 

} 
action(send){ 

seq:=NextFrameToSend; 
inc(NextFrameToSend); 
ack:=LastFrameAccepted; 
inf:=data; 

} 
action(retran){ 

} 
ack:=LastFrameAccepted; 

} 
- multiple_retran; 

FIGURE 3.5 - PIPELINING 
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protocol nonseq_recv 

/* Nonsequential receive protocol - frames */ 
/* frames can be accepted out of sequence */ 
/* Tanenbaum Protocol 6 page 162-163 */ 

parameters { 
send window:=2; 
receTve window:=2~ 
retran interval:=lO; 

/* size of send window */ 

} 
timer_interval:=5; 

/* size of receive window */ 
/* retransmission interval */ 
/* timer interval */ 

state { 

} 

class 

} 

class 

NextFrameToSend:="OO"; 
FrameExpected:="OO"; 
LastFrameAccepted:="ll": 
AckExpected :="00"1 
NoNak:=l; 

control direct{ 
format{ 

} 
frame 

"0": 
kind[l]; 
ack[2]; 

ack{ 
kind=format{"O'" } 
action(receive)t 

if check sum error 
then - -

else 
/* do nothing */ 

cancel(AckExpected,ack); 
AckExpected:=ack; 
inc(AckExpected); 

} fi; 

action(send){ 
ack:=LastFrameAccepted; 

} stop_timer; 

frame nak{ 
kind=format{"l"'} 
action(receive)t 

} 

if check sum error 
then - -

else 

fi' } , 
action(send){ 

/* do nothing */ 

cancel(AckExpected,ack); 
AckExpected:=ack; 
inc(AckExpected); 
retran(AckExpected); 

NoNak=O; 
ack:=LastFrameAccepted; 
stop_timer; 

info windowed { 
format{ 

} 
frame 

Ill" ; 
seq[2] frame id; 
ack[2]; 
inf[lO]; 

info{ 
action(receive){ 

if check sum error 
then -

if NoNak=l; 
then 

FIGURE 3.6 - A NON-SEQUENTIAL RECEIVE PROTOCOL 
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} 
} 

else 

fi· 

fi; 
send(nak); 

cancel(AckExpected,ack); 
AckExpected:=ack; 
inc(AckExpected); 
if seq=FrameExpected 
then 

else 

fi; 

accept; 
NoNak: =1; 
LastFrameAccepted:=seq; 
inc(FrameExpected); 
start_timer; 

if NoNak=l; 
then 

send (nak) ; 
fi; 

} , 
action(send)( 

seq:=NextFrameToSend; 
inc(NextFrameToSend); 
ack:=LastFrameAccepted; 
inf:=data; 
stop timer; } -

action(retran)( 
ack:=LastFrameAccepted; 

} 
stop_timer; 

on timeout{ 
- single retran; 

} -

on timer expired( 

} 
- send(ack); 

FIGURE 3.6 - A NON-SEQUENTIAL RECEIVE PROTOCOL (Cont.) 
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CHAPTER FOUR 

A PROTOCOL MODELING SYSTEM 
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4.1. INTRODUCTION 

Given a physical connection between two computers, it will be 

possible to design several different protocols which will satisfy 

the basic requirement for an error-free communication path. 

Choosing a particular design will require some measure of the 

efficiency of each protocol. The effective transfer rate· is one 

such measure. This measures the speed at which data is 

transferred across the link between the two machines, taking into 

account retransmissions due to errors and delays waiting for ack

nowledgements. 

Traditionally estimates of protocol performance have been 

derived using traffic and queuing theory. Two examples of this 

approach are Field(1976) and Fraser(1977). Reiser(1982) is a 

comprehensive survey of this and other methods. More recently 

research has been conducted into predicting performance directly 

from formal protocol specifications. This can be done via simula

tion. Bauerfield(1982) discusses two formal isms which contain 

enough information for a simulation model to be automatically gen

erated. One is a graphical representation called Function Nets 

which are related to Petri Nets, while the other is a high-level 

language called Hybrid Model. 

-
Work was undertaken to show that PSL/l could be used to gen-

erate simulations for protocol performance prediction. 

4.2. DESCRIPTION 

This work was conducted on the Departmental Vax 11/750 run

ning the UNIX operating system. The model took the form of a sys

tem of communicating processes, with both protocol entities and 

communication channels being represented by individual processes. 

The channel model was directly written in the C programming 

language, while the entity models were generated into C from PSL/l 

specifications. At run time the complete system is produced from 

a single channel model using the fork and exec system calls. The 

single initial process spawned the entity models and finally 

. forked itself to produce a full-duplex transmission model. This 

sequence of events is illustrated in Figure 4.1. 
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FIGURE 4.1 - PRODUCTION OF THE PROTOCOL MODELING SYSTEM 
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Slight modifications to the. original design for PSL/l were 

required. The parameters section of PSL/l specification was 

reduced in size so that timer intervals could be specified at run 

time. In addition, the length of the data portion of the informa

tion frame could also be varied without recompiling the specifica

tion. 

Three connection characteristics could also be specified at 

run-time. These were entity-to-entity propagation delay, line 

speed and bit error probability. These parameters could be varied 

from run to run to investigate their relationship with overall 

efficiency of a given protocol. 

".3. GENERATING AN ENTITY MODEL 

The availability of compiler writing tools under UNIX eased, 

the task of producing a PSL/l to C translator. These tools are 

called YACC and LEX. YACC stands for "Yet Another Compiler-

Compiler" (Johnson,1978b). It is a parser generator accepting 

specifications written in a grammar notation with embedd~d actions 

written in C. LEX (Lesk,1978) is a lexical analyer generator in 

many ways similar to YACC, but accepting regular expressions 

together with actions. With these it was possible to build a one 

pass translator for PSL/l. 

The basic strategy taken was to generate five data structures 

from the specification. 

(1) The symbol table 

This is a linked list of elements containing a record struc

ture with the following fields. 

a) Variable name. 

b) Variable type. 

c) if b) = field then field length else zero fi. 

d) An initial value. 

(2) Class and frame definitions. 

These are complicated structures of linked lists. At the top 

level we have a linked list of classes. For each class there 

is a list of frames in that class, and a linked list of 
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fields. For each frame in a class there may be a linked list 

of field redefinitions, each consisting of a list of fields. 

The field redefinitions will have a pointer to the field in 

the class definition they are redefining. This is illus

trated in figure 4.2. These linked lists contain all the 

details required to manipulate the frame structures. 

(3) A text file containing the send frame routine in C. This 

takes the form of a switch statement with a case for each 

frame type. 

(4) A text file containing the receive frame routine again in C. 

This takes the from of a switch statement with a case for 

each frame type. 

(5) A structure containing various miscellaneous details. 

When the specification has been parsed and these five data 

structures are complete the output program can be produced. The 

initial C declarations are written to a file using information 

from the symbol table, frame and class definitions and miscellane

ous details. Following this the main procedure is written. The 

send and receive routines are then appended to this file. A 

number of procedures were written to implement primative actions. 

These had to be combined with the output from the translator to 

produce an entity model which could then be compiled into execut

able code. 

4.4. CONCLUSION 

The approach presented above was successfully used to gen

erate simulation models for a large variety of protocols similar 

to those presented in the last chapter. Unfortunately, restric

tions imposed by UNIX made simulations very slow. This was 

because timer intervals could only be specified in seconds using 

the alarm system call. Therefore other timing, such as propaga

tion delay, had also to be expressed on the same scale. Thus 

simulating a large data transfer would be very slow indeed. 

Results from simulations which were carried out proved to be 

fairly erratic. In order to assess the affect of differing frame 

sizes a number of simulations were conducted. Each simulation 
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consisted of a transfer of 50,000 bits. The error rate was set at 

10-4 and the propagation delay was set to five. The line speed 

was set to 9600 baud. The test was repeated 20 times for each 

frame size and an average taken. The results are summarised in 

figure 4.3. The results fail to show any clear trend when the 

frame size is greater than 4000 bits. The standard deviation 

within the set of tests for each frame size increased as the frame 

size increased. This last observation is predictable as a single 

error will have a greater impact on a transfer when the frame size 

is high. 

However, PSL/l had been shown to be a practical specification 

language for protocol simulation. The resulting simulation also 

proved to be a very useful tool for debugging protocol specifica-

tions. This was done by printing a message to a trace file every 

time a frame was sent or received. By increasing the error rate 

the protocol could be tested under extreme conditions and deadlock 

situations identified. As a consequence of this encouraging 

result, work began to apply this specification method to other 

areas of protocol design and implementation. 
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5.1. INTROOQCTION 

The work discussed in the previous two chapters was bit

orientated rather than byte-orientated. This is the approach that 

was adopted in most recent networking standards such as X.25, DEC

NET and SNA. Older networks such as ARPANET used a byte

orientated approach. The general adoption of bit-orientated pro

tocols has been due to the desire to make network standards 

independent of any particular byte or word structure. 

This approach is feasible where expensive networking equip

ment is available. However, users who only need communication 

facilities occasionally cannot justify such expenditure. Some 

computers, particularly microcomputers, can not be directly con

nected to a network. Hence, there is a need for a simple and 

cheap method of interconnection. The most readily available 

method is asynchronous character transmission via the ubiquitous 

V.24 interface. 

5.2. NETWORK TOPOLOGIES 

Asynchronous connection can be achieved in several ways. The 

simplest method is by linking each machine to every other by using 

an appropriately wired cable connection. However, this is only a 

practical solution where the number of machines(n) to be intercon

nected is small. Each machine will require n-l ports dedicated to 

network traffic and a total of n(n-l)/2 cables. Where three 

machine are to be connected together the network will take up two 

ports on each machine and three cables in total. If the network 

grows to involve four machines, three ports will be required on 

each plus six cables. Five machines will require four ports on 

each machine and ten cables. At this stage the network is already 

consuming a significant quantity of resources. Hence, to conserve 

ports for terminal use and reduce the amount of cable required 

there needs to be some sharing of resources by the machines. 

Many sites with multiple computer systems will already use a 

circuit switch to allow individual terminals to be connected to a 

different machine in each terminal session. Such a switch can 

also be used to allow computers to share ports and lines with each 

other and also with terminals. Each machine can be connected to a 
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switch .as if it were a terminal. Hence each machine can login to 

any other machine providing a line from the switch to that machine 

is available. This situation is illustrated in figure 5.1. Once 

this has been done file transfers can be initiated between 

processes running on each machine. 

An alternative approach is to use a local area network with 

an RS-232 asynchronous interface. An example of such a system is 

a low cost local area network called Clearway (Bidmead,1982 & 

RTDL,1984). 

5.3. CLEARWAY 

A Clearway system consists of several access units, or nodes, 

daisy-chained together into a ring. Each unit has an address in 

the range 1-99 and can be configured to initiate calls to other 

nodes. Alternatively, it can be configured to receive calls from 

an other node. Thus the roles of master and slave can be assigned 

to each node as required. One possible use of this system is to 

allow computers, particularly micro-computers to share resources 

such as printers. In this type of system a node attached to a 

computer will be permanently configured as a master node while a 

node attached to the printer will be permanently configured as a 

slave. Terminals may also be connected directly into a network 

via a node. Thus a Clearway network may be used in a similar way 

to a circuit switch, allowing an individual terminal to access 

more than one machine. In this case the nodes on the computer 

will be configured as slaves. 

Under some operating systems it may be possible to use a node 

connected to a V.24 terminal port on a computer for incoming and 

outgoing connections at different times. In the normal situation 

the node is configured as a slave and the port is treated as an 

ordinary terminal port by the computer. In this situation, a ter-

minal driver handles incoming connections. When the port is 

required for outgoing connections and there is no current incoming 

connection, the terminal driver can be disabled. The node can 

then be reconfigured as a master by the computer and an outgoing 

connection made. When the outgoing connection is no longer 

required the node can be restored to is original configuration and 
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the terminal driver re-enabled. 

Invisible to the user of Clearway there is a packet protocol 

operating between nodes. The data field of the packet can be up 

to 33 bytes long. Other fields contain sender and recipient iden

tification, a sequence number, packet size indicator and a check 

character. After each packet is transmitted the sender waits for 

an acknowledgement before transmitting the next packet. 

The ring speed is around 4500 characters per second (50K 

baud). This is slow compared to most local area networks. How

ever cost factors must be considered. An Ethernet node costs 

between 250 and 300 pounds, and an interface to connect a computer 

to an Ethernet using an RS-232 interface will cost in excess of 

1000 pounds. A parallel interface such as a DEUNA board for a VAX 

would cost at least three times that amount. On the other hand a 

Clearway node costs around 175 pounds. These figures have been 

enough to ensure wide spread use of this system. 

With such a system one might argue it would be possible to 

send data at relatively high-speed, say 9600 baud, between con

nected computers. However, the RS-232 interfaces can be a problem 

area. The hardware of many computers has not been designed to 

coped with large amounts of high-speed incoming traffic such as 

that generated by a file transfer. Although they can receive data 

at that speed, there may be insufficient buffering or an inade

quate interrupt handling system and hence they are unable to cope 

with an uninterrupted stream of bytes. With multi-user systems 

the computers ability to handle traffic may fluctuate depending on 

the load being placed upon it. With some computers XON-XOFF can 

be used across the RS-232 interface to increase reliability. How

ever, some hosts do not support this type of flow control, or can 

not be relied upon to operate it without error. In these cir

cumstances it is likely that characters will be lost by the reci

pient. Thus it is important to provide a layer of host to host 

protocol on top of that employed by Clearway to ensure reliable 

transfer of information. 

It was decided that a Clearway network would be set up within 

the Department of Computer Studies at Loughborough University. 
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Initially, two mini-computers would be involved in the project, a 

Digital VAX 11/750 running UNIX and a system based on Texas 

Insttuments 990/10s. The latter machine is a multi-processor sys

tem with four processors. In addition, some terminals in staff 

members offices would be attached to nodes allowing them access to 

use both the VAX and the TEXAS machines. The network would be 

required to handle both terminal access and file transfers. 

The TEXAS machine was found to have particularly poor commun

ication facilities. A program was written on the TEXAS machine to 

send a packet of data of variable length around the ring and read 

it back, comparing what was received with what was sent. This was 

tested at 9600 baud and it was discovered that the link became 

unreliable when the packet size became greater than ten. The 

TEXAS machine, therefore, requires an unusually short frame length 

if it is to receive the data intact. Reliability would also vary 

with the load on the machine, so a suitable protocol had to be 

found to ensure that data transfers could be achieved without loss 

of data. 

5.4. PROTOCOL STANDARDS 

Owing to the lack of suitable standards for communication 

over asynchronous links most systems of this type have been ad hoc 

responses to local needs. Often they have lacked even the most 

rudimentary error detection and recovery. They have also had a 

limited range of applications (eg file transfer only) and have 

only allowed interconnection of a small range of machines. 

There is a pressing need for a standard for asynchronous net-

working. As yet no such standard has emerged, but two responses 

to the need are worthy of examination. These responses are the 

Kermit Protocol produced at Columbia University, New York (da 

Cruz,1983) and the proposals of the Transport Service Implementors 

Group of the British Telecom New Networks Technical Forum (BT,83) 

for an Asynchronous Transport Service (ATS). 

The Kermit Protocol has been implemented on several diffetent 

multi-user environments and on a large variety of personal comput

ets. The user runs the Kermit on his local machine, connects to 

the remote machine and logs in. He then initiates the Kermit on 
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the remote machine and escapes back to the local machine by typing 

an escape sequence. At this point file transfers can begin 

between the two machines. When he has completed his transfers he 

must reconnect to the remote machine to logout. 

The ATS proposals attempt to integrate asynchronous transfers 

into the ISO OSI framework. The proposals cover the data link, 

network and transport layers. They are based on the UK interim 

standard "Yellow book" Transport Service. At the lowest level a 

byte-orientated approach must be adopted due to the nature of the 

underlying communication channel, but above that level they try to 

follow ISO and UK standards as closely as possible. 

5.5. FRAME REPRESENTATION 

Simply adopting a byte-orientated approach is not sufficient 

to ensure correct transmission of characters. In many cases the 

hardware or software of the basic link does not allow transmission 

of all possible 8 bit codes. Some systems demand parity of some 

description or particular framing characters, such as Carriage 

Return or ETX, to ensure forwarding of the input from a front-end 

processor to a main frame or possibly low-level flow control such 

as XON-XOFF. 

If the data to be transmitted only consists of 7-bit ASCII 

characters it is a fairly simple matter to code the control char

acters (octal 0-37) and the DEL character (octal 177) using escape 

sequences. The Kermit Protocol uses a special "quote" character 

to indicate that the next character is a coded control character. 

This coded control character can be decoded (and encoded) by 

exclusively ORing it with octal 100. The quote character can be 

any character in the range octal 41-76 and 140-176, although' is 

the default value. A quote character is transmitted by preceding 

it by another quote character. If full eight-bit transmission is 

required another different quote character (default &) must be 

introduced to indicate that the following character, which may an 

encoded control character, has the eighth bit set. Thus up to 

three characters may be needed to transmit a single byte. 

The ATS proposals offer a choice of two very different 

approaches. The first called transparent framing can only be used 
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in situations where the full range of eight-bit patterns can be 

transmitted. Each frame is preceded by a 3-byte header sequence. 

Byte 1: octal 20 

Byte 2: octal 202 

Byte 3: length in bytes of the frame, including checksum. 

The first two bytes were chosen since together they violate all 

four standard conventions for the eighth-bit (odd, even, mark, 

space). This may help to improve error recovery after loss or 

damaged characters has caused loss of frame boundary synchronisa

tion. However, this is only true if text is being transmitted 

with consistent treatment of the parity bit. There is no way of 

improving error recovery if binary data is being transmitted. 

ATS also provides another method of frame representation 

called hex-coded framing for links which are not fully tran

sparent. The full eight bits are coded as two characters in the 

ranges 0-9 and A-F which together represent the hexadecimal value 

of the byte we are transmitting. In addition OZ,JZ,OX and JX are 

used as frame markers. This method should work for most connec

tions since it does not require the ability to send or receive any 

non-alphanumeric characters. The specification allows for link-

dependent variations whichever framing technique is used. 

The Clearway network is not suitable for Transparent Framing 

since at least One character must not be sent across the network. 

This is the reset character which will put the node on the 

sender's side into configuration mode. It would be possible to 

implement Hex-coding Framing, but since two bytes need to be sent 

for each character we wish 'to transmit, this is very inefficient. 

A frame representation similar to that used in the Kermit 

protocol was chosen for the Clearway network. Control characters 

in the data are coded into two bytes. The first byte is the Data 

Link Escape character, DLE, and the second is the character we 

wish to send ORed with octal 0100. Each packet is introduced by a 

control character. This must not be either DLE or the reset char

acter. This scheme was chosen to aid error recovery by ensuring 

that frame boundaries could be easily restored. 
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Three numeric fields must be transmitted: a sequence number, 

a byte count and a check sum. The sequence number was constrained 

to be in the range 0-63. It is increased by 64 before transmis

sion to ensure it is not a control character. The byte count 

could require one or two bytes depending on the maximum length of 

the data field. Similarly, the check sum could be either two or 

three bytes long, depending on the frame size. Such flexibility 

was introduced because of the restrictions placed on the overall 

,frame size by the Texas Instruments machine. 

Where the length of the data field in a frame must be less 

than 64, a single byte is sufficient for the byte count. The 

seventh bit is set before transmission to exclude control charac

ters. Two bytes must be used for frames with data fields longer 

than 64 bytes, but shorter than the maximum of 4095 bytes. The 

byte count is divided into two six-bit quantities which have the 

seventh bit set before transmission. The checksum is simply the 

sum of all the bytes in the frame. It is treated in a similar way 

to the byte count in that it is divided into six-bit quantities 

and converted to printable characters. 

An optional terminator may be used to ensure forwarding of 

frames. This was included because the Berkeley Network Discipline 

requires a newline to terminate each message. This scheme was not 

designed to carry binary data. 

5.6. PROCEDURAL ASPECTS 

As has been previously mentioned the ATS proposals follow the 

ISO OSI approach as closely as possibly. The designers of the 

Kermit Protocol, however, were free to devise their own pro

cedures. One feature of the Kerrnit approach is that each side can 

configure the other by informing it of its particular needs when 

transmissions are initiated. The Kermit protocol was designed to 

operate over both full and half duplex connections, but in a half 

duplex manner. Hence, Kermit is a send and wait protocol. 

For the Clearway network it was felt that the possibility of 

a full sliding window protocol was required, but one that was 

simpler than X.25. In order that the individual characteristics 

of each pair of hosts could be used to allow the most efficient 
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protocol possible to be used for each connection, an initial 

exchange of information is required between hosts. This is simi

lar to the Kermit Protocol. In the protocol for the Clearway Net

work, the host which is to be the receiver must specify the max

imum send window size and the maximum frame size. In addition it 

indicates whether it requires a terminating character on each 

frame it receives and, if this is so, which character is required. 

5.7. SUMMARY 

The special problems of networking over asynchronous line has 

been discussed, together with strategies for overcoming them. The 

Clearway networking system has been presented together with an 

outline of the protocol chosen to operate on it. The rest of this 

thesis will be concerned with how such a protocol can be imple

mented across a network in way that is both efficient and easy to 

maintain. 



CHAPTER SIX 

PROTOCOL IMPLEMENTATION 
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6.1. INTRODUCTION 

By the time a protocol specification is approved a lot of 

hard work will have gone into the design and validation of the 

protocol. However, at this stage of development there has still 

been no change to the computers that will be involved in the net

work, which will still be operating an old protocol or isolated 

from each other. There is still a great deal of work to be done 

before the protocol is fully implemented. 

How much work remains to be done will depend on the number of 

different types of computer involved. If the network involves 

machines of exactly the same type then there is only one implemen

tation of the protocol required. If all the machines in a network 

are from the same manufacturers range it may not be too difficult 

to adapt the initial implementation to run on the other machines. 

However, many networks involve machines from a wide range of ven

dors, and this can result in a lot of extra work. The purpose of 

this chapter is to consider ways to implement protocols on this 

type of network avoiding excessive duplication of effort. 

6.2. USE OF HIGH LEVEL LANGUAGES 

If the process of producing an implementation on a new 

machine can be made fairly mechanical, the probability of intro

ducing errors can be reduced. One way to do this is to use a 

high-level language which is available on a wide range of 

machines. The most common high-level language which might con

ceivable be used is Fortran. However, many versions of Fortran do 

not allow sufficient access to the operating system to make this 

feasible. 

The two languages commonly used for system programming are 

PL/I and C. PL/I was devised by IBM, but it is also used by 

Honeywell in their Multics system. C is the language which is 

used to write much of UNIX. UNIX is a portable operating system, 

not tied to any particular manufacturer. It has been implemented 

on to a large number of machines, including DEC PDP and VAX 

machines, GEC computers, Perk in Elmer machines and a host of 

micros and work stations. The XENIX system produced by Microsoft 

is essentially the same operating system but on a smaller scale. 



79 

However, C is not restricted to UNIX, it is available under TOPS-

20, VMS and also on IBM, Amdahl and Honeywell machines. 

The different implementations of C are, however, not without 

system dependent characteristics. In fact, this is inevitable 

because of the access the language gives to the machine and 

operating system on which it is implemented. UNIX provides a 

large library of both source and object code which can be used for 

input/output and other common tasks. Some manufacturers provide 

an equivalent library which can be used with their particular C 

compiler. This is particularly true of VMS where UNIX system 

calls can be emulated using a set of routines with the same inter

face. Hence C programs can become highly portable. 

Where differences are unavoidable, owing to differences 

between terminal drivers, the C macro-processor has a conditional' 

compilation facility which can be used to allow different sections 

,of code to be used on different machines. There is a C version of, 

the Kermit Program which was written so that only a simple change' 

is required before it will compile on one of the other supported 

machine. This change is simply to swap two characters in the; 

source file. The source for this Kermit contains the following 

lines very close to the beginning of the text. 

/* Conditional compilation for different machines */ 

/* and operating systems */ 

/* One and only one of the following should be 1 */ 

#define UCB4X 1 /* Berkeley 4.x UNIX */ 

#define TOPS_20 ° /* TOPS_20 */ 

#define IBM_UTS 0 /* Amdahl UTS on IBM systems */ 

#define VAX_VMS 0 /* VAX/VMS (not yet implemented) */ 

The position of the 1 in the four #define lines determines the 

operating system under which the program will be compiled. Code 

appropriate to a particular operating system can then be selected 

for compilation at certain places in the program. However, there 

still be problems with supposedly portable languages, like C, 

which relate to how they fit into a particular operating system. 

The alarm system call can be used to generate a signal after a 
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certain number of seconds. This can be used to timeout .an entity 

that has not received an acknowledgement. The programmer writes a 

signal system call specifying a routine which will handle the sig

nal. This is followed by an alarm ~all specifying the timeout 
, 

interval. This will be followed by a read which waits for the 

acknowledgement. A signal results in the specified routine being 

called. Under UNIX, on returning from this routine the read sys-

tern call terminates, returning with an error code. The signal 

handler can in this case be a do nothing function. The following 

sections of code illustrate this approach. 

#define OK 0 

#define TIMEOUT 1 

#define SYSERROR -1 

alarmcatch(){} 

signal(SIGALRM,alarmcatch): 

alarm(lO): /* 10 second timeout */ 

while(read(net,buf,sizeof(buf»==SYSERROR) 

{ 

} 

retran(last_frame): 

signal(SIGALRM,alarmcatch): 

alarm(lO): /* 10 second timeout */ 

alarm(O): /* turn off alarm */ 

However, under VMS when control returns from alarmcatch the system 

call continues to wait for input. The use of the setjmp and 

longjmp facilities from the standard libraries would appear at 

first to offer a way round this problem by avoiding the normal 

return. However, the C compiler release notes for VMS indicate 

that the setjmp and longjmp can not be used in this way. VMS 

appears to require the following technique. 



alarmcatch() 

( 

} 

retran(last_frame), 

signal(SIGALRM,alarmcatch), 

alarm(lO), /* 10 second timeout */ 

signal (SIGALRM,alarmcatch), 

alarm(lO), /* 10 second timeout 0/ 

if(read(net,buf,sizeof(buf)==SYSERROR) 

{ 
/* we have a real system error ! *f 

} 
alarm(O), /* turn off alarm */ 
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This code will not work under UNIX. However, a small change will 

render it portable. 

alarmcatch() 

( 

} 

retran(last_frame), 

signal(SIGALRM,alarmcatch), 

alarm(lO), f* 10 second timeout of 

signal(SIGALRM,alarmcatch), 

alarm(lO), /* 10 second timeout */ 

while(read(net,buf,sizeof(buf)==SYSERROR), 

alarm(O), /* turn off alarm *f 

As long as their are no real system errors this code will be 

alright. For safety a limit on the number of retries would need 

to be incorporated into the code. 

An alternative approach would be to use conditional compila

tion to compile a different system call for VMS instead of the 

UNIX read. 

A language like C may be useful if it is available on all the 

machines in the network. Sadly this is not usually the case. The 
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TEXAS machine on the departmental network had only an assembler 

and Fortran and Pascal compilers. Hence TEXAS assembler was 

chosen as the most suitable language for an implementation on that 

machine. 

6.3. PROTOCOL COMPILER 

Although it does not solve the portability problem, using a 

protocol compiler to implement a protocol in an automated fashion 

can greatly reduce the the amount of work involved. There have 

been two major pieces of work concerned with protocol compilers. 

One approach was used by rBM to allow its users to generate 

software for SNA, while another has been used on an early version 

of the ISO subgroup B language. 

The work done by IBM is principally described in Nash(l983). 

The language used was FAPL (Format and Protocol Language), which 

was described in Chapter 2. The target language was PLII, 

although several different dialects of PL/I could be produced. 

The compilers on each individual machine were used to produce exe

cutable code. The variations between dialects were obtained by 

writing the code generation phase in such a way that it uses a set 

of code generation macros. These could be varied to cater for 

each different dialect and systems environment. The macros have 

well defined interfaces and functions. Sample versions are sup

plied to the user who can the tailor them to his own particular 

requirements. The macros are written in REX, a PL/r-like general 

purpose language. There are about 40 such macros. There are some 

FAPL functions that can not easily be coded into the target 

language. In this case run-time support routines are used. 

The basic principles used here represent a sound approach to 

the implementation of protocols on a range of machines. Its main 

weakness is that the approach has only been applied within a par

ticular manufacturers range, and it has only been used to produce 

code in dialects of the same language. 

The other work in this field was described in Blumer(l982). 

A protocol compiler was constructed for an early version of 

ESTELLE, using the YACC and LEX programs. The target language was 

Pascal. A finite state machine can be represented by a set of 
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tables which guide program execution depending on external events. 

The YACC and LEX systems are built using this principle. For YACC 

and LEX the external event is reading a character or token, and 

the appropriate action will be updating internal structure or out

putting some code. This same principal can be applied to protocol 

programs. The external events in this case will include frame 

arrivals, the arrival of data from the layer above, and timeouts 

and the appropriate actions would include sending a frame and 

closing down a connection. 

Hence, in this work the protocol compiler outputs a set of 

tables from the specification and adds code to traverse them. 

These tables are the same for all protocols. A set of actions is 

also produced from the specification. The latter can be done with 

the minimum of processing since the actions in the specification 

are already written in Pascal. These three items together can be 

compiled into a protocol program. 

This work shares the same weakness as the work using FAPL in 

that it requires a Pascal compiler to be available on all the 

machines in a network. The portability problem has still not been 

tackled. 

Neither of these approaches is sufficient to ease the problem 

of implementing software on the Clearway network, since they have 

only tackled translation to a high-level language. There is a gap 

to be bridged from the high-level language to the assembler code. 

This gap is usually filled by a compiler. This suggests the pos

sibility of using a portable or retargetable compiler to produce 

the final code. 

6.4. PORTABLE AND RETARGETABLE COMPILERS 

Suppose there is a compiler for language A operating on 

machine X, which we wish to move to machine Y. Further suppose 

that this compiler is written in a language B for which there is a 

compiler on machine Y. We can transfer the source code for the 

compiler from machine X to machine Y, compile it, and we should 

have a compiler that accepts language A on machine Y. Unfor

tunately, it will still produce code for machine X. Hence the 

source for this compiler will need to be altered to generate code 
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for machine Y. How simply this can be done will depend on the 

internal structure of the compiler. A compiler that has been 

designed so it can easily be moved to another computer and adapted 

to generate a different target code is known as a 

portable compiler. 

A retarqetable compiler is essentially the same except that 

it is not intended to move the compiler onto a new machine but 

generate code for another machine on the original machine. A 

retargetable compiler can be used where there is not a compiler 

for language B on machine Y. In some cases it may not even be 

possible for machine Y to support any compilers owing to limita

tions on memory space. Thus a program can be compiled on a main

frame or mini-computer and down line loaded on to a small 

microprocessor. 

Compilers of this type need to be structured in such a way 

that it is easy to adapt the code-generation phase to a new 

machine. There needs to be a clear separation between the 

language dependent and machine dependent parts of the compiler. 

One approach 

generators(CGG) in a 

has been 

similar 

to produce code-generator 

way to compiler-compilers such as 

YACC and LEX. Some type of specification language is accepted by 

the CGG to produce code for the code generation phase of a com

piler. The specification language can take one of two forms: 

(1) A specification of the target machine and its instruction 

set. 

(2) A specification of the translation process between some form 

of intermediate code and the target assembler. 

The first approach would be preferable if some form of stan

dard machine description was provided with each machine. However, 

a standard machine description language has not been adopted and 

devising such a language would be a major task in itself. This 

approach is discussed in Cattell(1980) and was found to be very 

complex. 

The second approach requires that the user knows enough about 

his particular machine to see how intermediate code concepts can 
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be translated into machine code. This approach is described in 

Granville(1978). In this work, a series of code templates, sirni-

lar to the macros used in the FAPL work, were used as the basis 

for the specification. Associated with the templates were coded 

instructions indicating were each template was to be applied. The 

. intermediate form used as the starting point can be either an 

intermediate language or a code tree. Granville(1978) uses an 

algebraic notation as the specification language. The C portable 

compiler (Johnson,1978a) uses a code tree as its starting point. 

Poole(1974), Colman(1974) and Waite(1970) describe a system 

based on a linear intermediate code. Poole(1974) describes the 

concept of abstract machine modelling which underlies the work in 

these three papers. An abstract machine is a generalised machine 

architecture designed to be a common sub-set of as wide a range of 

machines as possible. A family of abstract machines called JANUS 

was devised and a well structured abstract machine code defined. 

The basic approach adopted was to clearly divide the compiler 

into language and machine dependent parts. The former they called 

the language dependent translator (LOT), and the latter they 

called the machine dependent translator (MOT). 

The LOT contains all the lexical and syntactic analysis 

necessary for the particular source language. If a program is 

parsed successfully the compiler will determine what actions are 

I-required· to execute the program and then pass a specification of I 
these actions to the MOT. To keep the LOT machine-independent the 

actions it produces must not rely on a particular target computer~ 

they must be fundamental operations which can be implemented on 

any computer. The MOT must translate these operations into the 

assembly code for a particular machine. The information flow from 

the LOT to the MDT is in the form of abstract machine code. A 

program called STAGE2 (Waite,1970) was used as the MOT. This was 

driven by a set of translation rules supplied by the user. 

The data types of JANUS are high-level entities such as 

integers, addresses and real numbers. The operations on the other 

hand were the lowest form possible, such as load a, add b, etc. 
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6.5. CONCLUSION 

Three areas have been investigated in the search for tech

niques to simplify protocol implementation. The use of high-level 

languages, despite possible pitfalls, was shown to be a useful 

approach. A protocol compiler would reduce the effort required to 

convert the specification into a suitable high-level language. A 

portable compiler could be used to implement the high-level 

language chosen. 

An obvious course of action was to retarget the existing 

portable C compiler to produce TEXAS assembler. However, experi

ence within the department had shown that this was a lengthy pro

cess which would probably not be cost-effective. TEXAS assembler 

has a fairly asymmetric instruction set which might have proved 

difficult to mould into a DEC-orientated code generation system. 

Hence, an alternative approach was chosen. This was to pro

duce a retargetable protocol compiler on the VAX which would pro

duce code for a variety of machine types. 
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7.1. INTROPUCTION 

The discussion in the preceding chapters has examined various 

aspects of protocol specification and implementation. The prob

lems that can arise implementing protocol entities on a range of 

machines have been presented and the last chapter suggested that a 

retargetable compiler might represent a step forward in this area. 

The compiler would adopt the approach described in section 6.4. 

Hence an abstract machine would be used as an interface between 

language dependent and machine dependent parts of a compiler. The 

task of producing a retargetable compiler can be divided into 

several steps. 

(1) PROTOCOL LANGUAGE REVISION 

There were several reasons for doing this. Firstly, PSL/l 

had been developed for bit-orientated protocol whereas byte

orientated protocols were now required. Owing to this change 

of direction, the interfaces with the layers above and below 

had to be redesigned. Experience had shown that the two-tier 

frame declaration system employed in PSL/l was unwieldy and 

unnecessarily complicated since only simple protocols were 

required. There were several other changes made to the pro-

tocol specification language which will be described later. 

The resulting language was called PSL/2. 

(2) ABSTRACT MACHINE DESIGN 

This step consisted of designing an abstract machine together 

with an associated assembly code. The JANUS abstract machine 

could be taken as a starting point. However, this machine 

was devised without taking into consideration microprocessor 

architectures so the basic structure of the abstract machine 

required some modification. 

(3) LANGUAGE DEPENDENT TRANSLATOR 

A protocol compiler had to be written to translate protocol 

specifications written in PSL/2 into programs written in the 

assembly code of the abstract machine. The assembly code for 

the abstract machine is called I-code. 

(4) MACHINE DEPENDENT TRANSLATOR 

Another translator was required to produce the equivalent of 
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a~ abstract machine program in a wide range of assembler 

codes. 

(5) DESIGN OF A MACHINE INDEPENDENT OPERATING SYSTEM INTERFACE 

A set of interface routines are required for each different 

machine type to implement machine dependent aspects of the 

protocol entities. 

The rest of this chapter will examine each of these steps in 

detail. 

7.2. PSL/2 

The switch to a byte-orientated approach made it necessary to 

make various changes to the interface with the layer above. In 

PSL/I bit streams had been used to send data to the layer above 

and receive data from it. In PSL/2 these bit streams became byte 

streams. 

In addition some requests and indications were defined on the 

interface with the layers above and below. The layer above and 

the layer below both require some means of indicating to this 

entity that a connection has been established with a peer entity. 

This is done by means of an OPEN_REQUEST. The entity does not 

establish the connection, so this must be done by another piece of 

software. The layer above requires some means of telling the pro

tocol entity that data had been made available. The 

CHARACTER_ABOVE indication was defined for this purpose. The 

layer above also requires some means of instructing the layer 

below to close the transaction with the peer once all outstanding 

data has been transmitted and acknowledged. This was done by 

defining the CLOSE_REQUEST. If an entity receives frames which 

break the rules of the protocol it can communicate this fact to 

the layer above by sending an error indication. A primative 

action called ERROR is provided in the PSL/2 language for this 

purpose. 

The interface with the layer below is similar to that which 

was used in PSL/l except that frames are now made up of bytes not 

bits. The interface with the layers above and below are illus

trated in Figure 7.1. 
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An explicit state variable was introduced into PSL/2 which 

brought the language closer to existing extended finite state 

machine languages such as ESTELLE and FAPL. This variable is 

similar to the enumerated type found in C and Pascal. The specif

ier defines a limited set of values it can take in the form of 

alphanumeric names. The value of the state variable is changed 

using the NEW_STATE primative. Associated with each value there 

will be expectations regarding peer entity behaviour. These 

expectations will be reflected in the specification. 

The two-tier frame declaration system was replaced with a 

record structure style of declaration. However, each frame is not 

described as a partitioned section of memory, but as a concatena

tion of constants and variables. This type of declaration can be 

viewed as a set of assembly and disassembly instructions for each 

frame, thereby eliminating the need for assignment statements. 

The integer type was dropped, in favour of a type called 

FLAG. This is equivalent to a boolean variable in Pascal. The 

type called SEQ_FIELD replaced the FIELD type of PSL/l. This is a 

field of undefined length, but it was expected to be implemented 

as a single byte. The field ID FIELD is a byte length field which 

has to appear at the beginning of a frame declaration and can 

appear nowhere else. It is used to identify a frame when it 

arrives. 

In addition some purely cosmetic changes were made to the 

syntax. For example, some redundant characters such as semi-

colons and brackets were removed. 

An example of a specification written in PSL/2 can be found 

in figure 7.2. It is incomplete, but it helps to illustrate the 

changes that were made. Some finite state machines illustrating 

the construction of the example are presented in figure 7.3. A 

full syntax of the language is given in the appendix. 

PSL/2 is not case sensitive, therefore upper-case can be used 

to highlight the reserved words of the language. This has been 

done in the example. The first line identifies the protocol, 

which is a positive acknowledgement retransmission protocol. Fol

lowing this sequence number variables are declared. They are 
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SEQ_FIELD NextFrameToSend,LastFrameSent,ReceivedFrame 

STATE estab,ack_wait 

WINDOWED FRAME info 

ID_FIELD 'STX' 
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SEQ_FIELD ON_RECEIPT ReceivedFrame ON_SEND NextFrameToSend 

DATA 

CHECK_SUM 

ENDJRAME 

DIRECT FRAME ack 

ID_FIELD 'ACK' 

CHECK_SUM 

ENDJRAME 

EVENTS 

ON_OPEN_REQUEST 

OPEN_R_WINDOW 

NEW_STATE estab 

DEC LastFrameSent 

ON_CHARACTER_ABOVE 

IF estab THEN 

SEND_BELOW info 

INC LastFrameSent 

INC NextFrameToSend 

IF S_WINDOW_FULL THEN 

DISABLE_ABOVE 

FI 

NEW_STATE ack_wait 

ELSE 

ERROR 

FI 

ON_CLOSE_REQUEST 

ON_CHARACTER_BELOW 

[infol: 

IF estab THEN 

RECEIVE 

FIGURE 7.2 - PSL/2 EXAMPLE 



[ack J : 

ELSE 

FI 

IF IN_R_WINDOW THEN 

SEND_ABOVE 

FI 

SEND_BELOW ack 

DISCARD 

IF ack_wait THEN 

RECEIVE 

ELSE 

CANCEL LastFrameSent LastFrameSent 

ENABLE_ABOVE 

NEW_STATE estab 

DISCARD 

FI 

ON_TIMER_EXPIRED 

END_EVENTS 

FIGURE 7.2 - PSL/2 EXAMPLE (cont.) 
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INFD FRAME 
RECEIVED; 
ACK FRAME 
SENT 

(J 
EST 

RECEIVER (R ) 

INFO FRAME 
RECEIVED; 
ACK FRAME 
SENT 

INFO 
FRAME 
SENT 

FIGURE 7.3 - FINITE STATE MACHINES FOR PSL/2 EXAMPLE 
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automatically set to zero at the start of each transaction. Next 

the state variable is declared. There are two possible values of 

this variable: estab and aCk_wait. 

The info frame is declared next. This is an example of the 

new style of frame declaration. Following the ID_FIELD there is a 

sequence number. When an info frame is sent the value 

field is obtained from the variable NextFrameToSend. 

when an info frame is received the value of this field 

for this 

Similarly, 

is placed 

in the variable ReceivedFrame. Following this field there is a 

DATA field. Finally there is a CHECKSUM. 

The rest of the specification consists of a list of request 

and indication events and associated actions which are executed 

when these events occur. The ON_OPEN_REQUEST event occurs when

ever the entity is invoked at the start of a transaction. This 

event occurs irrespective of whether the entity is to send or 

receive data. It is not necessary that there be any mechanism for 

informing the entity which role it is to take, since the arrival 

of data from above will automatically nominate the sender. 

The next event is called ON_CHARACTER_ABOVE. This event 

occurs when a character is made available by the layer above. A 

SEND_BELOW operation within the action associated with this event 

will collect such characters until it reaches the maximum frame 

size Or no character is made available for a specified interval. 

The event ON_CHARACTER_BELOW occurs when a character is made 

available by the layer below. This should indicate the start of a 

frame from the peer entity. The character read is compared with 

the ID_FIELD of each frame type listed for the event. Each ele

ment in this list is enclosed in square brackets followed by a 

colon. If a match is found the action associated with that frame 

type is executed. If no match is found characters are read until 

a match is found or there are no more characters to read. An 

entity can disable the ON_CHARACTER_ABOVE event by using the 

DISABLE_ABOVE primative. When an entity is again ready to receive 

characters the ENABLE_ABOVE primative can be used. 

The ON_TIMER_EXPIRED event has the same function as the event 

of the same name in PSL/l. There is no ON_TIMEOUT event, and only 
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single frame retransmission is supported. Multiple retransmission 

is achieved by repeated timeout on the sender side. 

Many of the primitive actions of PSL/2 are equivalent to 

those of PSL/l or are the same as PSL/l primatives with a dif

ferent name. The SEND_BELOW primitive in PSL/2 is equivalent to 

the SEND primative in PSL/l. Similarly, the SEND_ABOVE primitive 

in PSL/2 is the same as the PSL/l ACCEPT primative. The CANCEL, 

RETRAN, START_TIMER, STOP_TIMER, INC and DEe primitives are 

exactly the same as in PSL/l. 

There are some fundamental differences between PSL/l and 

PSL/2 in the way frames received by an entity are processed. In 

PSL/l frames were considered to be indivisible, whereas in PSL/2 

they are treated as a sequence of characters. When a valid 

ID_FIELD is found there are two choices: the entity can either 

RECEIVE the frame, that is accept it, or it can DISCARD it and 

search for a new ID_FIELD value. A frame may be discarded if it 

arrives out of context. In the example if an ack is received when 

there are no info frames outstanding, it can probably be dis

carded. 

The OPEN_R_WINDOW primative is used to initially set up the 

receive window. A FLAG is set to true using the SET primitive and 

it is set to false using the UNSET primitive. 

The range of conditional expressions was extended in PSL/2 by 

the addition of OR, AND and NOT operators. Some special condi

tions were also added. S_WINDOW_FULL is true if the send window 

is open to its full extent. IN_R_WINDOW is true if the sequence 

number of the last frame received is within the receive window. 

7.3. THE ABSTRACT MACHINE 

The concept of an abstract machine was discussed in section 

6.4. An abstract machine should have a common subset of the 

features of a wide variety of existing machines and acts as an 

interface between language and machine dependent parts of a com

piler. Formulating such a machine is difficult due to the tremen

dous differences there are between different machines. For exam

ple, the number and characteristic of registers varies greatly 
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from machine to machine. In order to avoid problems in this area 

an abstract machine was devised which has no general registers. 

The instructions written in the abstract machine code may well 

require the use of registers on a real machine, but at this level 

no attempt is made to generalise. 

There is, however, an index register that can be used to 

address array elements. The abstract machine has a stack which 

can be used for parameter passing. A set of condition codes were 

defined as part of the machine. 

These codes are: 

·eq - equal, 

ne - not equal, 

It - less than, 

gt - greater than, 

le - less than or equal, 

ge - greater than or equal, 

true, 

false. 

A symbolic assembly language is associated with this machine. 

This language is called I-code. The syntax of this language is 

described in the appendix. Four types of instruction are defined 

in I-code. They are: 

(1) Allocation instructions. 

These are either variable instructions for simple variables 

or array instructions for more complex structures. 

(2) Arithmetic two operand instructions. 

These include addition, subtraction and move instructions. 

(3) Arithmetic one operand instructions. 

These include instructions for incrementing variables and 

stack manipulation. 

(4) Control instructions. 

These include segment delimiters and branch instructions. 

It was envisaged that at some point in the translation pro

cess I-code would need to be expressed in a very simple form. 
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Thus a five element tuple was designed for this purpose. Most 

instructions are represented by a single tuple, except arithmetic 

two operand instructions which require a pair of tuples. In each 

tuple the first element is either an operator or a zero. A zero 

indicates this is the second tuple of a pair. The remaining 

ments usually specify an operand of the instruction. 

ele

If the 

instruction does not required an operand these elements are zero 

filled. 

The second element is usually the type of the operand. The 

are four types defined: 

char - character, 

seq - sequence number, 

addr - address, 

int - integer. 

(The type "sequence number" is used to represent the addressing 

unit used to store frame sequence numbers.) However, in jp 

instructions this second element is used as an optional qualifier 

to the operand. 

The third element is the mode of access, which is used 

together with the next two elements to access the storage already 

defined in allocation instructions. The next element is an iden

tifier and the last element is a constant integer value. 

There are six possible modes: variable, inx_use, inx_offset, 

inx, param and const. 

(ll The variable mode implies that the operand is found at the 

address associated with the identifier which follows it. The 

identifier will have been defined by a variable instruction. 

(2) The inx_use mode implies that the value in the index register 

is used to determine the location of the operand. 

{3l The inx_offset mode implies that both the value of the index 

register and the value of the final element of the tuple are 

added together to give the exact location of the operand. 

This offset is expressed in terms of bytes. 
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(4) The mode inx refers to the index register itself. This mode 

may only be used in a tuple in which the second element is 

set to addr. 

(5) The param mode refers to parameters located on the stack. If 

this mode is used, the final element is used as an index into 

the stack. A value of 0 refers to the top of the stack, 

while a value of 1 the next element down, and so on. 

(6) The final mode is the const mode. The value of the operand 

is contained in the last element of the tuple and there is no 

identifier in the fourth field. 

Programming using five element tuples would be very tedious, 

hence, the symbolic code for the abstract machine is not written 

in this form. However, an I-code program should be seen as a con

venient shorthand for a sequence of tuples. The I-code for each 

type of instruction will now be discussed in detail. , 

7.4. I-CODE 

7.4.1. ALLOCATION INSTRUCTIONS 

The most complex structures we want to manipulate are the 

send and receive windows. These are fixed length arrays of fixed 

length structures. Therefore, only two types of allocation 

instructions are needed: the variable instruction for simple 

variables and the array instructions for the more complex struc

tures. A variable instruction specifies the type, name and ini

tial value of a variable. The initial value may be omitted, in 

which case a default of zero is assumed. The number of bytes 

allocated can be calculated using the formula 

bytes = len(type) 

where the len function gives the number of bytes used to represent 

that type on a particular machine. The array instruction speci

fies the type, name and length in terms of the number of elements 

of an array. The number of bytes allocated can be calculated 

using the formula 

bytes = len(type) x length of array. 
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7.4.2. ARITHMETIC TWO OPERAND INSTRUCTIONS 

An arithmetic two operand instruction consists of an operator 

followed by a pair of operands separated by a comma. The format 

of the operand depends on the mode of access employed. If the 

variable mode is used, the operand will just consist of the iden

tifier name. If the inx_use mode is used the operand is written 

as "[inxJ", and if the inx_offset mode is used the operand is as 

"<offset>[inxJ", where <offset> is an integer constant referring 

to a number of bytes. If the param mode is used the operand is 

written "<offset>[paramJ", where <offset> is an optional integer 

constant referring to a stack element number. If the offset is 

omitted the operand is at the top of the stack. 

An operand with the const mode can be written in one of two 

ways. If the constant is a character it can be enclosed by a pair 

of single primes and the conversion to the ASCII character code is 

achieved during translation. Any other form of constant can be 

written as an integer. When the index register is used as an 

operand this a written as 'linx'l . 

In order to generate the correct assembler code from an i

code instruction it is necessary to know the type of each operand. 

For operands of the variable mode this is recorded in the variable 

instruction that declared it. The type of a character constant is 

also obvious from the form in which it"~s written. However, for 

other modes the type is not immediately obvious from any single 

operand. Normally, however, the type of an operand will be the 

same as that of the other operand in the instruction. Therefore, 

if the type of a operand is not known the type of the other 

operand is assumed. However, in some cases the other operand will 

also be of unknown type. This would be the case, for example, if 

a non-character constant was being assigned to a operand with 

inx_use mode. In such a case one or both of the operands must be 

cast. A cast precedes an operand and consists of the required 

type enclosed in parenthesis. For example: 

(char) [inxJ 

Casts may be used at any time to overrule defaults. 
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There are five operators defined: mov, add, sub, cmp and gad. 

In each case the source operand is the right operand, while desti

nation operand is on the left. The purpose of the first three 

operators can easily be deduced from their names. The mov opera

tor copies the source operand to the destination operand. The add 

operator adds the source operand to the destination operand, while 

the sub operator subtracts the source from the destination. The 

cmp operator compares operands and sets condition codes. For 

example, if the left operand is greater than the right operand the 

condition codes ne, gt and ge will be set and the eq, It, le con

dition codes will be unset. The true and false codes will be 

unaffected. The cmp instruction is used in conjunction with the 

The final operator is gad, which stands for Get 

instruction of this type loads the address of the 

jp instruction. 

ADdress. An 

right operand into the left operand which must be of type addr. 

Note that in the mov, add and sub instructions there is no 

requirement that both operands be of the same type. Thus charac

ters can be added to integers in checksum calculations. 

7.4.3. ARITHMETIC ONE OPERAND INSTRUCTIONS 

An arithmetic one operand instruction consists of an operator 

followed by a single operand. The operand has the same format as 

that used in two operand instructions. There are four operators : 

inc, dec, clr and arg. The inc operator increments its operand 

and the dec operator decrements it. The clr operator zero fills 

its operand. The arg operator places its operand onto the stack 

in preparation for a subroutine call. 

7.4.4. CONTROL INSTRUCTIONS 

There are many different control operators. Some are segment 

delimiters or markers. This type of operator has no operands. 

The beg operator marks the beginning of a subroutine. The data 

operator introduces a section of allocation instructions, while 

the text operator introduces a section of program code. These 

instructions are necessary since some machines, notably the VAX, 

require that programs and the variables they access be in dif

ferent segments of memory. The endf marker denotes the end of the 

source file. 
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Labels are placed in a column to the left of the program code. 

and are followed by a colon. When they are translated into a 

tuple they take the form 

lab 0 0 <identifier> 0 

There are three instructions which use labels: call, callc 

and jp. The call instruction consists of the operator followed by 

the label and an integer value. A call instruction branches to a 

subroutine and saves the return address on the stack. The 

instruction for returning from a subroutine is called ret and has 

no operands. The integer value in the call instruction contains 

the number of arguments. This was included because the calls 

instruction in VAX assembler requires this information as one of 

its operands. The callc instruction has the same format as the 

call instruction, but it is used to call logical functions which 

set the conditions codes true and false. The instruction for 

returning from a logical function is called retc. A retc instruc

tion has one operand, true or false, depending on the required 

return value. If true is specified the true condition code is set 

and the false condition code is unset, and if false is specified 

false is set and true is unset. 

The jump instruction, jp, consists of the operator followed 

by an optional qualifier followed by a label. If the qualifier is 

omitted this is an unconditional jump. However, if the qualifier 

is present it will be the name of one of the condition codes 

defined earlier which will have been set by a cmp instruction. 

1.4.5. AN EXAMPLE 

To conclude this discussion of the abstract machine an exam

ple program now follows. It adds a constant and a variable called 

avar to an integer whose address is 2 bytes into a character 

array. 



prog: 

data 
array char 100 store 
variable int avar 3 
text 
beg 
gad inx,store 
add 2[inxl.(int)1 
add 2[inxl.avar 
ret 

This program can be expanded into the 

data 0 0 0 
array char 100 store 
variable int 0 avar 
text 0 0 0 
lab 0 0 prog 
beg 0 0 0 
gad addr inx 0 
0 char variable store 
add int inx offset 0 
0 int const 0 
add int inx offset 0 
0 int varIable avar 
ret 0 0 0 

7.5. PRODUCTION OF I-CODE 
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following tuples. 

0 
0 
3 
0 
0 
0 
0 
0 
2 
1 
2 
0 
0 

The first stage in the translation process for PSL/2 is the 

production of I-code from the PSL/2 specification. This transla

tion process can itself be divided into a number of steps. 

The first step consists of producing an internal representa

tion of the PSL/2 specification to serve as a database for I-code 

production. This internal representation is made up of a set of 

linked lists and trees. Firstly. there is a linked list contain

ing an element for each frame type. Each element will contain a 

pointer to a linked list of field definitions and a pOinter to a 

code tree of the receive action for this frame. There are also 

trees of events such as CLOSE_REQUEST and TIMER_EXPIRED. Finally. 

there is a symbol table which is a linked list of elements con

taining the following fields: 

a) variable name 

b) variable type - STATE. FLAG or SEQ_FIELD. 

c) short name - for use in the target program. 

The short name in each element is generated by the system 

Once again LEX and YACC were used to generate a lexical ana

lyser and a parser for PSL/2. The actions within the YACC specif

ication contain code to build the structures described above. 
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Once the database has been constructed an algorithm is required to 

produce I-code from this information. As has been mentioned pre

viously the FAPL compiler uses a set of macros to direct transla

tion into PL/I. A similar approach was adopted for PSL/2. A col

lection of macros, collectively called a program template were 

written to translate the constructs of PSL/2 into the constructs 

of the abstract machine. 

A program template consists of a list of keywords written in 

upper case identifying PSL/2 concepts together with templates of 

the I-code equivalent. In addition, comment lines may be included 

beginning with a single upper case letter C. An example template 

can be found in figure 7.4. In this example, a series of three 

dots indicates that text has been omitted. The order in which the 

sections are given is important and should be as described in the 

example. This is necessary as processing of later sections 

depends upon information contained in earlier sections. 

The first section is where symbolic constants, such as buffer 

sizes, can be defined. The backslash at the end of a line 

supresses the trailing newline character, which would normally be 

part of the template. Following this the templates for the primi~ 

tive actions of PSL/2 are defined. These templates may include 

calls to subroutines which are defined elsewhere. 

After this templates are given for the comparison operators 

supported in PSL/2. These operators are equals ( = and not 

equals ( <». The template for the equals comparison is intro

duced by the token EO, and the template for the not equals com

parison is introduced by the token NE. Following this the tem

plates for the logical operators OR, AND and NOT and the logical 

functions S_WINDOW_FULL and IN_R_WINDOW are given. 

The section following this contains two templates for each 

type of field found in frame definitions. The SEND_CHARACTER and 

RECEIVING_CHARACTER templates are concerned with character con

stants. The following template describes the actions necessary to 

assemble a character constant into a frame for output. The tem-

plate labeled RECEIVING_CHARACTER describes the actions required 

when a particular character is expected in a frame. The other 



C 
C 1) DEFINED CONSTANTS 
C -------------------
C 
BUFN 
3000\ 
BUFZ 
300\ 
C 
C 2) PRIMITIVE ACTIONS 
C --------------------
C 
OPEN R WINDOW 

- - call openrw 0 
NEW STATE 

- call stelr 0 

SET 

UNSET 

INC 

mov <state name>,l 

mov <flag name>,l 

mov <flag name>,O 

inc <sequence field> 
ENABLE_ABOVE 

/* call enable 0 user 
DISABLE_ABOVE 

call disble 0 /* user 
SEND_ABOVE 

call sendab 0 
SEND_BELOW 

call sdb<frame name> 0 
CANCEL 

defined 

defined 

arg <first parameter name> 
arg <second parameter name> 
call cancel 2 

RETRAN 
arg <first parameter name> 
arg <second parameter name> 
call retran 2 

RECEIVE 
call rec<frame name> 0 

DISCARD 
call discrd 0 

START TIMER 
call statim 0 /* user 

STOP_TIMER 
call stptim 0 /* 

ERROR 
HALT 
C 
C 
C 
C 
EO 

user 

3a) COMPARISONS 

mov <old stack top>,O 
cmp <left>,<right> 
jp ne <label> 
mov <old stack top>,l 

<label>:\ 
NE 

mov <old stack top>,O 
cmp <left>,<right> 
jp eq <label> 
mov <old stack top>,l 

<label>:\ 
C 
C 3b) LOGICAL OPERATIONS 
C ----------------------
C 
OR 

mov <old stack top>,l 
cmp <left>,l 
jp eq <label> 
cmp <right>,l 
jp eq <label> 

defined 

defined 

primative 

primative 

primative 

primative 

FIGURE 7.4 - A PROGRAM TEMPLATE 
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*/ 

*/ 

*/ 

*/ 



mov <old stack top>,O 
<label>:\ 
AND 

mov <old stack top>,O 
cmp <left>,l 
jp ne <label> 
cmp <r ight>, 1 
jp ne <label> 
mov <old stack top>,l 

<label>:\ 
NOT 

mov <old stack top>,l 
cmp <operand>,l 
jp ne <label> 
mov <old stack top>,O 

<label>:\ 
C 
C 3c) LOGICAL FUNCTIONS 
C ---------------------
C 
S WINDOW FULL 

- mov <old stack top>,O 
callc swfull 0 
jp false <label> 
mov <old stack top>,l 

<label>:\ 
IN_R_WINDOW 

mov <old stack top>,O 
callc inrwnd ° 
jp false <label> 
mov <old stack top>,l 

<label>:\ 
C 
C 4) FRAME FIELDS 
C ---------------
C 
SENDING CHARACTER 

-mov [inx),(char)<character> 
inc maxsm 
add calcks,[inx) 
inc inx 

SENDING VARIABLE 
-mov [inx),<variable,name> 

add (char)[inx),64 /* character stuffing */ 
inc maxsrn 
add calcks,[inx) 
inc inx 

SENDING DATA 
-call sdata ° 

SENDING PARAMS 
-call sndpar ° 

SENDING CHECK SUM 
-call "cks ° 

RECEIVING CHARACTER 
arg (int)l 
arg inx 
call readb 2 
add calcks,[inxj 
inc inx 

RECEIVING VARIABLE 
arg (int)l 
arg inx 
call readb 2 
add calcks,[inxj 
sub (char)[inxj,64 
mov <variable name>,[inxj 

RECEIVING DATA 
call rdata 0 

RECEIVING PARAMS 
call getpar 0 

RECEIVING CHECK SUM 
callc rcks ° 

C 
C 5) DECLARATIONS 
C ---------------
C 

FIGURE 7.4 - A PROGRAM TEMPLATE (Cont.) 
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SEQ FIEI,D 
- variable seq <low-level name> 

FLAG 
/* <high-level name> */ 

variable char <low-level name> /* <high-level name> */ 
STATE 

variable char <low-level name> /* <high-level name> */ 
C 
C 6) STANDARD DECLARATIONS 
C ------------------------
C 
STANDARD DCLS 

array char BUFN swind 
array char BUFN rwind 
array char BUFZ inpbuf 
array char BUFZ outbuf 
variable addr bsw -1 
variable addr tsw -1 

/* send window buffer variable */ 
/* receive window buffer variable */ 
/* input buffer */ 

C 
C 
C 
C 
POLLING 
tmain: 

mOl: 

open: 

loop: 

11: 

12 : 

close: 

7) OVERALL PROGRAM 

beg 
mbeg 
gad swinde,swind 
add swinde,BUFN 
gad rwinde,rwind 
add rwinde,BUFN 
call enable 0 
jp mOl 

{ON OPEN REQUEST} 
calTc onca 0 
jp false 11 
lON CHARACTER ABOVE} 
calTc oncb 0 -
jp false 12 
lON CHARACTER BELOW} 
calTc ctime 0-
jp false loop 
lON TIMER EXPIRED} 
jp Toop -

{ON CLOSE REQUEST} 
ret- -

EVENT_DRIVEN 

tmain: mbeg 
stim 
gad swinde,swind 
add swinde,BUFN 
gad rwinde,rwind 
add rwinde,BUFN 
call enable 0 
{ON OPEN REQUEST} 

mOl: jp mOl -

close: {ON CLOSE REQUEST} 
ret- -

chara: {ON CHARACTER ABOVE} 
ret- -

charb: {ON CHARACTER BELOW} 
ret- -

time: {ON TIMER EXPIRED} 
ret- -

USER ROUTINES 
C -

/* out~ut buffer */ 
/* begInning of send window *f 
/* top of send window *f 

C 8) USER DEFINED ROUTINES 
C ------------------------
C 

1***** sndpar - send parameters *****/ 

FIGURE 7.4 - A PROGRAM TEMPLATE (Cont.) 



snCipar: beg 
aIg maxrw 
arg lnx 
call pi2 2 
add calcks,[inx] 
inc inx 
add calcks,[inx] 
inc inx 
arg maXIm 
arg inx 
call pi2 2 
add calcks,[inx] 
inc inx 
add calcks,[inx] 
inc inx 
mov [inx], t indr 
add calcks,[inx] 
inc inx 
mov [inx],termr 
add (char)[inx],64 
add calcks,[inx] 
inc inx 
ret 

108 

/* put max window into buffer */ 

/* put max message into buffer */ 

/* put into buffer terminator indication */ 

/* put terminator into buffer */ 
/* stuff terminator */ 

FIGURE 7.4 - A PROGRAM TEMPLATE (Cont.) 
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templates in this section have similar functions. 

After this can be found the formats of declarations for each 

PSL/2 variable type. Following this space is provided for stan

dard variable declarations used in the code for the protocol 

entity. 

Penultimately, there is a section concerned with the overall 

control structure of the program. Different target environments 

are supported by providing a choice of templates. Two types of 

possible environment were identified. These were the 

polling environment and the event-driven environment. In the pol

ling environment the entity is being used within a substantial 

operating system which controls input and output buffering and 

allows polling of input queues. Supervisor or subroutine calls 

are used to interface with the operating system. The event-driven 

environment can be used where the host operating system provides a 

suitable interface or where the entity will be part of a device

driver or it is to be run on a computer without an operating sys

tem. 

The final section contains service routines which are suffi

ciently machine-independent to be expressed in I-code. These rou

tines are referenced in the previous sections. 

The format of the templates themselves is fairly straightfor

ward. They are sections of I-code in which various substitution 

strings have been placed. These substitutions strings are simply 

comments describing the substitution enclosed by braces, < and >. 

The content of the comment is unimportant since substitutions are 

made in a set order. In addition PSL/2 event names such as 

ON CLOSE_REQUEST may be enclosed in curly brackets, {and }, and 

inserted into the template for the overall control structure. At 

these points within the template, code will be generated from the 

code tree for the actions associated with these events. 

In the following stage of the translation process, a file is 

produced which combines information from the PSL/2 specification 

and the program template. This file consists of macro defini

tions, i-code instructions and macro calls. This file is later 

presented to the m4 macro-processor (Kernighan,1978). which 
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produces an i-code program. A systems flowchart summarising this 

activity can be found in figure 7.5. 

In the stage one program, the constants, primative actions, 

comparisons, logical operations and functions, and declarations 

from the program template are translated into macros. Following 

this the code trees for the actions associated with events from 

the PSL/2 specification are converted into macros. This second 

set of macros contains calls to the first set. The remaining tem

plates are processed and appended to these macros. The event 

names surrounded by curly brackets are converted into macro calls 

to the macros produced from the code trees. Finally, routines for 

sending and receiving each frame are generated. These routines 

use the macros generated from section 4 of the template. An exam

ple of an I-code program containing m4 macros is contained in fig

ure 7.6. An example of an I-code program with the macros expanded 

is contained in figure 7.7. 

7.6. TARGET ASSEMBLER SPECIFICATION 

Given an abstract machine code program for a protocol entity, 

it is still necessary to translate it into the assembly code for a 

particular machine. As has been previously discussed in section 

6.4, there is a need for a method of specifying this translation 

process. For PSL/2 a system was devised based upon pattern match

ing. A series of tables are supplied by the user which contain 

templates for target assembler translations of abstract machine 

instructions. During the translation I-code is transformed into 

tuples and each tuple or tuple pair is processed by reference to 

these tables. This is achieved, firstly, by using the operator to 

access the appropriate table and, secondly, by using the type and 

mode elements of the tuple to search for the correct template 

within that table. 

The target assembler specification itself consists of two 

sections. In the first section composite modes and types can be 

defined. These are groups of modes and types connected by the OR 

symbol I. This is similar to a macro facility, since it enables 

the specifier to define names that will be expanded during the 

translation process. 
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undefine('index') 
undef ine ( , len' ) 
undefine('eval') 
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define(BUFN,'3000') 
define(BUFZ e'300') 
define(OCC, 0') 
define(SEQU,~l') 
define(TIMER, '2') 
define(LEN,'6') 
define(FRAME, '10') 
~efine(OPEN_R_WINDOW, 

--[ Beginning of first set of macros 

call openrw 0 . ) 
~efine(NEW_STATE, 

call stclr 0 
mov Sl,l . ) 

~efine(EQ, 

S6: ' ) 

mov Sl,O 
cmp S2,S3 
jp ne S4 
mov S5,1 

/* 'SO' */ 

/* 'SO' */ 

/* 'SO' */ 

define(SENDING CHARACTER, 
, - /* 'SO' * / 

, ) 

mov [inx),(char)Sl 
inc maxsm 
add calcks,[inx) 
inc inx 

define(SENDING VARIABLE, 
, - /* 'SO' * / 

mov [inx) ,Sl 
add (char)[inx),64 /* character stuffing */ 
inc maxsm 
add calcks,[inx) 
inc inx , ) 

~efine(SENDING_DATA, 
/* 'SO' */ 

call sdata 0 , ) 
define(SEQ FIELD,' variable seq Sl /* S2 */ 
') -
define(FLAG,' variable char Sl /* S2 */ , ) 
define(STATE, , variable char Sl /* S2 */ , ) 
~efine(ON_OPEN_REQUEST, --[ Beginning of second set of macros 

/* 'SO' */ 
OPEN R WINDOW 
DISAnLE ABOVE 
SEND BEtOW(02) 
START TIMER 
NEW STATE(stOO) 
') -
define(ON CHARACTER BELOW, 
, - - /* 

if 03 : 

then03: 

gad inx,inpbuf 
arg inx 
call reada 1 
cmp (char)[inx),2 
ip ne ocbOO 
mov tvOO,stOl 
cmp tvOO,l 
ip ne else03 

RECEIVE(OO) 

'SO' * / 

if04:IN R WINDOW(tvOO,lab05,tvOO,lab05) 
-crop tvOO,l 

ip ne fi04 
then04: 
SEND ABOVE 

FIGURE 7.6 - I-CODE PROGRAM WITH MACROS 



INC(seq03) 
fi04: 
SEND BELOW(Ol) 
elseU3: 
DISCARD 
fi03: 
ocbOO: 

if 06 : 

then06: 

cmp (char)[inx),6 
jp ne ocbOl 
mov tvOO,stOl 
cmp tvOO,l 
jp ne elseOG 
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RECEIVE(Ol) 
if07:NE(tvOO,seq02,seq04,lab08,tvOO,lab08) 

then07 : 

cmp tvOO,l 
jp ne fi07 

CANCEL(seq02,seq02) 
INC(seq04) 
ENABLE ABOVE 
fi07: -
else06: 
DISCARD 
fi06: 
ocb04: 

ifl7: 

then17: 
HALT 
else17: 
DISCARD 
fil7: 
ocbOS:' ) 

cmp (char)[inx),S 
jp ne ocbOS 
mov tvOO,st02 
cmp tvOO,l 
jp ne else17 

data 
array char BUFN swind 
array char BUFN rwind 
array char BUFZ inpbuf 
array char BUFZ outbuf 
variable addr bsw -1 
variable addr tsw -1 

FLAG(tvOO) 
FLAG(tvOl) 
FLAG(tv02) 
SEQ FIELD(seqOO,send no) 
SEQ:FIELD(SeqOl,recv:no) 
SEQ_FIELD(seq02,ack_no) 
SEQ FIELD(seq03,exp no) 
SEQ-FIELD(seq04,ack-exp no) 
FLA~(flOO,i know) - -
FLAG(flOl,i-am known) 
STATE(stOO,opeoing) 
STATE(stOl,data transfer) 
STATE(st02,closTng) 

text 
tmain: beg 

gad swinde,swind 
add swinde,BUFN 
gad rwinde,rwind 
add rwinde,BUFN 
call enable 0 

mOl: jp mOl 

open: 

loop: 

11: 

12 : 

ON OPEN REQUEST 
caIlc ooca 0 
jp false 11 
ON CHARACTER ABOVE 
caIlc oncb 0-
jp false 12 
ON CHARACTER BELOW 
caIlc ctime U 
jp false loop 
ON TIMER EXPIRED 
jp-loop -

/* send window buffer variable */ 
/* receive window buffer variable */ 
/* input buffer */ 
/* output buffer */ 
/* begInning of send window */ 
/* top of send window */ 

FIGURE 7.6 - I-CODE PROGRAM WITH MACROS (Cont.) 
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close: ON CLOSE REQUEST 
ret -

I"'" sndpar - send parameters ""'1 
sndpar: beg 

arg maxrw 
arg inx 
call pi2 2 
add calcks,[inx] 
inc inx 
add calcks,[inx] 
inc inx 
arg maXIm 
arg inx 
call pi2 2 
add calcks,[inx] 
inc inx 
add calcks,[inx] 
inc inx 
mov [inx],tindr 
add calcks,[inx] 
inc inx 
mov [inx],termr 
add (char)[inx],64 
add calcks,[inx] 
inc inx 
ret 

I' put max window into buffer '1 

• 

I' put max message into buffer '1 

I' put into buffer terminator indication '1 

I' put terminator into buffer '1 
I' stuff terminator '1 

/***** clear state variables ""'1 
stclr: beg 

clr stOO 
clr stOl 
clr st02 
ret 

/***** receive info *****/ 

recOO: beg 
gad inx,inpbuf 
mov seqno.[ inx] 

RECEIVING VARIABLE(seqOl) 
RECEIVING-DATA 
RECEIVING-CHECK SUM 

ret -

/***** receive ack *****/ 

recOl: beg 
gad inx,inpbuf 

RECEIVING VARIABLE(seq02) 
RECEIVING-CHECK SUM 

ret -

I ••••• discrd - routine to skip until frame id ····'1 
discrd: 
disOl: 

dis02: 

beg 
gad tema,ch 
arg tema 
call rcb 1 
jp disOl 
ret 

I"". sending info ·····1 
sdbOO: 

sOO: 

beg 
add tsw,BUFZ 
cmp tsw,swinde 
jp ne sOO 
<;lad tsw,swind 
lne actsw 
mov inx,tsw 

FIGURE 7.6 - I-CODE PROGRAM WITH MACROS (Cont.) 



mov (char)OCC[inx),l 
mov SEQU[inx),se900 
mov TIMER[inx),tlmint 
add inx,FRAME 
mov begf, inx 

SENDING CHARACTER(2) 
SENDING-VARIABLE(seqOO) 
SENDING-DATA 
SENDING-CHECK SUM 

-mov renf, inx 
sub inx,begf 
mov inx,tsw 
mov LEN[inx),lenf 
arg begf 
arg lenf 
call rddb 2 
ret 

1***** sending ack *****/ 

sdbOl: beg 
gad inx,outbuf 
mov begf, inx 

SENDING CHARACTER(6) 
SENDING=VARIABLE(seqOl) 
SENDING CHECK SUM 

-mov renf, inx 
sub inx,begf 
arg begf 
arg lenf 
call rddb 2 
ret 

FIGURE 7.6 - I-CODE PROGRAM WITH MACROS (Cont.) 
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data 
array char 3000 swind 
array char 3000 rwind 
array char 300 inpbuf 
array char 300 outbuf 
variable addr bsw -1 
variable addr tsw -1 

variable char tvOO 

variable char tvOl 

variable char tv02 

variable seq seqOO 

variable seq seqOl 

variable seq seq02 

variable seq seq03 

variable seq seq04 

variable char flOO 

variable char flOl 

variable char stOO 

variable char stOl 

variable char st02 

text 
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/* send window buffer variable */ 
/* receive window buffer variable */ 
/* input buffer */ 
/* out~ut buffer */ 
/* beglnning of send window */ 
/* top of send window */ 

/* */ 

/* */ 

/* */ 

/* send_no */ 

/* recv_no */ 

/* ack_no */ 

/* exp_no */ 

/* ack_exp_no '/ 

/* i_know */ 

/* i_am_known */ 

/* opening */ 

/* data_transfer '/ 

/* closing */ 

tmain: beg 
mbeg 
gad swinde,swind 
add swinde,3000 
gad rwinde,rwind 
add rwinde,3000 
call enable 0 

mOL: jp mOL 

open: 

call openrw 0 

call disble 0 

call sdb02 0 

call statim 0 

call stclr 0 
mov stOO,l 

loop: callc onca 0 
jp false 11 

if 00: mov tvOO,stOl 
cmp tvOO,l 
jp ne elseOO 

thenOO: 

call sdbOO 0 

if 01: 
mov tvOO,O 

/* ON OPEN REQUEST 
/* OPEN_R_WINDOW *7 

*/ 

/* DISABLE ABOVE */ 
/* user deYined primative */ 

/* SEND_BELOW */ 

/* START TIMER */ 
1* user aefined primative */ 

/* NEW_STATE */ 

FIGURE 7.7 - AN I-CODE PROGRAM WITH MACROS EXPANDED 



lab02: 

thenOl: 

fiOl: 
elseOO: 

fiOO: 

11 : 

callc swfull 0 
jp false lab02 
mov tvOO,l 

cmp tvOO,l 
jp ne fiOl 

call disble 0 

callc oncb 0 
jp false 12 

gad inl<, inpbuf ari inx 
ca 1 reada 1 

1* DISABLE ABOVE *1 
1* user defined primative *1 

1* ERROR *1 

1* ON_CHARACTER_BELOW 

cmp (char)[inx],2 

if 03 : 
jp ne ocbOO 
mov tvOO,stOl 

then03: 

cmp tvOO,l 
jp ne else03 

1* RECEIVE *1 
call recOO 0 

if 04: 1* IN_R_WINDOW 
mov tvOO,O 
callc inrwnd 0 
jp false lab05 
mov tvOO,l 

lab05: 

then04: 

cmp tvOO,l 
jp ne fi04 

1* SEND_ABOVE 
call sendab 0 

1* INC *1 
inc seq03 

fi04: 
1* SEND_BELOW 

call sdbOl 0 

else03: 
1* DISCARD *1 

call discrd 0 

fi03: 
ocbOO: 

ifOG: 

cmp (char)[inxj,G 
jp ne ocbOl 
mov tvOO,stOl 

thenOG: 

H07: 

lab08 : 

cmp tvOO,l 
jp ne elseOG 

call recOl 0 

mov tvOO,O 
cmp seq02,seq04 
jp eq lab08 
mov tvOO,l 

cmp tvOO,l 
jp ne fi07 

then07: 

arg seq02 
arg seq02 

1* RECEIVE *1 

1* NE *1 

1* CANCEL *1 

*1 

*1 

*1 

*1 

FIGURE 7.7 - AN I-CODE PROGRAM WITH MACROS EXPANDED (cont.) 
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call cancel 2 

/* INC */ 
inc seq04 

/* ENABLE ABOVE */ 
call enable 0 /* user defined primative 

fi07 : 
else06: 

call discrd 0 
/* DISCARD */ 

fi06 : 
ocbOl: cmp (char)[inx],l 

H09: 
jp ne ocb02 
mov tvOO,stOO 
cmp tvOO,l 
jp ne else09 

then09: 
/* RECEIVE */ 

call rec02 0 

/* SEND_BELOW */ 
call sdb03 0 

call statim 0 
/* 
/* 

START TIMER */ 
user oefined primative 

/* SET */ 
mov flOO,l 

iflO: mov tvOl,flOl 
mov tv02,flOO 

/* AND */ 
mov tvOO,O 
cmp tv02,1 
jp ne labll 
cmp tvOl,l 
jp ne labll 
mov tvOO,l 

labll : 
cmp tvOO,l 
jp ne filO 

thenlO: 
/* NEW_STATE */ 

call stclr 0 
mov stOl,l 

/* ENABLE ABOVE */ 
call enable 0 /* user defined primative 

call stptim 0 
/* 
/* 

STOP TIMER */ 
user-defined primative 

filO: 
else09: 

call discrd 0 
/* DISCARD */ 

fi09: 
ocb02: cmp (char)[inx],3 

jp ne ocb03 
if12: mov tvOO,stOO 

thenl2: 

ifl3 : 

cmp tvOO,l 
jp ne else12 

call rec03 0 

mov flOl, 1 

mov tvOl,flOl 
mov tv02,flOO 

/* RECEIVE */ 

/* SET */ 

/* AND */ 

*/ 

*/ 

*/ 

*/ 

FIGURE 7.7 - AN I-CODE PROGRAM WITH MACROS EXPANDED (cont.) 
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lab14: 

then13: 

fU3 : 
else12: 

fil2 : 
ocb03: 

iflS: 

lab16: 

thenlS: 

filS: 
ocb04: 

ifl7 : 

then17: 

else17: 

fil7: 
ocbOS: 
12: 

iflS: 

thenlS: 

filS: 

mov tvOO,O 
cmp tv02,1 
jp ne lab14 
cmp tvOl,l 
jp ne lab14 
mov tvOO,l 

cmp tvOO,l 
jp ne fil3 

call stclr ° 
mov stOl,l 

call enable ° 
call stptim ° 

call discrd ° 

/* ENABLE ABOVE */ 
/* user defined primative */ 

/* STOP TIMER */ 
/* user-defined primative */ 

/* DISCARD */ 

cmp (char) [ inx] ,4 
jp ne ocb04 

/* RECEIVE */ 
call rec04 ° 

/* NE */ 
mov tvOO,O 
cmp seqOl,seq03 
jp eq lab16 
mov tvOO,l 

cmp tvOO,l 
jp ne filS 

/* SEND_BELOW */ 
call sdbOS ° 

/* HALT */ 

cmp (char)[inx],S 
jp ne ocbOS 
mov tvOO,st02 
cmp tvOO,l 
jp ne else17 

call discrd ° 
callc ct ime ° 
jp false loop 

mov tvOO,stOO 
cmp tvOO,l 
jp ne filS 

call sdb02 0 

call statim ° 
jp loop 

/* HALT */ 

/* DISCARD */ 

/* SEND_BELOW */ 

/* START TIMER */ 
/* user aefined primative */ 

FIGURE 7.7 - AN I-CODE PROGRAM WITH MACROS EXPANDED (cont.) 
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close: 

call sdb04 0 

call stclr 0 
mov st02,l 

ret 

I' ON CLOSE REQUEST '1 
I' SEND_BELOW-*I -

/***** sndpar - send parameters *****/ 

sndpar: beg 
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arg maxrw 
arg inx 
call pi2 2 

I' put max window into buffer '1 

add calcks,[inx] 
inc inx 
add calcks,[inx] 
inc inx 
arg maxrm 
arg inx 
call pi2 2 
add calcks,[inx] 
inc inx 
add calcks,[inx] 
inc inx 
mov [inx], t indr 
add calcks,[inx] 
inc inx 
mov [inx], termr 
add (char)[inx],64 
add calcks,[inx] 
inc inx 
ret 

I' put max message into buffer '1 

I' put into buffer terminator indication *1 

I' put terminator into buffer '1 
I' stuff terminator '1 

I·· •• · clear state variables ·····1 
stclr: beg 

clr stOO 
clr st01 
clr st02 
ret 

/***** receive info *****/ 

recOO: beg 
gad inx, inpbuf 
mov seqno, [inx] 

arg (int)l 
arg inx 
call readb 2 

1* 

add calcks,[inx] 
sub (char)[inx],64 
mov seqOl,[inx] 

RECEIVING_VARIABLE '1 

call rdata 0 
1* RECEIVING_DATA '1 

callc rcks 0 

ret 

/***** receive ack *****1 
recOl: beg 

gad inx,inpbuf 

arg (int)l 
I' RECEIVING_VARIABLE '1 

arg inx 
call readb 2 

FIGURE 7.7 - AN I-CODE PROGRAM WITH MACROS EXPANDED (cont.) 



add calcks,[inx] 
sub (char)[inx],64 
mov seq02,[inx] 

callc rcks 0 

ret 

I ..... discrd - routine to skip until frame id ·····1 
discrd: 
disOl: 

dis02: 

beg 
gad tema,ch 
arg tema 
call rcb 1 
jp disOl 
ret 

/***** sending info *****/ 

sdbOO: 

sOO: 

beg 
add tsw,300 
crop tsw,swinde 
jp ne sOO 
<;lad tsw,swind 
lnc actsw 
mov inx,tsw 
mOv (char)O[inx],l 
mov l[inx],seqOO 
mov 2[inx],timint 
add inx,lO 
mov begf,inx 

I' 
mov [inx],(char)2 
inc maxsm 
add calcks,[inx] 
inc inx 

I' 
mov [inx],seqOO 
add (char) [inx] ,64 
inc maxsrn 
add calcks, [inx] 
inc inx 

call sdata 0 

call scks 0 

mov lenf,inx 
sub inx,begf 
mov inx,tsw 
mov 6 [ inx] ,lenf 
arg begf 
arg lenf 
call rddb 2 
ret 

I' 

1* 

1***** sending ack *****/ 
sdbOl: beg 

gad inx,outbuf 
mov begf,inx 

I' 
mOv [inx],(char)6 
inc maxsm 
add calcks, [inx] 
inc inx 

I' 
mov [ inx] ,seqOl 
add (char) [ inx] ,64 
inc maxsm 

SENDING_CHARACTER '1 

SENDING_VARIABLE '1 
I' character stuffing 

SENDING_DATA '1 

SENDING_CHECK_SUM *1 

SENDING_CHARACTER '1 

SENDING_VARIABLE '1 

I' character stuffing 

'1 

'1 

FIGURE 7.7 - AN I-CODE PROGRAM WITH MACROS EXPANDED (cont.) 
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add calcks,[inxj 
inc inx 

call scks 0 

mov lenf,inx 
sub inx,begf 
arg begf 
arg lenf 
call rddb 2 
ret 

FIGURE 7.7 - AN I-CODE PROGRAM WITH MACROS EXPANDED (cont.) 
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The seconq section contains the tables of template and pat

tern matching information. A template is a string of characters 

surrounded by double quotes. The string may contain two types of 

special character sequence. Firstly, there are notations for the 

unprintable characters tab and newline. 

language conventions: 

\t - tab character 

\n - newline character 

These follow the C 

Secondly, there are substitutions. These are introduced by a 

question mark and are defined independently for each table. The 

exact format of the pattern matching information depends on the 

particular group of instructions covered by the table. 

The table for allocation instructions is called ALLOC. In 

this table the matching information is simply the particular type 

or types to which this template can be applied. For example, if a 

character and a sequence number are both represented by a single 

byte on a particular machine and both addresses and integers are 

held in a single word, the user may have specified the composite 

types byte and word using the following definitions. 

DEF TYPE byte = CHARISEO 

DEF_TYPE word = ADDRIINT 

The alloc table might be written as: 

TABLE ALLOC 
ARRAY,CHAR,"?n ass ?l\n" 
VARIABLE,byte,"?n BYTE ?v\n" 
VARIABLE,word,"7n DATA ?v\n" 

END_TABLE 

In this example, only character arrays are being supported, while 

simple variables of all types are supported. If the two composite 

types had not been defined the table would have had to be written 

as: 

TABLE ALLOC 
ARRAY,CHAR,II?n BSS ?l\nll 
VARIABLE,CHARISEO'''?n BYTE 
VARIABLE,ADDR INT,"?n DATA 

END TABLE 

?v\n" 
?v\n" 

This example illustrates the placing of substitution code within 

templates. There are three codes defined for allocation 
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instructions. The code ?n is the name of an identifier, while the 

code ?l is the length of an array and the code ?v is the initial 

value of an variable. 

The table for arithmetic two operand operators is called 

ARITH_TWO_OP. Each line of this table requires a pair of type and 

mode definitions for each template. The first pair is concerned 

with the left operand, while the second pair is concerned with the 

right operand. The substitution codes are ?l for the left operand 

and ?2 for the right operand. The actual form of the substitution 

will be deduced from a separate table called SUBS. The structure 

of a complete table would be 

TABLE ARITH TWO OP 
MOV7byte,VARIINX_USEIINX_OFF! 

byte,VAR INX_USE INX_OFF PARAM, 
"MOVB 12 ?l \n" 

MOV,byte,VAR!INX_USE\INX_OFF, 
byte ,CONST , 
"L! RO,?2 

GAD,ADDR,anymode,anytype,VAR, 
"LI RO,12\n MOV RO,?l\n" 

END TABLE 

The table for arithmetic one operand operators is called 

Each line contains a single set of type and mode 

definitions. The substitution code for the single operand is ? 

There is a table for JP instructions where each template is 

accessed by qualifier name. The word ANY is used to signify the 

template which is to be used for unconditional branch instruc

tions. A JP table is given below: 

TABLE JP 
ANY," JMP ?\n" 
EQ, ., JEQ ?\n 11 

NE, .. JNE ?\n" 
LT, " JLT ?\n" 
GT, " JGT ?\n" 
LE, " JGE ?\nll 
GEt 11 JGE ?\n ll 

TRUE, 11 JEQ ?\n" 
FALSE," JNE ?\n" 

END TABLE 

The RETC table has the same format as the JP table, except 

that the only qualifiers allowed are TRUE and FALSE. 
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Some operators are not qualified by type and mode information 

or condition code qualifiers. For these operators single entry 

tables introduced by the word TEMPLATE are used. The operators 

which use this type of table are beg, call, callc, ret, text, data 

and endf. Of these operators only call and callc require substi

tution codes. The codes used are ?l denoting the position of the 

name of the subroutine and ?a denoting the number of arguments. 

Example templates for beg and call are given below. 

TEMPLATE BEG ".word OxOO\n" 

TEMPLATE CALL "calls $?a,?l\n" 

Templates are required for label declaration and label use. 

These templates are called LAB_DCL and LAB_USE respectively. The 

template for label declaration defines the format of label 

declarations in the target assembler, for example, whether they 

are followed by a colon or some other character. The substitution 

code ? yields the name of the label. The template for label use 

defines the format of labels when they appear as operands in 

branch instructions and uses the same substitution code as is used 

for label declaration. 

TEMPLATE LAB_DCL "_?:\n" 

TEMPLATE LAB_USE" ?" 

·The SUBS table mentioned earlier is similar to the LAB_USE 

template. It is indexed by the six access modes and caters for 

the differing formats of addressing modes within the target assem-

bler. The table below gives details of substitution codes for 

each mode. 

mode substitution value 
code 

variable ? identifier name 

inx_use no substitution 

inx offset ? offset 

inx no substitution 

param ? parameter number 

const ? constant value 
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Two templates must be provided. The first template is used to 

indicate instructions that must precede the translation of the 

current instruction. This template may be used to set up indices. 

The second template indicates the format of the translation of the 

current instruction. 

TABLE SUBS 
VlUl., 
INX USE, 
INX-OFF, 
INX7 
PlUl.AM, 
CONST, 

END_TABLE 

U 11 U ? I1 , .. 
"",II*R6" 
1I1f,".?(R6)" 
"","R6" 
" MOV R12,RO\n AI RO,-6-?-?\n MOV *RO,RO","RO" 
1111 , II?II 

An example of a target assembler specification for a Texas 

Instruments computer is given in figure 7.8. 

7.7. r-CODE TO TlUl.GET ASSEMBLER TRANSLATION 

The second stage translation has to be repeated for each type 

of machine in the network. The first part of this stage consists 

of reading the target assembler specification and producing a 

database for I-code translation. YACC and LEX were once again 

used to generate a lexical analysis and a parser for the target 

assembler specification. Once this specification has been read and 

validated a set of internal tables should contain all that is 

necessary to produce a target assembler version of the I-code pro

gram. 

YACC and LEX were used to generate a lexical analyser and a 

parser for the I-code language. The I-code program is converted 

into a fi've-element tuple form. For each tuple or tuple pair the 

appropriate tables are searched for a match on certain elements of 

the tuple. When the appropriate template is found it is written 

to the output file and the specified substitutions are made. A 

system flowchart for this stage of the translation process can be 

,found in figure 7.9. 

7.8. MACHINE-DEPENDENT INTERFACE ROUTINES 

The user is required to provide a set of routines to act as 

an interface with the host operating system. The exact require

ments will depend upon the contents of the program template. Rou

tines for reading from and writing to the communications medium 



DEF_TYPE byte=CHARISEQ 

DEF_TYPE word=ADDRIINT 

DEF_TYPE anytype=bytelword 

DEF_MODE gen=vARIINX_USEIINX_OFF 

DEF_MODE anymode=genlPARAMIINX 

TABLE ALLOC 
ARRAY,CHAR,"?n BSS ?l\n" 
VARIABLE,byte,"?n BYTE ?v\n" 
VARIABLE,word,"?n DATA ?v\n" 

END_TABLE 

TABLE ARITH TWO OP 
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MOV,byte,gen,byte,genlPARAM, "MOVB ?2,?1\n" 
MOV,byte,genjbyte,cONST, " LI RO,?2\n SWPB RO MOVB RO,?l\n" 
MOV,word,gen INX,word,anymode," MOV?2,?1\nn 
MOV,word,gen INX,WOrd!CONST, "LI RO,?2\n MOV RO,?l\n" 
ADD,byte,gen,byte,gen PARAM, "AB ?2,?l\n" 

ADD,word,gen INX,word,anyrnode," A ?2,?1\n" . 
ADD,byte,genjbyte,CONST, " LI RO,?2\n SWPB RO AB RO,?l\n" 

ADD,word,gen INX,word,CONST, "LI RO,?2\n A RO,?l\n" 
ADD, INT, gen, CHAR, gen, " MOVB ?2, RO\n SRL RO, 8\n A RO,?l \n" 
ADD,INT,gen,CHAR,CONST, " LI RO,?2\n A RO,?l\n" 
SUB,byte,gen,byte,genIPARAM, "SB ?2,?l\n" 
SUB,byte,genjbyte,CONST, " LI RO,?2 SWPB RO\n SB RO,?l\n" 
SUB,word,gen INX,word,anymode,1I S ?2,71\n ll 

SUB,word,gen INX,WOrd!CONST, "LI RO,?2\n S RO,?l\n" 
CMP,byte,gen,byte,gen PARAM, "CB ?2,?l\n" 
CMP, byte, gen 1 byte, CONST, " LI RO, ?2\n SWPB RO\n CB RO,?l \n" 
CMP,word,gen INX,word,anymode," C ?2,?1\n" 
CMP,word,gen INX,word,CONST, "LI RO,?2\n C RO,?l\n" 
GAD,ADDR,anymode,anytype,VAR ," LI RO,?2\n MOV RO,?l\n" 
GAD,ADDR,anymode,anytype,INX USE "MOV R6,?l\n" 

END_TABLE -

TABLE ARITH ONE OP 
INC,byte,gen!" MOVB ?,RO\n SRL RO,8\n INC RO\n SWPB RO\n MOVB RO,?\n" 
INC,word,gen INX," INC ?\n" 
DEc,byte,gen!" MOVB ?,RO\n SRL RO,8\n DEC RO\n SWPB RO\n MOVB RO,?\n" 
DEC,word,gen INX," INC 7\n" 
ARG,byte,anymode," CLR RO\n MOVB ?,RO\n MOV RO,*R10+\n" 
ARG,word,genIINX," MOV ?,*R10+\n" 
ARG,word,CONST ," LI RO,?\n MOV RO,*RIO+\n" 
CLR,byte,gen ," CLR RO\n MOVB RO,?" 
CLR,word,genIINX," CLR ?\n" 

END_TABLE 

TABLE JP 
ANY, I1 JMP ?\n" 
EO ,If JEQ ?\n" 
NE ," JNE ?\n" 
LT , I1 JLT ?\n" 
GT ," JGT ?\n" 
LE ," JLE ?\n" 
GE ," JGE ?\n" 
TRUE ," JEQ ?\n" 
FALSE," JNE ?\n" 

END_TABLE 

TABLE RETC 
TRUE ," LI RO,l\n RT\n" 
FALSE," CLR RO\n RT\n" 

END_TABLE 

TEMPLATE LAB_DCL "?\n" 

TEMPLATE LAB_USE "?" 

TEMPLATE BEG" MOV Rll,*RlO+\n MOV R10,R12\n" 

TEMPLATE CALL" LI RO, ?a+?a\n MOV RO, *R10+\n BL .?1 \n" 

FIGURE 7.8 - TEXAS TARGET ASSEMBLER SPECIFICATION 
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TEMPLATE CALLC " LI RO,?a+?a\n MOV RO,*R10+\n BL .?l\n Cl RO,O\n" 

TEMPLATE RET " DECT R10\n MOV *R10,Rll\n DECT R10\n S *R10,R10\n RT\n" 

TEMPLATE TEXT "" 

TEMPLATE DATA "" 

TEMPLATE ENDF "" 

TABLE SUBS 
VAR ,"I1,II.?" 
INX USE,"","*R6" 
INX-OFF,"",".?(R6)1I 
INX- ,"11, IIR6" 
PARAM ," MOV R12,RO\n AI RO,-6-?-?\n MOV *RO,RO","RO" 
CONST 1111, "?" 

END_TABLE 

FIGURE 7.8 - TEXAS TARGET ASSEMBLER SPECIFICATION (cont.) 
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and routines for communicating with the layer above would cer

tainly be necessary. An example set of routines is given in fig

ure 7.10. They are written in the C programming language for the 

UNIX operating system. 

7.9. IMPLEMENTATION AND MAINTENANCE 

The system· as outlined here has a number of strengths. It 

has been devised in such a way that different people can use their 

own expertise in part of the design and implementation of the pro

tocol, without needing to know about every aspect of the work. 

This is illustrated in figure 7.11. The protocol designer can 

produce a specification without knowing how PSL/2 is implemented 

in terms of I-code. Such implementation details are tackled by 

the protocol implementation designer. The implementation designer 

will also produce a specification of the routines to interface 

with the host op~rating system. An expert in the assembler of a 

particular machine can implement these routines and produce a tar

get assembler specification. Thus protocol implementation is 

split into several discrete tasks, according to the old maxim 

"divide and conquer". 

The initial implementation of a network can proceed as fol-

lows: 

(1) A protocol is designed and specified. 

(2) A program template is written. 

(3) A target assembler specification is written for each machine 

together with a set of operating system interface routines. 

(4) The protocol specification and program template are submitted 

to the first stage of the retargetable compiler and an i-code 

program is produced. 

(5) Each target assembler specification is submitted to the 

second stage of the compiler together with the i-code program 

produced in the first stage. This produces an assembler 

equivalent of the i-code program for each machine in the net

work. 



Einclude <stdio.h> 
Einclude <sgtty.h> 

typedef union { 
struct { 

unsigned p3 
unsigned p2 
unsigned pl 
unsigned 

} div, 
int word; 

6, 
6, 
6, 
14; 

int above; /. switch for above ./ 

/ •••••• LISTEN TO ABOVE •••••• / 

int 

} 

onca() { 
int temp; 
if(ioctl(O,FIONREAD,&temp)==-l)return(O), 
if(temp>O) return(l), 
else return(O); 

/ •••••• LISTEN TO BELOW •••••• / 

int 
tnt 

} 

oncb(count) 
count; 

int temp, 
if(ioctl(3,FIONREAD,&temp)==-1)return(0), 
if(temp>=cQunt) return(l), 
else return(O), 

/ •••••• READ CHARACTER FROM ABOVE •••••• / 

rca(dest) 
char *dest; 
{ 

} 
read(O,dest,l), 

/ •••••• SEND CHARACTER TO ABOVE •••••• / 

sca(dest) 
char 'dest, 
{ 

} 
write(l,dest,l), 

/ •••••• READ FROM BELOW •••••• / 

readb(dest,cQunt) 
char *dest; 
int count; 
{ 

} 
read(3,dest,cQunt), 

/ •••••• SEND TO BELOW •••••• / 

sddb(sQurce,cQunt) 
char *source; 
int count; 
{ 

} 

write(5,sQurce,CQunt); 
write(4,source,count), 

/ •••••• ENABLE ABOVE •••••• / 

enable ( ) { 

} 
above=l, 

FIGURE 7.10 - UNIX SYSTEMS INTERFACE 
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I""" DISABLE ABOVE ""'*1 
disable(){ 

} 
above=O; 

1****** GET ONE BYTE STUFFED INTEGER '**"'1 
g il (buf, dest) 
char *bufi-
WORD DIV *dest; 
{ -

dest->word=O; 
rddb(buf,l); 

} 
dest->div.p3=(int)(·buf&077); 

1***'" GET TWO BYTE STUFFED INTEGER *······1 
gi2(buf,dest) 
char 'buf; 
WORD DIV 'dest; { -

} 

dest->word=O; 
rddb(buf,l); 
dest->div.p2=(int) ('buf++&077); 
rddb(buf,l); 
dest->div.p3=(int)(*buf&077); 

1.*···· GET THREE BYTE STUFFED INTEGER ······1 
gi3(buf,dest) 
char 'buf; 
WORD DIV 'dest; 
{ -

} 

dest->word=O; 
rddb(buf,l); 
dest->div.pl=(int)(·buf++&077); 
rddb(buf,l); 
dest->div.p2=(int)(·buf++&077); 
rddb(buf,l); 
dest->div.p3=(int)(·buf&077); 

I .. ···• PUT ONE BYTE STUFFED INTEGER ······1 
pil (buf, source) 
char *buf~ 
WORD DIV source; { -
} ·buf++=«char)(source.div.p3»10100; 

I .. ···· PUT TWO BYTE STUFFED INTEGER ······1 
pi2(buf,source) 
char 'buf; 
WORD DIV source; { -

} 

'bUf++=«Char)(SOUrce.div. P2»!0100; 
*buf++=«char){source.div.p3» 0100; 

I .. ···· PUT THREE BYTE STUFFED INTEGER ······1 
pi) (buf, source) 
char 'buf; 
WORD DIV source; 
{ -

} 

'buf++=«char) (source.div.pl»\0100; 
*buf++=«char)(source.div.p2» 0100; 
'buf++=«char)(source.div.p3» 0100; 

FIGURE 7.10 - UNIX SYSTEMS INTERFACE (Cont.) 
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(6) The assembler programs are transferred onto their target 

machines. This may involve using magnetic tape, floppy disks 

or communication lines. 

(7) The operating system interface routines are input to their 

target machines. 

(8) The assembler programs and interface routines on each machine 

are assembled and linked producing a protocol program for 

each machine. 

The modularity of this system makes maintenance straightfor

ward. The addition of a new machine to the network requires that 

a new target assembler specification is written, together with a 

set of interface routines. Only stage two of the protocol com

piler will need to be run in order to produce a protocol program 

in the assembler of the new machine. 

Changes in protocol will involve changes to the protocol 

specification and possibly the. program template. All network 

software will have to be regenerated following the steps outlined 

above. 

7.10. CONCLUSION 

This chapter has described the work undertaken to produce a 

retargetable protocol compiler. It has also described the way 

this compiler could be used to implement and maintain a computer 

network. 

As can be seen from figure 7.10, the amount of code that has 

to be hand written on each machine can be made very small. Hence 

new machines can be added to the network more quickly. This is 

probably the biggest single advantage of this system. Using this 

system, major protocol changes can be made much quicker. This is 

useful since protocol standards can be volatile until they reach 

maturity. 

Any distribution of a compiler based on this design would be 

enhanced by the provision of a library of i-code routines. In 

addition, a set of target assembler specifications could be pro

vided. Alternatively, the compiler could be used by a software 
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house to ptoduce new implementations of standatd ptotocols fot 

theit customets. There is clearly much scope fot futthet develop

ment of these ideas. 



CHAPTER EIGHT 

CONCLUSION 
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8.1. REVIEW 

This Thesis has considered the problems of protocol specifi-

cation and implementation. The introductory chapters discussed 

basic network principles and described some current practice in 

the area of protocol specification. The concepts of Wide Area and 

Local Area Networks were outlined together with some of the tech

niques used in computer network protocols. Some of the standards 

which are currently used were briefly discussed. 

In the following chapter on protocol specification the two 

mains types of formal specifications were discussed. These are 

state transitions specifications and sequence expression specifi

cations. State transition methods include finite state machines 

and Petri Nets, while sequence expression methods include Calculus 

of Communicating Systems. Temporal logic was also discussed. 

State transition methods are more established than sequence 

expression methods and look to remain so for some time to come. 

The work of ISO and IBM has produced two protocol specification 

languages based on one particular state transition approach, the 

finite state machine. These languages, called ESTELLE and FAPL 

respectively, have been used in protocol implementation. 

Following this background material an alternative approach to 

protocol specification was described. The data structures of the 

protocol messages are central to this approach. This differs from 

the usual approach which is centred on the flow of control 

within the protocol entities. The feasibility of this approach 

was explored by developing a protocol modeling system to predict 

protocol performance. The resulting system proved to be too slow 

for extensive use. This was due to the characteristics of the 

host operating system rather than any deficiences in the overall 

approach. 

In the following chapter the problem of the small scale com

munications user were discussed. The user who only requires 

inter-host communication occasionally can not justify expenditure 

on expensive Local Area Networking equipment. He is therefore 

forced to use asynchronous connection through V.24 ports using the 

RS232 interface. Various protocols have been devised to run over 
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asynchronous connections. These include the. Kermit and ATS proto

cols described in this thesis. The requirements for a protocol 

for the Clearway Network run by the Computer Studies Department at 

Loughborough University were presented and a general framework for 

such a protocol was given. 

Existing practice in the realm of protocol implementation was 

then discussed. The problems encountered by implementors of 

multi-vendor networks were discussed. These include differences 

in machine architecture, operating system and assembly languages. 

High-level languages can sometimes be used for protocol implemen

tation, but problems can arise even when using supposedly portable 

languages such as C. A retargetable protocol compiler was sug

gested as a possible step forward in this area. 

The penultimate chapter describes the design and implementa

tion of a retargetable protocol compiler. The protocol language 

used in this work differed from previous work in that it did not 

employ an existing high-level language to specify protocol 

actions. Hence, the constructs used could be more application 

specific which enables a more concise description of a protocol 

than would be otherwise possible. The language design was such 

that it was fairly simple to produce a protocol compiler, and this 

compiler has produced code for several target computers. The 

problems encountered by the protocol implementor are also enCoun

tered by the designer of a protocol compiler. The main difficulty 

lies in producing a general program structures for the program 

entity. A choice of program structures is available under the 

protocol compiler. 

8.2. FORTHER WORK 

Further work is required to verify that the approach adopted 

in this thesis is entirely practical. The program templates need 

further development and output programs need to be tested across 

the Clearway Network. 

One possible future application for this work would be 

automated production of new versions of the Kermit file transfer 

program. If the specification language could be used to specify 

the Kermit protocol and suitable program templates developed new 
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versions of Kermit could be produced quicker and more easily. 

8.3. FINAL REMARKS 

Although the protocol compiler described in this thesis should 

be considered as a prototype version, it is has been shown that 

the principles used in the design are worthy of further considera-

tion. If this system proves to be practical the result would be 

more accurate and less costly protocol implementation, which would 

be of great benefit to the networking community. It is hoped that 

this thesis will stimulate further work in this area. 
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1.1. SYMBOLS AND ABBREVIATIONS 

The meta-language used in this document to specify the syntax 

of the various specification and intermediate languages is based 

on Backus-Naur Form. The meaning of the various meta-symbols is 

defined in the followIng table. 

Meta-symbol 

= 

[xl 

(x} 

(xly) 

UxyxU 

meta_ident ifier 

Meaning 

shall be defined to be 

alternatively 

end of definition 

o or 1 instance of x 

o or more instance of x 

grouping: either x or y 

the terminal symbol xyz 

a non-terminal symbol 

A meta-identifier shall be a sequence of letters and under

scores beginning with a letter. 

A sequence of terminals and non-terminal symbols in a produc

tion impiles the concatenation of the text they ultimately 

represent. 



1.2. PSL/l 

The terminal symbols : 

field_ident 

integer_ident 

frame_ident 

class_ident 

represent elements of disjoint sets of identifers. 
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An identifier is an alphanumeric string beginning with a letter. 

The terminal symbol: 

field_const 

is defined as a sequence of ones and zeros enclosed in double quotes. 

The terminal symbol 

integer_constant 

is an integer number. 

Specification body 

specification = 

Parameters 

parameters = 

= 

= 

"protocol" protocol_name 

parameters 

state 

class 

{ class } 

timer_out_action 

{ timer_action} 

"parameters" "{I' 

param_def 

{ param_def } 

"l" . 

param_narne ":=" integer_constant 

"send_window" 

"receive_window" 

"retran_interval" 

"timer interval" 

11 • 11 , 



State declaration 

state = 

= 

= 

integer_def = 
Class declaration 

class = 

Frame declaration 

frame = 

= 

Format declaration 

format = 

) . 

"state" !I{" 

variable_def 

{ variable_def } 

11 } 11 • 

" • 11 , 

field_ident ":=" field_const 

field_ident If [" integer_const "] If 

integer_ident n:=1I integer_const . 

"class" class_ident [frame_type) "{,, 

format 

frame 

{ frame } 

II} 11 • 

"frame" frame_ident [ frame_type 1 "{,, 

refinement 

{ refinement } 

action 

{ action } 

II} 11 • 

( "direct" I "windowed " ) • 

, format 'If" I 

frame field def ".11 - - , 

II} 11 • 
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Refinement declaration 

refinement = 

Actions 

action = 

= 

= 

primitive_action = 

condition = 

= 

= 

= 
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field_const 

field ident 11[" integer_const "]11 [ "frame_id" 

field_ident "=" format . 

"action" 11(" act_type 11)" I'{1t 

( Ilsend" I "receive ll I l'retran'l ) .. 

primitive_action ";" 

( primitive_action 11 • 11 , } . 

) . 

"ifll condition 

"then" actbody 

["else" actbody 

"fill 

Ilsend" "(" frame_ident "lit 

lIaccept" 

"cancelli U(II range 11)11 

"retran" tI(" range ")" 

"start_timer" 

"stop_timer" 

assignment 

"inc'I 1'(11 field_ident ")" 

!Idee" "(I' field_ident 11)'1 

field ident field_lop field_ident 

"=" "<>" ) .. 

U=" "<>" I ~'<'I I ">11 I "<=11 I ">=" ) .. 



= 

range = 

assignment = 

Timeout action 

= 

Timer action 

= 

11_1, 

"(" integer_exp ")" 

integer_ident 

integer_const 

11+" "_1' I "*" I "/" ) • 

field_ident 

field ident "," field_ident 

field_ident ":=" field_ident 

field ident 11:=" "data" 

integer ident := integer_exp 

"on_timeout" "{,, 

"} 11 • 

"single_retran" 11 • 11 , 
"multiple_retran" 11 • 11 , 

,,}It • 
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1.3. PSL/2 

The terminal symbols: 

seq_field_ident 

flag_ident 

state_ident 

represent elements of disjoint sets of identifiers. 
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An identifier is an alphanumeric string beginning with a letter. 

The terminal symbol 

char_const 

is defined as an ascii character code enclosed in single quotes. 

Mnemonics for unprintable characters are written in upper case. 

State declarations 

state_declarations = 

variable list = 

= 

= 

= 

Frame declarations 

frame_declarations = 

var iable_list 

{var iable_list} 

"seq_field" seq_field_list 

"flag" flag_list 

"state" state_list 

seq_field_ident 

seq_field_list 

flag_ident 

flag_ident 

state_ident 

state_ident 

frame 

{ frame } . 

" 11 , 

11 .. , 

11 11 , 



frame = 

= 

field_declaration = 

rule = 

Events 

events = 

receive_action = 

= 

frame_type "frame" frame_ident 

"id_field" char_const 

field_declaration 

(field_declaration} 

"windowed U I IldirectU ) • 

"data" 

"field" char const 

Itcheck_sum" 

"params" 

seq_field_ident 

Ilon_sendl! s~q_field_ident 

"on_receipt" seq_field_ident 

"on_receipt" seq_field_ident 

"on_send" seq_field __ ident 

lIevents" 

147 

"start_up" [act_body] 

"on_open_request" [act_body] 

"on_close_request" [act_body] 

"on_character_above" [act_body] 

lIon_character_below" receive_action 

(receive_action} 

"on_timer_expired" [act_body] 

nend_events" . 

"(" frame_ident "1:" act_body. 

primitive_action 

( primative_action } • 



primitive_action = 

condition = 

lop = 

range = 

"if" condition 

"then" act_body 

["else" act_body] 

"fi" 

"send_below" frame_ident 

"send_above" 

"receive" 

"discard" 

"cancel" range 

"retran" range 

"start_timer" 

"stop_timer" 

"enable_above" 

"disable_above" 

"open_I_window" 

Ilnew_state" state_ident 

I'set" fla9_ident 

lIunset" flag_ident 

"incl! field_ident 

!Idee" field_ident 

condition "or" condition 

condition nand" condition 

"not" condition 

"(" condition I')" 

state ident 

flag_ident 

seq_field_ident lop seq_field_ident 

'I s_window_full" 

"in_I_window" 

11=" I 11<>" ). 
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1. 4. I -CODE AND TARGET ASSEMBLER SPECIFICATIONS 

1.4.1. BASIC NON-TERMINALS 

type = 

mode = 

"char" 1 "seqll I "addr" I Ilint" ). 

"variable" 

lIinx" 

I1 inx_usel! 

IlparamU 

11 inx_offset I1 

"const ll 
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qualifier = "eq" I "ne" I "It" I"gt" 11I1e" I"ge" I "true" I "false" ). 

operator = 

a _2_op = 

a _l_op = 

marker = 

cntl _op = 

alloc_op 

a_2_op 

a_l_op 

cntl_op 

"array" I I'variable") 

"mev" 

tline" 

marker 

"call" 

"calIc n 

"jp" 

IIret" 

"rete" 

"add" "sub" "cmp" 

"dee" "arg tl 
) • 

"data" I "text" I "endf" ) 

1. 4.2. I -CODE AND THE FIVE ELEMENT TUPLE 

Five element tup1e 

The terminal symbol 

identifier 

is an element of the set of alphanumeric strings which begin 

with a letter and are less than seven characters in length. 
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The terminal symbols 

length 

offset 

value 

are integer numbers. 

tuple = tuple_op (typelqualifier) (mode I length) identifier (valueloffset). 

tuple_op = ( operator I "lab" ) . 

I-code 

operand = 

cast = 

program = 

line = 

instruction = 

identifier 

[cast] [offset] "[inx]" 

[cast] [offset] "[param]" 

[cast] integer 

char_const 

inx 

" ( 11 type 11 ) " . 

line 

{ line } 

label 

instruction 

) . 
alloc ins -
a 2 ins 

a _1_ ins 

cntl ins -

Allocation instructions 

= ("array" type length identifier 

I"variable" type identifier value 

) . 
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Arithmetic two operand instructions 

= 

Arithmetic one operand instructions 

= 

Control instructions 

= { marker 

I "call" identifier value 

I "callc" identifier value 

I "jp" [ qualifier 1 identifier 

"ret" 

Ilrete" ( "true" I "false" ) 
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1.4.3. TARGET ASSEMBLER SPECIFICATION 

A template is a string of characters surrounded by double 

quotes as described in the main text. 

spec 

camp_type 

camp_mode 

definition 

table 

= {definition} 

= 

= 

= 

{ ( table I single_template) } • 

type identifier { 11 I It type identifier 

mode ident if ier ) { "I" ( mode identifier 

( "def _type" identifier U=ff camp_type 

I "def_mode" identifier ,,=11 camp_mode 

= "table t' "alloc" 
11 U , 11 " , template ) 

"end_table" . 

"table" I'arith_two_op" 

{ a_2_op .. , .. camp_type n,1I camp_mode ",n 

camp_type 

"end_table" 

" 11 , 11 11 , template } 

"table" "arith_one_op" 

{ a_I_Op "," camp_type 11,11 camp_mode 

template } 

"end_table" 

"table" "jpll 

{ qualifier 

lIend_table" 

"table" "retell 

{ ( "true ll 

"end_table!! 

11 11 , template } 

I "false" ) 11 11 , template } 

{ mode " " template 11 11 , template } 

'Iend_table" 

11 11 , 

single_temp = "template" temp_name template • 

} 

) 



"lab_use lt 

1I1ab_dcl ll 

"beg ll 

"call" 

"callc ll 

"ret" 

"text ll 

"datal! 

"endf" 
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