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ABSTRACT

The need for more powerful speech compraession techniques is becoming
greater as more and more applications for digital voice storage and trans-
migsion are coming into usg. The demands on the digital speech compreszion
systems have begen greatly increased, as the synthetic speech quality
previously obtained from low-bit-rate coders 1is inadequate for most current
applications. Bringing toll-quality spegch capabilities to systems opesrating
at medium trangmission bit rates, i3 an area where major regedrch activity
is now focused at.

Hybrid coders which bridge the gap between vocoders and waveform coders,
and can produce high quality narrowband spesch at bit rates between
4 kbits/sec and 16 kbits/sec, are inveéstigated in this thesis.

The Multipulse Excitation (MPE) model 1is first comsidered, which providss
for a more detailed description of the excitation in a LPC coder, whilg
recognising the importance of "perceptually shaping” the distortion intro-
duced by the coding process. The excitation signal is modeled as a sequencs
of irregularly spaced pulses, whose positions and amplitudes are determined
by a MPE optimisation algorithm. 4 gengral clasgification of MPE
optimisation algorithms 1is attempted, by constdering both high-complexity
and low-complexity algorithms. Two classes of algorithms that can be
included in real time spegch coding implementations, are Jfurther ezamined
and their performance/complexity characteristics are compared. Furthermore,
a model for the distribution of the pulse amplitudes is developed, that can
be used to design "globally" optimum amplitude-gquantizers.

A new MPE coder is proposed, which employs a codebook of pulse-position
patterns and can achieve a much more efficient coding of the pulse positions
than conventional MPE coders. A fast algorithm i3 developed that can be used
to design the pulse-position codebook, by maxrimising a measure of the
coder's performance.

4 novel scheme, called Backward Excitation Recovery coder, is [finally
described, which reconstructs the excitation signal of a LPC coder using a
backward adaptation procedure. As a result, only the parameters of the
filter need to be transmitted to the decodeér (receiver) in ordsr to recover
the spgech signal. Many BER coding schemes are developed and their perfor-
mance/complexity characteristics are compared. One BER codeér in particular,
defines the excitation Sfrom the past synthesised samples of the sgpeech
gignal, and can optimally operate with very small delays of the order of
3 ms. Pinally, a procedure is developed that "designs" vector-quantizeras for
the coefficients of the BER synthesis filter, lby optimising the coder’s
performance .
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CHAPTER 1

1.1 Intreduction

Speech communication over long distances was first made possible over 100
years ago, with the invention of the telephone. The telephone network has
since expanded massively and has reached the remotest areas of the planet,
Modern communication networks carry speech, image and data signals, and may
involve various transmission media sSuch as optical fibers, UHF radio and

satellites.

In order to use a transmission channel efficiently, the input signal
{source!} must be first converted into a suitable form. The conversion
{(coding) is usuvally performed in two stages. The first stage {(source coding}
uses the knowledge of the source characteristics to produce a "compact”
digital signal representation. The second stage (channel coding) is
concerned with the properties of the transmission medium, and converts the
outcome of the first stage into a signal which can be reliably recovered,

i.e. "decoded” at the other end of the transmission channel [1.1].

Digital source-coding technigues are applied to voice signals after their
conversion into a digital format using Apalog to Digital Conversion (ADC).
Digital Signal Processing {DSP) algorithms are then employed which
"compress” the digitised speech signal pricr +to¢ transmission. At the
receiver, an inverse procedure is used to "decompress” and thus recover the
speech signal (1.2,1.3,1.4]. The coding process must incur a minimal loss of

speech guality.

Recent advances in microelectronics have made possible the implementation
of complex DSP algorithms using a small number of VLSI circuits (1.5,1.61,
Compared to analog processing, digital coding of speech offers improved
reliability, lower development and implementation costs, and easier
application of secure encryption technigues. As a result, new voice
application areas have emerged [1.7,1.8] and the process of replacing the
analeg technology, used in existing systems, with new digital technology,

has accelerated considerably.

Digital Mobile Radic Communijications is recent and important application
area where highly efficient speech coding methods must be employed. These

coding methods should offer maximum compression of the speech signal in



order to fully exploit the limited bandwidth available, and should allow
substantial\ protection against the effects of adverse transmission
conditions {1.9,1.101. Furthermore, despite the relatively small
transmission bandwidth, the quality of the recovered speech must be high and

thus acceptable to the mobile radio user [1.111.

Efficient speech coding methods are also used when optimal "loading” of
existing communication networks is required. Modern communication networks
carry thousands of speech and image channels, and it is therefore very
important to allocate minimum bandwidth to each channel. Optimal "loading”
is especially important in satellite communications [1.123, where the cost

of transmission per bandwidth unit can be substantial.

Speech synthesis and speech storage are areas directly related to speech
coding, and they also rely on efficient speech "compression” techniques.
Various models of the speech signal which provide good results when employed
to form the front end of voice synthesis systems, have been successfully
used in the digital coding and transmission of speech [1.13]1. On the other
hand, speech coding algorithms have been used in commercially available
speech synthesis and speech storage systems [1.7]. Application areas for
speech synthesis and speech storage include electronic mail by voice,
voice-operated database inquiry systems, voice store-and-forward systems,
text-to-speech synthesis, aids to people with impaired speech or hearing,

and many others in office automation and multimedia environments.

Transmission of vwvery 9good quality digitised speech over the Public
Switched Telephone Network (PSTN) is now possible but requires the use of
expensive modems. The proposed Integrated Services Digital Network (ISDN)
will in the  future provide a digital end-to-end connectivity between
terminals, and a standard Digital Terminal Interface [1.14,1.15]. The system
will be flexible enough to accomodate Circuit Switched and Packet Switched
trénsmission, while maintaining a transparency with respect to the user,
Speech, video and computer data bit streams will be indistinguishable when
transmitted using one or more channels provided by the ISDN. Speech coding
algorithms will be used in each terminal to convert the voice signal into a
digital bit stream for transmission. Speech coding systems will therefore
form an important part of future public or private digital communication

networks.




Speech compression techniques are becoming increasingly sophisticated and
complex in response to an ever growing demand for cost efficient use of the
existing transmission and storage media. Furthermore, it seems that the
availability of enormous bandwidth in optical fiber transmission networks
and the decreasing price of the computer memory chips have not managed to
stop the increasing research effort on new speech coding methods that can

operate at very low bit rates with a minimal loss in speech quality.

1.2 Speech Coding

Speech Coding methods are employed to "compress” the speech signal prior
to transmission or storage. Compression is achieved by removing any
redundancy which is present 1in the speech waveform, wusing wvarious
mathematical models. Efficient Speech Coding methods can minimise the loss
in speech guality which always results during the two-stage conversion

process of "compression” and "decompression”.

There is currently an increasing demand for higher compression ratios and
lower transmission bit rates, in many application fields. Whereas at the
high bit rates of 64 kbits/sec and 32 kbits/sec, relatively simple
compression techniques {(i.e. PCM, ADPCM) can provide toll guality speech, at
bit rates below 16 kbits/sec the deterioration 1in the guality of the
recovered speech signal is considerable, and only sophisticated coding
methods can minimise the loss in quality. The complexity of these highly
efficient coding methods increases substantially at bit rates below
8 kbits/sec.

Speech codecs {coder/decoder) employ mathematical models that are based on
our knowledge of +the human speech production and auditory perception
mechanisms. The selection and optimisation of the model parameters can be
performed much more efficiently now than it was possible a few years ago, as
the current availability of substantial processing power permits the use of
very complex mathematical algorithms. The recent trend in spcech c¢oding
research has been to develop better and more complex processing/optimisation
algorithms which can be applied to existing speech production and hearing

models.

Current Speech Coding algorithms can offer excellent speech guality at bit

rates approaching 10 kbits/sec. Further development is needed however, to




provide the capability of "natural” speech quality at bit rates close to the
theoretical limit of 2 kbits/sec [1.7]., In order to reach this limit, future
research must focus on the deeper understanding of the higher levels of
auditory perception, and on the development of more detailed and accurate

models of the human speech production and hearing organs.

The scope of this thesis is to develop highly efficient speech coding
algorithms for processing narrowband speech (0-4 kHz bandwidth! at medium
bit rates (4-16 Kbits/sec). The common characteristic between these
algorithms is the technique applied to determine the speech model parame-
ters, known as Analysis-by-Synthesis (AbS). BAbS Speech Coding algorithms
attempt to exploit the characteristics of the human auditory perception, and
thus aim to minimise the "perceptual” effect of the distortion introduced by

the coding process.

Two different types of AbS Speech Coders are examined, the Multipulse
Excitation (MPE) coder and the Backward Excitation Recovery (BER) coder.
Both coders employ the Source-Filter model of speech production, but rely on
different procedures to define the Excitation Source. A number of new model-
optimisation algorithms are proposed for each type of coder and the
performance/complexity of the resulting systems is compared to that obtained
from conventional AbS coders. The comparison can help potential designers of
a Speech coding system, to determine which algorithm would better suit the

complexity/performance requirements of the particular application.

1.3 Thesis Overview

In Chapter 2, the general requirements for speech coders operating in
digital communication networks are considered. Furthermore, a review of the
speech coding techniques currently used at bit rates between 4 kbits/sec and
16 kbits/sec is presented. Although these coding techniques employ speech
models which are generally different, the use of AbS optimisation algorithms
has been widely adopted and has led to an improvement in the accuracy of

estimation of the model parameters.

In Chapter 3, the theory of the Multipulse Excitation (MPE) coder is
developed, and a general classification of the MPE Optimisation algorithms
is presented. Some of these algorithms are highly complex and are therefore

only of theoretical interest, since they can provide the upper limit in the



performance of MPE coders. Two new classes of algorithms are also proposed,
namely the Block-Search and Codebook-Search algorithms, which are examined

in more detail in Chapters 4 and 5.

In Chapter 4, the two filter models used in MPE coders (i.e. Short Term
Predictor and Long Term Predictor) are developed, and various filter
estimation methods are examined. A detailed presentation of the mathematical
theory reveals ways of improving MPE coding, and suggests alternative coder
configurations, Furthermore, an algorithm is proposed that can he employed
to jointly estimate the parameters of the Long Term Predictor and the

Multipulse Excitation.

In Chapter 4, a number of Multi-Stage (MS) algorithms are developed, that
are employed to estimate the parameters of the MPE. An new Exponential Model
is proposed that leads to a simplified MS algorithm, and a computationally
efficient wversion of//g_-53§u1ar MS algorithm 1is developed, wusing the
Gram-Schmidt orthogonalisation prQFedure. The theory of the proposed
Block-Search (BS) élgorithms is also developed and the performance of the
new coders is compafed to that of Ms)algorithms, in terms of Signal to Noise
Ratio (SNR) and complexity (number of operations). Finally the guantization
of the MPE parameters is considered, and a new theoretical model for the
probability distribution of the excitation wvalues is proposed, which can be

used to design globally optimum scalar guantizers.

Chapter 5 examines the proposed Codebook-Search (C5) algorithms. These
algorithms are generally more complex than the MS and BS algorithms, but
they are also more efficient in coding the Multipulse Excitation Sequence
and can therefore achieve better performance at lower bit rates. A method is
proposed that can be used to "design” the codebook employed by the MPE
coder, according to a "subjective” speech-quality criterion. A fast
implementation of the Codebook Design algorithm is also developed. The
peffromance of CS-MPE coders with “"optimised” codebooks is compared to that

obtained when random codebooks are employed.

The introduction of "structure” into the codebook employed by the C5-MPE
coder, results a substantial reduction in the complexity of the sustem. Thus
a number of possible codebook structures are proposed which lead to

computationally efficient ways of searching the MPE codebock.

In Chapter 6, a new type of Speech Coder is proposed. It 1s the Backward



Excitation Recovery (BER) speech coder which defines the Filter and
Excitation parameters using a backward adaptation procedure. This coder can
operate at bit rates that are lower than the bit rates at which conventional
MPE coders operate. A detailed mathematical description of BER coding is
presented, and a number of Filter Optimisation and Excitation Adaptation
algorithms are proposed. A large number of possible BER coder confiqurations
are developed and their properties are compared. Two such special cases of
BER coding are found to be the Code-Excited LPC (CELP) coder and the
Self-Excited (SE) vocoder. Finally, the gquantization of the filter
coefficients is considered, and a new algorithm is proposed that is used to
design and optimise a vector quantizer, according to a ™subjective"

speech-quality criterion.
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CHAPTER 2

SPEECH CODING AT MEDIUM BIT RATES

2.1 Introduction

Narrowband Speech Coders operate at bit rates between 0.4 and 64 kbits/sec.
Coders operating at high bit rates usuvally employ very simple coding
algorithms, and are capable of producing high gquality speech. At low bit
rates, highly complex coding algorithms are employed and the guality of the
synthesised speech is more "synthetic” than "natural”.

At Dbit rates above 16 kbits/sec, Waveform Coding methods are commonly
employed. Widely used Waveform Coding techniques are the Pulse Code Modula-
tion (PCM), the Adaptive Differential PCM (ADPCM), and the Adaptive Delta
Modulation (ADM! [2.11. Waveform Coding methods produce a recovered speech
signal which is a faithful reconstruction of the original speech waveform.
They are not critically dependent on the characteristics of the input signal
and can therefore be applied (with certain modifications} to non-speech
signals (i.e. music, video etc.). Such time-varying signals are also
generated at "intermediate” stages within the structure of various

low-bit-rate speech coders,

PCM offers a high degree of robustness to transmission errors and produces
high quality speech at 56 kbits/sec and toll quality at 64 kbits/sec. PCM
coding has dominated speech processing applications for almost 25 years,
ADPCM speech coders which employ adaptive predictors and adaptive
quantizers, can produce the same quality as PCM coders, but at the lower bit
rate of 32 kbits/sec. Some ADPCM coders can also “shape” the spectral
distribution of the added quantization noise, in order to reduce the
"perceptual” level of distortion. The noise shaping increases the level of
distortion in the spectral areas where the speech power is high and higher
levels of noise can be tolerated ([2.21. The opposite happens in the areas
where the speech power is low. ADM methods are similar to ADPCM methods, but
employ a two-level quantizer and are simpler to implement. They are very
robust in the presence of transmission errors and can therefore be used in
"noisy” environments. The performance of Waveform Coding methods

detericrates rapidly as the bit rate is reduced to 16 kbits/sec and below.



The lower end of the transmission-bit-rate "spectrum” 1is occupied by
speech coding methods known as vocoders [2.3,2.4]1. Vocoders use a model of
the human speech production mechanism to obtain a compact representation of
the speech signal. They usually operate at bit rates between 0.4 and 4.8
kbits/ sec. Speech production is modeled by a Source-Filter arrangement. The
coding process models the signal in terms of two components corresponding to
the action of the vibrating vocal chords (Source}! and the shape of the wvocal
tract (Filter}. Usually, two types of speech sounds are distinguished:
voiced (periodic) and unvoiced (noise-like). The source signal is composed
of a periodic series of pulses when speech is classified as voiced, and it
becomes random when speech is c¢lassified as wunvoiced. The source signal
forms the input to the filter, whose output 1is the synthesised speech

signal.

The guality of speech produced by vocoders is "synthetic” and deteriorates
rapidly in the presence of acoustic noise. The identification of the speaker
is often problematic. The reasons for the poor speech quality are the
simplistic model for the source signal and the ilnaccurate modeling of the

time-varying phase characteristics of the speech waveform.

A number of “"hybrid” speech coding schemes have been developed in recent
years, which bridge the gap between Waveform Coders and Vocoders, and
promise to improve the quality of the recovered speech at low bit rates,
These coders operate at medium bit rates (between 4 and 16 kbits/sec) and
can ¢enerally produce speech which is more "natural” than the speech
produced by vocoders. The speech models employed are more detailed than the
models used by vocoders, and thus more accurate description of the model is
derived and transmitted. The optimisation and the guantization of the model
parameters is performed so that the synthesised speech signal becomes an
accurate reconstruction of the original speech signal, either in the time or

in the frequency domain.

Noise shaping can be included in these systems to reduce the level of the
"perceived” distortion. The shaping of the noise spectrum is more important
in medium-bit-rate coding than it is in Waveform Coding, because the level
of quantization noise is higher. At bit rates close to 10 kbits/sec, hybrid
coding methods c¢an produce high gquality narrowband (0-4 kHz bandwidth)

speech, which is only possible to achieve using Waveform Coding technigues
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at much higher bit rates. In order to reduce the bit rate, at which high
quality speech can be produced, even further, Vector Quantization methods

£2.5,2.6,2.7,2.8]1 are employed to guantize efficiently the model parameters.

The speech coding schemes that have given promising results at medium bit

rates will be described in the following sections.

2.2 Requirements for Speech Coders

The selection of a speech coder for a particular application 1is usually
made by testing and comparing a number of candidate speech coders under
various conditions. The primary requirement is that the speech coder chosen,

produces the "best” possible speech quality at the given bit rate.

Speech quality can be measured using objective measures (2.9,2.10,2.11]
like the Segmental Signal-to-Noise Ratio (Seg-SNR) [2.1]. The objective
guality measures do not always correspond to the speech guality as judged hy
a listener, and thus in many applications the speech quality is assessed by
performing subjective 1listening tests. At bit-rates below 4 kbits/sec the
speech quality is poor and the tests carried out are concerned with speech
intelligibility and speaker recognisability [2.12]. At higher bit rates the
speech quality 1is more natural, and the subjective tests measure the
"perceptual” quality [2.131] under various test conditions. Typical test

conditions relevant to applications in digital speech transmission are :
1} Coding of speech when no transmisson errors occur.

2) Coding of speech with injected transmission errors with random or bursty
arrival statistics. Error protections {channel c¢oding) of the most
sensitive coder parameters may be included to improve the performance of

the speech coder under

3} Synchronous or asynchronous tandem encodings. A tandem encoding refers to
“the conversion from the digital format of one coder to that of another
speech coder. A tandem encoding is synchronous when it involves digital-
to-digital conversion, while it is asynchronous when it involves
digital-to-analog followed by analog-to-digital conversion. Transmission
through the telephone network may involve several tandem encodings with
PCM links, and it is therefore important to measure the resulting loss of

speech-quality when a particular speech coder is employed.




4)

5)

_ll_

Asynchronous tandem encodings with injected analog impairments (noise,
amplitude and group-delay distortion), these conditions being critical

for voiceband (non-speech) data transmission [2.141].

Presence of acoustical noise in the input speech signal. This condition
is encountered in Land Mobile Radio Communications where the level of
noise in the environment can be quite high. &adaptive noise cancellation
technigues [2.153 may be applied that can reduce the noise level without

causing considerable distortion to the speech signal itself.

Speech quality is assessed under the defined test conditions using various

"subjective” quality measures. Typical subjective quality measures are :

1

2)

3)

The Mean Opinion Score (MO5), which requires the listeners to judge the
speech quality using a five-point scale [2.16]. The speech gquality can be
judged as excellent, good, falir, poor or bad. The final score is simply

the average judgement.

The Subjective SNR [2.17,2.18]1., This measure involves adding sufficient
speech-modulated white noise +tec the input speech signal, so that it and
the coded speech are equally preferred. The Signal-to-Noise Ratio of the
resulting multiplicative-noisy speech is defined as the Subjective 5SNR of
the coded speech. A popular method that measures the Subjective SHR
involves the use of the Modulated Noise Reference Unit (MNRU) [2.191].

Binary Decision Preference tests [2.1]. These tests require each listener
to indicate his or her preference when comparing the speech guality
obtained from two different coders. Non-binary preference ranking for a
set of speech coders can be derived by using the results of many such

pair-comparisons.

Other inportant factors taken under consideration when choosing a speech

coder for a particular application are :

1)

2)

The coder's complexity, which is usually measured in terms of the numeri-
cal processing power and the amount of physical memory reguired in order

to implement the coder.

The encoding delay introduced by the speech coder. Small encoding delays
are important in applications such as Mobile Radic Communications where

the system’'s overall delay must be kept to a minimum.
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3} The ability of the speech coder to handle voiceband (non-speech) data.
Coders that operate at medium bit rates are generally not very efficient
in handling voiceband data, because they are "tuned" for speech signals.
In this case a detection process must be applied that switches to a

different coding method when voiceband data are transmitted.

4) Ease of transcoding with PCM in applications that use the digital tele-

phone network.

5) Amenability to Variable Rate coding. This is a desirable property of the
coder, when optimal loading of the transmission network is required,
Packet-Switced networks for example, may require the speech coders to
switch to lower transmission bit-rates when the traffic is wvery high.
Variable Rate speech coders wusually have a hierarchical structure, so
that the less important parameters can be dropped when the bit-rate is

reduced.

2.3 Predictive Coding of Speech

Predictive Coding of speech is an analysis/synthesis modeling process that
decomposes the speech signal into two time-varying components with different
properties [2.20,2.21]. The two components are separately encoded and are
recombined to form synthetic speech. One of the components is an adaptive
linear filter which models the slow-changing spectral distribution of the
speech signal, and includes contributions from the glottal response, the
vocal tract shape and the lip radiation [2.22]. The second component is the
excitation signal which is fed to the filter in order to produce synthetic
speech. The analysis process (decomposition) is performed at the encoder
{(transmitter} and the encoded model parameters are transmitted to the

decoder (receiver) where synthetic speech is reproduced.

Predictive models are employed by vocoders, which encode the excitation
signal with a very small number of parameters (i.e. input gain, pitch period
and voiced/unvoiced classification) [2.231, This c¢rude encoding of the
excitation signal results synthetic speech of poor quality. Predictive
models are also employed by waveform coders such as ADPCM, which encode the
excitation signal very accurately and can produce high quality speech at bit
rates above 16 kbits/sec. Medium bit-rate coders allocate a much smaller

number of bits in encoding the excitation than most waveform coders, but are
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capable of producing high quality speech by using efficient and complex

techniques to encode the excitation.

1} LINEAR PREDICTICN CODING {LPC)

The model most often used in predictive coding is the Autoregressive (AR)
model :

!
s(i) = Zam sCi-m) + e(i) , izo,1,2,... (Eqg 2.3.1)
m=1
.where s (i) is the speech signal, e(i) is the forward prediction error, and |
is the number of {am} coefficients. Equation 2.3.1 «can be written in the

one-sided z-transform domain as :
S(z) = A(z) E(z) (g 2.3.2)

S(z) and F(z) correspond to the speech and prediction error signals, and
A(z) 1is the all-pole filter :
1 !
Alz) = i = (Fqg 2.3.3)
1 - P(z)
it
i~ 2: a,
m=1

The filter P{(z) is a one-sample-azhead predictor. The AR model is shown in
Fig 2.3.1(a). The error samples ({e(i}} are assumed to be statistically
independent and therefore E(z)  has a flat frequency distribution. As the
speech spectral distribution is the product of the frequency distributions
corresponding to the filter A(z) and the error sequence £(z) (Eg 2.3.2),
most of the spectral shape information is contained in the filter A(z). The
all-pole filter A(z) can model accurately the spectral resonances (formants)
which are characteristic of most speech sounds, but cannot model well the

sounds that contain spectral antiresonances {such as nasal sounds).

The filter parameters are estimated using Linear Prediction Coding (LPC)
methods. LPC methods employ Least Squares (LS) algorithms to minimise the

enerqgy £ of the prediction error {e(iJ)} over a defined time period (o,n-1)
n—1
E= ) eti)? (Eq 2.3.4)
i-o

Using Equations 2.3.2 and 2.3.4 and by applying Parceval's theorem, it can
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FIGURE 2.3.1 Analysis/Synthesis models used in Predictive Coding of Speech.

{a) Autoregressive model, (b) Lattice Autoregressive model, (c) ARMA model,

{d} Cascade of two AR filters.
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be shown that mwminimising the value of the prediction error energy £ is

equivalent to minimising the value of the expression :

nhogser )t

E=) —t—p (Eg 2.3.5)
&, 14 )|
where :
ti= exp(i HE) and o= (-1 (Eg 2.3.6)

The expression of Eq 2.3.5 is the sum of the ratios of the speech power
spectrum to the model power spectrum over the defined frequencies. The
frequency points where the speech power ]S(fl-)f2 is greater than the model
power fA(fi)fz contribute more to the value of the error F, than the points
where the power ratio is smaller than one. As the LPC-model spectrum has a
certain degree of “smoothness”, in areas where speech spectral peaks
{harmonics) are closely spaced it provides a closer match to the high-power
parts of the spectrum than the low-power parts. The LPC-model spectrum thus

follows the envelope of the speech spectrum.

2) ESTIMATION OF THE LPC-FILTER COEFFICIENTS

The filter coefficients must be updated frequently in order to follow the
variation with time of the speech spectral distribution. The adaptation of
the filter coefficients can be performed using Block or Recursive algorithms
£2.27, 2.28]. Block algorithms divide the speech signal into blocks of
consequtive samples, and each block 1is processed independently. The optimum
parameters of the filter are determined by a series of mathematical
operations and the end result is a new set of coefficients for each speech
block. Recursive algorithms apply a set of recursive eguations so that a new

set of filter coefficients is generated at each input speech sample [2.291].

The primary distinction between the two types of algorithms is that Block
alqbrithms have a finite memory, while Recursive algorithms wusually have
infinite memory. Block algorithms are wvery popular in speech processing
because they allow the LPC model to adapt to the rapid changes of the speech

signal statistical properties.
The most widely used Block estimation algorithms are :

1) The Covariance method [2.22], which minimises the energy of the forward

prediction error (Eq 2.3.4) without applying any time window to the speech
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data. The filter coefficients are estimated by scolving the covariance system
of linear equations. Computationally efficient solutions are available which
exploit the special structure of the covariance matrix [2.303 and reduce the

number of operations required to solve the system of egquations.

The estimated filter A(z} is not guaranteed to be minimum-phase (i.e. have
all its poles inside the unit circle) and this may sometimes create
instability problems. The Covariance method can be modified by introducing
the concept of "generalised reflection coefficients” [2.31,2.32], which can
be combined with the application of Levinson's Recursion [2.33] to produce
minimum-phase filters. The Covariance method can also be extended by
defining a backward prediction error {w(i})} as :

{
s(i) = Zam s(i+m) + w(i) , i=0,1,2,... (Eq 2.3.7)
m=1
and by minimising the sum of the energies of the forward and backward

prediction errors (2.34].

ii) The Autocorrelation method [2.22]1, which applies a suitable window {e.q.

Hamming window) to the speech data, and minimises the energy of the predic-
tion error over a range that extends form -w to . The windowing operation
distorts the speech sjignal and reduces the spectral resolution of the method
(2.35]. The Autocorrelation method though has certain advantages in that it
produces minimum-phase filters and permits the use of a computationally
efficient formula (Durbin’'s solution [2.361) for the calculation of the

filter coefficients.

iii) Lattice methods [2.371, which define the LPC-filter 1in a series of

stages that correspond to the stages of a Lattice Filter. The ith stage of
the Lattice filter produces two sequences that correspond to the forward and
baqkward prediction-errors £,(z) and W,(z) (see Fig 2.3.1(b)), and defines
one reflection coefficient k;. The reflection coefficients can be converted
to the coefficients of the direct-form (transversal) filter by applying

Levinson's recursion.

Various Lattice-filter structures have been defined, that are theoretiecal-
ly equivalent but behave differently when finite precision arithmetic is
used. There are also many possible ways of calculating the reflection

coefficients [2.38]1. A popular Lattice method is the Burg algorithm [2, 391,
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which is also known as the Maximum-Entropy method, because it extrapolates
the autocorrelation sequence derived from the speech data in a way that
maximises the entropy of the model spectrum [2.40]1. The Lattice methods
yield minimum-phase filters, they have good numerical properties and produce
a set of reflection coefficients that possesses much more desirable
quantization properties than the equivalent set of direct-form (transversal)

filter coefficients.

Note that the Autocorrelation method can be considered as a Lattice method
and can also be implemented using a Lattice filter structure. Notice also
that all three types of methods (i.e. the Covariance, Autocorrelation and
Lattice methods) give the same results when the chosen speech interval is

sufficiently large.

3) IMPROVED LPC MODELS

The AR mcdel of Eq 2.3.1 can be Improved by extending to the case of an
Autoregressive Moving Average {(ARMA) process, as shown in Fig 2.3.1l{c). A

further set of coefficients (4,} is defined, and the modeling equation is :

! £
s(i) = E: a, s(i-m) + E: b, v{i-n) + v(i) , i=o,t,2,... (Eq 2.3.8)
m=1 m=1

where g is the number of the (bm} coefficients, and {v (i)} is the prediction

error sequence. The equivalent of Egq 2.3.8 in the z-transform domain is :

n 1 + B{z)
Viz) = — ¥V (z) (Fqg 2.3.9)
! - P(z)

The linear transfer function is now rational (pole-zero), and the ARMA
filter can provide a better model for the resonances and antiresonances of
the speech frequency distribution. The estimation of the ARMA filter coeffi-
cients is a nonlinear problem which is solved by "linearising” the error
minimisation process, or by applying iterative minimisation techniques
£2.34,2.41,2.42]., Lattice filter structures can be defined for the case of
the ARMA linear filter that guarantee the minimum-phase properties of the
filter [2.43,2. 441
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A different improvement of the LPC model of speech can be made by adding a
second filter that models the harmonic structure of the speech frequency

distribution. The model is that of an Autoregressive process :

yl(i) = E% €y yli-d-m) + uli) , i=o0,1,2,... (Fqg 2.3.10)

m=-q
where y (i) may be the speech signal or the prediction-error sequence defined
in Eq 2.3.1, u(i) is a second prediction-error sequence, and 4 is an esti-
mate of the pitch period of the speech waveform. The filter has (2¢9+1) coef-
ficients {c_ } in total, and its freguency response has very pronounced
harmonic peaks at multiples of the fundamental! frequency (defined by the

value of d). The transfer-function medel corresponding to Eg 2.3.10 is:

Yiz) = H(z) Ulz) (Eq 2.3.11)

where :

H(z) = = {Fqg 2.3.12)
! -

[~
(2]
a
R
1
E

m=—q

The two filters defined by Egs 2.3.3 and 2.3.12 are connected in series
{see example in Fig 2.3.1(d)}) and their coefficients may be optimised sepa-
rately or jointly [2.45} using Linear Prediction techniques. The filter H(z)
is not guaranteed to be minimum-phase and its stability must be checked and

corrected if required (2.46].

4) QUANTIZATION OF THE LPC-FILTER PARAMETERS

Ideally, the quantization of the LPC-filter parameters must have no dis-
cernible effect on the quality of the encoded speech, and at the same time
the number of bits allocated for the guantization of the filter parameters
mus£ be sufficiently small for speech coding applications. In practice
however, a small guality degradation is unavoidable at low bit rates, and

the quantizers are designed to minimise the perceived loss in guality.

The coefficients of the direct-form (transversal) AR-LPC filter are not
suitable for direct quantization, due tec their large dynamic range. Alterna-
tive sets of filter parameters can be defined that have better quantization

properties. Suitable parameter sets are :



_19..

i} The Log-Area-Ratios (LARs), which are derived from the filter reflection

coefficients and have flat spectral sensitivity characteristics [2.47,2.48].
A set of filter parameters with similar properties as the LARS can be
defined by transforming the filter reflection coefficients according to the

companding characteristic of the inverse-sine function (2.20,2.49,2.5017.

ii} The poles of the LPC filter, which are directly related to the frequen-

cies and the bandwidths of the speech spectral resonances (formants} [2.51}].

iii} The Line Spectrum Pairs (LSPs)}, which are defined by introducing two

artificial boundary conditions to the AR-LPC filter. These conditions
correspond to a complete opening and a complete closure at the glettis in
the acoustic tube model of the vwvocal tract, and produce one symmetric and
one anti-symmetric polynomial respectively. The roots of these two poly-
nomials lie on the unit circle and correspond to the discrete frequencies of
two interleaved Line Spectra {LSP} [2.52,2.53]. It has been established
experimentally that the LSP parameters have better gquantization and inter-

polation properties than the LAR parameters [2.54].

The different sets of parameters can be quantized using various guantiza-

tion methods such as :

i) Uniform quantization.

ii) Non-uniform PDF-optimised guantization.

iii) Adaptive quantization with Forward or Backward adaptation of the guan-

tizer step-size.

iv) Vector Quantization (VQ) with Euclidian or Spectral distance-measures
such as the Itakura-Saito distortion-measure £2.5,2.55]1. Another VQ method
uses an adaptive vector-codebook for the LAR parameters [2.56]. The adaptive
codebook is formed using a random Gaussian codebook and an estimate of the

covariance of the LAR parameters which is updated using backward adaptation.

Greater efficiency in coding the LPC-filter parameters can be achieved by
taking into account the interframe correlation of the parameters. Methods

that model the interframe variation of the LPC-parameters include :

i) A Vector-Autoregressive model that represents the evolution {in time) of
the LAR filter parameters. This model assumes a step-function input to the

vector-predictive model [2.57].

ii}) Vector Predictive Quantization, which predicts the current set of para-
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neters from past parameter sets, using a predictor codebook [2.58]. This
method is also known as Switched-Adaptive Interframe Vector Prediction
£2.59].

5) ADAPTIVE PREDICTIVE CODING {(APC)

The block diagrams of a basic APC encoder and decoder are shown in Figures
2.3.2(a) and (b) respectively. The prediction error (residual) Fi(z) |is
gquantized on a sample-by-sample basis, and is transmitted to the decoder
together with the gquantized parameters of the LPC filter. The quantization
of the residual is performed inside the prediction loop at the encoder, in
order to prevent the quantization noise from being amplified during the

speech synthesis process at the decoder. The encoded residual is :
T(z) = E(z) + Q{z} (Eg 2.3.13)
where @(z) is the added quantization noise. Also from Fig 2.3.2(a}) :

E(z) = Stz) ~ G(z) (Eq 2.3.14)
and :
Giz) = [G(z) + T(2) ] P(z) (Eq 2.3.15)

By substituting Egs 2.3.14 and 2.3.15 into Eg 2.3.13, the relationship

obtained is :
T(z) = [srz) ¢ Qlz) ] [1 - Plz) ] (Eq 2.3.16)
The speech signal D(z) synthesised at the receiver is {(see Fig 2.3.2(b})

1
S(z) = T{z) —m—— = §(z) + Q(=z) (Eqg 2.3.17)
! - Pz}

Thus in an APC coder the synthesised signal is identical to the input

speech signal with the addition of the noise introduced by the quantizer.

The definition of the APC coder can be extended to include a second filter
{pitch predictor) that models the harmonic structure of the speech frequency
distribution. The pitch-predictor is connected in series with the LPC-filter
and usually precedes the LPC-filter in the synthesis stage. A noise shaping
filter can also be added, that reduces the subjective 1loudness of the
quantization noise [2.20}. The noise shaping filter increases the level of

quantization noise in the formant regions {(where noise is partially masked
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FIGURE 2. 3.2 The encoder {a) and decoder {b) of a basic Adaptive Predictive
Coder (APC).
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by the speech signal) and decreases the noise level in the spectral valleys.
The masking of the quantization noise by the speech signal allows lower bit
rates to be used, while maintaining high speech quality. The coefficients of

the noise shaping filter are derived from the parameters of the LPC filter.

If the residual is gquantized on a sample-by-sample basis, then at bit rates
below 10 kbits/sec a two-level quantizer must be used, and the resulting
coarse quantization becomes a major source of audible distortion in the
synthesised signal. Efficient quantization of the residual (at less than one
bit per sample} can be achieved by using a center-clipping gquantizer that
only encodes the largest samples (peaks) of the residual [2.20], or by using

adaptive bit-allocation in the time and freguency domain {2.601].

Greater efficiency in quantizing the residual can be achieved by using
Delayed Decision Coding techniques combined with Vector Quantization. Tree
codes generated by a stochastically (random) populated innovations tree have
been proposed for operation at 16 kbits/sec, producing speech of near toll
quality (equivalent to 7 bits/sample log-PCM} [2.611. Bit rates as low as
4.8 kbits/sec can be achieved by vector-quantizing the residual wusing as a
distance measure the RMS value of the signal distortion [2.62] (see section

7 on Analysis-by-S5ynthesis predictive coding).

6) RESIDUAL-EXCITED LINEAR PREDICTION (RELP) CODING

RELP coders employ the Autoregressive model of speech (Eg 2.3.1) and code
the prediction error (residual) using a combination of time and frequency
domain technigues. The most commonly used coding-method is Baseband Coding
combined with High Frequency Regeneration (HFR). The basic assumption in
this method is that the lowest frequencies of the residual spectrum carry
the highest perceptual importance, and that the preservation of the residual

baseband contributes to the naturalness of the-synthesised speech.

The early RELP coding schemes used a simple procedure to code the residual
[2.63,2.64]1. This process involves the low-pass flltering {up to 800 Hz) and
decimation of the residual. The down-sampled signal 1is encoded and .
transmitted using waveform coding methods. At the receiver, the transmitted
signal is up-sampled and processed to regenerate the high frequency part of
the spectrum. The signal is then fed to the LPC synthesis-filter to produce

synthetic speech.
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Simple HFR techniques include nonlinear processing of the baseband signal
(e.g. full-wave rectification), baseband duplication (e.g. spectral folding)
or a combination of the two [2.65,2.661. These methods cannot reconstruct
the upper frequency band accurately, and generate audible distortion in the

form of "hoarsness™ or "tonal noise”.

Better models have been developed for the coding of the residual in the

time or the frequency domain. These models include :

i) Pitch-aligned HFR methods that duplicate the baseband spectrum in a pitch
synchronous manner, thus reducing the harmonic discontinuities and the tonal
noise {2.67,2.68]. These methods operate in the frequency domain and require

an estimate of the speech fundamental frequency.

ii) Use of a full-band pitch predictor in the time dowain, to remove the
pitch information from the residual before decimation and restore it after

upsampling [2,69],

iii) A generalised decimation process which produces an irreqularly down-
sampled residual and minimises a perceptual distortion measure [2.70,2.71].
The down-sampled residual is quantized wusing APCM. Very good quality speech

can be produced when this method is employed at 10 kbits/sec,

iv) Vector Quantization of the harmonic frequency components (real and ima-
ginary) of the residual [2.72]. Pitch synchronous replication of the harmo-

nics must be used to regenerate the high part of the freguency spectrum.

v) A dynamic spectral model which defines a set of adaptively selected sub-
bands of the residual, rather than a single low-pass sub-band. This model is
defined in the frequency domain, and the bits are allocated to the sub-bands
according to thelr significance £2.731.

RELP coders can produce very good quality speech at 16 kbits/sec, but the
quality falls off rapidly as the bit rate is reduced below 8 kbits/sec. They
are used in applications where low algorithm-complexity is necessary, and in
general the quality of the sythesised speech is not as good as that obtained

from Analysis by Synthesis Predictive coders.

7} ANALYSIS-BY-SYNTHESIS {AbS) PREDICTIVE CODING

The block diagram of a general AbS predictive coder is shown in Fiqure

2.3.3(a) and (b). The speech model used 1is the analysis/synthesis model
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employed by APC and RELP coders, thus synthetic speech 1is produced by
passing the excitation signal through the LPC synthesis filter. In an AbS
coder, both the filter and the excitation signal are parametrically
represented over a short time interval (5 ms to 20 ms). The set of
parameters controls the shape of the excitation signal and determines the
frequency response of the LPC filter. Furthermore, the parameter values are
adjusted by a closed-loop optimisation process that minimises the value of a

weighted distortion measure.

As seen in Fig 2.3.3(a), an error signal is formed by comparing the origi-
nal and synthetic speech waveforms. The error signal passes through a noise-
shaping filter that puts more emphasis {amplifies) on the frequency regions
where the speech power is low and the noise (distortion) carnot be masked by
the speech signal, and attenuates the error signal in the speech formant
regions where higher levels of noise can be tolerated due to the masking
effect. The RMS wvalue of the filtered error signal serves as a measure of

the "subjective” lewvel of distortion.

AbS~Predictive coders are more effective in minimising the distortion
introduced by the coding process and in achieving the desired noise
spectrum, when compared to conventional open-loop coders such as APC and
RELP, They can produce speech of "excellent” quality (acceptable to most
applications) at a bit rate of 10 kbits/sec, while at the lower bit rate of
6 kbits/sec many AbS-Predictive coders can produce speech of very good

quality. Typical AbS-Predictive coders are :

i) The Multipulse Excitation (MPE} coder, which models the excitation signal

with a sequence of irreqularly spaced pulses {2.74). The synthesis filter of
a MPE coder can be derived from any LPC filter model (see Fig 2.3.1),
although the most efficient filter model has been found to be the one that
combines two AR filters 1in series (Fig 2.3.1(d}), the first modeling the
smooth spectral envelope and the second (pitch predictor) modeling the
harmonic frequency structure of speech [2.75]., The parameters of the excita-
tion {pulse positions and amplitudes} and a part of the synthesis filter

{pitch predictor) are determined by the closed-loop optimisation process.

Various algorithms have been proposed for the optimisation of the excita-
tion parameters that are simple enough to permit real-time implementation of

the MPE coder [2.76,2.77]. MPE coders produce speech of very good quality at
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bit rates above 8 kbits/sec, while at 16 kbits/sec they perform better than
APC coders [([2.78]. Alternative MPE models have been proposed in order to

improve the coder’s performance at bit rates below 8 kbits/sec (2.79,2.80].

ii) The Regqular-Pulse Excitation (RPE) coder, which is very similar to the

MPE coder, but models the excitation with a sequence of equally spaced
pulses [2.81]. The performance of the RPE coder is very close to that of a
MPE coder when they both operate at the same bit rate. Various computatio-
nally efficient RPE coding methods have been proposed, and one of them has
been chosen as the speech coding standard for the European digital Mobile-
Radio system [2.82,2.83].

iii} The Code-Excited LPC {CELP} coder, which selects the excitation signal

from a codebook of random Gaussian excitation sequences [2.84]. These random
sequences do not exhibit any "pitch” structure (which is necessary during
voiced speech), and it is therefore essential to include a pitch predictor
in the synthesis filter, in order to "induce" a pitch structure to the
excitation waveform. The number of computations required to select the
optimum excitation seguence from the codebook can be very large, and various
simplified methods have been proposed [2.85,2.86,2.87] that allow the CELP
coder to be implemented in real-time. The CELP coder produces speech of very
good quality at 8 kbits/sec, while at 4.8 kbits/sec the ‘quality is natural

and to a certain degree speaker dependent.

iv) The Backward Excitation Recovery coder, which employs a backward adapta-

tion procedure for the excitation signal, and therefore does not need to
transmit any information concerning the excitation to the decoder [2.88].
The parameters of the synthesis filter are determined by the c¢losed-loop
optimisation procedure. Various excitation adaptation and filter optimisa-
tion algorithms have been proposed, and some of them lead to systems with
very small encoding delays (around 3 ms). The performance of BER coders 1is

very close to that of CELP coders at the bit rates of 4.8 and 8 kbits/sec.

The excitation models employed by these four types of AbS coders can be
combined to form hybrid systems [2.89,2.90]. This generalisation may also
lead to AbS coding systems that decompose the excitation signal into a fixed

number of "optimised” excitation waveforms [2.91].
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2.4 Sinusoidal Coding

Sinusoidal coders decompose the speech signal into a number of sinusoidal
components (sine waves) with time wvarying amplitudes and frequencies. The
speech spectrum is therefore modeled by a time varying Line Spectrum. The
model parameters are quantized individuvally or using a functional represen-
tation, and are transmitted to the decoder where the sine-waves are recons-
tructed and added to form synthetic speech. As most of these sinusoidal
coding methods are applied in the frequency domain, special care must be
taken to avoid frame boundary discontinuities in the time domain.

The sinusoidal models permit a very accurate representation of speech at
high bit rates, but at bit rates lower than 10 kbits/sec model simplifica-
tions are used, which affect the coder’s performance. An assumption often
employed at low bit rates is that the spectral 1lines are harmonically

related, so that coding of the individual frequencies is not required.
Sinusoidal models used in speech coding include :

i} Harmonic Coding, which performs a short-time Fourier analysis of the

speech signal and identifies the harmonics of the Line Spectrum model with
the aid of a bitch estimator [2.92]. The Line Spectrum 1is recontructed at
the encoder and subtracted from the spectrum of the original speech. The
residual spectrum 1is encoded using Adaptive Transform Coding (ATC) angd is
transmitted to tﬁe decoder together with the amplitudes, phases and pitch
estimate. Harmonic¢ coders can produce goocd communications quality speech at
9.6 kbits/sec. Modifications to the basic¢ model and dynamic quantization
strategies have heen proposed to improve the performance of harmonic coders
at 4.8 and 6 kbits/sec [2.93,2.94,2,95]

ii) Sinusoidal Transform Coding, which determines the time-varying ampli-

tudes and phases of the sine waves from the short-time Fourier analysis of
the speech signal [2.96,2.97]. It uses a functional description of the time
evolution of the amplitudes and phases of the sinusoidal components. Linear
Frequency tracks are constructed in each frame, preserving the continuity
between frames and allowing for the "death” of old and "birth" of new
frequency tracks. Cubic polynomials are used to provide a "maximally smoocth”
phase unwrapping and frame boundary continuity. The coder can produce very
good quality speech at 8 kbits/sec, and can be modified (by using a harmonic

frequency model) to allow operation at 4.8 and 2.4 kbits/sec [2.98,2.99]
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iii) Analysis-by-Synthesis Sinuscidal coding, which uses a polynomial repre-

sentation of the time evolution of the amplitudes and phases of the sinusoi-
dal components, and determines the polynomial coefficients by minimising the
energy of an error signal formed by subtracting the synthesised signal from
the original speech signal [(2.100]. As a closed form solution is not
available for all the parameters, an Analysis-by-Synthesis procedure is
employed to minimise the energy of the error signal. The minimisation
process is constrained to produce "smooth” parameter tracks and preserve the

signal continuity at the frame boundaries.

2.5 Sub-band Coding (SBC)

In Sub-band Coding [2.1,2.101,2.1021, the speech frequency band is divided
into a number of sub-~bands (typically between four and sixteen) by a bank of
filters. Each sub-band is translated to zero fregquency and is sampled at its
Nyquist rate. The samples from each sub-band are encoded using APCM or DPCM
techniques. At this stage, each sub-band can be encoded using perceptual
criteria which are specific to that band. At the receiver, the sub-bands are
translated back.to their original frequencies and are added to produce the

reconstructed speech signal.

By allocating a different number of bits to each band, the variance of the
reconsruction error can be separately controlled, and the shape of the
overall reconstruction error spectrum can be varied dynamically to reduce
the "perceptual” level of distortion. Furthermore, the quantization noise is
contained within each band, and leakage from other frequency bands is

prevented.

The filter-bank (which is the most complex part of the coder) is implemen-
ted using Quadrature Mirror Filters (QMF) ([2.103], which eliminate the
problem of aliasing. QMF filters have the property that if a full-band
signal 1is passed through the filter-bank and is then decimated to the
Nyquist frequency in each sub-band, interpolated back to the original
frequency, and resynthesised using the synthesis version of the filter-bank,
the resulting signal can be an arbitrarily close replica of the input
signal. While the QMF filters cancel aliasing in the absence of

dquantization, once quantization is introduced this is no longer true.

Sub-Band Coders can produce speech of very good communications quality at
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a bit rate of 16 kbits/sec, comparable to the quality obtained from
Multipulse Excitation coders at the same bit rate [2.102). At a bit rate of
9.6 kbits/sec some bands may not be transmitted at all (if their energy
content is low) thus affecting the aliasing-cancellation properties of the
QMF filters and resulting "whispering” quality, caused by the energy aliased
into the spectral gaps. At a bit rate of 4.8 kbits/sec, acceptable quality
can still be obtained by dynamically frequency-shifting the speech signal so

that the formants align with fixed-frequency bandbass filters [2.1041.

2.6 Adaptive Trasform Coding (ATC)

ATC coders transform the speech signal into a spectral representation, and
quantize the spectral coefficients using a dynamic bit-allocation strategy
(2.105,2.106,2.1073. At the decoder, the quantized coefficients are inverse-

transformed back into the time domain.

The transformation most commonly used in speech processing is the Discrete
Cosine Trasform (DCT). The DCT transform is closer {in terms of performance)
to the "optimal” Karhunen-Loeve Transform (KLT), than the other well known
transforms (FFT, WHT, etc.). It is also effective in reducing the frame
boundary discontinui- ties, by minimising time aliasing (transfer of energy

between the left and right edges of the frame).

The dynamic bit-allocation ensures that the high energy spectral compo-
nents are gquantized as accurately as the low energy components, by distri-
buting the number of bits according to a rough estimate of the spectral
envelope. The estimate of the spectral envelope must be transmitted as side
information, so that the decoder can determine how the hits were distributed
amongst the spectral coefficients at the encoder. Depending on the overall
bit rate, some coefficiets may be assigned zero bits, thus creating spectral
gaps in the synthesised speech. By adjusting the bit allocation strategy,
noise shaping can be achieved and the “subjective" quality of the

reconstructed speech can be improved.

The side information is often based on a "smooth-spectrum” estimate that
does not include the effect of pitch-induced fine structure in the input
spectrum. A consequence of such smoothing is increased zero-bit allocation
at high frequencies. By including information on the pitch structure, many

low energy components lying between the pitch harmonics at low frequencies
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are allocated zero bits, thus releasing bits for the high frequency part of
the spectrum. The best results in ATC are obtained using the bit-allocation

procedure based on the "unsmoothed-~spectrum” estimate.

ATC coders can produce very good communications quality speech at a bit
rate of 16 kbits/sec. At a bit rate of 9.6 kbits/sec, the rapid movements of
spectral gaps from frame to frame produce a "tonal noise” effect. Highly
intelligible and speaker-specific speech quality can be obtained at bit
rates between 4 kbits/sec and 8 kbits/sec.

2.7 Conclusions

Speech Coders operating at medium bit rates employ efficient coding
techniques and are capable of producing speech of very good gquality.
Requirements for such coders vary depending on the application. Primary
consideration is the  speech quality obtained under "transmission”
conditions. Such conditions may include tandem encodings and transmission
through "noisy®” channels. The guality of the recovered speech 1is measured
using various subjective listening tests. Other lmportant properties are the

delay and complexity characteristics of the coder.

The coders mensioned in this Chapter can produce very good communications
quality speech at 16 kbits/sec. Operation at lower bit rates affect the
performance of the coders in different ways. The best results at low bit

rates are obtained using Analysis-by-Synthesis Predictive coders.
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CHAPTER 3

MULTIPULSE EXCITATION SPEECH CODING

3.1 Introduction

The design of a Multjipulse Excitation (MPE) codec and its application to
speech compression, was first introduced by B.S.Atal in 1982 [3.1]. A number
of concepts were combined to create a powerful coding technigue, which has
since been applied to the development of many diverse speech coding schemes,
such as the Code Excited LPC [{3.2] and Backwards Excitation Recovery [3.3]

techniques

The encoder section of a MPE codec, controls the output of a LPC speech
synthesiser by systematically adjusting its internal parameters in order to
produce a close match between the synthesised and original speech waveforms.
The internal parameters of the LPC synthesiser are transmitted to the
decoder, which repeats the speech synthesis process and recovers the speech

waveform.

In order to achieve an efficient coding operation, information from both
the past and the future of the speech signal is needed at every instant. The
encoder has to delay decisions concerning the adjustmemt of the LPC
synthesiser, until enough speech samples have been received. The same delay
characteristics are common amongst speech coding schemes that achieve a high
compression of the input speech data. The term Analysis by Synthesis is used
to describe both the Delayed Decision Coding attribute, and the operation
which optimises the coder'’s internal parameters in order to.produce a close

approximation of the original speech waveform.

Another concept used in the design of the MPE codec 1is that of noise
masking [3.4]. The distortion introduced by the coder should ideally have a
powér spectral distribution that would minimise its perceptibility in the
presence of speech. In practice this is hard to achieve, because of the
dynamic behaviour of speech and the difficulty 1In determining the ideal
noise spectrum. It has been established though, that a noise-like signal can
be masked by a high power correlated source ¢ver the same spectral reglon.
As & result, a higher level of noise can be tolerated in the spectral
regions where there is concentration of speech energy (i.e. 1in the

formants).
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In a MPE coder, it is possible to have a certain amount of control over
the spectral content of the distortion introduced, by formulating an
appropriate error measure between the original and synthesised speech
waveforms. This allows the continuous and adaptive adjustment of the noise

spectrum and reduces the perceptible distortion.

The ability of the MPE system to adjust and optimise its performance
according to a predefined speech quality criterion, allows a great deal of
control over the design and implementation aspects of the MPE coder. The MPE
coder can be quite robust in wvarious acoustic environments, because it does
not depend on voicing decisions (classification of signals as periodic or
noise-like}. Furthermore, it can operate, 1if necessary, without a long-term
predictor, thus 1limiting the error accumulation in the presence of

transmission errors.

The complexity of MPE codecs, or other Analysis by Synthesis speech coding
schemes, is not prohibitive by today’'s standards in VLSI design. The
tremendous increase in power of the monclithic Digital Signal Processors has
decimated the development and implementation costs of complex speech codecs
and has faciiitated their widespread use [3.5,3.6,3.7,3.8). The ever
broadening applications field has also played an important role in the
diversification of the research aims and the setting of new standards and
goals £3.91. Commercial interest in high quality speech transmission and the
need to exploit the available bandwidth in applications such as mobile radic
and satellite communications [3.10), has been one of the driving forces in

the design of new and efficient speech codecs.

MPE codecs are capable of toll quality speech at 16 kbits/sec, while at
9.6 kbits/sec the obtained speech gquality compares favourably with that
obtained from conventional codecs like RELP or subband [3.11]. MPE coding
has' also been applied to wideband speech transmission at 32 and 16 kbits/sec
[3.81, and a quite respectable coded speech guality has been demonstrated at

a transmission rate of 2.4 kbits/sec [3.121].

In this chapter, the basic principles behind the MPE coding schemes will
be first described. A review of the existing techniques of pulse amplitude
estimation and pulse position optimisation will then be presented. Many of
these techniques have been borrowed from the mathematical field of numerical

optimisation, while others have been designed specifically for the sclution
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of the MPE optimisation problem. The latter techniques are usually simpler,

and will be examined in more detail in the next two chapters.

3.2 Definition of the Multipulse Excitation

Figure 3.2.1 shows an operational diagram of the Multipulse Excltation
Encoder-Decoder. The optimisation loop of the encoder section indicates that
a Delayed Decision Coding process is taking place and that the input to the
LPC filter is not defined sequentially in time, as the signal flow might
suggest, but in a batch mode. It also indicates the repetitive nature of the

excitation optimisation process.

The speech waveform is first divided into consequtive frames, each contai-
ning n speech samples. The LPC filter is then derived directly from the
speech data (using one of the Linear Prediction techniques usually employed
by LPC speech coders), and the Multipulse Excitation sequence is optimised
so that the output of the LPC synthesis filter closely approximates the
original speech waveform. The spectral distribution of the distortion
introduced by the coder can be forced to approximate a given distribution,

by properly adjusting the excitation optimisation process.

The input excitation seguence {(MPE} is formed using a small number of
impulses, whose amplitudes and positions within each frame, are determined

by the Excitation Parameter Optimisation algorithm.

The process of defining the MPE sequence can be described as follows.
Consider a frame of n speech samples, represented by the n-dimensional
vector s'= [ s(o),s(1),s(2),...,s(n~1) ] and the excitation wvector
corresponding to the same frame x'= [ 2{o),2(4}),...,2(n-1) 1. Assuming a
fixed number of pulses ¢ for each frame, the pulses are located at sample

instances PisPos-sPq and have amplitudes b,,5,,...,b, respectively. For

example, if n=8,9=3,p,=3,p,s2 and p,=6 then x'= o,o,bz,zi,o,o,bg,o 1.

The filter used by the coder can be a general linear filter, but usually
it takes the form of a single Autoregressive (AR} filter which models the
combined effect of the glottal shape, vocal tract response and 1lip
radiation. A second AR filter can be introduced (in series with the first),
which models the quasi-periodic nature of the speech waveform [3.131, or a
more complex ARMA filter model can be wused instead of the standard AR model

£3.14,3.15]. When a single AR filter model is considered, LPC methods like
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the stabilised covariance [3.16,3.17]} or the maximum entropy method [3.18],

can be used to estimate the filter coefficients.

The response of the LPC synthesis filter to an input sequence {x(i)} is
{x(i)Yyx{h(i)} ,where {h(i)} is the filter’s impulse response. The convo-
lution of the two time series can be considered as a matrix multiplication

operation. The filter's response Sy is expressed as :

Sy =AX (Fg 3.2.1)

where A is the nxn lower trianqular convolution matrix :

[ ko) o o o ]
hitL) h(o) L) o
h(z) h(t) ko) o
A= : . : . (Fq 3.2.2)
hin-1) hi{n-2) h(n-3) *** hio)

The input vector x contains both zero and non-zero elements, and Eg 3.2.1
can be simplified if a new nxg matrix AfqJ is formed using only those g¢
columns of matrix A which correspond to the non-zero elements of x. These

columns are arranged in the order given by the position indexes PysPyr-- 1Pyt

[ & hio) 0 ]
o h(1) 0
h(z) o
e
Alg] = h(o) ! (Eq 3.2.3)
_h(n—pi—l) hin-p,-1) ... h(n-pq—i) ]
Eq 3.2.1 is then transformed to :
5y = Alg¢l b (Fq 3.2.4)
where b'= [ bl,bz,...,bq 3] is the g¢-dimensional wvector of the pulse
amplitudes.
The pulse positions PisPasr---4Pq and pulse amplitudes bx'bzf"'rbq should

be determined so that the response sy of the LPC filter to the generated

multipulse input signal closely approximates the original speech sequence s.

A parameter estimation problem can be formed by assuming an additive noise
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model for the speech signal :

s =Algi bt e

. (Eq 3.2.5)

Afql b 1is a function of the 29 random variables that correspond to the
pulse positions and amplitudes, and e, is a sample from a random noise
process whose statistical properties are known. These two random parts of

the model are assumed to be uncorrelated.

A good estimate of the parameter values (pulse positions-amplitudes) would
be the one that maximises the a posteriori probability of the set of the
parameter values, given the observed sample waveform s (Bayesian estimate)
£3.19]. The continuous-discrete nature of this conditional probability
density function means that a numerical approach would be necessary in order
to locate its maximum. A different treatment of the two sets of variables
can therefore be advantageous, since a semi-analytical solution for the
pulse amplitudes and a numerical solution for the pulse positions can be

sought.

For a fixed set of pulse positions, by disregarding any knowledge about
the pulse amplitudes' joint-probability-distribution and by assuming a zero-
mean Gaussian noise process, an analytical solution in the form of the
Maximum-Likelihood estimate, can be found for the pulse amplitudes. The same
estimate can be obtained from the theory of Least Squares (LS) estimation,

since the noise statistics are assumed to be Gaussian.

Having obtained an analytical solution for the amplitudes of a set of
pulses with fixed positions, the task of defining the optimum multipulse
excitation sequence 1is converted into an error function minimisation
problem. The function variables (pulse positions) can only take discrete
values, therefore integer programming {3.20] or other simpler iterative

optimisation techniques can be used to define the pulse positions.

3.3 Estimation of the pulse amplitudes

When the pulse positions PysPgs--- Py ALE fixed, the matrix AfqJ is also

fixed and the values of the pulse amplitudes b1:b2:---:bq can be determined

by minimising the power of the noise (approximation error) e, 1in Eq 3.2.5.

In the general case where the noise samples are correlated, a 1linear

transformation can be applied to produce an equivalent estimation problem
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where the noise samples are uncorrelated. The noise covariance matrix ¢, is

known in advance, and is assumed to be positive definite :
= T
c, = E[ e, e ] (Eq 3.3.1)
It can therefore be factorised as :

¢, =LL' (Eq 3.3.2)

where L 1is a lower triangular square root of C,- Application of the
transformation oLl (where o is a constant) to Eq 3.2.5, generates a new set

of equations :

s, = A, {97 b + e,
(Eq 3.3.3)

where : s, = oL™s, A,q] =oL?Alq] and e, =aLle

v

The noise samples are now uncorrelated and the new noise covariance is :
- TT] - 42 ¢+ T T - 42
g =Ele,ef [ =o?tiE[e, e ] LT=0t1 (Eq 2.3.4)

where I, is théann identity matrix.

The noise energy over a specified frame is minimised when :

Vb[e; ew]= [ o0,0,...,0 1T (Eq 3.3.5)
ar

Ul 5o - Afa7v|? ] = co0,..00 37 (Eqg 3.3.6)

Eq 3.3.6 defines the LS problem and as long as the matrix A,{qJ has a full
rank, a unique solution exists. A number of methods with good numerical
properties can be employed to find the  solution. The Gram-Schmidt
orthogonalization procedure or the Cholesky matrix decomposition algorithm
£3.21]1 are commonly used. The latter is used to solve the system of normal

equations derived from Eq 3.3.6 :

(Rf977 B L97) b = B, Lq17 5, (Eq 3.3.7)

A geometrical interpretation of this minimisation problem 1is possible by
visualizing the signal components as vectors in an n-dimensional space. The

columns of the matrix A,fq] define a g¢-dimensional subspace and A l9] b
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belongs to the same subspace. In Eq 3.3.6 therefore, the function which is
minimised is equal to the square of the distance between the speech vector
5, and the vector A [q] b. This distance is minimum when A,[q7 b coincides
with the projection of s, on the subspace defined by A,f{q].

Equation 3.3.7 can be solved for the component values b, ,b,,..,b that

3’ q
ensure the orthogonality between the error vector e, and the signal vector
A,l9] b (hence the name normal equations}. It can be shown that the

projection operator takes the form :

-4
P, = ALql (A, Lq1T B LqT) A Lq1T (Eg 3.3.8)
and that the minimum error energy is :

[ e; e, ]min = (sw - Prsw)T (sw - Prsw) = s; Sy ~ b’ Aw[qJT s, f(fq 3.3.9)

As the pulse positions P1sPgs---Pyg change, so does the subspace defined by
A,fq]. Ultimately the subspace closest to the speech vector s, will identify

the best set of values for the pulse positions.

3.4 Optimising the pulse positions

The estimation of an optimum Multipulse Excitation sequence has been
transformed to an equivalent problem of minimising the distance between two
n-dimensional vectors corresponding to the original and LPC-synthesised
waveforms (Eg 3.3.6), subject to the coordinate transformation oL?! that

produces a new set of axes corresponding to the column vectors of matrix A,:

A, = oLt A (Fg 3.4.1)

+The minimum distance € (error RMS) for a given set of pulse positions

PisPas---1Pqg (corresponding to a particular subspace), can be found using
the analytical formula of Eq 3.3.9. This minimum distance changes when a
different set of pulse positions 1is considered and can be expressed as a

function of the integer variables PysPyr--iPq

Py pys--sPg) = ”(In—P’)sw" > 0 P Py apgl €Y ¥ Tl
(Eg 3.4.2)

The projection operator P, refers to the subspace defined by the columns
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4

is the set of permissible combinations of values that PyiPys---1Pg MAY take

of matrix A fq] which in turn is dependent on the values of PysPys---1Pg,
(the order is not important), and Z¢ is the set of all ¢-dimensional integer

vectors.

Enumeration of all the vectors [P1:P2:--'quJ € ¥ is only feasible when ¥
is relatively small, as is the case when a Codebook-Search algorithm is used
to find the pulse positions (see Chapter 5}, or when a Regular-Pulse
Excitation sequence 1is postulated [3.22]. If there is complete freedom in
the choice of pulse positions, then ¥ has (;) elements and complete
enumeration is only possible when the frame size n and the number of pulses
per frame g¢ are small. Since Multipulse Excitation coders usually bhenefit
from the use of large frames, other methods are employed to find the pulse
positions that minimise the distance between the original signal and the

responce of the LPC filter.

Two broad classes of pulse position estimation methods can be defined, to
highlight the differences between Successive Elimination and Multivariate
Optimization techniques. These differences can sometimes be subtle but in
general, Successive Elimination techniques are more deterministic in their
approach than Multivariate Optimisation techniques, which may adopt a

probabilistic search strategy for the pulse positions.

3.4.1 Successive Elimination Techniques

These methods progressively decompose the parameter "space” ¥ into increa-
singly smaller subsets. The minimum of the approximation error function
E(pi,pz,...,qu is bracketed by the subset boundaries and becomes more and
more localised as the subsets shrink and finally reduce to single vectors.
This is done in a systematic way by restricting the range of wvalues over
whi;h each of the position variables PyiPasi--~ibPyq is allowed to wvary. A
repetitive evaluation of the approximation error function 1is performed and
decisions concerning the subdivision of the subsets are taken based on the

past history of computed function values,

The complexity of the process is determined by the number of iterations
necessary to converge to a solution, and by the effort needed to compute the
approximation error function. In the following examples, a general

definition of this function is implied, to accomodate the various simplified



_47_

amplitude-estimation algorithms developed in the next chapter. Temporarily
the function ef(p,,p,,...) will be assumed to provide a measure of the
approximation error when a number of pulse positions are specified, without

necessary implying the use of Eqg 3.3.89.

Examples of Successive Elimination technigues applied to the estimation of

the pulse positions are :

1) COMBINATORIAL SEARCH

Combinatorial search methods perform a search through an imagined tree of
pulse position combinations. The tree is set up so that each path along its

branches corresponds to a single set of pulse positions (Fig 3.4.1}.

The search for the optimum set of pulse positions starts at the first
level where n branches diffuse from a single parental node. These branches
correspond to the possible locations of the first pulse. Different criteria
can be used to select the most “promising” paths through the tree. For
example a threshold ¢, can be used to control the selection of the branches

which satisfy the requirement :

€tp,) (o, , 0, €R (Fq 3.4.1.1)

or alternatively, n, branch candidates can be chosen that correspond to the

n, lowest values of the approximation error function elp,), o<p Sn-1.

The tree expands at the second level by appending n-! branches at the end
of every branch that was selected at the first level, to accomodate the n-!
possible locations of the second pulse. A new threshold g, Or a new integer
constant n, can be used to control the search at this level, where the
function e€(p, ,p,) 1s evaluated. The process continues until finally at the
gth-level, the path associated to the lowest error value is chosen. Care
must bhe taken to recognise the paths that represent the same set of pulse

positions and reject all but cone.

Careful choice of the values ¢, ,e,,...,0, OF n ,n,,...,n, can improve the

efficiency of the method and reduce the nzmber of requirid error-function
evaluations. Note that the complexity of the algorithm depends on the kind
of approximation error function that is chosen to be minimised at each
stage, and is therefore dependent on the implied difficulty in obtaining

estimates of the pulse amplitudes.
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FIGURE 3.4.1 Combinatorial-Search MPE Optimisation Method. A Tree Search

for the optimum set of pulse positions in a MPE frame of 5 samples is
attempted. Each branch corresponds to a possible set of pulse positions, and

two branches are chosen at each level of the tree.
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The number of paths selected at each level will in general be greater than
at the previous level and can increase substantially by the time the last
stage is reached. To keep this number low, a process can be employed at the
end of each stage to reject the paths associated to high approximation error
values. A variant of this method, only keeps a fixed number of paths per
stage (Fig 3.4.1 shows 2 paths) and these paths are the ones with the lowest
error values [3.231. If this number is Kkept equal to one, then the position
found at each stage cannot be altered by further stages (this property is

common to all the algorithms of Example-3).

2) BRANCH AND BOUND OPTIMISATION

The Branch and Bound technique is a nonlinear programming method (3,24,
3.25] and is one of the possible combinatorial optimisation methods that can

be applied to the MPE optimisation problem [3.26].

The Branch and Bound technique can be used to perform a recursive binary
subdivision of the parameter space (of the pulse-position variables). This
subdivision can be explained using a binary decision tree whose branches are
inclusively related. The parameter set ¥ is broken down into subsets in such
a way that the subset corresponding to each branch contains the subsets of
the descending branches (Fig 3.4.2). Each decision (branching) splits the

interval, over which a single position variable is defined, into two.

A lower and an upper bound of the error-function are estimated for each
"active” path along the tree. Each path associated with a lower bound which
is greater than an established upper bound elsewhere within the tree, is not
worth pursuing and is therefore "deactivated” to facilitate a faster search

through the rest of the tree.

In a function minimisation problem, accurate estimation of the lower bound
is crucial because it indicates the potential gain obtained by following a
certain (search) path. Unfortunately in this case, a lower bound of the MPE
approximation error function is difficult to calculate, and a guess has to
be made based on the value of the corresponding upper bound (which is easier
to find).

Since each binary decision concerns a single pulse, a simple enumeration
of the permissible pulse positions can provide the minimum approximation

error value. This value is also an upper bound of the error function because
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subsequent steps along the same path can only reduce the error. In Fig 3.4.2
the value of the upper bound (high) for each path corresponds to the minimum
of the error-function and is calculated using an exhaustive enumeration of
the permissible pulse positions. In this example, the lower bound (low) is
set equal to one third of the upper bound. Before the next decision
(branching) is taken, the pulse is placed at the position where the minimum
error occured. The process shrinks the subsets into single wvectors, and
terminates by choosing the wvector of pulse positions that results the

minimum approximation error.

The method can be considerably simplified by reducing the number of active
paths and by using the simplified procedures described in the next chapter,

to estimate the pulse amplitudes and the approximation error.

3} MULTI-STAGE (MS) OPTIMISATION

Multi-Stage optimisation algorithms include some of the most popular and
simple MPE optimisation methods [3.27,3.28]). Each method starts by optimi-
sing the position of the first pulse and continues by adding further pulses
in the next stages, until the required number of ¢ pulses per frame is
reached. The position of each new pulse is optimised in a separate stage and
cannot be redefined in the next stages, even though the pulse’s amplitude

may be corrected.

Differences between the various MS algorithms are related to the degree of
involvement of the pulse amplitude estimation process. The computational
effort involved in the calculation of the pulse amplitudes and the
estimation of the approximation error determines the complexity of the
MS5-algorithm, since the particular pulse positicn optimisation strategy only
allows a limited number of pulse position combinations to be considered.

Various MS algorithms will be examined in Chapter 4.

A different MS optimisation procedure would initially consider a complete
set of n pulses and would then reduce them to the required number using a
thinning process [3.29,3.30]. The same search logic as before can be applied
in this case, if the position of a "vacant” pulse (hole} is optimised at

each stage, instead of an actual pulse.
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3.4.2 Multivariate Optimisation Techniques

As the name implies, these techniques adopt a more probabilistic approach
to find an optimum set of pulse positions. The parameter "space” ¥ is
irreqularly sampled, and information obtained from the sampling operation is
used to direct the search for the minimum of the approxiamtion error
function. Successive samples create paths in ¥, which can be progressively
constrained, not in an absolute manner, but in the sense that the
probability of sampling a point ocutside a confinement subset (or subsets) in

¥ becomes increasingly small.

Examples of Multivariate Optimisation techniques are :

1) SIMULATED ANNEALING

This technique simulates the cooling process of a liquid substance, at the
molecular level. The physical cooling process reduces the total (kinetic and
potential) energy of the molecules. The total energy can be considered as a
function of the distribution of the molecular guantum energies. A tempera-
ture drop results a reduction of the total energy, brought by the general
tendency of the molecules to drop to lower enerqgy levels. These energy
transitions are random and can lead to higher, as well as lower energy
levels {for each molecule). A slow c¢ooling process reduces the total energy
until a global energy-minimum is reached at the crystalline state. If the
cooling process is accelerated, c¢rystal deformations will appear and the

energy minimum will only correspond to a local minimum.

This "slow" <cooling process can be imitated by a function minimisation
algorithm which attempts to locate the global minimum of a multivariate
error-function (which corresponds to the total energy of the physical model)
[3.311. The algorithm constructs a search path in the parameter space of the
error-function, in a series of optimisation steps. At each optimisation
step, random deviations from the last point of the search path are
generated, and these deviations are considered as possible "transitions” in
the values of the function variables. When a "successful” transition occurs,
a new point is added to the search path, and the process continues by

considering random deviations from the new point.

A simple model is used to measure the probability of a “"successful”

transition. The model assumes that this probability is related to the amount
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by which the function value changes when the transition occurs, and depends
on the value of a parameter I’ (which corresponds to the temperature of the
physical substance). Consider an error—-function E{p), where p is the set of
function wvariables. The conditional probability of a transition being
successful depends on the corresponding change in the function value S£(p),
and is modeled by the exponential function :

Successtul _ exp(-8ECPI/RT) , SE(PIID
P[Trangf!ion ISE(P);T] = [ 1 . SE(p)(O {(Eq 3.4.2.1)

This model assumes that a transition is always successful if it is
accompanied by a reduction of the function walue (8E{(p}<0}., A transition
that increases the value of the error-function (8£{(p)>0) is considered as
successful with a probability derived from the model of Eg 3.4.2.1. A high
value of 7T results an equal probability of "accepting” an increase or a
decrease of the function value, but a small wvalue of T favours the
transitions which result lower function values. The optimisation strateqy is
therefore to keep the wvalue of T high initially, and then gradually reduce
it to a value close to zero. As the value of T is reduced, the probabilty of
"accepting” an increase in the error-function’'s value becomes smaller, and
the function values become more and more localised around the local minima.
Finally, when the wvalue of T is close to zero (corresponding to a
temperature of absolute zero), the global function minimum is reached and no

transitions occur.

Results from a two-dimensional optimisation problem are shown in Figure
3.4.3{a). The error-function considered, has 5 local minima at points (1,1),
(1,-1), (-1,1), «(-1,-1) and (0,0). The function wvalue at these points is
1,1,1,1 and .999 respectively. Thus, the point (0,0) is where the global
function minimum occurs. The distance of each point added to the search path
during the optimisation process, from the point (0,0), is plotted while the
value of the parameter T is lowered. Sudden transitions can be obsereved
even when the value of T is small, and this indicates the existence of other
local minima. Finally only small perturbations arcund the point of global

minimum (0,0) are observed.

The Simulated Annealing algorithm is simple but may involve a large number

of function computations. It has been successfully applied to a number of
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combinatorial optimisation problems (3.32] and can give good results when
used to optimise the pulse positions in a MPE coder [3.33]. 1In the case of
the MPE system, the error-function corresponds to the energy of the
approximation error {difference between the original and synthesised speech

waveforms), and the transitions correspond to pulse movements.

The SNR obtained when a Simulated Annealing MPE algorithm is applied to a
short voiced speech segment of 48 frames, is shown in Fig 3.4.3(b} (white
squares). For comparison, the SNR obtained in each frame by applying the
Maximum Cross-correlation MPE algorithm (described as method MS1 in
Chapter 4) 1[3.28], is also shown (hatched squares). A MPE frame of 50
samples is used and 5 pulses are defined in each frame. The 12th order LPC
filter A{z) 1is defined over a larger interval of 200 samples. The speech

waveform is shown in Figure 3.4.3(c}.

The Simulated Annealing MPE algorithm works by considering traﬁsitions
which change the positions of the excitation pulses (given an initial set of
q pulse positions). At each optimisation step, a pulse is randomly selected
and it is moved to an adjacent position either to the left or to the right
{random choice). The probability model of Eq 3.4.2.1 is employed to decide
the fate of each transition. When a transition is judged to be "successful”,
the whole process continues by selecting another pulse and moving it to an
adjacent position either to the left or to the right., When a transition is
not "successful”, the selected pulse must be returned to its original
position (from where it was displaced), before the process is allowed to

continue by selecting another pulse.

Initially the pulses are placed at random positions within each speech
frame and then the algorithm generates random one-sample displacements of
the position of a randomly selected pulse. The error is calculated using the
formula of Eg 3.3.9 and the new pulse position is rejected or accepted
according to the probability model of Eq 3.4.2.1. The value of the parameter
T is gradually decreased and the approximation error is monitecred until no
more transitions are considered to be "successful”. At this point, the value
of the approximation error is accepted as the minimum. As seen in

Fig 3.4.3(b), the SNR improvement can be as much as 10 dBs in some frames.
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2) RANDOM SEARCH

Random Search optimisation algorithms sample the parameter set ¥ 1in a
random manner. A search route is usually constructed and random fluctuations
are produced in order to explore the possibility of further advancing the
route. Different methods employ different search strategies to locate the
minimum [3.34,3.35]. They are computationally inefficient but are well
suited for solving combinatorial optimisation problems and minimise the risk

of accepting a local minimum as the global cne.

The parameter set ¥ can be sampled more efficiently if the elements that
are unlikely to be selected as the optimum solution can be identified in
advance. This can be done experimentally using an existing MPE coder and a
training process to determine the pulse position combinations which are
unlikely to be encountered in practice. The corresponding position vectors
can then be removed from Y. In the extreme case, a limited wvocabulary of
pulse position wvectors can be constructed to replace the parameter set ¥
itself. In such a case, the search for the minimum approximation error can
be done using an exhaustive enumeration technique. MPE coders based on this

Codebook Search (CS) strategy will be described in Chapter 5.

3} BLOCK SEARCH (BS) OPTIMISATICN

These methods start with an initial estimate of the pulse positions and
search for tﬁe optimum set of pulse positions by perturbing the position
vector components in a random or systematic way. When a vector is located
that results a minimum approximation error, the search resumes by choosing
the new vector as the initial point. These methods are less complex than the
Simulated Annealing and Random Search methods, and give results comparable
to the Multi-Stage optimisation algorithms £3.36,3.37]. The BS optimisation

algorithms will be examined in the next chapter.

3.5 Conclusions

A brief description of the Multipulse Excitation optimisation process has
been presented. It was shown that the excitation pulse amplitudes can be
estimated, for a fixed set of pulse positions, by minimising the distance
between two vectors, corresponding to the input speech waveform and the

synthesized output of the MPE coder. The estimation is done assuming an
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additive noise model and a known noise covariance.

The problem of optimising the excitation pulse positions has been
converted to a function minimisation problem. The function itself represents
a measure of the distortion introduced by the coder, and the function

variables are the integer positions of the pulses.

Two broad classes of optimisation algorithms, the Successive Elimination
and the Multivariate Optimisation techniques, have been described aleng with
typical examples from each class. The most complex amongst these algorithms
have a lot in common with well known Integer Programming methods. These
algorithms can be employed by a MPE coder to obtain exceptionally good
results, but they are usually unsuitable for use 1in real-time environments
and speech transmission applications where the algorithm complexity must be

weighed against implementation costs.

The Multi-Stage (MS), Codebook Search (CS) and Block-Search (BS) optimisa-
tion methods can be efficiently implemented using the existing technology
and can be easily modified to suit the performance/complexity requirements
of a particula; application. These methods will be examined in more detail

in the next chapters.
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CHAPTER 4

MULTI-STAGE AND BLOCK-SEARCH OPTIMISATION METHODS

4.1 Introduction

The powerful concept of Analysis by Synthesis optimisation makes the
design of efficient Multipulse Excitation (MPE) coders, over a wide range of
transmission bit rates, a straight forward task. MPE coders are especially
successful at bit rates between 8 and 16 kbits/sec, and therefore compete

with Residual Excited Linear Prediction coders (RELP} and Subband coders.

MPE coders can benefit from the substantial amount of research that has
been carried out in order to improve the performance of predictive coders,
especially on the issues of LPC parameter quantization (4.1,4.2,4.3]. RELP
coders attempt to preserve the subjectively important properties of the LPC
residual but, because they design the filter excitation in an "open loop”
manner, they have toc rely on inreasingly sophisticated and efficient excita-
tion coding techniques [4.4,4.5].

The flexibility of the Multipulse Excitation model and the efficiency of
the "closed loop" MPE optimisation process contribute to the naturalness of
the coded speech [4.6]. It is therefore not unexpected to f£ind traces of the
same coder optimisation principles embedded in a number of low to medium
bit-rate coding techniques that have been developed [4.7,4.8,4.9,4.10,4.111.
MPE coders are also gquite robust 1in the presence of acoustic noise or
transmission errors even at low bit rates [4.12], where traditional vocoding

techniques become highly sensitive to wrong voicing decisions.

The performance of a typical MPE coder progressively deteriorates as the
transmission bit-rate is brought below 8 kbits/sec. This happens because the
number of pulses that are available to reconstruct each pitch period during
voiced speech, becomes increasingly smaller. This "pulse starvation” effect

is more noticeable for high-pitched voices.

2 number of modifications have been suggested to Iimprove the performance
of MPE coders at lower bit-rates. The inclusion of a long-term predictor in
the form of an all pole filter, can help in preserving the periodicity of
the recovered speech, by reducing the number of excitation pulses that are
necessary to reconstruct the speech waveform in an interval eguivalent to

many pitch periods [4.13,4.14). Vector Quahtization of the exclitation and
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LPC parameters can be used to bring the bit-rate down to 4.8 kbits/sec
[4.15,4.16,4.17), and a pitch synchronous Multipulse Excitation optimisation
and interpolation can reduce the bit rate even further to 2.4 kbits/sec
[4.18,4.19). In addition, new and efficient techniques for the quantization
of the LPC parameters are becoming increasingly important when operating at
bit rates less than 6 kbits/sec, while preserving the naturalness of the
coded speech £4.12,4.20,4,21,4.22].

The coded speech quality obtained from MPE coders at 16 kbits/sec is very
close to toll-quality {(equivalent to more than 7 bits PCM coded speech), at
9.6 and 8 kbits/sec good communications-quality speech is achieved and in
the 2.4-4.8 kbits/se¢ range, coded speech scunds more “"natural” and "full”

when compared to the output of typical LPC or channel vocoders.

Efforts to improve the performance of MPE coders concentrate on developing
better Multipulse Excitation optimisation algorithms and on improving the
basic MPE model. Beiter estimation algorithms for the LPC filter [4.23,4.24,
4.25,4.26,4.27) and use of adaptive post-filtering techniques [4.28] can
produce a small improvement of the coded speech guality. More effective
control over the noise frequency distribution can be achieved using a split-
band design [4.29,4.30,4,311, by independently adjusting the noise lewvel in
each of the frequency bands.

The complexity of the MPE optimisation algorithms is not prohibitiwve, and
increasingly complex implementations have been demonstrated {4.14,4.32,4.33]
following the considerable advances in the technology of the general purpose

Digital Signal Processing devices.

A detailed examination of the pulse amplitude estimation process and a
more complete description of the LPC sythesis filter model (which may
include a Short Term Predictor and a Long Term predictor), will be presented
in " this chapter. The effectiveness of the MPE noise shaping process in
changing the spectral distribution of the added distortion and improving the

perceptual quality of the coded speech, will also be examined.

A number of MPE optimisation algorithms, drawn from the two categories of
Multi-Stage and Block-Search optimisation techniques, will be presented.
These algorithms can normally be incorporated in any MPE coding system,
reqardless of modifications to the basic MPE-LPC model. The performance of a

MPE coder can improve substantially when changing from a simple to a complex




_63_

MPE optimisation algorithm, and the effect is more pronounced at higher
transmission bit-rates. 2 choice can usually be made among a few candidate
optimisation algorithms that would suit the particular requirements of a
speech coding application and it is therefore important to know the merits
of each available algorithm.

Finally results on the algorithms®' SNR performance and complexity, and a
method to design PDF optimised quantizers for the amplitudes of the excita-

tion pulses, will be presented.

4.2 Noise shaping in a MPE coder

An analytical method tc estimate the pulse amplitudes based on an additive
noise model was described in Section 3.3. The ncise covariance was assumed
to be known in advance, but in practice there is very little knowledge of
the underlying noise process. It 1is desirable though to enforce certain
spectral properties on the distortion introduced by the coder, in order to
reduce the perceptible distortion. The desirable noise spectral shape should
ideally follow the spectral variation of the speech waveform and should
allow for most of the noise energy to he concentrated within the speech

formant frequency regions, where higher noise levels can be tolerated.

Fiqure 4.2.1 shows the power spectra of the speech and the estimated noise
{added distortion) when a unit noise covariance matrix C, is chosen for the
MPE amplitude estimation process. These spectra correspond to a 64 ms voiced
speech segment, and an iterative MPE optimisation algorithm is employed to
bring the Signal to Distortion Ratio {SDR) teo the specified values of 12 dBs
(Fig 4.2.1(a)) and 24 dBs (Fig 4.2.1(b)}). The resulting noise spectrum is
certainly not flat and indicates that the MPE model favours the high power
speech spectral regions with a considerably higher SDR than that of the low

power regions.

This effect 1is more obvious at high SDRs and is caused by the inherent
bias of the Linear Prediction filter estimation method, in mecdeling the high
power speech spectral components more accurately than the Jlow power
components. As a consequence, when the order of the LPC filter is substan-
tially increased, a better spectral model of speech and a flatter noise

spectrum result.

The unfavourable distribution of the noise power can be corrected by
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FIGURE 4.2.1 Power Spectra of Speech and Distortion (noise) introduced by

the MPE coding process, when no noise shaping is employed. The duration of
the time window is 64 ms, and the SHR is {(a) 12 dBs and {b) 24 dBs.
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setting the noise covariance matrix €, to correspond to a desirable spectral
shape, thus counteracting the uneven frequency distribution of the noise and
reversing the tendency of the MPE optimisation process to model more
accurately the high power speech spectral regions. This only allows limited
control over the spectral distribution of the distortion 1ntroduced by the
coder but can still produce a noticeable improvement in the gquality of coded
speech at high SDRs.

A model of the desirable noise spectral shape, that has been used extensi-
vely is :
n Alz)
WHz) 2 ———— (Eq 4.2.1)
A,(z)
The LPC filter A(z) models the speech spectral envelope and the filter
A,(2) can be constant [4.34] or adaptive {4.35]. An adaptive filter will be

considered here, of the form :

A (z) = Alz/¥) = : = , 0<¥<1 (Fqg 4.2.2)

Wiz = (Fq 4.2.3)

The poles of the ARMA filter Wlz) coincide with the poles of the LPC
filter A(z) and 1its zeros are along the same radial axes as 1its poles but
shrunk by a factor §. By varying the value of j§ between 0 and 1, the shape
of ‘the frequency response of Witz) changes from being identical to the
frequency response of the LPC filter A(z} to being completely £flat., The
"desired” noise covariance matrix related to the freguency response of wiex)

can be formulated as :

C, = L, Ly (Eq 4.2.4)

where L, 1is the lower triangular convolution matrix which is formed using

the impulse response of the filter Wl(z).
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The pulse amplitude estimation process is affected by this choice of noise
covariance, because the linear transformation defined in Eq 3.3.3 is changed
to oLj. If W is the lower triangular convolution matrix that corresponds to
the filter W(x) then :

w=r! (Eg 4.2.5)

Since the scaling constant o does not affect the solution for the pulse
amplitudes (Eq 3.3.7), the linear transformation is set equal to W. This

transformation is equivalent to a filtering operation using the filter W(z}.

The power attenuation characteristics of W(z) are plotted in Figure 4.2.2
for two different values of the constant ¥. The frequency response of the
LPC filter A(z} 1is also shown for comparison. When y=! then W(zJ}=! and no
noise shaping is applied. When ¥=0 then W(z} becomes equal to the LPC
inverse filter :

!
Wiz) = I- Zamz_” (Eq 4.2.6)
m=1

and maximum noise shaping 1s applied.

A different interpretation can now be given to Eg 3.3.3. The signal s,
corresponds to a filtered version of the speech waveform s, which suffered
an increased attenuation of its high power frequency components by the noise
shaping filter W(z). Also, A,{qJb is the output of the combined filters A(z)
and W(z) in response to an input of excitation pulses of amplitudes b,,}

b

21"

q and positions PysPaieesbyg {see Figure 4.4.1l(a)).

If the noise shaping filter is chosen as in Eq 4.2.3 then the combined
filter is reduced to 4,(z), called Modified Synthesis Filter. {MSF), and the
MPE optimisation process is simplified. Further simplifications can be made

by exploiting the properties of the MSF. The impulse response of the MSF is:
A (z) = h(o)ryh(1)+¥2h(2)+x3h(3)¢. .. (Eg 4.2.7)

By lowering the value of ¥, the effective duration of the impulse response
is increasingly restricted. If the minimum distance between the excitation
pulses is kept greater than the jimpulse response duration, then simple ncn-
iterative algorithms for the definition of the MPE sequence can be derived

£4.36,4.371. Furthermore, by setting the value of y¥ egual to =zero, a very
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simple non-iterative MPE estimation process can be formulated [4.25,4.38,

4.39,4, 401, but the guality of the coded speech will be compromised.

4.3 Short Term Linear Predictor Model

The all pole LPC filter A{z) models the short-term spectral envelope of
speech, placing particular emphasis on the high power frequency components.
The filter is usually constrained to be minimum phase and is estimated using
Short-Term Linear-Prediction Error-Minimisation methods. The filter coeffi-
cients should be updated frequently encugh to allow adequate sampling of the
dynamically changing frequency distribution of the speech wavefornm,
especially during sound transitions. The interval over which the LPC filter
is defined should include the MPE definition interval, but could be allowed
to precede and overlap the MPE interval if the overall coder delay is to be
kept to a minimum [4.41].

Speech can be modeled as an Autoregressive (AR) process :

!
s(i} = 2: apsli=n) + e (i) , i=o,1,2,... (Eq 4.3.1)
m=1

where €p is an uncorrelated innovation source called forward prediction
error. A backward prediction error can be similarly defined and the filter
coefficients {e,} can be estimated by minimising a function of the two

errors {as when a lattice LPC predictor is defined).

Better models have been proposed to remove the bias of the estimated coef-
ficients during voiced speech when large prediction errors occur periodic-
ally, thus vioclating the hypothesis of an uncorrelated Iinnovation source
[4.23,4.42). The assumption is made that a Multipulse Excitation sequence
has been predetermined and can be included in the AR model:

! q
s(i) = ) apsli-n) + bpSli-py) + e (i), izo,1,2,... (Eq 4.3.2)

m=1 k=1
where §(i) is the Kronecker function. The speech quality improvement is very
small [4.27] because the error which 1is minimised in Eg 4.3.2 is substanti-
ally different from the error minimised during the MPE optimisation. This

can be verified by forming the one-sided z-transform equivalent of Eq 4.3.2:
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! m—1 _ q _
$Gz) = ¥ a,fs2z® 4 Zsrf—m)z"] £y bz Pr, E,(2) (Eq 4.3.3)
m=1i i=o k=14
or by rearranging terms :
=1 1-i

S(z) [1- E'Z:amz_m] -y [.:;Z:

-i z Pk
0 yps - |27+ kZbkz + Ep(z)  (Eq 4.3.4)
1 izo =4

i

The error minimised by the MPE optimisation algorithms is a function of
the difference between the original and synthesized speech waveforms. From

Egs 3.2.5 and 3.3.3, the modeling error whose energy is minimised becomes :
E (z) = W(z) [S(z)—Sy(z)] (Eq 4.3.5)

To calculate the synthesized waveform Sy(z), the difference equation :

! q
s, (i) = Zl"msy”""’ + kz:ika(i—PkJ (Fq 4.3.6)
m= =

must be solved.. Working in the same way as for Eq 4.3.4, we obtain :

9

S,(x) = M (z) + ACx) Y byz H (Eq 4.3.7)
k=1
where
=4 =i
By) = AG) T[T ag s, cm e (Eq 4.3.8)
1=0 m=1

is the transient response of the LPC synthesis filter and s _{-m}, m=1,2,..,1

Y
are the last ! synthesized speech samples of the previous frame. Assuming

for the moment that :

s {(-m) = s(-m)

y , m=1,2, ... ,1 (Eq 4.3.9)

and substituting Eqs 4.3.7 and 4.3.4 into Eq 4.3.5, the relatlionship between
the two modeling errors can be established :

E (z) = WRIA(IE (z) = A (2)E (z) (Fq 4.3.10)

The power spectra of the two modeling errors are therefore quite diffe-
rent. The coefficients of the LPC filter could be estimated by minimising

the energy of £, (z) instead of £,(z), but that would involve an iterative
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non-linear optimisation process which c¢ould be complex and might not
guarantee the stability of the estimated filter. A better way to remove the
effect of the error surge during voiced speech, is to include a second AR
filter that models the fine structure of the speech frequency distribution

{long-term predictor).

4,4 Pulse Amplitude Optimisation (Flow Diagrams - Simplifications)

The transient response of the LPC filter, defined by Eq 4.3.8, was not
taken into acount when the amplitude estimation problem was examined in
Section 3.3. To inlude this extra term, the additive noise model of Eq 3.2.5

must be modified to :

§ = B, f € = WM, + Alq] b+ e, (Eq 4.4,1)

where m, is the transient response and Afq] b 1is the forced response of the

LPC filter. The normal equations for the pulse amplitudes also change to :

. T -
Dfgl b = A,Lq]" W(s-m) (Eq 4.4.2)
where :
Dfg] = Alql' ALgJ (Fq 4.4.3)

The minimum error energy for a given set of pulse positions becomes :

T _ Tea? T T
[ el e Jain = (s-m)TW'W (s-m ) - b7, rq]" W(s-n,) (Eq 4.4.4)

This alteration is reflected in the flow diagram of the MPE optimisation
process. As shown in Fig 4.4.1l(a), the subtraction of the LPC transient from
the input speech samples is followed by a filtering through the noise
shaping filter ¥W(z). The result is compared to the response of the Modified
Synthesis filter (MSF), when excited by the MPE sequence. The difference
between the two waveforms forms the error E, (z) whose energy must be

minimised. Note that the initial state of the MSF is set to zero.

The MPE optimisation process can also be interpreted in another way by
considering the relationship between the speech waveform and the residual

EP(z). The one sided z-transform equivalent of Eg 4.3.1 is :

S(zx) = M(x) + A(z)EP(z) (Eq 4.4.5)
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where :

-1

=i
Hez) = 4z Y [ Y ag s -ar]2 (Eg 4.4.6)
iso m=1{

Substitution of Egs 4.4.5 and 4,3.7 into Eq 4.3.5 leads to :

E,(z) = A (z)E (z) - A,(z) qukz-Pk (Eg 4.4.7)
k=1
where :
-1 _1-i
Ez) = Eptz) + 3 [ Y apu(st-ads ) )] (Eq 4.4.8)
t=0 m={

The error £, (z) in BEg 4.4.7 is now formed in a different way. The two
waveforms compared in the optimisation process, correspond to the response
of the zero-initial-state MSF to the excitation inputs, the MPE and the new
excitation waveform £, (z). This new waveform differs from the prediction
error EP(z) in only the first | samples in each frame. This adjustment is
made to account for the fact that the last ! samples of the previous speech
frame are not the same as the last [ synthesized samples of the same frame.
This "corrected” residual will now be used in place of the original LPC

residual.

In Fiqure 4.4.1(b}, the two excitation waveforms are directly compared
before passing through the zero-initial-state MSF to form the error £,(z).
The idea of a "corrected” residual can be transfered to the amplitude esti-
mation eguations. Using the matrix equivalent of Eq 4.4.5 (s = m + A eP) and
by substituting into Eq 4.4.2, the normal equations for the pulse amplitudes

become :
. T
Digl b = A,lq] A, e, (Eq 4.4.9)
wheke :
= 1
e = eP + A (m—my) (Eq 4.4.10)
The elements of the gxg matrix Df¢J are :
n—max(pk,pm)-l
DLql(k ,m) = Plp,,p,) = Y by ik, Gixlpp=py|) , 1Sk,m<q  (Fq 4.4.11)

t=o

When the minimum distance between the excitation pulses is kept greater
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than the effective duration of the MSF impulse response, the matrix D{¢7
becomes diagonal and the solution of the normal equations 4.4.2 or 4.4.10 is
considerably simplified [4.36]. The reduced complexity of the amplitude
estimation process allows the search algorithm for the optimum pulse

positions, to consider a larger set of possible position combinations.

An extreme simplification results when the constant ¥ in the noise shaping
filter W(z) is set equal to zero. In this case the impulse response of 4, (z)

is a unit impulse and the amplitudes, estimated using Eq 4.4.9, are :

b, = e .(py} , k=1,2,...,9 (Eq 4.4.12)

This simple solution for the pulse amplitudes is accompanied by a simple
solution for the pulse positions. The minimum erreor energy for a given set

of pulse positions is :

9
T - Al 2
[ €2 Cu ]mfn e & - g: ec (pp) (Eq 4.4.13)
=1

The optimum set of pulse positions can therefore be determined by locating
the maxima of the "corrected” residual f.(z) [4.401. As expected, results
obtained from this algorithm are not as good as the results obtained from a

full implementation of a MPE optimisation algorithm.

Depending on the search strategy adopted by a MPE optimisation algorithm,
the system of normal eguations 4.4.2 may need to be solved for each of the
pulse position combinations considered. To avoid the considerable amount of
computation involved in calculating the matrix D[q9J] for each set of pulse

positions, a larger nxn matrix can be calculated only once :

= aT
D =2, A,
or : (Eq 4.4.14)
DCitl,j+1) = ®(i,j) , oki,i<n-1

and the elements of DfgJ can be chosen from the matrix D as :
DLqItk,m) = Dipyt1,p +1) , 1<k, mlq (Eq 4.4.15)
Computational savings result because the elements along each diagonal of D
can be recursively computed from its first row or column, using the formula:

DUit1,j+1) = DUi,j) = h, (n=i)h (n=j) (Eq 4.4.16)
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Provided there is sufficient storage available, the full matrix D can be
calculated from its first row, by performing n{n-1)/2 multiplications and

additions.

To reduce the computational load and the storage requirements, the matrix D
may be assumed to have a Toeplitz structure, in which case its elements are

only a function of the distance between the pulse positions :

n-]éi-f{-1
Dlit+],j+l) = ¢b(i'j) = 2: bw(k)hw(k+|£—jl) , 0%i,jsn—1 (Eq 4.4.17)
k=o

This is a similar approximation to the one done in LPC analysis when the
prediction error summation limits are extended to infinity to form the auto-
correlation LPC estimation method. The approximation of Eq 4.4.17 will
therefore be referred to as the autocorrelation approximation and will be

used extensively to simplify a number of MPE optimisation algorithms.

4.5 Long Term Linear Predictor Model

A second all-pole filter can be combined with the LPC filter defined in
Section 4.3, to form a composite AR model. This second filter models the

"fine"” spectral structure of the speech signal and is defined as :

Clz) = , ddo (Eq 4.5.1)

where 4 is an integer delay coefficient. The summation term of the denomina-
tor in Eq 4.5.1, forms a d-steps ahead prediction, hence the filter C(z)

will be referred to as the Long-Term Predictor (LTP).

The use of a LTP has been adopted by a number of predictive coding schemes
[4.2,4.433, and results a greater efficiency in coding the excitation
signal. In the case of the MPE coder, the use of a LTP induces periodicity
in the synthesized speech waveform with 1less effort (i.e. smaller number of
pulses}, and can therefore achieve an overall reduction in the number of
excitation pulses necessary to fulfil the quality requirements of a
particular application [4.441. The effect of the LTP in improving the

quality of coded speech is epecially noticeable for high pitched voices.

A change in the value of the delay coefficient 4 has a highly nonlinear
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effect on the state of the LTP. That is why the LTP is usually placed before
the LPC filter when forming a combined synthesis filter. For the same reason
extra protection from transmission errors must be allowed for the LTP
coefficients, to safequard against the accumulation and propagation of
errors that may be caused by the long duration of the LTP's impulse response
[4.13,4.451.

The value of the LTP delay coefficient is not an estimate of the pitch
period, because the LTP is optimised to minimise a modeling error and is not
designed to estimate the speech fundamental frequency. The role of the LTP
in a MPE coder 1is also different from its role in other predictive coders.
When the LTP coefficients are updated very frequently, the LTP cannot
operate for a sufficiently long time with the same set of coefficients, and

its behaviour is more tightly controlled by the MPE optimisation algorithm.

Avolding for the momemt, the problem of estimating the LTP coefficients,
the effect of introducing the LTP in the MPE optimisation process can be

studied as follows :

The response of the LTP filter to the Multipulse Excitation can be recur-

sively calculated using the difference eguation :

O,

q
1(i) = Y o xli=d=j) + ) b, 8(i-pp) , i=0,4,2,... (Eg 4.5.2)
i=o k=1

The z-transform equivalent of Egq 4.5.2 is :

g o dtj-! . q -p
X(z) = 2: ci[X(z)z-d_’ + 2: x(i—d—i)z_'] + 2:1bkz k (Eq 4.5.3)
1=0 t=o =

or by rearranging terms :

1 -pp
Xiz} = My(z) + Clz) ) bz

k=1

(Eqg 4.5.4)

where

P dtj-1 _
My(z} = C(z) 2: {’i z: x(s—d—f)z“] (Fg 4.5.5)

j=ol = %o

is the transient response of the LTP filter. If the output of the LTP filter
is used as the input to the LPC filter 1in Eq 4.3.7, instead of the MPE

input, then the response of the LPC filter becomes :
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q -
Sy(z) = Hy(z) + Alz)fy(z) + Alz)C(z) z: bpx Pk {(Fqg 4.5.6)
k=1
Substitution of Eq 4.5.6 into Eq 4.3.5 results :
E (z) = W(z)[S(z)—ﬂy(z)-A(z)HI(z)] - Ay (z)C(z) g: bz (Eq 4.5.7)
EX

The modeling error £,(z) is formed in the same way as before, when the LTP
filter was not present. The difference 1is that a new “"combined" transient
response is subtracted from the speech signal and the combined synthesis
filter Aw(z)C(z) replaces the MSF A, (z) in the amplitude estimation equati-

ons (Fig 4.5.1{(a)). Note that the search algorithms that optimise the pulse

positions remain the same.

The MPE optimisation process can be represented in three different ways,
corresponding to the diagrams in Fiqures 4.5.1(a),{b) and (¢). To derive the
second approach (the first was defined by Eq 4.5.7), Eas 4.4.5 and 4.4.8 can
be used to transform Eg 4.5.7 into:

Pr

9 -
Eg(z) = A () [E )=ty ()] - 4, (x)C(2) kz:bkz (Eq 4.5.8)

1
Eq 4.5.8 shows that the effect of the "combined” transient response can be
taken into account by correcting the LPC residual for a second time, to
remove the effect of the LTP transient. The LPC and LTP filters may then be
assumed to start from a zero state (Fig 4.5.1(b)).

An AR model can be established in the same way that the Short-Term
Predictor (S5TP} model was defined by Eq 4.3.1. The AR model for the Long
Term Predictor is based on the residual F_(x) and assumes a different

P
inngvation source Es(z), called second residual :

£
epli) = ZcieP(n‘—d-j} te (i), i%o,1,1,... (Eq 4.5.9)
1=o

By transforming Eq 4.5.9% into the z-domain and combining it with Eg 4.4.5,

a new model for the speech signal can be derived :

S{z) = H{z) + A(z)ﬂsfz) + A(z)C(z)fS(z) (Eg 4.5.10)
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where :

£ d+j—1 )
A_(z) = Clz) z: Ff e (i—d-i)zh'] (Eq 4.5.11)

Egs 4.5.6 and 4.5.10 can be substituted into Eq 4.3.5 to form the error :

9 _
P
Ew(z) = Aw(z)C(zJ{Ed(zJ— 2: bkz k] (Fqg 4.5.12)
=1
where !
£ -1 {1 .
Ed(z) = Esfz) + [ - 2: ¢ z-d ’] 2: [ 2: :+m(5(_m)"5y(_“))] 274+
i=o i=o

£ d+ j-1 )
+ Z [ Z (es(i—d—f)—x(:'-d—i)) z_'] (Eq 4.5.13)

i=o

The "corrected” second residual, defined by Eg 4.5.13, is subtracted from
the MPE sequence (Eqg 4.5.12) and the result passes through the zero-initial-

state combined synthesis filter, to form the error signal (Fig 4.5.1(c)).

Two different models have been proposed [4.13,4.24] for the estimation of
the LTP filter coefficients. The first minimises a prediction error and the
second minimises the same modeling error that is minimised by the MPE opti-

misation algorithms :

1) OBTAINING THE LTP PARAMETERS BY MINIMISING THE PREDICTION ERROR

The LPC predictor model, defined by Eqg 4.3.1, removes the short-term corre-
lation from the speech signal. A second predictor {Long-Term-Predictor) can
be used to minimise any long-term correlation that is left over from the
first modeling stage (Short-Term-Predictor}. The coefficients of the LTP
filter are estimated using Linear Prediction methods, similar to the covari-
ance and autocorrelation methods used in LPC analysis. The covariance method

can be derived by rewriting Eq 4.5.9 as :

e, = EP[dJ ct e (Fq 4.5.14)

where e, and e, are the n -dimensjonal vectors that contain the samples of

the first and second residual in the current frame of n. samples, ¢ contains

the LTP coefficients and :
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- o e 1
eP( d) eP( d-1) .- eP( d-g¢)
e (-d+#1) e (-d) e (—-d-g+1)
By (d] = £, P, P (Eq 4.5.15)
eP(—dfnC—l} eP(—dfnc-Z) eP(—d-gfnc-i)
The Least Squares estimate of the LTP coefficients is :
4
— T T
¢ = (E,rd1" E,Ld]) Ed1" e, (Eq 4.5.16)
and the minimum prediction error energy becomes :
[ef e Jain=2 ¢ -eTE[dJ(E[dJTE[dJ)-iE[a'JTe (Fq 4.5.17)
s Ss jmin T %p Sp = p p P P P P 77

To determine the optimum value of the delay coefficient d, the expression
of Eq 4.5.17 must be evaluated for every permissible value of 4 (usually a
range of integer values between 20 and 160) in order to find the global

error minimum.

The LTP filter defined by Egq 4.%5.16 can become unstable and that might
cause a deterioration in the quality of the coded speech due to the presence
of annoying clicks and pops in the recovered speech. Simple testing
procedures are available to detect the instability of the LTP filter and

correct it without reducing the prediction gain of the LTP [4, 46].

The coefficients of the STP and LTP can be estimated simultaneously in a
single optimisation stage. An analytic process to achieve the optimisation
is only possible when d2n.. The second non-zero sample of the LTP impulse
response is then outside the current frame of n. samples and it can be
safely assumed that C(z)=I. Substituting Egs 4.4.6 and 4.5.11 into Eg 4.5.10

the new combined model of speech is formed :

n

c
—~ P

‘ ! ne ) £
Stz) = Zi[am Zsrf—m)z"] £y [c,.

m= izo f=o

e (i—d—i)z_i] v E(z) (Eq 4.5.18)

t=o

Eq 4.5.18 does not include any prediction error samples eP(f) from the

current analysis frame (o,n—1), and can be rewritten in a matrix form as :

s =5at EP[dJ ct e (Eq 4.5.19)

where e, is the modeling error (second residual), a is the /-dimensional
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vector that contains the coefficients of the STP, and the nx/ matrix § is
defined as :

5{—-1) s(-2) ... s{=1)
s{o) s({—4) s(=1+1)

S = . . (Eq 4.5.20)
s(n-2} s{(n-3) ... s{=l+n-1)

The coefficients of the STP and LTP can be jointly optimised by minimising
the energy of the modeling error in Eq 4.5.19. Both sets of coefficients are
now dependent on the value of the parameter 4, and their optimum values can
be found (for a given value of d4) using Least Squares methods. These optimum

coefficients are :

S R SR S N S (Eq 4.5.21)

T T
EP[dJ EP[dJ E [d]" s

When the filter coefficients are calculated using Eq 4.5.21, the stability
of both the STP and LTP filters must be checked and "correction” procedures

must be applied when one of the filters becomes unstable.

Equation 4.5.21 can only be used when the specified value of the delay
parameter d does not necessitate the use of current prediction error samples
ep(i) (d2n_ ). This constraint can sometimes be 1lifted, and iterative
minimisation techniques have been proposed [4.471, that jointly optimise the
STP and LTP coefficients when the wvalue of the delay coefficient is smaller

than the frame size (d(nc).

The considerable complexity of the LTP estimation process can be reduced
by employing the autocorrelation method to determine the filter coefficients
and by using a simpler search method to determine the optimum value of the
LTP.delay coefficient 4. The number of LTP coefficlents {ci} is usually set
between one and three (o<g<2) with best results obtained for a three-tap
predictor (g=2). The optimum definition interval {(n.,) depends on the bit
rate at which the MPE coder operates [4.14], and should in general be
greater than 15 ms to allow the LTP to be effective in tracking the

periodicity of the speech waveform.
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2) OPTIMISING THE LTP COEFFICIENTS BY MINIMISING THE SIGNAL DISTORTION

The modeling error minimised by the MPE optimisation process can be expre-
ssed as a fuction of the LTP coefficients (cj} and the pulse amplitudes {b,)}
by combining Egs 4.5.7 and 4.5.5 to form :

£ dtj-1 . 4 -
Ey(2)= W(z) [S(z-H (2)] -4, (2)C2)) [:i Y x(f—d—;)z"] ~Aw(z)C(z)2: bz K
=1

i=o i=o
(Eq 4.5.22)

Since the impulse response of the LTP filter is :

H

] £ 4
C(z) =1 + z: ciz"d_’ + [ Z: c-z_d—’] £ oL, (Eq 4.5.23)
j=o J=o0

the error F (z) is linearly dependent on the LTP coefficients {Cj} only when
d>n (that 13 when the second non-zero sample of the LTP impulse response
lies outside the MPE frame). Under this restriction, the LTP coefficients
and the pulse amplitudes can be jointly optimised by minimising the energy

of the distortion e,- This distortion is defined as :

: c
e = W (sm) - [AXd1 | ALe ] |- (Eq 4.5.24)
where :
£ (~d) £(=d=1) ... £(=d-g)
2 (—dt i) r{~d) r{—-d-g+1}
X[dJ = : : (Fq 4.5.25)
3(~dtn-1) x(-dtn-2) ... x(-d-g+n—1)

The jointly (LS) optimised LTP coefficients and pulse amplitudes are :

-1
\ X[dJTAJA,[q] Xrd1"AM (s-m,)
= | e RN T TN EERRE A (Eq 4.5.26)
T ' T T -
A,[q] A X[d] | A Lq]TA,lq] 2,lq1"W (s-m, )

and the minimum distortion energy is :

[ e; e, ]min = (s—my)TWTW (s-my) - [CTX[dJTA; + bTAu[qJT} W s—my)

(Eq 4.5.27)
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To determine the optimum value of the LTP delay coefficient, the pulse
amplitudes are initially assumed to be zero (since the MPE sequence has not
been defined yet) and the expression of Eq 4.5.24 1is evaluated for the
optimum LTP coefficients {c¢;} (Eq 4.5.23), when d is varied within a pre-

defined interval of integer values.

The optimum wvalue of the LTP delay coefficient remains fixed during the
ensuing MPE optimisation process, but the LTP coefficients {c¢;} can be
reoptimised, this time jointly with pulse amplitudes. Eg 4.5.23 can easily
be included 1in the search for the optimum pulse positions and can improve
the performance of various MPE coding schemes without significantly increa-

$ing their complexity.

Alternatively, the LTP coefficients may remain constant during the MPE
optimisation process. In this case, the contribution of the LTP is removed
from the speech signal {(Eq 4.5.7) before the optimisation process begins,
and the pulse positions and amplitudes are estimated by completely
disregarding the presence of the LTP.

The complete_ algorithm of LTP estimation can be considerably simplified by
exploiting the similarity between the matrix elements of Eg 4.5.23 for
adjacent values of the delay coefficient 4 [4.41].

The restriction on the minimum wvalue of the delay coefficient (d2n) can be
eased by artificially reconstructing a version of the waveform f(z)} for the
current MPE frame using its past values, and then proceeding as before using
Egs 4.5.21 and 4.5.22 (4.48,4.49]). The same restriction can also be lifted
by using nonlinear optimisation methods to determine the LTP coefficients.
The energy of the medeling error (Eq 4.5.22) 1is then considered as a
function of the LTP coefficients, and it is minimised using nonlinear

programming techniques.

The LTP filter performes better {in terms of the perceptual quality of the
coded speech} when its coefficients are determined by minimising the energy
of the distortion instead of the prediction error {(mentioned as the previous
method). Unfortunately, the distortion minimisation method poses a
restriction on the minimum value of the delay coefficient (which should be
larger than the size of the MPE frame), and this means that the size of the
MPE frame cannot be increased without impeding the performance of the LTP

filter. This reguirement contrasts with the observed improved performance of
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most MPE optimisation algorithms, obtained when larger speech frames are
used. A compromise is therefore sought which usually limits the duration of

the MPE analysis frame between 5 ms and 10 ms.

The frequent updating of the LTP filter parameters necessitates the use of
efficient quantizers for the LTP coefficients. Vector quantizers can be
designed based on Euclidian error measures or, for improved efficiency, on

the minimisation of the average distortion introduced by the coder.
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4.6 Multi-Stage (MS) Optimisation Algorithms

The Multi-Stage algorithms, mentioned in Chapter 3, begin by optimising
the position of a single excitation pulse in the first stage, and then add
more pulses, optimlsing their positions in separate stages. The number of
pulses is steadily increased, until the required total is reached.

The position of each pulse, once defined cannot bhe changed in the next
optimisation stages. The pulse amplitudes though, can he redefined in later
stages either by jointly optimising the amplitudes of a group of pulses, or
by allowing additional pulses to be placed at locations already occupied by
pulses defined in previous stages. When pulse coincidences are allowed, the
pulses that occupy the same position are added together to form a single
pulse.

The pulse position optimisation at each stage is done by examining all the
possible pulse locations within a speech frame, and choosing the location
that results the minimum approximation error (Eq 3.4.2). The complexity of
the MS algorithm is determined by the computational effort required to
calculate approximation error. The complex MS algorithms are very efficient
at high pulse rates (number of pulses per second), and can therefore improve
noticeably the performance of a MPE coder cperating at a high transmission
bit rate. On the other hand, when ease of implementation and cost are a
primary consideration, the choice may be restricted to simpler and less

efficient algorithms.

Five MS algorithms will be described, starting with the simpler
algorithms. The first three allow additicnal pulses to reinforce or weaken
existing pulses, by permitting pulse coincidences, while the last two
exclude this possibility. The autocorrelation approximation defined in
Eq 4.4.17 can by employed to simplify all five methods. The performance of
these algorithms, in terms of Signal to Noise Ratios (5NR}, and their
complexity, in terms of multiplications/additions, will be compared to the
results obtained from Block Search algorithms. It will also be demonstrated
how the use of the noise shaping filter W(z), as defined in Eg 4.2.1, can
substantially improve the efficiency of simple MS algorithms at high pulse
rates, by reducing the dependency of the approximation error estimation on

the relative pulse proximity.

A general linear £filter model will be assumed during the presentation of
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the MPE optimisation algorithms, but the simplifications that result from

the use of a single LPC synthesis filter will bhe pointed out.

1) METHOD MS1

This method is relatively easy to implement and can give results compara-
ble to those obtained from the more complicated MS methods, when the number
of pulses per frame is small. Improvements of this method will be presented
as methods MS2 and MS3.

The excitation in the first stage of the algorithm is a single pulse which
can be placed in any of the n sampling points within a MPE analysis frame,
The error, as defined by Egs 4.3.5 and 4.4.1, 1is a function of the pulse

position and can be expressed as :
e, il =y, - b, (i) £Li] . ogign—1 (Eq 4.6.1)
where :

Y, = W (S-Ey) (Eq 4.6.2)

is the ™"target"signal which is compared to the output of the =zero-

initial-state MSF, and :
£i] = [o,o,...,hw(x),hw(zj,...,hw(n—i—i) ] ,  oi<n-1 (Eg 4.6.3)

is the impulse response of the MSF A,(z), shifted by i samples. The solution

to the normal equations 4.4.2 is simply :

¢ (i)
by(i) = —%——  ,  ofitn-t (Eq 4.6.4)
PCi, i)
where :
— T .
e, (1) =y, £017 , olidn-y (Eq 4.6.5)

is'the cross-correlation between the signal Y, and the shifted impulse res-

ponse of the MSF, and ®(i,;) 1is the auto-covariance matrix defined in

Eg 4.4.11. The error energy can be found by combining Egs 4.4.4 and 4.6.3 to
form the approximation error function for the first pulse :
‘ - , T c (i)t ,

e (i) = [ lil" e il ], =¥ ¥, - S oSy (g 4.6.6)

The expression of Eq 4.6.6 has to be calculated for each of the n possible
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pulse positions in order to find the position where the minimum error
occurs. Since the first term of the right hand side of Eq 4.6.6 is constant,
the optimum pulse position must be that one which maximises the second term.
Once the optimum position has been determined, the pulse amplitude is

calculated using Eg 4.6.4.

In the second stage, the position p, and the amplitude b, of the first

pulse are kept constant, and the error becomes a function of the position

and amplitude of the second pulse :
e il = y, - b,(i) £li] , ofiin—14 (Eq 4.6.7)
where :

Y, Y, — by £lp] {(Eq 4.6.8)

The optimum amplitude of the second pulse at position { can be found by
minimising the error energy, assuming that the position and amplitude of the

first pulse are fixed. This optimum amplitude is :

¢, (i)
bli) = — ofisn~1 (Eq 4.6.9)
i ,i)
where :
c,li) = yI £Li1 = ¢ (i) - b, Plp,,i) , ofisn-1 {Eq 4.6.10)

and the approximation error function for the second pulse is :

cifi)z

, olisn-1 (Eq 4.6.11)
Pli,i)

Py o 2T . T
(i) = [ eglil" efil Jpin = vi ¥, -

The optimum position of the second pulse is found by locating the minimum
of the approximation error function defined in Eq 4.6.11, or equivalently,

by maximising the second term of the right hand side of Eq 4.6.11.

In a similar way, assuming that ¢ pulses have already been defined and
that their positions and amplitudes remain constant, the error can be
expressed as a function of the position and amplitude of the ¢+1 pulse :

e, il = Yg ~ bq+1(i) £Li] ’ olisn—1 (Fq 4.6.12)
where :

Yo = Yq-4 ~ g flp,d =y, - AJLgI b (Fg 4.6.13)
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The optimum amplitude of the ¢+1 pulse is :

cq(i}
b (i) = ————— R olidn-1 (Eq 4.6.14)
91 Pli,i) 7
where :
- ool Eri T o= Dy ; o
cq(aJ Y, £Lil cq_i(t) bg ¢(pq,:) , ofisn-1 {Fq 4.6.15)

and the approximation error function for the same pulse is :

. cg(i)?

eq+1(iJ T ¥y ¥g - —E;?TTT- , o0f%isn—-1 (Eq 4.6.16)
The iterative relationships of Egs 4.6.13-4.6.16 form the basis of the MS1
algorithm and are employed once in every optimisation stage. This does not
necessarily imply that a new pulse is added at each stage, as it is possible
to determine an optimum pulse position that is the same as the position of
an existing pulse. When a pulse coincidence occurs, the amplitudes of the

two pulses are added and the total number of pulses does not change.

Pulse coincidences are more likely to happen when the number of pulses
defined in each analysis frame is increased. As a consequence, the number of
stages required to construct an excitation of ¢ pulses is disproportionately

inreased when ¢ becomes large.

A flow diagram of the complete algorithm is presented in Fig 4.6.1. The
subscripts denoting the stage number have been dropped because the updated
array values can replace the wvalues calculated in the previous stage. An
n-sample excitation sequence {s#(i)} is defined and initially zeroed. The
pulses defined in each stage are added to the excitation sequence, thus when
two pulses coincide their amplitudes are added together. The auto-covariance
matrix P(i,j) can be precalculated and stored using the efficient procedure
described in Section 4.4 or, if storage is limited, the required elements

can be calculated in every stage.

The cross-correlation values are stored in the array c = fe(ol),...,efn-1)]
and are updated in every stage. As seen in Fig 4.6.1, there are two equiva-
lent ways of updating the cross-correlation array. In the first method, the
scaled auto-covariance values are subtracted from the cross-correlation

cq_ifi) (Eg 4.6.15%). The second method first updates the signal component
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y?_ifiJ (Eq 4.6.13) and then computes its cross-correlation with the shifted
impulse response of the MSF (Eq 4.6.15). Which of the two methods is more
efficient computationally, depends on the coder parameters chosen for a

particular application.

It is interesting to note that the wvalue of the cross-correlation cq(i) is
zeroed at the position where the pulse is placed. For example, using
Eqs 4.6.14 and 4.6.15, the wvalue of the cross-correlation at the optimum
position of the ¢ pulse is :

°q~1(Pg’

cq(pq) = cq-iqu) - ?(pq,pq) =0 {Eq 4.6.17}

Plpg.pg)
It is therefore certain that the ¢+1 pulse will not be placed at the same
position as the pulse defined in the previous stage. It cannot be guaranteed
though that the optimum position of the g+1 pulse will not be the same as

the position of ancother previously defined pulse, because in general :

c (i) #0 , i#p (Fq 4.6.18)

To eliminate all pulse coincidences the pulse amplitudes must be adjusted

so that the corresponding cross-correlation values become zero :

cg(ir =0 , e [ PysPyr---iPg ] (Eq 4.6.19)

This can be done by solving the system of normal equations 4.4.2 to obtain
the jointly optimised pulse amplitudes. This technique will be described as
method MS4.

The effect of increasing the number of pulses per frame on the number of
pulse coincidences can be measured by finding how the average number of
stages per frame changes when the required number of pulses per frame is
increased. The results given below were taken from a long speech data
tréining set of eight male and seven female speakers. The speech signal is
low-passed to 3.4 kHz and sampled at 8 kHz. A MPE analysis frame of 100
samples and a non-overlapping LPC analysis frame of 200 samples are used {at
8 kHz sampling rate). The order of the single LPC filter 1is 12 and the
constant y of the nolse shaping filter W(z) is set equal to 0.9 :
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Pulses per Frame b) 10 15 20 25 30
Average Kumber of }
Stages per Frame 5.0 10.3 16.5 24.1 33.4 44 .8

A disproportionate increase in the number of stages per frame can be
observed at high pulse rates. The same effect is observed when the average
number of stages required to bring the SNR in every frame to a preset level,
is plotted over a wide range of SNRs {(Fig 4.6.2(a)). The logarithm (to the
base of 10) of the average number of stages is plotted in Fig 4.6.2{a) and
the almost linear relationship indicates that the number of stages increases
exponentially as the SNR level is increased. Consequently this is translated

to an exponential increase in the computational complexity of the algorithm.

Both the LPC analysis and MPE analysis frames in Fig 4.6.2(a) are of 128
samples, and the constant ¥ is set equal to one. In Figures 4.6.2(b},{c) and
{(d), the value of ¥y 1is set to ¥=0.9, ¥=0.8 and ¥=0.6 respectively. To
provide a more meaningful comparison and to compress the large range of
values, it is the logarithm of the ratio of two values that is plotted. The
reference value is the wvalue of the average number of stages when ¥=1, and
the values of the average number of stages when ¥=0.9, ¥=0.8 and ¥=0.6 are
divided by the reference value and the logarithm (to the base of 10) of the

ratio is plotted.

It is evident that at high SNRs, the performance of the MS1 algorithm can
be dramatically improved by lowering the value of the constant 3. That
happens because by reducing the value of ¥, the effective duration of the
impulse response of the Modified Synthesis Filter A,(z) 1is also reduced. The
assumption that the pulse amplitudes once determined remain fixed, becomes
very unrealistic when two pulses approach each other, because their
interdependence is not properly taken into account (by jointly optimising
théir amplitudes). By reducing the duration of the MSF impulse response,
their interdependence is minimised and@ the efficlency of the pulse position
optimisation algorithm is improved. This improved efficiency i{s especially
noticeable when the number of pulses defined in each frame is large (high
SNR}, because it 1s quite likely that during the search for the optimum
pulse position, locations close to existing pulses will be examined. In the
extreme case when ¥=0, a closed form solution for the pulse positions exlists
(Eq 4.4.13).
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The improved performance of the pulse position optimisation process is
opposed by the reduction in SNR caused due to the fact that when the value
of ¥ 1s small, the error-measure minimised ls not closely related to the
actual distortion introduced by the coder. Therefore when the value of y is
reduced below a certain level, the performance of the algorithm starts to
deteriorate, instead of improving. This can be observed by comparing Figures
4.6.2(a), (b) and (c). If the optimum wvalue of the constant ¥ for a certain
SNR level, is the one that minimises the number of staqes required to reach
that level, then it is clear that the optimum value of ¥ decreases as the-
SNR level (or equivalently the number of pulses) inreases. A small value of
¥ only becomes advantageous when a relatively high SNR level is required.

Methods that jointly estimate the pulse amplitudes while optimising the
pulse positions, d&o not usually benefit from the use of low ¥ values and
perform best when ¥ 1is close to one. This will be demonstrated when method

MS5 is examined.

The autocorrelation approximation introduced in Section 4.4 can readily bhe
used to simplify the MS]1 algorithm. The symmetric auto-covariance matrix
P{i,{) in Fig 4.6.1 can be replaced by the Toeplitz matrix ®,(i,;j) defined
in Eg 4.4.17. The optimum pulse position can then be determined at each
stage by finding where the absolute maximum of the cross-correlation occurs
(Eq 4.6.16), that is why this method has been described as the maximum
cross—-correlation MPE algorithm [4.50). The n auto-covariance values have to
be calculated only once at the start of the algorithm, and the
cross-correlation array can be efficiently updated by subtracting the scaled
auto-covariance values from the cross-correlation values calculated in the

previous stage. This simplified@ method will be referred to as method MSla.

2} EFFICIENT CALCULATION OF THE CROSS-CORRELATION AND AUT(O-COVARIANCE

The cross-correlation ¢ between a given signal y and the shifted impulse
response of the MSF can be performed efficiently by filtering the time
reversed signal sequence through the filter A,(z). Since the convolution
matrix A, is symmetrical about its cross-diagonal (persymmetric), it can be

represented as :

A, = PA, P (Eq 4.6.20}
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where P is a wunit matrix with ones along its cross-diagonal. The cross-

correlation array in Fig 4.6.1 can then be calculated as :

c=Aly="p [ A, (p y) ] (Eq 4.6.21)

which, starting from the inner brackets, is equivalent to a time reversal of
the signal vy, followed by a convolution with the MSF and a second time
reversal. If the order of the filter A,6(z) 1is much smaller than the size of
the MPE analysis frame, then the convolution operation {found in Egs 4.6.5
and 4.6.10) requires less computations than a direct calculation of the

cross-correlation.

Similar computational savings can be achieved in the calculation of the
auto-covariance of the MSF impulse response. The signal used in the compu-
tation is now the MSF impulse response itself :

[ P(i,0),90i, 1,...,Pli,n-1) JT = p [ A, (p ffiJ) ] , oli<n—1 (Fq 4.6.22)

Eq 4.6.22 can be used to calculate the first row of the matrix ®({,;) and
the efficient recursive formula of Eq 4.4.16 can be used to derive the rest
of the matrix elements. Whean the autocorrelation approximation is applied,

the matrix ®,(i,j) is Toeplitz and is therefore defined from its first row.

3) METHODS MS2 AND MS3

Both MS2 and MS3 methods are based on method MS1 but try to avoid some of
its shortcomings. The reason method MS1 becomes inefficient at high pulse
rates, 1is that whén the excitation pulses approach each other their
interaction is not accurately compensated for, and the approximation error
measured is larger than it would be if the pulse amplitudes were jointly
opﬁimised. As a consequence, some of the pulses may need to be readjusted in
later optimisation stages by bringing additional pulses to the same

locations.

To avold the pulse coincidences, the pulses amplitudes may, at some stage
during the MPE optimisation, be readjusted. This form of delayed amplitude
correction allows the pulses derived during the first stages, to take Into

account the presence of pulses defined in later stages.
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Various pulse correction schemes have been proposed that iavolve a "joint”
or “"repeated” amplitude reoptimisation at the end of each stage of the
algorithm. These schemes reoptimise a small group of pulses [4.51,4.14] or
all the excitation pulses [4.13,4.521. A method that jointly reoptimises all
the pulse amplitudes at the end of each stage, will be later presented as
method MS4.

A simpler approach has been adopted in methods MS2 and MS3. A repeated
pulse amplitude reoptimisation can be applied in such a way as to maximise
the reduction in the approximation error. To avoid solving a system of
equations, a single pulse is identified which causes the maximum drop in the
value of the approximation error, when its amplitude is corrected. The same
process can be repeated a number of times to identify more pulses . Notice
that the pulse amplitudes, as defined by this process, will eventually
converge to the set of values that would have been obtained if all the
pulses were jointly reoptimised by solving the system of normal equations in
Eq 4.4.2.

The sequential selection of the pulses to be reoptimised can be achieved
using Eq 4.6.i6, which provides the approximation error as a function of the
g+1 pulse position, and takes into account that ¢ pulses have already been
defined. However, instead of searching over the whole range of possible
pulse positions to find where the error minimum occurs, the search is now
restricted to the positions already occupied by pulses. Clearly the pulse
whose amplitude correction causes the maximum error reduction is :
cq(p,)z

k = max!

A (Eq 4.6.23)
1$igq | ®piapy)

The corrected pulse amplitude is formed from its initial amplitude plus the

amplitude of an additional pulse placed in the same position :

by = by * b, (Eq 4.6.24)

where :

L S (Eq 4.6.25)

b
cor ¢(.PkJPk)
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The updated cross-correlation sequence is :
cgtid = Ay [y, - be,, €2 | = c (i) = b, P(py, i) , oSisn-t (Eq 4.6.26)

which is zero at p; but not at Pq {where cq(i) is zero). Another pulse is
identified by applying Eg 4.6.23 to the updated cross-correlation sequence
{cé(i)). If a series of adjustments is performed, the value of the cross-
correlation will eventually become zero at every pulse location p,, and the
pulse amplitudes will converge towards a set of "optimum™ wvalues. This
convergence is possible because the wvalues of the autocovariance ®(i,j) are
decaying as the pulses move away f£from each other, and this causes the

repeated corrections to become increasingly smaller in size.

As mentioned earlier, the set of "optimum” pulse amplitudes obtained (at
the 1limit) by repeating the pulse selection procedure many times, 1is the
same as the set of amplitudes derived by solving the system of normal
equations in Eq 4.4.2. This happens because the satisfaction of the
conditions set by Eq 4.4.2 ensures the orthogonality of the error vector Yq
to the subspace defined by the signal components ff{p,J, and hence :

y; £lp,] = c (pp) =0 , m=1,2,...,9 (Eg 4.6.27)

9

The advantage gained by using the repeated pulse reoptimisation method is
that a direct solution of the system of normal equations is avoided and the
performance/complexity of the algorithm can be varied by altering the number
of pulse-amplitude corrections, i.e. the of times the expressions in

egquations 4.6.23~-4.6,26 are evaluated.

Method M52 first defines all the ¢ pulse positions using method MS51, and
then applies Eqs 4.6.23-4.6.26 to reoptimise the pulse amplitudes. Since all
the pulse corrections are made after the last stage of the MS]l algorithm, no
more than ¢ cross-correlation values need to be updated. Eq 4.6.26 therefore

changes to :
cé(pﬂ) = cq(pm) = b, PPy, py? , 1<m<q (Eq 4.6 .28}

and as a result, the computational complexity of the algorithm 1s greatly
reduced. A reasconable compromise between low algorithm complexity and good
performance can be achieved by setting the number of corrective iterations

(application of Egs 4.6.23-4.6.25 and Eq 4.6.28) egqual to twice the number
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of pulses per MPE analysis frame. In this case, the performance of the

algorithm is comparable to that obtained when the amplitudes are reoptimised
by solving the system of normal equations. However, the complexity of the
amplitude reoptimisation stage of method MS2, increases proportionately to
the square of the number of pulses per MPE frame, while the solution of the
noermal equations would require a number of operations proportional to the

third power of the number of pulses.

Method MS53 applies the pulse correction equations 4.6.23-4.6.26 after the
position of a new pulse has been determined. As seen in Fig 4.6.3, where the
flow diagram of method MS3 is presented, the pulse positions are optimised
in exactly the same way as in method MSl. When a new pulse is located, Egs
4.6.23-4.6.26 are used £o iteratively reoptimise the amplitudes of all the
pulses that have been defined up to that stage. The number of corrective
iterations n(m), is a function of the number of pulses = that have already
been defined, and should in general increase as more pulses are added to the
excitation during the HMPE optimisation. Finally after the last optimisation
stage, the cross-correlation can be updated as efficiently as in methed MS2,

since the positions of all ¢ pulses have been determined.

An exponential model is used to derive the required number of corrective
iterations, applied when a new pulse is found. This model has been chosen in
order to compensate for the exponentially increasing inefficiency of the
amplitude estimation process at high pulse rates, which was observed when

method MS) was examined. The number of iterations is given by :

n(m) = int[ <] (exp(aln)-f) ] , m=1,2,...,9 (Fg 4.6.29)

where int[...] gives the integer part of a real number, and ¢ is a constant

adjusted so that the total number of iterations 1is :
q
Y. nm) =3, (Eq 4.6.30)
m=1
The value of 3, can be determined experimentally, by maximising the
average segmental SNR (Seg-SNR) over a speech data training set, for a fixed

value of g,. Values for &, and &, were chosen to optimise the performance of

the algorithm when a MPE frame of 100 samples is used. When a different
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FIGURE 4.6.3 The MPE Optimisation Method MS3.
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frame size is used, 8, must be scaled up and &, must be scaled down by a
factor equal to the ratio of the frame size to a frame of 100 samples. The
values chosen for &, and 3, (for a MPE frame of 100  samples and a sampling
rate of 8 kHz), can be expressed as functions of the number of pulses per

frame :

_ 3
3, = 5 (Eq 4.6.31)

and

3, = int[ 6 (expra.w q)—I) ] (Eq 4.6.32)

The value chosen for &, results a low computational complexity without
compromising the performance of the algorithm. The algorithm performance is
close to the performance that would@ be achieved if a joint amplitude
recoptimisation was performed at the end of each stage (method MS4), by
solving the system of normal equations. The overall complexity though is
5till relatively low because of the relatively smaller number of corrective
iterations involved. For example, when 5,10,15 or 20 pulses are defined in
each MPE frame, the number of iterations corresponding to each new

excitation pulée is, according to Egs 4.6.29-4.6.232 :

Pulse Number ! 2 3 4 5 6 7 8 910111213 1415 16 17 18 19 20

Pulses/Frame
5 g o o0 2 3 «— CORRECTIVE ITERATIONS
10 g o o0 o g 1 2 3 611
15 g o o0 0 0 g ! 1 2 3 5 7 91319
20 o o o 00 o ! ¢t ! 2 3 4 5 7 912 16 20 26 34

In the initial stages, no amplitude reoptimisation is required because the
excitation pulses are wusually spaced far apart. Most of the corrective
iterations are concentrated in the final stages of the algorithm, where
pulse coincidences are more 1likely to happen and the pulse amplitude
estimation process is most inefficient. The fact that a large number of
corrective iterations is used in the final stage where the cross-correlation
updating is very efficient (Eq 4.6.28), indicates that methed MS2 is a

relatively low-complexity high-performance MPE optimisation method.

The use of the amplitude reoptimisation technigue by method MS3, reduces

the values of the cross-correlation at the pulse locations and as a result,
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the number of pulse colncidences is reduced. Compared to the numbers given
for method MS51, the average number of optimisation stages in each MPE frame
is {(for method MS3) :

Pulses per Frame 5 10 15 20 25 30
Average HNumber of
Stages per Frame 5.0 1.0 15.¢ 20.2 25.3 30.3

These fiqures show a significant reduction in the number of pulse coinci-

dences which contributes to the Improved performance of method MS3.

Both MS2 and MS3 methods can be modified to take advantage of the auto-
correlation approximation (Eq 4.4.17), in the same way as method MS1l was.
The two modified methods will be referred to as methods MS2a and MS3a.

4) GEOMETRICAL INTERPRETATION OF METHODS MS2 AND MS3

A geometrical visuvalisation of the repeated pulse adjustment performed by
nethods MS2 and MS3, is shown in Fig 4.6.4 for the case of a 3-dimensional
vector space. The axes correspond to the vectors £{o],£{1] and £{2], derived

from the impulée response of the MSF. The unit vector along each axis is :

£0i7
il 5 ————o | i=0,1,2 (Fq 4.6.33)

Joci, i)
and the magnitude of the projection of the signal’ vector y,={ y, (1i},y, (2},
¥,(2) 7 onto each axis is:

T ,
fril
b, (i) = Jo U o4, (Eq 4.6.34)

J¢(i,i)

Finding the projection with the largest absolute magnitude is equivalent
to .minimising the approximation error 1in Eg 4.6.6, with respect to the
position of the first pulse. 1If the first pulse is chosen along the ffo]
axis, then the error signal y, is formed by subtracting the projection of y,

onto flol, from y, :

Y =Y, — ty,l0) ulol =y, - flol = y, - b, flol (Eq 4.6.35)

The projection of the new vector y, onto the axis fle] is now zero, and
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this corresponds to the fact that the cross-correlation between the signals
y, and floJ 1is also zero. The second pulse is similarly chosen along £{1]
and the error signal is formed by subtracting the projection of y, onto
£l17, from y, :

i _ y, £(17 )
Y; < ¥ - 1‘1(1) uli1l = Y, ~ W £r13 = Y, - b2 £r47 {(Eq 4.6.35)
’

The projection of y, onto axis f£{1] is zero, but its projection onto axis

ffo] has a magnitude of :

1 £07 Yo [ ®fe,0)? Elo] ~ P(o,0)%(0,1) £r1] |
t,M0) = =2 = (Eq 4.6.36)

J?(o,o) @(o,l)?(o,o)J?(o,o)

which cannot be zeroc because the two vectors flo] and f£[1] are not parallel.

A correction can therefore be applied by subtracting this residual error

component from y,, to form a new error signal :
Y; = ¥, — t,00) uled (Eq 4.6.37)
This causes the amplitude of the first pulse to be modified to :

y; flol
{70 ———— (Fq 4.6.38)
®lo,0)

The process can be repeated by alternatively correcting the pulse ampli-
tudes b, and b,, forcing the projection of the error signal y; onto each of
the axes ffo] and £{1], to become increasingly smaller. The error signal
will eventually converge to y,-P,y, which 1is the error vector orthogonal to
the subspace defined by floJ and £{47. The sum of the projections along each

axis will converge to the optimum values :

fim-117 o
optim) = Z Yoiim-1 ,  m=1,2 (Eq 4.6.39)
J@(m—i,m—i) i=o

which correspond to the optimum amplitudes of the first two pulses. The
values opt (1) and opt{2}, are coordinates of the point Py, which is the
orthogonal projection of the point y, onto the 2-dimensional subspace
defined by the vectors floel] and f£{1]. These two values correspond to the set

of pulse amplitudes that could have been directly obtained by solving the
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FIGURE 4.6.4 A 3-dimensional interpretation of methods M52 and MS3.
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system of normal equations (Eq 4.4.2).

A generalization of these results into higher dimensions can be carried

out in a straight forward manner.

5} METHODS MS4 AND MS5

These two Multi-Stage optimisation methods differ from the previous three,
in that they solve the system of normal equations (Eq 4.4.2) in order to
optimise the pulse amplitudes. Method MS4 defines the position and amplitude
of a single pulse in each stage, and then reoptimises the amplitudes of all
the pulses found up to that stage, by solving the system of normal
equations. Method MS4 however, still suffers from the drawbacks of the
previous optimisation methods, in assuming that the pulse amplitudes remain
fixed during the search procedure used at each stage to define the optimum
position of a new pulse. Method MS5 lifts this constraint, by jointly
optimising the amplitudes of all the existing pulses, during the search

procedure which defines the optimum position of each new pulse.

Computatioﬁally efficient implementations of these two methods have been
presented, based on the Cholesky matrix factorisation algorithm [4.52,4.531].
A different approach will be followed here, which derives simplified
solutions for both algorithms, using thé Gram-Schmidt orthogonalization
process. It will be shown that method MS5 is eqguivalent to a MPE
optimisation method that dJdecomposes the speech signal into a set of

orthogonal components corresponding to the excitation pulses [4.13,4.33].

The Gram-5chmidt procedure has been applied to linear data fitting
problems and works by constructing an orthonormal set of basis vectors,
which span the same subspace as a given set of input vectors. In the case of
a MPE coder, the input vectors are derived from the impulse response of the
Modified Synthesis Filter, and form the columns of the nxg convolution

matrix A,[qJ. This matrix can be factorised as the product of two matrices :
A,lq] =0V (Eq 4.6.40)

The orthonormal set of basis vectors is formed from the columns of the nxg
matrix U, and VvV is a ¢x¢ upper triangular matrix. This factorisation is
always possible, as long as A,f{9qJ has a full rank, and it can be done in

various ways (Householder transformations, Modified Gram-Schmidt, etc.}. The
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Gram-Schmidt algorithm will be used here because it results a simple MPE

optimisation algorithm.

Once the factorisation is done, the normal equations (Eg 4.4.2) are trans-

formed to the equivalent set of eguations :
vic'ovbp - vig’ W(s-m ) (Eq 4.6.41)
as 0'u=1, Bq 4.6.41 is equivalent to :
Vb= Ul Wsm) = Ty, (Eq 4.6.41a)

If the right hand side of Eq 4.6.41la, which is composed of the cocordinates
of the input speech vector y, with respect to the orthonormal set of basis
vectors, is computed, then the optimum pulse amplitudes can be found in a
simple way by using backward substitution. It will later become clear that
the backward substitution need only be performed once, when all the pulse

positions have been optimised.

The algorithms used to implement methods M54 and MS5 are quite similar,
and will be developed by considering only the first three stages of the
multi-stage MPE optimisation process. The general case of the two algorithms

(for any number of stages) is presented in Fig 4.6.5.

(Stage 1)

The first basis vector u, should be in the same direction as one of the
f£li] vectors and can therefore be considered as a function of the position
of the first pulse :

frii

wlij] = ———— , oSign-1 (Eq 4.6.42)
NECE 2]l

The minimum-error vector at position i is orthogonal to ££i1J, and is equal

to :
ey minlil = ¥, - (Y5 w,lil) ulil , o<itn- (Eq 4.6.43)
The energy of the minimum-error component at position i is :

c, (i)?

, o0fisn-1 {(Eq 4.6.44)
(i, i)

"ew,minfijuz - Y;Yb B
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where :
¢, (i) = y) £lil , oSitn-1 (Eq 4.6.45)
is the initial cross-correlation sequence and P(i,;) is the auto-covariance

defined in Eq 4.4.11. The optimum position of the first pulse is the one

that minimises the error energy, or equivalently :

4| epti)?
p, = maxt | —2—u (Eq 4.6.46)
o<i<n-1] U,

A few additional wvariables can now be introduced that will be used in the

next stages :

u, = u,lp,J (Eq 4.6.47)

v (i} = Pli,6) , oSi<n—1 (Eq 4.6.48)

v, = (0,0py) (Eq 4.6.49)
I | _ colpy)

b=yl u, = —o Tt (Eq 4.6.50)

i
Combining Eqs 4.6.42, 4.6.48 and 4.6.49, the relationship :

flp, ] = v, u, (Fq 4.6.51)

is established, which is the first equation of the matrix factorisation, and

includes the first basis vector u

and the upper left element v, of matrix v

1 1
The value ¢, is the first coordinate of the signal vector y, with respect to

the first coordinate axis, and the system of equations in Eq 4.6.4la for the

first pulse amplitude &, becomes :

) (Eq 4.6.51a)

éStage 2)

Following the Gram-Schmidt procedure, the second basis vector of unit

magnitude is defined as a function of the position of the second pulse :
eri1 - (u] £i1) v, €0i7 - (u} £0i7) u,

u,flil = =
lecis - (u] £0i2) u,| J¢(£,£) - (u] £i1)?

. i#py

(Eq 4.6.52)



- 106 -

Two new sequences can be defined in order to simplify the equations :

T Plp,, 1)
m (i) = u £li] = —=—— , ofisn-1t (Eq 4.6.53)
1
and
(i) = Pli,i) - T i 2. (i) - (i)? <isn~- (Fq 4.6.54)
v, (i) = i, (“1 ) = v, (i m, (i , ofidn-1 9 4.6.

The second basis vector can then be expressed as :
£Lil - m, (i) u
1 i , i%py
]uifi)

Method MS4 forms the error assuming the amplitude of the first pulse to be

u,lil = (Eq 4.6.55)

fixed to the value found in the first stage. This value does not have to be
calculated explicitly because the error after the first stage can be
obtained from Eq 4.6.43. The new error vector is a function of the position

and amplitude of the second pulse :
e,l1] =y, - (yg ul) u, - b, (i) ELi] , oSign-t (Fq 4.6.56)

The energy of the new error can be minimised with respect to the amplitude
of the second pulse, if the new error is made orthogonal to the error vector

cbtained from the first stage. The minimum error energy will then be :

ci(ijz

[ ,lil™ eglid |pin = ¥2¥, - ot oSigem (Eg 4.6.57)
vwhere :
_ _ Plp,, i) _ ) )
¢, (i) = ¢ i) - c (p) W= c (i) -t m (i) , 0filn-1 {Eqg 4.6.58)

The optimum position of the second pulse for method MS4 is therefore :

4| e )?
Py = mazt —— (Eq 4.6.59)
ofidn-1 UL, i)

As in methods MS1-MS3, the second pulse cannot be placed at the same
location as the first pulse, because the value of the new cross-correlation
sequence {c, (i)} 1is zero at p,. After the optimisation of the position of
the second pulse, the amplitudes of both pulses are reoptimised. How this is

done will be explained at the end of step 2. Note that up to now, the pulse
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- amplitudes have not been explicitly calculated.

Method M55 minimises the error with respect to the amplitudes of both
ptulses, while optimising the position of the second pulse. The new error
vector is orthogonal to the subspace defined by the two input vectors £Lp 1

and £f{7 (or wu, and wu,[{J]), and can be expressed as a function of the

position of the second pulse :
L gL - T - T . , ,
¥ ew,mig'J =y, (Yb “1) u, (Yb ubil ) ubil o, i, (Eq 4.6.60)
The minimum energy of the new error signal is :

clﬁ)z

"ew,m.n[u"z: vly, - (y; ui)z— (yg u2[i1)2= Yly, - t% - T

, i,

(Eq 4.6.61)

The optimum position of the second pulse, according to method MS5, is :

c,(i)?

ul(i)

Py = mazt

i#p,

(Fq 4.6.62)

The similariéy of Egs 4.6.59 and 4.6.62 indicates that the two optimisa-
tion methods MS4 and MS5, are guite close in complexity. Method MS5 performs
better when it can take advantage of the optimality of the amplitude
estimation process that it uses, and as it will be shown, that happens when
the number of pulses in each frame is increased and their interaction

becomes substantial.

As in stage 1, a few additional variables to be used in the next stages

are defined :

u, = u,lp,t (Eq 4.6.63)

v, = ]”1(P2) (Eq 4.6.64)
c,(p,)

b=yl u, = AR (Eq 4.6.65)

2

From Eqs 4.6.52-4.6.54 and 4.6.64, the second relationship of the matrix

factorisation algorithm is derived :

fip,1 = m (pyJ u t w, u, (Eq 4.6 .66)

If at this stage the pulse amplitudes are needed, their optimum values can
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be calculated by solving the system of eguations :

) m,(p,} b ¢
! t'P2 t] = t (Eq 4.6.67)
o v, bz tz

Backward substitution can be used to derive first the wvalue of b, and then
the value of bi.

{Stage 3}
The basis vector attached to the third pulse is :

£Lil - nl(f) u, - mz(i) u,

u,fil = J;d?TT_ y TEPLLP, (Eq 4.6.68)
2
where :
P(p,,i) ~a, lp,) a (i)
m,(i) = ul £0i] = —2 2 P 0i<n-1 (Eq 4.6.69)

v, ?
and
v (i) = ®i,i) - m ()2 - m ()% = v (i) - m,i)? , ogisn-1 (Eq 4.6.70)
Method MS4 assumes that the pulse amplitudes are recptimised after the
second stage, and defines the error as a function of the position and
amplitude of the third pulse :

e, il = y, - (yg “1) u, - (yg “z) u, - b,(i) £Lil , ofisn-1 (Eg 4.6.71)

The new error vector must be orthogonal to the error signal left over from

the second stage. The minimum error energy therefore occurs at position :

4| eptin?
Py = max —_— (Fq 4.6 .72)
OsiSﬂ_l (p(l,l)
where :
c,(i) = ¢ (i) - t, m, (i) , o<iin-1 (Fq 4.6.73)

It is interesting to note that the wvalues of the new cross-correlation

sequence {c, (i)} are now zero at the locations of both previous pulses :
c,{p;) =0 , i=t,2 (Eq 4.6.74)

This sets this method apart from the previous three optimisation methods
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examined, where the cross-correlation was not guaranteed to have a zero
value at each pulse location and pulse coincidences could occur. The condi-
tion of Eq 4.6.74 makes certain that the number of optimisation stages is

the same as the number of excitation pulses defined in each frame.

Method MS5H similarly defines the optimum position of the third pulse as:

_ " czl‘:‘)2
P, = maxg _— (Eq 4.6.75)
3 . v, (il
(#Py,P, 2

The generalisation of the steps of both algorithms is shown in Fig 4.6.5,
together with the final backward substituticn, required to find the pulse

amplitudes. The matrix factorisation when completed, results the matrices :

[0, a,p,) m (p) ... #y(py)
] U m,(p) ... m,(p,)
{91 =0VvV=|u,u,...,u 2 273 L
A [ 7 ] o ] v, S mg(qu
o 0 0 . v,
(Eq 4.6.76)

The basis vectors are not required by the algorithms but the upper
triangular matrix V can be substituted in Eq 4.6.41 to find the optimum

pulse amplitudes after all the pulse positions have been determined. The

right hand side of Eq 4.6.41 contains the ¢ coordinates li,tz,...,tq of the
signal vector Yo with respect to the orthonormal set of basis vectors u,,
Upyeesy Uy The pulse amplitudes are calculated by solving the system of

equations 4.6.41, using the backward substitution formula as shown in Fiqure

4.6.5

Method MS5 ensures that the error vector associated to each pulse, remains
orthogonal to the subspace defined by all previous pulses, during the pulse
position optimisation. It is therefore equivalent to the orthogonalising MPE
optimisation method presented in (4.13]1 and [4.33], but considerably

simpler.

Methods MS4 and MS5 require far fewer stages than metheds MS1-3 to reach a
given level of SNR in ewvery speech frame. The top diagrams of Figs 4.6.6 and
4.6.7 show how the average number of stages varies for each method, when the

required level of SNR for each frame 1is increased (no noise shaping is
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Y, © W(s—my) ' c = A; Y,
4 c(i)?
Py = max — Optimum Pulse Position
OSfSﬂ_i q>(t,l)
v(i) = ®(i,i) , olidn-1
¢c(p,)
Wl = IU(Pi) ’ tl = T"i*—
I1=1
i = i+t
i-?
Plp;_ (i) - [mk(p’-_lJ mkfi)]
m._ (i) = =1
1—-1
cli) = ¢(i) - Fooy mpo (i) Update Equations
v(i} = v(i) - m,._imz
oliln-t i#PysPgss -2Pjy
MS4 ‘ MS5§
4 cli)? 4 | etir?
p; = max —_— p; = max - Optimum Pulse
ogi<n~1 | P, oR o<ign-1 | ¥(1) Position
i#Pir"JPj—i "?‘P“ )Pj.-j_
c(ij
w; = lv(ij , tj = .
i
yes _ Repeat until all pulse posilions
« TEST IF i <9 are optimised

I-

(continued ...)
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-~

Calculate

Pulse amplitude

FIGURE 4.6.5

k=j+1t
b, =

v

i = i-1

yes
TEST IF : | > o
no
EXIT

Repeat until all pulse amplitudes
are found

The MPE Optimisation Methods M54 gnd MS5.
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included). Compared to Fig 4.6.2(a) of method MS1l, the relationship is now

linear instead of exponential.

The diagrams (b),{(c) and (d) of Figures 4.6.6 and 4.6.7, show the relative
variation in the average number of stages, with reference to the values of
diagram (a), when the value of the noise shaping filter constant y 1is
lowered (increasing the effect of the noise shaping process). It 1Is clear
that method MS4 benefits from a lower value of ¥, especially at high SNRs
(large number of pulses), because the interaction between the pulses is
reduced when the value of ¥ is lowered. The same effect is not observed when
method MS5 1is used, because the pulse interaction is taken into account

during the pulse position optimisation.

Method MS5 gives the best results over most of the SNR range, when ¥ is
close to one. A comparison of Figures 4,6.6 and 4.6.,7 reveals that when ¥
becomes smaller than one, the required number of stages for a given SNR
value tends to increase when method MS5 is used, but the opposite effect is
observed when method MS4 is used. If the required SNR level is abowve 10 dBs,
the efficiency of method MS4 is increased when a value of y between 0.6 and
0.9 is used. This suggests that the performance of method MS5 approaches
that of MS4, when the value of y is reduced. In order to maximise the
efficiency of method M55 and contrast its performance with that of the other
optimisation methods (which use a lower value of ¥ to their advantage}), the

value of ¥y is kept egqual to one whenever method MS5 is used.

Both MS4 and MS5 methods can be modified to take advantage of the auto-
correlation approximation (Eq 4.4.17). The symmetric auto-covariance matrix
P(i,j) can be replaced by the Toeplitz matrix '¢h(i,j1 which is easier to
calculate and requires less storage than P(i,/). The same approximation has
been used in methods MSla-MS3a. The two modified methods will he referred to
as_methods MS54a and MS5a.
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2.7 Block Search (BS) Optimisation Algorithms

Block Search optimisation methods start with an estimate of all the ¢
pulse positions and then iteratively improve the accuracy of this estimate.
To define the positions of ¢ pulses, the algorithm constructs a search route
by finding a sequence of ¢-dimensional position vectors [pi,pz,...,pql which
progressively minimise the approximation error introduced by the MPE coder.
Each vector in this sequence is defined by examining a number of different
pulse arrangements in every MPE frame and monitoring the corresponding
changes of the approximation error. The pulse arrangement which results the

minimum approximation error is selected.

The pulse arrangements are generated using simple rules and are variations
of a single pattern of pulse positions (source pattern). The source pattern
is periodically updated (replaced by the set of pulse positions that has
produced the minimum approximation error) and forms a sequence of position

vectors associlated with a monotonically decreasing approximation error.

The repeated optimisation causes unpredictable changes to the pulse
locations, so that the final set of pulse positions méy be guite different
from the initial estimate of the positions. In that aspect, the outcome of a
BS optimisation method is less constrained than that obtained from a MS
method, which does not permit pulses defined in the first optimisation

stages to be relocated in later stages.

The approximation error is calculated by fully taking into account the
pulse interaction, thus a joint amplitude reoptimisation is implicitly
performed. This increases the complexity of the BS algorithms but also

ensures that good optimisation results are obtained.

The pulse arrangements are generated from the source pattern by choosing a
single pulse and altering its position within a set of allowed pulse
lodations. The size of the set determines the complexity of the BS method,
since a large set requires a large number of pulse arrangements to be
examined. The pulses chosen to be relocated are selected seguentially and

may be chosen more than once.

The initjal estimate of the pulse positions does not have to be very
accurate, therefore a simple methed can be used to find the pulse positions.
The more complex the BS optimisation algorithm is, the less it relies on the

accuracy of the initial position estimate. The performance of simple BS
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schemes though can be adversely affected when the initial set of pulse

positions is grossly inaccurate.

Two BS algorithms will be examined. The first one considers a large set of
allowed pulse locations and is therefore the most complex. The second method
limits the number of alternative pulse locations by only considering
positions in the vicinity of existing pulses. As for the MS algorithms, both

BS algorithms will be described assuming a general linear synthesis filter.

1) METHOD BS1

Given an initial set of excitation pulses at positions PssPare--sPq, the
BS1 algorithm optimises the position of each pulse individually, assuming
the rest of the pulses to be at fixed locations. The pulses are selected in
a cyclic order so that the pulse at position p, is optimised first, then the
pulse at p, and so on. The first iteration is completed when the optimum
position Pq has been determined, and the next iteration starts by optimising

py again. The number of iterations n, 1s fixed and is usually quite small.

r

The optimum position of each pulse is found by calculating the approxi-
mation error for every possible location within the MPE frame. The pulse is
then placed at the location that resulted the minimum error, and the process
continues by optimising the position of the next pulse. The approximation
error is evaluated using a joint amplitude estimation process, which

effectively compensates for the interaction between the pulses.

The Gram-S5chmidt orthogonalisation procedure is used te solve the system
of normal equations (Eg 4.4.2). The order with which the pulses are
considered is important because a change in the pulse order results a
different set of orthogonal axes. By carefully rearranging the order of the
pulses, it is possible to avoid the complete reconstruction of the set of
orﬁhogonal axes for every pulse position optimised, thus reducing the

complexity of the BS1 algorithm,

Consider the first step where the pulse at position p, is optimised. An
orthogonal set of basis wvectors is constructed from the vectors €£lp ]
(shifted versions of the MSF impulse response) corresponding to the fixed
positions Pyr---sPg- The last axis corresponding to the variable position p,
should be orthogonal to the (4-1) dimensional subspace defined by the

remaining pulses. To achieve that, the same recursive egquations that were
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used in method MS5 can be applied, with the only difference that the pulse

positions p,, .. are nowWw known in advance,

o

In order +to simplify the formulation of the equations, the pulses are
resuffled by interchanging the values of p, and Pg- The pulse whose position

is optimised is now last and the recursive orthogonalisation equations are :

c]_lfpj)
w, = [v;_.(p;) , ty = ———— (Fg 4.7.1)
!
Pp,,i) 2; [ (p;) mk(t)]
mi(i) = - s PP Py (Eq 4.7.2)
!
c i) = i (i) =ty mi(i) , i#P, Py, Pey (Eq 4.7.3)
v, (i) = v, (i) - mirsz LR Py Py (Eg 4.7.4)

The index j varies from 1 up to ¢-1 and the initial arrays co(i) and v, (i)

take the values :

. _ T
o =M W(s-m)=2a5y, (Eg 4.7.5)
and :

v, (i) = @i, i) , ofitn-t (Eq 4.7.6)

The approximation error can be expressed as a function of the position of

the last pulse as :

q-1 cq_ifi)z
A 2 _ :
” . m'ﬂ[:]” =y, ¥, - Yt} —— s iRPy e pg_y  (Eg 4.7.7)
i=1 q9-1

The optimum position of the last pulse is therefore :

iy 2

R Cq_ifl)

Pg = max —_—_— (Eq 4.7.8)
oisn—1 | Yg-1(i)

i#Pi!"lP?_.i

The same process can be repeated for the second pulse, by interchanging
the values of p, and Pq- The second pulse is now last and its position can

be optimised in the same way as for the first pulse.
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Notice that since p, remains unchanged when p, 1s optimised, the values of
v,, ty, m;(i), ¢,(i) and v, (i) do not have to be recalculated and can be
obtained from the previous optimisation step. In the same way, when the
values of p, and Pg are interchanged, the wvalues of py and p, remain
unchanged and the recursive equations 4.,7.1-4.7.4 need only be applied for

I=3,...,9~1.

The flow diagram of method BS1 in Fig 4.7.1 shows the double optimisation
loop for each iteration and each pulse. The subscript ; has been dropped
from the arrays c ;i) and ul(iJ because they can be replaced by their
updated values. The intermediate values of ¢(i) and v (i) that can be used to
initialise the recursive updating when the next pulse position is optimised,
are stored in the arrays ¢ (i) and v (i). An Interchange variable !, points

to the position variable p, whose value is interchanged with the value of Pq

To see the effect of the pulse resuffling, a 3-pulse excitation can be
arranged with initial positions p,=10, p,=20 and p,=30. The order with which

the pulses enter the orthogonalisation procedure in this case is :

ITERATIONS — k.= 1 k= 2

ky ! Py Py P3| P3 opt k, { Py Py Pz } P3 opt
i 30 20 14 11 1 2 2! 31 11 12
2 30 11 20 21 2 I 12 3! 21 22
1 21 1! 30 31 2 12 22 31 32

It 1is clear from this example that all the pulses are seqguentially
optimised in every iteration and with the same order. The order of the first
(4-1) pulses changes cotinuously but this does not affect the solution for
the last pulse, because the orthogonal set of basis vectors is rebuilt every

time, starting from the pulse whose order has changed.

When the last iteration has finished, the elements of the upper trlangular

nmatrix factor V (Eg 4.6.76) and the coordinates ti,tz,...,fq

vector y, are known, and can be substituted in Eg 4.6.41 to calculate the

of the signal

pulse amplitudes, using backward substitution as shown in Figure 4.6.5.

The complexity of the BS1l algorithm is relatively high but its performance

approaches that obtained from the highly complex Successive-Elimination and
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BACKWARD SUBSTITUTION

Solution for the Optimum Pulse Amplitudes

Method BS1

i = j+t
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i

c(pj)

W]- = ,U(PJ-) 7 fi = —w———
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+ Y TEST IF

i < gq-¢

no

Repeat (q-1) times

FIGURE 4.7.1

Flow diagram of the MPE Optimisation Method BSl.
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Multivariate-Optimisation methods discussed in the previous chapter.

The outcome of the optimisation in method BS1 is not heavily dependent on
the accuracy of the initial position estimate. This can be confirmed by
comparing the SNR obtained when the initial estimate is provided by method
MSla and when the pulses are initially arranged in a reqular grid formation
(equally spaced) covering the entire MPE frame. The figures given below show
the wvariation of the average Segmental-SNR as the pulse rate increases.
These results were taken using a speech data training set of eight male and
seven female speakers. The speech Signal was low-passed to 3.4 kHz and
sampled at 8 kHz. A MPE frame of 100 samples and a non-overlapping LPC frame
of 200 samples were used (at 8 kHz sampling rate). The order of the AR-LPC

filter, the number of iterations n_ and the noise shaping filter constant g

r
were set equal to 12, I and [ respectively,.

Pulses/sec —» 400 800 1200 1680 2000 2400
INITIAL ESTINATE S¥R (dBs)
Method MSla 1.2 15.2 18.8 21.4 23.7 26.0
Regular Grid 9.8 14.9 18.5 21.2 23.5 25.9

The differences observed in the SNR are small, but since the complexity of
method MSla is also wvery small compared to that of BS1l, method MSla will be
used in the future to provide the initial position estimate. The noise
shaping filter constant ¥ will also be set equal to 1 because, as for method
M55, the performance of the algorithm in terms of the attainable SNR deteri-

orates as the value of x is reduced below 1.

Method BSla is formed when the Toeplitz matrix P, (i,j} is used instead of
P(i,/) in the BS1 algorithm (see Eq 4.4.17).

2) METHOD BS2

The performance of the BS2 algorithm is more dependent on the accuracy of
the initial position estimate since it allows only a restricted pulse
movement within each MPE frame. The pulses are selected in the same way as
in method BS1l, but the search for the optimum pulse position that minimises
the approximation error 1is done in a small interval around the established

position of each pulse.

It has been found experimentally that when method MSla is used to provide
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the initial position estimate, the pulses rarely need to be moved further
than two samples away from their initial positions, in order to reach their
locally optimum position. Method BS2 therefore adopts a one-dimensional
steepest descent approach, which sequentially optimises each of the position
variables PisPar-- sbPqg- The steepest descent algorithm guides the approxima-
tion error to a local minimum by considering a limited number of pulse

arrangements.

Assuming that an interval of 5 samples is sufficient in order to find the
optimum position of each pulse, a simple minimisation procedure can be
followed to locate the error minimum. The direction of decreasing error is
first established by moving the pulse one position to the right (Fig 4.7.2}.
If the approximation error is reduced then one further position te the right
is examined and the minimisation process ends. If the error increases then
the pulse is moved one position to the left of its original location. If the
error is still larger than it was in the original position then there is no
need to continue the search because the local minimum occurs where the pulse
was originally placed. Otherwise another position to the left 1is examined
before the one-dimensional search stops, to be repeated again for the next
pulse. The whole process is repeated until all the pulse positions have been
optimised, in which case the first iteration is completed. In general, the

algorithm allows for n, iterations to be performed.

A joint amplitude estimation is implicitly performed, but the approxi-
mation error 1s calculated differently from method BS1, resulting a lower
algorithmic complexity. The error equations will be formed assuming that the

position Py of the last pulse is being optimised. The normal equations are :

Db=A,lq]y (Eq 4.7.9)
where :

D= A,l9]" A,lq] (Eq 4.7.10)
and :

y=W(s-m) (Eq 4.7.11)

These equations can be rewritten in a composite matrix form to isolate the

contribution of the last pulse at position i
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A, Lq-1]7 A, Lq-1]

£0i77 A Lq-1]

--------------- R (Eq 4.7.12)
£0i37 £Li] £ri1’ y

where A [q-~1] is the nx(9-1) convolution matrix :
A lg-1] = [ €0p,1,€0p ], .. £lp_,] ] (Eq 4.7.13)

Eq 4.7.12 can be rewritten in a more compact form as :

-------- b= [--o--- (Fq 4.7 .14)

where ¢ (i) 1s the ith element of the vector :
c= A,y (Eq 4.7.15)
If the iverse of the (g-1)Jx(g-1) minor matrix X is known, then the inverse

of matrix D can be efficiently calculated. Assuming that D is strongly non-

singular {£4.54,4.55], its inverse can be expressed as :

, Xixli?xfil" xt i - x*t xli]
X"+ E
4 ®(i,i) -xCiJ" XY iy % ®ci,i) -xlid" XY xLi]
pl = |aooooao il LIToLToTLTL L EEE P (Eq 4.7 .16)
- xfiJ" xt ; !
®i,i) ~xfilT ¥ xlil @i, i) -x(i1" Xt xli]
or in a more compact form
. Uil | oufil
pt= |--i-t-. Poaot- (Eq 4.7.17)
uwliilt ol ouci)

By combining Egqs 4.7.14 and 4.7.16, the solution of the system of normal

equations is found to be :

xtaq x(iJ" ¥ @ - c(i) X! xli7
b= t---aoo - ST (Eq 4.7.18}
®Ci,i) -xlil" X =i

or equivalently :
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s ulil
b= |--m-]| ¢+ (x[i]T xiq - c(i)) [ ...... ] (Eg 4.7.19)

where :

b, = X' 4 (Eq 4.7 .1%9a)

is the solution of the minor system of normal egquations that only includes
the first (4-1) pulses. The approximation error can be expressed as a

function of the position of the last pulse as :
z T T
(i) = |ley pinlidl] = v v, - b7 {------ (Eq 4.7.20)

By substituting Eq 4.7.18 into Eq 4.7.20, the error expression becomes :

2
) [ xid" xta - cti) ]
Sy oL . T R B
200 = Jewmint ] - w5 v, - i ®(i,i) - xCi1" Xt xli] e 47200
H

or equivalently (see vector definitions in Eq 4.7.17) :

. 5T B . 2
[ wlilT @+ wli) c(i) ]
s - T T
e(i} =y, y, - b, d- i) (Eqg 4.7.21)

The locally optimum position of the last pulse is therefore :

2
[ x[i17 Xt d - cti) ]
mar™ (Eq 4.7.22)

¥ llocaly | @ci,i) - xriI7 ¥t gl

P

Eq 4.7.22 indicates that if the inverse of the minor matrix X is known,
the approximation error can be calculated for each new pulse position, with
0(nl+2n) multiplications/additions. The matrix X remains fixed while the
positions of the first (g¢-1) pulses are not changed, thus its inverse need
only be calculated once during the search for the optimum pesition ef each

pulse,

The inverse X7 is initially calculated using the Cholesky factorisation

method, and is wupdated each time a different pulse is chosen to be
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optimised. This iterative updating operation i1s performed in three steps, as
shown in Fig 4.7.2. The complete inverse matrix Dj is first calculated using
Eq 4.7.16. Then a rearrangement of two of its columns and rows is made, to
reflect the change in the order of the two pulses at positions p, and Pq-
This in effect interchanges the variables corresponding to the amplitudes of
the two pulses. In matrix form, this variable interchange is performed by
premultiplying and postmultiplying the original inverse Dj (corresponding to
the previous values of the variables p, and pq), with a g¢Xg9 permutation
matrix P[,q, which rearranges the order of the two variables 1 and ¢, thus
reflecting the new values of p, and Pg ¢

p* = b,

D} P,

(Fq 4.7.23)
¢ Yo kg

9

In the third step, the inverse of the new minor matrix X is updated using

the formula :

u[qu u[quT
xt= olp 7 - (Eq 4.7.24)
9 ulp,)

The first iteration is completed when all the pulses have been considered.
After n, complete iterations, the pulse amplitudes are calculated using Eq
4.7.18.

The assumption of strong nonsingularity of the matrix D has not created
any problems in practice, even though single precision arithmetic was used

in the simulation of the algorithm.

A simplified version of the BS2Z algorithm has been proposed [4.56], which
limits the number of pulses chosen to be optimised, based on a pulse energy
criterion. The results obtained from this method are dependent on the number

of pulses optimised in each MPE frame.

Method BS2a is formed if the autocovariance matrix @E(i,j) is used instead
of ®(i,j) in the BS52 algorithm.



- 126 -~

Array Initialisation
Interchange Pointer (1)

Y = W(s-my) , €= A; y ,» k=0 , =1

Obtain Estimate
Initial Pulse Position Estimate : pp , k=1,2,...,9 trom Method MSia
k=0 , k= kit Number of Iterations

Number of Pulses Optimised

1 in the Current [Iteration

VARIABLE INTERCHANGE - CALCULATION OF E(pq)
Method BS2
- z
[ x(p.+1] X7 d - c(p,+1) ]
q 9
E(qul) =
_ T gt
?(pq*l,pq+1) x[pq*x] X" x[pq+11
yes
TEST IF : E(qui) b E(Pq)
no
no -
TEST IF : E(pq—i) > E(pq) TEST IF : e(pq+zJ ) e(pq+1)
es no es
1 ! 3 d : Optimum
TEST IF : el(p, -2} ) el(p,-1) Position
q q
of pulse (q)
no yes
Pq = Pt Pg = Pg7? g = Pgtt Pg = Pgt?

* +

Resel the Interchange
! = I+1 —> IF I=q THEN [=1

Pointer
yes Repeat unfil all Pulse Positions
€ TEST IF k2< g are oplimised
no
yes
< TEST IF : k, < n, Repeat for n, Iterations
no
) x(p, 1" X1 d - cip,) X! xfp 7
i [_’f,_‘_’_} _ Pq i R T Pet Amplitude
o _ T ot -1 Solution
@(pq,pq) x[qu X x[pql

EXIT

(continued ...}
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1 no VARI ABLE INTERGHANGE
TEST 1IF : k=1 AND k,=1 CALCULATION OF E(Pq)
yes
P < Pg
N Initial Calculation
FI8D THE INVERSE X of the Minor Inverse
[ xp 27 ¥t a - cep ]2
e(p ) = i 9 fnitial Calculation
9 _ T ot of elp,)
¢(pq,pq) x[qu X x[qu q
[ xt xrp 7 xcp 3V Xt _ xt oxrp, ] ]
x_i + 9 q i q
® ~xlp 17 x! 7 - T xt
ot | Parbe) TXTRT X b | Plhqrky) XIPgT X XL
° T ot :
- x[qu X E ]
_ T ot E _ T ot
I ¢(pq,pq) x[qu X x[qu i @(pq,pq) x[qu X x[qu -
t
gxq Inverse Matriz PI «* Pq
Ulp 7 | ulp,]
0 , D":plqojplq= -------- R P
earranfemen ’ ’ arp 17 i ulp. )
ot the mafrices Pq ‘ Pq
{(Interchange of T
tuwo variagbles) . wlp,J ulpgd
X" = U[pq] - ™.
ulp,
tp, 1" 4 (p) cf ‘
(§> , . [ u Pgq fou Pg’ € qu ]
el(p } =
l 9 u(pq)

FIGURE 4.7.2 Flow diagram of the MPE Optimisation Method BS2.




- 128 -

4.8 Comparison of the MPE Optimisation Methods

The five MS and two BS optimisation methods are compared in Fiqures 4.8.1,
4.8.2 and 4.8.3, in terms of their complexity (operation per sample) and SNR
performance (average Segmental-SNR). The comparison indicates the
qualitative differences between the optimisation algorithms, and can be used
as a quideline when a choice has to be made between the different algorithms

for a particular speech processing application.

A measure of the complexity of each algorithm is provided in terms of the
number of multiplications and divisions regquired during the MPE optimisation
process . As the complexity is often proportional to the MPE frame size, and
in order to permit a direct comparison with the numerical capabilities of
the latest DSP chips, the complexity figures given in Fig 4.8.1 represent
the number of multiplications and divisions per sampling interval. The
number of additions is wusually slightly smaller than the number of

multiplications, and is not included in the complexity calculations.

Note that methods MS1, MS2, MS3 and BS2 vary their computational
requirements from one MPE frame to another, and thus the complexity figures
for these methods represent time averages., Methods MS4, M55 and BS1 on the
other hand, perform the same number of multiplications and divisions in
every MPE frame. Notice that the number inside the parenthesis next to the
BS1l and BS52 methods (in the "method” column! is the number of optimisation

jterations n, -

The formulas given in the Search Complexity column of Fig 4.8.1, indicate
the dependency of the algorithmic complexity on the pulse rate (¢ is the
number of pulses per MPE frame), and the size n of the MPE frame. These
expressions do not include the computational effort required to determine
the wvalues of the auto-covariance (Eg 4.4.17) and cross-correlation
(Eq 4.6.5), because it 1is independent of the pulse rate. 1In particular,
given the input speech samples and the coefficients of the LPC sythesis
filter, the number of multiplications reguired to calculate the auto-
covariance and the autocorrelation is 4in+n(n-1)/2 (where ! is the order of
the AR-LPC filter). This figqure comes to 98 operations per sample when a
12th order LPC filter and a MPE frame of [00 samples are used, and is
included in all the individual complexity fiqures for the various pulse

rates.
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The average Segmental-SNR fiqures of Fig 4.8.2 and 4.8.3 were obtained
using a 70 sec long (at 8 kHz sampling rate) speech data file, containing
sentences spoken by 8 male and 7 female speakers. A MPE frame of 100 samples
and a non-overlapping LPC frame of 200 samples were used. The order of the
AR-LPC filter was 12 and the noise shaping filter constant y was set to 0.9,
except for methods MS5 and BS1 where it was set to 1 for the reasons
explained in the relevant sections. The parameters of the coder were left
unquantized, in order to remove the dependency of the SNR on the efficiency

of the various parameter quantization schemes.

The SNR fiqures and the subjective gquality obtained from each optimisation
method are directly related, because the methods are very similar to each
other. A comparison of the SNR fiqures can therefore reveal the relative

improvement obtained when some methods are used instead of the others.

As seen in Fig 4.8.2, the gap between the performance of the simple and
complex optimisation methods widens as the pulse rate is increased. At high
pulse rates (greater than 1200 pulses/sec), the improvement in the quality
of the encoded speech is especially noticeable when the complex MPE optimi-
sation algoritﬁms are used. At the pulse rate of 1600 pulses/sec (often used
in 16 kbits/sec systems), the SNR difference between the simplest method MS1
and the most complex method BS1 is 4.5 dBs, which 1is perceptually signifi-

cant. In contrast, the difference in SNR obtained at 400 pulses/sec is small

Method BS1 which gives the best SNR results is also the most complex. A
comparison of methods MS3 and MS4 shows that their SNR values are very
close, but the complexity of method MS3 can be quite smaller than that of
MS54. This suggests that method MS3 can be used instead of method MS4 and
provide the same results at a smaller computational cost. This is even more

obviocus when methods MS3a and MS4a are compared.

Another interesting comparison can be made between methods MS4 and MS5.
Method MSS gives higher SNRs although its complexity is almost the same as
that of method MS4.

The BS methods are2 usually more complex than the M5 methods and are
favoured (when compared to the MS methods) by the use of small MPE frames
and the application of the autocorrelation approximation (methods BSla and
BS2a). Their complexity inreases with the third power of the number of

Y

pulses ¢, and therefore are easier Eo“lmplement when thé'-MPE frame size is
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small and the number of pulses per frame is also small. Interestingly method
BS2al1) is less complex and gives better SNR results than method MS5a at 800

pulses/sec, but this situation is reversed at higher pulse rates.

Methods BS1 and BSla perform well under all conditions (pulse rate, frame
size etc.), and give the best SNR results out of all the examined MPE
optimisation methods. Their performance approaches that of the more complex
Successive-Elimination and Multivariate-Optimisation methods described in
the previous chapter. Unfortunately their complexity even at moderate pulse

rates is already gquite high,

The effect of increasing the number of iterations (from 1 to 2) in the BS
algorithms is very small, even though the complexity is almost doubled. This
enforces our earlier conclusion that the optimisation results of methods BS1
and BS2, are close to a local minimum of the approximation error. As method
BS1 examines every avilable pulse positiom within the MPE frame, it is
reasonable to assume that the results of method BSl are close to the global

error minimum.

In Fig 4.8.3(a) the variation of the SNR at 800 pulses/sec is shown, when
the noise shaping filter constant ¥y takes different values. A definite peak
is observed for most methods around the value of 0.9. s it was shown in
Figqures 4.6.2, 4.6.6 and 4.6.7, this peak is transferred to a lower value of
§ when the pulse rate is increased (resulting greater pulse congestion). The
peak is less obvious and sometimes does not occur when methods MS5 and BS1
are used, which is why ¥ is set to 1 for these two methods. Interestingly
the SNR values of all the optimisation methods converge to the same value as
¥ 1is reduced below 0.6. It is also clear that the simpler optimisation
algorithms can benefit more (in terms of SNR) from a carefully chosen value

of ¥.

In Fiqg 4.8.3(b} the dependence of the SNR on the size of the MPE frame is
shown. It is evident that the use of a smaller frame reduces the relative
freedom in arranging the pulses over a time pericd, and as a result the the
SNR results are not as good as when larger frames are used. The drop in the
SNR is even higher when the autocorrelation approximation is applied in
small MPE frames, because the summation range for each term of the
autocorrelation sequence may be comparable to the duration of the LPC

filter’s impulse response, and the difference between the symmetric
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auto-covariance matrix ®(i/,;) and its Toeplitz approximation P,(i, /) may be

large.

The use of BS optimisation methods becomes more attractive when smaller
frame sizes are employed. This becomes apparent when the SNR results of the
BS algorithms for small frames, are compared with those obtained from the MS
algorithms in Fig 4.8.3(b). It is the combination of high SNR performance
and moderate complexity (when small MPE frames are used) which gives the low

to intermediate bit-rate BS algorithms an advantage over the MS schemes.

In Fiqures 4.8.4 and 4.8.5, the power spectral distribution of the speech
signal and of the noise introduced by the MPE coder, are shown for a 64 ms
voiced speech segment. Method MS5 was used to define the MPE signal in such
a way as to keep the SNR at a fixed level, by appropriately adjusting the
number of pulses defined in each MPE frame. The SNR level was set to 12 dBs
for Fig 4.8.4 and 24 dBs for Fig 4.8.5. In Figqures 4,8.4(a) and 4.8.5(a) the
noise shaping filter constant ¥ was set equal to 1 and in Figures 4, 8. 4(b)
and 4.8.5(b) it was set equal to 0.8. The black areas occur in the spectral
regions where the power of the noise is higher than the power of the speech

signal.

The effect of the noise shaping is very small when the SNR is low, but it
is noticeable when the SNR is high. Unfortunately the improvement brought by
the use of a noise shaping filter is mostly needed when the SNR is low (at
low transmission bit rates). In practice, the subjective quality of the
encoded speech is slightly improved when noise shaping is used at high pulse

rates (corresponding to high SNR levels).
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Pulses/sec 400 800 1230 1600 2000 2400
Method Search Algorithm Complexity (average number of
Complexity multiplications per sample)

ns1 0(3q) 115} 130 150 7o | 200 | 235
HS2 0(3q +8 qz) 115 | 135 | 60 | 195 | 235 | 290
1S3 0(3¢+3,) 115\ 145 | 195 | 285 | 480 | 900
ns4 o(% qu% q) 130 | 180 ) 260 | 370 | so0 | s60
nSS o(% g2+2 q) 125 ) 70| 245 | 350 0 475 | 625
BS1(1) o(% q3+q2-§; g ) 175 | 515 { 1295 | 2635 | 4600 | 7215
BS1(2) o(§ q3f2q2-§; q ) 240 | 920 | 2475 | 5145 | 9070 [14285
BS2(1) o0& 432 qz) 110} 165 300 | s60 | 970 § 1560
Bs2c) | o(Hh gL q?) | s | 215 | ars | 960 | 1730 | 2830
Pulses/sec 400 80a 1200 16040 2000 2400

Method Search Alsorithm Complezity {average number of
Complexity divisions per sample)

H51-4 o) 1 ! 1 ! 1 !

#55 0(q) 5 10 15 20 25 30
BSI(1) 0{q) 5 10 15 20 25 30
BSI1(z) 0(2q) 10 20 30 40 50 60
BS2(1) o(% q) 0 ! ! ! ! 2
BS2(2) o(4 ¢) ! ! 2 2 3 3

FIGURE 4.8.1 Complexity (number of multiplications and divisions per

of the MPE optimisation algorithms at wvarious

complexity is given as

a function of the number of pulses

of samples n in the MPE analysis frame.

pulse

rates,

The

sample)

search

g and the number
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Pulses/sec 400 8aa | 1200 1600 | 2000 | 2400
Hethod SHR (dBs)
HS1 9.2 | 13.1 15.4 17.0 | 18.3119.5
"s2 9.2 | 13.6 16.2 18.2 {19.9 | 21.3
HS3 9.2 | 13.8 16 .8 19.3 1 21.5 | 23.6
154 9.3 14.0 | I7.1 19.6 | 21.9 | 23.8
MSS 9.8 | 14.4 17 .8 20.5 | 22.7 | 25.80
BSI(y) 0.2 | 15.2 18.8 | 21.4 | 23.7 | 26.0
BS1(2) 0.3 15.4 18.9 | 21.6 | 23.8 } 26.2
BS2(1) .5 1| 14.3 17.5 | 20.0 | 22.1 | 24.1
BS2(2) .5 | 14.5 { 17.7 20.2 | 22.3 | 24.3

Pulses/sed 400 860 1200 1600 2000 2400

Hethod SN¥R (dBs)
MSla 9.1 12.8 | 14.8 16.3 | I7.6 | 18.7
HS2a 9.2 } 13.4 } 15.9 17.7 19.2 | 20.4
#S3a 9.2 | 13.5 } 16.3 18.6 | 20.5 | 22.3
HS4a 9.2 1 13.6 { 16.4 } 18,8 { 20.8 | 22.5
f155a 9.2} 13.8 17 .0 19.6 | 21.7 | 23.6
BSlaft) 2.5 148 | 18.5 [ 21t.4 | 23.7 | 26.0
BS2a (1) 9.4 | 14.1 17.0 19.3 y 21.2 } 22.8

FIGURE 4.8.2 SNR performance of the MPE optimisation algorithms at various

pulse rates.
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Constant ¥y | 1.00 Y 0.95 | 0.90 | .85 y 0.80 | 0.70 § 0.60
fethod SKR (dBs) at 800 Pulses/sec
H51 12.0 | 13.0 ] 13.1 13.0 } 12.7 11.6 | 10.4
1S4 149.0 | 14.1 | 14.0 13.6 13.1 1.9 | 10.6
S5 14.4 | 14.6 14 .4 13.6 13.0 1t.7 10.3
BSI(1) 15.2 1 15.2 { 14.8 14 .1 13.4 1r.e | 10.4
Bs2(4) 13.7 14.4 1 14.3 13.9 13.4 12.1 10.6 (a)
hSla 10.4 12.4 12.8 12.8 12.5 1.5 10.4
N54a 11.8 13.5 13.6 12.4 13.0 1.8 .5
HS5a 12.3 f 13.9 | 13.8 13.4 12.9 116 | 10.2
BSla(1) 12.8 | 14.5 | 14.8 | 13.9 13.3 11.8 | 1a.4
BSZa (1) 12.1 13.9 14.1 3.8 13.3 12.0 10.6

Frame (samples) 20 440 50 100 200
Hethod SNR (dBs} at 800 Pulses/sec
nst 2.5 1 12.9 13.0 } 13.1 13.4
184 12.8 | 13.5 1 13.6 § 14.0 | 14.4
#1835 12.4 | 13.5 13.8 14.4 | 15.0
BS1(1) 13.6 } 14.5 14.7 15.2 | 15.8
BS2(1) 13.2 | 13.9 14.0 | 14.3 14.7 (b)
#51a 1r.3 | 12.0 12.3 12.8 § 13.2
#54a 1.4 § 12.5 12.8 { 13.6 | 14.2
f1S5a .5 | 12.7 13.1 13.8 | 14.4
BSla(1) 12.3 13.5 13.8  14.8 | 15.0
BS2a (1t} 12,2 | 13.3 13.5 | 14.1 | 14.6

FIGURE 4.8.3 SNR performance of the MPE optimisation algorithms at a pulse

rate of 800 pulses/sec. (a) The value of the noise-shaping-filter constant ¥

is varied (b) The size of the MPE analysis frame is varied.
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(a)
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LOG-POWER SPECTRUM

SNR = 12 dBs
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FIGURE 4.8.4 Power Spectra of Speech and Distortion (noise) introduced by

the MPE coding process

window is 64 ms and the SNR is 12 dBs.

for {a)

¥=1 and (b)

¥=0.8. The duration of the time

The black areas occur in the spectral

regions where the power of the noise is higher than the power of speech.
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(dBs)
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a
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0
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FIGURE 4.8.5

the MPE coding process

Power Spectra of Speech and Distortion

{noise}

for (a) y¥=1 and (b) ¥=0.8. The

window is 64 ms and the SNR is 24 dBs.

introduced by

duration of the time
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4.9 Quantization of the MPE parameters (Pulse Amplitudes)

The efficient guantization of the LPC filter parameters [4.57,4.58,4.21]
and the MPE pulse positions (4.52,4.34,4.481, are still subjects of ongoing
research, even though a number of efficient quantization methods already
exist. In the next chapter it will be described how the inclusion of an
efficient encoding process (for the pulse positions) in the MPE optimisation
algorithm, can cause a significant reduction in the number of bits allocated
to the quantization of the pulse positions. For the moment though, it will
be assumed that the excitation pulses are unconstrained and that every
combination of pulse positions is equally likely to be chosen by the MPE
optimisation algorithm. In this case, an enumerative coding algorithm which
maps each possible combination of pulse positions to a different integer
value [4.59,4.60], is optimum and requires logz(;') bits for the exact

guantization of the pulse positions.

The design of optimum (MMSE) guantizers for the pulse amplitudes will now
be addressed. At low transmission bit rates, the number of bits allocated to
the quantization of each pulse amplitude is limited and the use of optimised
amplitude quantizers becomes necessary. The pulse amplitudes are quantized
using the PCM-AQF method (with forward adaptive estimation of the input
variance), to allow for the wide fluctuations of the power of the speech

signal

The Max-Lloyd qgquantizer [4.61,4.621 can be designed using an iterative
optimisation process, based on the experimentally derived Probability
Density Function (PDF) of the input [4.63,4.643. The input samples are the
pulse amplitudes normalised by their periodically updated standard deviation
{in practice the standard deviation is quantized separately and then is used
to normalise the pulse amplitudes). The iterative optimisation process is
not guaranteed to converge to the global error minimum, except for a few
well known theoretical PDFs (Gaussian, Laplacian, etc.), which satisfy the
log-concavity sufficient condition [4.65,4.66]. For this reason, a different
approach will be followed here, which involves the modeling of the
experimental PDF with a theoretical PDF that guarantees a convergence to the

global error minimum.

The experimental PDFs of the normalised amplitudes are shown in Fig 4.9.1

{as histograms}, for 4 different pulse rates {(of 480, 800, 12006 and 1600
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pulses/sec). The PDFs are obviously symmetric and therefore only the right
half is shown. The shape of the PDF depends on the pulse rate but is not
affected by the choice of the MPE optimisation algorithm or the MPE frame
update rate. The experimental PDFs were obtained using method MS5, under the

conditions {speech data, MPE frame etc.) described in the previous section.

The model PDF chosen 1is that of the gamma distribution (the Gaussian and
lognormal distributions were also examined), and the dependency of the model
on the pulse rate is controlled by a single parameter. This parameter is
optimised so that the theoretical model accurately fits the experimental

distribution.
The general symmetric gamma PDF is :

1@
P(x) = —— 971 e~ Alx] ,  —oofx (o

ST , ao (Eq 4.9.1)
a

where ¢ is the normalised pulse amplitude, and the gamma function is defined

as :
+00
Ma) = J 197 o7 gt (Eq 4.9.2)
o
The variance of the general gamma PDF is :

2 alat 1)
o —— (Eq 4.9.3)
A

Also the log-concavity test for the general gamma PDF gives :

8%log Ply) —2(a—-1}

gr 2 22 !

]

x #0 (Eq 4.9.4)

which is negative when a2t. Under this condition the general gamma PDF will
result a guaranteed convergence to the globally optimum gquantizer levels.
Since the normalised amplitude variable r has a unit variance, the model PDF

becomes (using Eqs 4.5.1 and 4,9.3}) :

a
| (a+1)
P(x) = ( : :( )) 294 exp(—[a(a+1; |:|) (Eq 4.9.5)
a

The model PDF can now be adjusted to fit the experimental distribution, by

optimising the value of the parameter g. The goodness of fit is measured by
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the deviation of the experimental amplitude histogram from the theoretically
predicted histogram. The experimental histogram is constructed by arranging
the input data into 2 adjacent "bins", so that for example #, normalised
amplitude values are present in the interval between two thresholds y;_, and

y;- The predicted number for the same interval is :

Yi
Hf(a) = ¥ P(z) dx {Eq 4.9.6)
Yi-y

where ¥ is the total number of amplitude values :
N = 2: ¥, (Eq 4.9.7)

The value of k is chosen to be close to 50 for the experimental histograms.

The difference hetween the experimental and predicted value forms another

random variable which is commonly assumed to have a variance of of = M;(a)
[4.67]1. If another simlifying assumption is made, by postulating that these
random variables are normally distributed and independent, then the

likelihood of the parameter a is maximised when the quantity :

k 2
¥. - 4. (a)
d = z: ! 4 (Eq 4.9.8)
i=1[ [Hi(a) ]

is minimised. This means that the Maximum Likelihood and the weighted MMSE

estimates of a are the same, when normally and independently distributed
deviations are assumed [4.67,4.68]. The value of 4 can be minimised using
standard non-linear programming methods, and the Polak-Ribiere conjugate

gradient optimisation method [4.69,4.70,4.71] was chosen for that purpose.

It can be shown that the probability distribution of 4 near its minimum,
can be approximated by the xz distribution with k-2 degrees of freedon
[4.68]. The probability that the xz variable is greater than or equal to the

measured minimum value of 4 (dmin) is :

r( k-2, Yain )
2 2
Pix2dy ;) = 1 - (Eq 4.9.9)

where the incomplete gamma function is defined as :



- 140 -

u
Mw,u) = JJ 12 ot gy (Eq 4.9.10)
[+]

The probability of Eq 4.9.9 gives a measure of how likely it is that the
gamma distribution chosen 1is indeed the underlying PDF model. The value of
this probability has been calculated for a number of different pulse rates,
and is displayed in Fig 4.9.2. The values are generally quite small and this
may be caused by the assumption that the deviations from the theoretically
predicted amplitude histogram, are normally distributed. This assumption
renders as extremely unlikely the experimental histogram values which differ
from the predicted values by more than twice the local standard deviation,
so when a few experimental values differ considerably from the predicted
values, the probability given by Eq 4.9.9 becomes wvery small. It is also
unreasonable to expect a very good fit, because the amplitude PDF changes

slightly from one speaker to another.

The best results are obtained for pulse rates approaching 800 pulses/sec,
and this can also be observed in Fig 4.9.1, where the theoretic (continuous
line) and experimental (histogram) PDFs are superimposed. The rising part of
the PDF is well approximated at low pulse rates, while the tail of the PDF

is well approximated at high pulse rates.

Note that the values of the parameter g are all greater than [, and this
guarantees a convergence to the globally optimum quantizer levels. In
practice, guantizers based on the gamma PDF model give very good results and

perform better than optimised logarithmic or uniform guantizers.

The value ©f a can be expressed as an power function of the pulse rate r.
A model that has been derived using the xz goodness of fit measure on the

values of a shown in Fig 4.9.2, is :

ale) = 0.875 + 702 »~2-826 (Eqg 4.9.11)

The predicted values of g are also shown in Fig 4.6.2, and these are very
¢lose to the original values of ¢. In Fig 4.9.3 the model PDFs derived from
Egqs 4.9.5 and 4.9.11 are shown, for pulse rates of 400, 800, 1600 and 3200
pulses/sec. Based on these PDFs, the optimum (MMSE) scalar quantizers can be

designed using the Max-Lloyd jterative optimisatjon process [4.63,4.64]),

A comparison of the SNR values obtained at 8000, 9600 and 16000 bits/sec,
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is shown below. The MPE optimisation method MS5 is used to code a 4 sec
speech interval, of one sentence spoken by a male speaker and another one by
a female speaker. The MPE frame and LPC frame contain 100 and 200 speech
samples respectively. The log area coefficients of the LPC filter are
uniformly guantized, and the estimate of the pulse amplitudes’' standard
deviation is wupdated in every MPE frame and quantized using a logarithmic
gquantizer (with a total of 10 bits per LPC frame). The number of bits
allocated to the quantization of the LPC filter parameters and the
individual pulse amplitudes, is specified in the respective columns. Three
SNR fiqures are given for each bit rate. The first is obtained when all the
parameters are left unquantized, the second is based on the optimum
quantizers designed from the gamma PDF model (Egs 4.9.5 and 4.9.11), and the

third SNR value is obtained from an optimised uniform quantizer.

Bit Rate |Pulsesj LPC Amplit . |No Quant . jGamma PDF|Opt Uniform

(bits/secl| ¢ {bitsiflbits) {(dBs) (dBs ) {dBs)
8660 3 30 4 12.1 11.5 1.5
8000 9 54 3 12.9 i1.3 10.8
9600 10 62 4 13.6 12.8 12.6
9600 12 58 3 15.0 12.2 115
16000 20 52 5 19.4 18.1 17 .8
16060 23 56 4 20.7 7.0 16 .4

The advantage of the gamma PDF based quantizer over the optimised uniform
guantizer 1is more pronounced when the number of bits allocated to the
quantization of the pulse amplitudes is small. It is clear that at higher
bit rates, more guantizer levels are necessary in order tec avoid a large
drop in the SNR. At 16000 bits/sec for example, 5 bits per pulse are more
than adequate, that is why both the gamma and the uniform gquantizer give
approximately the same results. The placement of the gquantizer levels
becomes more critical when the number of bits per pulse is reduced to 3 (at
8000 and 960060 kbits/sec) or 4 (at 16000 bits/sec), in which case, a 0.6 dB
SNR improvement can be gained from the use of the gamma PDF based quantizer,
It is also clear that at a given bit rate, it is preferable to use a smaller
number of pulses per frame and gquantize them more accurately, than to

increase the number of pulses and reduce the number of guantizer levels.
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FIGURE 4.9.1 Experimental histogram and Gamma PDF model for the pulse

amplitudes at four different pulse rates.
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Puilse Rate Gamma PDF Hodel Value of (a) Pix2>d, . )
(pulses/sec) Parameter (a) from Eq 4.9.11 men
160 10. 68 11. 49 0
320 6.76 6.86 3.6 E-41
489 5.21 5.16 1.1 E-15
640 4,31 4.25 3.1 E-¢&6
800 3.69 3.68 1.2 E-4
1200 2.87 2.88 5.9 E-19
1600 2.43 2.46 4.9 E-66
2000 2.19 2.19 ]
2400 2.02 2,01 0

FIGURE 4.9.2 The parameter (g) of the Gamma PDF model {(2nd column) is

obtained by fitting the model to the experimental data at each pulse rate,
The goodness of fit measure {(4th column) is based on the assumption that the
error between the experimental and model PDFs has a Gaussian distribution.
The predicted wvalues of the parameter (gq), obtained using Eg 4.9.11, are

shown in the 3rd column.
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FIGURE 4.9.3 The Gamma PDF model for the pulse amplitudes, at four diffe-

rent pulse rates. The values of the model parameter {(a) were obtained from
Eg 4.9.11.
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4.10 Conclusions

A detailed description of the Linear Prediction models used in MPE coders
has been presented. Twe cases were examined, introducing the Short Term
Predictor (STP) and Long Term Predictor (LTP) models. In the first case, the
synthesis filter of the MPE coder is based on an AR model and its
coefficients are calculated using Linear Prediction methods. The reason for
the failure of the attempted improvement (which removed the effect of the

excitation signal from the estimated filter coefficients) was discovered.

The sought improvement can be obtained by changing the basic model and
combining the STP model with that of the LTP. The effect of the LTP in
improving the quality of the coded speech is especially noticeable for high
pitched voices. Two methods were presented for the estimation of the LTP
coefficients. The second method minimises the distortion introduced by the
coder and leads to a joint optimisation of the LTP coefficients and the
pulse amplitudes. The first method is a Linear Prediction method and is not
as effective as the second, but it is usually preferred at lower bit rates

because it is not affected by the infrequent updating of the coefficients.

The MPE optiﬁisation algorithms presented, can be used in conjunction with
any of the two linear filter models. They can also be used in conventional
and non-conventional MPE coding schemes. The speech quality obtained from
the MPE coders that employ these optimisation algorithms, compares favour-
ably with the guality obtained from subband and RELP speech coders at 9.6
and 16 kbits/sec. Good communications gquality is obtained at 9.6 kbits/sec,
and near toll quality at 16 kbits/sec. To lower the bit rate, the basic
structure of the MPE coder must be changed [4.19,4.301].

The complexity of the MPE optimisation methods examined, vary with the
pulse rate and the size of the MPE frame. The Multi-Stage (MS) algorithms
are well suited for variable bit rate applications and are generally simpler
than the Block Search (BS) algorithms. Method MS1 is the simplest and can
easily be implemented on a single DSP chip. For better results, methods MS2
and MS3 can be used instead. Method MS3 uses an exponential correction model
and can be simpler than method M54, even though the SNR results {and there-

fore the subjective gquality) obtained from these two methods are very close.

Methods MS5 and BS1 produce the best optimisation results, but method BS]

can be much more complex than MS5. It may be possible to reduce the comple-
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xity of method BS1 to twice the complexity of method MS5 by solving the
system of equations in the MPE optimisation in a different way, but this has
not been proved yet. Method BS2 performs very well at low and medium pulse
rates, and can effectively replace many of the MS methods, when a small MPE
frame size is used. It is also possible to simplify all the examined optimi-

sation methods by employing the autocorrelation approximation (Eq 4.4.17).

The effect of the noise shaping filter is mainly concentrated on
increasing the efficiency of the MPE optimisation algorithms, and seems to
offer 1little advantage concerning the exploitation of the noise masking
effect to improve the subjective speech guality, since the spectral
redistribution of the distortion is not very effective. The tuning of the
noise shaping filter though, can be used to improve the performance of the
simpler MPE optimisation algorithms, and as such it can be usefull to MPE

coders in general.

PDF optimised guantizers are essential when the number of bits allocated
to the guantization of the pulse amplitudes 1is relatively small. A model
based on the general symmetric gamma PDF has been developed, that guarantees
the convergence of the quantizer optimisation process to the global optimum,
The PDF changes as the pulse rate is increased, and a power relationship has
been developed that can be used to predict the shape of the PDF at any given

pulse rate.
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CHAPTER 5

CODEBCOOK SEARCH MPE CODING

5.1 Introduction

The concepts of the Multipulse Excitation model and the Analysis by
Synthesis optimisation approach, have been successfully combined to produce
efficient and robust MPE coders at the medium bit rates of 8-16 kbits/sec.
MPE coders though suffer from an unacceptable degradation of the coded

speech quality when the bit rate is reduced below 7 kbits/sec.

At 4-6 kbits/sec, a number of alternative Analysis by Synthesis coding
algorithms have been developed and applied successfully in coders like CELP
[5.11 and the Self-Excited Vocoder [5.2). These coders, although capable of
producing quite good quality speech at low bit rates, exhibit an almost
speaker dependent behaviour. MPE coders on the other hand are not affected
by the variations in the signal characteristics due to different speakers,
and in addition their performance is robust in a wide range of acoustic

environments

Attempts have been made to bridge the gap between the MPE and the low bit-
rate Analysis-by-Synthesis codefs, by combining elements from each type of
coder (MPE and CELP for example}. Vector Quantization [5.3] and Multi-Band
cperation [5.4] have been considered in order to reduce the bit rate at
which MPE coders can produce acceptable results. It is still not very clear
though whether MPE coders will be able to operate successfully at 1low
transmission bit rates (2.4 to 4.8 kbits/sec), without considering major

changes in the basic MPE model.

A recently proposed MPE coder operating at 2.4 khbits/sec [5.51, combines
the use of a Long Term Predictor with increased constraints on the values
the pulse amplitudes may take at integer multiples of the fundamental
period. CELP coders on the other hand, are now efficiently implemented using
sparse codebooks {(a form of Multipulse Excitation), and there is a tendency
to relax the severe constraints (i.e, limited number of excitation vectors)
that up to now have been imposed on the structure of the excitation signal.
The excitation codebook in CELP for example, has been split into one

codebook for the pulse positions and another for the pulse amplitudes
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[5.6,5.7,5.8]. The problem of properly designing these codebooks has not
been properly addressed yet though, and in practice they are randomly
generated. Another CELP scheme relaxes the constraints on the pulse
positions in a sparce excitation codebook (by increasing the size of the
codebook), but restricts the freedom with which the relative values of the

pulse amplitudes may be chosen [5.91].

A different approach will he considered in this chapter, which contributes
to the merging of the +two types of Analysis by Synthesis coders, and can
reduce the bit rate at which MPE coders operate, without compromising the
guality of the coded speech. This reduction in the bit rate is achieved by
imposing constraints on the positions of the excitation pulses, while
retaining the amplitude optimisation methods wused in standard MPE coders.
The constraints take the form of a fixed codebook for the pulse positions,
which is searched using an Analysis by Synthesis optimisation 1loop.
Furthermore, a systematic method is proposed that optimises the position

codebook for a particular coder configquration, using a training process.

Simulation results indicate that this Codebook Secarch (C5) MPE method is
capable of more than halving the number of bits required for the coding of
the pulse positions, which in a typical MPE coder account for approximately
one third of the total bit rate.

The Codebook Search approach can be combined with further constraints
inposed on the relative valves of the pulse amplitudes, to bring the
transmission bit rate to even lower values. The C5 apprecach was originally
proposed and used te encode a frequency representation of the excitation
signal in a LPC coder [5.10], and can also be used as an alternative method
in speech coding systems that attempt to decompose the speech signal into a

limited number of time or frequency components [5.11,5.12,5.13,5.14,5.15].

5.2 Operation of the CS-MPE coder

The diagram of the CS-MPE coder is shown in Fig 5.2.1. A codeboock of pulse
position patterns is available to both the encoder and the decoder. In the
encoder the codebook entries are translated to sets of pulse positions and
an Analysis by Synthesis (AbS) procedure is applied in order to determine
the optimum c¢odebook entry. The AbS optimisation loop, in effect searches

through the codebook using an appropriate search strategy. For every
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codebook entry considered, the corresponding pulse amplitudes are calculated
and quantized, and the approximation error is compared to previous values

obtained during the search.

The approximation error is a measure of the minimum distance between the
original and synthesised speech waveforms, and can be estimated in the same
way as in the MPE coders already examined, causing a redistribution of the
distortion energy in the frequency domain (noise shaping} and thus mini-
mising the perceptual distortion. The index of the codebook entry that
minimises the approximation error is transmitted to the decoder, together
with the quantized pulse amplitudes and LPC parameters. In the decoder, the
Multipulse Excitation sequence is reconstructed and the speech signal is

recovered at the output of the LPC synthesis filter.

The pulse amplitudes can be estimated by solving the system of normal

equations (Eq 4.4.2) to find the wvalues :

. T 4 T
by pr [ 0977 ALqT |7 B Lq1T W (s-m) (Eq 5.2.1)

where bopt is .the ¢-dimensional vector containing the optimum pulse ampli-

tudes, A,f9] is the naxq convolution matrix corresponding to the Modified

Synthesis Filter (MSF} A, (z), and W (s—my) is the n-dimensional vector

containing the desired response of the MSF. The minimum energy of the
distortion (approximation error) corresponding to the optimum values of the

pulse amplitudes is :

= T - TeaT - _ T T _
e= [ el ey |ain = (s TWW (smmy) - b, AJL9IT W (smm)) (Eg 5.2.2)

If the guantized amplitudes values b@uan

of the approximation error changes to :

¢ are used instead, then the value

T - TogT _ T T -
e, €, = (s-my) WW (s-my) 2 bquan! A, lq] W (s my) +

(Eqg 5.2.3)
T T
! bquan! Aw[qJ Aylqd bquant

The gxg auto-covariance matrix (Aw[qJT Aw[qJ) can be efficiently calcula-
ted using the procedures described in Section 4.6.2, or the autocorrelation
approximation (Eq 4.4.17) can be used instead. The ¢-dimensional cross-

correlation array (Aw[qJT W (s—myl) can also be calculated efficiently as



Speech Signal

+

~ 155 -

_ LPC Parameters

LPC Analysis

£

b3

LPC Quantization

U

Synthesised Speech

Position Multipulse Pulse Synthesis
Pattern |[—M Excitation Amplifude Filter
Codebook Generator Quantizer
Index
Codebook Index Minimisation
Search of the Approximation Error
Strategy
Index of Optinum Pulse
Codebook Entry Amplitudes
MPE-CS Encoder
Index Pulse Amplitudes LPC Parameters
Position Hultipulse Synthesis
Pattern E——X ficitation Filter
Codebook

MPE-CS Decoder

FIGURE 5.2.1 The Codebook-Search

(CS5)

MPE coder.



- 156 -

described in Section 4.6.2.

The use of Eqs 5.2.1 and 5.2.3 involves 0(% q3+3q2) operations (multipli-
cations and additions}) and the complexity of the Codebook Search algorithm
is determined by the size of the position codebook. Compared to the figures
given for the MPE algorithms in Chapter 4, the complexity of the CS5-MPE
optimisation (number of multiplications per sample) is 0(%% qa+§% qz), where
m is the size of the codebook. The assumption is made that every entry in
the codebook is examined but, as it will be shown it the next section, this
need not always be the case. Tree search algorithms can considerably

simplify the CS-MPE optimisation.

The amplitude estimation process can be simplified, if consegutive code-
book entries are allowed to have ¢-1 common elements (pulse positions). In
such a case, the computationally efficient algorithm described when the BS2
MPE optimisation method was examined, can be used to calculate the approxi-
mation error for each codebook entry, based on results obtained for the
previous entries. If in addition to this simplification, the amplitude
quantizer is placed outside the optimisation 1loop (to be used only once for
the optimum codebook entry), then the complexity of the ¢S optimisation is
reduced to 0 3% q2- % q) multiplications per sample. The performance of the
CS5-MPE coder is only slightly affected when codebooks with overlapping

entries are employed.

5.3 Codebook Search Strategies

The complexity of the CS-MPE coder very much depends on the size and the
structure of the position codebook., Small size codebooks can be computation-
ally efficient but cannot reduce the overall transmission bit rate, because
the severe restrictions imposed on the pulse positions cause a substantial
loss of speech quality, which can only be compensated by an equivalent
increase in the pulse rate. Such is the case for the Regular Pulse MPE coder

[5.16]1, which uses a codebock of pulse positions with only 3 or 4 entries.

Larger codebooks can be used to sample more efficiently the parameter
"space” ¥ of the pulse positions (see Section 3.4). This sampling process
can be optimised by minimising the average distortion introduced by a
hypothetical CS-MPE coder, wusing a different approach than the approach

adopted by conventional Vector Quantizers operating on continuous vector
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processes (LPC parameter gquantization, waveform gquantization, etc.). This
new method of designing the position codebook in an "optimal" way, will be

described in the next section.

The complete enumeration of all the codebook entries is not the only
possible search strategy that a CS-MPE coder can employ. More efficient
search strategies can be constructed, using a tree-structured codebook or a

multiple codebook.

A tree-codebook can be arranged so that entries along the descendent paths
share a number of common elements with the entries at the parental nodes.
Even though this overlapping is not necessary in a tree-structured search,
it can be used to simplify the error calculations, as was explained in the
previous section. The tree-codebock can also be arranged so that at each
level, the positions of a small group of pulses (or enven a single pulse)
are defined. The pulse positions (and sometimes even the pulse amplitudes)
would then remain fixed when entries at the next level are examined. This
latter tree-search algorithm leads to &a generalisation of the Multi-Stage

MPE optimisation algorithms, mentioned in Chapter 4.

A multiple cédebook search algorithm, uses the first codebook to broadly
define the pulse positions, and additional codebooks to improve and refine
the estimate of the pulse positions. Each codebook used, effectively causes
small displacements to the optimum position values, obtained when the
previous codebook was searched. This search algorithm is a special case of

the Random Search MPE optimisation method, mentioned in Chapter 3.

There are many possible strategies that can be used by the hypothetical
CS-MPE coder, but not every one of them lends itself to a straight forward
optimisation and design of the position codebook. An unstructured codebook
can be desiged and optimised more easily, because there are no constraints
that need to be adhered to. This is the reason why an unstructured codebook
is adopted here (which reguires the enumeration of all its entries in order
to find the optimum set of pulse positions), even though this increases the

complexity of the CS-MPE optimisation algorithm.

The codebook optimisation method described in the next section, is applied
to the unstructured position codebook, but it could be medified to take into

account the constraints present in structured codebooks.

In Fig 5.3.1, the SNR (black squares) is plotted for 48 consequtive speech



- 158 -

frames, when 4 different random position codebooks are used. The codebooks
are constructed using a uniform distribution for the pulse positions. The
first two codebooks are realisations of a random codebook with 1024 entries.
The third codebook also has 1024 entries, but they are arranged so that two
consequtive codebook entries differ only in the position of one pulse. The
fourth codebook has a 2-level tree structure with 64 branching paths at each
level. Each position pattern at the second level is closely related to the
parental pattern, by limiting the difference between the corresponding pulse
positions to no more than 2. The MPE frame contains 50 samples and 5 pulses
are defined in each frame. For comparison, the SNR obtained when method MS5
is applied to the same speech data, is alsc plotted {(white sguares and

joined lines).

It is clear that the first two random ccdebooks give SNR results very
close to the results obtained from method M55, even though the number of
bits allocated to the coding of the pulse positions by the MS5-MPE system,
is more than twice the number of bits allocated by the C5-MPE system (22
bits compared to 10 bits). It is also interesting to observe that for some
frames, the CS5-MPE coder can achieve a higher SNR level than the MS5-MPE
coder, even though the pulse positions of each codebook entry have been

chosen at random.

The SNR results cobtained from the third random codebook, are surprisingly
only slightly inferior (by an averaqe of 0.5 dBs), even though the freedom
in choosing the pulse positions for each of the codeboock entries, has been
severely hampered. The SNR wvalues obtained when the fourth codebook is used,
are also smaller than for the first two codebooks by an average of 0.5 dBs,
and the number of bits allocated to the coding of the pulse positions is
slightly higher (12 bits instead of 10). The advantage of using the tree
structured codebcok is that the computational complexity of the codebook
seafch algorithm is much smaller, because only 128 entries need to be

examined for each speech frame; instead of 1024 entries previously required.
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coder employs four different position-codebooks : ({(a) Random Codebook 1 (b)
Random Codebook 2 (c¢) Random Codebook with overlapping entries (d) Tree
Codebook. The SKNR values (white sguares} obtained from a conventional MPE

algorithm (method MS5) are also shown.
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5.4 Design and Optimisation of the Position Codebook

A position codebook of a given size, can be designed to maximise the
performance of the CS5-MPE coder shown in Fig 5.2.1. The average distortion
added to the speech signal or the average SNR achieved during the coder’s
operation, can be used to measure the coder's performance, and a training
process can be used to determine an "optimal” pulse position codebook. The
average SNR has been chosen for this purpose because it weights the
distortion measurements according to the power of the speech signal. This
property is closely related to the perceivable distortion, since more noise

can be tolerated at higher signal levels.

If the approximation error (Eq 5.2.3) and the signal energy corresponding
to frame { are €; and u; respectively, then the average SNR achieved by the

CS-MPE coder when a codebook C® of size a is employed, is defined as :

u

1 & .
S(e™ = — ¥ log(—
=

) (Eq 5.4.1)

where ¥ is a large number of speech frames. The optimum codebook chf should
therefore maximise the value of S(C®). Since the speech energy u; is not
affected by the codebook choice, the expression of Eg 5.4.1 1is maximised

when the expression :
¥
E(c®) = - Z log (g;) (Eq 5.4.2)
i=t

is maximised. The optimum codebook of size a is then :

chop = mar [ Ecc | (Eq 5.4.3)
C"cy

The codebook C* is a subset of the parameter "space” ¥ which contains all
the possible combinations of pulse positions. The optimum codebook Cgpt must
therefore be assembled using elements of ¥. Since the size of the parameter
space ¥ is usually very large, the number of ways a of its elements can be
combined to form a subset C® is also prohibitively large. That is why a

manageable (but still very large) subset QY of ¥, is used instead of ¥ :

ctce , ! cv¥ (Eqg 5.4.4)
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where v is the number of elements (position patterns) contained in (¥. The
assumption is therefore made that the optimum codebook cgpt can be found by

thorougly examining the possible subsets of a smaller parameter "space" 0¥

The set (O is generated by a training process, whereby a conventional MPE
optimisation algorithm {(method MS5}) is used to find the position pattern for
each frame of a long speech training sequence. These patterns sample the
parameter “"space” ¥ in a way which is based on actual speech data. It is
therefore reasonable to assume that the set O 1is closely related to the
average speech characteristics and in a way, contains the best candidates
out of which the optimum codebook Cgpt should be constructed. It is obvious
though that the higher the number of patterns » is, the better the optimum

codebook will be.

The problem of finding the optimum codebook has been transformed to the
equivalent problem of choosing m out of w position patterns, so that the

coder's performance measure is maximised :

= mast [ e ] (Fg 5.4.5)
ctc o

This is a nonlinear combinatorial optimisation problem which can be solved

using integer progqramming methods [{5.17,5.18]. A simpler algorithm will be

used here, in order to reduce the enormous complexity involved. The optimum

codebook Cgp! will be obtained from the set O wusing a thinning process

which progressively reduces the number of elements of 0 in the least

destructive way.

The codebook optimisation algorithm starts by considering the set (¥ as a
codebook of size w. The performance of the CS-MPE coder using this codebook
should be better than the performance obtained when any other codebook of
smailer size is used instead. The value of EF(QQ¥) is therefore an upper limit

for the performance of a codebook of size m :
E(c®)y < E¥) , " cd? (Eq 5.4.6)

The optimisation algorithm then searches for an element of Y that could
be removed from the codebook and cause a minimum drop in the performance.

The codebook left after the removal of the ith element of (¥ is Q?", which
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now contains only v-t elements. To find the optimum codebook of size u-1,
the set Q?_i which maximises the performance measure must be identified. The
optimum codebook of size w-t will also minimise the drop in the performance
of the CS-MPE coder, when moving from a codebook of size ¢ to a smaller one

of size w-1 :

ot = mact [ | = mint [ Fe0") - FeatTY ] (Eq 5.4.7)
1<i<w 1€ifw

The element of 0" that must be removed, is identified by calculating the
value of E(O?—i) for i=1,2,...,#. The process continues by removing another

element and forming the optimum codebook of size w-2 :

et = maxt [E@TH ] = aint [ EChh - E@OPY ] (Fq 5.4.8)
1€ide-1 1<ifuw-1

After w-m such optimisation steps, the optimum codebook of size m will be:

o = maxt [E(d}’) ] (Eg 5.4.9)
1€is<m+ 4

The codebook . optimisation problem has been solved in a series of steps,
whereby a sequence of "optimum" codeboocks is defined, whose size Iis
continuously decreasing. The smaller codebooks are subsets of the preceding
codebooks and they are bound by the performance measurements of the larger
codebooks. A monotonically decreasing sequence of performance measurements
is formed, which progressively reduces the upper limit of the performance

that can be achieved using a codebook of size m :

u—41 +1
E?) > E(COP,J 2 ... 2 E(Cgpt) 2 E(C?P,J (Eq 5.4.10)

Since the difference between two consequtive elements of this series is
minimised (Egs 5.4.7 and 5.4.8), the value of E(CﬂPf) is maximised and thus,
the codebook Cgp! itself 1is optimised. This optimisation algorithm is
constrained by the inclusive relationships between the optimised codebooks

and can be described using the general set of equations :

cg;j = maxt [Em'f")] ,  1<I<u-n (Eg 5.4.11)
1€iy=-1+1

An optimisation algorithm similar to the one just described can also be

developed, which will build up the optimum codebook of size m», starting from
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a codebook of size one. Using the same reasoning that led to Eq 5.4.11, this

algorithm can be defined by the set of equations :

Clpr = mar? [Emf)] , 1<i<m (Fq 5.4.12)
1€icu=1+1

where now O% is the single-element subset of 0¥ which is formed by removing
all the elements of (F except the element i. Similarly, 0? is formed by
adding another element of (' to the previously optimised (single-element)

1
codebook COP,.

Usually the size of the codebook is chosen to be much smaller than the
number of training vectors (m{w), and when that happens, the optimisation
algorithm defined by Eq 5.4.12 becomes computationally more efficient than
the algorithm defined by Egq 5.4.11. In the next section however, a fast
implementation of the codebook optimisation algorithm will be presented,
which renders the two methods of Eq 5.4.11 and Eq 5.4.12 computationally
equivalent. For this reasocn and bacause of its better optimisation

properties, the algorithm defined by Eq 5.4.11 was selected and used in the
proposed CS5-MPE schemes.

5.5 Fast Implmentation of the Codebook Optimisation Algorithm

The application of the codebook optimisation Egs 5.4.1]1 requires (% Fmg)
computations of the approximation error (Eq 5.2.3}), where ¥ is the number of
frames into which the speech training sequence has heen partitioned, and v
is the number of position patterns contained in the set 0”. Since each error
computation requires the solution of a system of equations (Eg 5.2.1), the
computational complexity of the optimisation algorithm becomes prohibitively
large even for a small number of training vectors. In corder to reduce the
compuational load, two modifications of the codebook optimisation algorithm

will be considered.

The first modification involves the calculation of the LPC filter’s
transient response (vector m,, in Eq 5.2.2 and Eqg 5.2.3). The transient
response of the LPC filter in every frame, is normally dependent on the
output of the CS-MPE coder in the previous frames. This dependency is now
broken, and it is assumed that the transient response can remain fixed, at

least for part of the optimisation process.
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Originally the transient response is obtained by running a conventional
MPE coding algorithm (method MS5) on the speech training data. The codebook
optimisation algorithm then considers the samples of the transient response
constant while the codebook is being optimised, but periodically a decision
may be taken to recalculate and update the values of the translent response,
by running the CS5-MPE coder on the speech training data, using the smallest
optimum codebook that has been defined by the optimisation process. This
modification hardly affects the results obtained from the optimisation, but
is the element that mostly contributes to the reduction in the complexity of

the codebook optimisation algorithm.

The second modification removes the pulse amplitude quantizer from the
error estimation process, s¢ that the simpler Eq 5.2.2 can be used instead
of Eq 5.2.3, to calculate the approximation error. An added advantage of
this simplification is that the results of the optimisation (optimum
position codebook) will not depend on the characteristics and the accuracy

of the pulse amplitude quantizer.

In the first step of the codebook optimisation algorithm, the optimum

position codebook Cg;} is constructed. Eg 5.2.2 is wused to calculate the

value of the approximation error 8?,

training sequence and for every entry & of the codebook 0¥’. The results are

for every frame j of the speech

stored in a N¥xw matrix E(/,k), by taking the logarithms first :

E(j k) = iog(e‘?) . i=t,2,..., 8 , k=1,2,...,u (Eq 5.5.1)

The hypothetical CS-MPE coder employing the QY codebook, would choose the
codebook entry {(position pattern) which would minimise the approximation
error in each frame. The elements of matrix E(j,k) should therefore be
rearranged so that its first column would contain the logarithm of the
minimum error value for each frame, the second column would contain the
second smallest value, and so on. This operation involves the sorting of the

elements in each row of E(j,k), in order of magnitude :
E{/,k) C E(j, 1} , k<UL, j=t,2,...,X (Eqg 5.5.2)

A second W#xw matrix P(j, k) stores the indexes of the position patterns
that correspond to the elements of E(j,k). The two matrices are shown in

Fig 5.5.1(a) in a simulation of the optimisation algorithm for 12 speech
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frames and a codebook of 6 position patterns.

To find the optimum codebook Cg;},

the minimum drop in the performance of the CS-MPE coder, if it is removed

the position pattern which will cause

from 0¥, must be identified. The drop in performance is measured by the

difference between two performance measurements :

§ ¥ ¥
v(i) = B(P) - B(@Q¥™ ) =-ZE(},£) -] - ZEU,U - ZE(;,:) i
i=t izt j=1
P(j,1)#p, P(j,1)=p;
, P; € o, i=t,2,...,uw {(Eq 5.5.3)

By rearranging the terms of Eq 5.5.3, a simpler formula is obtained :

¥

v(i) = Y [E(i,z)—E(i,i)] , P EQ° , is=t,2,...,u (g 5.5.4)
=t
P(j,1)=p,

The index of the pattern that will minimise the drop in performance, if it

is removed from 0¥, is therefore :

p = mint [v(i)] (Eg 5.5.5)
1€icuw

and the optimum position codebook of size uw-i is :

-1 _ -1
ot (Eq §5.5.6)

In the second step, the algorithm must determine the optimum codebook Cg;f
of size w-2. To do that, the approximation error matrix E(/,k} and the
pattern matrix P(/,k) do not have to be recalculated, but can be obtained
frqm the matrices that were formed in the previocus step. This is done by
removing from the two matrices formed 1in the first step, all the elements
assoclated with the rejected position pattern Py The rest of the matrix
elements are then shifted to occupy the empty matrix cells, so that two new
(¥)Xx(v-4) matrices are formed, which can be used in the second optimisation
step. Equations 5.5.4 and 5.5.5 are again emloyed to identify the second

pattern to be removed from (¥, and the optimum codebook of size w-2 becomes:
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-2 _ -2
Copt = & (Eq 5.5.7)

The optimum codebook of size m is found after w-m such steps. Simulation
results from the first 3 steps of the optimisation algorithm are shown in
Figures S5.5.1(a),(b) and (¢). All the references to the pattern which is
removed at each step, are enclosed inside brackets. Patterns 1, 2 and 6 are
removed in the first second and third step respectively. Notice how the

number of columns is reduced as the optimisation progresses,

The computational effort involved in the application of Egs 5.5.4 and 5.5.5
is very small compared to the calculation of the approximation error matrix.
This matrix only needs to be calculated once {(initially and then every time
the transient response of the LPC filter 1is updated) and the number of
operaticns involved determines the complexity of the codebook optimisation
algorithm. The number of computations of the approximation error has dropped
to (Nw), which is considerably lower than the figqure given at the beginning

of this section.

When the number of speech frames in the training data set and the number
of patterns in (¥ are large, the matrices E(j,k} and P(j,k) become large and
computer storage problems may arise, These problems can be so0lved by redu-
cing the number of columns of the two matrices to a much smaller number than
originally considered. Initially, the approximation error will be calculated
for every frame and every pattern in (", but only the d smallest values of
the error (for each frame) will be stored 1in the error matrix E(;, k).
Similarly, only d index wvalues will be stored in every row of the index

matrix P(j,k).

When the matrix elements corresponding to the codebook entry rejected at
each step, are removed, some of the matrix rows will be unaffected (because
the particular pattern was not included), and some will be reduced in length

{by removing the corresponding elements and shifting the rest).

Since the full matrices will not be available during the codebook
optimisation, care must be taken to determine any rows where all but one of
the matrix elements have been removed. When this happens, each "empty"” row
of the error matrix must be vuypdated, by calculating the approximation error
for the corresponding frame and for every entry in the optimum codebook

defined up to this stage of the process. Again only the d smallest error
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values and the corresponding pattern indexes will be stored.

The added computation Increases the complexity of the codebock optimisa-
tion algorithm, but it has been found experimentally that the computational

complexity only doubles when :

w

100

(Eg 5.5.8)

This value reduces the storage requirememnts by 100 times.

The flow diagram of the algorithm is shown in Fig 5.5.2. Notice that the
transient response of the LPC filter (and therefore the approximation error
and index matrices also) is updated when the size of the optimum position
codebook reaches a value which is a power of 2 (corresponding to an integer

number of bits required for the encoding of the pattern index).
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36 (44) 47 62 64 94 2 (1) 6 3 4 5
26 65 (78) 78 96 99 3 4 (1) 5 & 2
19 31 (39) 49 51 53 3 4 €1y 2 5 &

(1g) 16 30 60 63 86 (ry 3 5 & 2 4

APPROXIHATION ERROR MATRIX PATTERN ITNDEX HATRIX
23 (59) 65 74 92 5 (2) 3 4 &6
(12) 20 40 52 76 (2) 5§ 3 4 &
21y 23 45 58 94 2y 5§ 3 & 4
25 59 77 77 {90) 4 s 3 6 (2
13 14 62 (81) 94 3 5 4 (2) 6
24 46 61 5 (98) 4 5 3 6 (2)
(25) 34 53 58 99 2y 5 4 3 6
14 21) 46 49 70 3 2y 4 & 5
(36) 47 62 64 94 2y 6 3 4 5
26 65 78 %96 (9%) 3 4 5 & (2)

19 31 (49) 51 53 3 4 (2y 5 6
16§ 30 60 (63 86 3 S 6 (23 4

APPROXIMATION ERROR MATRIX PATTERN INDEX MATRIX
23 65 74 (22) S 3 4 (6)

20 40 52 (7§6) 5 3 4 (6)
23 45 (58) 94 5 3 (6) 4
25 59 77 (77) q 5 3 (8)
13 14 62 (94) 3 5 4 (6)
24 46 61 (95) 4 § 3 (6
34 53 58 (99) 5 4 3 (6)
14 46 (4%9) 70 3 4 (6) 5

(47) §2 64 94 6) 3 4 5
26 65 78 (96) 3 4 5 (6)

19 31 51 (53) 3 4 5 (6)
16 30 (60) 86 3 5 (63 4

FIGURE 5.5.1 Results from the first three stages {(a), (b} and (c) of the

Codebook Optimisation process. The matrix rows correspend to individual
speech frames, and the elements of each row are the wvalues of the
approximation error arranged in order of magnitude (Approximationh Error
Matrix), and the corresponding indexes of the Position-Codebook entries

(Pattern Index Matrix).
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Find the Set of Position Patterns OF
using the MPE coding method MS5 on the Speech Training Data

Calculate and Sort the elements of : E(/,R) , {=1,..  ,§ , k=1,..,d
Store the Index of the corresponding patterns in : P(/,R)

v = =
COP! - dﬂ ) 1-0

I = I+1

Calculate and Update the "empty” Rouws of E(f,kR) and P([,k)

¥
viil) = 2: [E(f,z)-E(j,i)] , P; € o, di=t,2,...,u
i=1
P(j,1)=p,

-1 _ -1
Cop! - Qg

Remoue the elements of E(/,R) and P{/,k) corresponding tc¢ pP
Shitt the elements of E(j,k) and P(j,k) to occupy the Fmpty Cells

Update the Transient Regponse IF : uw-l = 21 , £71,2,3,...

yes no
“ TEST [F : w-1 ) n EXIT

FIGURE 5.5.2 Flow diagram of the Fast Algorithm for the optimisation of

the Pulse-Position-Codebook.
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5.6 Results

CS-MPE coders are more efficient than conventional MPE systems (when
operating under the same conditions) in coding the pulse positions. This is
because in conventional MPE schemes, any combination of pulse positions is
considered possible, and the description of the pulse positions to the
decoder has to be very accurate. In contrast, CS-MPE coders employ a form of
Vector Quatization for the pulse positiohs {codebook of position patterns),
and use a distance measure based on the energy of the distortion introduced

by the coding process.

The Codebook Search optimisation, samples the parameter space of the
position variables in a random or structured way and as seen in Section 5.3,
the performance of the coder’s error minimisatjon process can be as good as
that obtained from the best optimisation techiques described in Chapter 4,

and sometimes even better.

The number of bits required for the coding of the pulse positions can be
less than half the number of bits required by the conventional MPE
algorithms, while the performance and the speech quality obtained from the
two types of coders are very similar. CS-MPE coders can therefore operate at
lower blit rates than convetional MPE coders, while retaining the same

standards in the quality of the encoded speech.

The CS-MPE system can achieve this coding efficiency even when it employs
a random position codebock. Undoubtedly though, a properly designed codebook
can give better results. This happens because the ideal distribution of the
pulses within the bounds of the MPE frame, 1is ncot uniform. This can be seen
by plotting the long-term discrete PDF for the pulse positions when a

conventional MPE coding system is used (see Fig 5.6.1(a}).

The PDF shown in Fig 5.6.1(a) was obtained using method M35 to optimise
the positions of 9 pulses in every frame of 50 speech samples. To find the
average distribution, 70 secs of speech from 8 male and 7 female speakers
was used. As seen in Fig 5.6.1(a), the first and last sections of the PDF
deviate considerably from the uniform PDF. Fig 5.6.1{(b} shows the PDF of the
distance (in samples) between consequtive pulses obtained when method MS5 is
used. This can be compared to the corresponding PDF of Fig 5.6.1{c) which is
obtained when the pulses are trully uniformly distributed. It 1is evident

from these two PDFs, that two consequtive pulses are more likely to be
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positioned at adjacent locations when uniformly (randomly) distributed, than
when defined by an efficient MPE optimisation algqorithm. A codebook
optimisation process can take advantage of these differences and adjust the
properties of the position codebook to take into account the average speech

characteristics.

In Fig 5.6.2, the average Segmental-SNR obtained from a 4 sec speech
interval {(containing two sentences by one male and one female speaker), is
given for a conventional MPE coder (employing method MS55) and for a CS-MPE
coder employing first an optimised {(trained) and then a random codebook. Two
pulse rates are considered i.e. 1120 and 1440 pulses/sec. The MPE frame
contains 50 samples, while a 12th order AR-LPC synthesis filter is employed
and the LPC frame is set to 200 samples. The value of the noise shaping
filter constant ¥ is equal to 1. Notice that the pulse amplitudes and the

LPC parameters are left unguantized.

The 'optimisation of the codebook was performed as described in
Section 5.5, and a different set of speech training data (than the set used
in the coding experiments of Fig 5.6.2) was used to derive first a QY set of
4096 position -patterns and then Cgpt codebooks of various sizes. The same
speech training data were used by the codebook optimisation process to
calculate the performance measurements {average SNR}. The wvariation of the
average SNR during the optimisation process, is shown in Fig b5.6.3(a) for
the two pulse rates of 1120 and 1440 pulses/sec. The random codebook
contains uniformly distributed pulses, and both codebooks are unstructured
(complete enumeration of all the codebook entries is required). A separate
column in Fig 5.6.2 gives the number of bits required for the coding of the
pulse positions in each frame {(which in the case of the CS5-MPE coder

indicates the size of the codebook).

As seen in Fig 5.6.2, when the CS-MPE coder employs a 10-bit optimised
codebook or a 13-bit random codebook, it gives SNR results which are very
close to the results obtained £rom the MS5-MPE coder. The number of bits
required for the coding of the pulse positions is therefore between one half
and one third the number of bits required by the MS85-MPE coder in order to
achieve the same SNR performance as the CS-MPE coder. When 1less efficient
(than method MS5) MPE optimisation methods are employed, smaller codebooks
are required by the the CS-MPE coder to achieve the same performance as the
MPE coder.
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The efficiency in coding the pulse positions is translated to a reduction
of the transmission bit rate by approximately 3000 bits/sec. This figure is
typical of the savings that can be achieved at a bit rate higher than 12
kbits/sec. When the transmission rate is close to 9600 bits/sec, the savings
are reduced to approximately 2000 bits/sec. It is clear (from Fig 5.6.2)
that the optimised codebook is more efficient (by 3 bits) than the random
codebook in achieving the same SNR performance. The steady decrease of the
SNR as the size of the codebook is reduced, is evident from both Figures
5.6.2 and 5.6.3(a), and is egquivalent to the SNR drop observed in common

scalar and vector quantizers when the size of the codebook is reduced.

When the size of the MPE frame or the pulse rate is increased, the size of
the codebook must also be increased, to cope with the increased number and
mobility of the pulses. This means that a certain ratio must be kept between
the number of bits allocated to the coding of the pulse positions by a
conventional MPE coder and by a CS-MPE coder. A small codebook leads to a
loss in speech quality and can only be compensated by a significant rise in
the pulse rate, which eventually consumes the potential benefits that could

he gained by using the Codebook Search technique.

A large unstructured codebook would be cumbersome to use, due to the
complexity of the codebook search process. Tree codebooks and multiple
codebooks can be used to reduce the complexity of the C5-MPE coding process,

at a cost of a slightly increased transmission bit rate,

At a given bit rate, the parameters chosen for the C(S-MPE coder are
usually different than in conventional MPE coders. A smaller frame is
preferred and the pulse rate is usually higher. The quantizers used for the
normalised amplitude wvalues are Gaussian-optimised quantizers. As seen in
Fig 5.6.3(b), the long-term PDF of the normalised amplitudes (for a pulse
rate of 1440 pulses/sec), is much closer to the Gaussian unit wvariance
distribution (superimposed curve) than it 1is to the gamma distribution used

in Chapter 4 for the conventional MPE coders.

The results given below show the average Segmental-SNR obtained from the
4 sec speech segment which was also used to provide the coding results
obtained from conventional MPE coders, 1in Chpater 4. A 12th order AR-LPC
filter is employed and the LPC frame contains 200 samples. The value of the

noise shaping filter constant ¥y is set equal to 1. The RMS value of the
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FIGURE 5.6.1 Probability ditributions for : (a) Pulse Positions obtained

from coding of speech (b) Distance (in samples) between consecutive pulses,
obtained from coding of speech (¢} Distance between consecutive pulses when

their positions are randomly distributed. The size of the MPE frame is 50.
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Pulses/sec 1120 1440
METHOD BITS® | SHR (dBs) | BITS" | SWR (dBs)
MPE - Method MS5 | 27 15.6 32 17.8
HPE - CS Trained 8 14.5 8 16 .4
MPE - CS Trained 9 14.9 9 16.8
MPE - CS Trained | 10 15.3 10 17.2
HPE - CS Random 8 13.5 8 15.2
HPE - CS Randonm 9 13.9 9 15.6
HPE - CS Random 10 14.3 10 16 .0
HPE ~ CS Randonm 11 14.7 11 16 .4
MPE - CS Randonm 12 15.0 12 16.8
MPE - C8 Ragndonm 13 15.4 13 17.2

FIGURE 5.6.2 Average Seg-S5NR obtained from a conventional MPE coder (Method

MS5), and a CS-MPE coder that employs an Optimised (Trained) or a Random
Position-Codebook. The number of pulses defined in each MPE frame 1is the
same for all the coders, and the number of bits {(*) required for the coding

of the pulse positions in each case is shown.
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pulse amplitudes is calculated every two {(at 8 and 9.6 kbits/sec) or three
frames f{at 16 kbits/sec), and quantized wusing a 32 level logarithmic
quantizer. The pulse amplitudes are first normalised by the RMS5 wvalue and

then quantized with a Gaussian PDF optimised quantizer.

In the respective columns, the values of the transmission bit rate, the
MPE frame size, the number of pulses per frame, the number of bits required
for the quantization of the LPC parameters (log area-ratios), the number of
bits allocated to each quantized amplitude value and the size of the

position codebook, are given.

Bit Rate Frame Pulses LPC Amplit.|Codebook SKR
bits/sec {{samples) (q) (bits) (bits) (bits) (dBs)
8000 50 & 50 q 11 12.7
8004 50 ) 46 4 12 13.0
9800 50 8 50 4 13 14.5
16000 40 11 50 5 13 19.8

The position codebooks used by the CS-MPE coder were random, because it is
difficult to generate optimised codebocks of the same slize. Even so, the SNR
figqures are higher than the corrsponding figures given in Chapter 4 for the
conventional MPE coders, by approximately 1.5 dBs. The SNR wvalues are
expected to increase, when larger frames and larger codebooks are employed
by the CS5-MPE coder. This increase can be observed at 8000 bits/sec, when a
12-bit position codebook 1is used instead of an 11l-bit codebook. Obviously,
optimised codebooks will further improve the performance of the CS-MPE

coder.

5.7 Conclusions

A MPE-LBC scheme which employs a codebook for the pulse positions, has
been proposed. The coder operates as a vector quantizer, using an Analysis
by Synthesis optimisation loop to search through the parameter space of the
pulse positions and minimise the distortion intro- duced by the coding
process. The codebook can be unstructured or it can be arranged in the form
of a tree codebook or a multiple codebook. A compu- tationally efficient
optimisation algoerithm has been described, which can be used to design an

optimised unstructured codebook, based on a training process which takes
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into account the average speech characteristics. The codebook optimisation

algorithm can be modified and applied to structured codebooks.

The CS-MPE coder can operate at lower bit rates than conventional MPE
coders, because it allocates fewer bits to the coding of the pulse positions
without causing any loss in speech quality. Savings of 2-3 kbits/sec can be

achieved with an optimised or even a random pulse position codebook.

Alternatively, The CS-MPE coder performs better than conventional MPE
coders, when operating at the same transmission bit rate. This is true even
when random codebooks are employed. The complexity of the MPE optimisation
algorithm (when an unstructured position codebook is employed) though, may
be higher than in conventional MPE schemes. The performance of the CS-MPE

coder improves when larger MPE frames and codebooks are used.

Larger position codebooks must be used when the size of the MPE frame is
increased, in order to cope with the increasing number cof possible pulse
position combinations. To avoid the considerable increase of the algorithm's
computational complexity, tree or multiple codebooks must be used. Sometimes
though, use of a small frame size by a MPE coder can be advantageous, as it
is for example‘when a Long Term Predictor (LTP) is employed and optimised by
minimising the distortion introduced by the coder. In this case, small
frames improve the performance of the LTP and therefore the MPE coder can
take advantage of the efficiency of the Codebook Search optimisation process
and reduce the number of bits required for the quantization of the pulse

positions.

The codebook optimisation algorithm described 1is quite general and does
not depend on the availability of convenient quadratic error measures. It
can therefore be employed in a number of general speech coding applications,
where the speech waveform is decomposed into a number of discrete components

{5.19,5.20,5.21,5.22], or in other related discrete optimisation problems.



[5.

[§5.

[5.

[s5.

[5.

[5.

[s

[

[s.

{5.

[s.

[s.

[5.

[s.

[5.

1]

2]

31

4]

5]

¥

.7]

.81

9]

101

11]

12]

13}

14}

157

- 178 -

REFERENCES

M.R.Schrogder, B.S.Atal, "Code¢-Excited Linsar Prediction (CELP): High
quality speech at very Low Bit Rates", Proc ICASSP 1985, pp 937
R.C.Rose, T.P.Barnwell, "The Self Excited Vocoder - An alternative
approach to Toll Quality at 4800 bps" ,IEEE Proc ICASSP, Tokyo 18688,
pp 453-456

H.Xoyama, A.Gersho, "Fully Vector-Quantizaed Multipulse LPC at 4800
BPS", Proc ICASSP 1986, pp 445

V.Savvides, C.Xydeas, "A new approach to Low Bit Rate Speech Coding",
Proc Int. Conf. Digital Processing of Signals in Communications,
IERE, Loughborough, Sep 1%88

5.0no, K.O0zawa, "2.4 kbps Pitch Prediction Multi-Pulse speech coding"
Proc ICASSP 1988, pp 175

R.Garcia-Gomea et al, "Vector Quantized Multipulse LPC", Pro¢c ICASSP
1887, pp 2197

P.Kroon, B.S.Atal, "Quantization Procedures for the Excitation in
CELP coders", Proc ICASSP 1887, pp 1649

P.Eroon, E.F.Deprettere, "A Class of Analysis-by-Synthesis Prediciive
Coders for High Quality speech coding at rates between 4.8 and 18
kbits/sec", IEEE Journal on Selected Areas in Communications, Vol 6,
No 2, Feb 88, pp 353-363

M.4.Ireton, C.5.Xydeas, "On improving Vector Excitation Coders
through the use of Spherical Lattice Codebooks (SLC's)", to be
presented at IEEE Int. Conf. ICASSP, May 1989

¥.Gouvianakis, "“Report on Low Bit Rate Speech Coding", British
Telecom Progress Report, April 1888

T.F.Quatieri, R.J.Mcdulay, "Speech Transformations based on a Sinu-
goidal Representation”, IEEE Trans ASSP, Dec 1986, pp 1449-1464
E.B.Ggorge, M.J.T.Smith, "A new speech coding model based on a Lgast-
Squares Sinusoidal representation", Pro¢ ICASSP 1987, pp 1641
R.McAulay, T.F.Quatieri, "Computationally efficient Sineg-Wave
Synthesis and its application to Sinuseidal Transform Coding", Proc
ICASSP 1988, pp 370

Y.Lee, H.F.Silverman, "On a General Time-Varying model for speech
signals", Proc ICASSP 1988, pp 95

D.L.Thomson, "Parametric Models of the Magnitude/Phase Spectrum for
Harmonic speech coding", Proc ICASSF 1988, pp 378




[6.

[s.

[s.

[s.

[s

[5.

[s.

16}

17]

181

197

.20]1

21}

22]

- 179 -

P.Xroon ¢t al, "Regular-Pulsg¢ Excitation: A novel approach to
effective and efficieont Multipulse Coding of Speech", IEEE Trans ASSP
Oot 1888, pp 1054-1063

R.S.Garfinkel, G.L.Nemhauser, "Integer Programming", John Wiley &
Sons, New York, 1872

L.R.Foulds, "Optimisation Techniques: An Introduction”, Springer-
Verlag, New York, 1081

S.Adlersberg, V.Cupernan, "Transform domain Vector Quantization for
speech signals", Proc ICASSP 1887, pp 1838

T.V.Sregnivas, "Modelling LPC-Regidue by components for good quality
speech coding", IEEE Proc. ICASSP, New York 1988, pp 171
C.d"Algssandro, J.Lienard, "Decomposition of the speech signal into
short-time waveforms using spectral segmentation”, IEEE Proc. ICASSP,
New York 1988, pp 351

K.Tamaribuohi, §.Saito, "4 New Analysis Method for Acoustic Signals
composed of Sine Waves", IEEE Proc. ICASSP, New York 1888, pp 2440



- 180 -

CHAPTER 6

BACKWARD EXCITATION RECOVERY CODING

6.1 Introduction

Speech coding systems which combine the source-filter model of speech
production and the concept of Analysis by Synthesis optimisation, have
proved to be capable of providing near toll-gquality speech at transmission
rates well below 16 kbits/sec. There are numerous applications for medium
and low bit-rate speech coders which regquire high quality speech, for
example in satellite and mobile communication networks, voice storage and
mail, integrated services networks, etc. These applications tend to
multiply, as easily implementable coding methods, capable of producing very

good quality speech at even lower transmission bit-rates, become available.

The Multipulse Excited (MPE) and Codebook Excited LPC (CELP) [6.1,6.2]
coders have partially fulfilled the expectations of very good quality speech
at medium and low bit rates. Both schemes employ a synthesis filter which
usually consists of two linear autoregressive filters in cascade, The first
filter takes the form of a Long Term Predictor (LTP) and models the fine
spectral structure of speech, while the second filter is based on a Short
Term Predictor (STP) and models the short term spectral envelope of speech,
The parameters of both filters are defined periodically from the input
speech samples. This 1is ususally achieved outslide the main Analysis by
Synthesis optimisation 1loop, by a two-stage minimisation of the energy of
the residuval signal produced by filtering the input speech through the
inverse of the synthesis filter. Both systems transmit information, which is
used by the decoder to reconstruct the excitation and the adaptive filter

"components” of the coder.

An alternative Analysis by Sythesis coding algorithm can be obtained by
defining the excitation signal from past information which 1is available at
both the encoder and the decoder, and by determining the filter parameters
from an Analysis by Sythesis optimisation process which minimises an appro-
priately chosen error measure. This general coding approach will be referred

to as Backward Excitation Recovery (BER) coding {6.3,6.4].

BER coders operate at bit rates between 4 and 8 kbits/sec, and the quality
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of speech production varies from good, at 4.8 kbits/sec, to very good
communications quality at 8 kbits/sec. Furthermore, a BER coder may employ
optimisation techniques which require speech frames of the order of 2-3 ms,
thus minimising the encoding delay (compared to conventional LPC coders
operating at low bits rates). This low delay property can be an advantage in
transmission applications like satellite mobile radio, where the overall

transmission delay must be minimised.

The theory of the BER systems will be presented for the general case of a
multi-input linear synthesis filter. Two different models will be used for
the estimation of the filter coefficients, one of them relies on Linear
Prediction theory whereas the other one is based on the estimation and

minimisation of the distortion introduced by the coding process.

A number of recursive adaptation methods will be presented, which can be
employed to define the excitation signals, based on the past information
availéble at both the encoder and the decoder. Finally, vector quantization
of the synthesis filter coefficients will be considered, and a quantizer
optimisation method will be described which is based on the minimisation of

the average distortion introduced by the coding process.

6.2 Operation of the BER coder

The flow diagram of the BER encoder is shown in Fig 6.2.1. The encoder
forms the excitation signals which drive the synthesis filter, using stored
information which was generated during the operation of the BER coder in the
past. The same information is available at the decoder, and thus to recover
the synthesised speech waveform, only the parameters of the synthesis filter

need to be transmitted.

The excitation sequences drive a multi-input synthesis filter. An example
of.a 3-lnput synthesis filter driven by 3 different excitation sequences, is
shown in Fig 6.2.2(b). The first section of the synthesis filter consists of
a serjes of FIR filters Bj(zj whose outputs are combined and fed to the IIR
filter Af(z). Each FIR filter takes the form :

Bi(z) = g: by = s FEL, 2, 00,0, deO (Fq 6.2.1)
=0
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where n is the number of samples in each speech frame, n, 1is the number of
FIR filters included in the synthesis filter, bL are the coefficients of the
ith FIR filter (q;+1 coefficients are allocated to each filter), and d; is a
positive number which specifies a time delay (for each FIR filter) and will
be referred to as a delay parameter.

The second part of the synthesis filter is the autoregressive (all pole)
filter :

Alz) = (Fq 6.2.2)

i - E: a, 2"

m=1
where ! is the order of the filter.

The past samples of the excitation sequences {uifi)} are assumed to be
available at both the encoder and the decoder. These sequences are therefore

specified only in the negative time direction :

{uj(i)} , i€o , i=t,2,...,m, (Eq 6.2.3)

Notice that some of these sequences may be identical, if the same excita-

tion sequence is used at more than one inputs of the synthesis filter,

An Analysis by Synthesis optimisation procedure is used by the encoder to
choose n-sample intervals from the past history of the excitation seguences,
that could be used by the synthesis process to produce a synthesised version
of the speech signal, which would be as close to the original signal as
possible. The position of each interval (in time} is specified by the delay
parameter di included in the definition of the synthesis filter. The
Analysis by Synthesis procedure optimises the value of each delay parameter
and thus chooses the “"best"” intervals from the stored samples of the

excitation seguences.

The Analysis by Synthesis optimisation loop minimises the approximatiocn
error and chooses the optimum £filter coefficients, which are then quantized
and transmitted to the decoder. The optimum quantized filter coefficients
are also employed by a local decoder which calculates the synthesised
version of the speech signal and updates the history of the excitation

sequences, before the next speech frame is processed.

The updating of the excitation sequences is performed identically by both
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FIGURE 6.2.1 The Encoder section of a BER coder.
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the encoder and the decoder, without requiring the transmission of side
information. It must therefore be done using any "intermediate results”™ that
have been produced during the coders’' operation. These results include the
various signals at the outputs of the FIR filters and the synthesised speech
signal itself. This recursive excitation adaptation process can be detected
in Figq 6.2.1 by tracing the double excitation lines. The recursive
adaptation algorithm employed by the local decoder, provides the 1link
between the past and the present values of the excitation signals, and

closes the excitation adaptation loop.

The decoder, shown in Fig 6.2.2(a), operates 1in the same way as the local
decoder of the encoder (Fig 6.2.1) in forming the synthesised version of the
speech signal, provided cof course that the filter parameters are received
free of channel errors. In general, the system has a tendency to propagate
transmission errors, as indeed is the case with any backward adaptive speech
coding system. Nevertheless, standard "initialisation™ techniques can be
easily incorporated into the system to minimise the effect of channel errors

on the quality of the recovered speech signal.

The estimation of the synthesis filter «coefficients (not including the
delay parameters) will be examined f£first. Two methods will be considered,
the first one employing the ARX Linear Prediction model, which enables the
estimation of all the synthesis filter coefficients by minimising the energy
of the prediction error. The second method optimises the coefficients of the
Bi(z) FIR filters, by minimising the energy of the distortion introduced by
the coding process. Different strategies will be explored, for the
optimisation of the delay parameters, and a number of recursive excitation

adaptation schemes will also be considered.

6.3 Filter Coefficient Estimation using Linear Prediction

The synthesis filter model wused by the BER coder (shown in Fig 6.2.2(b))
differs from the synthesis models employed by conventional LPC speech coders
in that it can accept many inputs and both the input seguences {(past excita-
tion samples) and the desired response of the filter {(speech signal) are
Known in advance. The estimation of the filter coefficients can be treated
as a System Identification problem and a suitable Linear Prediction model
that can be used for the BER synthesis filter, is the Autoregqgressive with

Exogenous inputs {(ARX) [6.5,6.6,6.7,6.8]. The same model (with a single
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input) has been employed by MPE coding schemes that redefine the AR-LPC
filter, once an estimate of the Multipulse Excitation has been formed

£6.9,6.101. The ARX model for the BER coder can be written as :

] "y 9
s(i) = 2: a, sCi-m) + )" 2:’55 ujli-n-d;~k) + e (i) , oSi<n-1 (Eq 6.3.1)
m=1 [=1 k=o
where {s(i}} 1is the sequence of n speech samples contained in the speech
frame examined, {eP(i)} is the innovation sequence {(prediction error) whose
samples are assumed to be uncorrelated and distributed as zero-mean Gaussian
variables, and the delay parameters d; are assumed to be fixed. Under these
conditions, the Maximum Likelihood (ML) estimate and the Least Squares (LS)
estimate of the filter coefficients are equivalent. The LS estimate of the
coefficients is obtained by minimising the energy of the prediction error
over the n-sample speech interval (Eq 6.3.1), In matrix notation, Eg 6.3.1

is transformed to :

n
b
s=Sat §: U; b; + e, (Eq 6.3.2)
i=1

where 5 and e, are the n~dimensional vectors containing the speech and
prediction error samples, the vector a=f{a, ,a,,...,a;] contains the coeffici-
ents of the filter A(z}, bi=[b£,b{,.-.,b;_1 contains the coefficients of the

filter Bj(z), 5 is the nx! speech matrix :

s(-1} s(-2) ... s(=1)
s fo) s(~1) ... s(1~1)
5= . . . (Eq 6.3.3)
sfn—2) s{n-3} ... s(n-1-1)
and Uj are the (n)x(qifi) excitation matrices :
ui(—n-dj) ui(—n—di—l) cen ui(-n—di-qj)
. - uj("”de*ij uf(_nfdi) e ui(—ntdi-qi*lj (Eq 6.3.4)
! . : : , F=1,. '"b
ui(—di—i) u;(-d;~2) cee up(-dimg -1}

The coefficients of the BER synthesis filter can be estimated by express-

ing the wvariance of the prediction error as a gquadratic function of the
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reguired coefficients and by locating the function minimum. This minimum
generally exists and is unique. Notice that either all or some of the filter
coefficients may be estimated in this way. Assuming for the moment that all
the filter coefficients are required, the LS estimate of their values can be
found by solving a system of (lfqlf...fqnb) equations with the same number

of unknowns. The estimated coefficient values are then :

- - - . . . 4=t -
a s's {sTx, | ... |s'x s’
: : a7 n ' O
T H T E , T T
b, XS i XX, T xlxnb X]
““““ 3 AR Rt ] s (Eq 6.3.5)
b s i XX, ! ... :X'«x T
| | :x"biz bRy Ay | _x"b_

The coefficient matrix of Eq 6.3.5 1is symmetric and contains auto-
correlation and cross—-correlation terms £from the speech and excitation
sequences. In most cases, these terms are related and can be calculated

using computationally efficient algorithms (see Section 4.4).

If only some of the filter coefficients need to be estimated, Eg 6.3.2 can
be rearranged so that the Jleft hand side contains the coefficients whose
values have been obtained beforehand and are assumed to be constant, and the

right hand side contains the coefficients whose wvalues are required. For

example, 1if only the last (nq—k+1) coefficient sets bk’bk+1""’bnb are
required and a,b,,b,,...,b,_, are known, Eq 6.3.2 is rearranged as :
k=1 ny
s-Sa- Zlui b; = Zkui b, + e, (Eq 6.3.2a)
j= /=

The same procedure as before is followed to minimise the wvariance of the

prediction error e, in Eq 6.3.2a, with respect to the required coefficients.

P
The optimum values of the coefficients are now :

- - - ' ' --1 p -
T ) L T T
-------- R Tttt T T k-1
= : ‘ l : . (5 -8a _Zluibf)
------------ f M il B e —-————— l-.
T i . T
bnb anxk : "t : an nb xnb
! 1t ' ' b1 : (Eg 6.3.5a)
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The process of estimating part of the synthesis filter at a time, is used
te simplify the BER filter optimisation algorithm, so that one section of
the synthesis filter can he optimised first, then another section, and so
on. Notice that if only the coefficients of A(z) are required, and the
coefficiennts of the Bi(Z) filters have zero values, then the estimate given
by Eq 6.3.5 will be the same as the one obtained from the Covariance LPC

estimation method.

The optimisation of the sythesis filter at the encoder, is performed in a
series of steps. At each step, a different "setup” of the synthesis filter
is tested. The filter “"setup” changes.by increasing the value of the delay
parameters, or by adding more FIR filters. As the maximum aumber n;, of FIR
filter-sections is predefined, and the range of the delay variables |is
known, only a limited number of possible filter "setups” can be defined. All
the different filter "setups” are generated and examined at the encoder, by
the Analysis by Synthesis optimisation process (Fig 6.2.1). For each
"setup”, a set of filter coefficients 1is calculated by sclving the
corresponding system of linear equations (Eq é.3.5). The speech signal is
synthesised for every set of (guantized) filter coefficients, using the

recursive formula :

! My 9
s, (i) = Zam s,(i~n) + Z Z’bg u;(i-n~d ;~k) , oSisn-1 (Eq 6.3.6)

m=1 i1 k=o
where {sy(iJ} is the synthesised speech signal and {uj(i)} Si51,2,...,n, are
the excitation sequences. The error signal {(distortion) is measured by the
difference between the original and synthesised speech signals, and its
energy is calculated for each set of filter coefficients, produced by the
optimisation process. The set of coefficients which minimise the error
energy are chosen by the error minimisation algerithm (Fig 6.2.1) and

transmitted to the decoder.

The all pole filter A{z) estimated from Eq 6.3.5, is not guaranteed to be
minimum phase (have all its poles inside the unit circle), and may cause the
sythesis process (Eg 6.3.6) to hecome unstable. This happens very rarely
during the optimisation of the synthesis filter, and can be simply detected

by noticing the diverging values of the synthesised signal.

An effective remedy would be to disregard the filter "setups” which result
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unstable synthesis filters. This would only cause a small disturbance to the
filter optimisation process. Alternatively, a different filter estimation
procedure can be used, which rearranges the synthesis filter of the BER
coder into an ARMA-Lattice structure, by embedding both the output and input
signals into a conventional Autoregressive-Lattice model [6.11,6.12,6.13,
6.14,6.15,6.161. The error minimised would then be a function of the forward
and backward prediction errors, and the filter A(z) would be gquaranteed to
be minimum phase. The former approach will be used here, because of its
simplicity and because it can give results which are as good as the results

obtained using the latter approach.

6.4 Estimating the Filter Coefficients by Minimising the Sigral Distortion

The synthesis filter estimation method described in Section 6.3, defines
the filter coefficients by minimising the prediction error, and selects the
best filter "setup” by minimising the distortion introduced by the coding
process. Alternatively, for a given filter "setup” it is possible to
estimate the coefficients of the synthesis filter, by minimising the signal

distortion instead of the prediction error.

The energy of the error sigrnal (distertion) can bhe expressed as a
guadratic function of the filter coefficients bi. The minimum of this
function, and therefore the optimum values of the bi coefficients, <c¢an be
found using standard Least-Squares methods. It is not possible however, to
use the same technique to estimate the coefficients of the all-pole filter
A(z}, because the error energy function would be a higher order polynomial
and numerical methods would need to be employed in order te 1lecate the

function minimum.

The error signal is the difference between the original and synthesised

speech waveforms :
Ea(zJ = S5{z) - Sy(z) (Fq 6.4.1)
and the synthesised signal can be calculated using the difference equation

6.3.6. By taking the one-sided z-transform [6.17] of both sides of Eq 6.3.6

and rearranging the terms (see Appendix A), the synthesised signal becomes :
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!

kz b Zui(i—n-—di-k) 2+ M ()
=0

ny 9 ntd . tk-1
i 1=o

n
S, (z) = Alz) Zbul.(zj Bj(x) + Alz) ]
=t i=
(Fq §.4.2)
where :
I~ I-k
H(z) = Az) Y 2% Y ap,p s, (-m) (Eq 6.4.3)
k=o n=1
The first term of the right hand side of Eq 6.4.2 corresponds to the
forced response of the synthesis filter, while the second and third terms
correspond to its transient response. The term Hy(z) is the transient
response of the all-pole filter A(z). Using Eg 6.2.1, the forced response

can be written as :

n o

b fi ~n—d ;~k
FORCED RESPONSE = A(z) 3 ) b} U, (z) =z i (Eq 6.4.4)
i=1 k=o

The samples of the sequence given in Eq 6.4.4, all lie outside the [o,n-11
interval of the speech frame and can therefore be ignored. Thus Eq 6.4.2 can

be simplified to :

"5 i n-i
- i i n-d.-k) 2
Sy(z) = atz) 3 kz:bk Youglion=d;=k) 27"+ H () (Eq 6.4.5)
I=1 R=0 =0

Using matrix notation, Eq 6.4.5 can be converted to :

n
b
s, = Q Z U;b; + m, (Eq 6.4.6)
i=1
where Q is the nxn lower trianqular convolution matrix :
_h(o) 0 0 ]
h{1) hio) o c..
Q=1 h(2) h{y) ho) - o (Fq 6.4.7)
hin-1) hkin-2) hin-3) ... ko)

{h(i)} is the impulse response of the all-pole filter A(z} and the matrices
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U, were defined by Eq 6.3.4. Using Eqs 6.4.1 and 6.4.6, the error signal

(distortion) can be expressed as a function of the b‘ coefficients :

"6
& = s - m - ) QU;b, (Eq 6.4.8)

i=t
Assuming that the values of the filter delay parameters are fixed and that
an estimate of the coefficients of the filter A(z) is already available, the
filter coefficients bL can be calculated using standard Least-Squares
methods. If, at a certain stage during the synthesis filter optimisation
process, all the bi ,k=o,1,...,qi 2i=4,2,...,ny coefficlents were required,

their optimum values would bhe :

i ] TAT ! TAT ' . 127 oTaT ]
ThT L T T v ‘o T B B Tar
b, gelex, | welex, | ... i xQlex, xlQ
‘‘‘‘ S SRR h bbbkt Simommmmoont | (semy)
______ T oTm v )T nTh e Y T . T AT
R AR R P %y @9 %a, | T
(Eq 6.4.9)

As in the case of the prediction error minimisation eguations (Eq 6.3.5),
the coefficient matrix of Eqg 6.4.9 contains autocorrelation and cross-corre-
lation terms which are generally related. These relationships can be exploi-
ted to simplify considerably the computation of the coefficient matrix and

subsequently the BER optimisation algorithm.

The energy of the error signal (Eq 6.4.8) is calculated (for the quantized
filter coefficients) using an augmented coefficient matrix, and the computa-

tionally efficient formula (see Appendix B)

T 2 1 fts-m) "(s-m ) (s-m.17Q K, is-myTox. V0 f 1]
_____ yo_ Ty T oy T m oyt T, .
TAT ' ThT H E TaT
-b, xlQ"(s-m) | xQ"Q ¥, | i x[Q'o x, -b,
S SR B N e . U 2 I P
ea ea - ] ] +

I B T AT T ATh v P ot e L

np LX"Q(SmJ’)Ex”bQQxl:. i X Q0 X, b,

(Fq 6.4.10)
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The error energy is calculated for every possible "setup” of the synthesis
filter examined by the Analysis-by-Synthesis optimisation procedure (see Fig
6.2.1), The error minimisation algorithm finally chooses the set of coeffi-
cients that correspond to the smallest wvalue of the error energy. These

coefficients are then transmitted to the decoder.

As in the case when the filter coefficients are estimated wusing Linear
Prediction methods (Section 6.3}, only some of the filter coefficients may
be required at some stage during the synthesis filter optimisation process.
Equation 6.4.6 can be rearranged so that its left hand side contains all the
coefficients whose wvalues have been determined at a previocus optimisation
stage, and its right hand side contains the coefficients which need to be
estimated. The error energy would then be minimised with respect to the
required coefficients, by solving the corresponding system of linear

equations (Eg 6.4.9).

The Distortion-Minimisation (DM} Filter-Estimation algorithm described in
this Section, can be combined with the Linear-Prediction (LP} estimation
algorithm of Section 6.3, if the latter algorithm is employed to provide an
estimate of thé coefficients of the all-pole filter A(z). Alternatively, an
estimate of the filter A(x) can be obtained {and subsequently used by the DM
algorithm) using conventional LPC methods (eq. the Covariance or the Maximum

Entropy filter estimation methods)

The DM algorithm can be modified to permit negative values for the delay
parameters (d;<o). In this case the forced response of the synthesis filter
{Eq 6.4.4) cannot be ignored, and an estimate of the excitation sequences in
the positive time direction must be formed by artificially extending the
excitation sequences using the past excitation samples [6.18,6.191. The same

modification can be applied to the LP estimation algorithm of Section 6. 3.

The DM algorithm can be simplified by limiting the effective duration of
the impulse response A ,k,  k,,... [6.18], or by choosing the "setup” of the
synthesis filter 1in some other way {(using for example the LP method} and
then using the DM estimation method only in the final filter optimisation

stage, to obtain all the bi filter coefficients,

An interesting relationship between the error signal (distortion) and the

prediction error (Eq 6.3,1), can be formed by taking the z-transform of both
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sides of Eg 6.3.1. By rearranging the terms, an equation similar to Eq 6.4.2

can be obtained :

n, 9y n+d1+k-1
S(z) = Alz) U.(z) B.(z) +A(2) bi u.(i-n-d.~k) 271 +M(2I+E (2}
i i . 4 i i
’: :o

. P
150
(Fq 6.4.11)
where EP(z) is the prediction error, and :
-1 I-k
Hz) = Atz) ¥ 2% Y ay, . st-a) (Eq 6.4.12)
k=o m=1

If the assumption is made that the last ! samples of the synthesised and

original speech waveform in the previous analysis frame were equal :
s(-m} = sy(—m) , m=1,2,...,1 (Fq 6.4.13)

then, using equations 6.4.1, 6.4.2 and 6.4.11, a relationship between the

two error signals can be established :

Ea(z) = EP(z) Alz) (Eq 6.4.14)

It is «clear that the two error sequences have quite different spectral
distributions, and that the minimisation of the energy of one of them dces
not necessarily cause the minimisation of the energy of the other. The two
sequences f(and therefore the DM and LP estimation algorithms}) become

equivalent only when the all-pole filter A(z) is removed from the synthesis
filter (that is when A(z)=1}.
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6.5 Optimisation of the Filter Delay Parameters

The Analysis by Synthesis optimisation process employed by the BER encoder
seeks to determine n-sample intervals from the stored sequences of past
excitation samples, that can be used to drive a multi-input synthesis filter
whose output is the reconstructed speech signal. The relative position of
each interval (in time) is specified of a delay parameter d;. Each delay
parameter corresponds to a separate FIR section of the synthesis filter

{(Fig 6.2.2{b)) and may take any integer value in the interval [lo,ny-17.

The values of the delay parameters are determined so that the energy of
the distortion introduced by the coding process is minimised (Fig 6.2.1},
For each set of delay values tested by the Analysis by Synthesis optimisa-
tion process, a set of filter coefficients a,bi can be found, using either
the Linear Prediction (LP) or the Distortion Minimisation (DM) methods,

described in Sections 6.3 and 6. 4.

The synthesis filter coefficients is therefore optimised using analytical
methods, whereas the delay parameters are optimised using numerical methods.
As the number of FIR sections of the synthesis filter is usually not large,
a sequential optimisation approach is followed to determine the wvalues of

the delay parameters.

The synthesis filter optimisation process determines the wvalue of d,
first, allowing only A(z) and B,(z) to have non-zero coefficients. In the
second stage of the optimisation process, the value of 4, 1is determined
assuming that the value of d, remains fixed and allowing only A(z), B, (z)
and B,(z) to have non-zero coefficients. The process continues until all the

delay parameters, and therefore all the FIR filter sections, are determined.

At each stage a delay parameter is defined by first evaluating the energy
of the signal distortion for every possible value of the delay parameter,
and then choosing the delay wvalue which results the minimum distortion
energy. This simple optimisation strategy provides the common ground for the
development of various filter optimisation algorithms, These algorithms are
formed by choosing a different set of filter coefficients to be optimised at
each stage ("setup"), or by changing the filter estimation algorithm (either
the LP or the DM methods).

Possible optimisation algorithms for the Single-FIR-Section synthesis



- 185 -

filter are given in Fig 6.5.1(a). The first two algorithms #,(1) and #,6(2}
optimise the coefficients a and b, jointly, using either the LP estimation
method (Eq 6.3.5) or a combination of the LP and DM methods. When the two
estimation methods are combined {to form method LP-DM), Eq 6.3.5 is employed
to estimate the a and b, coefficients, and Egs 6.4.9 and 6.4.10 are used to
reoptimise the b, coefficients and measure the distortion energy (Eq 6.4.10)
for every possible value of d, ro$d1$nd—1). Notice that once the optimum
value of the parameter d, is determined by method X, (), it is possible to
reoptimise the b, coefficients using Eq 6.4.9. This possibility is indicated

by the presence of the (R) symbol next to the coefficient estimation method.

Methods X, (3) and M, (4} assume that the coefficients of the filter A(z)
have been estimated separately using a conventional LPC method (Covariance
or Maximum Entropy), and that they are kept constant during the optimisation
of the parameter d,. As a consequence, the frame over which A(z) is defined
can be different (and usually larger) than the frame over which the b,
coefficients are defined. Method ¥, (3) uses the LP method to estimate the
set of coefficients b,, but may be modified to allow the reoptimisation (R}
of the b, coefficients from Eq 6.4.%, after the "optimum" value of the para-

meter d, has been determined.

As more FIR sections are added to the synthesis filter, the number of
possible optimisation algorithms rapidly increases. In Fig 6.5.1(b), algo-
rithms that can be employed to optimise a synthesis filter with two FIR
sections, are described. The wvalue of the parameter d, is optimised in the
first stage, and 4, is optimised in the second stage. As in the case of the
Single-FIR-Section synthesis filter, three filter estimation algorithms are
used i.e. the LP (Eq 6.3.5), the DM (Eq 6.4.9) and the LP-DM (Egs 6.3.5 and
6.3.9) methods. Different sets of filter coefficients are chosen to be
optimised at each stage, and some filter coefficients remain constant during

the optimisation of the parameters 4, or d,.

In methods X#,(1)-#,(8) the coefficients of the filter A(z)} are estimated
during the optimisation of the parameters d, or 4,, using the LP estimation
method (Eq 6.3.5). In contrast, methods #,(9)-#,(12) estimate the coeffici-
ents of the filter A(z) separately, using a conventional LPC method and
possibly a larger speech interval than the interval over which the b1 and b2

coefficients are defined. The a coefficients are then kept constant during
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OPTIMISATION OF d,
opTinisATION | CoEFFICIENT || consTanT VARI ABLE

HETHOD ESTINATION || COEFFICIENTS | COEFFICIENTS

(1) LP (R) a b,

(2 LP-DH a b, cay

f,(3) LP (R) a b,

#,(4) oH a b,

d, OPTINISATION d, OPTINISATION

OPTIN. | COEFFICIENT || CONSTANT | VARIABLE || CONSTANT | VARIABLE
HETHOD | EsTinaTrON || COEFF. COEFF . COEFF. | COEFF.
nycty | oLp o a b, ab, b,
n2) oL ab, a b, b,
n,3 | Lo ab, b, ab,
NCTIN Y Y a b, ab, b,
H,(5) | LP-DH (R) a b, ab, b,
n,6) | LP-DH a b, a b, b,
uy7y | Le-om (R a b, b, ab,
n,(8) | LP-DH (R) ab, ab, b,
n,9 | LP (R) a b, ab, b,
w10y | LP (R) a b, a b, b,
H (11 | DA (R) a b, ab, b,
n,(12y | on a b, a b, b,

(b)

FIGURE 6.5.1 Algorithms used to define the Filter Delay-Parameters when :

(a)
{b}

the BER synthesis filter contains one FIR section

the BER synthesis filter contains two FIR sections.
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the optimisation of the parameters 4, and d,.

Notice that a further optimisation stage can be added to most methods,
that reoptimises (R) the b, and b, coefficients (using Eq 6.4.9), after the

"optimum” values of the parameters d, and d, have been determined.

When three FIR sections are included in the synthesis filter, the number of
possible filter optimisation algorithms is even greater. In general, these
filter optimisation algorithms can be applied toc any BER coding scheme,

irrespective of the type and number of excitation sequences used.

The filter optimisation algorithms can be simplified by using a subset of
the synthesis filter c¢oefficients (one or two coefficients for each FIR
filter section) in order to determine the optimum values of the delay
parameters, and finally estimating all the filter coefficients {(using either

the LP or the DM algorithms) for the optimised delay parameters.

The performance of the BER filter-optimisation algorithms can be improved
by considering a group of consequtive speech frames, and by minimising the
distortion over the entire speech interval, with respect teo the filter

parameters corresponding to each of the frames in the group.

6.6 Algorithms for the Recursive Adaptation of the Exclitation Sequences

As the BER coder processes the speech signal, it goes through two
different phases which can be considered separately. In the first phase,
described in Section 6.5, the input to the synthesis filter is obtained from
the stored sequences of past excitation samples {uj(i}}, and the parameters
of the synthesis filter are optimised in an Analysis by Synthesis optimisa-
tion loop. This operation is only performed by the encoder, and the estima-
ted parameters {(filter coefficients and delay parameters) are transmitted to

the decoder.

Both the encoder and the decoder then change to an operational mode which
is responsible for the adaptation of the excitation sequences and the
recovery of the synthesised speech signal. 1In this second phase the encoder

operates as a local decoder (Fig 6.2.1).

The adaptation of the excitatlon sequences is performed by extending them
in the positive time direction, using as components the "time sequences”

produced during the filter optimisation (intermediate results) which are
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available to both the encoder and the decoder. The extension of the excita-
tion sequences covers a single frame of n samples, and 1is added to the
already stored excitation samples by effectively shifting the stored excita-

tion sequences by n samples and appending the new samples.

There are many possible ways in which the different "time sequences” can
be combined to form a suitable continuation of the excitation sequences in
the positive time direction, and it is surprising how different the
characteristics of the excitation signals can be, depending on the choice of

the adaptation algorithm.

The synthesis filter of the BER coder may have many inputs (corresponding
to the separate FIR sections), but the number of excitation sequences may be
smaller, if two or more inputs are obtained from the same excitatjon
sequence. Consider first the case of a multi-input synthesis filter and a
single excitation sequence. A possible excitation adaptation algorithm can
be constructed using the output of the "optimised” synthesis filter {(see Eg
6.4.5)

n
b
Uy (z) = Alz) ZUi(bi,dj) + M () (Eq 6.6.1)
=1
where U, (z) is the continuation of the sequence {u,(i}} in the positive time
direction {(one-sided z-transform), and for notation convenience the short

description of the output of the jth FIR filter section, when the input is

taken from the {u, (i)} excitation sequence is :

n
Up(b,d;) = ZbL Zum(i-n—di—k) 27t t&nny , 1<ikn, (Eq 6.6.2)
k=o i=o

rIt is understood that the filter parameters b i,diused, were determined by
the filter optimisation process during the first phase of the coder’s opera-

tion. Since :

U, (z) = Sy(z) (Fqg 6.6.3)

the stored excitation samples are taken from the output of the synthesis

filter and the excitation sequence {ui(i)} has speech-like characteristics.

In Fig 6.6.1{a), an expanded view of the synthesis filter is shown, just
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before the speech synthesis and excitation adaptation operations take place.
The parameters of the synthesis filter have been determined by the filter
optimisation process. Two FIR filter sections are employed {(corresponding to
the delay parameters d, and d,) and the excitation samples are stored in the
filter delay 1line. By clocking the filter n times, n synthesised speech
samples are recovered at the output. These samples enter the delay line and
therefore update the values of the stored excitation sequence. The length of
the delay 1line (number of past excitation samples kept) is equal to
nfndfmaquij ; Where n,;-1 is the maximum value of the delay parameter and
gt 1is the number of coefficients of the jth FIR filter section. Note that
initially (when the BER ccder starts operating) the excitation sequence held
in the delay line of the encoder and the decoder is set to a preconstructed

sequence of zero-mean Gaussian-distributed random samples.

A different excitation adaptation algorithm can be constructed using the
combined outputs of the FIR sections of the synthesis filter. If only a
single excitation source 1is used, then the adaptation algorithm is defined

by the equation :

n
b

U (z) = Z U,(b;,d ;) (Eq 6.6.4)
izt

If more than one excitation sequences are used, then the order with which
the updating equations are applied is important. This is because the filter
optimisation process determines the parameters of the 31(2) filter first,
then those of B,(z), and so on. This order of preference puts different
emphasis on each excitation sequence and thus the adaptation order also

becomes significant.

When n, excitation sequences are used, a possible adaptation strategy can
be formed by combining the outputs of the FIR filter sections in the

following way :

nb—mfl'
Up(z) = ) U;(b;,d;) , 1<asn, (Eq 6.6.5)
i=1

But equally well, the adaptation algorithm can be changed to :
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m
Uptz) = Y U,(b;,d;} , 1<msn, (Eg 6.6.6)
=1

The adaptation algorithms defined by Egs 6.6.4, 6.6.5 and 6.6.6 can be
combined to accomodate any number of excitation sequences (not necessarily
as many as the FIR filter sections). An example is shown in Fig 6.6,.1(b),
which depicts the "optimised” synthesis filter of a BER coder, prior to the
initiation of the excitation adaptation and speech synthesis operations.
Three FIR filter sections and two excitation sequences are used. The

excitation adapatation algorithm derived from Fig 6.6.1(b) is :

Ui(z) = U (b ,d ) + Uy(b,,d,) + U,(b,,d,)

(Eq 6.6.7)
U,(z} = U,(b,,d,) + U,(b,,d,)

This algorithm has been formed by combining the algorithms of Egs 6.6.4
and 6.6.5. By clocking the filter n times, both excitation seguences are
updated and the synthesised speech signal is recovered at the output of the
synthesis filter., As in the previous example, the sequences held in the
delay lines of. the encoder and decoder are initially set to preconstructed

sequences of random samples {(common to both the encoder and decoder).

An extended excitation adaptation algorithm can combine the adaptation
strategies defined by Egs 6.6.1, 6.6.4, 6.6.5 and 6.6.6. An example is shown
in Fig 6.6.2(a). Two FIR filter sections are defined, but the two excitation
sequences are updated using two different adaptation algorithms. The adapta-

tion algorithm derived from Fig 6.6.2(a) is :

U, (z)

(U (b, ,d,) + Uy(b,,d)) ) Alz) + H(2)
(Fq 6.6.8)
U,(z) = U,(b,,d,)
The excitation sequence U, (z} is updated from the output of the synthesis

filter and has therefore speech-like characteristics.

The versatllity of the excitation definition algorithms can be extended by
introducing a non-adaptive element. This can be a "fixed" sequence of zero-
mean Gaussian-distributed random samples, which can he used to substitute
one or more of the excitation sources. If these "fixed” excitation sequences

were exclusively employed by the BER coder, the input-output relaticnship
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corresponding to the operation of the synthesis filter c¢ould be expressed in

a similar way as in the case of the adaptive components (Eq 6.4.5)

" Yi  n-1 _
- '_ — - _l
S (z) = Alz) Z kZbA Zcin n-d;~k) 271+ H (2) (Eq 6.6.9)
j=1 =0 (=0

The optimised filter parameters are employed in Eq 6.6.9, and the “fixed”

random seguences are only specified in the negative time direction :

{cj(i)} » i€, i=1,2,...,n, (Eq 6.6.10)
Eq 6.6.9 can be rewritten as :

n
b

S, () = Alz) Zicj(bi,d’.) # U (2) (Eq 6.6.11)
l:

where as before, the convenient notation used is :

9; -
Cm(bj,dj) = Z:Jbi 3:icm(i—n—dj—k) 2z , 18msny ,  1£i%ny (Fq 6.6.12)

k=o i=o
The "fixed” random sequences can substitute any excitation sequence in the
adaptation algorithms defined by Egs 6.6.1, 6.6.4, 6.6.5 and 6.6.6. Two such
examples are shown in Figures 6.6.2(b} and 6.6.3{(a). In both cases, the
synthesis filter contains two FIR filter sections, and two excitation
sequences are employed, one of whom is a "fixed"” random sequence. In the
first example, the adaptation algorithm of Eq 6.6.1 has been modified to

accept one "fixed"” sequence, and the adaptation equation is :
Ugz) = (U (by,d) + Ci(by,dy) ) Alz) + # () (Eg 6.6.13)

In this case, the synthesised speech signal is :

91 n-t ' 72 -1 .
S, (z)= Alz) kZb; Y. syli-n=d;-k) 27" 4 kZb,f ey limn=d k) =7 | +H (z)
=0 i=o o i=o

(Fq 6.6.14)

In the second example (Fig 6.6.3{(a)) the algorithm of Eq 6.6.5 has been
modified to include one "fixed™ excitation source. The adaptation equation

is :
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U, (z) = U (b, ,d) + C (b,,d,) (Eq 6.6.15)

and the synthesised speech signal is :

91 n-y 2 n-t
= b e - =i 2 P — =i
S, ()= Alz) kzobk izoulft—n d,~k) 27!+ kzobk Zoci(' n-d ,~k) z Y (2)
= = - 1=

(Eq 6.6.16)

This last excitation adaptation algorithm makes the BER coder equivalent
to a Code Excited LPC (CELP) coder that uses overlapping excitation code-
words [6.20,6.21]1. The adaptation of the excitation sequence performed by
the BER coder corresponds to the operation of the Long Term Predictor (LTP)
in a CELP coder, and the "fixed” random sequence employed by the BER coder
corresponds to an excitation codebook whose consequtive entries overlap by

n-1 samples.

The "fixed"” random seguences can substitute all the excitation seguences
of the adaptation algorithms defined by Egs 6.6.4, 6.6.5 and 6.6.6. In such

a case, the synthesised speech is recovered using Eg 6.6.9,

As the number of excitation sequences increases, the adaptive and non-
adaptive elements of the excitation can be combined in a greater number of
ways, resulting an increasing number of possible excitation adaptation
algorithms, When the numerous excitation adaptation algorithms are combined
with the possible filter optimisation algorithms (described in Section 6.5},

the resulting number of BER coding schemes can be remarkably large.

In Fig 6.6.4, a summary of the possible excitation adaptation algorithms
is given, for the case of a two-input synthesis filter. The first three
algorithms P, (1), P,(2) and P,(3) require a single excitation source, while
the rest require two excitation sources. The P,(3) and P,(12) algorithms
involve exclusively "fixed” random sequences. The P,(?) and P11 adapta-
tion algorithms are similar to the P,(8) and P,(10) algorithms but during
the optimisation of the synthesis filter, the FIR filter section correspon-

ding to to the "fixed” random excitation sequence is optimised first.
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(a)
Py + + + s + + +
b b b1 a a a 1
x) 2 x) ! X x) 3 x) 2 x) !
ouT
R 1] D4 D D=4 D D D D —
sy(—n—dz—i) sy(—4) sy(—a) sy(—z) sy(—1)
(b)
+ + A + + & >
z 2 2 3 3
bz bi bo b1 b
D D Dpr— = D D D Ry D D
uzf—n—dz—z) u2(~n—d2) uz(—n—d3—2) uzf—n—dg) uZ(—Z) uzf-i)

Db—— = —— D D D

(- _ - -
Sy 4) sy( 3) Sy( 2) sy( i)

FIGURE 6.6.1 Two different structures of the BER Synthesis Filter :

(a)

(b)

The Excitation is defined from the past synthesised speech samples.
See Eq 6.6.3 or Excitation Adaptation Method P,(1).
Two separate Adaptive Excitation sequences are defined.

See Eq 6.6.5 or Excitation Adaptation Method P,(5).
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{a)

T

D = b D D

(b)

Dpb— = D D D

H 3} - {7

sy(—n-dl—i) sy(-4J sy(—3) sy(—z} sy(—iJ

FIGURE 6.6.2 Two more different structures of the BER Synthesis Filter :

t{a) The

{b)

and
See
The
and

See

Excitation is defined from a combination of past Synthesised Speech
an Adaptive Excitation Source.

Eq 6.6.8 or Excitation Adaptation Method P,(4).

Excitation is defined from a combination of past Synthesised Speech
a Fixed Excitation Source.

Eq 6.6.13 or Excitation Adaptation Method P, (8).
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— D D b

¢, (1) ¢, (-2) ¢, (-1)

: O

o D b D
u,(-n-d ~3) u,(-n-d ) u, (=3) u,(-2) u (-1}
sy(—e) sy(—a) sy(—zJ sy(—i}
(b)
our
+ +) + —
B, (2) B,(2) B, (z) 1-a(z)

FIGURE 6.6.3

{a) Another possible structure of the BER Synthesis Filter :

One Fixed and one Adaptive Excitation sequences are defined.

See Eq 6.6.15 or Excitation Adaptation Method P,(10).

(b} The Self-Excited Vocoder. Three Long-Term Predictors are employed. The

first Long-Term Predictor is operating without excitation.
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HETHOD RECURSIVE EXCITATION ADAPTATION ALGORITHHM
Py (1) U ) = (Ug(by,d,) + Uy(by,d)) Alz) + H (2)
P, (2) U (z) = U, (b ,d) + U (b,,d,)
P,(3) EXCITATION FRON RANDOM SEQUENCE (c (i)} , i<o
Uyz) = (Uy(by,dy) ¢ Uylby,d,)) Alz) + A (2)
P,(4)
Uy(2) = U,(b,,d,)
Uz) = U (b,,d,) + U,(b,,d,)
P,(5)
U,(z) = Uy(b,,d,)
U, (2) = U,(b,,d)
P,(6)
Uy(z) = (U (by,d,) + Uy(b,,d,)) Alz) + H (2)
U,(2) = U,(b,,d,)
P,(7)
Uy(z) = U (b, ,d) + U,(b,,d,)
P,(8) Uy(z) = (Uy(by,d ) + Ci(by,d,) ) ACz) + A (2)
P,(9) | AS P,(8) BUT OPTIMISING FIRST WITH RESPECT TO (c (i)}
P,(10) U,(z) = U (b,,d) + C (b,,d,)
P,(11) | AS P,(10) BUT OPTIMISING FIRST WITH RESPECT TO (c (i)}
P,(12) | EXCITATION FROM SEQUENCES f{c (i)} and {c,({}} , i<o

FIGURE 6.6.4

Possible Excitation Adaptation algorithms when the BER

Synthesis Filter contains two FIR sections.
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6.6.1 The Self Excited Vocoder

The Self Excited Vocoder [6.22,6.23,6.24]1 is a speech coding scheme that
shares a number of common elements with the MPE and CELP speech coders. 1t
employs a synthesis filter which consists of a number of Long Term Predict-
ors (LTPs) and an all-pole LPC filter in cascade. It relies solely on the
adaptation of the filter parameters to recover the synthesised speech signal

and does not transmit any information related to the excitation signal.

In Fig 6.6.3{(b), the synthesis filter of a Self Excited Vocoder is shown,
when 3 LTPs are employed. The first LTP B,(z) (defined by Eq 6.2.1), has no

input at all and its output can be calculated using the recursive formula :

71
w (i) = Y by u Ci-n=d k) , oSign-t (Eq 6.6.1.1)
k=0

In general, the output of the jth LTP can be calculated using the formula:

jq(i) , oSign-t , 2KiSn,  (Fq 6.6.1.2)

7/

w;(i) = Y bl u;li-n—d k) + u
k=9

where n, is the number of LTPs used. The one-sided z-transform of Eq 6.6.1.2

is (see Appendix C) :

i C g ~i
E; bk 2: uj(t n di k) =z Uj—i(Z)
U.(z) = — + (Fq 6.6.1.3}
/ ! - B.(z) ! - Bj(z)

By considering only the samples of Uj(zJ that lie inside the interval

fo,n-11, Eq 6.6.1.3 can be transformed to :

ql n—#%
Ujtzd = Y b)Y u;ti-n=d;=k) 271+ U;_ () (Eq 6.6.1.4)
k=0 i=o
Eg 6.6.1.4 can be expanded by performing the recursions, and the result is

the non-recursive formula. :

i Inm n-1 '
Uj(z) = E: bh E: up (i-n—d,~k) z=' | 1<i<ny (Eq 6.6.1.5)
Q

m=1 k= i=o

The output of the last LTP is fed to the all-pole filter A(x) whose output
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is the synthesised speech signal :

y 14 n—1

- i f o -

S, () = Alz) Zbk Zui(l n-d;-k) 27!+ (2) (Fq 6.6.1.6)
i=1 k=o i=o

Eq 6.6.1.6 is identical to Eq 6.4.5 and shows how closely related the BER

c¢oding schemes and the Self Excited Vocoder are.

The Self Excited Vocoder performs the optimisation of the synthesis filter
in stages. In the first stage, only the B (z) LTP is allowed to have non-
zero coefficients, and its parameters are optimised using an Analysis by
Synthesis procedure which minimises the distortion introduced by the coding
process {Eqs 6.4.9 and 6.4.10). In the second stage the parameters of the
first LTP are fixed, and the second LTP B,{(z) is optimised in an Analysis by.
Synthesis loop that minimises the distortion. Using the same process, the
rest of the LTPs are optimised in the following stages. When a single LTP is
employed, this filter optimisation algorithm is equivalent to the ¥, (4)
algorithm described in Section 6.5. When two LTPs are used, the process is

equivalent to the X,(1!) optimisation algorithm.

The operation of the LTPs automatically updates the excitation sequences
stored in the corresponding delay 1lines, and this adaptation operation is
defined by Eg 6.6.1.5. This equation is identical to Eg 6.6.6, which is one
of the possible excitation adaptation strategies that can be adopted by the
BER coder. When the Self Excited Vocoder employs two LTPs, the excitation

adaptation process is equivalent to the P,(7) adaptation algorithm.

The Self Excited Vocoder uses two of the possible filter optimisation and
excitation adaptation algorithms available to a general BER coder, and is

therefore a special case of BER speech coding.
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6.7 Comparison of the BER Alqorithms

In Sections 6.5 and 6.6, various synthesis filter optimisation and excita-
tion adaptation algorithms were defined. These algorithms form the basis for
the development of numerous BER coding schemes. The behaviour of three such
coding schemes will now be examined. The first scheme (CODER-1) employs a
single-input synthesis filter and defines a single sequence of past excita-
tion samples. The excitation adaptation algorithm utilises the output of the

synthesis filter and is defined by the equation :

2 n-1
Uy(z) = ACz) ) b Y u (ion=d ~k) =" + H (z) (Eq 6.7.1)
k=o i=o
where :
!
Alz) = -y (Fq 6.7.2)

I-a,z *-a

1 x

2

The FIR section of the synthesis filter therefore includes 3 coefficients
(bé,bi,b;) and one delay parameter (d,}, and the filter A{z) 1is a second-
order all-pole filter. The filter optimisation algorithm chosen is the #.(2}
which optimises the a and b, coefficients using the Linear Prediction method
(Section 6.3), and then reoptimises the b, coefficients to minimise the
energy of the signal distortion (for each value of the delay parameter). The
speech frame contains 24 samples {r=24) and the delay parameter may take 256
different wvalues {0<d,£255).

The second scheme (CODER-2)} employs a two-input synthesis filter and
defines two excitation sequences. The P,(2) excitation adaptation algorithm
and the ¥,(11} filter optimisation method are used. Each FIR section of the
synthesis filter includes one coefficient (bé) and one delay parameter dj.

The excitation adaptation algorithm is therefore defined by the equation :

1

2 n— .
Zb Zu -n-d’-) z !

j=t t=o

Uifz)

(Eq 6.7.3)
n—1
= p2 : —i
Uplz ) = b} Z: u,(i-n-d,) z
t=90

The filter A(z) is a 12-th order all pole filter :
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!
Alz) = (Eq 6.7.4)

12
_ -
! z: anZ
m= 1

which is defined over an interval of 144 speech samples, using the Maximum-
Entropy LPC method. The analysis frame size and the range of the delay para-
meters are set as in CODER~1 (n=24 , n4=256). Note that if the total number
of parameters transmitted per second is measured, then both CODER-1 and
CODER-2 require the transmission of 2000 parameters (filter coefficients and

delay parameters) per second.

CODER-3 is equivalent to CODER-2, but employs two "fixed"” random excitation

sequences and uses the P,(12) excitation definition algorithm.

The transient response of the three coding schemes is first examined, and in
particular the response of the coders 1in the first 24 ms of their operation
can be observed in Fiqures 6.7.1, 6.7.2 and 6.7.3. In Fig 6.7.1{a), the 24
speech samples {3 ms at 8 kHz sampling rate) of the current analysis frame
are plotted to the right of the wvertical axis (positive +time direction},
while the past 168 samples (21 ms) are in the negative time direction. In
Fig 6.7.1(c), the 280 past excitation samples stored in the delay 1line of
CODER-1, are plotted 1in the negative time direction. The first 112 samples
of this sequence are random and correspond to the random excitation sequence
which was initially installed in both the encoder and the decoder, before
they started operating. The rest 168 samples have been produced by the
excitation adaptation algorithm and are exactly the same as those of the

synthesised speech signal in Fig 6.7.1(b}.

The time sequences are observed after the completion of the filter optimi-
sation and excitation adaptation operations, so both the continuation of the
excitation sequence in the positive time direction, and the synthesised

spéech waveform in the current frame are shown in Figures 6.7.1(c) and (b}.

In Fig 6.7.1(d), the evolution of the filter optimisation process is shown
by plotting the changing value of the SNR measured as the value of the delay
parameter is varied (-255¢-d o). The optimum delay value corresponds to the
position of the maximum SNR. It is evident that the highest SNR values occur
in the section where the excitation signal is speech-1like, and that the SNR

curve itself follows the "periodic wvariation™ of the speech waveform. The
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locations of the SNR peaks correspond to the segments of the excitation
waveform which are most similar to the speech signal in the current analysis

frame.

The remarkable ability of the BER coder to respond to sudden changes in
the speech waveform is demonstrated in Fig 6.7.1. The synthesised speech
signal in Fig 6.7.1(b) follows the original speech waveform in Fig 6.7.1{a)
closely, even in the first processed frame. This happens in spite of the
fact that the BER coder reconstructs the speech signal and the filter

excitation using a backward adaptation algorithm.

The response of CODER-2 in the same time interval is shown in Fig 6.7.2{a).
The two excitation sequences {u, (i)} and {u,(i)} are also shown in Figures
6.7.2(b) and (c). The excitation sequences exhibit noise-like characteri-
stics and differ in the range of sample values, as a consequence of the

particular filter optimisation and excitation adaptation strategies chosen.

Figure 6.7.2{(d) shows the two SNR curves corresponding to the separate op-
timisation of the two delay variables 4, (lower curve) and d, (upper curve).
The SNR peaks are much more sharp than in the case of CODER-1, and the lower
SNR curve has a periodic component similar to that of the speech waveform.
The highest SNR attained by CODER-2 is, in this case, approximately 5 dBs
lower than the highest SNR attained by CODER-1.

The response of CODER-3 is shown in Fig 6.7.3(a). The "fixed” random exci-
tation seguences {¢, (i)} and {c,(i)) are shown in Figures 6.7.3(b) and (c}.
The results obtained from CODER-3 are comparable to those of CODER-2, even
though the excitation sequences are not allowed to adapt to the changing
speech characteristics. The two SNR curves of Fig 6.7.3(d) are similar to
the corresponding curves of CODER-2, but the periodic companent of the lower

curve is now missing for obvious reasons.

In Figures 6.7.4, 6.7.5 and 6.7.6, the steady-state behaviour of the three
coding schemes can be studied, by observing their response during a 38 ms
interval of voiced speech. The SNR curve corresponding to the filter optimi-
sation in CODER-1, shown 1in Fig 6.7.4{(c), is definitely showing the same
periodic structure as the speech waveform, but the height of the SNR peaks
is progressively declining as the value of the delay parameter is increased.
This reflects the growing dissimilarity between two segments of the speech

waveform as their relative distance is 1increased. It also suggests that the
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FIGURE 6.7.1 Signals obtained from coding speech with CODER-1. The first

24 ms of the coder's operation are shown. (a) Original Speech
(b} Synthesised Speech (c) The Excitation Sequence (d} The SNR obtained for
the last 3 ms (24 samples) of the speech waveform, while varying the value

of the delay parameter d,-
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FIGURE 6.7.2 Signals obtained from coding speech with CODER-2. The first

24 ms of the coder’s operation are shown. {a) Synthesised Speech
(b) First Adaptive Excitation Sequence (c) Second Adaptive Excitation
Sequence (d) The SNR obtained for the last 3 ms {24 samples) of the speech

waveform, while varying the value of the delay parameters d, and d,.
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FIGURE 6.7.3 Signals obtained from coding speech with CODER-2. The first

24 ms of the coder's operation are shown. {(a) Synthesised Speech
{b) Pirst Fixed Excitation Sequence {(c} Second Fixed Excitation Sequence
{d) The SNR obtained for the last 3 ms (24 samples) of the speech waveform,

while varying the value of the delay parameters 4, and d,.
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FIGURE 6.7.4 Signals cbtained from coding speech with CODER-1.

(a} Original Speech (b} Synthesised Speech, which also forms the Excitation
Sequence (c) The SNR obtained for the last 3 ms (24 samples) of the speech

waveform, while varying the value of the delay parameter d,.
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FIGURE 6.7.5 Signals obtained from coding speech with CODER-2.

{a) Synthesised Speech (b) First Adaptive Excitation Sequence (c) Second
Adaptive Excitation Sequence (d) The SNR obtained for the last 3 ms (24
samples) of the speech waveform, while varying the value of the delay

parameters d1 and d,.
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FIGURE 6.7.6 Signals obtained from coding speech with CODER-3.

(a) Synthesised Speech (b) First Fixed Excitation Sequence (c) Second
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maximum permissible value of the delay parameter of CODER-1 can be reduced

without affecting the coder's performance,

The excitation sequences of CODER-2, shown in Figures 6.7.5(b) and (¢},
are clearly different. The {u, (i}) sequence has a definite pitch structure
corresponding to the pitch structure of the speech waveform, while {u,(i)}
is more random and has a smaller dynamic range. A comparison of the SNR
curves corresponding to CODER-2 and CODER-3, shown in Figqures 6.7.5{(d) and
6.7.6(d), reveals a subtle difference between the two schemes. The first
filter optimisation stage of CODER-Z2 (optimisation of d,) gives better
results than the equivalent stage of CODER-3, because CODER-2 relies more on
the {ul(i)} excitation sequence, which has clearly adapted to the speech
waveform characteristics. The results obtained from the second optimisation
stage of the two schemes are similar, because the two excitation sequences
{u,(i)) and {c,(i)} have very similar properties. CODER-2 is therefore
expected to give better results than CODER-3, when only one excitation

sequence is used.

In Fig 6.7.7, a comparison of the different filter optimisation methods is
presented, for two different excitation adaptation strategies. The figures
correspond to the average Segmental-SNR attained when these algorithms are
employed by a BER coder to encode a 4 sec male/female speech interval. The
tilter coefficients are left unquantized, and the total number of parameters
(filter coefficients and delay parameters) transmitted per second 1is set
equal to 2000. A second column has also been added to each excitation
adaptation algorithm (Reopt.), to include the SNR results obtained when the
filter coefficients are reoptimised in the final filter-definition stage
(for the optimum values of the delay parameters) by minimising the energy of

the signal distortion.

The first 6 rows of Fig 6.7.7 correspond to a single-input synthesis
fiiter, and the excitation adaptation strategies are derived from the P,([f)
and P,(2) algorithms by limiting the number of FIR sections from 2 to 1. The
B,(z) FIR filter has 3 coefficients, and the all-pole filter A(z) is either
2nd order and defined every 24 samples (4,,), or it is a 12th order filter
and is defined every 144 samples (A, ,,). When the A(z) fillter is estimated
separately from the B, (z) filter (as in methods #,(3) and no43, the
Maximum-Entropy LPC method 1is employed. The speech analysis frame contains
24 samples (n=24}), and the maximum value of the delay parameter is 63

(0<d [<63)
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The lower 16 rows of Fig 6.7.7 correspond to a two~input synthesis filter
and either the P,(l) or the P,(5) excitation adaptation strategies are used.
Each of the two FIR filter sections contains a single coefficient f{as in
CODER-2), and the rest of the system variables (update rate of A(z), frame
size and maximum delay valuel are set as in the case of the single-input

synthesis filter.

From the results in Fig 6.7.7 it is clear that when the P,(7) excitation
adaptation algorithm is employed, the performance of the BER coder is maxi-
mised when the a and bi filter coefficients are jointly optimised (as in
methods #,(l-2) and 4,(1-8)). In this case, both single-input and two-input
synthesis filters can give good results, with the highest SNR obtained from
method #,(8). When the a and bi coefficients are optimised separately (as in
methods X,(3-4} and X,(9-12)) the P, (1)} excitation adaptation algorithm
favours the single-input synthesis filter and a high update rate for the
filter A(z) (A24)‘

The P, (1) excitation adaptation algorithm therefore favours the operation
of the BER coder with small frames, and minimises the encoding delay for
which the BER encoder is responsible {(in this case the delay is only 3 ms).
The Linear Prediction (LP} and Distortion Minimisation (DM) filter-estima-
tion algorithms perform equally well when the P,({} algorithm is employed,
and the final reoptimisation of the filter coefficients seems to offer

little adavantage.

A two-input synthesis filter gives the best SNR results when the P,(2) and
P,(5) excitation adaptation algorithms are employed. When the a and bi
filter coefficients are optimised separately {as in methods #,(9-12)), low
update rates (A,,.) and a higher number of coefficients for the filter A(z)
improve the performance of the BER coder. The low update rate of the filter
A(2) results a higher enceding delay (18 ms in this case). Equally good
results though can be achieved by jointly optimising the a and bi coeffici-
ents (as 1in methods #,(/-8)), in which case the encoding delay can be as
small as when the P,(1) excitation adaptation algorithm 1is used. The DM
filter estimation method performs better than the LP method, when the P,(2)
or the P,(5} excitation adaptation algorithms are used. The performance of
the LP method though can be improved and can approach that of the DM method,

by using a final filter reoptimisation stage.
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In Fig 6.7.8, 12 excitation adaptation algorithms are compared, under the
same conditions as in Fig 6.7.7. It is evident that the P,(1) algorithm
performs better when the a and b; coefficients are jointly optimised (as in
methods #,(8) and #,(2)), irrespective of whether a single-input or a two-
input synthesis filter is employed. Algorithm P,(2) on the other hand, gives
best results when a two-input synthesis filter is employed {(as 1in methods
#,(8) and ¥,(12)), whether the a and bj coefficients are jointly optimised
or not. The F,(3) algorithm employs one "fixed” random excitation sequence
but does not perform as well as the P,(2) algorithm. By wusing two "fixed”
excitation sequences though, the difference in performance between the
adaptive excitation (algorithms P,(5) and P,(7)) and the "fixed"” excitation

algorithms is minimised.

The algorithms that involve an excitation sequence with speech-like chara-
cteristics (P,(1),P,(4},P,(6),P,(8) and P,(9)) perform better when the #,(8}
filter optimisation method is used, and the best results are obtained from
the P,(4) excitation adaptation algorithm. By comparing the SNR results of
the P2(8) and PZ(ID) algorithms with those of P2(9) and PZ(IIJ, it becomes
clear that the order of application of the excitation adaptation eguations

is important and can have an effect on the BER codexr’'s performance.

Amongst the excitation adaptation algorithms that involve a noise-like
adaptive excitation element (P, (2),P,(5),P,(7),P,(10) and P,(11}), the best
results are obtained from algorithm P,(5) which defines two adaptive excita-
tion sequences. The BER coder which is equivalent to a CELP coder (P,(10))
performs better than the Self-Excited Vocoder (P,(7)). The best overall
results are obtained from the excitation adaptation algorithms that define a

speech~like excitation source.
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igi;;j;igz P, 1) P,(2) or P,(5)
FILTER SHR (dBs) SHR (dBs)
OPTIHISATION
(Reopt .) (Reapt .)
# (1) 11.8 12.3 8.3 9.5
,(2) 12.7 12.7 9.9 9.9
M,(3) A4, 9.4 10.5 5.9 7.9
M (3 4, 9.0 10.0 7.8 8.4
H,(4) 4, 11.3 11.3 9.2 9.2
n o4 A, 10.4 10.4 10.1 10.1
(1) 11.9 12.4 10.1 10.9
n,(2) 12.5 12.8 10.4 11.1
#,(3) 12.8 12.9 9.6 11.2
H,(4) 12.6 12.6 1 8.9
H,(5) 12.2 12.6 10.6 10.7
#,(6) 12.8 12.8 11.3 11.3
", (7) 12.9 12.8 10.8 11.3
#,(8) 13.7 13.7 11.8 11.8
n,09) A,, 8.3 8.8 8.8 10.2
M,(9) A, 8.4 8.8 5 10.9
010 4,, 9.1 9.4 9 10.1
(100 A, 9.1 9.8 9.6 10.7
M, (1) 4,, 8.6 9.2 10.2 10.5
H, (1) A, 8.7 9.2 10.9 11.5
4,(12) 4,, 9.9 9.9 11.0 11.0
u,(12) A,,, 10.0 10.0 11.8 11.8

FIGURE 6.7.7 Dependency of the BER-Coder's SNR-performance on the method

chosen to optimise the Synthesis Filter. 16 Filter-Optimisation algorithms
are considered, and the SNR results are presented for two different

Excitation-Adaptation methods.
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om_f;’;;i?m” M,(8) M, (12) A,,, H (2) M4 A,
EXCITATION
ADAPTAT IO SHR (dBs)
P, (1) 13.7 10.0 12.7 10.4
P,(2) 12.1 1.5 9.9 10.1
P, (3) 9.1 9.7 7.8 8.4
P, (4) 14.0 11.0
P, (5) 11.8 11.8
P, (6) 13.0 11.4
P,(7) 11.0 1.0
P, (8) 13.3 10.6
P,(9) 11.5 10.2
P, (10) 11.4 1.4
P,(11) 10.4 10.7
P,(12) 10.0 10.7

FIGURE 6.7.8 Dependency of the BER-Coder's SNR-performance con the method

chosen for the Excitation Adaptation. 12 Excitation-Adaptation methods are
considered, and the SNR results are presented for four different Filter-

Optimisation algorithms.
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6.8 Vector Quantization of the Synthesis Filter Coefficients

The quantization of the synthesis filter coefficients is a critical
function of the BER coder, because the backward adaptive operation of the
synthesis filter sustains a propagation of the guantization errors. Further-
more, the BER coding process {(and conseqguently the quality of the synthe-
sised speech) is more sensitive to the quantization of the coefficients of
the FIR filter sections, because the FIR filter coefficients are usually
updated more frequently and have a larger dynamic range than the
coefficients of the all-pole filter A(z).

A memoryless vector-quantizer (for the FIR filter coefficients) can be
designed using various error measures. The criterion chosen here is the
"performance” of the BER coder itself. The performance of a BER coder
employing a vector codebook (for the quantization of the FIR filter coeffi-
cients), is measured by the difference between the original and synthesised
speech waveforms. Thus the vector-quantizer is designed to maximise the

average performance of the BER coder.

The gquantizer optimisation method can be applied to any BER coding system,
but it is more suitable for the BER schemes which define an adaptive
excitation source. Such schemes allow the excitation source to follow the
changing speech characteristics, thus limiting the dynamic range of the
filter coefficients during normal (steady-state) operation. If only "fixed”
excitation sources are used, then adaptive quantization should be considered

and the quantizer optimisation method would need to be modified accordingly.

Assuming that a vector codebook C=lc,,c ycpd of L coefficient sets is

2re e
available, the BER coder employing that codebook would need to determine the
"best” codebook entry (for each frame), by calculating the energy of the
signal distortion (difference between the original and synthesised
waveforms) for every codebook entry. This calculation can be done either
during the optimisation of the synthesis filter (for every possible value of
the delay parameters), or after the optimisation of the filter delay
parameters. The latter method does not need +to guantize the FIR filter
coefficients during the optimisation of the synthesis filter, and it is this

method that will be used here because it is considerably simpler.

Considering only one FIR section {(the process can easily be generalised to

include more sections), Eg 6.4.10 can be simplified by dropping the
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subscripts of the vectors and matrices inveolved, and by introducing a new
subscript i to denote the index number of the analysis frame. The distortion
energy corresponding to the ith frame when the mth codebook entry is used,

can then be calculated using the formula :
T

F-4 S (R B (R U SR (Eq 6.8.1)

... for i=1,2,...,§ and m=1,2,...,L

The vectors s; and m; correspond to the speech waveform and the transient
response of the filter A(z) in the ith frame, Q; 1is the convolution matrix
related to the filter A(z) of the same frame, and K, is the excitation
matrix corresponding to the "optimum"” value of the delay parameter in the
ith frame. Even though the expression of Egq 6.8.1 seems to concern only the
ith frame, it is actually dependent on the outcome of the filter
optimisation and excitation adaptation operations in the previous frames.
This propagation effect is caused by the backward adaptive operation of the
synthesis filter, and it influences the values of the transient response m;,

the excitation 'matrix X; and possibly the convolution matrix Q;.

The optimum codebook entry for the {th frame is determined by calculating
E7 for m=4,2,...,L and choosing the entry that minimises the distortion
energy. If £, is the minimum distortion energy corresponding to the ith

frame, then a measure of the coder's "performance” can be defined as :
Po = - ) 8iF (Eq 6.8.2)

where g, are weighting factors, which will later be used to steer the design

process towards "subjectively” optimum quantizers.

If C was an initial estimate of the guantizer's codebook, a better code-
book Vv={v,,v,,...,v;] can be designed, that will result a higher performance
measurement Py. This can be done by "freezing” (or storing) the various
signals cbtained during the 6peration of a BER ceder employing the codebook
C, and by using these stored signals (in Eq 6.8.1) to calculate the
distortion corresponding to a different codebook V. This method circumvents

the problem of having to measure the performance ¢f a BER coder employing
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the new codebook V, and allows us to use a simple algorithm to maximise the
value of the performance measure Pg. The signal components can be "unfrozen”
and updated using the new optimised codebook V, but in practice, this
updating strategy complicates the optimisation process and offers very

little advantage.

The maximisation of the performance measure Py is achieved by partitioning
the summation of Eq 6.8.2 and forming groups corresponding to the individual

entries of the former codebook C :
L
L Py = ) Pyleg,vy) (Eg 6.8.3)
m=1

Each Pylc,,v,) term is calculated by grouping together all the frames for
which the codebook entry c, was originally chosen (during the operation of
the BER coder), and by measuring the signal distortion wusing the new
codeword v_. The value of Py can now be maximised by maximising each
individual term of the summation with respect to the elements of the
corresponding codebook entry. Each term of the summation in Eg 6.8.3 can be

expressed as a function of the corresponding codeword v, as :

S I 1 7
! Yoti(s;mm) s mm) b ) g (s m) TQ X, -1
i=1 : i=t
b, pt=Cn é By pt*Cn
Pyley,vplds |---| f----m-mmmmmmmm oo e b ---
i : ¥
TnT i TAT
“Va 2: £;%;Q; (s;-m;) ' 2: £,;%,Q;Q;X; Vi
i=1 1 i=1
by pt=Ca i Dy pt=Cq
(Eq 6.8.4)

The summations in Eg 6.8.4 only include the frames for which the optimum
set of coefficients (bop!) was initially set egual to the codebook entry Cp-
The expression in Eq 6.8.4 is a quadratic function of the elements of the

codeword v, and is maximised when :

¥ -1 ¥
Vo < Y £;X]Q[Q; X, Y fi(smmp) T, ;om0 L
=1 =1
bopt=cm boptzcm
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By defining the new codebook entries according to Egq 6.8.5, the value of

the performance measure Py is guaranteed to be greater than Pg..

The whole process can be repeated, by using V as the 1initial codebook
estimate. The frames in Eq 6.8.3 can be repartitioned, using Eq 6.8.1 to
find the optimum codebook entry v, for each frame, and another codebook can
be designed using Eq 6.8.5., This iterative process will eventually converge
to the optimum codebook of size L. The monotonic increase of the performance
measurements is only achieved when the "frozen” signals, obtained from the
first codebook (¢, are used throughout the optimisation process. If these
signals are updated periodically (by employing the new codebook and letting
the BER system encode the ¥ speech frames), the performance measurements

will fluctuate showing an upward trend.

The design of an optimised vector-quantizer for the coefficients of the
FIR filter section of a BER coder, is done using a training process arranged
in a series of optimisation steps. Initially, the BER coder considered is
employed to encode a large set of speech training data. The FIR filter
coefficients are left unquantized while the BER coder operates on the speech
signal, and the various signals produced (transient response of A(z), exci-
tation sequences, etc.) are stored to be used in the following optimisation
of the vector-quantizer codebook. The coefficients of A{z) can be quantized

using vector or scalar guantizers.

Eq 6.8.5 is employed in the first optimisation stage, to define a single-
entry codebook for the guantizer. In the second step, a second codebock
entry is artificially created by adding a small displacement to the only
entry of the codebook found in the first step. A succession of two-entry
codebooks is then produced by alternately applying Eq 6.8.3 and Eg 6.8.5.
The application of Eg 6.8.3 involves the use of Eq 6.8.1, and the parti-
tioning of the frames into groups corresponding to the individual codebook

entries.

The series of performance measurements {(Eq 6.8.2), corresponding to the
series of two-entry codebooks, is monotonically increasing and converges
towards an upper limit value. These measurements are based on the stored
values of the various signals, that were initially produced from the unguan-
tized FIR filter coefficients. If the stored values of these signals were

allowed to be modified at this early stage (by employing the optimised two-
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entry codebook), Instability problems would occur. That is because a two-
entry codebook would introduce large quantization errors during the opera-
tion of the BER coder, which could prove to be difficult to correct, taking
into cosideration that the BER synthesis filter operates in a backward
adaptive mode. For this reason, the updating of the stored sequences should

be preferably done when a reasonable sized codebook is available.

In the third optimisation step, two more entries are added to form a four-
entry (2-bit} codebook. Again, successive application of equations 6.8.3 and
6.8.5 1is used to optimise the four-entry codebook. Further optimisation
steps are taken to increase the size of the codebook until jt reaches the
required size. The same quantizer optimisation method has been extensively
used to design waveform quantizers and to reduce the bit rate of vocoders
employing the LPC filter model, and is known as the LBG algorithm {6.251],
The designed vector-codebook 1is unstructured and must be fully searched in
order to locate the optimum codebook entry, during coding. The algorithm can
be modified to permit the design of structured codebooks (tree, trellis,
etc.), which require much less computational effort for the determination of

the optimum codebook entry.

The weighting factors ¢, in Eq 6.8.5, are assigned values that give more
emphasis to the low-power sections of the speech waveform, in order to
reduce the noise level in these sections. This stops the high-power speech
intervals from dominating the quantizer optimisation process, and produces
vector-quantizers which are "subjectively” more optimum. Extra emphasis is
also given to those regions where the quantization error is large, in order
to make sure that no error surges occur. The weighting factors are set equal
to :

g, = —— (Eq 6.8.6)

where T, is the energy of the ith speech frame, and D, is a measure of the
distortion energy corresponding to the same frame. The value of D; is
obtained from Eg 6.8.1 during the partitioning of the frames in Eg 6.8.3,

and it is subseqguently used in Egq 6.8.5 to derive the new codebook entries.

The companding characteristic of a scalar quantizer, designed wusing the
proposed method, is shown 1In Fig 6.8.1 (thick line). The BER coding system

considered, has a synthesis filter with a single FIR filter section that
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includes one coefficient and one delay parameter. It uses the ",4) filter

optimisation algorithm and the P,(2) excitation adaptation method (modified
for the case of a single-input synthesis filter). The speech analysis frame
of the delay parameter 1is 255

{0<d,<255). The filter A(z) has 10 coefficients and is estimated using the
1

includes 40 samples and the maximum value

Maximum-Entropy LPC method over a frame of 240 samples.

The companding characteristic shown in Fig 6.8.1 corresponds to a 7-bit

guantizer, but the optimum 4-bit, 5-bit and 6-bit guantizers produce exactly
the same curve. The average

Segmental-SNR (obtained from a 70 sec long

speech training set) corresponding to the different codebook sizes (and bit
rates) is given bhelow. The LPC filter A(z) is quantized using scalar quanti-

zation of the Log-Area-Ratios with a total of 45 bits per coefficient set.

CODEBOOK SIZF (bits) 3 4 5 & 7 8
SH¥R (dBs) 7.19 7.76 8.22 8.37 8.43 8.43
BIT RATE (bits/sec) 3700 3900 4100 4300 4500 4700

The SNR values saturate when quantizers with more than 64 levels (6 bits)

are used. A 5-bit quantizer is also quite adequate. When 5-bit or smaller

sized quantizers are used, the optimised quantizers perform better than

uniform or logarithmic quantizers. 1In Fig 6.8.1, the companding characteri-
stic of a p-law logarithmic quantizer is also shown {(thin line). The parame-
ters of this guantizer were adjusted to approximate the companding curve of
the optimised gquantizer, and

in Fig 6.8.1

their values were set to w=10 and » ax=6' The

m
of the

two curves small values

are similar, especially for

input, but in practice, when fewer than 6 bits are used for the guantization

of the FIR filter coefficient, the optimised quantizer improves the guality

of the synthesised speech, when compared with the gquality obained from a
logarithmic quantizer.

Similar results are obtained for the other BER coding schemes that can
operate at bit-rates between 4 and 8 kbits/sec. The subjective quality of

the encoded speech varies from "good” at 4 kbits/sec, to very good communi-

cations quality at 8 kbits/sec. The speech gquality at 6 kbits/sec is equiva-

lent to that obtained from other well established Analysis by Synthesis

speech coders like CELP.

The vector-quantizer optimisation algorithm can be generalised to include
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COMPANDING LAW

LOGARITHMIC

FIGURE 6.8.1 The companding law (thick line) corresponding to a 7-bit

Scalar Quantizer, designed for a BER coder that defines a single Adaptive
Excitation Source and employs the # (4) Filter-Optimisation algorithm,
is shown. The Scalar Quantizer was designed using the optimisation method
described in Section 6. 8.

The companding characteristic of a p-law logarithmic quantizer (thin line)

with u=10 and v_, =6, is shown for comparison.
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more than one FIR filter sections. A separate quantizer can then be designed
for each section, or a single guantizer c¢an be designed for all the FIR
filter coefficients. By using the former method, the quantizers may be
included in the filter optimisation process of a BER coder, so that the
coefficients of each FIR section are quantized before the next FIR section
is optimised. This approach offers the advantage that qgquantization errors
introduced in the early stages of the filter optimisation process, can be

partially compensated for by the following optimisation stages.

6.9 Conclusions

The proposed BER coder operates differently from conventional speech
coders which employ the source-filter speech model, in that it defines the
excitation source in a backward adaptive manner, and relies solely on the
adaptation of the synthesis filter parameters to reconstruct the speech
waveform. The adaptation of the stored excitation sequences and the
optimisation of the various sections of the synthesis filter, can be done in
a number of ways. As a result, a multitude of BER coding schemes with a wide

range of properties can be defined.

The excitation sequences employed by a BER coder may have speech-like or
noise-like charactersitics, and may or may not be allowed to adapt to the
changing properties of the speech signal. The estimation of the synthesis
filter coefficients can be done using either the Linear Prediction or the
Distortion Minimisation methods, and the coefficients of the various filter
sections may be estimated jointly or separately. The filter optimisation and
the excitation adaptation are two separate operations in a BER coding
system, and the wvarious algorithms that perform these two functions can be
combined in many different ways. Some of these combinations can be more

successful than others.

The BER coding schemes that define an excitation source with speech-1like
characteristics usuvally perform better than the BER systems that define a
noise-like excitation. The two types of excitation can be mixed to produce
an even better BER coding system. Many BER coding schemes are able to
operate with very small frames, thus reducing the encoding delay to a value
as low as 3 ms. This low delay property can become a valuable asset in
speech coding applications where the system’s overall coding delay must be

kept to a minimum.
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A BER coder can take many forms, and one configuration in particular
corresponds to a Code Excited LPC coder that employs an excitation codebook
with overlapping entries. Another  confiquration corresponds to the
Self-Excited Vocoder. These two schemes can be considered as special cases
of the general BER coder, and there are other configurations of the BER

coder that perform better than either of them.

The BER coder in most cases shows a remarkable ability to adapt to the
changing characteristics of the speech waveform, in spite of the fact that
its backward adaptive operation slows down its response to signal transiti-
ons. This ability is preserved even at low transmission bit rates, and
various BER coding schemes can operate successfully at bit rates between 4
and 8 kbits/sec. The speech quality at 4 kbits/sec can be judged as "good”,
while at 8 kbits/sec wvery good communications guality speech can be

achieved.

BER coders are sensitive to quantization errors and require an accurate
guantization of the coefficients of the FIR filter sections. A method that
can be used to design "optimum” vector-quantizers for the FIR filter coeffi-
cients has been presented, which is based on the minimisation of the average
distortion introduced by the BER coding process. Scalar quantizers optimised
using the proposed method, perform better than uniform and logarithmic
qguantizers, when the number of bits allocated to the guantization of each

FIR filter coefficient is less than 6.

The backward adaptation of the excitation sequences increases the sensiti-
vity of a general BER coder to transmission errors. This sensitivity can be
reduced by including standard reinitialisation procedures, or by using a

"fixed” sequence as one of the excitation sources employed by the BER coder.
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RECAPITULATION AND SUGGESTIONS FOR FURTHER RESEARCH

Wwhen considering an application that requires Digital-Coding of speech, one
is faced with the task of choosing the “best" digital coder for the
particular application. Various conditions wusually have to be met by the
coder, such as robustness in the presence of channel errors, low delay
characteristics, and low cost of implementation. In addition, the coder must

be able to reproduce speech with quality which is acceptable to the user.

The technology to achieve high speech quality is already well developed
for bit rates above 16 kbits/sec. Today, the major research activity is
focused at lowering the bit rate to 4.8 kbits/sec without deqgrading speech
quality. Already, a new class of speech coding methods has produced very
good results at 10 kbits/sec, and the trend is for even lower bit rates. The
new methods use existing models of speech but employ complex algorithms,
known as Analysis-by-Synthesis (AbS), to optimise the model parameters. The
recent availabilty of powerful Digital Signal Processors has simplified the

task of implementing such complex Speech-Coding algorithms.

This “algorithmic"” approach has also been followed in this thesis, in
trying to develop new and efficient speech coding algorithms, based on
existing models derived from Linear Prediction Theory. Various AbS speech
coding algorithms have been studied and compared in terms of their
performance (SKNR} and their complexity (number of operations). The SNR was
chosen to measure the coders' performance because it can yield meaningful
results when coders of the same "nature” are compared. It was found that
when "similar” coders were compared, the results of 1listening tests agreed

with the ranking obtained by using SNR measurements.

Multipulse Excitation (MPE) algorithms were considered in Chapter 3, where
a general classification of the MPE optimisation algorithms was presented.
Some of the algorithms mentioned, are highly complex and can be used to find
the upper limit in the performance of conventional MPE coders. Simpler MPE
algorithms were described in Chapter 4, that can be implemented in real-time
using the currently available VLSI technology. The MPE algorithms were
compared at wvarious pulse-rates, and it was found that a significant
advantage {in terms of speech quality) can be gained at high pulse rates by
using more “"sophisticated” MPE coding methods with a moderate increase in

complexity.
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A fast implementation of a complex MPE alqorithm (method MS5) was
developed in Chapter 4, based on the Gram-Schmidt orthogonalization
procedure. Method MS5 gives very good results, and is still simple enough to
allow real-time implementation. The proposed Block-Search methods were also
found to have low-complexity and high performance characteristics, compara-
ble to that of the "best” Multi-Stage MPE systems. One of the Block-Search
methods in particular {(Method BSl) gave the best results out of all the

methods examined in Chapter 4.

One further conclusion was that the presence of the noise~shaping filter
helps to improve the efficiency of the pulse search procedure, when simple
MPE optimisation algorithms are used. The overall effect is to improwve the
performance of the simple algorithms, while the performance of the complex
algorithms remains almost unaffected. The effectiveness of the noise shaping
filter in shaping the noise spectrum was found to be small at low pulse

rates.

MPE coders can produce very good communications quality speech at a bit
rate of 9.6 kbits/sec. At lower bit rates, efficient quantization methods
must be used to avoid loss of speech gquality. A process that designs
"optimum” scalar quantizers for the pulse amplitudes 1is proposed in
Chapter 4. The method defines a Gamma-PDF model which is based on the
experimental-PDF data, and takes intec account the dependency of the PDF on
the pulse rate. Quantizers based on the Gamma-PDF model perform better than

optimised-uniform quantizers, when the number of bits per pulse is small.

An efficient method for coding the pulse positions in a MPE coding system,
has been proposed in Chapter 5. A codebook of position-patterns is employed
by the MPE coder, so that the pulse positions are specified by transmitting
the index of a codebook entry. It was found that by using a position-
codebook, the number of bits required for the coding of the pulse positions
is approximately one third of the number of bits required by a conventional
MPE coder. The released bits can be allocated to other parts of the MPE
coder, thus improving its performance. Alternatively, the bit rate of the
MPE coder can be reduced without affecting the guality of the recovered

speech.

A fast algorithm was proposed to design "unstructured” position-

codebooks, based on the maximisation of a weighted-SNR measure. The designed
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codebooks were compared to random codebooks, and they were found to perform
better, resulting a greater efficiency in the coding of the pulse positions.
It also became clear that the complexity of the CS-MPE coder can be reduced
by introducing structure into the codebooks, and an example from the use of
a random-tree-codebook was given. It is reasonable to assume that a "design”
process similar to the one used for the unstructured codebook, can be used
to define tree-codebooks with better properties than random-tree-codebooks.
Large tree-codebocks could alsc be designed (since lardge unstructured
codebooks are impractical) that would permit the use of larger MPE frames,
and would improve the performance of the CS5-MPE coder at bit rates below
8 kbits/sec.

The codebock "design” process can generally be used in speech coders which
model the speech or the excitation signal with a weighted sum of "primary
waveforms”. MPE coders for example, employ a set of primary waveforms
{(pulses) to model the excitation. Sinusoidal coders on the other hand, may
employ a set of sine-waves to model speech. The same approach can therefore
be used to design codebooks for a number of speech coders, so that each
entry of the codebook specifies a different combipnation of primary
waveforms. Further research must be carried out to determine whether this
cudebook approach can improve the performance of other speech ceding
systems. Another question that also needs to be answered is whether the
codebook design process can be combined with another process that "designs”

the primary waveforms.

In Chapter 6, the proposed BER coders where examined. Variocus algorithms
were proposed for the synthesis-filter optimisation and the backward
excitation-adaptation. It was found that a BER system which defines the
excitation from the past synthesised speech samples can give very good
results, and can operate with very small encoding delays of the order of
3 ms. Two special cases of the BER coder were £found to he the CELP coder
{with overlapping codebook entries) and the Self-Excited Vocoder. Many other
BER coding schemes were also investigated which performed better than the
CELP and Self-Excited coders.

BER coders can produce good quality speech at 4.8 kbits/sec, and very good
communications quality speech at 8 kbits/sec. At the lower bit rates more
efficient quantization procedures must be used in order to avoid loss of

speech quality. A process was proposed in Chapter 6, that designs a Vector
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Quantizer for the FIR-section coefficients of the BER synthesis filter. The
process uses a measure of the coder's performance, and designs the vector
quantizer by maximising the performance measure. It was found (for the case
of a scalar guantizer) that a quantizer designed by using the proposed
method, can be more efficient than logarithmic quantizers when 5 bits or

less are allocated for the quantization of each coefficient.

The BER schemes can be simplified by exploiting the structure of the
matrices derived in the filter calculations. Ewven though many BER shemes can
be implemented in real-time at 4.8 kbits/sec, operation at higher bit rates
is accompanied by a substantial increase in complexity. Further research
must therefore be carried out to simplify the BER algorithms employed at
6 kbits/sec and 8 kbits/sec. The application of the proposed Vector

Quantization process must also be studied at these higher bit rates.
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APPENDIX A

The one-sided z-transform equivalent of Eg 6.3.6 is :
+] = -m _ -k
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A rearrangement of the terms of Eqg A.l produces the equation :
! n-1 "p Vi _ned -k
- -m = - ~-m J . i
1- % a, z Zam;sy(km)z ty U ) Y b = .
m=1 m=1 £ ] j:i k:o
. nfd k-1
2: bL u; {i-n- d -k 278
l—
(Eq A.2)

By rearranging the summation terms of the first term in the right-hand
side of Eq A.2, and by using equations 6.2.1 and 6.2.2, Eg A.2 is transfor-

med to the equivalent eguation :
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(Eq A.3)

which gives the equations 6.4.2 and 6.4.3.
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APPENDIX B

Using Eq 6.4.8, the energy of the signal distortion is found to be :
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or equivalently :
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The right-hand side of Eq B.2 can be rewritten as product of two composite

matrices :
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By separating the filter coefficients in Eq B.3, the final result is

obtained :
r 1T r "
! !
w—_——— 1 ] E T 1 1 1 - ==
T - L} T 1} 1 1 1
ele,= |-b, [s—myEQXibls EQanbn] [s—myioxibii ianhb"b} -b,
-bnb —bnb
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Equation B.4 is clearly the same as Eq 6. 4.10.
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APPENDIX C

Equation 6.6.1.2 is transformed in the one-sided z-transform domain as :
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(Eq C. 1)
Rearranging the terms of Eg C.1 gives :
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Using Eg 6.2.1, Eg C.2 is transformed to Eq 6.6.1.3
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