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ABSTRACT 

The need fop mope powepfuL speech comppession techniques is becoming 
gpeatep as mOpe and mope appLications fop digitaL voioe stopage and trans­
mission are coming into use. The demands on the digitaL speech comppession 
systems have been greatLy inoreased, as the synthetio speeoh quaLity 
ppeViousLy obtained fpom Low-bit-pate codeps is inadequate fop most cuppent 
appLioations. Bringing toLL-quaLity speeoh capabiLities to systems operating 
at medium transmission bit rat98 J is an area whePB major research activity 
is now fooused at. 

Hybrid ooders whioh bridge the gap between vocoders and waveform coders, 
mId can produce high quaLity narpowband speech at bit rates between 
4 kbits/sec and 16 kbits/seo, are investigated in this thesis. 

The MuLtipuLse Excitation '(MPE) modeL is first oonsidered, whioh provides 
fop a mope d"taiLed descl'iption of the excitation in a LPC aoder, witH" 
recognising the importance of ·p6roeptuaLLy shaping" the distortion intro­
duced by the coding process. The excitation signaL is modeLed as a sequence 
of irreguLarLy spaced puLses, whose positions and ampLitudes are determined 
by a MPE optimisation aLgorithm. A generaL cLassification of MPE 
optimisation aLgorithms is attempted, by considering both high-oompLexity 
and Low-compLexity aLgopithms. Two cLasses of aLgorithms that can be 
incLuded in reaL time speech coding impLementations, are fupther examined 
mId theip perfopmance/compLexity chapactepistics ape compared. Fupthepmope, 
a modeL for the distribution of the puLse ampLitudes is deveLoped, that can 
be used to design "gLobaLLy· optimum ampLitude-quantizers. 

A new MPE codep is ppoposed, whioh empLoys 
patterns and can aohieve a much more efficient 
than conventionaL MPE codeps. A 
to design the puLse-position 
coder's performance. 

fast aLgopithm 
oodebook, by 

a codebook of puLse-position 
coding of the puLse positions 
is deveLoped that can be used 

maximising a measure of the 

A 110veL scheme, caLLed Backwapd Exci tation Recovepy coder, is finaLLy 
desoribed, which peconstruots the exoitation signaL of a LPC coder using a 
backward adaptation ppocedure. As a resuLt, onLy the parameters of the 
fiLter need to be transmitted to the deooder (receiver) in order to recoVer 
th,,· speech signaL. Many BER coding schl1mes ap" deVeLoped and their perfor­
mance/oompLexity ohapaoteristios are oompared. One BER ooder in partiouLar, 
de!i,.les the excitation ~l"om the past synthesised sampLes 0/ the spa6ch 

signaL, and oan optimaLLy operate with very smaLL deLays of the order of 
3 ms. FinaLLy, a ppooedupe is 
the ooefficients of the BER 
performance. 

d6ve~op6d that "designs" lJectol'-quantiz611 S !op 
synthesis !LL ter·, by optimising the coder's 
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CHAPTER 1 

1.1 Introduction 

Speech communication over long distances was first made possible over 100 

years ago, with the invention of the telephone. The telephone network has 

since expanded massively and has reached the remotest areas of the planet. 

Modern communication networks carry speech, image and data signals, and may 

involve various transmission media such as optical fibers, UHF radio and 

satellites. 

In order to use a transmission channel efficiently, the input signal 

(source) must be first converted into a suitable form. The conversion 

(coding) is usually performed in two stages. The first stage (source coding) 

uses the knowledge of the source characteristics to produce a "compact" 

digital signal representation. The second stage (channel coding) is 

concerned with the properties of the transmission medium, and converts the 

outcome of the first stage into a signal which can be reliably recovered, 

i. e. "decoded" at the other end of the transmission channel [1.11. 

Digital source-coding techniques are applied to voice signals after their 

conversion into a digital format using Analog to Digital Conversion (ADC). 

Digital Signal Processing (DSP) algorithms are then employed which 

"compress" the digitised speech signal prior to transmission. At the 

receiver, an inverse procedure is used to "decompress" and thus recover the 

speech signal [1.2,1.3,1.4]. The coding process must incur a minimal loss of 

speech quality. 

Recent advances in microelectronics have made possible the implementation 

of complex DSP algorithms using a small number of VLSI circuits [1.5,1.6]. 

compared to analog processing, digital coding of speech offers improved 

reliability, lower development and implementation costs, and easier 

application of secure encryption techniques. As a result, new voice 

application areas have emerged [1.7,1.8] and the process of replacing the 

analog technology, used in existing systems, with new digital technology, 

has accelerated considerably. 

Digital Mobile Radio Communications is recent and important application 

area where highly efficient speech coding methods must be employed. These 

coding methods should offer maximum compression of the speech signal in 
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order to fully exploit the limited bandwidth available, and should allow 

substantial protection against the effects of adverse transmission 

conditions [l.9,1.10l. Furthermore, despite the relatively small 

transmission bandwidth, the quality of the recovered speech must be high and 

thus acceptable to the mobile radio user [l.lll. 

Efficient speech coding methods are also used when optimal "loading" of 

existing communication networks is required. Modern communication networks 

carry thousands of speech and image channels, and it is therefore very 

important to allocate minimum bandwidth to each channel. Optimal "loading" 

is especially important in satellite communications [l.12l, where the cost 

of transmission per bandwidth unit can be substantial. 

Speech synthesiS and speech storage are areas directly related to speech 

coding, and they also rely on efficient speech "compression" techniques. 

Various models of the speech signal which provide good results when employed 

to form the front end of voice synthesis systems, have been successfully 

used in the digital coding and transmission of speech [l.13l. On the other 

hand, speech coding algorithms have been used in commerCially available 

speech synthesis and speech storage systems [l.7l. Application areas for 

speech synthesis and speech storage include electronic mail by voice, 

voice-operated database inquiry systems, voice store-and-forward systems, 

text-to-speech synthesis, aids to people with impaired speech or hearing, 

and many others in office automation and mUltimedia environments. 

Transmission of very good quality digitised speech over the Public 

Switched Telephone Network (PSTN) is now possible but requires the use of 

expensive modems. The proposed Integrated Services Digital Network (ISDN) 

will in the future provide a digital end-to-end connectivity between 

terminals, and a standard Digital Terminal Interface [l.14,1.15l. The system 

will be flexible enough to accomodate Circuit Switched and Packet Switched 

transmission, while maintaining a transparency with respect to the user. 

Speech, video and computer data bit streams will be indistinguishable when 

transmitted using one or more channels provided by the ISDN. Speech coding 

algorithms will be used in each terminal to convert the voice signal into a 

digital bit stream for transmission. Speech coding systems will therefore 

form an important part of future public or private digital communication 

networks. 
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Speech compression techniques are becoming increasingly sophisticated and 

complex in response to an ever growing demand for cost efficient use of the 

existing transmission and storage media. Furthermore, it seems that the 

availability of enormous bandwidth in optical fiber transmission networks 

and the decreasing price of the computer memory chips have not managed to 

stop the increasing research effort on new speech coding methods that can 

operate at very low bit rates with a minimal loss in speech quality. 

1.2 Speech Coding 

Speech Coding methods are employed to "compress" the speech signal prior 

to transmission or storage. Compression is achieved by removing any 

redundancy which is present in the speech waveform, using various 

mathematical models. Efficient Speech Coding methods can minimise the loss 

in speech quality which always results during the two-stage conversion 

process of "compression" and "decompression". 

There is currently an increasing demand for higher compression ratios and 

lower transmission bit rates, in many application fields. Whereas at the 

high bit rates of 64 kbits/sec and 32 kbits/sec, relatively simple 

compression techniques (i.e. PCM, ADPCM) can provide toll quality speech, at 

bit rates below 16 kbits/sec the deterioration in the quality of the 

recovered speech signal is considerable, and only sophisticated coding 

methods can minimise the loss in quality. The complexity of these highly 

efficient coding methods increases substantially at bit rates below 

8 kbits/sec. 

Speech codecs (coder/decoder) employ mathematical models that are based on 

our knowledge of the human speech production and auditory perception 

mechanisms. The selection and optimisation of the model parameters can be 

perJormed much more efficiently now than it was possible a few years ago, as 

the current availability of substantial processing power permits the use of 

very complex mathematical algorithms. The recent trend in speech coding 

research has been to develop better and more complex processing/optimisation 

algorithms which can be applied to existing speech production and hearing 

models. 

Current Speech Coding algorithms can offer excellent speech quality at bit 

rates approaching 10 kbits/sec. Further development is needed however, to 
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provide the capability of "natural" speech quality at bit rates close to the 

theoretical limit of 2 kbits/sec (1. 7J. In order to reach this limit, future 

research must focus on the deeper understanding of the higher levels of 

auditory perception, and on the development of more detailed and accurate 

models of the human speech production and hearing organs. 

The scope of this thesis is to develop 

algorithms for processing narrowband speech 

bit rates (4-16 kbits/sec). The common 

highly efficient speech coding 

(0-4 kHz bandwidth) at medium 

character is tic between these 

algorithms is the technique applied to determine the speech model parame­

ters, known as Analysis-by-Synthesis (AbS). AbS Speech Coding algorithms 

attempt to exploit the characteristics of the human auditory perception, and 

thus aim to minimise the "perceptual" effect of the distortion introduced by 

the coding process. 

Two different types of AbS Speech Coders are examined, the Multipulse 

Excitation (MPE) coder and the Backward Excitation Recovery (BER) coder. 

Both coders employ the Source-Filter model of speech production, but rely on 

different procedures to define the Excitation Source. A number of new model­

optimisation algorithms are proposed for each type of coder and the 

performance/complexity of the resulting systems is compared to that obtained 

from conventional AbS coders. The comparison can help potential designers of 

a Speech coding system, to determine which algorithm would better suit the 

complexity/performance requirements of the particular application. 

1.3 Thesis Overview 

In Chapter 2, the general requirements for speech coders operating in 

digital communication networks are considered. Furthermore, a review of the 

speech coding techniques currently used at bit rates between 4 kbits/sec and 

16 kbits/sec is presented. Although these coding techniques employ speech 

models which are generally different, the use of AbS optimisation algorithms 

has been widely adopted and has led to an improvement in the accuracy of 

estimation of the model parameters. 

In Chapter 3, the theory of the Multipulse Excitation (MPE) coder is 

developed, and a general classification of the MPE Optimisation algorithms 

is presented. Some of these algorithms are highly complex and are therefore 

only of theoretical interest, since they can provide the upper limit in the 
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performance of MPE coders. Two new classes of algorithms are also proposed, 

namely the Block-Search and Codebook-Search algorithms, which are examined 

in more detail in Chapters 4 and 5. 

In Chapter 4, the two filter models used in MPE coders (i.e. Short Term 

Predictor and Long Term Predictor) are developed, and various filter 

estimation methods are examined. A detailed presentation of the mathematical 

theory reveals ways of improving MPE coding, and suggests alternative coder 

configurations. Furthermore, an algorithm is proposed that can be employed 

to jointly estimate the parameters of the Long Term Predictor and the 

Multipulse Excitation. 

In Chapter 4, a number of Multi-Stage (MS) algorithms are developed, that 

are employed to estimate the parameters of the MPE. An new Exponential Model 

is proposed that leads to a simplified MS algorithm, and a computationally 

efficient version o£~ular MS algorithm is developed, using the 

Gram-Schmidt orthOgSnalisation ~ocedure. The theory of the proposed , \ 

Block-Search (BS) ~lgorithms is also developed and the performance of the 

new coders is compa~ed to that of Ms)algorithms, in terms of Signal to Noise 

Ratio (SNR) and comple.xity (number of operations). Finally the quantization 

of the MPE parameters is considered, and a new theoretical model for the 

probability distribution of the excitation values is proposed, which can be 

used to design globally optimum scalar quantizers. 

Chapter 5 examines the proposed Codebook-Search (CS) algorithms. These 

algorithms are generally more complex than the MS and BS algorithms, but 

they are also more efficient in coding the Multipulse Excitation Sequence 

and can therefore achieve better performance at lower bit rates. A method is 

proposed that can be used to "design" the codebook employed by the MPE 

coder, according to a "subjective" speech-quality criterion. A fast 

implementation of the Codebook Design algorithm is also developed. The 

perfromance of CS-MPE coders with "optimised" codebooks is compared to that 

obtained when random codebooks are employed. 

The introduction of "structure" into the codebook employed by the CS-MPE 

coder, results a substantial reduction in the complexity of the sustem. Thus 

a number of possible codebook structures are proposed which lead to 

computationally efficient ways of searching the MPE codebook. 

In Chapter 6, a new type of Speech Coder is proposed. It is the Backward 
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Excitation Recovery (BER) speech coder which defines the Filter and 

Excitation parameters using a backward adaptation procedure. This coder can 

operate at bit rates that are lower than the bit rates at which conventional 

MPE coders operate. A detailed mathematical description of BER coding is 

presented, and a number of Filter Optimisation and Excitation Adaptation 

algorithms are proposed. A large number of possible BER coder configurations 

are developed and their properties are compared. Two such special cases of 

BER coding are found to be the Code-Excited LPC (CELP) coder and the 

Self-Excited (SE) vocoder. Finally, the quantization of the filter 

coefficients is considered, and a new algorithm is proposed that is used to 

design and optlmise a vector quantizer, according to a "subjective" 

speech-quality criterion. 
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CHAPTER 2 

SPEECH CODING AT MEDIUM BIT RATES 

2.1 Introduction 

Narrowband Speech Coders operate at bit rates between 0.4 and 64 kbits/sec. 

Coders operating at high bit rates usually employ very simple coding 

algorithms, and are capable of producing high guality speech. At low bit 

rates, highly complex coding algorithms are employed and the quality of the 

synthesised speech is more "synthetic" than Hnatural H. 

At bit rates above 16 kbits/sec, Waveform Coding methods are commonly 

employed. Widely used Waveform Coding techniques are the Pulse Code Modula­

tion (PCM) , the Adaptive Differential PCM (ADPCM), and the Adaptive Delta 

Modulation (ADM) [2.1]. Waveform Coding methods produce a recovered speech 

signal which is a faithful reconstruction of the original speech waveform. 

They are not critically dependent on the characteristics of the input signal 

and can therefore be applied (with certain modifications) to non-speech 

signals (i.e. mUSic, video etc.). Such time-varying signals are also 

generated at "intermediate" stages within the structure of various 

low-bit-rate speech coders. 

PCM offers a high degree of robustness to transmission errors and produces 

high quality speech at 56 kbits/sec and toll quality at 64 kbits/sec. PCM 

coding has dominated speech processing applications for almost 25 years. 

ADPCM speech coders which employ adaptive predictors and adaptive 

quantizers, can produce the same quality as PCM coders, but at the lower bit 

rate of 32 kbits/sec. Some ADPCM coders can also "shape" the spectral 

distribution of the added guantization noise, in order to reduce the 

"perceptualH level of distortion. The noise shaping increases the level of 

distortion in the spectral areas where the speech power is high and higher 

levels of noise can be tolerated [2.2]. The opposite happens in the areas 

where the speech power is low. ADM methods are similar to ADPCM methods, but 

employ a two-level qua.ntizer and are simpler to implement. They are very 

robust in the presence of transmission errors and can therefore be used in 

"noisy" environments. The performance of Waveform Coding methods 

deteriorates rapidly as the bit rate is reduced to 16 kbits/sec and below. 
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The lower end of the transmission-bit-rate "spectrum" is occupied by 

speech coding methods known as vocoders [2.3,2.4). Vocoders use a model of 

the human speech production mechanism to obtain a compact representation of 

the speech signal. They usually operate at bit rates between 0.4 and 4.8 

kbits/ sec. Speech production is modeled by a Source-Filter arrangement. The 

coding process models the signal in terms of two components corresponding to 

the action of the vibrating vocal chords (Source) and the shape of the vocal 

tract (Filter). Usually, two types of speech sounds are distinguished: 

voiced (periodic) and unvoiced (noise-like). The source signal is composed 

of a periodic series 

becomes random when 

forms the input to 

signal. 

of pulses when speech is classified as voiced, and it 

speech is classified as unvoiced. The source signal 

the filter, whose output is the synthesised speech 

The quality of speech produced by vocoders is "synthetic" and deteriorates 

rapidly in the presence of acoustic noise. The identification of the speaker 

is often problematic. The reasons for the poor speech quality are the 

simplistic model for the source signal and the inaccurate modeling of the 

time-varying phase characteristics of the speech waveform. 

A number of "hybrid" speech coding schemes have been developed in recent 

years, which bridge the gap between Waveform Coders and Vocoders, and 

promise to improve the quality of the recovered speech at low bit rates. 

These coders operate at medium bit rates (between 4 and 16 kbits/sec) and 

can generally produce speech which is more "natural" than the speech 

produced by vocoders. The speech models employed are more detailed than the 

models used by vocoders, and thus more accurate description of the model is 

derived and transmitted. The optimisation and the quantization of the model 

parameters is performed so that the synthesised speech signal becomes an 

accurate reconstruction of the original speech signal, either in the time or 

in the frequency domain. 

Noise shaping can be included in these systems to reduce the level of the 

"perceived" distortion. The shaping of the noise spectrum is more important 

in medium-bit-rate coding than it is in Waveform Coding, because the level 

of quantization noise is higher. At bit rates close to 10 kbits/sec, hybrid 

coding methods can produce high quality narrowband (0-4 kHz bandwidth) 

speech, which is only possible to achieve using waveform Coding techniques 
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at much higher bit rates. In order to reduce the bit rate, at which high 

quality speech can be produced, even further, Vector Quantization methods 

[2.5,2.6,2.7,2.8] are employed to quantize efficiently the model parameters. 

The speech coding schemes that have given promising results at medium bit 

rates will be described in the following sections. 

2.2 Requirements for Speech Coders 

The selection of a speech coder for a particular application is usually 

made by testing and comparing a number of candidate speech coders under 

various conditions. The primary requirement is that the speech coder chosen, 

produces the "best" possible speech quality at the given bit rate. 

Speech quality can be measured using objective measures [2.9,2.10,2.11] 

like the segmental Signal-to-Noise Ratio (Seg-SNR) [2.1]. The objective 

quality measures do not always correspond to the speech quality as judged by 

a listener, and thus in many applications the speech quality is assessed by 

performing subjective listening tests. At bit-rates below 4 kbits/sec the 

speech quality is poor and the tests carried out are concerned with speech 

intelligibility and speaker recognisability [2.12]. At higher bit rates the 

speech quality is more natural, and the subjective tests measure the 

··perceptual·· quality [2.13] under various test conditions. Typical test 

conditions relevant to applications in digital speech transmission are 

1) Coding of speech when no transmisson errors occur. 

2) Coding of speech with injected transmission errors with random or bursty 

arrival statistics. Error protection. (channel coding) of the most 

sensitive coder parameters may be included to improve the performance of 

the speech coder under 

3) Synchronous or asynchronous tandem encodings. A tandem encoding refers to 

the conversion from the digital format of one coder to that of another 

speech coder. A tandem encoding 

to-digital conversion, while 

digital-to-analog followed by 

is synchronous when it involves digital­

it is asynchronous when it involves 

analog-to-digital conversion. Transmission 

through the telephone network may involve several tandem encodings with 

PCM links, and it is therefore important to measure the resulting loss of 

speech-quality when a particular speech coder is employed. 
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tandem encodings with injected analog impairments (noise, 

group-delay distortion), these conditions being critical 

for voiceband (non-speech) data transmission [2.14]. 

5) Presence of acoustical noise in the input speech signal. This condition 

is encountered in Land Mobile Radio Communications where the level of 

noise in the environment can be quite high. Adaptive noise cancellation 

techniques [2.15] may be applied that can reduce the noise level without 

causing considerable distortion to the speech signal itself. 

Speech quality is assessed under the defined test conditions using various 

"subjective" quality measures. Typical subjective quality measures are : 

1) The Mean Opinion Score (MOS) , which requires the listeners to judge the 

speech quality using a five-point scale [2.16]. The speech quality can be 

judged as excellent, good, fair, poor or bad. The final score is simply 

the average judgement. 

2) The Subjective SNR [2.17,2.18]. This measure involves adding sufficient 

speech-modulated white noise to the input speech signal, so that it and 

the coded speech are equally preferred. The Signal-to-Noise Ratio of the 

resulting multiplicative-noisy speech is defined as the Subjective SNR of 

the coded speech. A popular method that measures the Subjective SNR 

involves the use of the Modulated Noise Reference Unit (MNRU) [2.19]. 

3) Binary Decision Preference tests [2.1]. These tests require each listener 

to indicate his or her preference when comparing the speech quality 

obtained from two different coders. Non-binary preference ranking for a 

set of speech coders can be derived by using the results of many such 

pair-comparisons. 

Other inportant factors taken under consideration when choosing a speech 

coder for a particular application are 

1) The coder's complexity, which is usually measured in terms of the numeri­

cal processing power and the amount of physical memory required in order 

to implement the coder. 

2) The encoding delay introduced by the speech coder. Small encoding delays 

are important in applications such as Mobile Radio Communications where 

the system's overall delay must be kept to a minimum. 



- 12 -

3) The ability of the speech codec to handle voiceband (non-speech) data. 

Code cs that operate at medium bit rates ace generally not very efficient 

in handling voiceband data, because they are "tuned" foc speech signals. 

In this case a detection pcocess must be applied that switches to a 

different coding method when voiceband data ace transmitted. 

4) Ease of transcoding with PCM in applications that use the digital tele­

phone netwock. 

5) Amenability to Vaciable Rate coding. This is a desicable pcoperty of the 

coder, when optimal loading of the tcansmission 

Packet-Switced netwocks for example, may require 

switch to lower transmission bit-rates when the 

network is 

the speech 

tcaffic is 

required. 

coders to 

very high. 

Vaciable Rate speech coders usually have a hierarchical structure, so 

that the less impoctant parameters can be dropped when the bit-rate is 

ceduced. 

2.3 Predictive Coding of Speech 

Predictive Coding of speech is an analysis/synthesis modeling process that 

decomposes the speech signal into two time-varying components with different 

properties [2.20,2.21l. The two components are separately encoded and ace 

cecombined to form synthetic speech. One of the components is an adaptive 

lineac filter which models the slow-changing spectral distcibution of the 

speech signal, and includes contributions from the glottal response, the 

vocal tcact shape and the lip radiation [2.22l. The second component is the 

excitation signal which is fed to the filtec in ordec to pcoduce synthetic 

speech. The analysis process (decomposition) is pecfocmed at the encoder 

(tcansmitter) and the encoded model parameters ace transmitted to the 

decoder (ceceiver) where synthetic speech is cepcoduced. 

Predictive models are employed by vocoders, which encode the excitation 

signal with a vecy small numbec of pacametecs (i.e. input gain, pitch period 

and voiced/unvoiced classification) [2.23l. This crude encoding of the 

excitation signal results synthetic speech of pooc quality. Predictive 

models ace also employed by waveform codecs such as ADPCM, which encode the 

excitation signal vecy accucately and can pcoduce high quality speech at bit 

rates above 16 kbits/sec. Medium bit-rate code cs allocate a much smaller 

number of bits in encoding the excitation than most waveform coders, but are 
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capable of producing high quality speech by using efficient and complex 

techniques to encode the excitation. 

1) LINEAR PREDICTION CODING (LPC) 

The model most often used in predictive coding is the Autoregressive (AR) 

model 

I 
s(i) = [am s(i-m) + e(i) 

m==l 

i=o, 1,2, ... (E9 2.3.1) 

. where s (j) is the speech signal, e (i) is the forward prediction error, and I 

is the number of {am} coefficients. Equation 2.3.1 can be written in the 

one-sided z-transform domain as 

S(z) = A(z) E(z) (E9 2.3.2) 

S(z) and E(z) correspond to the speech and prediction error signals, and 

A(z) is the all-pole filter 

I 1 
A(z) = = 

I 
1 - [ am 

-m 
Z 

(E9 2 . 3 . 3 ) 
- P(z) 

m= 1 

The filter P(z) is a one-sample-ahead predictor. The AR model is shown in 

Fig 2.3.I(a). The error samples {e(j)} are assumed to be statistically 

independent and therefore E(z) has a flat frequency distribution. As the 

speech spectral distribution is the product of the freguency distributions 

corresponding to the filter A(z) and the error sequence E(z) (Eq 2.3.2), 

most of the spectral shape information is contained in the filter A(z). The 

all-pole filter A(z) can model accurately the spectral resonances (formants) 

which are characteristic of most speech sounds, but cannot model well the 

sounds that contain spectral antiresonances (such as nasal sounds). 

The filter parameters are estimated using Linear Prediction Coding (LPC) 

methods. LPC methods employ Least Squares (LS) algorithms to minimise the 

energy E of the prediction error {e(i)} over a defined time period (o,n-l) : 

n-l 
E=[eii)l (E9 2 . 3 . 4 ) 

i=o 

Using Equations 2.3.2 and 2.3.4 and by applying Parceval's theorem, it can 
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be shown that minimising the value of the prediction error energy E is 

equivalent to minimising the value of the expression : 

n-l 

E = L 
;=0 

where 

ISU i )1 1 

IAU i )1 2 

and j = 0" 

(Eq 2.3.5) 

(Eq 2.3.6) 

The expression of Eq 2.3.5 is the sum of the ratios of the speech power 

spectrum to the model power spectrum over the defined frequencies. The 

frequency points where the speech power IS(l i ) 11 is greater than the model 

power IA(I j) 11 contribute more to the value of the error E, than the points 

where the power ratio is smaller than one. As the LPC-model spectrum has a 

certain degree of "smoothness", in areas where speech spectral peaks 

(harmonics) are closely spaced it provides a closer match to the high-power 

parts of the spectrum than the low-power parts. The LPC-model spectrum thus 

follows the envelope of the speech spectrum. 

2) ESTIMATION OF THE LPC-FILTER COEFFICIENTS 

The filter coefficients must be updated frequently in order to follow the 

variation with time of the speech spectral distribution. The adaptation of 

the filter coefficients can be performed using Block or Recursive algorithms 

[2.27, 2.28]. Block algorithms divide the speech signal into blocks of 

consequtive samples, and each block is processed independently. The optimum 

parameters of the filter are determined by a series of mathematical 

operations and the end result is a new set of coefficients for each speech 

block. Recursive algorithms apply a set of recursive equations so that a new 

set of filter coefficients is generated at each input speech sample [2.29]. 

The primary distinction between the two types of algorithms is that Block 

algorithms have a finite memory, while Recursive algorithms usually have 

infinite memory. Block algorithms are very popular in speech processing 

because they allow the LPC model to adapt to the rapid changes of the speech 

signal statistical properties. 

The most widely used Block estimation algorithms are: 

i) The Covariance method [2.22], which minimises the energy of the forward 

prediction error (Eq 2.3.4) without applying any time window to the speech 
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data. The filter coefficients are estimated by solving the covariance system 

of linear equations. Computationally efficient solutions are available which 

exploit the special structure of the covariance matrix [2.30) and reduce the 

number of operations required to solve the system of equations. 

The estimated filter A(z) is not guaranteed to be minimum-phase (i.e. have 

all its poles inside the unit circle) and this may sometimes create 

instability problems. The Covariance method can be modified by introducing 

the concept of "generalised reflection coefficients" [2.31,2.32), which can 

be combined with the application of Levinson's Recursion [2.33) to produce 

minimum-phase filters. The Covariance method can also be extended by 

defining a backward prediction error {" (j )} as : 

I 
sU) = Lam sCUm) + ,,(U 

m=l 
i=O,1,2, ... (£9 2.3.71 

and by minimising the sum of the energies of the forward and backward 

prediction errors [2.34). 

ii) The Autocorrelation method [2.22), which applies a suitable window (e.g. 

Hamming window) to the speech data, and minimises the energy of the predic­

tion error over a range that extends form -00 to 00. The windowing operation 

distorts the speech signal and reduces the spectral resolution of the method 

[2.35). The Autocorrelation method though has certain advantages in that it 

produces minimum-phase filters and permits the use of a computationally 

efficient formula (Durbin's solution [2.36) for the calculation of the 

filter coefficients. 

iii) Lattice methods [2.37), which define the LPC-filter in a series of 

stages that correspond to the stages of a Lattice Filter. The ith stage of 

the Lattice filter produces two sequences that correspond to the forward and 

backward prediction-errors £i(z) and Wj (z) (see Fig 2.3.l(b», and defines 

one reflection coefficient k j • The reflection coefficients can be converted 

to the coefficients of the direct-form (transversal) filter by applying 

Levinson's recursion. 

Various Lattice-filter structures have been defined, that are theoretical­

ly equivalent but behave differently when finite precision arithmetic is 

used. There are also many possible ways of calculating the reflection 

coefficients [2.38). A popular Lattice method is the Burg algorithm [2.39), 
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which is also known as the Maximum-Entropy method, because it extrapolates 

the autocorrelation sequence derived from the speech data in a way that 

maximises the entropy of the model spectrum [2.40]. The Lattice methods 

yield minimum-phase filters, they have good numerical properties and produce 

a set of reflection coefficients that possesses much more desirable 

quantization properties than the equivalent set of direct-form (transversal) 

filter coefficients. 

Note that the Autocorrelation method can be considered as a Lattice method 

and can also be implemented using a Lattice filter structure. Notice also 

that all three types of methods (i.e. the Covariance, Autocorrelation and 

Lattice methods) give the same results when the chosen speech interval is 

sufficiently large. 

3) IMPROVED LPC MODELS 

The AR model of Eq 2.3.1 can be improved by extending to the case of an 

Autoregressive Moving Average (ARMA) process, as shown in Fig 2.3.I(c). A 

further set of coefficients {b m} is defined, and the modeling equation is : 

/ 
sCi) = [am sCi-m) + 

m=l 

t 
[ b m v ( i-m) + v (i ) 

m=l 
i=O,l,2, ... (£9 2.3.8) 

where t is the number of the {b m} coefficients, and {veil} is the prediction 

error sequence. The equivalent of Eq 2.3.8 in the z-transform domain is : 

t 
1 + [ bID z-m 

m=l 1 + 8(z) 
S(z) = VIz) = V (z) ( £9 2.3.9) 

/ - Plz) 
1 - [ am 

z-m 

m= 1 

The linear transfer function is now rational (pole-zero), and the ARMA 

filter can provide a better model for the resonances and antiresonances of 

the speech frequency distribution. The estimation of the ARMA filter coeffi­

cients is a nonlinear problem which is solved by "linearising" the error 

minimisation process, or by applying iterative minimisation techniques 

[2.34,2.41,2.42]. Lattice filter structures can be defined for the case of 

the ARMA linear filter that guarantee the minimum-phase properties of the 

filter [2.43,2.44] 
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A different improvement of the LPC model of speech can be made by adding a 

second filter that models the harmonic structure of the speech frequency 

distribution. The model is that of an Autoregressive process : 

q 
yU) = L cm yU-d-m) + uU) 

m=-q 
i =0 I 1, 2 I ••• (Eq 2.3.10) 

where y(j) may be the speech signal or the prediction-error sequence defined 

in Eq 2.3.1, u(j) is a second prediction-error sequence, and d is an esti­

mate of the pitch period of the speech waveform. The filter has (2q+l) coef­

ficients {cm} in total, and its frequency response has very pronounced 

harmonic peaks at multiples of the fundamental frequency (defined by the 

value of d). The transfer-function model corresponding to Eq 2.3.10 is: 

Y(",) = H(",) U(",) (Eq 2.3.11) 

where 

1 1 
H(",) = = 

q 1 - C(",) 
1 - L cm 

-m 
'" 

(Eq 2.3.12) 

m=-q 

The two filters defined by Eqs 2.3.3 and 2.3.12 are connected in series 

(see example in Fig 2.3.1(d)) and their coefficients may be optimised sepa­

rately or jointly [2.453 using Linear Prediction techniques. The filter H(",) 

is not guaranteed to be minimum-phase and its stability must be checked and 

corrected if required [2.463. 

4) QUANTIZATION OF THE LPC-FILTER PARAMETERS 

Ideally, the quantization of the LPC-filter parameters must have no dis­

cernible effect on the quality of the encoded speech, and at the same time 

the number of bits allocated for the quantization of the filter parameters 

must be sufficiently small for speech coding applications. In practice 

however, a small quality degradation is unavoidable at low bit rates, and 

the quantizers are designed to minimise the perceived loss in quality. 

The coefficients of the direct-form (transversal) AR-LPC filter are not 

suitable for direct quantization, due to their large dynamic range. Alterna­

tive sets of filter parameters can be defined that have better quantization 

properties. Suitable parameter sets are : 
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i) The Log-Area-Ratios (LARs), which are derived from the filter reflection 

coefficients and have flat spectral sensitivity characteristics [2.47,2.48). 

A set of filter parameters with similar properties as the LARs can be 

defined by transforming the filter reflection coefficients according to the 

companding characteristic of the inverse-sine function [2.20,2.49,2.50). 

ii) The poles of the LPC filter, which are directly related to the frequen­

cies and the bandwidths of the speech spectral resonances (formants) [2.51). 

iii) The Line Spectrum Pairs (LSPs), which are defined by introducing two 

artificial boundary conditions to the AR-LPC filter. These conditions 

correspond to a complete opening and a complete closure at the glottis in 

the acoustic tube model of the vocal tract, and produce one symmetric and 

one anti-symmetric polynomial respectively. The roots of these two poly­

nomials lie on the unit circle and correspond to the discrete frequencies of 

two interleaved Line Spectra (LSP) [2.52,2.53). It has been established 

experimentally that the LSP parameters have better quantization and inter­

polation properties than the LAR parameters [2.54). 

The different sets of parameters can be quantized using various quantiza­

tion methods such as 

i) Uniform quantization. 

ii) Non-uniform PDF-optimised quantization. 

iii) Adaptive quantization with Forward or Backward adaptation of the quan-

tizer step-size. 

iv) Vector Quantization (VQ) with Euclidian or Spectral distance-measures 

such as the Itakura-Saito distortion-measure [2.5,2.55). Another VQ method 

uses an adaptive vector-codebook for the LAR parameters [2.56). The adaptive 

codebook is formed using a random Gaussian codebook and an estimate of the 

covariance of the LAR parameters which is updated using backward adaptation. 

Greater efficiency in coding the LPC-filter parameters can be achieved by 

taking into account the inter frame correlation of the parameters. Methods 

that model the inter frame variation of the LPC-parameters include: 

i) A Vector-Autoregressive model that represents the evolution (in time) of 

the LAR filter parameters. This model assumes a step-function input to the 

vector-predictive model [2.57). 

ii) Vector predictive Quantization, which predicts the current set of para-



- 20 -

meters from past parameter sets, using a predictor codebook [2.581. This 

method is also known as Switched-Adaptive Interframe Vector Prediction 

[2.591. 

5) ADAPTIVE PREDICTIVE CODING (APC) 

The block diagrams of a basic APC encoder and decoder are shown in Figures 

2.3.2(a) and (b) respectively. The prediction error (residual) E(z) is 

quanti zed on a sample-by-sample basis, and is transmitted to the decoder 

together with the quanti zed parameters of the LPC filter. The quantization 

of the residual is performed inside the prediction loop at the encoder, in 

order to prevent the quantization noise from being amplified during the 

speech synthesis process at the decoder. The encoded residual is 

T(z) = E(z) + Q(z) (Eq 2.3.13) 

where Q(z) is the added quantization noise. Also from Fig 2.3.2(a) : 

E(z) = S(z) - G(z) (Eq 2.3.14) 

and 

G(z) = [G(z) + T(z) ] P(z) (Eq 2.3.15) 

By substituting Eqs 2.3.14 and 2.3.15 into Eq 2.3.13, the relationship 

obtained is : 

T(z) = [S(Z) + Q(z) ] [1 - P(z) ] (Eq 2.3.16) 

The speech signal D(z) synthesised at the receiver is (see Fig 2.3.2(b» : 

1 
S(Z) = T(z) = S("') + Q(z) 

1 - prz) 
(Eq 2.3.17> 

Thus in an APC coder the synthesised signal is identical to the input 

speech signal with the addition of the noise introduced by the quantizer. 

The definition of the APC coder can be extended to include a second filter 

(pitch predictor) that models the harmonic structure of the speech frequency 

distribution. The pitch-predictor is connected in series with the LPC-filter 

and usually precedes the LPC-filter in the synthesis stage. A noise shaping 

filter can also be added, that reduces the subjective loudness of the 

quantization noise [2.201. The noise shaping filter increases the level of 

quantization noise in the formant regions (where noise is partially masked 
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by the speech signal) and decreases the noise level in the spectral valleys. 

The masking of the quantization noise by the speech signal allows lower bit 

rates to be used, while maintaining high speech quality. The coefficients of 

the noise shaping filter are derived from the parameters of the LPC filter. 

If the residual is quantized on a sample-by-sample basis, then at bit rates 

below 10 kbits/sec a two-level quantizer must be used, and the resulting 

coarse quantization becomes a major source of audible distortion in the 

synthesised signal. Efficient quantization of the residual (at less than one 

bit per sample) can be achieved by using a center-clipping quantizer that 

only encodes the largest samples (peaks) of the residual [2.20], or by using 

adaptive bit-allocation in the time and frequency domain [2.60]. 

Greater efficiency in quantizing the residual can be achieved by using 

Delayed Decision Coding techniques combined with Vector Quantization. Tree 

codes generated by a stochastically (random) populated innovations tree have 

been proposed for operation at 16 kbits/sec, producing speech of near toll 

quality (equivalent to 7 bits/sample log-PCM) [2.61]. Bit rates as low as 

4.8 kbits/sec can be achieved by vector-quantizing the residual using as a 

distance measure the RMS value of the signal distortion [2.62] (see section 

7 on Analysis-by-Synthesis predictive coding). 

6) RESIDUAL-EXCITED LINEAR PREDICTION (RELP) CODING 

RELP coders employ the Autoregressive model of speech (Eq 2.3.1) and code 

the prediction error (residual) using a combination of time and frequency 

domain techniques. The most commonly used coding-method is Baseband Coding 

combined with High Frequency Regeneration (HFR). The basic assumption in 

this method is that the lowest frequencies of the residual spectrum carry 

the highest perceptual importance, and that the preservation of the residual 

baseband contributes to the naturalness of the synthesised speech. 

The early RELP coding schemes used a simple procedure to code the residual 

[2.63,2.64]. This process involves the low-pass filtering (up to 800 Hz) and 

decimation of the residual. The down-sampled signal is encoded and 

transmitted using waveform coding methods. At the receiver, the transmitted 

signal is up-sampled and processed to regenerate the high frequency part of 

the spectrum. The signal is then fed to the LPC synthesis-filter to produce 

synthetic speech. 
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Simple HFR techniques include nonlinear processing of the baseband signal 

(e.g. full-wave rectification), baseband duplication (e.g. spectral folding) 

or a combination of the two [2.65,2.66]. These methods cannot reconstruct 

the upper frequency band accurately, and generate audible distortion in the 

form of "hoarsness" or "tonal noise". 

Better models have been developed for the coding of the residual in the 

time or the frequency domain. These models include : 

i) Pitch-aligned HFR methods that duplicate the baseband spectrum in a pitch 

synchronous manner, thus reducing the harmonic discontinuities and the tonal 

noise [2.67,2.68]. These methods operate in the frequency domain and require 

an estimate of the speech fundamental frequency. 

ii) Use of a full-band 

pitch information from 

upsampling [2.69]. 

pitch predictor in the time domain, to remove the 

the residual before decimation and restore it after 

iii) A generalised decimation process which produces an irregularly down­

sampled residual and minimises a perceptual distortion measure [2.70,2.71]. 

The down-sampl~d residual is quantized using APCM. Very good quality speech 

can be produced when this method is employed at 10 kbits/sec. 

iv) Vector Quantization of the harmonic frequency components (real and ima­

ginary) of the residual [2.72]. Pitch synchronous replication of the harmo­

nics must be used to regenerate the high part of the frequency spectrum. 

v) A dynamic spectral model which defines a set of adaptively selected sub­

bands of the residual, rather than a single low-pass sub-band. This model is 

defined in the frequency domain, and the bits are allocated to the sub-bands 

according to their significance [2.73]. 

RELP coders can produce very good quality speech at 16 kbits/sec, but the 

quality falls off rapidly as the bit rate is reduced below 8 kbits/sec. They 

are used in applications where low algorithm-complexity is necessary, and in 

general the quality of the sythesised speech is not as good as that obtained 

from Analysis by Synthesis Predictive coders. 

7) ANALYSIS-BY-SYNTHESIS (AbS) PREDICTIVE CODING 

The block diagram of a general AbS predictive 

2.3.3(a) and (b). The speech model used is the 

coder is shown in Figure 

analysis/synthesis model 
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employed by APC and RELP coders, thus synthetic speech is produced by 

passing the excitation signal through the LPC synthesis filter. In an AbS 

coder, both the filter and the excitation signal are parametrically 

represented over a short time interval (5 ms to 20 ms). The set of 

parameters controls the shape of the excitation signal and determines the 

freguency response of the LPC filter. Furthermore, the parameter values are 

adjusted by a closed-loop optimisation process that minimises the value of a 

weighted distortion measure. 

As seen in Fig 2.3.3(a), an error signal is formed by comparing the origi­

nal and synthetic speech waveforms. The error signal passes through a noise­

shaping filter that puts more emphasis (amplifies) on the frequency regions 

where the speech power is low and the noise (distortion) cannot be masked by 

the speech signal, and attenuates the error signal in the speech formant 

regions where higher levels of noise can be tolerated due to the masking 

effect. The RMS value of the filtered error signal serves as a measure of 

the "subjective" level of distortion. 

AbS-Predictive coders are more effective in minimising the distortion 

introduced by. the coding process and in achieving the desired noise 

spectrum, when compared to conventional open-loop coders such as APC and 

RELP. They can produce speech of "excellent" quality (accept~ble to most 

applications) at a bit rate of 10 kbits/sec, while at the lower bit rate of 

6 kbits/sec many AbS-Predictive coders can produce speech of very good 

quality. Typical AbS-Predictive coders are : 

i) The Multipulse Excitation (MPE) coder, which models the excitation signal 

with a sequence of irregularly spaced pulses [2.741. The synthesis filter of 

a MPE coder can be derived from any LPC filter model (see Fig 2.3.1), 

although the most efficient filter model has been found to be the one that 

combines two AR filters in series (Fig 2.3.1(d», the first modeling the 

smooth spectral envelope and the second (pitch predictor) modeling the 

harmonic frequency structure of speech [2.75]. The parameters of the excita­

tion (pulse positions and amplitudes) and a part of the synthesis filter 

(pitch predictor) are determined by the closed-loop optimisation process. 

Various algorithms have been proposed for the optimisation of the excita­

tion parameters that are simple enough to permit real-time implementation of 

the MPE coder [2.76,2.771. MPE coders produce speech of very good quality at 
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bit rates above 8 kbits/sec, while at 16 kbits/sec they perform better than 

APC coders (2.78]. Alternative MPE models have been proposed in order to 

improve the coder's performance at bit rates below 8 kbits/sec (2.79,2.80]. 

ii) The Regular-Pulse Excitation (RPE) coder, which is very similar to the 

MPE coder, but models the excitation with a sequence of equally spaced 

pulses (2.81]. The performance of the RPE coder is very close to that of a 

MPE coder when they both operate at the same bit rate. Various computatio­

nally efficient RPE coding methods have been proposed, and one of them has 

been chosen as the speech coding standard for the European digital Mobile­

Radio system (2.82,2.83]. 

iii) The Code-Excited LPC (CELP) coder, which selects the excitation signal 

from a codebook of random Gaussian excitation sequences (2.84]. These random 

sequences do not exhibit any "pitch" structure (which is necessary during 

voiced speech), and 

in the synthesis 

it is therefore essential to include a pitch predictor 

filter, in order to "induce" a pitch structure to the 

excitation waveform. The number of computations required to select the 

optimum excitation sequence from the code book can be very large, and various 

simplified meth.ods have been proposed (2.85,2.86,2.87] that allow the CELP 

coder to be implemented in real-time. The CELP coder produces speech of very 

good quality at 8 kbits/sec, while at 4.8 kbits/sec the quality is natural 

and to a certain degree speaker dependent. 

iv) The Backward Excitation Recovery coder, which employs a backward adapta­

tion procedure for the excitation signal, and therefore does not need to 

transmit any information concerning the excitation to the decoder (2.88]. 

The parameters of the synthesis filter are determined by the closed-loop 

optimisation procedure. Various excitation adaptation and filter optimisa­

tion algorithms have been proposed, and some of them lead to systems with 

very small encoding delays (around 3 ms). The performance of BER coders is 

very close to that of CELP coders at the bit rates of 4.8 and 8 kbits/sec. 

The excitation models employed by these four types of AbS coders can be 

combined to form hybrid systems (2.89,2.90]. This generalisation may also 

lead to AbS coding systems that decompose the excitation signal into a fixed 

number of ··optimised" excitation waveforms (2.91]. 
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2.4 Sinusoidal Coding 

Sinusoidal coders decompose the speech signal into a number of sinusoidal 

components (sine waves) with time varying amplitudes and frequencies. The 

speech spectrum is therefore modeled by a time varying Line Spectrum. The 

model parameters are quantized individually or using a functional represen­

tation, and are transmitted to the decoder where the sine-waves are recons­

tructed and added to .form synthetic speech. As most of these sinusoidal 

coding methods are applied in the frequency domain, special care must be 

taken to avoid frame boundary discontinuities in the time domain. 

The sinusoidal models permit a very accurate representation of speech at 

high bit rates, but at bit rates lower than 10 kbits/sec model simplifica-

tions are 

employed 

used, which affect 

at low bit rates is 

the coder's performance. An assumption often 

that the spectral lines are harmonically 

related, so that coding of the individual frequencies is not required. 

Sinusoidal models used in speech coding include : 

i) Harmonic Coding, which performs a short-time Fourier analysis of the 

speech signal and identifies the harmonics of the Line Spectrum model with 

the aid of a pitch estimator [2.92]. The Line Spectrum is recontructed at 

the encoder and subtracted from the spectrum of the original speech. The 

residual spectrum is encoded using Adaptive Transform Coding (ATC) and is 

transmitted to the decoder together with the amplitudes, phases and pitch 

estimate. Harmonic coders can produce good communications quality speech at 

9.6 kbits/sec. Modifications to the basic model and dynamic quantization 

strategies have been proposed to improve the performance of harmonic coders 

at 4.8 and 6 kblts/sec [2.93,2.94,2.95] 

ii) Sinusoidal Transform Coding, which determines the time-varying ampli­

tudes and phases of the sine waves from the short-time Fourier analysis of 

the speech signal [2.96,2.97]. It uses a functional description of the time 

evolution of the amplitudes and phases of the sinusoidal components. Linear 

Frequency tracks are constructed in each frame, preserving the continuity 

between frames and allowing for the "death·· of old and "birth" of new 

frequency tracks. Cubic polynomials are used to provide a "maximally smooth" 

phase unwrapping and frame boundary continuity. The coder can produce very 

good quality speech at 8 kbits/sec, and can be modified (by using a harmonic 

frequency model) to allow operation at 4.8 and 2.4 kbits/sec [2.98,2.99] 
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iii) Analysis-by-Synthesis Sinusoidal coding, which uses a polynomial repre­

sentation of the time evolution of the amplitudes and phases of the sinusoi­

dal components, and determines the polynomial coefficients by minimising the 

energy of an error signal formed by subtracting the synthesised signal from 

the original speech signal [2.100]. As a closed form solution is not 

available for all the parameters, an Analysis-by-Synthesis procedure is 

employed to minimise the energy of the error signal. The minimisation 

process is constrained to produce "smooth" parameter tracks and preserve the 

signal continuity at the frame boundaries. 

2.5 Sub-band Coding (SBC) 

In Sub-band Coding [2.1,2.101,2.102], the speech frequency band is divided 

into a number of sub-bands (typically between four and sixteen) by a bank of 

filters. Each sub-band is translated to zero frequency and is sampled at its 

Nyquist rate. The samples from each sub-band are encoded using APCM or DPCM 

techniques. At this stage, each sub-band can be encoded using perceptual 

criteria which are specific to that band. At the receiver, the sub-bands are 

translated back to their original frequencies and are added to produce the 

reconstructed speech signal. 

By allocating a different number of bits to each band, the variance of the 

reconsruction error can be separately controlled, and the shape of the 

overall reconstruction error spectrum can be varied dynamically to reduce 

the "perceptual" level of distortion. Furthermore, the quantization noise is 

contained within each band, and leakage from other frequency bands is 

prevented. 

The filter-bank (which is the most complex part of the coder) is implemen­

ted using Quadrature Mirror Filters (QMF) [2.103], which eliminate the 

problem of aliasing. QMF filters have the property that if a full-band 

signal is passed through the filter-bank and is then decimated to the 

Nyquist frequency in each sub-band, interpolated back to the original 

frequency, and resynthesised using the synthesis version of the filter-bank, 

the resulting signal can be an arbitrarily close replica of the input 

signal. While the QMF filters cancel aliasing in the absence of 

quantization, once quantization is introduced this is no longer true. 

Sub-Band Coders can produce speech of very good communications quality at 
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a bit rate of 16 kbits/sec, comparable to the quality obtained from 

Multipulse Excitation coders at the same bit rate [2.102). At a bit rate of 

9.6 kbits/sec some bands may not be transmitted at all (if their energy 

content is low) thus affecting the aliasing-cancellation properties of the 

QMF filters and resulting "whispering" quality, caused by the energy aliased 

into the spectral gaps. At a bit rate of 4.8 kbits/sec, acceptable quality 

can still be obtained by dynamically frequency-shifting the speech signal so 

that the formants align with fixed-frequency bandbass filters [2.104). 

2.6 Adaptive Trasform Coding (ATC) 

ATC coders transform the speech signal into a spectral representation, and 

quantize the spectral coefficients using a dynamic bit-allocation strategy 

[2.105,2.106,2.107). At the decoder, the quantized coefficients are inverse­

transformed back into the time domain. 

The transformation most commonly used in speech processing is the Discrete 

Cosine Trasform (DCT). The DCT transform is closer (in terms of performance) 

to the "optimal" Karhunen-Loeve Transform (KLT) , than the other well known 

transforms (FFT, WHT, etc.). It is also effective in reducing the frame 

boundary discontinui- ties, by minimising time aliasing (transfer of energy 

between the left and right edges of the frame). 

The dynamic bit-allocation ensures that the high energy spectral compo­

nents are quanti zed as accurately as the low energy components, by distri­

buting the number of bits according to a rough estimate of the spectral 

envelope. The estimate of the spectral envelope must be transmitted as side 

information, so that the decoder can determine how the bits were distributed 

amongst the spectral coefficients at the encoder. Depending on the overall 

bit rate, some coefficiets may be assigned zero bits, thus creating spectral 

gaps in the synthesised speech. By adjusting the bit allocation strategy, 

noise shaping can be achieved and the "subjective" quality of the 

reconstructed speech can be improved. 

The side information is often based on a ··smooth-spectrum" estimate that 

does not include the effect of pitch-induced fine structure in the input 

spectrum. A consequence of such smoothing is increased zero-bit allocation 

at high frequencies. By including information on the pitch structure, many 

low energy components lying between the pitch harmonics at low frequencies 
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are allocated zero bits, thus releasing bits for the high frequency part of 

the spectrum. The best results in ATC are obtained using the bit-allocation 

procedure based on the "unsmoothed-spectrum" estimate. 

ATC coders can produce very good communications quality speech at a bit 

rate of 16 kbits/sec. At a bit rate of 9.6 kbits/sec, the rapid movements of 

spectral gaps from frame to frame produce a "tonal noise" effect. Highly 

intelligible and speaker-specific speech quality can be obtained at bit 

rates between 4 kbits/sec and 8 kbits/sec. 

2.7 Conclusions 

Speech Coders operating at medium bit rates employ efficient coding 

techniques and are capable of producing speech of very good quality. 

Requirements for such coders vary depending on the application. Primary 

consideration is the speech quality obtained under "transmission" 

conditions. Such conditions may include tandem encodings and transmission 

through "noisy" channels. The quality of the recovered speech is measured 

using various subjective listening tests. other important properties are the 

delay and complexity characteristics of the coder. 

The coders mensioned in this Chapter can produce very good communications 

quality speech at 16 kbits/sec. Operation at lower bit rates affect the 

performance of the coders in different ways. The best results at low bit 

rates are obtained using Analysis-by-Synthesis Predictive coders. 
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CHAPTER 3 

KULTIPULSE EXCITATION SPEECH CODING 

3.1 Introduction 

The design of a Multipulse Excitation (MPE) codec and its application to 

speech compression, was first introduced by B.S.Atal in 1982 [3.1]. A number 

of concepts were combined to create a powerful coding technique, which has 

since been applied to the development of many diverse speech coding schemes, 

such as the Code Excited LPC [3.2] and Backwards Excitation Recovery [3.3] 

techniques 

The encoder section of a MPE codec, controls the output of a LPC speech 

synthesiser by systematically adjusting its internal parameters in order to 

produce a close match between the synthesised and original speech waveforms. 

The internal parameters of the LPC synthesis er are transmitted to the 

decoder, which repeats the speech synthesis process and recovers the speech 

waveform. 

In order to ,achieve an efficient coding operation, information from both 

the past and the future of the speech signal is needed at every instant. The 

encoder has to delay decisions concerning the adjustmemt of the LPC 

synthesiser, until enough speech samples have been received. The same delay 

characteristics are common amongst speech coding schemes that achieve a high 

compression of the input speech data. The term Analysis by synthesis is used 

to describe both the Delayed Decision Coding attribute, and the operation 

which optimises the coder's internal parameters in order to produce a close 

approximation of the original speech waveform. 

Another concept used in the design of the MPE codec is that of noise 

masking [3.4]. The distortion introduced by the coder should ideally have a 

power spectral distribution that would minimise its perceptibility in the 

presence of speech. In practice this is hard to achieve, because of the 

dynamic behaviour of speech and the difficulty in determining the ideal 

noise spectrum. It has been established though, that a noise-like signal can 

be masked by a high power correlated source over the same spectral region. 

As a result, a higher level of noise can be tolerated in the spectral 

regions where there is concentration of speech energy (i.e. in the 

formants) . 
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In a MPE coder, it is possible to have a certain amount of control over 

the spectral content of the distortion introduced, by formulating an 

appropriate error measure between the original and synthesised speech 

waveforms. This allows the continuous and adaptive adjustment of the noise 

spectrum and reduces the perceptible distortion. 

The ability of the MPE system to adjust and optimise its performance 

according to a predefined speech quality criterion, allows a great deal of 

control over the design and implementation aspects of the MPE coder. The MPE 

coder can be quite robust in various acoustic environments, because it does 

not depend on voicing decisions (classification of signals as periodic or 

noise-like). Furthermore, it can operate, 

predictor, thus limiting the error 

transmission errors. 

if necessary, without a long-term 

accumulation in the presence of 

The complexity of MPE codecs, or other Analysis by Synthesis speech coding 

schemes, is not prohibitive by today's standards in VLSI design. The 

tremendous increase in power of the monolithic Digital Signal Processors has 

decimated the development and implementation costs of complex speech codecs 

and has facilitated their widespread use [3.5,3.6,3.7,3.8). The ever 

broadening applications field has also played an important role in the 

diversification of the research aims and the setting of new standards and 

goals [3.9). Commercial interest in high quality speech transmission and the 

need to exploit the available bandwidth in applications such as mobile radio 

and satellite communications [3.10), has been one of the driving forces in 

the design of new and efficient speech codecs. 

MPE codecs 

9.6 kbits/sec 

obtained from 

are capable of toll quality speech at 16 kbits/sec, while at 

the obtained speech quality compares favourably with that 

conventional codecs like RELP or subband [3.11). MPE coding 

has· also been applied to wideband speech transmission at 32 and 16 kbits/sec 

[3.8), and a quite respectable coded speech quality has been demonstrated at 

a transmission rate of 2.4 kbits/sec [3.12). 

In this chapter, the basic principles behind the MPE coding schemes will 

be first described. A review of the existing techniques of pulse amplitude 

estimation and pulse position optimisation will then be presented. Many of 

these techniques have been borrowed from the mathematical field of numerical 

optimisation, while others have been designed specifically for the solution 
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of the MPE optimisation problem. The latter techniques are usually simpler, 

and will be examined in more detail in the next two chapters. 

3.2 Definition of the Multipulse Excitation 

Figure 3.2.1 shows an operational diagram of the Multipulse Excitation 

Encoder-Decoder. The optimisation loop of the encoder section indicates that 

a Delayed Decision Coding process is taking place and that the input to the 

LPC filter is not defined sequentially in time, as the signal flow might 

suggest, but in a batch mode. It also indicates the repetitive nature of the 

excitation optimisation process. 

The speech waveform is first divided into consequtive frames, each contai­

ning n speech samples. The LPC filter is then derived directly from the 

speech data (using one of the Linear Prediction techniques usually employed 

by LPC speech coders), and the Multipulse Excitation sequence is optimised 

so that the output of the LPC synthesis filter closely approximates the 

original speech waveform. The spectral distribution of the distortion 

introduced by the coder can be forced to approximate a given distribution, 

by properly adjusting the excitation optimisation process. 

The input excitation sequence (MPE) is formed using a small number of 

impulses, whose amplitudes and positions within each frame, are determined 

by the Excitation Parameter Optimisation algorithm. 

The process of defining the MPE sequence can be described as follows. 

Consider a frame of n speech samples, represented by the n-dimensional 

vector 

corresponding 

and the excitation vector 5 (0) ,5 (1) ,5 (z), ... ,5 (n-iJ 1 

to the same frame xT: [ f (0) ,f (iJ, ... ,dn-iJ 1. Assuming a 

fixed number of pulses q for each frame, the pulses are located at sample 

instances Pl'PZ' ... ,Pq , and 

example, if n=8 ,q=3 ,p 1=3 .fz=2 

have amplitudes b 1 ,b z, ... ,bq respectively. For 

and P3=6 then xT
: [ 0,0 ,b z,b 1'0 ,0 ,b 3,0 1. 

The filter used by the coder can be a general linear filter, but usually 

it takes the form of a single Autoregressive (AR) filter which models the 

combined effect of the glottal shape, vocal tract response and lip 

radiation. A second AR filter can be introduced (in series with the first), 

which models the quasi-periodic nature of the speech waveform [3.13], or a 

more complex ARMA filter model can be used instead of the standard AR model 

[3.14,3.15]. When a single AR filter model is considered, LPC methods like 
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the stabilised covariance [3.16,3.17] or the maximum entropy method [3.18], 

can be used to estimate the filter coefficients. 

The response of the LPC synthesis filter to an input sequence {,(i» is 

(.(/»*{h(I» ,where (h(I» is the filter's impulse response. The convo­

lution of the two time series can be considered as a matrix multiplication 

operation. The filter's response Sy is expressed as 

s = A x y (£q 3.2.1) 

where A is the nXn lower triangular convolution matrix 

hlo) 0 0 0 
hi 1> h (0) 0 0 
h (2) h (1) h (0) 0 

A = (£q 3.2.2) 

h (n-1> h (n- 2) h (n-3) h (0) 

The input vector x contains both zero and non-zero elements, and Eq 3.2.1 

can be simplified if a new nxq matrix A[q] is formed using only those q 

columns of matrix A which correspond to the non-zero elements of x. These 

columns are arranged in the order given by the position indexes P1,P 2, .. ,Pq : 

o 
o 

h (0) 
h (1) 

h (0) 
h (1) 
h (2) 

Eq 3.2.1 is then transformed to : 

where b T = [ b l' b 2' ... ,b q ] is the 

ampli tudes. 

o 
o 
o 

h (0) 
h (1) 
h (2) 

h (n-p -1> q 

(£q 3.2.3) 

(£q 3.2.4) 

q-dimensional vector of the pulse 

The pulse positions P1,P2, ... ,Pq and pulse amplitudes b 1,b z, ... ,b q should 

be determined 50 that the response Sy of the LPC filter to the generated 

multipulse input signal closely approximates the original speech sequence s. 

A parameter estimation problem can be formed by assuming an additive noise 
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model for the speech signal 

(Eq 3.2.51 

A[qJ b is a function of the 2q random variables that correspond to the 

pulse positions and amplitudes, and ea is a sample from a random noise 

process whose statistical properties are known. These two random parts of 

the model are assumed to be uncorrelated. 

A good estimate of the parameter values (pulse positions-amplitudes) would 

be the one that maximises the a posteriori probability of the set of the 

parameter values, given the observed sample waveform s (Bayesian estimate) 

[3.19]. The continuous-discrete nature of this conditional probability 

density function means that a numerical approach would be necessary in order 

to locate its maximum. A different treatment of the two sets of variables 

can therefore be 

pulse amplitudes 

sought. 

advantageous, since a semi-analytical solution for the 

and a numerical solution for the pulse positions can be 

For a fixed set of pulse positions, by disregarding any knowledge about 

the pulse amplitudes' joint-probability-distribution and by assuming a zero­

mean Gaussian noise process, an analytical solution in the form of the 

Maximum-Likelihood estimate, can be found for the pulse amplitudes. The same 

estimate can be obtained from the theory of Least Squares (LS) estimation, 

since the noise statistics are assumed to be Gaussian. 

Having obtained an analytical solution for the amplitudes of a set of 

pulses with fixed positions, the task of defining the optimum multipulse 

excitation sequence is converted into an error function minimisation 

problem. The function variables (pulse positions) can only take discrete 

values, therefore integer programming [3.20] or other simpler iterative 

optimisation techniques can be used to define the pulse positions. 

3.3 Estimation of the pulse amplitudes 

When the pulse positions Pl,P2'" .,Pq are fixed, the matrix ACqJ is also 

fixed and the values of the pulse amplitudes b 1,b 2, ... ,b q can be determined 

by minimising the power of the noise (approximation error) ea in Eq 3.2.5. 

In the general case where the noise samples are correlated, a linear 

transformation can be applied to produce an equivalent estimation problem 
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where the noise samples are uncorrelated. The noise covariance matrix Ca is 

known in advance, and is assumed to be positive definite: 

(Eq 3.3.1) 

It can therefore be factorised as 

Ca = L LT (Eq 3.3.2) 

where L is a lower triangular square root of Ca. Application of the 

transformation aL·! (where a is a constant) to Eq 3.2.5, generates a new set 

of equations : 

s., = A.,[q] b + e
lO 

(Eq 3.3.3) 

where : 

The noise samples are now uncorrelated and the new noise covariance is 

(Eq 3.3.4) 

where In is the nxn identity matrix. 

The noise energy over a specified frame is minimised when 

Vb [ e~ e lll ] = [ 0,0, ... ,0 ] T (Eq 3.3.5) 

or 

(Eq 3.3.6) 

Eq 3.3.6 defines the LS problem and as long as the matrix A.,[q] has a full 

rank, a unique solution exists. A number of methods with good numerical 

properties can be employed to find the. solution. The Gram-Schmidt 

orthogonalization procedure or the Cholesky matrix decomposition algorithm 

(3.21] are commonly used. The latter is used to solve the system of normal 

equations derived from Eq 3.3.6 : 

(Eq 3.3.7J 

A geometrical interpretation of this minimisation problem is possible by 

visualizing the signal components as vectors in an n-dimensional space. The 

columns of the matrix A.,[q] define a q-dimensional subspace and A.,[q] b 
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belongs to the same subspace. In Eq 3.3.6 therefore, the function which is 

minimised is equal to the square of the distance between the speech vector 

Sw and the vector Aw[qJ b. This distance is minimum when Aw[qJ b coincides 

with the projection of Sw on the subs pace defined by Aw[qJ. 

Equation 3.3.7 can be solved for the component values b
1

,b 2 , •• ,b q that 

ensure the orthogonality between the error vector ew and the signal vector 

Aw[qJ b (hence the name normal equations). It can be shown that the 

projection operator takes the form 

(Eq 3.3.8) 

and that the minimum error energy is : 

(Eq 3.3.9) 

As the pulse positions Pl,P2' ... Pq change, so does the subspace defined by 

Aw[qJ. Ultimately the subspace closest to the speech vector Sw will identify 

the best set of values for the pulse positions. 

3.4 Optimisinq the pulse positions 

The estimation of an optimum Multipulse Excitation sequence has been 

transformed to an equivalent problem of minimising the distance between two 

n-dimensional vectors corresponding to the original and LPC-synthesised 

waveforms (Eq 3.3.6), subject to the coordinate transformation aL-1 that 

produces a new set of axes corresponding to the column vectors of matrix Aw: 

(Eq 3.4.1) 

,The minimum distance E (error RMS) for a given set of pulse positions 

Pl,P2, ... ,Pq (corresponding to a particular subspace), can be found using 

the analytical formula of Eq 3.3.9. This minimum distance changes when a 

different set of pulse positions is considered and can be expressed as a 

function of the integer variables P1,P2, ... ,Pq : 

'I' C zq 
(Eq 3.4 .2) 

The projection operator P, refers to the subs pace defined by the columns 
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of matrix Av[91 which in turn is dependent on the values of Pl,PZ, ... ,P9' ~ 

is the set of permissible combinations of values that P1 ,P2, ... ,P
9 

may take 

(the order is not important), and z9 is the set of all 9-dimensional integer 

vectors. 

Enumeration of all the vectors [Pl,P2' ... ,P91 E ~ is only feasible when ~ 

is relatively small, as is the case when a Codebook-Search algorithm is used 

to find the pulse positions (see Chapter 5), or when a Regular-Pulse 

Excitation sequence is postulated [3.221. If there is complete freedom in 

the choice of pulse positions, then ~ has (~) elements and complete 

enumeration is only possible when the frame size n and the number of pulses 

per frame 9 are small. Since Multipulse Excitation coders usually benefit 

from the use of large frames, other methods are employed to find the pulse 

positions that minimise the distance between the original signal and the 

res ponce of the LPC filter. 

Two broad classes of pulse position estimation methods can be defined, to 

highlight the differences between Successive Elimination and Multivariate 

Optimization techniques. These differences can sometimes be subtle but in 

general, Successive Elimination techniques are more deterministic in their 

approach than Multivariate Optimisation techniques, which may adopt a 

probabilistic search strategy for t.he pulse positions. 

3.4.1 Successive Elimination Technigues 

These methods progressively decompose the parameter "space" ~ into increa­

singly smaller subsets. The minimum of the approximation error function 

£(Pl,P2' ... 'P9 ) is bracketed by the subset boundaries and becomes more and 

more localised as the subsets shrink and finally reduce to single vectors. 

This is done in a systematic way by restricting the range of values over 

which each of the position variables P1 'pz' ... ,P9 is allowed to vary. A 

repetitive evaluation of the approximation error function is performed and 

decisions concerning the subdivision of the subsets are taken based on the 

past history of computed function values. 

The complexity of the process is determined by the number of iterations 

necessary to converge to a solution, and by the effort needed to compute the 

approximation error function. In the following examples, a general 

definition of this function is implied, to accomodate the various simplified 
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amplitude-estimation algorithms developed in the next chapter. Temporarily 

the function E(Pl,P2"") will be assumed to provide a measure of the 

approximation error when a number of pulse positions are specified, without 

necessary implying the use of Eq 3.3.9. 

Examples of Successive Elimination techniques applied to the estimation of 

the pulse positions are: 

1) COMBINATORIAL SEARCH 

Combinatorial search methods perform a search through an imagined tree of 

pulse position combinations. The tree is set up so that each path along its 

branches corresponds to a single set of pulse positions (Fig 3.4.1). 

The search for the optimum set of pulse positions starts at the first 

level where n branches diffuse from a single parental node. These branches 

correspond to the possible locations of the first pulse. Different criteria 

can be used to select the most "promising" paths through the tree. For 

example a threshold Pi can be used to control the selection of the branches 

which satisfy the requirement 

(Eq 3.4.1. 1) 

or alternatively, n 1 branch candidates can be chosen that correspond to the 

n 1 lowest values of the approximation error function E(P 1), o~plSn-l. 

The tree expands at the second level by appending n-1 branches at the end 

of every branch that was selected at the first level, to accomodate the n-1 

possible locations of the second pulse. A new threshold P2 or a new integer 

constant n 2 can be used to control the search at this level, where the 

function E(P 1 ,P2) is evaluated. The process continues until finally at the 

qth-Ievel, the path associated to the lowest error value is chosen. Care 

must be taken to recognise the paths that represent the same set of pulse 

positions and reject all but one. 

Careful choice of the values P1 ,P 2, ... ,Pq or n 1,n 2, ... ,n'l can improve the 

efficiency of the method and reduce the number of required error-function 

evaluations. Note that the complexity of the algorithm depends on the kind 

of approximation error function that is chosen to be minimised at each 

stage, and is therefore dependent on the implied difficulty in obtaining 

estimates of the pulse amplitudes. 
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FIGURE 3.4.1 Combinatorial-Search MPE Optimisation Method. A Tree Search 

for the optimum set of pulse positions in a MPE frame of 5 samples is 

attempted. Each branch corresponds to a possible set of pulse positions, and 

two branches are chosen at each level of the tree. 
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The number of paths selected at each level will in general be greater than 

at the previous level and can increase substantially by the time the last 

stage is reached. To keep this number low, a process can be employed at the 

end of each stage to reject the paths associated to high approximation error 

values. A variant of this method, only keeps a fixed number of paths per 

stage (Fig 3.4.1 shows 2 paths) and these paths are the ones with the lowest 

error values [3.23]. If this number is kept equal to one, then the position 

found at each stage cannot be altered by further stages (this property is 

common to all the algorithms of Example-3). 

2) BRANCH AND BOUND OPTIMISATION 

The Branch and Bound technique is a nonlinear programming method [3.24, 

3.25] and is one of the possible combinatorial optimisation methods that can 

be applied to the MPE optimisation problem [3.26]. 

The Branch and Bound technique can be used to perform a recursive binary 

subdivision of the parameter space (of the pulse-position variables). This 

subdivision can be explained using a binary decision tree whose branches are 

inclusively related. The parameter set ~ is broken down into subsets in such 

a way that the subset corresponding to each branch contains the subsets of 

the descending branches (Fig 3.4.2). Each decision (branching) splits the 

interval, over which a single position variable is defined, into two. 

A lower and an upper bound of the error-function are estimated for each 

"active" path along the tree. Each path associated with a lower bound which 

is greater than an established upper bound elsewhere within the tree, is not 

worth pursuing and is therefore "deactivated" to facilitate a faster search 

through the rest of the tree. 

In a function minimisation problem, accurate estimation of the lower bound 

is crucial because it indicates the potential gain obtained by following a 

certain (search) path. Unfortunately in this case, a lower bound of the MPE 

approximation error function is difficult to calculate, and a guess has to 

be made based on the value of the corresponding upper bound (which is easier 

to find). 

Since each binary decision concerns a single pulse, a simple enumeration 

of the permissible pulse positions can provide the minimum approximation 

error value. This value is also an upper bound of the error function because 
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FIGURE 3.4.2 Branch-and-Bound MPE Optimlsation Method. Upper error bounds 

are established by varying the position of a single pulse at each level of 

the tree and by selecting the position where the error is minimum. The lower 

bounds are set to one-third the value of the upper bound. The binary sub­

division continues until all the pulse positions are fixed. 
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subsequent steps along the same path can only reduce the error. In Fig 3.4.2 

the value of the upper bound (high) for each path corresponds to the minimum 

of the error-function and is calculated using an exhaustive enumeration of 

the permissible pulse positions. In this example, the lower bound (low) is 

set equal to one third of the upper bound. Before the next decision 

(branching) is taken, the pulse is placed at the position where the minimum 

error occured. The process shrinks the subsets into single vectors, and 

terminates by choosing the vector of pulse positions that results the 

minimum approximation error. 

The method can be considerably simplified by reducing the number of active 

paths and by using the simplified procedures described in the next chapter, 

to estimate the pulse amplitudes and the approximation error. 

3) MULTI-STAGE (MS) OPTIMISATION 

Multi-Stage optimisation algorithms include some of the most popular and 

simple MPE optimisation methods [3.27,3.28]. Each method starts by optimi­

sing the position of the first pulse and continues by adding further pulses 

in the next sfages, until the required number of ~ pulses per frame is 

reached. The position of each new pulse is optimised in a separate stage and 

cannot be redefined in the next stages, even though the pulse's amplitude 

may be corrected. 

Differences between the various MS algorithms are related to the degree of 

involvement of the pulse amplitude estimation process. The computational 

effort involved in the calculation of the pulse amplitudes and the 

estimation of the approximation error determines the complexity of the 

MS-algorithm, since the particular pulse position optimisation strategy only 

allows a limited number of pulse position combinations to be considered. 

Var-ious MS algorithms will be examined in Chapter 4. 

A different MS optimisation procedure would initially consider a complete 

set of n pulses and would then reduce them to the required number using a 

thinning process [3.29,3.30]. The same search logic as before can be applied 

in this case, if the position of a "vacant" pulse (hole) is optimised at 

each stage, instead of an actual pulse. 
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3.4.2 Multivariate Optimisation Techniques 

As the name implies, these techniques adopt a more probabilistic approach 

to find an optimum set of pulse positions. The parameter "space" ~ is 

irregularly sampled, and information obtained from the sampling operation is 

used to direct the search for the minimum of the approxiamtion error 

function. Successive samples create paths in ~, which can be progressively 

constrained, not in an absolute manner, but in the sense that the 

probability of sampling a point outside a confinement subset (or subsets) in 

~ becomes increasingly small. 

Examples of Multivariate Optimisation techniques are 

1) SIMULATED ANNEALING 

This technique simulates the cooling process of a liquid substance, at the 

molecular level. The physical cooling process reduces the total (kinetic and 

potential) energy of the molecules. The total energy can be considered as a 

function of the distribution of the molecular quantum energies. A tempera­

ture drop results a reduction of the total energy, brought by the general 

tendency of the molecules to drop to lower energy levels. These energy 

transitions are random and can lead to higher, as well as lower energy 

levels (for each molecule). A slow cooling process reduces the total energy 

until a global energy-minimum is reached at the crystalline state. If the 

cooling process is accelerated, crystal deformations will appear and the 

energy minimum will only correspond to a local minimum. 

This "slow" cooling process can be imitated by a function minimisation 

algorithm which attempts to locate the global minimum of a multivariate 

error-function (which corresponds to the total energy of the physical model) 

[3.31]. The algorithm constructs a search path in the parameter space of the 

error-function, in a series of optimisation steps. At each optimisation 

step, random deviations from the last point of the search path are 

generated, and these deviations are considered as possible "transitions·· in 

the values of the function variables. When a "successful" transition occurs, 

a new point is added to the search path, and the process continues by 

considering random deviations from the new point. 

A simple model is used to measure the probability of a "successful" 

transition. The model assumes that this probability is related to the amount 
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by which the function value changes when the transition occurs, and depends 

on the value of a parameter T (which corresponds to 

physical substance). Consider an error-function ftp), 

function variables. The conditional probability of 

successful depends on the corresponding change in the 

and is modeled by the exponential function : 

the temperature of the 

where p is the set of 

a transition being 

function value Sf(p), 

P [
Sue e e s s f u I / Of ( ) T ] 
Ti'ansition 0 P, 

, SE(p)O ] 

, SHp) (0 
(f<[ 3.4.2.1! 

This model assumes that a transition is always successful if it is 

accompanied by a reduction of the function value (SE(p)<O). A transition 

that increases the value of the error-function (SE(p»O) is considered as 

successful with a probability derived from the model of Eg 3.4.2.1. A high 

value of T results an egual probability of "accepting" an increase or a 

decrease of the function value, but a small value of T favours the 

transitions which result lower function values. The optimisation strategy is 

therefore to keep the value of T high initially, and then gradually reduce 

it to a value close to zero. As the value of T is reduced, the probabilty of 

"accepting" an increase in the error-function's value becomes smaller, and 

the function values become more and more localised around the local minima. 

Finally, when the value of T is close to zero (corresponding to a 

temperature of absolute zero), the global function minimum is reached and no 

transitions occur. 

Results from a two-dimensional optimisation problem are shown in Figure 

3.4.3(a). The error-function considered, has 5 local minima at points (1,1), 

<1,-1), (-1,1), (-1,-1) and (0,0). The function value at these points is 

1,1,1,1 and .999 respectively. Thus, the point (0,0) is where the global 

function minimum occurs. The distance of each point added to the search path 

during the optimisation process, from the point (0,0), is plotted while the 

value of the parameter T is lowered. Sudden transitions can be obsereved 

even when the value of T is small, and this indicates the existence of other 

local minima. Finally only small perturbations around the point of global 

minimum (0,0) are observed. 

The Simulated Annealing algorithm is simple but may involve a large number 

of function computations. It has been successfully applied to a number of 
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FIGURE 3.4.3 Simulated-Annealing MPE Optimisation Method. 

(a) Two-dimensional Function Minimisation. The deviation from the point 

(0,0) where the function minimum occurs, is plotted as the temperature 

variable decreases. 

(b) SNR versus time, for the speech waveform shown in (c). Black squares 

correspond to the Maximum-Crosscorrelation MPE algorithm, and white squares 

correspond to the Simulated-Annealing MPE algorithm. 
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combinatorialoptimisation problems [3.32] and can give good results when 

used to optimise the pulse positions in a MPE coder [3.33]. In the case of 

the MPE system, the error-function corresponds to the energy of the 

approximation error (difference between the original and synthesised speech 

waveforms), and the transitions correspond to pulse movements. 

The SNR obtained when a Simulated Annealing MPE algorithm is applied to a 

short voiced speech segment of 48 frames, is shown in Fig 3.4.3(b) (white 

squares). For comparison, the SNR obtained in each frame by applying the 

Maximum Cross-correlation MPE algorithm (described as method MSl in 

Chapter 4) [3.28], is also shown (hatched squares). A MPE frame of 50 

samples is used and 5 pulses are defined in each frame. The 12th order LPC 

filter A(z) is defined over a larger interval of 200 samples. The speech 

waveform is shown in Figure 3.4.3(c). 

The Simulated Annealing MPE algorithm works by considering transitions 

which change the positions of the excitation pulses (given an initial set of 

q pulse positions). At each optimisation step, a pulse is randomly selected 

and it is moved to an adjacent position either to the left or to the right 

(random choice)'. The probability model of Eq 3.4.2.1 is employed to decide 

the fate of each transition. When a transition is judged to be "successful", 

the whole process continues by selecting another pulse and moving it to an 

adjacent position either to the left or to the right. When a transition is 

not "successful", the selected pulse must be returned to its original 

position (from where it was displaced), before the process is allowed to 

continue by selecting another pulse. 

Initially the pulses are placed at random positions within each speech 

frame and then the algorithm generates random one-sample displacements of 

the position of a randomly selected pulse. The error is calculated using the 

formula of Eq 3.3.9 and the new pulse position is rejected or accepted 

according to the probability model of Eq 3.4.2.1. The value of the parameter 

T is gradually decreased and the approximation error is monitored until no 

more transitions are considered to be "successful". At this point, the value 

of the approximation error is accepted as the minimum. As seen in 

Fig 3.4.3(b), the SNR improvement can be as much as 10 dBs in some frames. 
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2) RANDOM SEARCH 

Random Search optimisation algorithms sample the parameter set ~ in a 

random manner. A search route is usually constructed and random fluctuations 

are produced in order to explore the possibility of further advancing the 

route. Different methods employ different search strategies to locate the 

minimum [3.34,3.35]. Theyare computationally inefficient but are well 

suited for solving combinatorial optimisation problems and minimise the risk 

of accepting a local minimum as the global one. 

The parameter set ~ can be sampled more efficiently if the elements that 

are unlikely to be selected as the optimum solution can be identified in 

advance. This can be done experimentally using an existing MPE coder and a 

training process to determine the pulse position combinations which are 

unlikely to be encountered in practice. The corresponding position vectors 

can then be removed from ~. In the extreme case, a limited vocabulary of 

pulse position vectors can be constructed to replace the parameter set ~ 

itself. In such a case, the search for the minimum approximation error can 

be done using an exhaustive enumeration technique. MPE coders based on this 

Codebook Searcn (CS) strategy will be described in Chapter 5. 

3) BLOCK SEARCH (BS) OPTIMISATION 

These methods start with an initial estimate of the pulse positions and 

search for the optimum set of pulse positions by perturbing the position 

vector components in a random or systematic way. When a vector is located 

that results a minimum approximation error, the search resumes by choosing 

the new vector as the initial point. These methods are less complex than the 

Simulated Annealing and Random Search methods, and give results comparable 

to the Multi-Stage optimisation algorithms [3.36,3.37]. The BS optimisation 

algorithms will be examined in the next chapter. 

3.5 Conclusions 

A brief description of the Multipulse Excitation optimisation process has 

been presented. It was shown that the excitation pulse amplitudes can be 

estimated, for a fixed set of pulse positions, by minimising the distance 

between two vectors, corresponding to the input speech waveform and the 

synthesized output of the MPE coder. The estimation is done assuming an 
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additive noise model and a known noise covariance. 

The problem of optimising the excitation pulse positions has been 

converted to a function minimisation problem. The function itself represents 

a measure of the distortion introduced by the coder, and the function 

variables are the integer positions of the pulses. 

Two broad classes of optimisation algorithms, the Successive Elimination 

and the Multivariate Optimisation techniques, have been described along with 

typical examples from each class. The most complex amongst these algorithms 

have a lot in common with well known 

algorithms can be employed by a MPE 

Integer Programming methods. These 

coder to obtain exceptionally good 

results, but they are usually unsuitable for use in real-time environments 

and speech transmission applications where the algorithm complexity must be 

weighed against implementation costs. 

The Multi-Stage (MS), Codebook Search (CS) and Block-Search (BS) optimisa­

tion methods can be efficiently implemented using the existing technology 

and can be easily modified to suit the performance/complexity requirements 

of a particular application. These methods will be examined in more detail 

in the next chapters. 
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CHAPTER 4 

MULTI-STAGE AND BLOCK-SEARCH OPTIMISATION KETBODS 

4.1 Introduction 

The powerful concept of Analysis by Synthesis optimisation makes the 

design of efficient Multipulse Excitation (MPEl coders, over a wide range of 

transmission bit rates, a straight forward task. MPE coders are especially 

successful at bit rates between 8 and 16 kbits/sec, and therefore compete 

with Residual Excited Linear Prediction coders (RELPl and Subband coders. 

MPE coders can benefit from the substantial amount of research that has 

been carried out in order to improve the performance of predictive coders, 

especially on the issues of LPC parameter quantization [4.1,4.2,4.3J. RELP 

coders attempt to preserve the subjectively important properties of the LPC 

residual but, because they design the filter excitation in an "open loop" 

manner, they have to rely on inreasingly sophisticated and efficient excita­

tion coding techniques [4.4,4.5J. 

The flexibility of the Multipulse Excitation model and the efficiency of 

the "closed loop" MPE optimisation process contribute to the naturalness of 

the coded speech [4.6J. It is therefore not unexpected to find traces of the 

same coder optimisation principles embedded in a number of low to medium 

bit-rate coding techniques that have been developed [4.7,4.8,4.9,4.10,4.11J. 

MPE coders are also quite robust in the presence of acoustic noise or 

transmission errors even at low bit rates [4.12J, where traditional vocoding 

techniques become highly sensitive to wrong voicing decisions. 

The performance of a typical MPE coder progressively deteriorates as the 

transmission bit-rate is brought below 8 kbits/sec. This happens because the 

number of pulses that are available to reconstruct each pitch period during 

voiced speech, becomes increasingly smaller. This "pulse starvation" effect 

is more noticeable for high-pitched voices. 

A number of modifications have been suggested to improve the performance 

of MPE coders at lower bit-rates. The inclusion of a long-term predictor in 

the form of an all pole filter, can help in preserving the periodicity of 

the recovered speech, by reducing the number of excitation pulses that are 

necessary to reconstruct the speech waveform in an interval equivalent to 

many pitch periods [4.13,4.l4J. Vector Quantization of the excitation and 
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LPC parameters can be used to bring the bit-rate down to 4.8 kbits/sec 

[4.15,4.16,4.17], and a pitch synchronous Multipulse Excitation optimisation 

and interpolation can reduce the bit rate even further to 2.4 kbits/sec 

[4.18,4.19]. In addition, new and efficient techniques for the quantization 

of the LPC parameters are becoming increasingly important when operating at 

bit rates less than 6 kbits/sec, while preserving the naturalness of the 

coded speech [4.12,4.20,4.21,4.22]. 

The coded speech quality obtained from MPE coders at 16 kbits/sec is very 

close to toll-quality (equivalent to more than 7 bits PCM coded speech), at 

9.6 and 8 kbits/sec good communications-quality speech is achieved and in 

the 2.4-4.8 kbits/sec range, coded speech sounds more "natural" and "full" 

when compared to the output of typical LPC or channel vocoders. 

Efforts to improve the performance of MPE coders concentrate on developing 

better Multipulse Excitation optimisation algorithms and on improving the 

basic MPE model. Better estimation algorithms for the LPC filter [4.23,4.24, 

4.25,4.26,4.27] and use of adaptive post-filtering techniques [4.28] can 

produce a small improvement of the coded speech quality. More effective 

control over the noise frequency distribution can be achieved using a split­

band design [4.29,4.30,4.31], by independently adjusting the noise level in 

each of the frequency bands. 

The complexity of the MPE optimisation algorithms is not prohibitive, and 

increasingly complex implementations have been demonstrated [4.14,4.32,4.33] 

following the considerable advances in the technology of the general purpose 

Digital Signal Processing devices. 

A detailed examination of the pulse amplitude 

more complete description of the LPC sythesis 

estimation process and a 

filter model (which may 

include a Short Term Predictor and a Long Term predictor), will be presented 

in - this chapter. The effectiveness of the MPE noise shaping process in 

changing the spectral distribution of the added distortion and improving the 

perceptual quality of the coded speech, will also be examined. 

A number of MPE optimisation algorithms, drawn from the two categories of 

Multi-Stage and Block-Search optimisation techniques, will be presented. 

These algorithms can normally be incorporated in any MPE coding system, 

regardless of modifications to the basic MPE-LPC model. The performance of a 

MPE coder can improve substantially when changing from a simple to a complex 
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MPE optimisation algorithm, and the effect is more pronounced at higher 

transmission bit-rates. A choice can usually be made among a few candidate 

optimisation algorithms 

speech coding application 

that would suit the particular requirements of a 

and it is therefore important to know the merits 

of each available algorithm. 

Finally results on the algorithms' SNR performance and complexity, and a 

method to design PDF optimised quantizers for the amplitudes of the excita­

tion pulses, will be presented. 

4.2 Noise shaping in a MPE coder 

An analytical method to estimate the pulse amplitudes based on an additive 

noise model was described in Section 3.3. The noise covariance was assumed 

to be known in advance, but in practice there is very little knowledge of 

the underlying noise process. It is desirable though to enforce certain 

spectral properties on the distortion introduced by the coder, in order to 

reduce the perceptible distortion. The desirable noise spectral shape should 

ideally follow the spectral variation of the speech waveform and should 

allow for most of the noise energy to be concentrated within the speech 

formant frequency regions, where higher noise levels can be tolerated. 

Figure 4.2.1 shows the power spectra of the speech and the estimated noise 

(added distortionJ when a unit noise covariance matrix Ca is chosen for the 

MPE amplitude estimation process. These spectra correspond to a 64 ms voiced 

speech segment, and an iterative MPE optimisation algorithm is employed to 

bring the Signal to Distortion Ratio (SDRJ to the specified values of 12 dBs 

(Fig 4.2.1(aJJ and 24 dBs (Fig 4.2.1(bJJ. The resulting noise spectrum is 

certainly not flat and indicates that the MPE model favours the high power 

speech spectral regions with a considerably higher SDR than that of the low 

power regions. 

This effect is more obvious at high SORs and is caused by the inherent 

bias of the Linear Prediction filter estimation method, in modeling the high 

power speech spectral components more accurately than the low power 

components. As a consequence, when the order of the LPC filter is substan­

tially increased, a better spectral model of speech and a flatter noise 

spectrum result. 

The unfavourable distribution of the noise power can be corrected by 
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FIGURE 4.2.1 Power Spectra of Speech and Distortion (noise) introduced by 

the MPE coding process, when no noise shaping is employed. The duration of 

the time window is 64 ms, and the SNR is (a) 12 dBs and (h) 24 dBs. 
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setting the noise covariance matrix Ca to correspond to a desirable spectral 

shape, thus counteracting the uneven frequency distribution of the noise and 

reversing the tendency of the MPE optimisation process to model more 

accurately the high power speech spectral regions. This only allows limited 

control over the spectral distribution of the distortion introduced by the 

coder but can still produce a noticeable improvement in the quality of coded 

speech at high SDRs. 

A model of the desirable noise spectral shape, that has been used extensi­

vely is : 

A(z) 

A,,(z) 
(Eq 4.2.1) 

The LPC filter A(z) models the speech spectral envelope and the filter 

Aw(z) can be constant [4.34] or adaptive [4.35]. An adaptive filter will be 

considered here, of the form 

1 1 
A" (z) = A(z/~) = = , O~~~1 (Eq 4.2.2) 

1- L am~mz-m 1- L tmz-m 

10=1 m=1 

The desirable noise spectral shape is therefore related to the model 

1- L t mz - m 

,,-1( z ) 
m-=l 

= (Eq 4.2.3) 

1- L amz-m 

.. =1 

The poles of the ARMA filter ,,-l(z) coincide with the poles of the LPC 

filter A(z) and its zeros are along the same radial axes as its poles but 

shrunk by a factor ~. By varying the value of ~ between 0 and 1, the shape 

of the frequency response of ,,-l(z) changes from being identical to the 

frequency response of the LPC filter A(z) to being completely flat. The 

"desired" noise covariance matrix related to the frequency response of ,,-l(z) 

can be formulated as : 

(Eq 4.2.4) 

where Lw is the lower triangular convolution matrix which is formed using 

the impulse response of the filter ,,-l(zJ. 
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The pulse amplitude estimation process is affected by this choice of noise 

covariance, because the linear transformation defined in Eq 3.3.3 is changed 

to at;. If W is the lower triangular convolution matrix that corresponds to 

the filter Wiz) then 

I E'I 4.2.5) 

Since the scaling constant a does not affect the solution for the pulse 

amplitudes (Eq 3.3.7), the linear transformation is set equal to W. This 

transformation is equivalent to a filtering operation using the filter Wiz). 

The power attenuation characteristics of Wiz) are plotted in Figure 4.2.2 

for two different values of the constant~. The frequency response of the 

LPC filter Alz) is also shown for comparison. When ~=1 then Wlz)=1 and no 

noise shaping is applied. When ~=O then Wiz) becomes equal to the LPC 

inverse fll ter 

Wiz) = 1- L a"z-m 
111= 1 

and maximum noise shaping is applied. 

lEg 4.2.6) 

A different interpretation can now be given to Eq 3.3.3. The signal Sw 

corresponds to a filtered version of the speech waveform s, which suffered 

an increased attenuation of its high power frequency components by the noise 

shaping filter Wiz). Also, A.[glb is the output of the combined filters Alz) 

and Wiz) in response to an input of excitation pulses of amplitudes 6 1 ,6 2", 

.. ,6'1 and positions P1,P2, ... ,Pg (see Figure 4.4.l(a». 

If the noise shaping filter is chosen as in Eq 4.2.3 then the combined 

filter is reduced to Awlz), called Modified Synthesis Filter· (MSF) , and the 

MPE optimisation process is simplified. Further simplifications can be made 

by exploiting the properties of the MSF. The impulse response of the MSF is: 

lEg 4.2.7) 

By lowering the value of ~, the effective duration of the impulse response 

is increasingly restricted. If the minimum distance between the excitation 

pulses is kept greater than the impulse response duration, then simple non­

iterative algorithms for the definition of the MPE sequence can be derived 

[4.36,4.37]. Furthermore, by setting the value of ~ equal to zero, a very 
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FIGURE 4.2.2 Log-Power Attenuation characteristics of the LPC Synthesis 

Filter A(z), and the noise shaping filter WIz) which is derived from A(z). 

The constant ~ takes the values (a) 0.8 and (b) 0.4. 
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simple non-iterative MPE estimation process can be formulated [4.25,4.38, 

4.39,4.40], but the quality of the coded speech will be compromised. 

4.3 Short Term Linear Predictor Model 

The all pole LPC filter A(z) models the short-term spectral envelope of 

speech, placing particular emphasis on the high power frequency components. 

The filter is usually constrained to be minimum phase and is estimated using 

Short-Term Linear-Prediction Error-Minimisation methods. The filter coeffi­

cients should be updated frequently enough to allow adequate sampling of the 

dynamically changing frequency distribution of the speech waveform, 

especially during sound transitions. The interval over which the LPC filter 

is defined should include the MPE definition interval, but could be allowed 

to precede and overlap the MPE interval if the overall coder delay is to be 

kept to a minimum [4.41]. 

Speech can be modeled as an Autoregressive (AR) process 

S (j) = Lams (j -m) + e / i ) 
m=l 

;:0,1,2, ... 

where e p is an uncorrelated innovation source called forward prediction 

error. A backward prediction error can be similarly defined and the filter 

coefficients {am} can be estimated by minimising a function of the two 

errors (as when a lattice LPC predictor is defined). 

Better models have been proposed to remove the bias of the estimated coef­

ficients during voiced speech when large prediction errors occur periodic­

ally, thus violating the hypothesis of an uncorrelated innovation source 

[4.23,4.42]. The assumption is made that a Multipulse Excitation sequence 

has been predetermined and can be included in the AR model: 

S (j) = Lams (j -m) + 
m=l 

i=0,1,2, ... (£9 4.3.2) 

where Sri) is the Kronecker function. The speech quality improvement is very 

small [4.27] because the error which is minimised in Eq 4.3.2 is substanti­

ally different from the error minimised during the MPE optimisation. This 

can be verified by forming the one-sided z-transform equivalent of Eq 4.3.2: 



s(z) 
1 

= L am [S(Z)Z -m + 
ID=! 

or by rearranging terms : 

S(Z) [1-
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m-I 
L' U-m)z-i] + 
i=o 

9 _p 
+ L bkz k + Em(Z) 

k= 1 

(E9 4.3.3) 

(E9 4.3.4) 

The error minimised by the MPE optimisation algorithms is a function of 

the difference between the original and synthesized speech waveforms. From 

Eqs 3.2.5 and 3.3.3, the modeling error whose energy is minimised becomes: 

(E9 4.3.5) 

To calculate the synthesized waveform Sy(z), the difference equation: 

'yU) = L am'y(j-m) + 
m=! 

must be solved .. Working in the same way as for Eq 4.3.4, we obtain 

where 

(E9 4.3.6) 

(E9 4.3.7J 

(E9 4.3.8) 

is the transient response of the LPC synthesis filter and 'yl-,.), m=1,2, .. ,1 

are the last 1 synthesized speech samples of the previous frame. Assuming 

for the moment that : 

sy(-mJ = sf-m) ,m=l,2, ... ,1 1E9 4.3.9) 

and substituting Eqs 4.3.7 and 4.3.4 into Eq 4.3.5, the relationship between 

the two mode ling errors can be established : 

(E9 4 . 3 .1O) 

The power spectra of the two modeling errors are therefore quite diffe­

rent. The coefficients of the LPC filter could be estimated by minimising 

the energy of Ewlz) instead of Emlz), but that would involve an iterative 
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non-linear optimisation process which could be complex and might not 

guarantee the stability of the estimated filter. A better way to remove the 

effect of the error surge during voiced speech, is to include a second AR 

filter that models the fine structure of the speech frequency distribution 

(long-term predictor). 

4.4 Pulse Amplitude Optimisation (Flow Diagrams - Simplifications) 

The transient response of the LPC filter, defined by Eq 4.3.8, was not 

taken into acount when the amplitude estimation problem was examined in 

Section 3.3. To inlude this extra term, the additive noise model of Eq 3.2.5 

must be modified to 

where my is the transient response and A[9] b is the forced response of the 

LPC filter. The normal equations for the pulse amplitudes also change to 

(£9 4.4.2) 

where 

(£9 4.4.3) 

The minimum error energy for a given set of pulse positions becomes 

This alteration is reflected in the flow diagram of the MPE optimisation 

process. As shown in Fig 4.4.l(a), the subtraction of the LPC transient from 

the input speech samples is followed by a filtering through the noise 

shaping filter Wiz). The result is compared to the response of the Modified 

Synthesis filter (MSF) , when excited by the MPE sequence. The difference 

between the two waveforms forms the error £w(z) whose energy must be 

minimised. Note that the initial state of the MSF is set to zero. 

The MPE optimisation process can also be interpreted in another way by 

considering the relationship between the speech waveform and the residual 

Ep(z). The one sided z-transform equivalent of Eq 4.3.1 is 

(£9 4.4.5) 



- 71 -

(a) 
Speech Signal 

LPC Transient 
Subtraction 

I LPC Speech Analysis I 
Short Term Pred1ctor 

Noise Shapin1 Filter 

t1bk ,,-Pk 

A z) 
IHz)= .. 

AI,,) 

~ w(s-my ) 
Multipulse (Zero Initial State) A"f'llb 
Excitation Modified Synthesis Filter 
Generator A .. (z) .. -, 

b p b 2 ,···,b'l I Excitation Parameter L Error ell 

p p P2'··· ,Pq 
optimisation I 

U. 
Optim1sed 

Pulse Positions-Amplitudes 

Speech Signal (b) 

, 

1 I LPC Inverse I 
Filter LPC Speech Analysis I 

Short Term Pred1ctor 
Residual Ep(z) t1 b k" -Pk I Residual I 

Correction 

+ 
Ec(z) 

Multipulse (Zero Initial State) 
Excitation - Modified Synthesis Filter I-
Generator ... A

ttI
(,,) 

b p b 2,···,bq I Excitation Parameter I. Error e .. 

P p P2'· .. ,Pq 
Optimisation I 

.U. Opt1m1sed 
Pulse Positions-Amplitudes 

FIGURE 4.4.1 (a) and (b) Two equivalent diaqrams for the MPE codinq process 
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/-1 /-i 

//("') = A(",) [[[ai+mSI-m)]",-i 
i =0 m= 1 

Substitution of Eqs 4.4.5 and 4.3.7 into Eq 4.3.5 leads to 

where 

ElJllz) = AlJllz)Ee I",) - AlJllz) t.. bk",-Pk 

k=1 

IEq 4.4.6) 

I Eq 4.4.7) 

IEq 4.4.8) 

The error EIJII",) in Eq 4.4.7 is now formed in a different way. The two 

waveforms compared in the optimisation process, correspond to the response 

of the zero-initial-state MSF to the excitation inputs, the MPE and the new 

excitation waveform Eelz). This new waveform differs from the prediction 

error Epl"') in only the first / samples in each frame. This adjustment is 

made to account for the fact that the last / samples of the previous speech 

frame are not the same as the last synthesized samples of the same frame. 

This "corrected" residual will now be used in place of the original LPC 

residual. 

In Figure 4.4.l(b), the two excitation waveforms are directly compared 

before passing through the zero-initial-state MSF to form the error ElJllz). 

The idea of a "corrected" residual can be transfered to the amplitude esti­

mation equations. Using the matrix equivalent of Eq 4.4.5 (s = m + A ep) and 

by substituting into Eq 4.4.2, the normal equations for the pulse amplitudes 

become : 

Dfq) b I Eq 4.4.9) 

where 

IEq 4.4 .10) 

The elements of the '1x'l matrix Df'l) are 

n-max(Pk,Pm)-l 

Df'l)lk,m) = 'PIPk'Pm) = [ hlJlli)hlJlli+IPk-PmiJ, 1~k,m5'1 IE'I4.4.11) 
;=0 

When the minimum distance between the excitation pulses is kept greater 
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than the effective duration of the MSF impulse response, the matrix 0[9] 

becomes diagonal and the solution of the normal equations 4.4.2 or 4.4.10 is 

considerably simplified [4.36]. The reduced complexity of the amplitude 

estimation process allows the search algorithm for the optimum pulse 

positions, to consider a larger set of possible position combinations. 

An extreme simplification results when the constant ~ in the noise shaping 

filter Wiz) is set equal to zero. In this case the impulse response of Ag(z) 

is a unit impulse and the amplitudes, estimated using Eq 4.4.9, are 

1 k=l,2,···,9 (E9 4.4.12) 

This simple solution for the pulse amplitudes is accompanied by a simple 

solution for the pulse positions. The minimum error energy for a given set 

of pulse positions is : 

(E9 4.4.13) 

The optimum set of pulse positions can therefore be determined by locating 

the maxima of the "corrected" residual Ec(z) [4.40). As expected, results 

obtained from this algorithm are not as good as the results obtained from a 

full implementation of a MPE optimisation algorithm. 

Depending on the search strategy adopted by a MPE optimisation algorithm, 

the system of normal equations 4.4.2 may need to be solved for each of the 

pulse position combinations considered. To avoid the considerable amount of 

computation involved in calculating the matrix 0[9] for each set of pulse 

positions, a larger nxn matrix can be calculated only once: 

or (E9 4.4.14) 

D(ifl,if}) = CP(j ,n I o~j ,i5n-J 

and the elements of D[~] can be chosen from the matrix 0 as 

(E9 4.4.15) 

Computational savings result because the elements along each diagonal of 0 

can be recursively computed from its first row or column, using the formula: 

D(jfl,i+li = D(j,j) - h,,(n-iJhlJl(n-j) (E9 4.4.16) 



- 74 -

Provided there is sufficient storage available, the full matrix D can be 

calculated from its first row, by performing n(n-1)/2 multiplications and 

additions. 

To reduce the computational load and the storage requirements, the matrix D 

may be assumed to have a Toeplitz structure, in which case its elements are 

only a function of the distance between the pulse positions 

n-II-/l-1 
D(I+I,i+1J = 'Pall ,iJ = L h1/l(k)h1/l(k+ II-i I) ,o~1 ,i5,n-1 

k=o 

(£9 4.4.17) 

This is a similar approximation to the one done in LPC analysis when the 

prediction error summation limits are extended to infinity to form the auto­

correlation LPC estimation method. The approximation of Eq 4.4.17 will 

therefore be referred to as the autocorrelation approximation and will be 

used extensively to simplify a number of MPE optimisation algorithms. 

4.5 Long Term Linear Predictor Model 

A second all-pole filter can be combined with the LPC filter defined in 

Section 4.3, to form a composite AR model. This second filter models the 

"fine" spectral structure of the speech signal and is defined as 

1 
c (z) = g , d>o (£9 4.S.1J 

1- '\" -d- i Le jX 
j=o 

where d is an inteqer delay coefficient. The summation term of the denomina­

tor in Eq 4.5.1, forms a d-steps ahead prediction, hence the filter C(Z) 

will be referred to as the Long-Term Predictor (LTP). 

The use of a LTP has been adopted by a number of predictive coding schemes 

[4.2,4.43l, and results a greater efficiency in coding the excitation 

signal. In the case of the MPE coder, the use of a LTP induces periodicity 

in the synthesized speech waveform with less effort (i.e. smaller number of 

pulses), and can therefore achieve an overall reduction in the number of 

excitation pulses necessary to fulfil the quality requirements of a 

particular application [4.44l. The effect of the LTP in improving the 

quality of coded speech is epecially noticeable for high pitched voices. 

A change in the value of the delay coefficient d has a highly nonlinear 
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effect on the state of the LTP. That is why the LTP is usually placed before 

the LPC filter when forming a combined synthesis filter. For the same reason 

extra protection from transmission errors must be allowed for the LTP 

coefficients, to safeguard against the accumulation and propagation of 

errors that may be caused by the long duration of the LTP's impulse response 

[4.13,4.451. 

The value of the LTP delay coefficient is not an estimate of the pitch 

period, because the LTP is optimised to minimise a mode ling error and is not 

designed to estimate the speech fundamental frequency. The role of the LTP 

in a MPE coder is also different from i.ts role in other predictive coders. 

When the LTP coefficients are updated very frequently, the LTP cannot 

operate for a sufficiently long time with the same set of coefficients, and 

its behaviour is more tightly controlled by the MPE optimisation algorithm. 

Avoiding for the momemt, the problem of estimating the LTP coefficients, 

the effect of introducing the LTP in the MPE optimisation process can be 

studied as follows : 

The response of the LTP filter to the Multipulse Excitation can be recur­

sively calculated using the difference equation 

.r i) = 
I 
Le ;t U-d-;J + 
;=0 

The z-transform equivalent of Eq 4.5.2 is 

X(z) = t c; [X(Z)Z-d-; 

FO 

or by rearranging terms 

where 

d+ ; - J ] 
+ ?: t U-d-;Jz-i + 

1=0 

i=O,1,2, ... (£9 4.5.2) 

(£9 4.5.5) 

is the transient response of the LTP filter. If the output of the LTP filter 

is used as the input to the LPC filter in Eq 4.3.7, instead of the MPE 

input, then the response of the LPC filter becomes : 
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(Eq 4.5.6) 

substitution of Eq 4.5.6 into Eq 4.3.5 results 

(Eq 4.5.7) 

The modeling error E~(z) is formed in the same way as before, when the LTP 

filter was not present. The difference is that a new "combined" transient 

response is subtracted from the speech signal and the combined synthesis 

filter A~(z)C(z) replaces the MSF A~(z) in the amplitude estimation equati­

ons (Fig 4.5.1(a». Note that the search algorithms that optimise the pulse 

positions remain the same. 

The MPE optimisation process can be represented in three different ways, 

corresponding to the diagrams in Figures 4.5.1(a),(b) and (c). To derive the 

second approach (the first was defined by Eq 4.5.7), Eqs 4.4.5 and 4.4.8 can 

be used to transform Eq 4.5.7 into: 

(Eq 4.5.8) 

Eq 4.5.8 shows that the effect of the "combined" transient response can be 

taken into account by correcting the LPC residual for a second time, to 

remove the effect of the LTP transient. The LPC and LTP filters may then be 

assumed to start from a zero state (Fig 4.5.1(b». 

An AR model can be established in the same way that the Short-Term 

Predictor (STP) model was defined by Eq 4.3.1. The AR model for the Long 

Term Predictor is based on the residual Ep(z) and assumes a different 

innovation source Es(z), called second residual: 

g 

e p (;) = LCjep(j-d-iJ + e s (;) 
j=o 

;:0,1,2, ... (Eq 4.5.9) 

By transforming Eq 4.5.9 into the z-domain and combining it with Eq 4.4.5, 

a new model for the speech signal can be derived 

(Eq 4.5.10) 
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FIGURE 4.5.1 (a), (b) and (c) Three equivalent diagrams for the MPE coding 

process, when a Long Term Predictor model is employed. The matrix CC?] is a 

nx'l convolution matrix derived from the impulse response of the Long Term 

Predictor. 
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where 

(Eq 4.5.11) 

Eqs 4.5.6 and 4.5.10 can be substituted into Eq 4.3.5 to form the error 

(Eq 4.5.12) 

where 

[1- t c iZ-d-i] 
/=0 

(Eq 4.5.13) 

The "corrected" second residual, defined by Eq 4.5.13, is subtracted from 

the MPE sequence (Eq 4.5.12) and the result passes through the zero-initial­

state combined synthesis filter, to form the error signal (Fig 4.5.1(c». 

Two different models have been proposed [4.13,4.24] for the estimation of 

the LTP filter coefficients. The first minimises a prediction error and the 

second minimises the same modeling error that is minimised by the MPE opti­

misation algorithms : 

1) OBTAINING THE LTP PARAMETERS BY MINIMISING THE PREDICTION ERROR 

The LPC predictor model, defined by Eq 4.3.1, removes the short-term corre­

lation from the speech signal. A second predictor (Long-Term-Predictor) can 

be used to minimise any long-term correlation that is left over from the 

first modeling stage (Short-Term-Predictor). The coefficients of the LTP 

filter are estimated using Linear Prediction methods, similar to the covari­

ance and autocorrelation methods used in LPC analysis. The covariance method 

can be derived by rewriting Eq 4.5.9 as : 

(Eq 4.5.14) 

where e p and es are the "c-dimensional vectors that contain the samples of 

the first and second residual in the current frame of ne samples, c contains 

the LTP coefficients and : 



- 79 -

e p (-d) e (-d-iJ 
p 

e (-d-t) 
p 

ep(~d+iJ ep(~dJ e (-d-I+i) 
E/d] = P (Eq 4.5.15) 

e (-d+n -iJ p c e (-d+n -2) 
p c e (-d-I+n -0 p c 

The Least Squares estimate of the LTP coefficients is 

(Eq 4.5.16) 

and the minimum prediction error energy becomes : 

(Eq 4.5.17) 

To determine the optimum value of the delay coefficient d, the expression 

of Eq 4.5.17 must be evaluated for every permissible value of d (usually a 

range of integer values between 20 and 160) in order to find the global 

error minimum. 

The LTP filter defined by Eq 4.5.16 can become unstable and that might 

cause a deterioration in the quality of the coded speech due to the presence 

of annoying clicks and pops in the recovered speech. Simple testing 

procedures are available to detect the instability of the LTP filter and 

correct it without reducing the prediction gain of the LTP [4.46]. 

The coefficients of the STP and LTP can be estimated simultaneously in a 

single optimisation stage. An analytic process to achieve the optimisation 

is only possible when d~nc' The second non-zero sample of the LTP impulse 

response is then outside the current frame of ne samples and it can be 

safely assumed that C(z)=I. Substituting Eqs 4.4.6 and 4.5.11 into Eq 4.5.10 

the new combined model of speech is formed : 

I ne 

S(Z) = L [am [5 (j-m>z-i] + 
m'=l 1=0 

(Eq 4.5.18) 

Eq 4.5.18 does not include any prediction error samples ep(;J from the 

current analysis frame (o,n-i), and can be rewritten in a matrix form as 

(Eq 4.5.19) 

where es is the modeling error (second residual), a is the I-dimensional 
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vector that contains the coefficients of the STP, and the nxl matrix S is 

defined as : 

S = 

5 (-1J 

slo) 

5 (- 2) 

5 (-1J 

5 (n-2) 5 (n-3) 

s (-/ ) 

5(-/+1J 

5 (-/+n-1J 

(Eg 4.S.20) 

The coefficients of the STP and LTP can be jOintly optimised by minimising 

the energy of the modeling error in Eq 4.5.19. Both sets of coefficients are 

now dependent on the value of the parameter d, and their optimum values can 

be found (for a given value of d) using Least Squares methods. These optimum 

coefficients are 

[-~ -] = 
(Eg 4.S.21J 

When the filter coefficients are calculated using Eq 4.5.21, the stability 

of both the STP and LTP filters must be checked and "correction" procedures 

must be applied' when one of the filters becomes unstable. 

Equation 4.5.21 can only be used when the specified value of the delay 

parameter d does not necessitate the use of current prediction error samples 

ep(i) (d~nc)' This constraint can sometimes be lifted, and iterative 

minimisation techniques have been proposed [4.47], that jointly optimise the 

STP and LTP coefficients when the value of the delay coefficient is smaller 

than the frame size (d(n e ). 

The considerable complexity of the LTP estimation process can be reduced 

by employing the autocorrelation method to determine the filter coefficients 

and by using a simpler search method to determine the optimum value of the 

LTP delay coefficient d. The number of LTP coefficients {ci} is usually set 

between one and three (o~6~2) with best results obtained for a three-tap 

predictor (g=2). The optimum definition interval (ne) depends on the bit 

rate at which the MPE coder operates [4.14], and should in general be 

greater than 15 ms to allow the LTP to be effective in trackinq the 

periodicity of the speech waveform. 
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2) OPTIMISING THE LTP COEFFICIENTS BY MINIMISING THE SIGNAL DISTORTION 

The modeling error minimised by the MPE optimisation process can be expre­

ssed as a fuction of the LTP coefficients {Cj} and the pulse amplitudes {b k } 

by combining Eqs 4.5.7 and 4.5.5 to form: 

(E'I 4.5.22) 

Since the impulse response of the LTP filter is : 

C(z) = 1 + t cjz-d- i + [t c i z-d- i ]2 + ... 
)=0 )=0 

(E'I 4.5.23) 

the error Ew(z) is linearly dependent on the LTP coefficients {ci} only when 

d~n (that is when the second non-zero sample of the LTP impulse response 

lies outside the MPE frame). Under this restriction, the LTP coefficients 

and the pulse amplitudes can be jointly optimised by minimising the energy 

of the distortion ew' This distortion is defined as : 

(E'I 4 . 5 . 24 ) 

where 

re-d) d-d- tJ r (-d-t) 
r(-d+tJ r (-d) r (-d-t+ tJ 

XfdJ = (E'I 4.5.25) 

r (-d+n-iJ r (-d+n-z) r(-d-t+n-iJ 

The jointly (LS) optimised LTP coefficients and pulse amplitudes are 

[ 

XfdJT~W Cs-my) 1 
---------------
A,.f'lJTW Cs-my) 

(E'I 4.5.26) 

and the minimum distortion energy is 

(E'I 4.5.27) 
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To determine the optimum value of the LTP delay coefficient, the pulse 

amplitudes are initially assumed to be zero (since the MPE sequence has not 

been defined yet) and the expression of Eq 4.5.24 is evaluated for the 

optimum LTP coefficients {Cj} (Eq 4.5.23), when d is varied within a pre­

defined interval of integer values. 

The optimum value of the LTP delay coefficient remains fixed during the 

ensuing MPE optimisation process, but the LTP coefficients {Cj} can be 

reoptimised, this time jointly with pulse amplitudes. Eq 4.5.23 can easily 

be included in the search for the optimum pulse positions and can improve 

the performance of various MPE coding schemes without significantly increa­

sing their complexity. 

Alternatively, the LTP coefficients may remain constant during the MPE 

optimisation process. In this case, the contribution of the 

from the speech signal (Eq 4.5.7) before the optimisation 

and the pulse positions and amplitudes are estimated 

disregarding the presence of the LTP. 

LTP is removed 

process begins, 

by completely 

The complete .. algorithm of LTP estimation can be considerably simplified by 

exploiting the similarity between the matrix elements of Eq 4.5.23 for 

adjacent values of the delay coefficient d [4.41]. 

The restriction on the minimum value of the delay coefficient (d~n) can be 

eased by artificially reconstructing a version of the waveform Xix) for the 

current MPE frame using its past values, and then proceeding as before using 

Eqs 4.5.21 and 4.5.22 [4.48,4.49]. The same restriction can also be lifted 

by using nonlinear optimisation methods to determine the LTP coefficients. 

The energy of the modeling error (Eq 4.5.22) is then considered as a 

function of the LTP coefficients, and it is minimised using nonlinear 

programming technigues. 

The LTP filter performes better (in terms of the perceptual quality of the 

coded speech) when its coefficients are determined by minimising the energy 

of the distortion instead of the prediction error (mentioned as the previous 

method). Unfortunately, the distortion minimisation method poses a 

restriction on the minimum value of the delay coefficient (which should be 

larger than the size of the MPE frame), and this means that the size of the 

MPE frame cannot be increased without impeding the performance of the LTP 

filter. This requirement contrasts with the observed improved performance of 



- 83 -

most MPE optimisation algorithms, obtained when larger speech frames are 

used. A compromise is therefore sought which usually limits the duration of 

the MPE analysis frame between 5 ms and 10 ms. 

The frequent updating of the LTP filter parameters necessitates the use of 

efficient quantizers for the LTP coefficients. Vector quantizers can be 

designed based on Euclidian error measures or, for improved efficiency, on 

the minimisation of the average distortion introduced by the coder. 



- 84 -

4.6 Multi-Stage (MS) Optimisation Algorithms 

The Multi-Stage algorithms, mentioned in Chapter 3, begin by optimising 

the position of a single excitation pulse in the first stage, and then add 

more pulses, optimising their positions in separate stages. The number of 

pulses is steadily increased, until the required total is reached. 

The position of each pulse, once defined cannot be changed in the next 

optimisation stages. The pulse amplitudes though, can be redefined in later 

stages either by jointly optimising the amplitudes of a group of pulses, or 

by allowing additional pulses to be placed at locations already occupied by 

pulses defined in previous stages. When pulse coincidences are allowed, the 

pulses that occupy the same position are added together to form a single 

pulse. 

The pulse position optimisation at each stage is done by examining all the 

possible pulse locations within a speech frame, and choosing the location 

that results the minimum approximation error (Eq 3.4.2). The complexity of 

the MS algorithm is determined by the computational effort required to 

calculate approximation error. The complex MS algorithms are very efficient 

at high pulse rates (number of pulses per second), and can therefore improve 

noticeably the performance of a MPE coder operating at a high transmission 

bit rate. On the other hand, when ease of implementation and cost are a 

primary consideration, the choice may be restricted to simpler and less 

efficient algorithms. 

Five MS algorithms will be described, starting with the Simpler 

algorithms. The first three allow additional pulses to reinforce or weaken 

existing pulses, by permitting pulse coincidences, while the last two 

exclude this possibility. The autocorrelation approximation defined in 

Eq 4.4.17 can by employed to simplify all five methods. The performance of 

these algorithms, in terms of Signal to Noise Ratios <SNR), and their 

complexity, in terms of multiplications/additions, will be compared to the 

results obtained from Block Search algorithms. It will also be demonstrated 

how the use of the noise shaping filter Wiz), as defined in Eq 4.2.1, can 

substantially improve the efficiency of simple MS algorithms at high pulse 

rates, by reducing the dependency of the approximation error estimation on 

the relative pulse proximity. 

A general linear filter model will be assumed during the presentation of 
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the MPE optimisation algorithms, but the simplifications that result from 

the use of a single LPC synthesis filter will be pointed out. 

1) METHOD MSl 

This method is relatively easy to implement and can give results compara­

ble to those obtained from the more complicated MS methods, when the number 

of pulses per frame is small. Improvements of this method will be presented 

as methods MS2 and MS3. 

The excitation in the first stage of the algorithm is a single pulse which 

can be placed in any of the n sampling points within a MPE analysis frame. 

The error, as defined by Eqs 4.3.5 and 4.4.1, is a function of the pulse 

position and can be expressed as : 

(£9 4.6.1) 

where 

(£9 4.6.2) 

is the "target"signal which is compared to the output of the zero­

initial-state MSF, and: 

f[iJ = [o,o, ... ,h .. (1i,h .. (2), ... ,h .. (n-i-1i ] 

is the impulse response of the MSF A .. (z), shifted by 

to the normal equations 4.4.2 is simply 

o~i~n-l 

where 

o~i~n-l (£9 4.6.3) 

samples. The solution 

(£9 4.6.4) 

(£9 4.6.5) 

is the cross-correlation between the signal Yo and the shifted impulse res­

ponse of the MSF, and ~(i,i) is the auto-covariance matrix defined in 

Eq 4.4.11. The error energy can be found by combining Eqs 4.4.4 and 4.6.3 to 

form the approximation error function for the first pulse 

(£9 4.6.6) 

The expression of Eq 4.6.6 has to be calculated for each of the n possible 
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pulse positions in order to find the position where the minimum error 

occurs. Since the first term of the right hand side of Eq 4.6.6 is constant, 

the optimum pulse position must be that one which maximises the second term. 

Once the optimum position has been determined, the pulse amplitude is 

calculated using Eq 4.6.4. 

In the second stage, the position P1 and the amplitude b 1 of the first 

pulse are kept constant, and the error becomes a function of the position 

and amplitude of the second pulse 

0<:;1<:;"-1 (Eq 4.6.7J 

where 

(Eq 4.6.8) 

The optimum amplitude of the second pulse at position I can be found by 

minimising the error energy, assuming that the position and amplitude of the 

first pulse are fixed. This optimum amplitude is : 

0:>1:>"-1 (Eq 4.6.9) 

where 

(Eq 4.6.10) 

and the approximation error function for the second pulse is 

0:>1:>"-1 (E'I 4 .6 . 11 ) 

The optimum position of the second pulse is found by locating the minimum 

of the approximation error function defined in Eq 4.6.11, or equivalently, 

by maximising the second term of the right hand side of Eq 4.6.11. 

In a similar way, assuming that 'I pulses have already been defined and 

that their positions and amplitudes remain constant, the error can be 

expressed as a function of the position and amplitude of the '1+1 pulse: 

0<:;i:>"-1 (E'I 4.6.12) 

where 

(E'I 4 . 6 . 13 ) 
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The optimum amplitude of the ~+1 pulse is 

C ~ (j ) 

'1'( i , i ) 
(E~ 4.6.14) 

where 

, o~i~n-1 (E~ 4.6.15) 

and the approximation error function for the same pulse is 

0~i~n-1 (E~ 4.6.16) 

The iterative relationships of Hqs 4.6.13-4.6.16 form the basis of the MSl 

algorithm and are employed once in every optimisation stage. This does not 

necessarily imply that a new pulse is added at each stage, as it is possible 

to determine an optimum pulse position that is the same as the position of 

an existing pulse. When a pulse coincidence occurs, the amplitudes of the 

two pulses are added and the total number of pulses does not change. 

Pulse coincidences are more likely to happen when the number of pulses 

defined in each analysis frame is increased. As a consequence, the number of 

stages required to construct an excitation of q pulses is disproportionately 

inreased when ~ becomes large. 

A flow diagram of the complete algorithm is presented in Fig 4.6.1. The 

subscripts denoting the stage number have been dropped because the updated 

array values can replace the values calculated in the previous stage. An 

n-sample excitation sequence (t(i)} is defined and initially zeroed. The 

pulses defined in each stage are added to the excitation sequence, thus when 

two pulses coincide their amplitudes are added together. The auto-covariance 

matrix q>(i,;) can be precalculated and stored using the efficient procedure 

described in Section 4.4 or, if storage is limited, the required elements 

can be calculated in every stage. 

The cross-correlation values are stored in the array c = [c(0), ... ,c(n-1)] 

and are updated in every stage. As seen in Fig 4.6.1, there are two equiva­

lent ways of updating the cross-correlation array. In the first method, the 

scaled auto-covariance values are subtracted from the cross-correlation 

Cq_ 1 (i) (Hq 4.6.15). The second method first updates the signal component 
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FIGURE 4.6.1 The MPE Optimisation Method MS1. 
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Yq_1Ci) (Eq 4.6.13) and then computes its cross-correlation with the shifted 

impulse response of the MSF (Eq 4.6.15). Which of the two methods is more 

efficient computationally, depends on the coder parameters chosen for a 

particular application. 

It is interesting to note that the value of the cross-correlation cqCi) is 

zeroed at the position where the pulse is placed. For example, using 

Eqs 4.6.14 and 4.6.15, the value of the cross-correlation at the optimum 

position of the q pulse is : 

C q_ 1 CPq) 

'PCPq,Pq ) 
CEq 4.6.17! 

It is therefore certain that the q+l pulse will not be placed at the same 

position as the pulse defined in the previous stage. It cannot be guaranteed 

though that the optimum position of the q+l pulse will not be the same as 

the position of another previously defined pulse, because in general 

CEq 4.6.18) 

To eliminate all pulse coincidences the pulse amplitudes must be adjusted 

so that the corresponding cross-correlation values become zero : 

CEq4.fi.19) 

This can be done by solving the system of normal equations 4.4.2 to obtain 

the jointly optimised pulse amplitudes. This technique will be described as 

method MS4. 

The effect of increasing 

pulse coincidences can be 

the number of pulses 

measured by finding 

per frame on the number of 

how number of 

stages per frame changes when the required number 

the average 

of pulses per frame is 

increased. The results given below were taken from a long speech data 

training set of eight male and seven female speakers. The speech signal is 

low-passed to 3.4 kHz and sampled at 8 kHz. A MPE analysis frame of 100 

samples and a non-overlapping LPC analysis frame of 200 samples are used (at 

8 kHz sampling rate). The order of the single LPC filter is 12 and the 

constant ~ of the noise shaping filter WCz) is set equal to 0.9 : 
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Pulses pet Ftame 5 10 15 20 25 30 

Avetate Numbet of 
Slates pet Frame 5.0 10.3 16.5 24.1 ·33.4 44.8 

A disproportionate increase in the number of stages per frame can be 

observed at high pulse rates. The same effect is observed when the average 

number of stages required to bring the SNR in every frame to a preset level, 

is plotted over a wide range of SNRs (Fig 4.6.2(a)). The logarithm (to the 

base of 10) of the average number of stages is plotted in Fig 4.6.2(a) and 

the almost linear relationship indicates that the number of stages increases 

exponentially as the SNR level is increased. Consequently this is translated 

to an exponential increase in the computational complexity of the algorithm. 

Both the LPC analysis and MPE analysis frames in Fig 4.6.2(a) are of 128 

samples, and the constant ~ is set equal to one. In Figures 4.6.2(b),(c) and 

(d), the value of ~ is set to ~=0.9, ~=0.8 and ~=0.6 respectively. To 

provide a more meaningful comparison and to compress the large range of 

values, it is the logarithm of the ratio of two values that is plotted. The 

reference value is the value of the average number of stages when ~=l, and 

the values of the average number of stages when ~=0.9, g=O.8 and ~=0.6 are 

divided by the reference value and the logarithm (to the base of 10) of the 

ratio is plotted. 

It is evident that at high SNRs, the performance of the MSl algorithm can 

be dramatically improved by lowering the value of the constant~. That 

happens because by reducing the value of g, the effective duration of the 

impulse response of the Modified Synthesis Filter A .. (>:) is also reduced. The 

assumption that the pulse amplitudes once determined remain fixed, becomes 

very unrealistic when two pulses approach each other, because their 

interdependence is not properly taken into account (by jointly optimising 

their amplitudes). By reducing the duration of the MSF impulse response, 

their interdependence is minimised and the efficiency of the pulse position 

optimisation algorithm is improved. This improved efficiency is especially 

noticeable when the number of pulses defined in each frame is large (high 

SNR), because it is quite likely that during the search for the optimum 

pulse position, locations close to existing pulses will be examined. In the 

extreme case when ~=O, a closed form solution for the pulse positions exists 

(Eq 4.4.13). 
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FIGURE 4.6.2 Plots of the average number of stages 5~ required by method 

M51 to reach the level of 5NR given on the horizontal axis. 51 corresponds 

to ~=l, 50. 9 to ~=0.9, 50. 8 to ~=0.8 and 50. 6 to ~=0.6 
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The improved performance of the pulse position optimisation process is 

opposed by the reduction in SNR caused due to the fact that when the value 

of ~ is small, the error-measure minimised is not closely related to the 

actual distortion introduced by the coder. Therefore when the value of ~ is 

reduced below a certain level, the performance of the algorithm starts to 

deteriorate, instead of improving. This can be observed by comparing Figures 

4.6.2(a), (b) and (c). If the optimum value of the constant ~ for a certain 

SNR level, is the one that minimises the number of stages required to reach' 

that level, then it is clear that the optimum value of ~ decreases as the· 

SNR level (or equivalently the number of pulses) inreases. A small value of 

~ only becomes advantageous when a relatively high SNR level is required. 

Methods that jointly estimate the pulse amplitudes while optimising the 

pulse positions, do not usually benefit from the use of low ~ values and 

perform best when ~ is close to one. This will be demonstrated when method 

MS5 is examined. 

The autocorrelation approximation introduced in Section 4.4 can readily be 

used to simplify the MSl algorithm. The symmetric auto-covariance matrix 

~(i ,I) in Fig 4.6.1 can be replaced by the Toeplitz matrix ~a(i,i) defined 

in Eq 4.4.17. The optimum pulse position can then be determined at each 

stage by finding where the absolute maximum of the cross-correlation occurs 

(Eq 4.6.16), that is why this method has been described as the maximum 

cross-correlation MPE algorithm [4.50]. The n auto-covariance values have to 

be calculated only once at the start of the algorithm, and the 

cross-correlation array can be efficiently updated by subtracting the scaled 

auto-covariance values from the cross-correlation values calculated in the 

previous stage. This simplified method will be referred to as method MSla. 

2) ,EFFICIENT CALCULATION OF THE CROSS-CORRELATION AND AUTO-COVARIANCE 

The cross-correlation c between a given signal y and the shifted impulse 

response of the MSF can be performed efficiently by filtering the time 

reversed signal sequence through the filter Au(z). Since the convolution 

matrix ~ is symmetrical about its cross-diagonal (persymmetric), it can be 

represented as : 

(Eq 4,6.20) 
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where P is a unit matrix with ones along its cross-diagonal. The cross­

correlation array in Fig 4.6.1 can then be calculated as : 

c = A,! y = P [A,. (p y) ] (Eq 4.6 .21! 

which, starting from the inner 

the signal y, followed by a 

brackets, is equivalent to a time reversal of 

convolution with the MSF and a second time 

reversal. If the order of the filter Av(zJ is much smaller than the size of 

the MPE analysis frame, then the convolution operation (found in Eqs 4.6.5 

and 4.6.10) requires less computations than a direct calculation of the 

cross-correlation. 

Similar computational savings can be achieved in the calculation of the 

auto-covariance of the MSF impulse response. The signal used in the compu­

tation is now the MSF impulse response itself 

{'PU,oJ,'P(i,iJ, ... ,'P(j,n-1J JT = P [Av (p f{il)] o~i~n-l (Eq 4.6.22J 

Eq 4.6.22 can be used to calculate the first row of the matrix 'P(i ,jJ and 

the efficient recursive formula of Eq 4.4.16 can be used to derive the rest 

of the matrix elements. When the autocorrelation approximation is applied, 

the matrix 'Pa(i,jJ is Toeplitz and is therefore defined from its first row. 

3) METHODS MS2 AND MS3 

Both MS2 and MS3 methods are based on method MSl but try to avoid some of 

its shortcomings. The reason method MSl becomes inefficient at high pulse 

rates, is that when the excitation pulses approach each other their 

interaction is not accurately compensated for, and the approximation error 

measured is larger than it would be if the pulse amplitudes were jointly 

optimised. As a consequence, some of the pulses may need to be readjusted in 

later optimisation stages by bringing additional pulses to the same 

locations. 

To avoid the pulse coincidences, the pulses amplitudes may, at some stage 

during the MPE optimisation, be readjusted. This form of delayed amplitude 

correction allows the pulses derived during the first stages, to take into 

account the presence of pulses defined in later stages. 
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Various pulse correction schemes have been proposed that involve a "joint" 

or "repeated" amplitude reoptimisation at the end of each stage of the 

algorithm. These schemes reoptimise a small group of pulses [4.51,4.14] or 

all the excitation pulses [4.13,4.52]. A method that jointly reoptimises all 

the pulse amplitudes at the end of each stage, will be later presented as 

method MS4. 

A simpler approach has been adopted in methods MS2 and MS3. A repeated 

pulse amplitude reoptimisation can be applied in such a way as to maximise 

the reduction in the approximation error. To avoid solving a system of 

equations, a single pulse is identified which causes the maximum drop in the 

value of the approximation error, when its amplitude is corrected. The same 

process can be repeated a number of times to identify more pulses • Notice 

that the pulse amplitudes, as defined by this process, will eventually 

converge to the set of values that would have been obtained if all the 

pulses were jointly reoptimised by solving the system of normal equations in 

Eq 4.4.2. 

The sequential selection of the pulses to be reoptimised can be achieved 

using Eq 4.6.16, which provides the approximation error as a function of the 

9+1 pulse position, and takes into account that 9 pulses have already been 

defined. However, instead of searching over the whole range of possible 

pulse positions to find where the error minimum occurs, the search is now 

restricted to the positions already occupied by pulses. Clearly the pulse 

whose amplitude correction causes the maximum error reduction is : 

(£9 4.6.23) 

The corrected pulse amplitude is formed from its initial amplitude plus the 

amplitude of an additional pulse placed in the same position : 

(£9 4.6.24) 

where 

(£9 4.6.25) 
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The updated cross-correlation sequence is 

which is zero 

o~i~n-l (Eq 4.6.26) 

at Pk but not at Pq (where cq(i) is zero). Another pulse is 

applying Eq 4.6.23 to the updated cross-correlation sequence identified by 

{c 9(j)}' If 

correlation 

a series of adjustments is performed, the value of the cross­

will eventually become zero at every pulse location Pk' and the 

pulse amplitudes will converge towards a set of "optimum" values. This 

convergence is possible because the values of the autocovariance ~(i ,i) are 

decaying as the pulses move away from each other, and this causes the 

repeated corrections to become increasingly smaller in size. 

As mentioned earlier, the set of "optimum" pulse amplitudes obtained (at 

the limit) by repeating the pulse selection procedure many times, is the 

same as the set of amplitudes derived by solving the system of normal 

equations in Eq 4.4.2. This happens because the satisfaction of the 

conditions set by Eq 4.4.2 ensures the orthogonality of the error vector Yq 

to the subspac~ defined by the signal components f[Pm], and hence: 

m=l,Z,···,9 (Eq 4.6 .27J 

The advantage gained by using the repeated pulse reoptimisation method is 

that a direct solution of the system of normal equations is avoided and the 

performance/complexity of the algorithm can be varied by altering the number 

of pulse-amplitude corrections, i.e. the of times the expressions in 

equations 4.6.23-4.6.26 are evaluated. 

Method MS2 first defines all the 'I pulse positions using method MSI, and 

then applies Eqs 4.6.23-4.6.26 to reoptimise the pulse amplitudes. Since all 

the. pulse corrections are made after the last stage of the MSI algorithm, no 

more than 'I cross-correlation values need to be updated. Eq 4.6.26 therefore 

changes to : 

(Eq 4.6.28) 

and as a result, the computational complexity of the algorithm is greatly 

reduced. A reasonable compromise between low algorithm complexity and good 

performance can be achieved by setting the number of corrective iterations 

(application of Eqs 4.6.23-4.6.25 and Eq 4.6.28) equal to twice the number 
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of pulses per MPE analysis frame. In this case, the performance of the 

algorithm is comparable to that obtained when the amplitudes are reoptimised 

by solving the system of normal equations. However, the complexity of the 

amplitude reoptimisation stage of method MS2, increases proportionately to 

the square of the number of pulses per MPE frame, while the solution of the 

normal equations would require a number of operations proportional to the 

third power of the number of pulses. 

Method MS3 applies the pulse correction equations 4.6.23-4.6.26 after the 

position of a new pulse has been determined. As seen in Fig 4.6.3, where the 

flow diagram of method MS3 is presented, the pulse positions are optimised 

in exactly the same way as in method MSI. When a new pulse is located, Eqs 

4.6.23-4.6.26 are used to iteratively reoptimise the amplitudes of all the 

pulses that have been defined up to that stage. The number of corrective 

iterations n(m), is a function of the number of pulses m that have already 

been defined, and should in general increase as more pulses are added to the 

excitation during the HPE optimisation. Finally after the last optimisation 

stage, the cross-correlation can be updated as efficiently as in method MS2, 

since the positions of all 9 pulses have been determined. 

An exponential model is used to derive the required number of corrective 

iterations, applied when a new pulse is found. This model has been chosen in 

order to compensate for the exponentially increasing inefficiency of the 

amplitude estimation process at high pulse rates, which was observed when 

method MSl was examined. The number of iterations is given by 

m=1,2,···,9 (£9 4.6.29) 

where int~ .. ] gives the integer part of a real number, and p is a constant 

adjusted so that the total number of iterations is : 

9 L n (m) = 8 2 
111= 1 

(£9 4.6.30) 

The value of 8
1 

can be determined experimentally, by maximising the 

average segmental SNR (Seg-SNR) over a speech data training set, for a fixed 

value of 8
2

, Values for 8
1 

and 8
2 

were chosen to optimise the performance of 

the algorithm when a MPE frame of 100 samples is used. When a different 
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FIGURE 4.6.3 The MPE Optimisation Method MS3. 
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frame size is used, 82 must be scaled up and 81 must be scaled down by a 

factor equal to the ratio of the frame size to a frame of 100 samples. The 

values chosen for 81 and 82 (for a MPE frame of 100 samples and a sampling 

rate of 8 kHz), can be expressed as functions of the number of pulses per 

frame : 

(£9 4.6.31) 

and 

8 2 = int[ 6 (explO.16 9)-1) ] (E9 4 .6.32) 

The value chosen for 82 results a low computational complexity without 

compromising the performance of the alqorithm. The algorithm performance is 

close to the performance that would be achieved if a joint amplitude 

reoptimisation was performed at the end of each stage (method MS4) , by 

solving the system of normal equations. The overall complexity though is 

still relatively low because of the relatively smaller number of corrective 

iterations involved. For example, when 5,10,15 or 20 pulses are defined in 

each MPE frame, the number of iterations corresponding to each new 

excitation pulse is, according to Egs 4.6.29-4.6.32 : 

Pu / se Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Pu/sesIF.ame 
5 0 0 0 2 5 <-- CORRECTIVE ITERATIONS 

10 0 0 0 0 0 1 2 3 6 11 

15 0 0 0 0 0 0 1 1 2 3 5 7 9 13 19 

20 0 0 0 0 0 0 1 1 1 2 3 4 5 7 9 12 16 20 26 34 

In the initial stages, no amplitude reoptimisation is required because the 

excitation pulses are usually spaced far apart. Most of the corrective 

iterations are concentrated in the final stages of the 

pulse coincidences are more likely to happen and the 

algorithm, where 

pulse amplitude 

estimation process is most inefficient. The fact that a large number of 

corrective iterations is used in the final stage where the cross-correlation 

updating is very efficient (Eq 4.6.28), indicates that method MS3 is a 

relatively low-complexity high-performance MPE optimisation method. 

The use of the amplitude reoptimisation technique by method MS3, reduces 

the values of the cross-correlation at the pulse locations and as a result, 
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the number of pulse coincidences is reduced. Compared to the numbers given 

for method MSl, the average number of optimisation stages in each MPE frame 

is (for method MS3) 

Pulses per Frame 5 10 15 20 25 30 

Auera6e Number of 5.0 10.0 15.1 20.2 25.3 30.3 Stales per Frame 

These figures show a significant reduction in the number of pulse coinci­

dences which contributes to the improved performance of method MS3. 

Both MS2 and MS3 methods can be modified to take advantage of the auto­

correlation approximation (Eq 4.4.17), in the same way as method MSl was. 

The two modified methods will be referred to as methods MS2a and MS3a. 

4) GEOMETRICAL INTERPRETATION OF METHODS Ms2 AND MS3 

A geometrical visualisation of the repeated pulse adjustment performed by 

methods MS2 and MS3, is shown in Fig 4.6.4 for the case of a 3-dimensional 

vector space. The axes correspond to the vectors f[o],f[1] and f[z], derived 

from the impulse response of the MSF. The unit vector along each axis is : 

f[ i] 
u[il = 

4CP(j,i) 
;=0,1,2 (£9 4.6.33) 

and the magnitude of the projection of the signal· vector Yo=[ Yo(1),yo(Z), 

Yo(3) ] onto each axis is: 

y~ f[i] 

4cpc; ,iJ 
j=O,i,2 (£9 4.6.34) 

Finding the projection with the largest absolute magnitude is equivalent 

to . minimising the approximation error in Eq 4.6.6, with respect to the 

position of the first pulse. If the first pulse is chosen along the fro] 

axis, then the error signal Y1 is formed by subtracting the projection of Yo 

onto fro], from Yo : 

y~ fro] 

'P(o,o) 
fro] = Yo - b 1 fro] (£9 4.6.35) 

The projection of the new vector Y1 onto the axis fro] is now zero, and 
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this corresponds to the fact that the cross-correlation between the signals 

Yl and f[oJ is also zero. The second pulse is similarly chosen along f[lJ 

and the error signal is formed by subtracting the projection of Yl onto 

f[lJ, from Yl : 

yi f[l1 

'1'(1,11 
(Eq 4.6.35) 

The projection of Y2 onto axis f[lJ is zero, but its projection onto axis 

f[oJ has a magnitude of : 

y~ f[oJ 

4'1'(0,0 ) 

= 
yJ ['1'(0,1) 2 f[oJ - '1'(0,0)'1'(0,1) fUJ ] 

'1'(0,1)'1'(0,0)4'1'(0,0) 

(Eq 4.6.36) 

which cannot be zero because the two vectors f[oJ and f[lJ are not parallel. 

A correction can therefore be applied by subtracting this residual error 

component from Y2' to form a new error signal 

This causes the amplitude of the first pulse to be modified to 

b' = b + 1 1 

y~ f[oJ 

'1'(0,0) 

(£q 4.6.37) 

(£q 4.6.38) 

The process can be repeated by alternatively correcting the pulse ampli-

tudes b 1 and b 2 , forcing 

the axes f[ ° J and f[ il , 

the projection of the error signal yi 
to become increasingly smaller. The 

onto each of 

error signal 

will eventually converge to yo-p,Yo which is the error vector orthogonal to 

the subspace defined by f[oJ and f[lJ. The sum of the projections along each 

axis will converge to the optimum values : 

opt (m) = 
f[m-il T 

[ f. Y2i+m-l ] 
l.;:'O 

41= 1,2 (£q4.6.39) 
4'P(m-l,m-l) 

which correspond to the optimum amplitudes of the first two pulses. The 

values opt ( 1> and opt(2), are coordinates of the point p,Yo ' which is the 

onto the 2-dimensional subspace orthogonal projection of the 

defined by the vectors fro] and 

point 

f[1]. These two values correspond to the set 

of pulse amplitudes that could have been directly obtained by solving the 
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f[01 

f[U ----"-

y~f[1] 

J<p(t, 1) p---"' 

opt (2) 

FIGURE 4.6.4 A 3-dimensiona1 interpretation of methods MS2 and MS3. 
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system of normal equations (Eq 4.4.2). 

A generalization of these results into higher dimensions can be carried 

out in a straight forward manner. 

5) METHODS MS4 AND MS5 

These two Multi-Stage optimisation methods differ from the previous three; 

in that they solve the system of normal equations (Eq 4.4.2) in order to 

optimise the pulse amplitudes. Method MS4 defines the position and amplitude 

of a single pulse in each stage, and then reoptimises the amplitudes of all 

the pulses found up to that stage, by solving the system of normal 

equations. Method MS4 however, still suffers from the drawbacks of the 

previous optimisation methods, in assuming that the pulse amplitudes remain 

fixed during the search procedure used at each stage to define the optimum 

position of a new pulse. Method MS5 lifts this constraint, by jointly 

optimising the amplitudes of all the existing pulses, during the search 

procedure which defines the optimum position of each new pulse. 

Computationally efficient implementations of these two methods have been 

presented, based on the Cholesky matrix factorisation algorithm [4.52,4.53]. 

A different approach will be followed here, which derives simplified 

solutions for both algorithms, using the Gram-Schmidt orthogonalization 

process. It will be shown that method MS5 is equivalent to a MPE 

optimisation method that decomposes the speech Signal into a set of 

orthogonal components corresponding to the excitation pulses [4.13,4.33]. 

The Gram-Schmidt procedure has been applied to linear data fitting 

problems and works by constructing an orthonormal set of basis vectors, 

which span the same subspace as a given set of input vectors. In the case of 

a MPE coder, the input vectors are derived from the impulse response of the 

Modified Synthesis Filter, and form the columns of the nX9 convolution 

matrix Aw[91. This matrix can be factorised as the product of two matrices: 

Aw~l=UV (£9 4.6.40) 

The orthonormal set of basis vectors is formed from the columns of the nX9 

matrix U, and V is a 9x9 upper triangular matrix. This factorisation is 

always possible, as long as Aw[91 has a full rank, and it can be done in 

various ways (Householder transformations, Modified Gram-Schmidt, etc.). The 
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Gram-Schmidt algorithm will be used here because it results a simple MPE 

optimisation algorithm. 

Once the factorisation is done, the normal equations (Eq 4.4.2) are trans­

formed to the equivalent set of equations : 

(£9 4.6.41! 

As OTO=l, Eq 4.6.41 is equivalent to : 

(£9 4.6.4la) 

If the right hand side of Eq 4.6.4la, which is composed of the coordinates 

of the input speech vector Ya with respect to the orthonormal set of basis 

vectors, is computed, then the optimum pulse amplitudes can be found in a 

simple way by using backward substitution. It will later become clear that 

the backward substitution need only be performed once, when all the pulse 

positions have been optimised. 

The algorithms used to implement methods MS4 and MS5 are quite similar, 

and will be developed by considering only the first three stages of the 

multi-stage MPE optimisation process. The general case of the two algorithms 

(for any number of stages) is presented in Fig 4.6.5. 

(Slate I) 

The first basis vector u1 should be in the same direction as one of the 

f[i) vectors and can therefore be considered as a function of the position 

of the first pulse : 

f[l) 
U1[i) = -------­

IIf[j )11 
a~i~n-l (£9 4.6.42) 

The minimum-error vector at position i is orthogonal to £[1), and is equal 

to : 

a~i~n-l (£9 4.6.43) 

The energy of the minimum-error component at position i is 

a~i~n-l (£9 4.6.44) 



- 105 -

where 

( . ) T f[ " ] ca' = Ya a~j~n-1 (E9 4.6.45) 

is the initial cross-correlation sequence and ~(j ,i) is the auto-covariance 

defined in Eq 4.4.11. The optimum position of the first pulse is the one 

that minimises the error energy, or equivalently 

(E9 4.6.46) 

A few additional variables can now be introduced that will be used in the 

next stages : 

u1 = u 1 [P1] 

u a (j) = ~(/; / ) a~/~n-1 

Combining Eqs 4.6.42, 4.6.48 and 4.6.49, the relationship 

(E9 4.6.471 

(E9 4.6.48) 

(E9 4 . 6 . 49 ) 

(E9 4.6.50) 

(E9 4 .6 . 51J 

is established, which is the first equation of the matrix factorisation, and 

includes the first basis vector u1 and the upper left element v1 of matrix V 

The value 11 is the first coordinate of the slgnal vector Yo with respect to 

the first coordinate axis, and the system of equations in Eq 4.6.41a for the 

first pulse amplitude b
1 

becomes: 

(E9 4.6 .51a) 

(Slate 2) 

Following the Gram-Schmidt procedure, the second basis vector of unit 

magnitude is defined as a function of the position of the second pulse 

(Eq 4.6.52) 
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Two new sequences can be defined in order to simplify the equations : 

and 

= UT ff j ] = 
1 

The second basis vector can then be expressed as : 

f[j) - m
1
(j) u

1 

J"l(j) 

(£9 4.6.53) 

(£9 4.6.54) 

(£9 4.6.55) 

Method MS4 forms the error assuming the amplitude of the first pulse to be 

fixed to the value found in the first stage. This value does not have to be 

calculated explicitly because the error after the first stage can be 

obtained from Eq 4.6.43. The new error vector is a function of the position 

and amplitude of the second pulse 

(£9 4 . 6 . 56 ) 

The energy of the new error can be minimised with respect to the amplitude 

of the second pulse, if the new error is made orthogonal to the error vector 

obtained from the first stage. The minimum error energy will then be : 

(£9 4.6 .57J 

where 

(£9 4.6.58) 

The optimum position of the second pulse for method MS4 is therefore 

(£9 4 .6 . 59 ) 

As in methods MSI-MS3, the second pulse cannot be placed at the same 

location as the first pulse, because the value of the new cross-correlation 

sequence {c 1 (/)} is zero at Pl. After the optimisation of the position of 

the second pulse, the amplitudes of both pulses are reoptimised. How this is 

done will be explained at the end of step 2. Note that up to now, the pulse 
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amplitudes have not been explicitly calculated. 

Method MS5 minimises the error with respect to the amplitudes of both 

pulses, while optimising the position of the second pulse. The new error 

vector is orthogonal to the subs pace defined by the two input vectors f[P1J 

and f[IJ (or u1 and u2[IJ), and can be expressed as a function of the 

position of the second pulse : 

, (£9 4.6.601 

The minimum energy of the new error signal is 

(Eq 4.6.61) 

The optimum position of the second pulse, according to method MS5, is : 

P = mar·1 _=-1 __ _ 
[

e (j12] 
2 I o'p 1 v 1 ( j 1 

(£9 4 .6. 6 21 

The similarity of Eqs 4.6.59 and 4.6.62 indicates that the two optimisa­

tion methods MS4 and MS5, are quite close in complexity. Method MS5 performs 

better when it can take advantage of the optimality of the amplitude 

estimation process that it uses, and as it will be shown, that happens when 

the number of pulses in each frame is increased and their interaction 

becomes substantial. 

As in stage 1, a few additional variables to be used in the next stages 

are de fined : 

u 2 = u 2 [P2 J (£9 4.6.631 

'''2 = 4v 1 (P2 1 (£9 4.6.641 

I 2 = yT u 2 = 
e 1 (P 2 1 

(£9 4.6.651 
0 '"2 

From Eqs 4.6.52-4.6.54 and 4.6.64, the second relationship of the matrix 

factorisation algorithm is derived : 

(£94.6.661 

If at this stage the pulse amplitudes are needed, their optimum values can 
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be calculated by solving the system of equations : 

(£'1 4.6.67J 

Backward substitution can be used to derive first the value of b 2 and then 

the value of b 1• 

(State 3) 

The basis vector attached to the third pulse is 

where 

and 

f[iJ - "1!i) u 1 - "2!i) u 2 

Jv 2 !i) 

~(P2,1) - m1 (P2) m1 (1) 

"2 

v 2 (I) = ~(I, /) - m 1 (I ) 2 - m 2 (/ ) 2 = v 1 (/) - ., 2 (I ) 2 

(£'1 4.6.68) 

(£'1 4.6.69) 

o~l~n-l (£'1 4.6.70) 

Method MS4 assumes that the pulse amplitudes are reoptimised after the 

second stage, and defines the error as a function of the position and 

amplitude of the third pulse : 

o~l~n-l (£'1 4.6.71) 

The new error vector must be orthogonal to the error signal left over from 

the second stage. The minimum error energy therefore occurs at position 

P = mar -1 _-,,2 __ _ 
[

c !i)2] 

3 o~/~n-l ~!i,j) 
(£'1 4.6.72) 

where 

o~/~n-1 (£'1 4.6.73) 

It is interesting to note that the values of the new cross-correlation 

sequence (c 2 (/)} are now zero at the locations of both previous pulses : 

C 2(PI) = 0 i = 1, 2 (£'1 4.6.74) 

This sets this method apart from the previous three optimisation methods 
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examined, where the cross-correlation was not quaranteed to have a zero 

value at each pulse location and pulse coincidences could occur. The condi­

tion of Eq 4.6.74 makes certain that the number of optimisation stages is 

the same as the number of excitation pulses defined in each frame. 

Method MS5 similarly defines the optimum position of the third pulse as: 

(£9 4.6.75) 

The generalisation of the steps of both algorithms is shown in Fig 4.6.5, 

together with the final backward substitution, required to find the pulse 

amplitudes. The matrix factorisation when completed, results the matrices : 

"1 

[ ] 0 

A./9] = QV = U il U 2 I ••• I U9' 
0 

0 

"l(PZ) 

"2 

0 

0 

" 1 (P 3 ) 

"Z(p 3 ) 

"3 

0 

"1 (p
9

) 

mZ (p9) 

m3 .(p9) 

(£9 4 .6.76) 

The basis vectors are not required by the algorithms but the upper 

triangular matrix V can be substituted in Eq 4.6.41 to find the optimum 

pulse amplitudes after all the pulse positions have been determined. The 

right hand side of Eq 4.6.41 contains the 9 coordinates /1,l z, ... ,1
9 

of the 

signal vector Yo' with respect to the orthonormal set of basis vectors u i ' 

u Z"" ,u
9

' The pulse amplitudes are calculated by solving the system of 

equations 4.6.41, using the backward substitution formula as shown in Figure 

4.6.5 

Method MS5 ensures that the error vector associated to each pulse, remains 

orthogonal to the subs pace defined by all previous pulses, during the pulse 

position optimisation. It is therefore equivalent to the orthogonalising MPE 

optimisation method presented in [4.13] and [4.33], but considerably 

simpler. 

Methods MS4 and MS5 require far fewer stages than methods MSl-3 to reach a 

given level of SNR in every speech frame. The top diagrams of Figs 4.6.6 and 

4.6.7 show how the average number of stages varies for each method, when the 

required level of SNR for each frame is increased (no noise shaping is 
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included). Compared to Fig 4.6.2(a) of method MS1, the relationship is now 

linear instead of exponential. 

The diagrams (b), (c) and (d) of Figures 4.6.6 and 4.6.7, show the relative 

variation in the average number of stages, with reference to the values of 

diagram (a), when the value of the noise shaping filter constant ~ is 

lowered (increasing the effect of the noise shaping process). It is clear 

that method MS4 benefits from a lower value of ~, especially at high SNRs 

(large number of pulses), because the interaction between the pulses is 

reduced when the value of ~ is lowered. The same effect is not observed when 

method MS5 is used, because the pulse interaction is taken into account 

during the pulse position optimisation. 

Method MS5 gives the best results over most of the SNR range, when ~ is 

close to one. A comparison of Figures 4.6.6 and 4.6.7 reveals that when ~ 

becomes smaller than one, the required number of stages for a given SNR 

value tends to increase when method MS5 is used, but the opposite effect is 

observed when method MS4 is used. If the required SNR level is above 10 dBs, 

the efficiency of method MS4 is increased when a value of ~ between 0.6 and 

0.9 is used. This suggests that the performance of method MS5 approaches 

that of MS4, when the value of ~ is reduced. In order to maximise the 

efficiency of method MS5 and contrast its performance with that of the other 

optimisation methods (which use a lower value of ~ to their advantage), the 

value of ~ is kept equal to one whenever method MS5 is used. 

Both MS4 and MS5 methods can be modified to take advantage of the auto­

correlation approximation (Eq 4.4.17). The symmetric auto-covariance matrix 

~(i ,i) can be replaced by the Toeplitz matrix ~a(i ,i) which is easier to 

calculate and requires less storage than ~(i ,I). The same approximation has 

been used in methods MSla-MS3a. The two modified methods will be referred to 

as methods MS4a and MS5a. 
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FIGURE 4.6.6 Plots of the average number of stages 5~ required by method 

M54 to reach the level of 5NR given on the horizontal axis. 51 corresponds 

to ~=l, 5 0 . 9 to ~=0.9, 5 0 . 8 to ~=0.8 and 50 . 6 to ~=0.6 
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2.7 Block Search (BS) Optimisation Alqorithms 

Block Search optimisation methods start with an estimate of all the ~ 

pulse positions and then iteratively improve the accuracy of this estimate. 

To define the positions of ~ pulses, the algorithm constructs a search route 

by finding a sequence of q-dimensional position vectors [Pl,P2' ... ,PqJ which 

progressively minimise the approximation error introduced by the MPE coder. 

Each vector in this sequence is defined by examining a number of different 

pulse arrangements in every MPE frame and monitoring the corresponding 

changes of the approximation error. The pulse arrangement which results the 

minimum approximation error is selected. 

The pulse arrangements are generated using simple rules and are variations 

of a single pattern of pulse positions (source pattern). The source pattern 

is periodically updated (replaced by the set of pulse positions that has 

produced the minimum approximation error) and forms a sequence of position 

vectors associated with a monotonically decreasing approximation error. 

The repeated optimisation causes unpredictable changes to the pulse 

locations, so that the final set of pulse positions may be quite different 

from the initial estimate of the positions. In that aspect, the outcome of a 

BS optimisation method is less constrained than that obtained from a MS 

method, which does not permit pulses defined in the first optimisation 

stages to be relocated in later stages. 

The approximation error is calculated by fully taking into account the 

pulse interaction, thus a joint amplitude reoptimisation is implicitly 

performed. This increases the complexity of the BS algorithms but also 

ensures that good optimisation results are obtained. 

The pulse arrangements are generated from the source pattern by choosing a 

single pulse and altering its position within a set of allowed pulse 

locations. The size of the set determines the complexity of the BS method, 

since a large set requires a large number of pulse arrangements to be 

examined. The pulses chosen to be relocated are selected sequentially and 

may be chosen more than once. 

The initial estimate of the pulse positions does not have to be very 

accurate, therefore a simple method can be used to find the pulse positions. 

The more complex the BS optimisation algorithm is, the less it relies on the 

accuracy of the initial position estimate. The performance of simple BS 
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schemes though can be adversely affected when the initial set of pulse 

positions is grossly inaccurate. 

Two BS algorithms will be examined. The first one considers a large set of 

allowed pulse locations and is therefore the most complex. The second method 

limits the number of alternative pulse locations by only considering 

positions in the vicinity of existing pulses. As for the MS algorithms, both 

BS algorithms will be described assuming a general linear synthesis filter. 

1) METHOD BSl 

Given an initial set of excitation pulses at positions Pl'PZ" .. ,Pg , the 

BSl algorithm optimises the position of each pulse individually, assuming 

the rest of the pulses to be at fixed locations. The pulses are selected in 

a cyclic order so that the pulse at position PI is optimised first, then the 

pulse at Pz and so on. The first iteration is completed when the optimum 

position Pq has been determined, and the next iteration starts by optimising 

Pi again. The number of iterations ", is fixed and is usually quite small. 

The optimum . position of each pulse is found by calculating the approxi­

mation error for every possible location within the MPE frame. The pulse is 

then placed at the location that resulted the minimum error, and the process 

continues by optimising the position of the next pulse. The approximation 

error is evaluated using a joint amplitude estimation process, which 

effectively compensates for the interaction between the pulses. 

The Gram-Schmidt orthogonalisation procedure is used to solve the system 

of normal equations (Eq 4.4.2). The order with which the pulses are 

considered is important because a change in the pulse order results a 

different set of orthogonal axes. By carefully rearranging the order of the 

pulses, it is possible to avoid the complete reconstruction of the set of 

orthogonal axes for every pulse position optimised, thus reducing the 

complexity of the BSl algorithm. 

Consider the first step where the pulse at position Pi is optimised. An 

orthogonal set of basis vectors is constructed from the vectors f[pj] 

(shifted versions of the MSF impulse response) corresponding to the fixed 

positions PZ'" .,Pq . The last axis corresponding 

should be orthogonal to the (q-l) dimensional 

to the variable position Pi 

subs pace defined by the 

remaining pulses. To achieve that, the same recursive equations that were 
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used in method MS5 can be applied, with the only difference that the pulse 

positions P2' ... ,Pq are now known in advance. 

In order to simplify the formulation of the equations, the pulses are 

resuffled by interchanging the values of P1 and Pq' The pulse whose position 

is optimised is now last and the recursive orthogonalisation equations are : 

(Eq 4.7.1) 

(Eq4.7.2) 

(Eq 4.7 .3) 

(Eq 4.7.4) 

The index j varies from 1 up to q-1 and the initial arrays co(il and vo(l) 

take the values : 

(Eq 4.7 .5) 

and 

(Eq 4.7.6) 

The approximation error can be expressed as a function of the position of 

the last pulse as : 

q-1 
T 

= Yo Yo - L 
i = 1 

t?-
I 

C
q

_
1
(j)2 

v
q

_
1
(j) 

The optimum position of the last pulse is therefore 

(Eq 4.7.7J 

(Eq 4.7.8) 

The same process can be repeated for the second pulse, by interchanging 

the values of P2 and Pq . The second pulse is now last and its position can 

be optimised in the same way as for the first pulse. 
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Notice that since PI remains unchanged when P2 is optimised, the values of 

"I' I l' ID I (j), cl (j) and" I (j) do not have to be recalculated and can be 

obtained from the previous optimisation step. In the same way, when the 

values of p] and Pq are interchanged, the values of PI and P2 remain 

unchanged and the recursive equations 4.7.1-4.7.4 need only be applied for 

The flow diagram of method BSI in Fig 4.7.1 shows the double optimisation 

loop for each iteration and each pulse. The subscript j has been dropped 

from the arrays Cj(i) and "/(i) because they can be replaced by their 

updated values. The intermediate values of cri) and "(i) that can be used to 

initialise the recursive updating when the next pulse position is optimised, 

are stored in the arrays cs(i) and "sri). An interchange variable I, points 

to the position variable PI whose value is interchanged with the value of Pq 

To see the effect of the pulse resuffling, a 3-pulse excitation can be 

arranged with initial positions Pl=IO, P2=20 and p]=30. The order with which 

the pulses enter the orthogonalisation procedure in this case is : 

I ITERATIONS --0 k = I I 11 
k = 2 1 1 

k2 1 PI P2 p] P],opl k 2 I PI P2 p] p], ° pi 

1 1 30 20 10 11 1 2 21 31 11 12 

2 2 30 11 20 21 2 1 12 31 21 22 

3 1 21 11 30 31 3 2 12 22 31 32 

It is clear from this example that all the pulses are sequentially 

optimised in every iteration and with the same order. The order of the first 

(q-I) pulses changes cotinuously but this does not affect the solution for 

the. last pulse, because the orthogonal set of basis vectors is rebuilt every 

time, starting from the pulse whose order has changed. 

When the last iteration has finished, the elements of the upper triangular 

matrix factor V (Eq 4.6.76) and the coordinates 1 1 ,/ 2/ ... ,1<1 of the signal 

vector Yo are known, and can be substituted in Eq 4.6.41 to calculate the 

pulse amplitudes, using backward substitution as shown in Figure 4.6.5. 

The complexity of the BSI algorithm is relatively high but its performance 

approaches that obtained from the highly complex Successive-Elimination and 
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(continued _ .. ) 
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I Method BSI 

1 
t----<lJl EXIT I BACKWARD SUBSTITUTION 

Solu/ion for Ihe Op/imum Pulse Amplitudes 

J APPLICATION 

I 1-11 OF RECURSIVE 
j = UPDATE EQUATIONS 

I , 
l j = jf 1 J 

1 
C rp j) 
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oS;iS;n-l , i-tPl' P2"" ,Pq-l 

1 
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FIGURE 4.7.1 Flow diagram of the MPE Optimisation Method BSI. 
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Multivariate-Optimisation methods discussed in the previous chapter. 

The outcome of the optimisation in method BSI is not heavily dependent on 

the accuracy of the initial position estimate. This can be confirmed by 

comparing the SNR obtained when the initial estimate is provided by method 

MSla and when the pulses are initially arranged in a regular grid formation 

(equally spaced) covering the entire MPE frame. The figures given below show 

the variation of the average Segmental-SNR as the pulse rate increases. 

These results were taken using a speech data training set of eight male and 

seven female speakers. The speech signal was low-passed to 3.4 kHz and 

sampled at 8 kHz. A MPE frame of 100 samples and a non-overlapping LPC frame 

of 200 samples were used (at 8 kHz sampling rate). The order of the AR-LPC 

filter, the number of iterations"r and the noise shaping filter constant ~ 

were set equal to 12, 1 and 1 respectjvely. 

Pulses/sec ~ 400 BOO 1200 1600 2000 2400 

INITIAL ESTInATE SNR (dBs) 

ne/hod nSla 10.2 15.2 IB.B 21.4 23.7 26.0 

Retular Grid 9.B 14.9 IB.5 21.2 23.5 25.9 

The differences observed in the SNR are small, but since the complexity of 

method MSla is also very small compared to that of BSI, method MSla will be 

used in the future to provide the initial position estimate. The noise 

shaping filter constant ~ will also be set equal to 1 because, as for method 

MS5, the performance of the algorithm in terms of the attainable SNR deteri­

orates as the value of ~ is reduced below 1. 

Method BSla is formed when the Toeplitz matrix ~a(j ,ii is used instead of 

~(i,Ji in the BSI algorithm (see Eq 4.4.17). 

2) METHOD BS2 

The performance of the BS2 algorithm is more dependent on the accuracy of 

the initial position estimate since it allows only a restricted pulse 

movement within each MPE frame. The pulses are selected in the same way as 

in method BSI, but the search for the optimum pulse position that minimises 

the approximation error is done in a small interval around the established 

position of each pulse. 

It has been found experimentally that when method MSla is used to provide 
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the initial position estimate, the pulses rarely need to be moved further 

than two samples away from their initial positions, in order to reach their 

locally optimum position. Method BS2 therefore adopts a one-dimensional 

steepest descent approach, which sequentially optimises each of the position 

variables PI,P2, ... ,P9' The steepest descent algorithm guides the approxima­

tion error to a local minimum by considering a limited number of pulse 

arrangements. 

Assuming that an interval of 5 samples is sufficient in order to find the 

optimum position of each pulse, a simple minimisation procedure can be 

followed to locate the error minimum. The direction of decreasing error is 

first established by moving the pulse one position to the right (Fig 4.7.2). 

If the approximation error is reduced then one further position to the right 

is examined and the minimisation process ends. If the error increases then 

the pulse is moved one position to the left of its original location. If the 

error is still larger than it was in the original position then there is no 

need to continue the search because the local minimum occurs where the pulse 

was originally placed. Otherwise another position to the left is examined 

before the one:dimensional search stops, to be repeated again for the next 

pulse. The whole process is repeated until all the pulse positions have been 

optimised, in which case the first iteration is completed. In general, the 

algorithm allows for ", iterations to be performed. 

A joint amplitude estimation is implicitly performed, but the approxi­

mation error is calculated differently from method BSI, resulting a lower 

algorithmic complexity. The error eguations will be formed assuming that the 

position P
9 

of the last pulse is being optimised. The normal equations are: 

D b = A",[qJ T Y (Eq 4.7.9) 

where 

and 

(Eq 4.7./1) 

These equations can be rewritten in a composite matrix form to isolate the 

contribution of the last pulse at position i : 
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(E9 4.7. 12) 

where Aw[9-1] is the nX(9-1) convolution matrix 

(E9 4.7. 13) 

Eq 4.7.12 can be rewritten in a more compact form as 

[
xi x[il ] -------:--------

IfiJ T : <P(;,i) , 
(Eq 4.7.14) 

where cri) is the ith element of the vector 

(Eq 4.7.15) 

If the iverse of the (q-1)X(q-1) minor matrix X is known, then the inverse 

of matrix D can be efficiently calculated. Assuming that D is strongly non­

singular [4.54,4.55], its inverse can be expressed as 

X-1 x[ il x[ il T X-1 - X-1 x[ il 
X-1 +----------

<P(j ,iJ -x[il T X-1 x[il <P(i ,i) -x[il T X-1 x[il 
(E9 4 .7 . 16 ) 

I 

or in a more compact form 

By combining Eqs 4.7.14 and 4.7.16, the solution of the system of normal 

equations is found to be : 

x[ i ] T x-1 d - c (i ) 

(

X-
1

X[i]] 

-1 
(Eg 4.7.18) 

or equivalently 
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[ 
bS

] ( . T -i . ) [u[ il ] b = -~-- + x[d X d - C(1l -~(i)- (E'I 4 . 7 . 19 ) 

where 

(E'I 4.7.19a) 

is the solution of the minor system of normal equations that only includes 

the first ('I-i) pulses. The approximation error can be expressed as a 

function of the position of the last pulse as 

E (i) b T [ __ ~ ___ ] 
c (j ) 

(E'I 4.7.20) 

By substituting Eq 4.7.18 into Eq 4.7.20, the error expression becomes 

[ x[il T X·i d _ c (j) ] 2 

d -
q>(j , i) - x[ i ] T X-i x[ il 

or equivalently (see vector definitions in Eq 4.7.17) 

di! = y~ Yo 

The locally optimum position of the last pulse is therefore 

mal -1 [ [ x[il T X-i d - c (j) r 
P'I = 

{local! q>(j,i! - xCi JT X-i x[iJ 1 

(E'I4.7.20a) 

(E'I4.7.21! 

(E'I 4.7.22) 

Eq 4.7.22 indicates that if the inverse of the minor matrix X is known, 

the" approximation error can be calculated for each new pulse position, with 

O(n 2+2n) multiplications/additions. The matrix X remains fixed while the 

positions of the first ('I-i) pulses are not changed, thus its inverse need 

only be calculated once during the search for the optimum position of each 

pulse. 

The inverse x·i is initially calculated using the Cholesky factorisation 

method, and is updated each time a different pulse is chosen to be 
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optimised. This iterative updating operation is performed in three steps, as 

shown in Fig 4.7.2. The complete inverse matrix D; is first calculated using 

Eq 4.7.16. Then a rearrangement of two of its columns and rows is made, to 

reflect the change in the order of the two pulses at positions PI and P? 

This in effect interchanges the variables corresponding to the amplitudes of 

the two pulses. In matrix form, this variable interchange is performed by 

premultiplying and postmultiplying the original inverse D; (corresponding to 

the previous values of the variables PI and P?), with a ?x? permutation 

matrix PI,?' which rearranges the order of the two variables 

reflecting the new values of PI and P? 

D·1 = P D-1 P I,q 0 I,? 

and?, thus 

(E? 4.7.23) 

In the third step, the inverse of the new minor matrix X is updated using 

the formula : 

X-1 = U[p J -
q 

U[pqJ u[p?J T 

U (pq ) 
(Eq 4.7.24) 

The first iteration is completed when all the pulses have been considered. 

After n, complete iterations, the pulse amplitudes are calculated using Eq 

4.7.18. 

The assumption of strong nonsingularity of the matrix D has not created 

any problems in practice, even though single precision arithmetic was used 

in the simulation of the algorithm. 

A simplified version of the BS2 algorithm has been proposed [4.56J, which 

limits the number of pulses chosen to be optimised, based on a pulse energy 

criterion. The results obtained from this method are dependent on the number 

of pulses optimised in each MPE frame. 

Method BS2a is formed if the autocovariance matrix q>a (j ,j) is used instead 

of q>(j ,i) in the BS2 algorithm. 
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FIGURE 4.7.2 Flow diagram of the MPE Optimisation Method BS2. 
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4.8 Comparison of the MPE Optimisation Methods 

The five MS and two BS optimisation methods are compared in Figures 4.8.1, 

4.8.2 and 4.8.3, in terms of their complexity (operation per sample) and SNR 

performance (average Segmental-SNR). The comparison indicates the 

qualitative differences between the optimisation algorithms, and can be used 

as a guideline when a choice has to be made between the different algorithms 

for a particular speech processing application. 

A measure of the complexity of each algorithm is provided in terms of the 

number of multiplications and divisions required during the MPE optimisation 

process . As the complexity is often proportional to the MPE frame size, and 

in order to permit a direct comparison with the numerical capabilities of 

the latest DSP chips, the complexity figures given in Fig 4.8.1 represent 

the number of multiplications and divisions per sampling interval. The 

number of additions is usually slightly smaller than the number of 

multiplications, and is not included in the complexity calculations. 

Note that methods MSl, MS2, MS3 and BS2 vary their computational 

requirements from one MPE frame to another, and thus the complexity figures 

for these methods represent time averages. Methods MS4, MS5 and BSI on the 

other hand, perform the same number of multiplications and divisions in 

every MPE frame. Notice that the number inside the parenthesis next to the 

BSl and BS2 methods (in the "method" column) is the number of optimisation 

iterations n,. 

The formulas given in the Search Complexity column of Fig 4.8.1, indicate 

the dependency of the algorithmic complexity on the pulse rate (q is the 

number of pulses per MPE frame), and the size n of the MPE frame. These 

expressions do not include the computational effort required to determine 

the values of the auto-covariance (Eq 4.4.17) and cross-correlation 

(Eq" 4.6.5), because it is independent of the pulse rate. In particular, 

given the input speech samples and the coefficients of the LPC sythesis 

filter, the number of multiplications required to calculate the auto­

covariance and the autocorrelation is 4In+n(n-I)12 (where I is the order of 

the AR-LPC filter). This figure comes to 98 operations per sample when a 

12th order LPC filter and a MPE frame of 100 samples are used, and is 

included in all the individual complexity figures for the various pulse 

rates. 
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The average Segmental-SNR figures of Fig 4.8.2 and 4.8.3 were obtained 

using a 70 sec long (at 8 kHz sampling rate) speech "~~ta file, containing 

sentences spoken by 8 male and 7 female speakers. A M"PE frame of 100 samples 

and a non-overlapping LPC frame of 200 samples were used. The order of the 

AR-LPC filter was 12 and the noise shaping filter constant ~ was set to 0.9, 

except for methods MS5 and BSI where it was set to 1 for the reasons 

explained in the relevant sections. The parameters of the coder were left 

unquantized, in order to remove the dependency of the SNR on the efficiency 

of the various parameter quantization schemes. 

The SNR figures and the subjective quality obtained from each optimisation 

method are directly related, because the methods are very similar to each 

other. A comparison of the SNR figures can therefore reveal the relative 

improvement obtained when some methods are used instead of the others. 

As seen in Fig 4.8.2, the gap between the performance of the simple and 

complex optimisation methods widens as the pulse rate is increased. At high 

pulse rates (greater than 1200 pulses/sec), the improvement in the quality 

of the encoded speech is especially noticeable when the complex MPE optimi­

sation algorithms are used. At the pulse rate of 1600 pulses/sec (often used 

in 16 kbits/sec systems), the SNR difference between the simplest method MSl 

and the most complex method BSI is 4.5 dBs, which is perceptually signifi­

cant. In contrast, the difference in SNR obtained at 400 pulses/sec is small 

Method BSI which gives the best SNR results is also the most complex. A 

comparison of methods MS3 and MS4 shows that their SNR values are very 

close, but the complexity of method MS3 can be quite smaller than that of 

MS4. This suggests that method MS3 can be used instead of method MS4 and 

provide the same results at a smaller computational cost. This is even more 

obvious when methods MS3a and MS4a are compared. 

Another interesting comparison can be made between methods MS4 and MS5. 

Method MS5 gives higher SNRs although its complexity is almost the same as 

that of method MS4. 

The BS methods are usually more complex than the MS methods and are 

favoured (when compared to the MS methods) by the use of small MPE frames 

and the application of the autocorrelation approximation (methods BSla and 

BS2a). Their complexity inreases with the third power of the number of 

pulses 9, and therefore are easier to- implement when the" MPE;" frame size is 
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small and the number of pulses per frame is also small. Interestingly method 

BS2a(1) is less complex and gives better SNR results than method MS5a at BOO 

pulses/sec, but this situation is reversed at higher pulse rates. 

Methods BSI and BSla perform well 

size etc.), and give the best SNR 

under all conditions (pulse rate, frame 

results out of all the examined MPE 

optimisation methods. Their performance approaches that of the more complex 

Successive-Elimination and Multivariate-Optimisation methods described in 

the previous chapter. Unfortunately their complexity even at moderate pulse 

rates is already quite high. 

The effect of increasing the number of iterations (from I to 2) in the BS 

algorithms is very small, even though the complexity is almost doubled. This 

enforces our earlier conclusion that the optimisation results of methods BSI 

and BS2, are close to a local minimum of the approximation error. As method 

BSI examines every avilable pulse positiom within the MPE frame, it is 

reasonable to assume that the results of method BSI are close to the global 

error minimum. 

In Fig 4.B.3(a) the variation of the SNR at 800 pulses/sec is shown, when 

the noise shaping filter constant ~ takes different values. A definite peak 

is observed for most methods around the value of 0.9. As it was shown in 

Figures 4.6.2, 4.6.6 and 4.6.7, this peak is transferred to a lower value of 

~ when the pulse rate is increased (resulting greater pulse congestion). The 

peak is less obvious and sometimes does not occur when methods MS5 and BSI 

are used, which is why ~ is set to I for these two methods. Interestingly 

the SNR values of all the optimisation methods converge to the same value as 

g is reduced below 0.6. It is also clear that the simpler optimisation 

algorithms can benefit more (in terms of SNR) from a carefully chosen value 

of g. 

In Fig 4.B.3(b) the dependence of the SNR on the size of the MPE frame is 

shown. It is evident that the use of a smaller frame reduces the relative 

freedom in arranging the pulses over a time period, and as a result the the 

SNR results are not as good as when larger frames are used. The drop in the 

SNR is even higher when the autocorrelation approximation is applied in 

small MPE frames, because the summation range for each term of the 

autocorrelation sequence may be comparable to the duration of the LPC 

filter's impulse response, and the difference between the symmetric 
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auto-covariance matrix ~(I ,i) and its Toeplitz approximation ~a(j ,1) may be 

large. 

The use of SS optimisation methods becomes more attractive when smaller 

frame sizes are employed. This becomes apparent when the SNR results of the 

SS algorithms for small frames, are compared with those obtained from the MS 

algorithms in Fig 4.8.3(b). It is the combination of high SNR performance 

and moderate complexity (when small MPE frames are used) which gives the low 

to intermediate bit-rate SS algorithms an advantage over the MS schemes. 

In Figures 4.8.4 and 4.8.5, the power spectral distribution of the speech 

signal and of the noise introduced by the MPE coder, are shown for a 64 ms 

voiced speech segment. Method MS5 was used to define the MPE signal in such 

a way as to keep the SNR at a fixed level, by appropriately adjusting the 

number of pulses defined in each MPE frame. The SNR level was set to 12 dSs 

for Fig 4.8.4 and 24 dSs for Fig 4.8.5. In Figures 4.8.4(a) and 4.8.5(a) the 

noise shaping filter constant ~ was set equal to 1 and in Fiqures 4.8.4(b) 

and 4.8.5(b) it was set equal to 0.8. The black areas occur in the spectral 

regions where the power of the noise is higher than the power of the speech 

signal. 

The effect of the noise shaping is very small when the SNR is low, but it 

is noticeable when the SNR is high. Unfortunately the improvement brought by 

the use of a noise shaping filter is mostly needed when the SNR is low (at 

low transmission bit rates). In practice, the subjective quality of the 

encoded speech is slightly improved when noise shaping is used at high pulse 

rates (corresponding to high SNR levels). 
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Pu I ses/sec 400 800 1200 1600 2000 2400 

lIelhod Search Altorilhm Complelily (averate number of 
Compl .. ily mull ipl ical ions per sample) 

liS 1 0(39 ) 115 130 150 170 200 235 

IIS2 0(39 +* 9
2
) 115 135 160 195 235 290 

IIS3 0139+ 82) 115 145 195 285 480 900 

IIS4 oCt 9 2+~ 9) 130 180 260 370 500 660 

IIS5 o(~ 9
2

+% 9) 125 170 245 350 475 625 

BS1(1) 0(l9 3+9 2 __ 1 9 f ) 
3 3n 

175 515 1295 2635 4600 7215 

BS1(2) O(l 93+2922_ 9 f ) 
3 3n 

240 920 2475 5145 9070 14285 

BS2 (iJ O(~ 93_~ 9 2) 110 165 300 560 970 1560 

BS2 (2) OC~ 9
3-# 9

2
) 115 215 475 960 1730 2830 

Pulseslsec 400 800 1200 1600 2000 2400 

lIelhod " 
Search Altor/lhm Complelily (average number DJ 

Comp/ .. ily divisions per sample) 

IIS1-4 OU) 1 1 1 1 1 1 

IIS5 0(9 ) 5 10 15 20 25 30 

BSI (1) 0(9 ) 5 10 15 20 25 30 

BSI (2) 0(29 ) 10 20 30 40 50 60 

BS2 (1) O(~ 9) 0 1 1 1 1 2 

BS2(2) OC~ 9) 1 1 2 2 3 3 

FIGURE 4.8.1 Complexity <number of multiplications and divisions per sample) 

of the MPE optimisation algorithms at various pulse rates. The search 

complexity is given as a function of the number of pulses 9 and the number 

of samples n in the MPE analysis frame. 
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Pu I ses /sec 400 BOO 1200 1600 2000 2400 

l1e/hod SNR (dBs) 

I1S1 9.2 13.1 15.4 17.0 1B.3 19.5 

I1S2 9.2 13.6 16.2 1B.2 19.9 2/.3 

I1S3 9.2 13.B 16.B 19.3 2/.5 23.6 

I1S4 9.3 14.0 17.1 19.6 21.9 23.B 

I1S5 9.B 14.4 17.B 20.5 22.7 25.0 

BSI (1! 10.2 15.2 IB.B 21.4 23.7 26.0 

BSl(2) 10 .3 15.4 IB.9 21.6 23.B 26.2 

BS2 (1) 9.5 14.3 17.5 20.0 22.1 24.1 

BS2 (2) 9.5 14.5 17.7 20.2 22.3 24.3 

Pulses/sec 400 BOO 1200 1600 2000 2400 

l1e/hod SNR (dBs) 

I1S1a 9. I 12.B 14.B 16.3 17.6 1B.7 

I1S2a 9.2 13.4 15.9 17.7 19.2 20.4 

I1S3a 9.2 13.5 16.3 IB.6 20.5 22.3 

I1S4a 9.2 13.6 16.4 IB.B 20.B 22.5 

I1S5a 9.2 13.B 17.0 19.6 21.7 23.6 

BS1a (1! 9.5 14.B IB.5 21.4 23.7 26.0 

BS2a (1) 9.4 14.1 17.0 19.3 21.2 22.B 

FIGURE 4.8.2 SNR performance of the MPE optimisation algorithms at various 

pulse rates. 
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Conslanl ~ 1.00 0.95 0.90 0.B5 0.80 0.70 0.60 

!lelhod SNR (dBs) al BOO Pu I ses /sec 

!IS 1 12.0 13.0 13.1 13.0 12.7 11.6 10.4 

!lS4 14.0 14.1 14.0 13.6 13.1 11.9 10.6 

!lS5 14.4 14.6 14.4 13.6 13.0 11.7 10 .3 

BSlI1J 15.2 15.2 14.B 14.1 13.4 11 .9 10.4 

BS21! ) 13.7 14.4 14.3 13.9 13.4 12.1 10.6 
(a) 

!lSla 10.4 12.4 12.B I2.B 12.5 11 .5 10.4 

!lS4a I1.B 13.5 13.6 13.4 13.0 I1.B 10.5 

!lS5a 12.3 13.9 13.8 13.4 12.9 11 .6 10.2 

BSla (1J 12.B 14.5 14.B 13.9 13.3 11.8 10 .4 

BS2a (1) 12.1 13.9 14.1 13.B 13.3 12.0 10.6 

Fl"ame (samples) 20 40 50 100 200 

!le I hod SNR (dBs) al BOO Pulses/sec 

!IS 1 12.5 12.9 13.0 13.1 13.4 

!lS4 12.8 13.5 13.6 14.0 14.4 

!lS5 12.4 13.5 13.B 14.4 15.0 

BSI (1! 13.6 14.5 14.7 15.2 15.B 

BS2 (1) 13.2 13.9 14.0 14.3 14.7 
(b) 

!IS 1 a 11.3 12.0 12.3 12.8 13.2 

!lS4a 11.4 12.5 12.B 13.6 14.2 

!lS5a 11 .5 12.7 13.1 13.8 14.4 

BSla (1! 12.3 13.5 13.B 14.B 15.0 

BS2a (1) 12.2 13.3 13.5 14.1 14.6 

FIGURE 4.8.3 SNR performance of the MPE optimisation algorithms at a pulse 

rate of 800 pulses/sec. (al The value of the noise-shaping-filter constant ~ 

is varied (bl The size of the MPE analysis frame is varied. 
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(dBs) 

SPEECH LOG-POWER SPECTRUM 
50 

40 

30 

NOISE 

( a) 20 

10 

SNR = 12 dBs 

o 

o FREQUENCY 4 kHz 

(dBs) 

SPEECH LOG-POWER SPECTRUM 50 

40 

30 

(b) 20 

10 

SNR = 12 dBs 

o 

o FREQUENCY 4 kHz 

FIGURE 4.8.4 Power Spectra of Speech and Distortion (noise) introduced by 

the MPE coding process for (a) ~=l and (b) ~=O.8. The duration of the time 

window is 64 ms and the SNR is 12 dBs. The black areas occur in the spectral 

regions where the power of the noise is higher than the power of speech. 
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(dBa) 

SPEECH LOG-POWER SPECTRUM 
50 

40 

30 

(a) 
20 

40 

30 

(b) 
20 

10 

SNR ~ 24 dBs 

o 

o FREQUENCY 4 kHz 

FIGURE 4.8.5 Power Spectra of Speech and Distortion (noise) introduced by 

the MPE coding process for (a) ~=1 and (b) ~=O.8. The duration of the time 

window is 64 ms and the SNR is 24 dBs. 
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4.9 Quantization of the MPE parameters (Pulse Amplitudes) 

The efficient quantization of the LPC filter parameters [4.57,4.58,4.21) 

and the MPE pulse positions [4.52,4.34,4.48), are still subjects of ongoing 

research, even though a number of 

exist. In the next chapter it will 

efficient quantization methods already 

be described how the inclusion of an 

efficient encoding process (for the pulse positions) in the MPE optimisation 

algorithm, can cause a significant reduction in the number of bits allocated 

to the quantization of the pulse positions. For the moment though, it will 

be assumed that the excitation pulses are unconstrained and that every 

combination of pulse positions is equally likely to be chosen by the MPE 

optimisation algorithm. In this case, an enumerative coding algorithm which 

maps each possible combination 

value [4.59,4.60), is optimum 

of pulse positions to a different integer 

and requires loe2(~) bits for the exact 

quantization of the pulse positions. 

The design of optimum (MMSE) quantizers for the pulse amplitudes will now 

be addressed. At low transmission bit rates, the number of bits allocated to 

the quantization of each pulse amplitude is limited and the use of optimised 

amplitude quantizers becomes necessary. The pulse 

using the PCM-AQF method (with forward adaptive 

variance), to allow for the wide fluctuations of 

signal 

amplitudes are quantized 

estimation of the input 

the power of the speech 

The Max-Lloyd quantizer [4.61,4.62) can be designed using an iterative 

optimisation process, based on the experimentally derived Probability 

Oensity Function (POF) of the input [4.63,4.64). The input samples are the 

pulse amplitudes normalised by their periodically updated standard deviation 

(in practice the standard deviation is quanti zed separately and then is used 

to normalise the pulse amplitudes). The iterative optimisation process is 

not guaranteed to converge to the global error minimum, except for a few 

well known theoretical POFs (Gaussian, Laplacian, etc.), which satisfy the 

log-concavity sufficient condition [4.65,4.66). For this reason, a different 

approach will be followed here, which involves the modeling of the 

experimental POF with a theoretical POF that guarantees a convergence to the 

global error minimum. 

The experimental POFs of the normalised amplitudes are shown in Fig 4.9.1 

(as histograms), for 4 different pulse rates (of 480, 800, 1200 and 1600 
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pulses/sec). The POFs are obviously symmetric and therefore only the right 

half is shown. The shape of the POF depends on the pulse rate but is not 

affected by the choice of the MPE optimisation algorithm or the MPE frame 

update rate. The experimental POFs were obtained using method MS5, under the 

conditions (speech data, MPE frame etc.) described in the previous section. 

The model POF chosen is that of the gamma distribution (the Gaussian and 

lognormal distributions were also examined), and the dependency of the model 

on the pulse rate is controlled by a single parameter. This parameter is 

optimised so that the theoretical model accurately fits the experimental 

dis tr ibution. 

The general symmetric gamma POF is 

PI r) = 
2 rla) 

-oo( r (00 a;?o I Eq 4.9. [) 

where r is the normalised pulse amplitude, and the gamma function is defined 

as : 

The variance of the general gamma POF is 

Also the log-concavity test for the general gamma POF gives 

= 
-2Ia-iJ 

r 2 

I Eq 4.9.2) 

IEq 4.9.3) 

IEq 4.9.4) 

which is negative when a~l. Under this condition the general gamma POF will 

result a guaranteed convergence to the globally optimum quantizer levels. 

Since the normalised amplitude variable r has a unit variance, the model POF 

becomes (using Eqs 4.9.1 and 4.9.3) 

Plr! = 
Ua(a+ 1i r 

2 r(a) 
(Eq 4.9.5) 

The model POF can now be adjusted to fit the experimental distribution, by 

optimising the value of the parameter a. The goodness of fit is measured by 
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the deviation of the experimental amplitude histogram from the theoretically 

predicted histogram. The experimental histogram is constructed by arranging 

the input data into k adjacent "bins", so that for example Ni normalised 

amplitude values are present in the interval between two thresholds Y/-1 and 

Y/' The predicted number for the same interval is : 

y. 

11/(a) = N I I P(x! dr 

y /-1 

where N is the total number of amplitude values 

k 

N = L N/ 
i = 1 

(£9 4.9.6) 

(£9 4.9.7i 

The value of k is chosen to be close to 50 for the experimental histograms. 

The difference between the experimental and predicted value forms another 

random variable which is commonly assumed to have a variance of of = 11/(a) 

[4.67]. If another simlifying assumption is made, by postulating that these 

random variables are normally distributed and independent, then the 

likelihood of the parameter a is maximised when the quantity: 

(£9 4.9.8) 

is minimised. This means that the Maximum Likelihood and the weighted MMSE 

estimates of a are the same, when normally and independently distributed 

deviations are assumed [4.67,4.68]. The value of d can be minimised using 

standard non-linear programming methods, and the Polak-Rlbiere conjugate 

gradient optimisation method [4.69,4.70,4.71] was chosen for that purpose. 

It can be shown that the probability distribution of d near its minimum, 

can be approximated by the x2 distribution with k-2 degrees of freedom 

[4.68]. The probability that the X2 variable is greater than or equal to the 

measured minimum value of d (dm/ n ) is : 

k~2 d~/n ) 

1 -
re 

re k~2 ) 

(£9 4.9.9) 

where the incomplete gamma function is defined as 
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rcw,u) = I:U /W-1 .-1 dl C£9 4.9.10) 

The probability of Eq 4.9.9 gives a measure of how likely it is that the 

gamma distribution chosen is indeed the underlying PDF model. The value of 

this probability has been calculated for a number of different pulse rates, 

and is displayed in Fig 4.9.2. The values are generally quite small and this 

may be caused by the assumption that the deviations from the theoretically 

predicted amplitude histogram, are normally distributed. This assumption 

renders as extremely unlikely the experimental histogram values which differ 

from the predicted values by more than twice the local standard deviation, 

so when a few experimental values differ considerably from the predicted 

values, the probability given by Eq 4.9.9 becomes very small. It is also 

unreasonable to expect a very good fit, because the amplitude PDF changes 

slightly from one speaker to another. 

The best results are obtained for pulse rates approaching 800 pulses/sec, 

and this can also be observed in Fig 4.9.1, where the theoretic (continuous 

line) and experimental (histogram) PDFs are superimposed. The rising part of 

the PDF is well approximated at low pulse rates, while the tail of the PDF 

is well approximated at high pulse rates. 

Note that the values of the parameter a are all greater than 1, and this 

guarantees a convergence to the globally optimum quantizer levels. In 

practice, guantizers based on the gamma PDF model give very good results and 

perform better than optimised logarithmic or uniform quantizers. 

The value of a can be expressed as an power function of the pulse rate ,. 

A model that has been derived using the x2 goodness of fit measure on the 

values of a shown in Fig 4.9.2, is : 

aCr) = 0.875 + 702 ,-0.826 C£9 4.9.11) 

The predicted values of a are also shown in Fig 4.6.2, and these are very 

close to the original values of a. In Fig 4.9.3 the model PDFs derived from 

Egs 4.9.5 and 4.9.11 are shown, for pulse rates of 400, 800, 1600 and 3200 

pulses/sec. Based on these PDFs, the optimum CMMSE) scalar quantizers can be 

designed using the Max-Lloyd iterative optimisation process [4.63,4.64). 

A comparison of the SNR values obtained at 8000, 9600 and 16000 bits/sec, 
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is shown below. The MPE optimisation method MS5 is used to code a 4 sec 

speech interval, of one sentence spoken by a male speaker and another one by 

a female speaker. The MPE frame and LPC frame contain 100 and 200 speech 

samples respectively. The log area coefficients of the LPC filter are 

uniformly quantized, and the estimate of the pulse amplitudes' standard 

deviation is updated in every MPE frame and quantized using a logarithmic 

quantizer (with a total of 10 bits per LPC frame). The number of bits 

allocated to the quantization of the LPC filter parameters and the 

individual pulse amplitudes, is specified in the respective columns. Three 

SNR figures are given for each bit rate. The first is obtained when all the 

parameters are left unquantized, the second is based on the optimum 

quantizers designed from the gamma PDF model (Eqs 4.9.5 and 4.9.11), and the 

third SNR value is obtained from an optimised uniform quantizer. 

BII Rale Pulses LPC Amplll. No Quanl. Gamma PDF Opt .Un Itorm 
(b ifs/sec! 9 (b if s) (b if s) (dBs) (dBs) (dBs) 

8000 8 50 4 12.1 11 .5 11 .5 

8000 9 54 3 12.9 11.3 10.8 

9600 10 62 4 13.6 12.8 12.6 

9600 12 58 3 15.0 12.2 11 .5 

16000 20 52 5 19.4 18.1 17.8 

16000 23 56 4 20.7 17.0 16.4 

The advantage of the gamma PDF based quantizer over the optimised uniform 

quantizer is more pronounced when the number of bits allocated to the 

quantization of the pulse amplitudes is small. It is clear that at higher 

bit rates, more quantizer levels are necessary in order to avoid a large 

drop in the SNR. At 16000 bits/sec for example, 5 bits per pulse are more 

than adequate, that is why both the gamma and the uniform quantizer give 

approximately the same results. The placement of the quantizer levels 

becomes more critical when the number of bits per pulse is reduced to 3 (at 

8000 and 96000 kbits/sec) or 4 (at 16000 bits/sec), in which case, a 0.6 dB 

SNR improvement can be gained from the use of the gamma PDF based quantizer. 

It is also clear that at a given bit rate, it is preferable to use a smaller 

number of pulses per frame and quantize them more accurately, than to 

increase the number of pulses and reduce the number of quantizer levels. 



FIGURE 4.9.1 Experimental histogram and Gamma PDF model for the pulse 

amplitudes at four different pulse rates. 
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Pulse Rale Gamma PDF !lode I Value 01 (a) p(X2~dminJ 
(pulses/sec) Pa,amet" (a) 1 rom Eq 4.9.11 

160 10.68 11. 49 0 

320 6.76 6.86 3. 6 E-41 

480 5.21 5.16 1.1 E-15 

640 4. 31 4.25 3.1 E-6 

800 3.69 3.68 1.2 E-4 

1200 2.87 2.88 5.9 E-19 

1600 2.43 2.46 4.9 E-66 

2000 2.19 2.19 0 

2400 2.02 2.01 0 

FIGURE 4.9.2 The parameter (a) of the Gamma PDF model (2nd column) is 

obtained by fitting the model to the experimental data at each pulse rate. 

The goodness of fit measure (4th column) is based on the assumption that the 

error between the experimental and model PDFs has a Gaussian distribution. 

The predicted values of the parameter (a), obtained using Eq 4.9.11, are 

shown in the 3rd column. 
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3 

FIGURE 4.9.3 The Gamma PDF model for the pulse amplitudes, at four diffe­

rent pulse rates. The values of the model parameter (a) were obtained from 

Eq 4.9.11. 
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4.10 Conclusions 

A detailed description of the Linear Prediction models used in MPE coders 

has been presented. Two cases were examined, introducing the Short Term 

Predictor (STP) and Long Term Predictor (LTP) models. In the first case, the 

synthesis filter of the MPE coder is based on an AR model and its 

coefficients are calculated using Linear 

the failure of the attempted improvement 

Prediction methods. The reason for 

(which removed the effect of the 

excitation signal from the estimated filter coefficients) was discovered. 

The sought improvement can be obtained by changing the basic model and 

combining the STP model with that of the LTP. The effect of the LTP in 

improving the quality of the coded speech is especially noticeable for high 

pitched voices. Two methods were presented for the estimation of the LTP 

coefficients. The second method minimises the distortion introduced by the 

coder and leads to a joint optimisation of the LTP coefficients and the 

pulse amplitudes. The first method is a Linear Prediction method and is not 

as effective as the second, but it is usually preferred at lower bit rates 

because it is not affected by the infrequent updating of the coefficients. 

The MPE optimisation algorithms presented, can be used in conjunction with 

any of the two linear filter models. They can also be used in conventional 

and non-conventional MPE coding schemes. The speech quality obtained from 

the MPE coders that employ these optimisation algorithms, compares favour­

ably with the quality obtained from subband and RE LP speech coders at 9.6 

and 16 kbits/sec. Good communications quality is obtained at 9.6 kbits/sec, 

and near toll quality at 16 kbits/sec. To lower the bit rate, the basic 

structure of the MPE coder must be changed [4.19,4.30J. 

The complexity of the MPE optimisation methods examined, vary with the 

pulse rate and the size of the MPE frame. The Multi-Stage (MS) algorithms 

are" well suited for variable bit rate applications and are generally simpler 

than the Block Search (BS) algorithms. Method MSl is the simplest and can 

easily be implemented on a single DSP chip. For better results, methods MS2 

and MS3 can be used instead. Method MS3 uses an exponential correction model 

and can be simpler than method MS4, even though the SNR results (and there­

fore the subjective quality) obtained from these two methods are very close. 

Methods MS5 and BSI produce the best optimisation results, but method BSI 

can be much more complex than MS5. It may be possible to reduce the comple-
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xity of method BSI to twice the complexity of method MS5 by solving the 

system of equations in the MPE optimisation in a different way, but this has 

not been proved yet. Method BS2 performs very well at low and medium pulse 

rates, and can effectively replace many of the MS methods, when a small MPE 

frame size is used. It is also possible to simplify all the examined optimi­

sation methods by employing the autocorrelation approximation IEq 4.4.17). 

The effect of the noise shaping filter is mainly concentrated on 

increasing the efficiency of the MPE optimisation algorithms, and seems to 

offer little advantage concerning the exploitation of the noise 

effect to improve the subjective speech quality, since the 

redistribution of the distortion is not very effective. The tuning 

masking 

spectral 

of the 

noise shaping filter though, can be used to improve the performance of the 

simpler MPE optimisation algorithms, and as such it can be usefull to MPE 

coders in general. 

PDF optimised quantizers are essential when the number of bits allocated 

to the quantization of the pulse amplitudes is relatively small. A model 

based on the general symmetric gamma PDF has been developed, that guarantees 

the convergence of the quantizer optimisation process to the global optimum. 

The PDF changes as the pulse rate is increased, and a power relationship has 

been developed that can be used to predict the shape of the PDF at any given 

pulse rate. 
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CHAPTER 5 

CODEBOOK SEARCH MPE CODING 

5.1 Introduction 

The concepts of the Multipulse Excitation model and the Analysis by 

Synthesis optimisation approach, have been successfully combined to produce 

efficient and robust MPE coders at the medium bit rates of 8-16 kbits/sec. 

MPE coders though suffer from an unacceptable degradation of the coded 

speech quality when the bit rate is reduced below 7 kbits/sec. 

At 4-6 kbits/sec, a number of alternative Analysis by Synthesis coding 

algorithms have been developed and applied successfully in coders like CELP 

[5.1] and the Self-Excited Vocoder [5.2]. These coders, although capable of 

producing quite good quality speech at low bit rates, exhibit an almost 

speaker dependent behaviour. MPE coders on the other hand are not affected 

by the variations in the signal characteristics due to different speakers, 

and in addition their performance is robust in a wide range of acoustic 

environments 

Attempts have been made to bridge the gap between the MPE and the low bit­

rate Analysis-by-Synthesis coders, by combining elements from each type of 

coder (MPE and CELP for example). Vector Quantization [5.3] and Multi-Band 

operation [5.4] have been considered in order to reduce the bit rate at 

which MPE coders can produce acceptable results. It is still not very clear 

though whether MPE coders will be able to operate successfully at low 

transmission bit rates (2.4 to 4.8 kbits/sec), without considering major 

changes in the basic MPE model. 

A recently proposed MPE coder operating at 2.4 kbits/sec [5.5], combines 

the use of a Long Term Predictor with increased constraints on the values 

the pulse amplitudes may take at integer multiples of the fundamental 

period. CELP coders on the other hand, are now efficiently implemented using 

sparse codebooks (a form of Multipulse Excitation), and there is a tendency 

to relax the severe constraints (i.e. limited number of excitation vectors) 

that up to now have been imposed on the structure of the excitation signal. 

The excitation codebook in CELP for example, has been split into one 

codebook for the pulse positions and another for the pulse amplitudes 
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[5.6,5.7,5.8]. The problem of properly designing these codebooks has not 

been properly addressed yet though, and in practice they are randomly 

generated. Another CELP scheme relaxes the constraints on the pulse 

positions in a sparce excitation codebook (by increasing the size of the 

codebook), but restricts the freedom with which the relative values of the 

pulse amplitudes may be chosen [5.9]. 

A different approach will be considered in this chapter, which contributes 

to the merging of the two types of Analysis by Synthesis coders, and can 

reduce the bit rate at which MPE coders operate, without compromising the 

quality of the coded speech. This reduction in the bit rate is achieved by 

imposing constraints on the positions of the excitation pulses, while 

retaining the amplitude optimisation methods used in standard MPE coders. 

The constraints take the form of a fixed codebook for the pulse positions, 

which is searched using an Analysis by Synthesis optimisation loop. 

Furthermore, a systematic method is proposed that optimises the position 

codebook for a particular coder configuration, using a training process. 

Simulation results indicate that this Codebook Search (CS) MPE method is 

capable of more than halving the number of bits required for the coding of 

the pulse positions, which in a typical MPE coder account for approximately 

one third of the total bit rate. 

The Codebook Search approach can be combined with further constraints 

inposed on the relative values of the pulse amplitudes, to bring the 

transmission bit rate to even lower values. The CS approach was originally 

proposed and used to encode a frequency representation of the excitation 

signal in a LPC coder [5.10], and can also be used as an alternative method 

in speech coding systems that attempt to decompose the speech signal into a 

limited number of time or frequency components [5.11,5.12,5.13,5.14,5.15]. 

5.2 Operation of the CS-MPE coder 

The diagram of the CS-MPE coder is shown in Fig 5.2.1. A codebook of pulse 

position patterns is available to both the encoder and the decoder. In the 

encoder the codebook entries are translated to sets of pulse positions and 

an Analysis 

the optimum 

through the 

by Synthesis (AbS) procedure is applied in order to determine 

codebook entry. The AbS optirnisation loop, in effect searches 

codebook using an appropriate search strategy. For every 
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codebook entry considered, the corresponding pulse amplitudes are calculated 

and quantized, and the approximation error is compared to previous values 

obtained during the search. 

The approximation error is a measure of the minimum distance between the 

original and synthesised speech waveforms, and can be estimated in the same 

way as in the MPE coders already examined, causing a redistribution of the 

distortion energy in the frequency domain (noise shaping) and thus mini­

mising the perceptual distortion. The index of the codebook entry that 

minimises the approximation error is transmitted to the decoder, together 

with the quantized pulse amplitudes and LPC parameters. In the decoder, the 

Multipulse Excitation sequence is reconstructed and the speech signal is 

recovered at the output of the LPC synthesis filter. 

The pulse amplitudes can be estimated by solving the system of normal 

equations (Eq 4.4.2) to find the values 

(Eq 5.2.1! 

where bopt is .the q-dimensional vector containing the optimum pulse ampli­

tudes, Au[qJ is the nxq convolution matrix corresponding to the Modified 

Synthesis Filter (MSF) Aw(z), and W (s-my ) is the n-dimensional vector 

containing the desired response of the MSF. The minimum energy of the 

distortion (approximation error) corresponding to the optimum values of the 

pulse amplitudes is 

(Eq 5.2.2) 

If the quanti zed amplitudes values bquant are used instead, then the value 

of the approximation error changes to : 

(Eq 5.2.3) 

The qxq auto-covariance matrix (Aw[qJ T Au[qJ) can be efficiently calcula­

ted using the procedures described in Section 4.6.2, or the autocorrelation 

approximation (Eq 4.4.17) 

correlation array (Au[qJ T 

can be used instead. 

W (s-my)) can also be 

The q-dimensional cross­

calculated efficiently as 
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FIGURE 5.2.1 The Codebook-Search (CS) MPE coder. 
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described in Section 4.6.2. 

The use of Eqs 5.2.1 and 5.2.3 involves O(t q3+39 2 ) operations (multipli­

cations and additions) and the complexity of the Codebook Search algorithm 

is determined by the size of the position codebook. Compared to the figures 

given for the MPE algorithms in Chapter 4, the complexity of the CS-MPE 

optimisation (number of multiplications per sample) is O(~~ ql+3~ 9 2), where 

m is the size of the codebook. The assumption is made that every entry in 

the codebook is examined but, as it will be shown it the next section, this 

need not always be the case. Tree search algorithms can considerably 

simplify the CS-MPE optimisation. 

The amplitude estimation process can be simplified, if consequtive code­

book entries are allowed to have 9-1 common elements (pulse positions). In 

such a case, the computationally efficient algorithm described when the BS2 

MPE optimisation method was examined, can be used to calculate the approxi­

mation error for each codebook entry, based on results obtained for the 

previous entries. If in addition to this simplification, the amplitude 

quantizer is placed outside the optimisation loop (to be used only once for 

the optimum code book entry), then the complexity of the CS optimisation is 

reduced to O(3~ 92- ~ 9) multiplications per sample. The performance of the 

CS-MPE coder is only slightly affected when codebooks with overlapping 

entries are employed. 

5.3 Codebook Search Strategies 

The complexity of the CS-MPE coder very much depends on the size and the 

structure of the position codebook. Small size codebooks can be computation­

ally efficient but cannot reduce the overall transmission bit rate, because 

the severe restrictions imposed on the pulse positions cause a substantial 

loss of speech quality, which can only be compensated by an equivalent 

increase in the pulse rate. Such is the case for the Regular Pulse MPE coder 

[5.16], which uses a codebook of pulse positions with only 3 or 4 entries. 

Larger codebooks can be used to sample more efficiently the parameter 

"space" 't' of the pulse positions (see Section 3.4). This sampling process 

can be optimised by minimising the average distortion introduced by a 

hypothetical CS-MPE coder, using a different approach than the approach 

adopted by conventional Vector Quantizers operating on continuous vector 
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processes (LPC parameter quantization, waveform quantization, etc.). This 

new method of designing the position codebook in an "optimal" way, will be 

described in the next section. 

The complete enumeration of all the codebook entries is not the only 

possible search strategy that a CS-MPE coder can employ. More efficient 

search strategies can be constructed, using a tree-structured code book or a 

multiple codebook. 

A tree-codebook can be arranqed so that entries along the descendent paths 

share a number of common elements with the entries at the parental nodes. 

Even thouqh this overlapping is not necessary in a tree-structured search, 

it can be used to simplify the error calculations, as was explained in the 

previous section. The tree-codebook can also be arranged so that at each 

level, the positions of a small group of pulses (or enven a single pulse) 

are defined. The pulse positions (and sometimes even the pulse amplitudes) 

would then remain fixed when entries at the next level are examined. This 

latter tree-search algorithm leads to a generalisation of the Multi-Stage 

MPE optimisation algorithms, mentioned in Chapter 4. 

A multiple codebook search algorithm, uses the first codebook to broadly 

define the pulse positions, and additional codebooks to improve and refine 

the estimate of the pulse positions. Each codebook used, effectively causes 

small displacements to the optimum position values, obtained when the 

previous codebook was searched. This search algorithm is a special case of 

the Random Search MPE optimisation method, mentioned in Chapter 3. 

There are many possible strategies that can be used by the hypothetical 

CS-MPE coder, but not everyone of them lends itself to a straight forward 

optimisation and design of the position codebook. An unstructured codebook 

can be desiged and optimised more easily, because there are no constraints 

that need to be adhered to. This is the reason why an unstructured codebook 

is adopted here (which requires the enumeration of all its entries in order 

to find the optimum set of pulse positions), even though this increases the 

complexity of the CS-MPE optimisation algorithm. 

The codebook optimisation method described in the next section, is applied 

to the unstructured position codebook, but it could be modified to take into 

account the constraints present in structured codebooks. 

In Fig 5.3.1, the SNR (black squares) is plotted for 48 consequtive speech 
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frames, when 4 different random position codebooks are used. The codebooks 

are constructed using a uniform distribution for the pulse positions. The 

first two codebooks are realisations of a random codebook with 1024 entries. 

The third codebook also has 1024 entries, but they are arranged so that two 

consequtive codebook entries differ only in the position of one pulse. The 

fourth codebook has a 2-level tree structure with 64 branching paths at each 

level. Each position pattern at the second level is closely related to the 

parental pattern, by limiting the difference between the corresponding pulse 

positions to no more than 2. The HPE frame contains 50 samples and 5 pulses 

are defined in each frame. For comparison, the SNR obtained when method HS5 

is applied to the same speech data, is also plotted (white squares and 

joined linesl. 

It is clear that the first two random codebooks give SNR results very 

close to the results obtained from method HS5, even though the number of 

bits allocated to the coding of the pulse positions by the HS5-MPE system, 

is more than twice the number of bits allocated by the CS-HPE system (22 

bits compared to 10 bitsl. It is also interesting to observe that for some 

frames, the CS-HPE coder can achieve a higher SNR level than the MS5-HPE 

coder, even though the pulse positions of each codebook entry have been 

chosen at random. 

The SNR results obtained from the third random codebook, are surprisingly 

only slightly inferior (by an average of 0.5 dBs), even though the freedom 

in choosing the pulse positions for each of the codebook entries, has been 

severely hampered. The SNR values obtained when the fourth codebook is used, 

are also smaller than for the first two codebooks by an average of 0.5 dBs, 

and the number of bits allocated to the coding of the pulse positions is 

slightly higher (12 bits instead of 10). The advantage of using the tree 

structured codebook 

search algorithm is 

is that the computational complexity of 

much smaller, because only 128 entries 

the code book 

need to be 

examined for each speech frame, instead of 1024 entries previously required. 
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Variation of SNR (black squares) with time, when the CS-MPE 

coder employs four different position-codebooks : (a) Random Codebook 1 (b) 

Random Codebook 2 (c) Random Codebook with overlapping entries (d) Tree 

Codebook. The SNR values (white squares) obtained from a conventional MPE 

algorithm (method MSS) are also shown. 
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5.4 Design and Optimisation of the Position Codebook 

A position codebook of a given size, can be designed to maximise the 

performance of the CS-MPE coder shown in Fig 5.2.1. The average distortion 

added to the speech signal or the average SNR achieved during the coder's 

operation, can be used to measure the coder's performance, and a training 

process can be used to determine an "optimal" pulse position codebook. The 

average SNR has been chosen for this purpose because it weights the 

distortion measurements according to the power of the speech signal. This 

property is closely related to the perceivable distortion, since more noise 

can be tolerated at higher signal levels. 

If the approximation error (Eq 5.2.3) and the 

then the 

signal energy corresponding 

average SNR achieved by the to frame i are Ei 

CS-MPE coder when 

and ui respectively, 

a codebook cm of size m is employed, is defined as : 

S(cm) = 
1 

N 

N 

L lot( ~i ) 
j = 1 t 

(Eg 5.4.11 

where N is a large number of speech frames. The optimum codebook ~PI should 

therefore maximise the value of S(cm). Since the speech energy ui is not 

affected by the codebook choice, the expression of Eq 5.4.1 is maximised 

when the expression : 

N 
Ercm) = - L lot rEi) 

i = 1 

is maximised. The optimum codebook of size m is then 

~PI = 

(Eg 5.4.2) 

(Eg 5.4.3) 

The codebook cm is a subset of the parameter "space" 't' which contains all 

the possible combinations of pulse positions. The optimum codebook ~PI must 

therefore be assembled using elements of 't'. Since the size of the parameter 

space 't' is usually very large, the number of ways m of its elements can be 

combined to form a subset cm is also prohibitively large. That is why a 

manageable (but still very large) subset OW of 't', is used instead of 't' : 

cmcrf' rf' c 't' (Eg 5.4.4) 
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where w is the number of elements (position patterns) contained in~. The 

assumption is therefore made that the optimum codebook ~pt can be found by 

thorougly examining the possible subsets of a smaller parameter "space" d" 

The set ~ is generated by a training process, whereby a conventional HPE 

optimisation algorithm (method HS5) is used to find the position pattern for 

each frame of a long speech training sequence. These patterns sample the 

parameter "space" 'I' in a way which is based on actual speech data. It is 

therefore reasonable to assume that the set ~ is closely related to the 

average speech characteristics and in a way, contains the best candidates 

out of which the optimum codebook ~Pt should be constructed. It is obvious 

though that the higher the number of patterns w is, the better the optimum 

codebook will be. 

The problem of finding the optimum codebook has been transformed to the 

equivalent problem of choosing m out of W position patterns, so that the 

coder's performance measure is maximised! 

C:;pt = mal'! [ E(c"') ] 

c"'cd" 
(E9 5.4.5) 

This is a nonlinear combinatorial optimisation problem which can be solved 

using integer programming methods [5.17,5.18J. A simpler algorithm will be 

used here, in order to reduce the enormous complexity involved. The optimum 

codebook C:;pt will be obtained from the set ~ using a thinning process 

which progressively reduces the number of elements of ~ in the least 

destructive way. 

The codebook optimisation algorithm starts by considering the set ~ as a 

codebook of size w. The performance of the CS-HPE coder using this codebook 

should be better than the performance obtained when any other codebook of 

smaller size is used instead. The value of E(Ow) is therefore an upper limit 

for the performance of a codebook of size m : 

£(c"') ~ E(~) c"'c~ (E9 5 .4 .6 ) 

The optimisation algorithm then searches for an element of OW that could 

be removed from the codebook and cause a minimum drop in the performance. 

The codebook left after the removal of the ith element of ~ is ~-!, which 
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now contains only w-l elements. To find the optimum codebook of size w-l, 

the set ~-1 which maximises the performance measure must be identified. The 
I 

optimum codebook of size ~-1 will also minimise the drop in the performance 

of the CS-MPE coder, when moving from a codebook of size w to a smaller one 

of size '0-1 

.. a ,·1 [ f(d'/- 1) ] = 

l~i~w 

min·1 [ f(cJI') - £(d'/-I) ] 

l~i ~w 

(£q 5.4. 7J 

The element of cJI' that must be removed, is identified by calculating the 

value of £(d'/-I) for i=I,2, .. . ,w. The process continues by removing another 

element and forming the optimum codebook of size .-2 : 

c~pl = ma,·1 [ £(rir2) ] = min·1 [ f(C~pt) - £(ri'/-2) ] 
l~i~w-l l~i~lU-l 

(£q 5.4.8) 

After w-m such optimisation steps, the optimum codebook of size m will be: 

~Pt = ma,·1 [ £(d'!) ] 

1~ i ~m+ 1 

(£q 5.4.9) 

The codebook optimisation problem has been solved in a series of steps, 

whereby a sequence of "optimum" codebooks is defined, whose size is 

continuously decreasing. The smaller codebooks are subsets of the preceding 

codebooks and they are bound by the performance measurements of the larger 

codebooks. A monotonically decreasing sequence of performance measurements 

is formed, which progressively reduces the upper limit of the performance 

that can be achieved using a codebook of size m 

(£q 5.4.[0) 

Since the difference between two consequtive elements of this series is 

minimised (Eqs 5.4.7 and 5.4.8), the value of £(~Pt) is maximised and thus, 

the codebook ~pt itself is optimised. This optimisation algorithm is 

constrained by the inclusive relationships between the optimised codebooks 

and can be described using the general set of equations 

Cw- I = ma,·1 [£(~-I)] opt I 
l~i~w-l+ 1 

1~/~IU-m (£q 5.4.[[) 

An optimisation algorithm similar to the one just described can also be 

developed, which will build up the optimum codebook of size m, starting from 
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a codebook of size one. Using the same reasoning that led to Eq 5.4.11, this 

algorithm can be defined by the set of equations 

mar·1 [£(0:)] 
1~i~ID-I+1 

1~ I $m (Eq 5.4.12) 

where now ot is the single-element 

all the elements of GP except the 

subset of GP which is formed by removing 

element i. Similarly, o? is formed by 
I 

adding another 

codebook C~ pt. 

element of GP to the previously optimised (single-element) 

Usually the size of the codebook is chosen to be much smaller than the 

number of training vectors (,.«ID), and when that happens, the optimisation 

algorithm defined by Eq 5.4.12 becomes computationally more efficient than 

the algorithm defined by Eq 5.4.11. In the next section however, a fast 

implementation of the codebook optimisation algorithm will be presented, 

which renders the two methods of Eq 5.4.11 and .Eq 5.4.12 computationally 

equivalent. For this reason and bacause of its better optimisation 

properties, the algorithm defined by Eq 5.4.11 was selected and used in the 

proposed CS-MPE schemes. 

5.5 Fast Implmentation of the Codebook Optimisation Algorithm 

The application of the codebook optimisation Eqs 5.4.11 requires Ct 61D 3 ) 

computations of the approximation error (Eq 5.2.3), where 6 is the number of 

frames into which the speech training sequence has been partitioned, and w 

is the number of position patterns contained in the set OlD. Since each error 

computation requires the solution of a system of equations (Eq 5.2.1), the 

computational complexity of the optimisation algorithm becomes prohibitively 

large even for a small number of training vectors. In order to reduce the 

compuational load, two modifications of the codebook optimisation algorithm 

will be considered. 

The first modification involves the calculation of the LPC filter's 

transient response (vector my in Eq 5.2.2 and Eq 5.2.3). The transient 

response of the LPC filter in every frame, is normally dependent on the 

output of the CS-MPE coder in the previous frames. This dependency is now 

broken, and it is assumed that the transient response can remain fixed, at 

least for part of the optimisation process. 
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Originally the transient response is obtained by running a conventional 

MPE coding algorithm (method MSS) on the speech training data. The codebook 

optimisation algorithm then considers the samples of the transient response 

constant while the codebook is being optimised, but periodically a decision 

may be taken to recalculate and update the values of the transient response, 

by running the CS-MPE coder on the speech training data, using the smallest 

optimum codebook that has been defined by the optimisation process. This 

modification hardly affects the results obtained from the optimisation, but 

is the element that mostly contributes to the reduction in the complexity of 

the codebook optimisation algorithm. 

The second modification removes the pulse amplitude quantizer from the 

error estimation process, so that the simpler Eq 5.2.2 can be used instead 

of Eq 5.2.3, to calculate the approximation error. An added advantage of 

this simplification is that the results of the optimisation (optimum 

position codebook) will not depend on the characteristics and the accuracy 

of the pulse amplitude quantizer. 

In the first step of the codebook optimisation algorithm, the optimum 

position codebook ~;~ is constructed. Eq 5.2.2 is used to calculate the 

value of the approximation error E7, for every frame ; of the speech 

training sequence and for every entry k of the codebook~. The results are 

stored in a Nxw matrix E(j,k), by taking the logarithms first 

j=l,2, ... ,N k=1,2, ... ,1U (E9 5.5.1) 

The hypothetical CS-MPE coder employing the OW codebook, would choose the 

codebook entry (position pattern) which would minimise the approximation 

error in each frame. The elements of matrix E(j,k) should therefore be 

rearranged so that its first column would contain the logarithm of the 

minimum error value for each frame, the second column would contain the 

second smallest value, and so on. This operation involves the sorting of the 

elements in each row of E(;,k), in order of magnitude: 

Eti,k) (Et;,I) k(1 I j=l, 2, ... ,N (E9 5.5.2) 

A second Nxw matrix P(;,k) stores the indexes of the position patterns 

that correspond to the elements of E(; ,k). The two matrices are shown in 

Fig S.S.l(a) in a simulation of the optimisation algorithm for 12 speech 
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frames and a codebook of 6 position patterns. 

To find the optimum codebook ~pt, the position pattern which will cause 

the minimum drop in the performance of the CS-MPE coder, if it is removed 

from~, must be identified. The drop in performance is measured by the 

difference between two performance measurements 

N 
L E(J, 11 -
i= 1 

Pi E ~ 

[ 

N 
- L E(J , 1! 

i = 1 

PIi,I)"Pi 

N 1 L E(J,2) 

i = 1 

PIi,1I=Pi 

(£9 5.5.3) 

By rearranging the terms of Eq 5.5.3, a simpler formula is obtained 

N 
v (j) = L [EIi, 2) - E(j, I) ] Pi E ~ i = 1,2, ... ,IQ (£9 5.5.4) 

i=1 

The index of the pattern that will minimise the drop in performance, if it 

is removed from~, is therefore: 

and the optimum position codebook of size IQ-I is 

..tI- 1 _ rI'- 1 
Lopt - P 

(£9 5.5.5) 

(£9 5.5.6) 

In the second step, the algorithm must determine the optimum codebook ~pf 

of size IQ-2. To do that, the approximation error matrix E(J,k) and the 

pattern matrix P(i,k) do not have to be recalculated, but can be obtained 

from the matrices that were formed in the previous step. This is done by 

removing from the two matrices formed in the first step, all the elements 

associated with the rejected position pattern pp. The rest of the matrix 

elements are then shifted to occupy the empty matrix cells, so that two new 

(N)x(~-I) matrices are formed, which can be used in the second optimisation 

step. Equations 5.5.4 and 5.5.5 are again emloyed to identify the second 

pattern to be removed from ~, and the optimum codebook of size w-2 becomes: 
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,,-2 _ rf'-2 
Copt - P (E~ 5.5.7) 

The optimum codebook of size m is found after w-m such steps. Simulation 

results from the first 3 steps of the optimisation algorithm are shown in 

Figures 5.5.l(a) ,(b) and (c). All the references to the pattern which is 

removed at each step, are enclosed inside brackets. Patterns 1, 2 and 6 are 

removed in the first second and third step respectively. Notice how the 

number of columns is reduced as the optimisation progresses. 

The computational effort involved in the application of Eqs 5.5.4 and 5.5.5 

is very small compared to the calculation of the approximation error matrix. 

This matrix only needs to be calculated once (initially and then every time 

the transient response of the LPC filter is updated) and the number of 

operations involved determines the complexity of the codebook optimisation 

algorithm. The number of computations of the approximation error has dropped 

to (Nw), which is considerably lower than the figure given at the beginning 

of this section. 

When the number of speech frames in the training data set and the number 

of patterns in·cF are large, the matrices E(;,k) and P(j,k) become large and 

computer storage problems may arise. These problems can be solved by redu­

cing the number of columns of the two matrices to a much smaller number than 

originally considered. Initially, the approximation error will be calculated 

for every frame and every pattern in cF, but only the d smallest values of 

the error (for each frame) will be stored in the error matrix E(j,k). 

Similarly, only d index values will be stored in every row of the index 

matrix P(j ,k). 

When the matrix elements corresponding to the codebook entry rejected at 

each step, are removed, some of the matrix rows will be unaffected (because 

the particular pattern was not included), and some will be reduced in length 

(by removing the corresponding elements and shifting the rest). 

Since the full matrices will not be available during the codebook 

optimisation, care must be taken to determine any rows where all but one of 

the matrix elements have been removed. When this happens, each "empty" row 

of the error matrix must be updated, by calculating the approximation error 

for the corresponding frame and for every entry in the optimum code book 

defined up to this stage of the process. Again only the d smallest error 
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values and the corresponding pattern indexes will be stored. 

The added computation increases the complexity of the codebook optimisa­

tion algorithm, but it has been found experimentally that the computational 

complexity only doubles when: 

100 
(Eq 5.5.81 d ~ -----

This value reduces the storage requirememnts by 100 times. 

The flow diagram of the algorithm is shown in Fig 5.5.2. Notice that the 

transient response of the LPC filter (and therefore the approximation error 

and index matrices also) is updated when the size of the optimum position 

codebook reaches a value which is a power of 2 (corresponding to an integer 

number of bits required for the encoding of the pattern index). 
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APPROXlnATION ERROR nATRIX PATTERN INDEX nATRIX 
23 (58) 59 65 74 92 5 (J) 2 3 4 6 
12 20 (2lJ 40 52 76 2 5 (J) 3 4 6 

(2lJ 21 23 45 58 94 (J) 2 5 3 6 4 
25 59 77 77 (88 ) 90 4 5 3 6 (lJ 2 
13 14 (27J 62 81 94 3 5 (J) 4 2 6 
24 46 61 (65) 95 98 4 5 3 (J) 6 2 

(J6 ) 25 34 53 58 99 (J) 2 5 4 3 6 
14 21 46 49 (50) 70 3 2 4 6 (J) 5 
36 (44) 47 62 64 94 2 (J) 6 3 4 5 
26 65 (78 ) 78 96 99 3 4 (J) 5 6 2 
19 31 (39 ) 49 51 53 3 4 (lJ 2 5 6 

(JO) 16 30 60 63 86 (J) 3 5 6 2 4 

APPROXlnATION ERROR nATRIX PATTERN INDEX nATRI X 
23 (59 ) 65 74 92 5 (2) 3 4 6 

(J 2) 20 40 52 76 (2) 5 3 4 6 
(2lJ 23 45 58 94 (2 ) 5 3 6 4 
25 59 77 77 (90) 4 5 3 6 (2 ) 
13 14 62 (8lJ 94 3 5 4 (2) 6 
24 46 61 95 (98 ) 4 5 3 6 (2) 

(25 ) 34 53 58 99 (2) 5 4 3 6 
14 ( 2lJ 46 49 70 3 (2) 4 6 5 

(36 ) 47 62 64 94 (2) 6 3 4 5 
26 65 78 96 (99 ) 3 4 5 6 (2) 

19 31 (49 ) 51 53 3 4 (2) 5 6 
16 30 60 (63 ) 86 3 5 6 (2) 4 

APPROXlnATION ERROR nATRIX PATTERN INDEX nATRIX 
23 65 74 (92) 5 3 4 (6 ) 
20 40 52 (76 ) 5 3 4 (6 ) 
23 45 (58) 94 5 3 (6 ) 4 
25 59 77 (77 ) 4 5 3 (6 ) 
13 14 62 (94 ) 3 5 4 (6 ) 
24 46 61 (95) 4 5 3 (6 ) 
34 53 58 (99 ) 5 4 3 (6 ) 
14 46 (49 ) 70 3 4 (6 ) 5 

(47 ) 62 64 94 (6 ) 3 4 5 
26 65 78 (96) 3 4 5 (6 ) 
19 31 51 (53 ) 3 4 5 (6 ) 
16 30 (60) 86 3 5 (6) 4 

FIGURE 5.5.1 Results from the first three stages (a), (b) and (c) of the 

Codebook Optimisation process. The matrix rows correspond to individual 

speech frames, and the elements of each row are the values of the 

approximation error arranged in order of magnitude (Approximation Error 

Matrix), and the corresponding indexes of the Position-Codebook entries 

(Pattern Index Matrix). 
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Find Ihe Sel of Posilion Pallerns d" 
using Ihe I1PE coding me I hod I1S5 on I he Speech Ttal"inl Dala 

1 
Calculale and Sort Ihe elemenls of El J ,k J , /=1, .. ,8 , k=l, .. ,d 

Slore I h e Index of Ihe cOrresponding patterns in PII ,kJ 

1 
I C~PI = d" , I =0 I 

I 
1 

I = 1+1 

1 I Calculale and Updale I he lIempt y" ROlQs of Ell ,kJ and PII ,kJ 

1 
N 

u II J = L [EIi, 2J-EIi, 1J] , Pi Ed" , i=1,2, ... ,w 
j= 1 

Plj,1J=PI 

P = . -I [u (j J] mln 

1<;I<;w 

1 
I IQ-I = (jII-1 I Copl P 

1 
Remove Ihe elemenls of Ell ,kJ and PI! ,k J corres pondl ng 10 Pp 

Sh 1 t I Ihe elemenls of EIi ,k J and PIi ,kJ 10 occupy Ihe Empl y Ce 11 s 

1 l Updale I he Transient Response IF w-I = 21 , j':=1,2,3, ... I 
1 

yes t TEST IF IQ-I > m 
I no .I EXIT I I l 

FIGURE 5.5.2 Flow diagram of the Fast Algorithm for the optimisation of 

the Pulse-Position-Codebook. 
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5.6 Results 

CS-MPE coders are more efficient than conventional MPE systems (when 

operating under the same conditions) in coding the pulse positions. This is 

because in conventional MPE schemes, any combination of pulse positions is 

considered possible, and the description of the pulse positions to the 

decoder has to be very accurate. In contrast, CS-MPE coders employ a form of 

Vector Quatization for the pulse positions (codebook of position patterns), 

and use a distance measure based on the energy of the distortion introduced 

by the coding process. 

The Codebook Search optimisation, samples the parameter space of the 

position variables in a random or structured way and as seen in Section 5.3, 

the performance of the coder's errOr minimisation process can be as good as 

that obtained from the best optimisation techiques described in Chapter 4, 

and sometimes even better. 

The number of bits required for the coding of the pulse positions can be 

less than half the number of bits required by the conventional MPE 

algorithms, while the performance and the speech quality obtained from the 

two types of coders are very similar. CS-MPE coders can therefore operate at 

lower bit rates than convetional MPE coders, while retaining the same 

standards in the quality of the encoded speech. 

The CS-MPE system can achieve this coding efficiency even when it employs 

a random position codebook. Undoubtedly though, a properly designed codebook 

can give better results. This happens because the ideal distribution of the 

pulses within the bounds of the MPE frame, is not uniform. This can be seen 

by plotting the long-term discrete PDF for the pulse positions when a 

conventional MPE coding system is used (see Fig 5.6.l(a». 

The PDF shown in Fig 5.6.l(a) was obtained using method MS5 to optimise 

the" positions of 9 pulses in every frame of 50 speech samples. To find the 

average distribution, 70 secs of speech from 8 male and 7 female speakers 

was used. As seen in Fig 5.6.l(a), the first and last sections of the PDF 

deviate considerably from the uniform PDF. Fig 5.6.l(b) shows the PDF of the 

distance (in samples) between consequtive pulses obtained when method MS5 is 

used. This can be compared to the corresponding PDF of Fig 5.6.l(c) which is 

obtained when the pulses are trully uniformly distributed. It is evident 

from these two PDFs, that two consequtive pulses are more likely to be 
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positioned at adjacent locations when uniformly (randomly) distributed, than 

when defined by an efficient MPE optimisation algorithm. A codebook 

optimisation process can take advantage of these differences and adjust the 

properties of the position codebook to take into account the average speech 

characteristics. 

In Fig 5.6.2, the average Segmental-SNR obtained from a 4 sec speech 

interval (containing two sentences by one male and one female speaker), is 

given for a conventional MPE coder (employing method MS5) and for a CS-MPE 

coder employing first an optimised (trained) and then a random codebook. Two 

pulse rates are considered i.e. 1120 and 1440 pulses/sec. The MPE frame 

contains 50 samples, while a 12th order AR-LPC synthesis filter is employed 

and the LPC frame is set to 200 samples. The value of the noise shaping 

filter constant ~ is equal to 1. Notice that the pulse amplitudes and the 

LPC parameters are left unquantized. 

The optimisation of the codebook was performed as described in 

Section 5.5, and a different set of speech training data (than the set used 

in the coding experiments of Fig 5.6.2) was used to derive first a cl' set of 

4096 position -patterns and then ~Pt codebooks of various sizes. The same 

speech training data were used by the codebook optimisation process to 

calculate the performance measurements (average SNR). The variation of the 

average SNR during the optimisation process, is shown in Fig 5.6.3(a) for 

the two pulse rates of 1120 and 1440 pulses/sec. The random codebook 

contains uniformly distributed pulses, and both codebooks are unstructured 

(complete enumeration of all the codebook entries is required). A separate 

column in Fig 5.6.2 gives the number of bits required for the coding of the 

pulse positions in each frame (which in the case of the CS-MPE coder 

indicates the size of the codebook). 

~s seen in Fig 5.6.2, when the CS-MPE coder employs a 10-bit optimised 

codebook or a l3-bit random codebook, it gives SNR results which are very 

close to the results obtained from the MS5-MPE coder. The number of bits 

required for the coding of the pulse positions is therefore between one half 

and one third the number of bits required by the MS5-MPE coder in order to 

achieve the same SNR performance as the CS-MPE coder. When less efficient 

(than method MS5) MPE optimisation methods are employed, smaller codebooks 

are required by the the CS-MPE coder to achieve the same performance as the 

MPE coder. 
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The efficiency in coding the pulse positions is translated to a reduction 

of the transmission bit rate by approximately 3000 bits/sec. This figure is 

typical of the savings that can be achieved at a bit rate higher than 12 

kbits/sec. When the transmission rate is close to 9600 bits/sec, the savings 

are reduced to approximately 2000 bits/sec. It is clear (from Fig 5.6.2) 

that the optimised codebook is more efficient (by 3 bits) than the random 

codebook in achieving the same SNR performance. The steady decrease of the 

SNR as the size"of the codebook is reduced, is evident from both Figures 

5.6.2 and 5.6.3(a), and is equivalent to the SNR drop observed in common 

scalar and vector quantizers when the size of the codebook is reduced. 

When the size of the MPE frame or the pulse rate is increased, the size of 

the codebook must also be increased, to cope with the increased number and 

mobility of the pulses. This means that a certain ratio must be kept between 

the number of bits allocated to the coding of the pulse positions by a 

conventional MPE coder and by a CS-MPE coder. A small codebook leads to a 

loss in speech quality and can only be compensated by a significant rise in 

the pulse rate, which eventually consumes the potential benefits that could 

be gained by using the Codebook Search technique. 

A large unstructured codebook would be cumbersome to use, due to the 

complexity of the codebook search process. Tree codebooks and multiple 

codebooks can be used to reduce the complexity of the CS-MPE coding process, 

at a cost of a slightly increased transmission bit rate. 

At a given bit rate, the parameters chosen for the CS-MPE coder are 

usually different than in conventional MPE coders. A smaller frame is 

preferred and the pulse rate is usually higher. The quantizers used for the 

normalised amplitude values are Gaussian-optimised quantizers. As seen in 

Fig 5.6.3(b), the long-term POF of the normalised amplitudes (for a pulse 

rate of 1440 pulses/sec), is much closer to the Gaussian unit variance 

distribution (superimposed curve) than it is to the gamma distribution used 

in Chapter 4 for the conventional MPE coders. 

The results given below show the average Segmental-SNR obtained from the 

4 sec speech segment which was also used to provide the coding results 

obtained from conventional MPE coders, in Chpater 4. A 12th order AR-LPC 

filter is employed and the LPC frame contains 200 samples. The value of the 

noise shaping filter constant ~ is set equal to 1. The RMS value of the 
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FIGURE 5.6.1 Probability ditributions for : (a) Pulse Positions obtained 

from coding of speech (b) Distance (in samples) between consecutive pulses, 

obtained from coding of speech (c) Distance between consecutive pulses when 

their positions are randomly distributed. The size of the MPE frame is 50. 
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Pulseslsec 1120 1440 

l1ETHOD BITS· SNR (dBs) BITS· SNR (dBs) 

l1PE - l1ethod l1S5 27 15.6 32 17.8 

l1PE - CS Trained 8 14.5 8 16.4 

l1PE - CS Trained 9 14.9 9 16.8 

l1PE - CS Trained ID 15.3 10 17.2 

lIPE - CS Random 8 13.5 8 15.2 

lIPE - CS Random 9 13.9 9 15.6 

lIPE - CS Random 10 14.3 10 16.0 

lIPE - CS Random 11 14.7 11 16.4 

lIPE - CS Random 12 15.0 12 16.8 

lIPE - CS Random 13 15.4 13 17.2 

FIGURE 5.6.2 Average Seg-SNR obtained from a conventional MPE coder (Method 

MS5) , and a CS-MPE coder that employs an Optimised (Trained) or a Random 

Position-Codebook. The number of pulses defined in each MPE frame is the 

same for all the coders, and the number of bits (*) required for the coding 

of the pulse positions in each case is shown. 
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1440 pulses/sec 

(a) 

1120 pulses/sec 

.. 
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SNR 
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FIGURE 5.6.3 (a) Reduction of the average Seg-SNR during the Codebook 

Optimisation process, as the size m of the Codebook is reduced. Two pulse 

rates are considered i.e. 1120 and 1440 pulses/sec. 

(b) Experimental POF for the (absolute) pulse amplitudes (histogram) at a 

pulse rate of 1440 pulses/sec, and the Gaussian POF with a second moment of 

one. 
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pulse amplitudes is calculated every two (at 8 and 9.6 kbits/sec) or three 

frames (at 16 kbits/sec), and quantized using a 32 level logarithmic 

quantizer. The pulse amplitudes are first normalised by the RMS value and 

then quantized with a Gaussian PDF optimised quantizer. 

In the respective columns, the values of the transmission bit rate, the 

MPE frame size, the number of pulses per frame, the number of bits required 

for the quantization of the LPC parameters (log area-ratios), the number of 

bits allocated to each quanti zed amplitude value and the size of the 

position codebook, are given. 

Bi I Rale Frame Pu I ses LPC Amplit. Codebook SNR 

b i Is/sec (samples) (9 ) (b if s) (bi Is) (b if s) (dBs) 

8000 SO 6 SO 4 11 12.7 

8000 SO 6 46 4 12 13.0 

9600 SO 8 SO 4 13 14.5 

16000 40 11 SO 5 13 19.8 

The position codebooks used by the CS-MPE coder were random, because it is 

difficult to generate optimised codebooks of the same size. Even so, the SNR 

figures are higher than the corrsponding figures given in Chapter 4 for the 

conventional MPE coders, by approximately 1.5 dBs. The SNR values are 

expected to increase, when larger frames and larger codebooks are employed 

by the CS-MPE coder. This increase can be observed at 8000 bits/sec, when a 

12-bit position codebook is used instead of an Il-bit codebook. Obviously, 

optimised codebooks will further improve the performance of the CS-MPE 

coder. 

5.7 Conclusions 

A MPE-LPC scheme which employs a codebook for the pulse positions, has 

been proposed. The coder operates as a vector quantizer, using an Analysis 

by Synthesis optimisation loop to search through the parameter space of the 

pulse positions and minimise the distortion intro- duced by the coding 

process. The codebook can be unstructured or it can be arranged in the form 

of a tree codebook or a multiple codebook. A compu- tationally efficient 

optimisation algorithm has been described, which can be used to design an 

optimised unstructured codebook, based on a training process which takes 
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into account the average speech characteristics. The codebook optimisation 

algorithm can be modified and applied to structured codebooks. 

The CS-MPE coder can operate at lower bit rates than conventional MPE 

coders, because it allocates fewer bits to the coding of the pulse positions 

without causing any loss in speech quality. Savings of 2-3 kbits/sec can be 

achieved with an optimised or even a random pulse position codebook. 

Alternatively, The CS-MPE coder performs better than conventional MPE 

coders, when operating at the same transmission bit rate. This is true even 

when random codebooks are employed. The complexity of the MPE optimisation 

algorithm (when an unstructured position codebook is employed) though, may 

be higher than in conventional MPE schemes. The performance of the CS-MPE 

coder improves when larger MPE frames and codebooks are used. 

Larger position codebooks must be used when the size of the MPE frame is 

increased, in order to cope with the increasing number of possible pulse 

position combinations. To avoid the considerable increase of the algorithm's 

computational complexity, tree or multiple codebooks must be used. Sometimes 

though, use of a small frame size by a MPE coder can be advantageous, as it 

is for example when a Long Term Predictor (LTP) is employed and optimised by 

minimising the distortion introduced by the coder. In this case, small 

frames improve the performance of the LTP and therefore the MPE coder can 

take advantage of the efficiency of the Codebook Search optimisation process 

and reduce the number of bits required for the quantization of the pulse 

positions. 

The codebook optimisation algorithm described is quite general and does 

not depend on the availability of convenient quadratic error measures. It 

can therefore be employed in a number of general speech coding applications, 

where the speech waveform is decomposed into a number of discrete components 

[5.19,5.20,5.21,5.22], or in other related discrete optimisation problems. 
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CHAPTER 6 

BACKWARD EXCITATION RECOVERY CODING 

6.1 Introduction 

Speech coding systems which combine the source-filter model of speech 

and the concept of Analysis by Synthesis optimisation, have 

capable of providing near toll-quality speech at transmission 

production 

proved to be 

rates well below 16 kbits/sec. There are numerous applications for medium 

and low bit-rate speech coders which require high quality speech, for 

example in satellite and mobile communication networks, voice storage and 

mail, integrated services networks, etc. These applications tend to 

multiply, as easily implementable coding methods, capable of producing very 

good quality speech at even lower transmission bit-rates, become available. 

The Multipulse Excited (MPE) and Codebook Excited LPC (CELP) [6.1,6.2) 

coders have partially fulfilled the expectations of very good quality speech 

at medium and low bit rates. Both schemes employ a synthesis filter which 

usually consists of two linear autoregressive filters in cascade. The first 

filter takes the form of a Long Term Predictor (LTP) and models the fine 

spectral structure of speech, while the second filter is based on a Short 

Term Predictor (STP) and models the short term spectral envelope of speech. 

The parameters of both filters are defined periodically from the input 

speech samples. This is ususally achieved outside the main Analysis by 

Synthesis optimisation loop, by a two-stage minimisation of the energy of 

the residual signal produced by filtering the input speech through the 

inverse of the synthesis filter. Both systems transmit information, which is 

used by the decoder to reconstruct the excitation and the adaptive filter 

"components" of the coder. 

An alternative Analysis by Sythesis coding algorithm can be obtained by 

defining the excitation signal from past information which is available at 

both the encoder and the decoder, and by determining the filter parameters 

from an Analysis by Sythesis optimisation process which minimises an appro­

priately chosen error measure. This general coding approach will be referred 

to as Backward Excitation Recovery (BER) coding [6.3,6.4). 

BER coders operate at bit rates between 4 and 8 kbits/sec, and the quality 
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of speech production varies from good, at 4.8 kbits/sec, to very good 

communications quality at 8 kbits/sec. Furthermore, a BER coder may employ 

optimisation techniques which require speech frames of the order of 2-3 ms, 

thus minimising the encoding delay (compared to conventional LPC coders 

operating at low bits rates). This low delay property can be an advantage in 

transmission applications like satellite mobile radio, where the overall 

transmission delay must be minimised. 

The theory of the BER systems will be presented for the general case of a 

multi-input linear synthesis fllter. Two different models will be used for 

the estimation of the filter coefficients, one of them relies on Linear 

Prediction theory whereas the other one is based on the estimation and 

minimisation of the distortion introduced by the coding process. 

A number of recursive adaptation methods will be presented, which can be 

employed to define the excitation signals, based on the past information 

available at both the encoder and the decoder. Finally, vector quantization 

of the synthesis filter coefficients will be considered, and a quantizer 

optimisation method will be described which is based on the minimisation of 

the average distortion introduced by the coding process. 

6.2 Operation of the BER coder 

The flow diagram of the BER encoder is shown in Fig 6.2.1. The encoder 

forms the excitation signals which drive the synthesis filter, using stored 

information which was generated during the operation of the BER coder in the 

past. The same information is available at the decoder, and thus to recover 

the synthesised speech waveform, only the parameters of the synthesis filter 

need to be transmitted. 

The excitation sequences drive a multi-input synthesis filter. An example 

of·a 3-input synthesis filter driven by 3 different excitation sequences, is 

shown in Fig 6.2.2(b). The first section of the synthesis filter consists of 

a series of FIR filters Bj(z) whose outputs are combined and fed to the IIR 

filter A(z). Each FIR filter takes the form 

. -k-n-d. 
b k z I j=l,2, ... , rl b (£9 6 . 2 .1J 
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where M is the number of samples in each speech frame'"b is the number of 

FIR filters included in the synthesis filter, bt are the coefficients of the 

jth FIR filter Iqj+l coefficients are allocated to each filter), and d j is a 

positive number which specifies a time delay (for each FIR filter) and will 

be referred to as a delay parameter. 

The second part of the synthesis filter is the autoregressive (all pole) 

filter : 

1 
Aiz) = 

I 
I£q 6.2.2) 

1 - Lam 
z-m 

m= 1 

where I is the order of the filter. 

The past samples of the excitation sequences {ujl;)} are assumed to be 

available at both the encoder and the decoder. These sequences are therefore 

specified only in the negative time direction : 

{U i (i!) j=1,2, ... ,nb (£q 6.2.3) 

Notice that some of these sequences may be identical, if the same excita­

tion sequence is used at more than one inputs of the synthesis filter. 

An Analysis by synthesis optimisation procedure is used by the encoder to 

choose M-sample intervals from the past history of the excitation sequences, 

that could be used by the synthesis process to produce a synthesised version 

of the speech signal, which would be as close to the original signal as 

possible. The position of each interval (in time) is specified by the delay 

parameter d j included in the definition of the synthesis filter. The 

Analysis by Synthesis procedure optimises the value of each delay parameter 

and thus chooses the "best" intervals from the stored samples of the 

excitation sequences. 

The Analysis by Synthesis optimisation loop minimises the approximation 

error and chooses the optimum filter coefficients, which are then quantlzed 

and transmitted to the decoder. The optimum quantized filter coefficients 

are also employed by a local decoder which calculates the synthesised 

version of the speech signal and updates the history of the excitation 

sequences, before the next speech frame is processed. 

The updating of the excitation sequences is performed identically by both 
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the encoder and the decoder, without requiring the transmission of side 

information. It must therefore be done using any "intermediate results" that 

have been produced during the coders' operation. These results include the 

various signals at the outputs of the FIR filters and the synthesised speech 

signal itself. This recursive excitation adaptation process can be detected 

in Fig 6.2.1 by tracing the double excitation lines. The recursive 

adaptation algorithm employed by the local decoder, provides the link 

between the past and the present values of the excitation signals, and 

closes the excitation adaptation loop. 

The decoder, shown in Fig 6.2.2(a), operates in the same way as the local 

decoder of the encoder (Fig 6.2.1) in forming the synthesised version of the 

speech signal, provided of course that the filter parameters are received 

free of channel errors. In general, the system has a tendency to propagate 

transmission errors, as indeed is the case with any backward adaptive speech 

coding system. Nevertheless, standard "initialisation" techniques can be 

easily incorporated into the system to minimise the effect of channel errors 

on the quality of the recovered speech signal. 

The estimation of the synthesis filter coefficients (not including the 

delay parameters) will be examined first. Two methods will be considered, 

the first one employing the ARX Linear Prediction model, which enables the 

estimation of all the synthesis filter coefficients by minimising the energy 

of the prediction error. The second method optimises the coefficients of the 

BjlzJ FIR filters, by minimising the energy of the distortion introduced by 

the coding process. Different strategies will be explored, for the 

optimisation of the delay parameters, and a number of recursive excitation 

adaptation schemes will also be considered. 

6.3 Filter Coefficient Estimation using Linear Prediction 

The synthesis filter model used by the BER coder (shown in Fig 6.2.2(b» 

differs from the synthesis models employed by conventional LPC speech coders 

in that it can accept many inputs and both the input sequences (past excita­

tion samples) and the desired response of the filter (speech signal) are 

known in advance. The estimation of the filter coefficients can be treated 

as a System Identification problem and a suitable Linear Prediction model 

that can be used for the BER synthesis filter, is the Autoregressive with 

Exogenous inputs (ARX) [6.5,6.6,6.7,6.8J. The same model (with a single 
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input) has been employed by MPE coding schemes that redefine the AR-LPC 

filter, once an estimate of the Multipulse Excitation has been formed 

[6.9,6.10]. The ARX model for the BER coder can be written as : 

I Mb gj 

5 (j ) = Lam 5 (j -m) + L L bi u·(i-n-d.-k) 
I I 

+ e p (j) o~i~n-i (Eg 6.3.n 
m=t j= i k=o 

where {5 (j )) is the sequence of n speech samples contained in the speech 

frame examined, (ep(i)) is the innovation sequence (prediction error) whose 

samples are assumed to be uncorrelated and distributed as zero-mean Gaussian 

variables, and the delay parameters d j are assumed to be fixed. Under these 

conditions, the Maximum Likelihood (ML) estimate and the Least Squares (LS) 

estimate of the filter coefficients are equivalent. The LS estimate of the 

coefficients is obtained by minimising the energy of the prediction error 

over the n-sample speech interval (Eq 6.3.1). In matrix notation, Eq 6.3.1 

is transformed to 

where 5 and 

nb 

s = S a + L Uj b j + ep 
j= i 

the n-dimensional vectors containing 

(Eg 6.3.2) 

the speech and 

prediction error samples, the vector a=[a i ,a 2, ••• ,a I J contains the coeffici­

ents of the filter A(z), b;=[b~,b{, ... ,b~.J contains the coefficients of the 
I 

filter Bj(z), S is the Mxl speech matrix: 

S = 

5 (- iJ 

5 (0) 

5 (- 2) 

5 (-i) 

5(n-2J 5(n-3) 

5 (- / ) 

sri-/) 

5 (M-i-iJ 

and Uj are the (M)X(gj+i) excitation matrices 

u.(-n-d.) u.(-n-d.-iJ 
I I I I 

u j (-n-dj-q j) 

u.(-n-d.+i) u .(-M-d.) 
I I I I 

u j (-n-d ;-g ;+ i) 

u· (-d .-2J 
I I 

u. (-d .-g .-i) 
I I I 

(Eg 6.3.3) 

(Eg 6.3.4) 

i=1, ... ,nb 

The coefficients of the BER synthesis filter can be estimated by express­

ing the variance of the prediction error as a quadratic function of the 
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required coefficients and by locating the function minimum. This minimum 

generally exists and is unique. Notice that either all or some of the filter 

coefficients may be estimated in this way. Assuming for the moment that all 

the filter coefficients are required, the LS estimate of their values can be 

found by solving a system 

of unknowns. The estimated 

of (lf~lf ... f~" ) equations with 
b 

coefficient values are then 

a : STX 
: "b o 0 ------, -------,- -,--------
o T 
1 x1xnb 

T 'T : 
XiS : XiX! : 

o 0 -,--------
o = ------, ------- ,-

o • 

o • • ------,-------,- -,--------

l ~ X : 
: b i : 

the same number 

5 (Eq 6.3.5) 

The coefficient matrix of Eq 6.3.5 is symmetric and contains auto­

correlation and cross-correlation terms from the speech and excitation 

sequences. In most cases, these terms are related and can be calculated 

using computationally efficient algorithms (see Section 4.4). 

If only some of the filter coefficients need to be estimated, Eq 6.3.2 can 

be rearranged so that the left hand side contains the coefficients whose 

values have been obtained beforehand and are assumed to be constant, and the 

right hand side contains the coefficients whose values are required. For 

example, if only the last ("~-k+l) coefficient 

required and a,b 1 ,b 1 , ••• ,bk _ 1 are known, Eq 6.3.2 

k-l 
S - S a - L Ui 

i= 1 

"b 

bi = [Ui bi + ep 
i=k 

are 

(E~ 6.3.2a) 

The same procedure as before is followed to minimise the variance of the 

prediction error ep in Eq 6.3.2a, with respect to the required coefficients. 

The optimum values of the coefficients are now 

T • T -1 
XT XkXk · XkX"b · k · 0 • -------,- -,-------- k-l 0 

= (5 -Sa -[ Uib i ) · -------,- - -------- i = 1 

x,; X · XT X XT : 
b k · "b "b "b · (E~ 6.3.Sa! 
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The process of estimating part of the synthesis filter at a time, is used 

to simplify the BER filter optimisation algorithm, so that one section of 

the synthesis filter can be optimised first, then another section, and so 

on. Notice that if only the coefficients of A(z) are required, and the 

coefficiennts of the Bi(z) filters have zero values, then the estimate given 

by Eq 6.3.5 will be the same as the one obtained from the Covariance LPC 

estimation method. 

The optimisation of the sythesis filter at the encoder, is performed in a 

series of steps. At each step, a different "setup" of the synthesis filter 

is tested. The filter "setup" changes. by increasing the value of the delay 

parameters, or by adding more FIR filters. As the maximum number"b of FIR 

filter-sections is predefined, and the range of the delay variables is 

known, only a limited number of possible filter "setups" can be defined. All 

the different filter "setups" are generated and examined at the encoder, by 

the Analysis by Synthesis optimisation process (Fig 6.2.1). For each 

"setup", a set of filter coefficients is calculated by solving the 

corresponding system of linear equations (Eq 6.3.5). The speech signal is 

synthesised for every set of (quantized) filter coefficients, using the 

recursive formula 

/ 

Sy(i! = Lam syCi-m) + 
m= 1 

U· (i-n-d .-h) 
I I 

oS; i S;n-l (£9 6.3.6) 

where (syCi)} is the synthesised speech signal and (ui(i)) ,i=1,2' ... '"b are 

the excitation sequences. The error signal (distortion) is measured by the 

difference between the original and synthesised speech signals, and its 

energy is calculated for each set of filter coefficients, produced by the 

optimisation process. The set of coefficients which minimise the error 

energy are chosen by the error minimisation algorithm (Fig 6.2.1) and 

transmitted to the decoder. 

The all pole filter A(z) estimated from Eq 6.3.5, is not guaranteed to be 

minimum phase (have all its poles inside the unit circle), and may cause the 

sythesis process (Eq 6.3.6) to become unstable. This happens very rarely 

during the optimisation of the synthesis filter, and can be simply detected 

by noticing the diverging values of the synthesised signal. 

An effective remedy would be to disregard the filter "setups" which result 
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unstable synthesis filters. This would only cause a small disturbance to the 

filter optimisation process. Alternatively, a different filter estimation 

procedure can be used, which rearranges the synthesis filter of the BER 

coder into an ARMA-Lattice structure, by embedding both the output and input 

signals into a conventional Autoregressive-Lattice model [6.11,6.12,6.13, 

6.14,6.15,6.16]. The error minimised would then be a function of the forward 

and backward prediction 

be minimum phase. The 

errors, and the filter A(z) would be guaranteed to 

former approach will 

simplicity and because it can give results 

obtained using the latter approach. 

be used here, because of its 

which are as good as the results 

6.4 Estimating the Filter Coefficients by Minimising the Signal Distortion 

The synthesis filter estimation method described in Section 6.3, defines 

the filter coefficients by minimising the prediction error, and selects the 

best filter "setup" by minimising the distortion introduced by the coding 

process. Alternatively, for a given filter "setup" it is possible to 

estimate the coefficients of the synthesis filter, by minimising the signal 

distortion instead of the prediction error. 

The energy of the error signal (distortion) can be expressed as a 

quadratic function of the filter coefficients bk. The minimum of this 

function, and therefore the optimum values of the bk coefficients, can be 

found using standard Least-Squares methods. It is not possible however, to 

use the same technique to estimate the coefficients of the all-pole filter 

A(z), because the error energy function would be a higher order polynomial 

and numerical methods would need to be employed in order to locate the 

function minimum. 

The error signal is the difference between the original and synthesised 

speech waveforms : 

(£q 6.4.1) 

and the synthesised signal can be calculated using the difference equation 

6.3.6. By taking the one-sided z-transform [6.17] of both sides of Eq 6.3.6 

and rearranging the terms (see Appendix A), the synthesised signal becomes: 
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B
j 

(z) + A(z) 

/-1 
L Z-k 

k=o 

n+d j+k-1 

" u· (j-n-d .-k) L 1 1 
;=0 

/-k 

L ak+m sy(-m) 
m= 1 

(E'[ 6.4.2) 

(E,[ 6.4 .3) 

The first term of the right hand side of Eq 6.4.2 corresponds to the 

forced response of the synthesis filter, while the second and third terms 

correspond to its tra.nsient response. The term lIy (z) is the transient 

response of the all-pole filter A(z). Using Eq 6.2.1, the forced response 

can be written as : 

FORCED RESPONSE = A(z) 
-n-d .-k 

z 1 (E,[ 6.4.4) 

The samples of the sequence given in Eq 6.4.4, all lie outside the [0,n-11 

interval of the speech frame and can therefore be ignored. Thus Eq 6.4.2 can 

be simplified to : 

n-1 
= A(z) '\' u. (j-n-d .-k) L.. 1 1 

;=0 

-j 
z 

Using matrix notation, Eq 6.4.5 can be converted to 

5 = y 

where Q is the nXn lower triangular convolution matrix 

Q = 

heo) 

h ( iJ 
h (2) 

o 
heo) 
he 1) 

o 

o 
h (0) 

o 

o 
o 

h(n-iJ hCn-2) h(n-3) h(o) 

(E,[6.4.5) 

(E,[ 6.4.6) 

(E,[ 6.4. 7J 

(h(j)} is the impulse response of the all-pole filter A(z) and the matrices 
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Ui were defined by Eq 6.3.4. Using Eqs 6.4.1 

(distortion) can be expressed as a function of 

and 6.4.6, the error signal 

the bh coefficients: 

!E'l 6.4 .8) 

Assuming that the values of the filter delay parameters are fixed and that 

an estimate of the coefficients of the filter A!z) is already available, the 

filter coefficients bk can be calculated using standard Least-Squares 

methods. If, at a certain stage during the synthesis filter optimisation 

process, all the bk ,k=o,i, ... ,'lj ,i=i,2, ... ,nb coefficients were required, 

their optimum values would be : 

X~QTQ Xl i X~QTQ X2 , 
, , 

XTQTQ X 
, 1 nb 

-----------,-----------,- - ,------------

X~QTQ Xi i X~QTQ X 2 i \ XTQTQ X 
: 2 "b , , -,------------, = -----------:-----------:-

, , , 
-----------,-----------,- -,------------
XT QTQ X 'XT QTQ X

2 
\ 

"b i "b 
'XTQTQXn 

nb b 

!E'l6.4.9) 

As in the case of the prediction error minimisation equations (Eq 6.3.5), 

the coefficient matrix of Eq 6.4.9 contains autocorrelation and cross-corre­

lation terms which are generally related. These relationships can be exploi­

ted to simplify considerably the computation of the coefficient matrix and 

subsequently the BER optimisation algorithm. 

The energy of the error signal (Eq 6.4.8) is calculated (for the quantized 

filter coefficients) using an augmented coefficient matrix, and the computa­

tionally efficient formula (see Appendix B) 

T : T : (s-my ) (s-my ) : (s-my ) Q Xi! 
-------------,-----------,-

XiQT(s-my ) i XiQTQ Xi i 
, , -------------,-----------,-, , 

i (s-my ) TQ Xn 
, b 

-I ------------, 
XTQTQ X 

, i "b 
-1------------, 

, -,------------
: XT QTQ X 
:"b "b 

I 

-b 
nb 

!Eq 6.4.10) 
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The error energy is calculated for every possible "setup" of the synthesis 

filter examined by the Analysis-by-Synthesis optimisation procedure (see Fig 

6.2.1). The error minimisation algorithm finally chooses the set of coeffi­

cients that correspond to the smallest value of the error energy. These 

coefficients are then transmitted to the decoder. 

As in the case when the filter coefficients are estimated using Linear 

Prediction methods (Section 6.3), only some of the filter coefficients may 

be required at some stage during the synthesis filter optimisation process. 

Equation 6.4.6 can be rearranged so that its left hand side contains all the 

coefficients whose values have been determined at a previous optimisation 

stage, and its right hand side contains the coefficients which need to be 

estimated. The error energy would then be minimised with respect to the 

required coefficients, by solving the corresponding system of linear 

equations (Eq 6.4.9). 

The Distortion-Minimisation (DM) Filter-Estimation algorithm described in 

this Section, can be combined with the Linear-Prediction (LP) estimation 

algorithm of Section 6.3, if the latter algorithm is employed to provide an 

estimate of the coefficients of the all-pole filter A(z). Alternatively, an 

estimate of the filter A(z) can be obtained (and subsequently used by the DM 

algorithm) using conventional LPC methods (eg. the Covariance or the Maximum 

Entropy filter estimation methods) 

The DM algorithm can be modified to permit negative values for the delay 

parameters (dj(o). In this case the forced response of the synthesis filter 

(Eq 6.4.4) cannot be ignored, and an estimate of the excitation sequences in 

the positive time direction must be formed by artificially extending the 

excitation sequences using the past excitation samples [6.18,6.19). The same 

modification can be applied to the LP estimation algorithm of Section 6.3. 

The DM algorithm can be simplified by limiting the effective duration of 

the impulse response ho ,h 1,h 2, ... [6.18), or by choosing the "setup" of the 

synthesis filter in some other way (using for example the LP method) and 

then using the OM estimation method only in the final filter optimisation 

stage, to obtain all the bk filter coefficients. 

An interesting relationship between the error signal (distortion) and the 

prediction error (Eq 6.3.1), can be formed by taking the z-transform of both 
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sides of Eq 6.3.1. By rearranging the terms, an equation similar to Eq 6.4.2 

can be obtained : 

n+d J+k-1 

sex) = A(x) 2:: Ui (x) Bi (x) +A(x) ~ u . (j -n-d .-k) 
L I I 
i=o 

where Ep(x) is the prediction error, and: 

1-1 

IHx) = A(z) 2:: z-k 

k=o 

I-k 

2:: ak+m s (-m) 
m= 1 

(Eq 6.4. IIJ 

(Eq 6.4.12) 

If the assumption is made that the last 1 samples of the synthesised and 

original speech waveform in the previous analysis frame were equal : 

m=l,2, ... ,1 (Eq 6.4 .13) 

then, using equations 6.4.1, 6.4.2 and 6.4.11, a relationship between the 

two error signals can be established 

(Eq 6.4.14) 

It is clear that the two error sequences have quite different spectral 

distributions, and that the minimisation of the energy of one of them does 

not necessarily cause the minimisation of the energy of the other. The two 

sequences (and therefore the DM and LP estimation algorithms) become 

equivalent only when the all-pole filter A(x) is removed from the synthesis 

filter (that is when A(z)=I). 
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6.S Optimisation of the Filter Delay Parameters 

The Analysis by Synthesis optimisation process employed by the BER encoder 

seeks to determine n-sample intervals from the stored sequences of past 

excitation samples, that can be used to drive a multi-input synthesis filter 

whose output is the reconstructed speech signal. The relative position of 

each interval (in time) is specified of a delay parameter d J• Each delay 

parameter corresponds to a separate FIR section of the synthesis filter 

(Fig 6.2.2(b)) and may take any integer value in the interval Co,nd-i]. 

The values of the delay parameters are determined so that the energy of 

the distortion introduced by the coding process is minimised (Fig 6.2.1). 

For each set of delay values tested by the Analysis by Synthesis optimisa­

tion process, a set of filter coefficients a,b j can be found, using either 

the Linear Prediction (LP) or the Distortion Minimisation (OM) methods, 

described in Sections 6.3 and 6.4. 

The synthesis filter coefficients is therefore optimised using analytical 

methods, whereas the delay parameters are optimised using numerical methods. 

As the number of FIR sections of the synthesis filter is usually not large, 

a sequential optimisation approach is followed to determine the values of 

the delay parameters. 

The synthesis filter optimisation process determines the value of d i 

first, allowing only A(z) and 8 i (z) to have non-zero coefficients. In the 

second stage of the optimisation process, the value of d
2 

is determined 

assuming that the value of d
i 

remains fixed and allowing only A(z), 8
i
(z) 

and 8 2 (z) to have non-zero coefficients. The process continues until all the 

delay parameters, and therefore all the FIR filter sections, are determined. 

At each stage a delay parameter is defined by first evaluating the energy 

possible value of the delay parameter, 

which results the minimum distortion 

of the signal distortion for every 

and then choosing the delay value 

energy. This simple optimisation strategy provides the common ground for the 

development of various filter optimisation algorithms. These algorithms are 

formed by choosing a different set of filter coefficients to be optimised at 

each stage ("setup"), or by changing the filter estimation algorithm (either 

the LP or the OM methods). 

Possible optimisation algorithms for the Single-FIR-Section synthesis 
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filter are given in Fig 6.5.l(a). The first two algorithms ni (}) and n
i

(2) 

optimise the coefficients a and b i jointly, using either the LP estimation 

method (Eq 6.3.5) or a combination of the LP and DM methods. When the two 

estimation methods are combined (to form method LP-DM), Eq 6.3.5 is employed 

to estimate the a and b
i 

coefficients, and Eqs 6.4.9 and 6.4.10 are used to 

reoptimise the b
i 

coefficients and measure the distortion energy (Eq 6.4.10) 

for every possible value of d i (o~di~nd-i). Notice that once the optimum 

value of the parameter d i is determined by method nit}), it is possible to 

reoptimise the b
i 

coefficients using Eq 6.4.9. This possibility is indicated 

by the presence of the (R) symbol next to the coefficient estimation method. 

Methods n
i

(3) and n
i

(4) assume that the coefficients of the filter A(x) 

have been estimated separately using a conventional LPC method (Covariance 

or Maximum Entropy), and that they are kept constant during the optimisation 

of the parameter d 1 . As a consequence, the frame over which A(x) is defined 

can be different (and usually larger) than the frame over which the b i 

coefficients are defined. Method ni (3) uses the LP method to estimate the 

set of coefficients b
i

, but may be modified to allow the reoptimisation (R) 

of the b
i 

coefficients from Eq 6.4.9, after the "optimum" value of the para­

meter d
i 

has been determined. 

As more FIR sections are added to the synthesis filter, the number of 

possible optimisation algorithms rapidly increases. In Fig 6.5.l(b), algo­

rithms that can be employed to optimise a synthesis filter with two FIR 

sections, are described. The value of the parameter d 1 is optimised in the 

first stage, and d 2 is optimised in the second stage. As in the case of the 

Single-FIR-Section synthesis filter, three filter estimation algorithms are 

used i.e. the LP (Eq 6.3.5), the DM (Eq 6.4.9) and the LP-DM (Egs 6.3.5 and 

6.3.9) methods. Different sets of filter coefficients are chosen to be 

optimised at each stage, and some filter coefficients remain constant during 

the optimisation of the parameters d i or d 2• 

In methods n
2
(}J-n

2
(B) the coefficients of the filter A(x) are estimated 

during the optimisation of the parameters d i or d 2 , using the LP estimation 

method (Eq 6.3.5). In contrast, methods n 2 (9J-n 2 (}2J estimate the coeffici­

ents of the filter A(xJ separately, using a conventional LPC method and 

possibly a larger speech interval than the interval over which the b i and bz 
coefficients are defined. The a coefficients are then kept constant during 
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tlETHOD ESTItlATION COEFF. COEFF. COEFF. COEFF. 

tl z(/ ) LP (R) a b l a b 1 b z 

tI Z (2) LP (R) a b l a b l b z 

tl z (3) LP (R) a b l b l a b z 

tl z (4) LP (R) a b l a b l b z 

tlz(S) LP-DtI (R) a b l a b l bz 
(b) 

tI z (6) LP-DtI a b1 a b1 b z 

tl z (7 ) LP-DtI (R) a b1 b1 a b z 

tlz(S) LP-DtI (R) a b 1 a b l b z 

tI Z (9) LP ( R) a b1 a b l b z 

tlz(WJ LP (R) a b1 a b1 b z 

tlz([l) DtI (R) a b1 a b1 b z 

tl z ([2) DtI a b1 a b1 b z 

FIGURE 6.S.l Algorithms used to define the Filter Delay-Parameters when 

(a) the BER synthesis filter contains one FIR section 

(b) the BER synthesis filter contains two FIR sections. 
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the optimisation of the parameters d 1 and d z• 

Notice that a further optimisation stage can be added to most methods, 

that reoptimises (R) the b
i 

and b z coefficients (using Eq 6.4.9), after the 

"optimum" values of the parameters d 1 and d z have been determined. 

When three FIR sections are included in the synthesis filter, the number of 

possible filter optimisation algorithms is even greater. In general, these 

filter optimisation algorithms can be applied to any BER coding scheme, 

irrespective of the type and number of excitation sequences used. 

The filter optimisation algorithms can be simplified by using a subset of 

the synthesis filter coefficients (one or two coefficients for each FIR 

filter section) in order to determine the optimum values of the delay 

parameters, and finally estimating all the filter coefficients (using either 

the LP or the DM algorithms) for the optimised delay parameters. 

The performance of the BER filter-optimisation algorithms can be improved 

by considering a group of consequtive speech frames, and by minimising the 

distortion over the entire speech interval, with respect to the filter 

parameters corresponding to each of the frames in the group. 

6.6 Algorithms for the Recursive Adaptation of the Excitation Sequences 

As the BER coder processes the speech signal, it goes through two 

different phases which can be considered separately. In the first phase, 

described in Section 6.5, the input to the synthesis filter is obtained from 

the stored sequences of past excitation samples (ujli)}, and the parameters 

of the synthesis filter are optimised in an Analysis by Synthesis optimisa­

tion loop. This operation is only performed by the encoder, and the estima­

ted parameters (filter coefficients and delay parameters) are transmitted to 

the decoder. 

Both the encoder and the decoder then change to an operational mode which 

is responsible for the adaptation of the excitation sequences and the 

recovery of the synthesised speech signal. In this second phase the encoder 

operates as a local decoder (Fig 6.2.1). 

The adaptation of the excitation sequences is performed by extending them 

in the positive time direction, using as components the "time sequences" 

produced during the filter optimisation (intermediate results) which are 
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available to both the encoder and the decoder. The extension of the excita­

tion sequences covers a single frame of" samples, and is added to the 

already stored excitation samples by effectively shifting the stored excita­

tion sequences by " samples and appending the new samples. 

There are many possible ways in which the different "time sequences" can 

be combined to form a suitable continuation of the excitation sequences in 

the positive time direction, and it is surprising how different the 

characteristics of the excitation signals can be, depending on the choice of 

the adaptation algorithm. 

The synthesis filter of the BER coder may have many inputs (corresponding 

to the separate FIR sections), but the number of excitation sequences may be 

smaller, if two or more inputs are obtained from the same excitation 

sequence. Consider first the case of a multi-input synthesis filter and a 

single excitation sequence. A possible excitation adaptation algorithm can 

be constructed using the output of the "optimised" synthesis filter (see Eq 

6.4.5) : 

nb 

Ut (z) = Aiz) L Ut (bj,d j ) + lIy (z) 

i = t 

(E~ 6.6.1) 

where Ut(z) is the continuation of the sequence (u 1 (;)} in the positive time 

direction (one-sided z-transform), and for notation convenience the short 

description of the output of the jth FIR filter section, when the input is 

taken from the (u m(;)} excitation sequence is : 

"-1 
'\" U (i -n-d . -k) 
L. m 1 

(E~ 6.6.2) 
;=0 

,It is understood that the filter parameters b i,d/used, were determined by 

the filter optimisation process during the first phase of the coder's opera­

tion. Since : 

(E~ 6.6.3) 

the stored excitation samples are taken from the output of the synthesis 

filter and the excitation sequence (u
1
(;)} has speech-like characteristics. 

In Fig 6.6.1(a), an expanded view of the synthesis filter is shown, just 
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before the speech synthesis and excitation adaptation operations take place. 

The parameters of the synthesis filter have been determined by the filter 

optimisation process. Two FIR filter sections are employed (corresponding to 

the delay parameters d 1 

filter delay line. By 

and d z) and the excitation samples are stored in the 

clocking the filter n times, n synthesised speech 

samples are recovered at the output. These samples enter the delay line and 

therefore update the values of the stored excitation sequence. The length of 

the delay line (number of past excitation samples kept) is equal to 

ntndtmatCqj] ' where nd-1 is the maximum value of the delay parameter and 

qjt1 is the number of coefficients of the jth FIR filter section. Note that 

initially (when the BER coder starts operating) the excitation sequence held 

in the delay line of the encoder and the decoder is set to a preconstructed 

sequence of zero-mean Gaussian-distributed random samples. 

A different excitation adaptation algorithm can be constructed using the 

combined outputs of the FIR sections of the synthesis filter. If only a 

single excitation source is used, then the adaptation algorithm is defined 

by the equation : 

nb 

U1 (z) = L U1 (b j ,d j ) 

1=1 

(Eq 6.6.4) 

If more than one excitation sequences are used, then the order with which 

the updating equations are applied is important. This is because the filter 

optimisation process determines the parameters of the 81(z) filter first, 

then those of 8 z(z), and so on. This order of preference puts different 

emphasis on each excitation sequence and thus the adaptation order also 

becomes significant. 

When nb excitation sequences are used, a possible adaptation strategy can 

be formed by combining the outputs of the FIR filter sections in the 

following way 

nb-m+l 

Um(z) = L Uj(bj,d j ) 
j= 1 

But equally well, the adaptation algorithm can be changed to 

(Eq 6.6.5) 
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,. 
V,.(2) = L Vjlbj,d j ) 

j=t 

1£9 6 .6. 6 ) 

The adaptation algorithms defined by Egs 6.6.4, 6.6.5 and 6.6.6 can be 

combined to accomodate any number of excitation sequences (not necessarily 

as many as the FIR filter sectionsl. An example is shown in Fig 6.6.1(bl, 

which depicts the "optimised" synthesis filter of a BER coder, prior to the 

initiation of the excitation adaptation and speech synthesis operations. 

Three FIR filter sections and two excitation sequences are used. The 

excitation adapatation algorithm derived from Fig 6.6.1(bl is : 

1£9 6 . 6 .7) 

This algorithm has been formed by combining the algorithms of Eqs 6.6.4 

and 6.6.5. By clocking the filter n times, both excitation sequences are 

updated and the synthesised speech signal is recovered at the output of the 

synthesis filter. As in the previous example, the sequences held in the 

delay lines of the encoder and decoder are initially set to preconstructed 

sequences of random samples (common to both the encoder and decoderl. 

An extended excitation adaptation algorithm can combine the adaptation 

strategies defined by Eqs 6.6.1, 6.6.4, 6.6.5 and 6.6.6. An example is shown 

in Fig 6.6.2(al. Two FIR filter sections are defined, but the two excitation 

sequences are updated using two different adaptation algorithms. The adapta­

tion algorithm derived from Fig 6.6.2(al is : 

1£9 6.6.8) 

The excitation sequence V
t

(2) is updated from the output of the synthesis 

filter and has therefore speech-like characteristics. 

The versatility of the excitation definition algorithms can be extended by 

introducing a non-adaptive element. This can be a "fixed" sequence of zero­

mean Gaussian-distributed random samples, which can be used to substitute 

one or more of the excitation sources. If these "fixed" excitation sequences 

were exclusively employed by the BER coder, the input-output relationship 
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corresponding to the operation of the synthesis filter could be expressed in 

a similar way as in the case of the adaptive components (Eq 6.4.5) : 

= A(z) 

n-1 

Le j (j-n-d j-k) 
j =0 

-i z (£9 6.6.9) 

The optimised filter parameters are employed in Eq 6.6.9, and the "fixed" 

random sequences are only specified in the negative time direction : 

j (0 j=l,2, ... ,nb 

Eq 6.6.9 can be rewritten as 

nb 

Sy(z) = A<z) L Cj(bj,d j ) + ily(z) 

j= 1 

where as before, the convenient notation used is 

n-1 "c (i-n-d.-k) L... m J 
i=o 

(£9 6.6.10) 

(£9 6.6.11) 

(£9 6.6.12) 

The "fixed" random sequences can substitute any excitation sequence in the 

adaptation algorithms defined by Eqs 6.6.1, 6.6.4, 6.6.5 and 6.6.6. Two such 

examples are shown in Figures 6.6.2(b) and 6.6.3(a). In both cases, the 

synthesis filter contains two FIR filter sections, and two excitation 

sequences are employed, one of whom is a "fixed" random sequence. In the 

first example, the adaptation algorithm of Eq 6.6.1 has been modified to 

accept one "fixed" sequence, and the adaptation equation is : 

(£9 6.6.13) 

In this case, the synthesised speech signal is 

n-1 

"c (j -n-d -k) L... 1 2 
i=o 

(£9 6.6.14) 

In the second example (Fig 6.6.3(a» the algorithm of Eq 6.6.5 has been 

modified to include one "fixed" excitation source. The adaptation equation 

is : 
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(Eq 6.6./5) 

and the synthesised speech signal is : 

n-1 
'\"' u (j -n-d -k) L. 1 1 
i =0 

n-1 
'\"' c (j -n-d -k) L. 1 2 
j=o 

",-i 1 +11/",) 

(Eq 6.6.16) 

This last excitation adaptation algorithm makes the BER coder equivalent 

to a Code Excited LPC (CELP) coder that uses overlapping excitation code­

words [6.20,6.21]. The adaptation of the excitation sequence performed by 

the BER coder corresponds to the operation of the Long Term Predictor (LTP) 

in a CELP coder, and the "fixed" random sequence employed by the BER coder 

corresponds to an excitation codebook whose consequtive entries overlap by 

n-1 samples. 

The "fixed" random sequences can substitute all the excitation sequences 

of the adaptation algorithms defined by Eqs 6.6.4, 6.6.5 and 6.6.6. In such 

a case, the synthesised speech is recovered using Eq 6.6.9. 

As the number of excitation sequences increases, the adaptive and non­

adaptive elements of the excitation can be combined in a greater number of 

ways, resulting an increasing number of possible excitation adaptation 

algorithms. When the numerous excitation adaptation algorithms are combined 

with the possible filter optimisation algorithms (described in Section 6.5), 

the resulting number of BER coding schemes can be remarkably large. 

In Fig 6.6.4, a summary of the possible excitation adaptation algorithms 

is given, for the case of a two-input synthesis filter. The first three 

algorithms Pz(/)' P2 (2) and P2 (3) require a single excitation source, while 

the rest reguire two excitation sources. The P 2 (3) and P 2 (/2) algorithms 

involve exclusively" fixed" random sequences. The P 2 (9) and P 2 (J IJ adapta­

tion algorithms are similar to the P 2 (B) and P 2 (/O) algorithms but during 

the optimisation of the synthesis filter, the FIR filter section correspon­

ding to to the "fixed" random excitation sequence is optimised first. 
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(a) 

s (-n-d -1) y 1 
s (-n-d -1) 

y 2 

(b) 

1<---'" 

u 2 (-n-d 2) 

-------------------~+ 

1<---'" 

u (-n-d -3) 
1 1 

u (-n-d ) 
1 1 

FIGURE 6.6.1 Two different structures of the BER Synthesis Filter: 

(a) The Excitation is defined from the past synthesised speech samples. 

See Eq 6.6.3 or Excitation Adaptation Method P2()). 

(b) Two separate Adaptive Excitation sequences are defined. 

See Eq 6.6.5 or Excitation Adaptation Method P 2 (S). 

OUT 
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( a) 

}------ "' -----+------, 

u (-n-d -3) 
t 1. 

c (-n-d - 3) I Z 

u (-n-d ) 
1. 2. 

5 (-n-d -iJ y i 

c (-n-d ) 
I 2. 

5 (-n-d -iJ 
y I 

(b) 

.,~ 
C

I
(-3).C

I
(-2) Cl(-I! 

FIGURE 6.6.2 Two more different structures of the BER Synthesis Filter: 

(a) The Excitation is defined from a combination of past Synthesised Speech 

and an Adaptive Excitation Source. 

See Eq 6.6.8 or Excitation Adaptation Method P2(4). 

(b) The Excitation is defined from a combination of past Synthesised Speech 

and a Fixed Excitation Source. 

See Eq 6.6.13 or Excitation Adaptation Method P
2

(B). 
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( a) 

.. ~ 
c 1 (-n -d 2 - 3 ) c (-n-d ) 

1 7. 
C

1
(-3) C

1
(-2) C

1
(-l! 

------------------~+ 

u
1
(-n-d

1
-3) u (-n-d ) 

1 1 

}---~ + 

OUT 

(b) 

OUT 
,-----------,,--0( + }--------.--t( + }----------,---t( + }--------,,-... 

FIGURE 6.6.3 (a) Another possible structure of the BER Synthesis Filter 

One Fixed and one Adaptive Excitation sequences are defined. 

See Eq 6.6.15 or Excitation Adaptation Method P2(JO). 

(b) The Self-Excited Vocoder. Three Long-Term Predictors are employed. The 

first Long-Term Predictor is operating without excitation. 
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IIETHOD RECURSIVE EXCITATION ADAPTATION ALGORITHII 

P 2 (J ) U 1 (Z) = (U l (b l ,d l ) f U l (b2'd Z») A(Z) f lIy (z) 

P 2 ( 2 ) U 1 (Z) = U l
(b

l
,d

l
) f U

l
(b

2
,d

Z
) 

P 2 (3) EXCITATION FRail RANDOII SEQUENCE (c
t
(/)} , / <0 

U 1 (z) = (U l (bl'd l ) + U 2 (b 2 ,d z») A(z) f lIy (z) 

P Z (4) 

U Z (z) = U 2 (b2'd z) 

U 1 (z) = U l
(b

l
,d

l
) + U z (b

2
,d

2
) 

P 2 (5) 

U Z (z) = U 2 (b2'd z) 

U 1 (z) = U l
(b

l
,d

l
) 

P Z (6) 

(U l (b l ,d l ) f U z (b 2 ,d z») U z (z) = A(z) f lI y (z) 

U 1 (z) = U l
(b

l
,d l ) 

P Z (7 ) 

U Z (z) = U l
(b

l
,d

l
) f Uz(bz,d z ) 

P z (B) U
l

(z) = (U l (b
l
,d l ) f Cl (bz,d z») A(z) f II/z) 

P z (9) AS Pz(B) BUT OPTIIIISING FIRST WITH RESPECT TO (c l (/)} 

Pz(JO) U
l

(z) = U
l

(b
l
,d

l
) + C

l
(b z,d z) 

P
2
(1l) AS P z (JO) BUT OPTIIIISING FIRST WITH RESPECT TO (c l U)) 

P / 12) EXCITATION FRon SEQUENCES {c 1 (I)} otld {c z (I)} , 1(0 

FIGURE 6.6.4 Possible Excitation Adaptation algorithms when the BER 

Synthesis Filter contains two FIR sections. 
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6.6.1 The Self Excited Vocoder 

The Self Excited Vocoder [6.22,6.23,6.24] is a speech coding scheme that 

shares a number of common elements with the MPE and CELP speech coders. It 

employs a synthesis filter which consists of a number of Long Term Predict­

ors (LTPs) and an all-pole LPC filter in cascade. It relies solely on the 

adaptation of the filter parameters to recover the synthesised speech signal 

and does not transmit any information related to the excitation signal. 

In Fig 6.6.3(b), the synthesis filter of a Self Excited Vocoder is shown, 

when 3 LTPs are employed. The first LTP B1 (z) (defined by Eq 6.2.1), has no 

input at all and its output can be calculated using the recursive formula 

U !i-n-d -k) 
1 1 

(Eq 6.6.1.1i 

In general, the output of the jth LTP can be calculated using the formula: 

qj 

U / ii = L b i u; ( j -n -d j -k) tu; _ 1 !i ) 
k=o 

o~j~n-l (Eq 6.6.1.2) 

where nb is the number of LTPs used. The one-sided z-transform of Eq 6.6.1.2 

is (see Appendix C) 

q; ntd;tk-l 

L bk L uj(j-n-d;-k) 
k=o j =0 

------------------------------ + (Eq 6.6.1.3) 

By considering only the samples of Uj(z) that lie inside the interval 

[0,n-l1, Eq 6.6.1.3 can be transformed to : 

n-l 

L u . !i-n-d .-k) 
1 1 

;=0 

-j 
z t U

j
_

1 
(z) (Eq 6.6.1.4) 

Eq 6.6.1.4 can be expanded by performing the recursions, and the result is 

the non-recursive formula. 

j 

Uj (z) = L 
m=l 

n-l 

L 
;=0 

u !i-n-d -h) m m (Eq 6.6.1.5) 

The output of the last LTP is fed to the all-pole filter A(z) whose output 
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is the synthesised speech signal : 

n-1 
'I;""' u. (j-n-d .-k) L.. I I 
;=0 

-j z (Eq 6.6.1.6) 

Eq 6.6.1.6 is identical to Eq 6.4.5 and shows how closely related the BER 

coding schemes and the Self Excited Vocoder are. 

The Self Excited Vocoder performs the optimisation of the synthesis filter 

in stages. In the first stage, only the B1 (z) LTP is allowed to have non­

zero coefficients, and its parameters are optimised using an Analysis by 

Synthesis procedure which minimises the distort.ion introduced by the coding 

process (Eqs 6.4.9 and 6.4.10). In the second stage the parameters of the 

first LTP are fixed, and the second LTP B2(z) is optimised in an Analysis by. 

Synthesis loop that minimises the distortion. Using the same process, the 

rest of the LTPs are optimised in the following stages. When a single LTP is 

employed, this filter optimisation algorithm is equivalent to the n1 (4) 

algorithm described in Section 6.5. When two LTPs are used, the process is 

equivalent to the n2 (11) optimisation algorithm. 

The operation of the LTPs automatically updates the excitation sequences 

stored in the corresponding delay lines, and this adaptation operation is 

defined by Eq 6.6.1.5. This equation is identical to Eq 6.6.6, which is one 

of the possible excitation adaptation strategies that can be adopted by the 

BER coder. When the Self Excited Vocoder employs two LTPs, the excitation 

adaptation process is equivalent to the P2(7) adaptation algorithm. 

The Self Excited Vocoder uses two of the possible filter optimisation and 

excitation adaptation algorithms available to a general BER coder, and is 

therefore a special case of BER speech coding. 
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6.7 Comparison of the BER Algorithms 

In Sections 6.5 and 6.6, various synthesis filter optimisation and excita­

tion adaptation algorithms were defined. These algorithms form the basis for 

the development of numerous BER coding schemes. The behaviour of three such 

coding schemes will now be examined. The first scheme (CODER-I) employs a 

single-input synthesis filter and defines a single sequence of past excita­

tion samples. The excitation adaptation algorithm utilises the output of the 

synthesis filter and is defined by the equation : 

= A(z) 

where 

A(z) = 

n-1 

L u
1 

(i-n-d
1
-k) 

i=o 

1 

-i z (£9 6.7.1) 

(£9 6.7.2) 

The FIR section of the synthesis filter therefore includes 3 coefficients 

(b~,b~,b~) and one delay parameter (d 1 ), and the filter A(z) is a second­

order all-pole filter. The filter optimisation algorithm chosen is the ft
1

(2) 

which optimises the a and b
1 

coefficients using the Linear Prediction method 

(Section 6.3), and then reoptimises the b
1 

coefficients to minimise the 

energy of the signal distortion (for each value of the delay parameter). The 

speech frame contains 24 samples (n=24) and the delay parameter may take 256 

different values (o~d1~255). 

The second scheme (CODER-2) employs a two-input synthesis filter and 

defines two excitation sequences. The P2(2) excitation adaptation algorithm 

and the ft 2 (11) filter optimisation method are used. Each FIR section of the 

synthesis filter includes one coefficient (b~) and one delay parameter d j • 

The excitation adaptation algorithm is therefore defined by the equation 

2 n-1 

U 1 (z ) = L b~ "u. (j-n-d.) L I I 
j= 1 ;=0 

n-1 

U 2 (z ) = b; L u 2 (j -n -d 2) z - i 

i=o 

The filter A(z) is a 12-th order all pole filter 

(£9 6 .7.3) 
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1 
A(z) = (£9 6.7.4) 

which is defined over an interval of 144 speech samples, using the Maximum­

Entropy LPC method. The analysis frame size and the range of the delay para­

meters are set as in CODER-l (n=24 , nd=256). Note that if the total number 

of parameters transmitted per second is measured, then both CODER-l and 

CODER-2 require the transmission of 2000 parameters (filter coefficients and 

delay parameters) per second. 

CODER-3 is equivalent to CODER-2, but employs two "fixed" random excitation 

sequences and uses the P2(12) excitation definition algorithm. 

The transient response of the three coding schemes is first examined, and in 

particular the response of the coders in the first 24 ms of their operation 

can be observed in Figures 6.7.1, 6.7.2 and 6.7.3. In Fig 6. 7.1(a), the 24 

speech samples (3 ms at 8 kHz sampling rate) of the current analysis frame 

are plotted to the right of the vertical axis (positive time direction) , 

while the past 168 samples (21 ms) are in the negative time direction. In 

Fig 6. 7.1(c), the 280 past excitation samples stored in the delay line of 

CODER-l, are plotted in the negative time direction. The first 112 samples 

of this sequence are random and correspond to the random excitation sequence 

which was initially installed in both the encoder and the decoder, before 

they started operating. The rest 168 samples have been produced by the 

excitation adaptation algorithm and are exactly the same as those of the 

synthesised speech signal in Fig 6.7.1(b). 

The time sequences are observed after the completion of the filter optimi­

sation and excitation adaptation operations, so both the continuation of the 

excitation sequence in the positive time direction, and the synthesised 

speech waveform in the current frame are shown in Figures 6.7.1(c) and (b). 

In Fig 6. 7.1(d), the evolution of the filter optimisation process is shown 

by plotting the changing value of the SNR measured as the value of the delay 

parameter is varied (-255S-d1So). The optimum delay value corresponds to the 

position of the maximum SNR. It is evident that the highest SNR values occur 

in the section where the excitation signal is speech-like, and that the SNR 

curve itself follows the "periodic variation" of the speech waveform. The 
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locations of the SNR peaks correspond to the segments of the excitation 

waveform which are most similar to the speech signal in the current analysis 

frame. 

The remarkable ability of the BER coder to respond to sudden changes in 

the speech waveform is demonstrated in Fig 6.7.1. The synthesised speech 

signal in Fig 6.7.1(b) follows the original speech waveform in Fig 6.7.1(a) 

closely, even in the first processed frame. This happens in spite of the 

fact that the BER coder reconstructs the speech signal and the filter 

excitation using a backward adaptation algorithm. 

The response of CODER-2 in the same time interval is shown in Fig 6.7.2(a). 

The two excitation sequences {u l (i)} and {u 2(i)} are also shown in Figures 

6.7.2(b) and (c). The excitation sequences exhibit noise-like characteri­

stics and differ in the range of sample values, as a consequence of the 

particular filter optimisation and excitation adaptation strategies chosen. 

Figure 6.7.2(d) shows the two SNR curves corresponding to the separate op­

timisation of the two delay variables d
l 

(lower curve) and d 2 (upper curve). 

The SNR peaks are much more sharp than in the case of CODER-I, and the lower 

SNR curve has a periodic component similar to that of the speech waveform. 

The highest SNR attained by CODER-2 is, in this case, approximately 5 dBs 

lower than the highest SNR attained by CODER-I. 

The response of CODER-3 is shown in Fig 6.7.3(a). The "fixed" random exci­

tation sequences {c l (i)} and {c 2(i)} are shown in Figures 6.7.3(b) and (c). 

The results obtained from CODER-3 are comparable to those of CODER-2, even 

though the excitation sequences are not allowed to adapt to the changing 

speech characteristics. The two SNR curves of Fig 6.7.3(d) are similar to 

the corresponding curves of CODER-2, but the periodic component of the lower 

curve is now missing for obvious reasons. 

In Figures 6.7.4, 6.7.5 and 6.7.6, the steady-state behaviour of the three 

coding schemes can be studied, by observing their response during a 38 ms 

interval of voiced speech. The SNR curve corresponding to the filter optimi­

sation in CODER-I, shown in Fig 6. 7.4(c), is definitely showing the same 

periodic structure as the speech waveform, but the height of the SNR peaks 

is progressively declining as the value of the delay parameter is increased. 

This reflects the growing dissimilarity between two segments of the speech 

waveform as their relative distance is increased. It also suggests that the 
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FIGURE 6.7.1 Signals obtained from coding speech with CODER-I. The first 
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FIGURE 6.7.2 Signals obtained from coding speech with CODER-2. The first 

24 ms of the coder's operation are shown. (a) Synthesised Speech 

(b) First Adaptive Excitation Seguence (c) Second Adaptive Excitation 

Sequence (d) The SNR obtained for the last 3 ms (24 samples) of the speech 

waveform, while varying the value of the delay parameters d 1 and d z• 
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FIGURE 6.7.3 Signals obtained from coding speech with CODER-2. The first 

24 ms of the coder's operation are shown. (a) Synthesised Speech 

(b) First Fixed Excitation Sequence (c) Second Fixed Excitation Sequence 

(d) The SNR obtained for the last 3 ms (24 samples) of the speech waveform, 

while varying the value of the delay parameters d
1 

and d 1. 
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FIGURE 6.7.4 Signals obtained from coding speech with CODER-l. 

(a) Original Speech (b) Synthesised Speech, which also forms the Excitation 

Sequence (c) The SNR obtained for the last 3 ms (24 samples) of the speech 

waveform, while varying the value of the delay parameter d
1

• 
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FIGURE 6.7.5 Signals obtained from coding speech with CODER-2. 

(a) Synthesised Speech (b) First Adaptive Excitation Sequence (c) Second 

Adaptive Excitation Sequence (d) The SNR obtained for the last 3 ms (24 

samples) of the speech waveform, while varying the value of the delay 

parameters d 1 and d z• 
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FIGURE 6.7.6 Signals obtained from coding speech with CODER-3. 

(a) Synthesised Speech (b) First Fixed Excitation Sequence (c) Second 

Fixed Excitation Sequence (d) The SNR obtained for the last 3 ms (24 

samples) of the speech waveform, while varying the value of the delay 

parameters d
1 

and d z• 
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maximum permissible value of the delay parameter of CODER-l can be reduced 

without affecting the coder's performance. 

The excitation sequences of CODER-2, shown in Figures 6.7.5(b) and (c), 

are clearly different. The {u
1
(j) sequence has a definite pitch structure 

corresponding to the pitch structure of the speech waveform, while {u 2(j) 

is more random and has a smaller dynamic range. A comparison of the SNR 

curves corresponding to CODER-2 and CODER-3, shown in Figures 6.7.5(d) and 

6.7.6(d), reveals a subtle 

filter optimisation stage 

difference between the two schemes. The first 

of CODER-2 (optimisation of d 1 ) gives better 

results than the equivalent stage of CODER-3, because 

the {u
1
(j) excitation sequence, which has clearly 

CODER-2 relies more on 

adapted to the speech 

waveform characteristics. The results obtained from the second optimisation 

stage of the two schemes are similar, because the two excitation sequences 

{u 2(j) and {c
2
(j) have very similar properties. CODER-2 is therefore 

expected to give better results than CODER-3, when only one excitation 

sequence is used. 

In Fiq 6.7.7, a comparison of the different filter optimisation methods is 

presented, for two different excitation adaptation strategies. The figures 

correspond to the average segmental-SNR attained when these algorithms are 

employed by a BER coder to encode a 4 sec male/female speech interval. The 

filter coefficients are left unquantized, and the total number of parameters 

(filter coefficients and delay parameters) transmitted per second is set 

equal to 2000. A second column has also been added to each excitation 

adaptation algorithm (Reopt.), to include the SNR results obtained when the 

filter coefficients are reoptimised in the final filter-definition stage 

(for the optimum values of the delay parameters) by minimising the energy of 

the signal distortion. 

The first 6 rows of Fig 6.7.7 correspond to a Single-input synthesis 

filter, and the excitation adaptation strategies are derived from the P2(/) 

and P 2 (2) algorithms by limiting the number of FIR sections from 2 to 1. The 

8 1 (z) FIR filter has 3 coefficients, and the all-pole filter A(z) is either 

2nd order and defined every 24 samples (A
24

), or it is a 12th order filter 

and is defined every 144 samples (A 14i ). When the A(z) filter is estimated 

separately from the 8
1

(z) filter (as in methods n
1

(3) and n
1
(4)), the 

Maximum-Entropy LPC method is employed. The speech analysis frame contains 

24 samples (n=24), and the maximum value of the delay parameter is 63 

(OSd
1
S63) 
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The lower 16 rows of Fig 6.7.7 correspond to a two-input synthesis filter 

and either the P2(IJ or the P2(SJ excitation adaptation strategies are used. 

Each of the two FIR filter sections contains a single coefficient (as in 

CODER-2), and the rest of the system variables (update rate of A(zJ, frame 

size and maximum delay value) are set as in the case of the single-input 

synthesis filter. 

From the results in Fig 6.7.7 it is clear that when the P2(IJ excitation 

adaptation algorithm is employed, the performance of the BER coder is maxi­

mised when the a and b j filter coefficients are jointly optimised (as in 

methods Hl (I-2J and H2CI-BJJ. In this case, both single-input and two-input 

synthesis filters can give good results, with the highest SNR obtained from 

method H2 (BJ. When the a and b j coefficients are optimised separately (as in 

methods Hl (3-4J and H2(9-12JJ the P2(IJ excitation adaptation algorithm 

favours the single-input synthesis filter and a high update rate for the 

filter A(zJ (A 2i J. 

The P2 (IJ excitation adaptation algorithm therefore favours the operation 

of the BER coder with small frames, and minimises the encoding delay for 

which the BER encoder is responsible (in this case the delay is only 3 ms). 

The Linear Prediction (LP) and Distortion Minimisation (DM) filter-estima-

tion algorithms perform equally well when the P 2(IJ algorithm is employed, 

and the final reoptimisation of the filter coefficients seems to offer 

little adavantage. 

A two-input synthesis filter gives the best 

P2 (SJ excitation adaptation algorithms are 

SNR results when the P2 C2J and 

employed. When the a and b j 

filter coefficients are optimised separately (as in methods H2 C9-12JJ, low 

update rates (A lii J and a higher number of coefficients for the filter A(zJ 

improve the performance of the BER coder. The low update rate of the filter 

ACzJ results a higher encoding delay (18 ms in this case). Equally good 

results though can be achieved 

ents (as in methods H2 (I-BJJ, 

by jointly optimising the a and b j coeffici­

in which case the encoding delay can be as 

small as when the P2 (IJ excitation adaptation algorithm is used. The DM 

filter estimation method performs better than the LP method, when the P2 (2J 

or the P2 (SJ excitation adaptation algorithms are used. The performance of 

the LP method though can be improved and can approach that of the DM method, 

by using a final filter reoptimisation stage. 
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In Fig 6.7.8, 12 excitation adaptation algorithms are compared, under the 

same conditions as in Fig 6.7.7. It is evident that the P2(!) algorithm 

performs better when the a and b j coefficients are jointly optimised (as in 

methods n
2

(8) and n
1
(2)), irrespective of whether a single-input or a two­

input synthesis filter is employed. Algorithm P2 (2) on the other hand, gives 

best results when a two-input synthesis filter is employed (as in methods 

n2 (8) and n2 (!2)), whether the a and b j coefficients are jointly optimised 

or not. The P 2 (3) algorithm employs one "fixed" random excitation sequence 

but does not perform as well as the P2 (2) algorithm. By using two "fixed" 

excitation sequences though, the difference in performance between the 

adaptive excitation (algorithms P 2 (S) and P 2 (7)) and the "fixed" excitation 

algorithms is minimised. 

The algorithms that involve an excitation sequence with speech-like chara­

cteristics (P 2 (!),P 2 (4),P 2 (6),P 2 (8) and P 2 (9)) perform better when the n2 (8) 

filter optimisation method is used, and the best results are obtained from 

the P 2 (4) excitation adaptation algorithm. By comparing the SNR results of 

the P2(8) and P 2(!D) algorithms with those of P 2(9) and P 2 (!!), it becomes 

clear that the order of application of the excitation adaptation equations 

is important and can have an effect on the BER coder's performance. 

Amongst the excitation adaptation algorithms that involve a noise-like 

adaptive excitation element (P 2(2J,P 2(S),P 2(7),P 2(!D) and P 2 (!!)), the best 

results are obtained from algorithm P2 (S) which defines two adaptive excita­

tion sequences. The BER coder which is equivalent to a CELP coder (P 2 (!D)) 

performs better than the Self-Excited Vocoder (P 2 (7)). The best overall 

results are obtained from the excitation adaptation algorithms that define a 

speech-like excitation source. 
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EXCITATION I P 2 (J) I P 1 (2 ) Or P2 (5) 
ADAPTATION 

FILTER SNR (dBs) SNR (dBs) 

OPTIIIISATION 
(Reop! .) (Reop! .) 

11 1 (1) 11.8 12.3 8.3 9.5 

11
1
(2) 12.7 12.7 9.9 9.9 

111 (3) AB 9.4 10.5 6.9 7.9 

11
1

(3) A1H 9.0 10.0 7.8 8.4 

11 1 (4) AB 11 .3 11.3 9.2 9.2 

11
1

(4) A1H 10.4 10.4 10.1 10.1 

11
1

(1) 11.9 12.4 10.1 10.9 

11
2

(2) 12.5 12.8 10 .4 11. 1 

11 2 (3) 12.8 12.9 9.6 11.2 

11
1

(4) 12.6 12.6 7.1 8.9 

11 1(5) 12.2 12.6 10.6 10 .7 

11
2

(6) 12.8 12.8 11 .3 11.3 

112 (7) 12.9 12.8 10.8 11.3 

11
1
(8) 13.7 13.7 11.8 11.8 

112 (9) AB 8.3 8.8 8.8 10 .2 

111 (9) A1H 8.4 8.8 9.5 10.9 

1I 1 (10) AB 9.1 9.4 8.9 10 .1 

1I 1(J0) A1H 9.1 9.8 9.6 10.7 

11 2 (J1) AB 8.6 9.2 10.2 10.5 

1I 1(Jl) A1H 8.7 9.2 10.9 11.5 

11 2!!2) AB 9.9 9.9 11.0 11.0 

1I 1!!2) A1H 10.0 10.0 11.8 11.8 

FIGURE 6.7.7 Dependency of the BER-Coder's SNR-performance on the method 

chosen to optimise the Synthesis Filter. 16 Filter-Optimisation algorithms 

are considered, and the SNR results are presented for two different 

Excitation-Adaptation methods. 
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FILTER I !l 1(B) !l1 (2 ) AtH I !It (2) l!l t (4)A tH OPTI !l1 SATI ON 

EXCITATION 
ADAPTATION SNR (dBs) 

P 1 U ) 13.7 10.0 12.7 10.4 

P 1 ( 2 ) 12.1 11 .5 9.9 10.1 

P 1 (3) 9.1 9.7 7.B B.4 

P 1 (4) 14.0 11.0 

P 1 (5) II.B II.B 

P 1 (6) 13.0 11.4 

P 1 (7 ) 11.0 11.0 

P 1 (8) 13.3 10.6 

P 1 (9) 11.5 10.2 

P1UO) 11.4 11.4 

P1U/J 10.4 10.7 

P1(2) 10.0 10.7 

FIGURE 6.7.8 Dependency of the BER-Coder's SNR-performance on the method 

chosen for the Excitation Adaptation. 12 Excitation-Adaptation methods are 

considered, and the SNR results are presented for four different Filter­

Optimisation algorithms. 
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6.8 Vector Quantization of the Synthesis Filter Coefficients 

The quantization of the synthesis filter coefficients is a 

function of the BER coder, because the backward adaptive operation 

critical 

of the 

synthesis filter sustains a propagation of the quantization errors. Further­

more, the BER coding process (and consequently the quality of the synthe­

sised speech) is more sensitive to the quantization of the coefficients of 

the FIR filter sections, because the FIR filter coefficients are usually 

updated more frequently and have a larger dynamic range than the 

coefficients of the all-pole filter A(zi. 

A memoryless vector-quantizer (for the FIR filter coefficients) can be 

designed using various error measures. The criterion chosen here is the 

"performance" of the BER coder itself. The performance of a BER coder 

employing a vector codebook (for the quantization of the FIR filter coeffi­

cients), is measured by the difference between the original and synthesised 

speech waveforms. Thus the vector-quantizer is designed to maximise the 

average performance of the BER coder. 

The quantizer optimisation method can be applied to any BER coding system, 

but it is more suitable for the BER schemes which define an adaptive 

excitation source. Such schemes allow the excitation source to follow the 

changing speech characteristics, thus limiting the dynamic range of the 

filter coefficients during normal (steady-state) operation. If only "fixed" 

excitation sources are used, then adaptive quantization should be considered 

and the quantizer optimisation method would need to be modified accordingly. 

Assuming that a vector codebook 

available, the BER coder employing 

"best" codebook entry (for each 

signal distortion (difference 

C=[c 1 ,C Z"" ,cL) of L coefficient sets is 

that codebook would need to determine the 

frame), by calculating the energy of the 

between the original and synthesised 

waveforms) for every codebook entry. This calculation can be done either 

during the optimisation of the synthesis filter (for every possible value of 

the delay parameters), or after the optimisation of the filter delay 

parameters. The latter method does not need to quantize the FIR filter 

coefficients during the optimisation of the synthesis filter, and it is this 

method that will be used here because it is considerably simpler. 

Considering only one FIR section (the process can easily be generalised to 

include more sections), Eq 6.4.10 can be simplified by dropping the 
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subscripts of the vectors and matrices involved, and by introducing a new 

subscript j to denote the index number of the analysis frame. The distortion 

energy corresponding to the jth frame when the mth codebook entry is used, 

can then be calculated using the formula : 

[ 

T : T 1 (s.-m·) (s·-m·) , (s·-m·) Q·X· 
I r I I , I r " 

-----------------!--------------
TT: T T XjQ j (sj-mj) : XjQjQjXj 

(F,! 6.B.1) 

... for i=1,2, ... ,8 and m=l,2, ... ,L 

The vectors Sj and mj correspond to the speech waveform and the transient 

response of the filter A(z) in the jth frame, Qj is the convolution matrix 

related to the filter A(z) of the same frame, and Xj is the excitation 

matrix corresponding to the "optimum" value of the delay parameter in the 

jth frame. Even though the expression of Eq 6.8.1 seems to concern only the 

jth frame, it is actually dependent on the outcome of the filter 

optimisation and excitation adaptation operations in the previous frames. 

This propagation effect is caused by the backward adaptive operation of the 

synthesis filter, and it influences the values of the transient response mj , 

the excitation'matrix Xj and possibly the convolution matrix Qj . 

The optimum codebook entry for the jth frame is determined by calculating 

F~ for m=1,2, ... ,L and choosing the entry that minimises the distortion 

energy. If E j is the minimum distortion energy corresponding to the Ith 

frame, then a measure of the coder's "performance" can be defined as 

(F,! 6.B.2) 

where tj are weighting factors, which will later be used to steer the design 

process towards "subjectively" optimum quantizers. 

If C was an initial estimate of the quantizer's codebook, a better code­

book V=[v1 ,v2, ... ,vL) can be designed, that will result a higher performance 

measurement PV' This can be done by "freezing" (or storing) the various 

signals obtained during the operation of a BER coder employing the codebook 

C, and by using these stored signals (in Eq 6.8.1) to calculate the 

distortion corresponding to a different codebook V. This method circumvents 

the problem of having to measure the performance of a BER coder employing 
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the new codebook V, and allows us to use a simple algorithm to maximise the 

value of the performance measure PV. The signal components can be "unfrozen" 

and updated using the new optimised codebook V, but in practice, this 

updating strategy complicates the optimisation process and offers very 

little advantage. 

The maximisation of the performance measure Pv is achieved by partitioning 

the summation of Eq 6.8.2 and forming groups corresponding to the individual 

entries of the former codebook C 

L 
Pv = L PV(cm,vm) 

m=l 
(£9 6.8.3) 

Each PV(cm,vm) term is calculated by grouping together all the frames for 

which the codebook entry cm was originally chosen (during the operation of 

the BER coder), and by measuring the signal distortion using the new 

codeword vm. The value of Pv can now be maximised by maximising each 

individual term of the summation with respect to the elements of the 

corresponding codebook entry. Each term of the summation in Eq 6.8.3 can be 

expressed as a function of the corresponding codeword vm as : 

T 

1 
N 
L 8 j (sj-mj)T(Sj-m j ) 

j = 1 

bopt=cm 

N 
L 8 j XJQJ(Sj-mj) 

j = 1 
bopt =cm 

N 
L 8j(Sj-mj)TQjXj 

i = 1 

bopt=Cm 

N 

L T T 
8·X.Q.Q.X. 

I I I I I 
i=l 

bopt=cm 

-1 

(£9 6.8.4) 

The summations in Eq 6.8.4 only include the frames for which the optimum 

set of coefficients (bopt ) was initially set equal to the codebook entry cm' 

The expression in Eq 6.8.4 is a quadratic function of the elements of the 

codeword vm and is maximised when 

[ 
N 

r [ 
N 

1 
= L T T L 8j(Sj-mj)TQjXj m=l,2, ... ,L vm 8 jXjQjQjXj 

i = 1 i = 1 
bopt=cm bo pi =cm 

(£9 6.8.5) 
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By defining the new codebook entries according to Eq 6.8.5, the value of 

the performance measure Pv is guaranteed to be greater than Pc, 

The whole process can be repeated, by using V as the initial codebook 

estimate. The frames in Eq 6.8.3 can be repartitioned, using Eq 6.8.1 to 

find the optimum codebook entry vm for each frame, and another codebook can 

be designed using Eq 6.8.5. This iterative process will eventually converge 

to the optimum codebook of size L. The monotonic increase of the performance 

measurements is only achieved when the "frozen" signals, obtained from the 

first codebook e, are used throughout the optimisation process. If these 

signals are updated periodically (by employing the new codebook and letting 

the BER system encode the N speech frames), the performance measurements 

will fluctuate showing an upward trend. 

The design of an optimised vector-quantizer for the coefficients of the 

FIR filter section of a BER coder, is done using a training process arranged 

in a series of optimisation steps. Initially, the BER coder considered is 

employed to encode a large set of speech training data. The FIR filter 

coefficients are left unquantized while the BER coder operates on the speech 

signal, and the various signals produced (transient response of A(z), exci­

tation sequences, etc.) are stored to be used in the following optimisation 

of the vector-quantizer codebook. The coefficients of A(z) can be quanti zed 

using vector or scalar quantizers. 

Eq 6.8.5 is employed in the first optimisation stage, to define a single­

entry codebook for the quantizer. In the second step, a second codebook 

entry is artificially created by adding a small displacement to the only 

entry of the codebook found in the first step. A succession of two-entry 

codebooks is then produced by alternately applying Eq 6.8.3 and Eq 6.8.5. 

The application of Eq 6.8.3 involves the use of Eq 6.8.1, and the parti­

tioning of the frames into groups corresponding to the individual codebook 

entries. 

The series of performance measurements (Eq 6.8.2), corresponding to the 

series of two-entry codebooks, is monotonically increasing and converges 

towards an upper limit value. These measurements are based on the stored 

values of the various signals, that were initially produced from the unquan­

tized FIR filter coefficients. If the stored values of these signals were 

allowed to be modified at this early stage (by employing the optimised two-
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entry codebook), instability problems would occur. That is because a two­

entry codebook would introduce large quantization errors during the opera­

tion of the BER coder, which could prove to be difficult to correct, taking 

into cosideration that the BER synthesis filter operates in a backward 

adaptive mode. For this reason, the updating of the stored sequences should 

be preferably done when a reasonable sized codebook is available. 

In the third optimisation step, two more entries are added to form a four­

entry (2-bit) codebook. Again, successive application of equations 6.8.3 and 

6.8.5 is used to optimise the four-entry codebook. Further optimisation 

steps are taken to increase the size of the codebook until it reaches the 

required size. The same quantizer optimisation method has been extensively 

used to design waveform quantizers and to reduce the bit rate of vocoders 

employing the LPC filter model, and is known as the LBG algorithm [6.25]. 

The designed vector-codebook is unstructured and must be fully searched in 

order to locate the optimum codebook entry, during coding. The algorithm can 

be modified to permit the design of structured codebooks (tree, trellis, 

etc.), which require much less computational effort for the determination of 

the optimum codebook entry. 

The weighting factors tj in Eq 6.8.5, are assigned values that give more 

emphasis to the low-power sections of the speech waveform, in order to 

reduce the noise level in these sections. This stops the high-power speech 

intervals from dominating the quantizer optimisation process, and produces 

vector-quantizers which are "subjectively" more optimum. Extra emphasis is 

also given to those regions where the quantization error is large, in order 

to make sure that no error surges occur. The weighting factors are set equal 

to 

D. 
• = ---'­• j 

T j 

(Eq 6.8.6) 

where T j is the energy of the jth speech frame, and Dj is a measure of the 

distortion energy corresponding to the same frame. The value of Dj is 

obtained from Eq 6.8.1 during the partitioning of the frames in Eq 6.8.3, 

and it is subsequently used in Eq 6.8.5 to derive the new codebook entries. 

The companding characteristic of a scalar quantizer, designed using the 

proposed method, is shown in Fig 6.8.1 (thick line). The BER coding system 

considered, has a synthesis filter with a single FIR filter section that 
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includes one coefficient and one delay parameter. It uses the n
1

(4) filter 

optimisation algorithm and the P2(2) excitation adaptation method (modified 

for the case of a single-input synthesis filter). The speech analysis frame 

includes 40 samples and the maximum value of the delay parameter is 255 

(0~d1~255). The filter A(z) has 10 coefficients and is estimated using the 

Maximum-Entropy LPC method over a frame of 240 samples. 

The companding characteristic shown in Fig 6.8.1 corresponds to a 7-bit 

quantizer, but the optimum 4-bit, 5-bit and 6-bit quantizers produce exactly 

the same curve. The average Segmental-SNR (obtained from a 70 sec long 

speech training set) corresponding to the different codebook sizes (and bit 

rates) is given below. The LPC filter A(z) is quanti zed using scalar quanti­

zation of the Log-Area-Ratios with a total of 45 bits per coefficient set. 

CODEBOOK SIZE (bits) 3 4 5 5 7 8 

SNR (dBs ) 7.19 7.75 8.22 8.37 8.43 8.43 

BIT RATE (bits/sec) 3700 390D 41DO 4300 4500 4700 

The SNR values saturate when quantizers with more than 64 levels (6 bits) 

are used. A 5-bit quantizer is also quite adequate. When 5-bit or smaller 

sized quantizers are used, the optimised quantizers perform better than 

uniform or logarithmic quantizers. In Fig 6.8.1, the companding characteri­

stic of a ~-law logarithmic quantizer is also shown (thin line). The parame­

ters of this quantizer were adjusted to approximate the companding curve of 

the optimised quantizer, and their values were set to ~=10 and v=ax=6. The 

two curves in Fig 6.8.1 are similar, especially for small values of the 

input, but in practice, when fewer than 6 bits are used for the quantization 

of the FIR filter coefficient, the optimised quantizer improves the quality 

of the synthesised speech, when compared with the quality obained from a 

logarithmic quantizer. 

Similar results are obtained for the other BER coding schemes that can 

operate at bit-rates between 4 and 8 kbits/sec. The subjective quality of 

the encoded speech varies from "good" at 4 kbits/sec, to very good communi­

cations quality at 8 kbits/sec. The speech quality at 6 kbits/sec is equiva­

lent to that obtained from other well established Analysis by Synthesis 

speech coders like CELP. 

The vector-quantizer optimisation algorithm can be generalised to include 
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COMPANDING LAW 

LOGARITHMIC 

FIGURE 6.8.1 The companding law (thick line) corresponding to a 7-bit 

Scalar Quantizer, designed for a BER coder that defines a single Adaptive 

Excitation Source and employs the H1 (4) Filter-Optimisation algorithm, 

is shown. The Scalar Quantizer was designed using the optimisation method 

described in Section 6.8. 

The companding characteristic of a ~-law logarithmic quantizer (thin line) 

with ~:lO and "mar:6, is shown for comparison. 
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more than one FIR filter sections. A separate quantizer can then be designed 

for each section, or a single quantizer can be designed for all the FIR 

filter coefficients. By using the former method, the quantizers may be 

included in the filter optimisation process of a BER coder, so that the 

coefficients of each FIR section are quanti zed before the next FIR section 

is optimised. This approach offers the advantage that quantization errors 

introduced in the early stages of the filter optimisation process, can be 

partially compensated for by the following optimisation stages. 

6.9 Conclusions 

The proposed BER coder operates differently from conventional speech 

coders which employ the source-filter speech model, in that it defines the 

excitation source in a backward adaptive manner, and relies solely on the 

adaptation of the synthesis filter parameters to reconstruct the speech 

waveform. The adaptation of the stored excitation sequences and the 

optimisation of the various sections of the synthesis filter, can be done in 

a number of ways. As a result, a multitude of BER coding schemes with a wide 

range of properties can be defined. 

The excitation sequences employed by a BER coder may have speech-like or 

noise-like charactersitics, and mayor may not be allowed to adapt to the 

changing properties of the speech signal. The estimation of the synthesis 

filter coefficients can be done using either the Linear Prediction or the 

Distortion Minimisation methods, and the coefficients of the various filter 

sections may be estimated jointly or separately. The filter optimisation and 

the excitation adaptation are two separate operations in a BER coding 

system, and the various algorithms that perform these two functions can be 

combined in many different ways. Some of these combinations can be more 

successful than others. 

The BER coding schemes that define an excitation source with speech-like 

characteristics usually perform better than the BER systems that define a 

noise-like excitation. The two types of excitation can be mixed to produce 

an even better BER coding system. Many BER coding schemes are able to 

operate with very small frames, thus reducing the encoding delay to a value 

as low as 3 ms. This low delay property can become a valuable asset in 

speech coding applications where the system's overall coding delay must be 

kept to a minimum. 
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A BER coder can take many forms, and one configuration in particular 

corresponds to a Code Excited LPC coder that employs an excitation codebook 

with overlapping entries. Another configuration corresponds to the 

Self-Excited Vocoder. These two schemes can be considered as special cases 

of the general BER coder, and there are other configurations of the BER 

coder that perform better than either of them. 

The BER coder in most cases shows a remarkable ability to adapt to the 

changing characteristics of the speech waveform, in spite of the fact that 

its backward adaptive operation slows down its response to signal transiti­

ons. This ability is preserved even at low transmission bit rates, and 

various BER coding schemes can operate successfully at bit rates between 4 

and 8 kbits/sec. The speech quality at 4 kbits/sec can be judged as "good", 

while at 8 kbits/sec very good communications quality speech can be 

achieved. 

BER coders are sensitive to quantization errors and require an accurate 

quantization of the coefficients of the FIR filter sections. A method that 

can be used to design "optimum" vector-quantizers for the FIR filter coeffi­

cients has been presented, which is based on the minimisation of the average 

distortion introduced by the BER coding process. Scalar quantizers optimised 

using the proposed method, perform better than uniform and logarithmic 

quantizers, when the number of bits allocated to the quantization of each 

FIR filter coefficient is less than 6. 

The backward adaptation of the excitation sequences increases the sensiti­

vity of a general BER coder to transmission errors. This sensitivity can be 

reduced by including standard reinitialisation procedures, or by using a 

"fixed" sequence as one of the excitation sources employed by the BER coder. 
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RECAPITULATION AND SUGGESTIONS FOR FURTHER RESEARCH 

When considering an application that requires Digital-Coding of speech, on~ 

is faced with the task of choosing the "best" digital coder for the 

particular application. Various conditions usually have to be met by the 

coder, such as robustness in the presence of channel errors, low delay 

characteristics, and low cost of implementation. In addition, the coder must 

be able to reproduce speech with quality which is acceptable to the user. 

The technology to achieve high speech quality is already well developed 

for bit rates above 16 kbits/sec. Today, the major research activity is 

focused at lowering the bit rate to 4.8 kbits/sec without degrading speech 

quality. Already, a new class of speech coding methods has produced very 

good results at 10 kbits/sec, and the trend is for even lower bit rates. The 

new methods use existing models of speech but employ complex algorithms, 

known as Analysis-by-Synthesis (AbS) , to optimise the model parameters. The 

recent availabilty of powerful Digital Signal Processors has simplified the 

task of implementing such complex Speech-Coding algorithms. 

This "algorithmic" approach has also been followed in this thesis, in 

trying to develop new and efficient speech coding algorithms, based on 

existing models derived from Linear Prediction Theory. Various AbS speech 

coding algorithms have been studied and compared in terms of their 

performance (SNR) and their complexity (number of operations). The SNR was 

chosen to measure the coders' performance because it can yield meaningful 

results when coders of the same "nature" are compared. It was found that 

when "similar" coders were compared, the results of listening tests agreed 

with the ranking obtained by using SNR measurements. 

Multipulse Excitation (MPE) algorithms were considered in Chapter 3, where 

a general classification of the MPE optimisation algorithms was presented. 

Some of the algorithms mentioned, are highly complex and can be used to find 

the upper limit in the performance of conventional MPE coders. Simpler MPE 

algorithms were described in Chapter 4, that can be implemented in real-time 

using the currently available VLSI technology. The MPE algorithms were 

compared at various pulse-rates, and it was found that a significant 

advantage (in terms of speech quality) can be gained at high pulse rates by 

using more "sophisticated·· MPE coding methods with a moderate increase in 

complexity. 
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A fast implementation of a complex MPE algorithm (method MS5) was 

developed in Chapter 4, based on the Gram-Schmidt orthogonalization 

procedure. Method MS5 gives very good results, and is still simple enough to 

allow real-time implementation. The proposed Block-Search methods were also 

found to have low-complexity and high performance characteristics, compara­

ble to that of the "best" Multi-Stage MPE systems. One of the Block-Search 

methods in particular (Method BS1) gave the best results out of all the 

methods examined in Chapter 4. 

One further conclusion was that the presence of the nOise-shaping filter 

helps to improve the efficiency of the pulse search procedure, when simple 

MPE optimisation algorithms are used. The overall effect is to improve the 

performance of the simple algorithms, while the performance of the complex 

algorithms remains almost unaffected. The effectiveness of the noise shaping 

filter in shaping the noise spectrum was found to be small at low pulse 

rates. 

MPE coders can produce very good communications quality speech at a bit 

rate of 9.6 kbits/sec. At lower bit rates, efficient quantization methods 

must be used to avoid loss 

"optimum" scalar quantizers 

Chapter 4. The method defines 

of speech quality. A process that designs 

for the pulse amplitudes is proposed in 

a Gamma-POF model which is based on the 

experimental-POF data, and takes into account the dependency of the POF on 

the pulse rate. Quantizers based on the Gamma-POF model perform better than 

optimised-uniform quantizers, when the number of bits per pulse is small. 

An efficient method for coding the pulse positions in a MPE coding system, 

has been proposed in Chapter 5. A codebook of position-patterns is employed 

by the MPE coder, so that the pulse positions are specified by transmitting 

the index of a codebook entry. It was found that by using a position­

codebook, the number of bits required for the coding of the pulse positions 

is approximately one third of the number of bits required by a conventional 

MPE coder. The released bits can be allocated to other parts of the MPE 

coder, thus improving its performance. Alternatively, the bit rate of the 

MPE coder can be reduced without affecting the quality of the recovered 

speech. 

A fast algorithm was proposed to design "unstructured" position-

codebooks, based on the maximisation of a weighted-SNR measure. The designed 
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codebooks were compared to random codebooks, and they were found to perform 

better, resulting a greater efficiency in the coding of the pulse positions. 

It also became clear that the complexity of the CS-MPE coder can be reduced 

by introducing structure into the codebooks, and an example from the use of 

a random-tree-codebook was given. It is reasonable to assume that a "design" 

process similar to the one used for the unstructured codebook, can be used 

to define tree-codebooks with better properties than random-tree-codebooks. 

Large tree-codebooks could also be designed (since large unstructured 

codebooks are impractical) that would permit the use of larger MPE frames, 

and would improve the performance of the CS-MPE coder at bit rates below 

8 kbits/sec. 

The codebook "design" process can generally be used in speech coders which 

model the speech or the excitation signal with a weighted sum of "primary 

waveforms". MPE coders for example, employ a set of primary waveforms 

(pulses) to model the excitation. Sinusoidal coders on the other hand, may 

employ a set of sine-waves to model speech. The same approach can therefore 

be used to design codebooks for a number of speech coders, so that each 

entry of the codebook specifies a different combination of primary 

waveforms. Further research must be carried out to determine whether this 

codebook approach can improve the performance of other speech coding 

systems. Another question that also needs to be answered is whether the 

codebook design process can be combined with another process that "designs" 

the primary waveforms. 

In Chapter 6, the proposed BER coders where examined. Various algorithms 

were proposed for the synthesis-filter optimisation. and the backward 

excitation-adaptation. It was found that a BER system which defines the 

excitation from the past synthesised speech samples can give very good 

results, and can operate with very small encoding delays of the order of 

3 ms. Two special cases of the BER coder were found to be the CELP coder 

(with overlapping codebook entries) and the Self-Excited Vocoder. Many other 

BER coding schemes were also investigated which performed better than the 

CELP and Self-Excited coders. 

BER coders can produce qood quality speech at 4.8 kbits/sec, and very good 

communications quality speech at 8 kbits/sec. At the lower bit rates more 

efficient quantization procedures must be used in order to avoid loss of 

speech quality. A process was proposed in Chapter 6, that designs a Vector 
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Quantizer for the FIR-section coefficients of the BER synthesis filter. The 

process uses a measure of the coder's performance, and designs the vector 

quantizer by maximising the performance measure. It was found (for the case 

of a scalar quantizer) that a quantizer designed by using the proposed 

method, can be more efficient than logarithmic quantizers when 5 bits or 

less are allocated for the quantization of each coefficient. 

The BER schemes can be simplified by exploiting the structure of the 

matrices derived in the filter calculations. Even though many BER shemes can 

be implemented in real-time at 4.B kbits/sec, operation at higher bit rates 

is accompanied by a substantial increase in complexity. Further research 

must therefore be carried out to simplify the BER algorithms employed at 

6 kbits/sec and B kbits/sec. The application of the proposed Vector 

Quantization process must also be studied at these higher bit rates. 
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The Block-Search MPE optimisation algorithms presented in Chapter 4, were 

also included in : 

N.Gouvianakis, C.Xydeas, "A Multipulse Excited LPC coder implementation 

based on a Block Solution approach", Proc. Int. Conf. Digital 
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pp 85-92 
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and Block sequential Search Multipulse LPC algorithms", Proc. 

Int. Conf. lASTED, Paris, Jun 1985, pp 122-125 

N.Gouvianakis, c.xydeas, U.K. Patent Application No. 8508669 and 8515501 

The BER coding algorithms presented in Chapter 6, were also included in 

N.Gouvianakis, C.Xydeas, "Advances in Analysis by synthesis LPC Speech 

Coders", IERE Journal, Supplement on Mobile Radio, Vol 57, No 6, 

Nov/Dec 1987, pp S272-S286 
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APPENDIX A 

The one-sided z-transform equivalent of Eq 6.3.6 is 
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(Eq A.I! 

A rearrangement of the terms of Eq A.l produces the equation 
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By rearranging the summation terms of the first term in the right-hand 

side of Eq A.2, and by using equations 6.2.1 and 6.2.2, Eq A.2 is transfor­

med to the equivalent equation 
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which gives the equations 6.4.2 and 6.4.3. 
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APPENDIX B 

Using Eq 6.4.8, the energy of the signal distortion is found to be 

(Eq B.}) 

or equivalently 

= (s-m 1 T (s-m 1 - (s-myl T 
y Y ] - [ 

(Eq B.21 

The right-hand side of Eq B.2 can be rewritten as product of two composite 

matrices : 

:-QXn bn ] 
: b b , 

(Eq B.31 

By separating the filter coefficients in Eq B.3, the final result is 

obtained : 
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Equation B.4 is clearly the same as Eq 6.4.10. 
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APPENDIX C 

Equation 6.6.1.2 is transformed in the one-sided z-transform domain as 
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Rearranging the terms of Eq C. 1 gives 
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Using Eq 6.2.1, Eq C.2 is transformed to Eq 6.6.1.3 
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