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Abstract 

The effect of interfacial tension between two fluids, on the passage and rejection of 

oil droplets through slotted pore membranes is reported. A mathematical model was 

developed in order to predict conditions for 100% cut-off of oil droplets through the 

membrane as a function of permeate flux rate. Good agreement of theoretical 

predictions with experimental data shows that the model can be applied to the 

filtration of deformable droplets through slotted pore membranes.  At high interfacial 

tension (40 mN/m) with lower flux (200 l m-2 hr-1) droplets of crude oil (27oAPI) were 

100% rejected at droplet diameter 4.3 µm using a 4 µm slotted pore membrane. At 

lower interfacial tension (5 mN/m), with the same flux rate, 100% rejection occurred 

at 10 µm droplet diameter using the same membrane.  It was also found that the 

droplet rejection efficiency below the 100% cut-off was roughly linear with drop size, 

down to zero rejection at zero drop diameter.  Hence, the model, coupled with this 

approximate correlation, can be used to predict dispersed oil drop concentration from 

a known feed drop size distribution. 
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1. Introduction  

  Dispersed oil droplets in water represent an environmental problem and are 

associated with a number of chemical industries, especially with offshore oil 

production. Produced Water is the water coming from the oil reservoir and it contains 

crude oil droplets of different sizes. It can be disposed of by re-injecting into oil fields, 

but in many cases it is discharged into the sea. The quantities of Produced Water 

discharged into the sea ranges from 860 to 2700 m3 day-1 [1]. This poses a threat to 

aquatic life and the amount of oil in Produced Water that can be discharged into the 

sea is limited to 30 mg l-1 [2]. Hydrocyclones can be used as a secondary separator, 

after gravity sedimentation, for removal of oil content from Produced Water. However, 

they are mainly efficient for droplets above 20 µm and for light oil drops [3; 4]. 

  Various membrane separation techniques can be used for the removal of oil 

droplets from water. Ultrafiltration is useful with low oil content, but has permeate flux 

rates lower than 100 l m-2 hr-1 which is too low to be commercially attractive offshore 

[5; 6]. For Produced Water microfiltration has been studied by various researchers 

[7-11]. Higher flux rates (above 100 l m-2 hr-1) were achieved. Permeate flux rates in 

microfiltration depend on droplet size and type of membrane used. Particles/droplets 

can be retained inside the membrane [12; 13], using filters/membranes with complex 

and torturous internal structures, and this can cause severe fouling of the membrane 

used.  Recently, developments in membrane pore size and geometry has attracted 

great interest. Membranes with circular pores are often investigated [14]. Using the 

same trans-membrane pressure, a membrane with smaller pore size (2 µm) has 

higher efficiency for separating oil droplets up to 10 µm compared to a 5 µm 

membrane [14]. Even better separation of oil droplets was achieved with slotted 

pore-filters under lower trans-membrane pressure [13]. Different mechanisms govern 
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the droplet passing through the membrane when circular, or slotted pores are used. 

When using circular pores, it is the trans-membrane pressure that governs the 

droplets passing through the membrane into the permeate, while in the case of the 

slotted pores it is the drag force around the droplets induced by the motion of the 

fluid that is responsible for the droplets passing through the membrane [2]. 

Deformation of droplets occurs when the size of drop is bigger than the size of slot or 

pore. It is possible for a drop to completely block off a circular pore by plugging it. 

However, it is not possible for a spherical drop to completely plug a slot; there will 

always be space around the drop for permeate to flow through. Hence, the pressure 

differential forcing the retained drops through the pores of a filter will be different: in 

the case of the plugged circular pore filter it is the pressure drop across the filter, 

whereas in the case of the slot it is the liquid drag that acts to force the drop to 

deform and pass into the permeate. The deforming force on a slotted pore 

membrane will be less than that for a circular pore membrane, under otherwise 

identical operating conditions. 

  Filtration of deforming droplets is still a challenge for researchers. During filtration 

the shape of the droplets deforms from spherical and this depends upon the 

geometry of the pore of the membrane. In this paper the influence of interfacial 

tension on deformation of the oil droplets through a membrane is investigated. A 

theoretical model is used to predict the equilibrium position of a droplet on a slot of a 

membrane by a balance between the static force and drag force.   

2. Theory 

  The relevant theory was introduced earlier in [2], where the derivation was not 

provided, and the final equation given contained an error and  requires modification 
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for the current case. The detailed derivation is presented here in the appendix. 

Equations are obtained by the energy balance approach on a droplet using the static 

deformation force (Fc) and the force causing that deformation coming from the liquid 

that can also be referred to as drag force (Fd) see Figure 1. Fcx is the x coordinate of 

the static droplet deformation force Fc. This model can be applied for the theoretical 

prediction of 100% rejection of oil drops in the slot of the membrane under various 

flux rates.  It is assumed when a spherical droplet having radius (Rsp) passes 

through the slot with a half width h, if the size of droplet is bigger than the slot half 

width it will deform into an ellipsoid with a bigger radius (Rell). The slot converges 

with an inside angle of  .  

  The excess capillary energy caE   required to squeeze a droplet from a sphere to 

ellipsoid is the difference in surface area of ellipsoid ( ellS ) and sphere ( spS ) multiplied 

by interfacial tension ( ).   

)( spellca SSE  
.
                                                                                                      (1) 

The surface area of a sphere is 

2
4 spsp RS                                                                                                                  (2) 

The surface area of a spheroid is 
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where h is the half width of slot of the membrane and 
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Appendix  
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The drag force exerted on a sphere moving between parallel pates is given as in [15] 

owd FkF  ,  
where wk  is a wall correction factor and oF is the drag force and can be 

obtained using Stokes drag expression. Here    is viscosity of the fluid, spR is the 

radius of the droplet and U is the velocity of the fluid.     

dF = 
wk URsp6                                                                                                 (5) 

The droplet will be under steady state conditions when cxF becomes equal to dF and 

will stay on the surface of the membrane. The droplet will deform and will pass 

through the membrane when dF > cxF and it will be rejected by the membrane in the 

case of cxF > dF . 

3. Experimental  

3.1. Materials 

  Crude oil was supplied by North Sea operating companies. Vegetable oil was  

obtained from a local supermarket (EU Rapeseed Co-operative group Ltd, UK). 

Tween 20 (Fluka, UK), gum Arabic and PVA (Sigma Aldrich, UK) were used as 

surfactants for vegetable oil droplet stability. Silica (SiO2) (Degussa AG, Germany) 

was used to enhance oil droplet stability by decreasing the deformation of the 

droplets when subjected to high trans-membrane pressure during filtration, by 

increasing the interfacial tension between the oil droplet and water. Oil droplets were 

produced using a food blender (Kenwood Manufacturing Co Ltd Havant Hants, 
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England). For the measurement of interfacial tension the Du Nouy ring method with a 

White Electric Instrument tensiometer (model DB2KS) was used [16]. Viscosities 

were measured by HAAKA RheoStress model RS600 rheometer with sensor MV2. A 

Coulter Multisizer II (Coulter Counter, Coulter Electronics Ltd) was used to measure 

the number of dispersed droplets and size distribution. Filtration tests were done by 

a dead-end candle microfiltration system with a slotted membrane of 4 µm slot width 

and 400 µm slot length (Micropore Technologies Ltd, UK) see Figure 2 for an image 

of an example slotted membrane and Figure 3 for schematic view diagram of the 

equipment used. To prevent the coalescence of droplets the water/oil emulsion was 

gently stirred with a magnetic stirrer (Stuart Scientific, SM1, 13519, UK). The 

membrane was cleaned with Ultrasil 11 and an ultrasonic bath (Fisher Scientific, FB 

15046, Germany) was used to agitate the beaker containing Utrasil 11 water solution 

to clean the membrane.     

3.2. Interfacial tension measurement  

  The Du Nouy ring method was used to measure the interfacial tension. A ring is 

placed inside the dense liquid (water) and pulled out towards the light liquid (oil) until 

it detached from the dense phase.  The force (F) required  to pull the  ring from one 

phase to another is equal to the interfacial tension between the two liquids multiplied 

by the length of the perimeter of the ring. 

RF 4  

Where R is the radius of the ring,   is the correlation factor and   is the interfacial 

tension [16]. 

3.3. Emulsion Preparation 
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 For the surfactants, 1 wt% gum Arabic and 1% Tween 20 were dissolved in cold 

water.  The water was heated to 100oC to dissolve 1 wt% PVA, Gum Arabic, Tween 

20 and PVA were dissolved with a magnetic stirrer operated at its highest speed so 

that particles of Gum Arabic did not cluster in water. When used, 0.1 wt% Silica 

(SiO2) was dispersed in vegetable oil using the magnetic stirrer and 1 ml of the 

dispersion of silica/vegetable oil was added into 500 ml water Gum Arabic solution. 

Oil droplets with a diameter of 1 to 15 m  were produced using a food blender 

operated using its highest speed for 12 minutes, a typical size distribution is 

illustrated in Figure 4a, for the vegetable oil, and Figure 4b for the crude oil.   

To test droplet stability samples were analysed at 30 min intervals using the Coulter 

Multisizer II, but only 2 m  and above droplets were measured by the Coulter. 

Droplets below 2 m  were also created during the preparation of oil/water emulsion 

but these were too fine to measure.  In all the tests nearly 80% of the oil by a mass 

balance was recovered by the Coulter. This means that 20% by mass of the oil was 

below the range of the device. The dashed line portion in Figures 4 (a) and Figure 4 

(b) shows that part of oil droplets which were not measured by the Coulter, but have 

been inferred from the mass balance. Droplet stability was established on the basis 

of consistency in size distributions and number of droplets in samples analysed at 30 

minute intervals.  

3.4. Filtration 

  A 4 µm slot width membrane was used for filtration experiments using the dead-end 

candle microfiltration system as illustrated in Figure 3. The presence of large 

droplets in the permeate would indicate higher deformation of the droplets through 
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the slots of the membrane. Grade efficiency can be calculated using the following 

equation [17] 

efficiencygrade 100)1( 
gradeinionconcentratmassfeed

gradeinionconcentratmasspermeate
         

  Permeate  with various flux rates was passed through the membrane, and the 

effect of the flux rate on grade efficiency and 100% cut-off was studied. Before and 

after each run the membrane was cleaned with 2% Ultrasil 11 and hot (500C) filtered 

water. At different trans-membrane pressures various permeate flux rates were 

obtained and compared with clean water flux rates at the respective trans-membrane 

pressures.  When these flux rates were similar to the flux rates of the clean water, 

the membrane was considered cleaned and ready for reuse. 

4. Results and Discussions  

    Vegetable oil droplets were stabilised with three different surfactants:1 wt% PVA, 

Tween 20 and gum Arabic. Drop stability was established on the basis of size 

distributions and number of droplets in samples. It is clear from Figures 4 (a) that 

nearly the same size distribution was obtained for the three samples stabilised with 

the 1 wt% PVA surfactant. A similar result was obtained with all surfactants used. 

Additionally, it is shown in Table 1 that a similar number of droplets were present, 

irrespective of time, for each surfactant. So it can be concluded, that emulsions were 

stabilised not only on the basis of size distribution (Figure 4), but also by the number 

of droplets (Table 1).  

  According to the mathematical model presented in this paper, the system needs 

more energy for the deformation and squeezing of the droplets through the slots of 

the membrane when there is a higher interfacial tension. The drag force and the 
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static force are taken into account in the model. Drag force convects the droplets 

through the slots. It is function of droplet size and fluid velocity around the droplet. It 

increases linearly with the droplet size. Static force always acts in the opposite 

direction to the drag force, and tries to reject the droplets from the slots. It depends 

mainly on the interfacial tension between two fluids. Static force increases linearly 

with interfacial tension and exponentially with the size of the droplets.    

The membrane slot width (4 µm) was specified by Micropore Technologies UK. To 

confirm the slot width, non-deformable silica particles in water were filtered at various 

flux rates. Figure 5 shows that at various flux rates the 100% silica particle cut-off 

was close 4 µm.  So, the slot width was assumed to be 4 µm for the mathematical 

model. A linear fit in Figure 5 is obtained by drawing a straight line connecting the 

100% cut-off theoretical value with the origin of the graph. It provides a reasonable 

correlation of rejection performance below the 100% cut-off value.  

Figure 6 illustrates the comparison of 100% cut-off (rejections) points of all the 

droplets obtained from experimental measurements and theoretical predications. 

The static force was obtained using eq (4), and drag force from eq (5). A satisfactory 

agreement between theoretical points and the experimental measured points shows 

that this model can be used to predict the 100% cut-off values of the oil types tested 

here.    

Filtration results of oil/water emulsions with various surfactants are illustrated in 

Figures 7(a) to Figure 7(d). Crude oil droplets show higher oil-water interfacial 

tension as compared with the vegetable oil (Table 2). The data presented in Table 2 

clearly demonstrates decreasing oil drop rejection with decreasing interfacial tension. 

Hence, increasing oil drop concentration in the permeate. It is notable that the crude 
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oil has a significantly higher interfacial tension than the vegetable oils, even when 

solids were added to help stabilise the vegetable oil drops. On increasing the 

interfacial tension the cut off value reaches a value close to 4 µm. The latter value 

was verified for   solid silica particles. Also noticeable is that the higher the flux rate 

the poorer the drop rejection becomes because of a greater force deforming the 

drops. These effects are quantifiably predictable using the presented mathematical 

model. The drop size when the static force and the drag force on the drops balance 

provides the limiting size for the drops at which 100% rejection can be expected. The 

model does not predict the percentage rejection below the 100% cut-off, but 

experimentally this appears to follow a linear trend from the predicted 100% cut-off 

point to the origin. This is true for the oil drops as well as the solid silica particles. 

The two limits of the linear fit are, therefore, the theoretical 100% cut-off value, and 

the origin. Hence, this linear fit is also quantifiably predicted form the model 

presented. Thus, for a given feed drop size distribution of oil drops in water, it is 

possible to predict the 100% cut-off value and the rejection efficiency at drop sizes 

below the 100% cut-off. Thus, the total oil drop distribution and mass concentration 

of oil in water can be predicted. 

5.   Conclusions  

Vegetable oil droplets were stabilised with 1 wt% gum Arabic, PVA and Tween 20, 

and crude oil drops were found to be stabilised without the need for any additional 

surfactants. Stability of droplets was established on the basis of size distributions 

and number of droplets in the emulsion samples analysed at 30 min intervals. These 

emulsions provided a range of interfacial tensions and were filtered providing a 

range of filtration efficiencies. Interfacial tension between oil and water is an 

important factor that can strongly influence deformation of droplets through the slots 



11 
 

of the membrane. It was found that an increase in interfacial tension decreased 

deformation of oil droplets. Interfacial tension of oil/water can be increased by 

dispersed particles at the interface. Higher interfacial tension was observed for crude 

oil than vegetable oils. This led to better rejection of crude oil droplets than vegetable 

oil droplets, but tests used both types in order to validate the numerical model 

predicting 100% cut-off. Good agreement of experimental measured points with the 

theoretical points shows that the concept of drag and static force over a droplet can 

be efficiently applied for filtering deformable droplets using slotted pore membranes. 

This work can applied for filtration of emulsions created by Produced Water in the oil 

and gas industry that contain deformable droplets, for the prediction of 100% cut-off 

values and below, as well as the final dispersed phase oil drop concentration.    

Appendix A 

A 2-dimensional mathematical model is used in the paper taking a spherical oil drop 

into account. The shape of drop changes from sphere to spheroid when passing 

through the slot. The static force acts in the opposite direction to the drag force, and 

is responsible for the rejection of drops through the membrane, the other forces that 

may be acting (e.g. body force) are assumed to be insignificant.  

A prolate spheroid has surface area 
 









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
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sin

2 ell
ell

hR
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                                                                                                   (A.1)

 

 

where,
 ellR

h
arccos ,  

http://en.wikipedia.org/wiki/Surface_area
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A prolate spheroid can be formed by rotating an ellipse around its major axis. 

In the case of a sphere  

3

3

4
spRV                                                                                                                 (A.2) 

In the case of a spheroid 

http://en.wikipedia.org/wiki/Ellipse
http://en.wikipedia.org/wiki/Major_axis
http://upload.wikimedia.org/wikipedia/commons/8/88/ProlateSpheroid.png
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For the same drop because of volume conservation we conclude from Eqs (A.2), 

(A.3) 
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According Eq. (A.1)   
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Substitution Eq (A.4) into Eq (A.5) results in  
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Where
spR

h
 , 

Note, because spRh 0 , hence, 10                                                                                  

Hence, the excess capillary energy due to the deformation of the initial sphere into a 

spheroid is      
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The plot of f() is presented below.
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From Eq (A.8) we conclude 
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 The latter equation is used for comparison with experimental data. 
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Table 1 Number of vegetable oil droplets obtained with various surfactants when 

samples were analysed at the interval of 30 min at 200 l m-2 hr-1 

Surfactant Time (min) No of droplets per 1 ml sample 

 
 
 

1 wt% Gum Arabic 
 
 

 
1 
 

30 
 

60 

 
34280 

 
33193 

 
34151 

 

 
 
 

1 wt% PVA 
 
 

 
1 
 

30 
 

60 

 
43786 

 
44709 

 
42710 

 

 
 
 

1 wt% Tween20 

 
1 
 

30 
 

60 

 
54650 

 
53897 

 
51511 
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Table 2 Interfacial tension, mass of oil in the feed and permeate and 100% rejection 

of oil droplets with various surfactants at 200 l m-2 hr-1. 

Substance Interfacial Tension  

(mN/m) 

Mass in Feed  

(ppm) 

Mass in Permeate 

(ppm) 

100% Cut-off 

(μm) 

Crude oil (27oAPI) 40.0 400 18 4.3 

Crude oil (31oAPI) 35.0 400 20 4.4 

0.1 wt% Silica + 1 
wt% Gum Arabic 

17.0 400 30 5 

1 wt% Gum Arabic 13.0 400 50 7 

1 wt% PVA 10.0 400 70 8 

1 wt% Tween20 5.0 400 100 10 
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Figure 1 Schematic view of deforming droplet at equilibrium position  
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Figure 2 Image of the surface of a slotted pore membrane 
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Figure 3 Schematic view of dead-end candle microfiltration system 
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Figure 4 (a) Typical size distribution (Cumulative mass undersized “m” VS droplet 

diameter “d”) of the vegetable oil droplets produced stabilised with 1 wt% PVA. 
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Figure 4 (b) Typical size distribution (Cumulative mass undersized “m” VS droplet 

diameter “d”) of the crude oil droplets (31oAPI). 
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Figure 5 Grade efficiency of Silica particles at various flux rates (200, 400, 600 l m-2 

hr-1). 
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Figure 6 Experimental measurements and theoretical points of 100% cut-off during 

filtering vegetable oil droplets with various surfactants (Silica + gum Arabic, Gum 

Arabic, PVA, Tween20, Crude oil (31oAPI) and crude oil (27oAPI) with different flux 

rates (200, 400 and 600 l m-2 hr-1).  

 

 

 

 

4 

6 

8 

10 

12 

14 

16 

18 

20 

0 200 400 600 

d
 (

μ
m

) 

J (lm-2hr-1) 

Predicated (GA+ SiO2) 
Experimental (GA+SiO2) 
Predicated (GA) 
Experimental (GA) 
Predicated (PVA) 
Experimental (PVA) 
Predicated (Tween) 
Experimental (Tween) 
Predicted crude oil (31oAPI) 
Theoretical crude oil (27oAPI) 
Experimental crude oil (31oAPI) 
Experimental crude oil (27oAPI) 



31 
 

 

Figure 7 (a) Grade efficiency of vegetable oil droplets using gum Arabic and silica 

combine for droplets stability at various flux rates (200, 400, 600 l m-2 hr-1). 
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Figure 7 (b) Grade efficiency of vegetable oil droplets using gum Arabic for droplets 

stability at various flux rates (200, 400, 600 l m-2 hr-1). 
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Figure 7 (c) Grade efficiency of vegetable oil droplets using PVA for droplets stability 

at various flux rates (200, 400, 600 l m-2 hr-1). 
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Figure 7 (d) Grade efficiency of vegetable oil droplets using Tween 20 for droplets 

stability at various flux rates (200, 400, 600 l m-2 hr-1). 
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 Figure 7 (e) Grade efficiency of crude oil (31oAPI) droplets at various flux rates (200, 

400, 600 l m-2 hr-1). 
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Figure 7 (f) Grade efficiency of crude oil droplets (27oAPI) at various flux rates (200, 

400, 600 l m-2 hr-1). 
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