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This study investigated the salivary secretion rates of antimicrobial proteins in 1 

response to prolonged, exhaustive exercise in both stimulated and unstimulated saliva 2 

flow sample methods. Twenty four trained men cycled for 2.5 h at 60% 2maxOV  and 3 

then to exhaustion at 75% 2maxOV . Timed collections of whole saliva were made 4 

before exercise, mid-exercise, at the end of the moderate exercise bout and post 5 

exhaustive exercise. After each unstimulated (UNSTIM) collection a stimulated 6 

sample (STIM) was collected following chewing flavoured gum for one minute. 7 

Saliva was analysed for lysozyme, α-amylase and salivary immunoglobulin A (s-8 

IgA), and secretion rates were calculated. Saliva flow was 156% higher in STIM 9 

compared with UNSTIM (P<0.001) and decreased with exercise in STIM only 10 

(P<0.001). Exercise increased lysozyme and α-amylase levels and secretion rates 11 

were 144% higher and 152% higher in STIM compared with UNSTIM for lysozyme 12 

and α-amylase, respectively (all P<0.001). S-IgA concentration (P<0.05) and 13 

secretion rate (P<0.001) increased with exercise but were both lower in STIM 14 

compared with UNSTIM (P<0.001). In conclusion, a stimulated saliva flow collection 15 

during exercise by chewing flavoured gum increased the quantity of saliva and the 16 

secretion of lysozyme and α-amylase, but had a limited impact on the secretion of s-17 

IgA. 18 

 19 
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Introduction 1 

Saliva is a clear, slightly acidic mucoserous exocrine secretion consisting of inorganic 2 

and organic compounds of usually more than 99% water. Saliva secretions play an 3 

important role in maintaining the integrity of oral health via a mechanical washing 4 

effect and through the secretion of antimicrobial proteins. These proteins constitute 5 

the first line of defence against infectious agents and include both innate (lysozyme, 6 

α-amylase) and adaptive (immunoglobulin A) immune components (Humphrey and 7 

Williamson, 2001). The secretion of saliva into the mouth originates from three pairs 8 

of major salivary glands; the submandibular glands contribute ~65% of total 9 

unstimulated whole saliva secretion, the parotid glands contribute ~20%, the 10 

sublingual glands contribute 7-8% and the numerous minor salivary glands contribute 11 

less than 10% (Pedersen et al., 2002). The average daily flow of whole saliva varies 12 

between 1 and 1.5 L (Humphrey and Williamson, 2001).  13 

 14 

Saliva secretion is under strong autonomic neuronal control and thus regulated by 15 

parasympathetic and sympathetic nerve fibres that are the effector arms of reflexes 16 

activated predominantly by taste and chewing (Humphrey and Williamson, 2001). 17 

Generally, when sympathetic stimulation dominates (via noradrenaline) the secretions 18 

are high in protein content (e.g. α-amylase), whereas secretions with a high fluid 19 

output occur in response to parasympathetic stimulation (Chicharro et al., 1998). 20 

However, parasympathetic stimulation can also affect salivary protein secretion, and 21 

protein secretion of some glands such as the sublingual and some of the minor glands, 22 

may even be entirely under parasympathetic control (Teeuw et al., 2004).  23 

Furthermore, sympathetic stimulation also causes some stimulation of the saliva flow 24 
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rate (Garrett, 1987), thus, rather than acting antagonistically, it could be argued that 1 

the two branches of the autonomic nervous system may exert relatively independent 2 

effects in which the activity of one branch may synergistically augment the other 3 

(Bosch et al., 2002). Other factors known to influence saliva secretion include psychic 4 

factors, nutrition, hydration status, medication, local or systemic diseases and physical 5 

stress (Humphrey and Williamson, 2001), where significant reductions in the flow 6 

rate and changes in the antimicrobial proteins have been observed. For example, 7 

reductions in salivary immunoglobulin A (s-IgA) levels have often been reported 8 

following strenuous exercise (Tomasi et al., 1982; Mackinnon et al., 1989; Nehlsen-9 

Cannaralla et al., 2000; Nieman et al., 2002). However, other studies report increases 10 

(Blannin et al., 1998; Walsh et al., 2004; Li and Gleeson, 2004; Sari-Sarraf et al., 11 

2007; Allgrove et al., 2008; Allgrove et al., 2009; Costa et al., 2012) or no change 12 

(McDowell et al., 1991; Walsh et al., 1999). α-amylase (Li and Gleeson, 2004; 13 

Allgrove et al., 2008) and lysozyme (Allgrove et al., 2008; West et al., 2010; Costa et 14 

al., 2012) typically increase with exercise, although one study reported a significant 15 

reduction in lysozyme levels post-exercise (Davison & Diment, 2010) and in another 16 

reductions were observed following a dehydration protocol (Fortes et al., 2012). 17 

Changes in salivary antimicrobial proteins have been linked to the susceptibility of 18 

upper respiratory symptoms in a variety of athletic/exercising populations (Gleeson et 19 

al., 1999; Klentrou et al., 2002; Neville et al., 2008; Nieman et al., 2002; Fahlman & 20 

Engels, 2005; Cunniffe et al., 2011).  21 

 22 

Athletes often consume both food items and beverages during exercise. It has been 23 

shown that chewing can increase the flow rate by 3-fold compared with unstimulated 24 

saliva secretion (Hector and Linden, 1987), and this has also been shown to increase 25 
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the secretion of certain salivary proteins, including s-IgA probably via increased 1 

epithelial cell trancytosis (Proctor and Carpenter, 2001). Similar increases were also 2 

found in the secretion rates of total protein and -amylase (Proctor and Carpenter, 3 

2001). Furthermore, saliva flow rate and protein concentration is increased in 4 

response to gustatory stimulation (Proctor and Carpenter, 2007), with acid and sweet 5 

taste stimuli providing the greatest response (Humphrey and Williamson, 2001).  6 

Given that exercise and stimulated salivary flow can independently affect 7 

antimicrobial  proteins, it is possible that stimulating salivary flow during exercise 8 

may potentially affect the salivary antimicrobial response, and represent mechanisms 9 

by which resistance to oral infection may be altered. Therefore, the aims of the study 10 

were to investigate the influence of stimulated saliva flow on salivary antimicrobial 11 

proteins by chewing flavoured gum during prolonged exhaustive cycling. It was 12 

hypothesised that stimulating saliva flow by chewing would acutely enhance 13 

antimicrobial protein secretion during exercise. 14 

 15 

Materials and methods 16 

Participants 17 

Following university ethical approval 24 trained male volunteers (mean  SD: age 23 18 

 5 yr; height 1.79  0.07 m; body mass 73.8  8.1 kg; 2maxOV  56.6  4.7 mL.kg
-

19 

1
.min

-1
) with cycling as one of their main sports, volunteered to participate in the 20 

study. Participants completed a health questionnaire to report any symptoms of 21 

infection or illness in the 12 weeks prior to commencing the study and were informed 22 

of the aims and procedures before providing written informed consent. Participants 23 
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were included if they were healthy endurance-trained male volunteers between the 1 

ages of 18-35 yr of age. Participants representing one or more of the following criteria 2 

were excluded from the study: smoking or use of any medication or dietary 3 

supplements or suffering from any known chronic disease.  4 

 5 

Preliminary measurements 6 

At least 2 weeks prior to the main trial participants performed an incremental test to 7 

volitional exhaustion on an electronically braked cycle ergometer (Lode Excalibur, 8 

Groningen, Netherlands) to determine their maximal oxygen uptake ( 2maxOV ). 9 

Following a 3-min warm-up, participants began cycling at 95 W with increments of 10 

35 W every 3 min with verbal encouragement was provided to each participant to 11 

ensure maximal effort. Samples of expired gas were collected in Douglas bags 12 

(Harvard Apparatus, Edenbridge, UK) during the third minute of each work rate 13 

increment and ratings of perceived exertion (RPE) using the Borg scale were recorded 14 

and heart rate (HR) was measured continuously using short-range radio telemetry 15 

(Polar Beat, Polar Electro Oy, Kempele, Finland). An oxygen/carbon dioxide analyser 16 

(Servomex 1400, Crowbridge, UK) was used along with a dry gas meter (Harvard 17 

Apparatus, Edenbridge, UK) for the determination of  oxygen uptake ( 2OV ). Criteria 18 

for attaining  2maxOV  included the participants reaching volitional exhaustion and a 19 

heart rate within 10 beats/min of HRmax. From the 2OV  work rate relationship, the 20 

work rates equivalent to 60% and 75% 2maxOV  for each participant were interpolated.  21 

 22 

Participants then completed a familiarisation ride. This ensured the subjects were able 23 

to cope physically with the demands of the test, and for them to practice the saliva 24 
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collection procedure. It also allowed saliva flow rates to be determined to ensure there 1 

was a large enough volume ( 1.5 mL) collected for analysis. The familiarisation trial 2 

was conducted in the same manner as the main trial. Participants cycled at 60% 3 

2maxOV  for 2.5 h and then after a 5 min rest, completed a ride to fatigue at 75%. 4 

2maxOV . Expired gas samples were collected into Douglas bags at 30, 90 and 114 min 5 

to enable adjustments to be made to the work rate so that 60 % of 2maxOV  was 6 

achieved throughout the 2.5 hours of cycling. Heart rate and RPE were also measured 7 

every 15 min.  8 

 9 

Experimental procedures 10 

Participants were requested to abstain from alcohol, caffeine and strenuous exercise 2 11 

days prior to the trial. Participants arrived at the laboratory at 8:30 h for the main trial 12 

following an overnight fast (10 – 12 h) and were required to sit quietly for 5 min 13 

before providing a saliva sample. The participants were then asked to empty their 14 

bladders before body mass was measured wearing their shorts only. They then 15 

performed 2.5 h cycling at 60% 2maxOV  on a stationary cycle ergometer. Heart rate 16 

and RPE were measured at 20 min intervals and expired gas was collected at 30 min, 17 

90 min and 114 min of exercise for the analysis of 2OV  using a Douglas bag. 18 

Participants were given 200 mL of water every 20 min during exercise; in addition 19 

they ingested 300 ml of flavoured water immediately before the exercise began, and 20 

again after 50 min and 110 min of exercise. Further saliva samples were collected 70 21 

min and 130 min of exercise. It was ensured that no fluid was consumed in the 10 min 22 

prior to each saliva collection. Following completion of the 2.5 h cycling, the 23 
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participants were allowed a 5 min rest before commencing the ride to exhaustion at 1 

75% 2maxOV  with no verbal encouragement and no information on time elapsed. The 2 

time to exhaustion was 897  122 s. A final saliva sample was obtained immediately 3 

after completing the ride to exhaustion and body mass was measured. Mean 4 

temperature and humidity in the laboratory during the trial were 23  0.5
 o

C and 32  5 

4 % respectively. 6 

 7 

Saliva collection 8 

The saliva collections were made with the participants seated, leaning forward and 9 

with their heads tilted down. They were instructed to swallow in order to empty the 10 

mouth before a whole saliva sample was collected over a 3-min period into a pre-11 

weighed, 50 mL screw top sterile vial (Fisher Scientific, UK; UNSTIM). Care was 12 

taken to allow saliva to dribble into the collecting tubes with making minimal 13 

orofacial movement. At the end of the collection period subjects were instructed to 14 

collect any saliva remaining in the mouth and expectorate it (Navazesh and 15 

Christensen, 1982). The UNSTIM sample was immediately followed by 1 min of 16 

chewing a commercially available sugar-free mint flavoured gum (1.8g portion, 11 kj, 17 

1.1 g carbohydrate) where participants were instructed to chew at a regular rate and 18 

force (Proctor and Carpenter, 2001). Immediately after removing the gum the 19 

participants provided a second saliva sample (STIM) as described above by dribbling 20 

into a different tube for a further 1 min. Samples were then stored at -80C until 21 

analysis. 22 

 23 
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Saliva analysis 1 

Saliva volume was estimated by weighing to the nearest mg and the saliva density 2 

was assumed to be 1.0 g.mL
-1

 (Cole and Eastoe, 1988). Saliva flow rate (mL.min
-1

) 3 

was determined by dividing the volume of saliva by the collection time. Salivary IgA 4 

concentration was determined in duplicate by an enzyme-linked immunosorbent assay 5 

(ELISA) and alpha-amylase activity was measured in duplicate using a 6 

spectrophotometric method as described previously (Li and Gleeson, 2004). 7 

Lysozyme (Biomedical Technologies Inc., USA) concentration following a 1000-fold 8 

dilution of saliva with phosphate buffered saline (PBS), was analysed in duplicate 9 

using a commercially available ELISA kit on a subset of twelve participants selected 10 

at random, the number of which was determined upon findings from a previous study 11 

(Allgrove et al., 2008). Osmolality was determined using a cryoscopic (freezing point 12 

depression) osmometer (Osmomat 030, Gonotec, GbBH, Berlin, Germany) calibrated 13 

with 300 mOsmol.kg
-1

 NaCl solution. Secretion rates for the salivary analytes were 14 

calculated by multiplying the concentration by the saliva flow rate. The intra-assay 15 

coefficient of variation for the analytical methods used were 2.4%, 7.9% and 8.2% for 16 

-amylase, IgA and lysozyme, respectively. 17 

 18 

Statistical analysis 19 

Data were checked for normality, homogeneity of variance and sphericity before 20 

statistical analysis. A two-way ANOVA (2 treatments x 4 sample times) with repeated 21 

measures design was used to examine the salivary data. Data that were not normally 22 

distributed were normalised with log transformation. Significant differences were 23 
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assessed using Student’s paired t-test with Holm-Bonferroni adjustments for multiple 1 

comparisons. Differences in HR between the steady state exercise and time to 2 

exhaustion ride were assessed using Student’s paired t-tests. Data in text and tables 3 

are presented as mean  SD. For clarity, data in figures are presented as mean  SEM. 4 

Statistical significance was accepted at P < 0.05.   5 

 6 

Results 7 

Physiological variables and RPE 8 

Attainment of an average of 60% 2maxOV  was achieved during the steady state 9 

exercise; where mean 2OV  was 60.1  2.8% 2maxOV . Mean HR was 137  11 10 

beats.min
-1

 and 174  9 beats.min
-1

 during the steady state exercise and the time to 11 

exhaustion trial, respectively. Mean RPE measured during the steady state exercise 12 

was 12  2 and the post-exercise body mass loss was 0.53  0.10 kg (0.7  0.1%).  13 

 14 

Salivary variables 15 

Saliva flow rate 16 

Saliva flow rate was significantly higher in STIM compared with UNSTIM 17 

throughout the exercise protocol (main effect of treatment: F1, 23 = 177.10, P < 18 

0.001). Saliva flow rate decreased at 130 min of exercise and post-exhaustion in 19 

STIM only (interaction: F3, 56 = 10.37, P < 0.001; Table 1). 20 

 21 

***Insert Table 1 near here*** 22 
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 1 

Salivary lysozyme concentration 2 

Salivary lysozyme concentration increased with exercise (main effect of time: F 3, 33 = 3 

23.97, P < 0.001), but there were no differences between methods (Table 1).  4 

 5 

Salivary lysozyme secretion rate 6 

Salivary lysozyme secretion rate increased with exercise (main effect of time: F 3, 33 = 7 

18.00, P <0.001), and was significantly higher in STIM compared with UNSTIM 8 

throughout the exercise protocol (main effect of treatment: F 1, 11 = 35.05, P < 0.001; 9 

Figure 1). 10 

 11 

***Insert Figure 1 near here*** 12 

 13 

Salivary -amylase activity 14 

Salivary -amylase activity increased with exercise (main effect of time: F 3, 69 = 15 

107.77; P < 0.001), but there were no differences between methods (Table 1). 16 

 17 

Salivary -amylase secretion rate 18 

Salivary -amylase secretion rate increased with exercise (main effect of time: F 3, 49 19 

= 45.99; P < 0.001) and was significantly higher in STIM compared with UNSTIM 20 
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throughout the exercise protocol (main effect of treatment: F 1, 23 = 166.85; P < 1 

0.001; Figure 2). 2 

 3 

***Insert Figure 2 near here*** 4 

 5 

 6 

Salivary IgA concentration 7 

Salivary IgA concentration increased with exercise duration (main effect of time: F 3, 8 

50 = 4.45; P < 0.05), and was significantly higher in UNSTIM compared with STIM 9 

throughout the exercise protocol (main effect of treatment: F 1, 23 = 44.84; P < 0.001; 10 

Table 1). 11 

 12 

13 
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 1 

Salivary IgA secretion rate 2 

Salivary IgA secretion rate increased post-exhaustion compared with baseline levels 3 

(main effect of time: F 3, 46 = 9.81; P < 0.001) and was significantly higher in 4 

UNSTIM compared with STIM (main effect of treatment: F 1, 23 = 5.15; P < 0.05; 5 

Figure 3) 6 

 7 

***Insert Figure 3 near here*** 8 

 9 

 10 

 11 

Discussion 12 

The main findings of the study were 1) saliva flow rate decreased with exercise in 13 

STIM only and was higher in STIM compared with UNSTIM 2) α-amylase activity 14 

and secretion rate and lysozyme concentration and secretion rate all increased with 15 

exercise in both STIM and UNSTIM, and secretion rates were higher in STIM 16 

compared with UNSTIM 3) s-IgA concentration and s-IgA secretion rate increased 17 

post-exercise and were both lower in STIM compared with UNSTIM. 18 

 19 

The results show a significant effect of stimulating saliva flow on saliva flow rate, 20 

where it was 3-fold higher in STIM compared with UNSTIM and corroborates 21 

previous findings (Hector and Linden, 1987). Saliva flow rate decreased following 22 

exercise in the STIM trial only. Previous studies have attributed a reduction in flow 23 
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rate during exercise to dehydration, although the small change in net mean body loss 1 

of (0.53  0.11 kg; 0.7 ± 0.1%), and lack of difference in the unstimulated trial 2 

suggests that this had little impact (Walsh et al., 1999). It is possible that the 3 

decreased parasympathetic nervous system activity during exercise and a removal of 4 

vasodilatory influences (Proctor and Carpenter, 2007) may have limited the increase 5 

in flow rate that occurs with chewing. Alternatively, the decline may be a result of 6 

repetitive periods of chewing whereby the production of saliva may have become 7 

temporarily exhausted over time (Proctor and Carpenter, 2001). Although saliva flow 8 

rate in STIM was consistently higher than UNSTIM during the protocol, these 9 

findings show that the saliva collection method employed during exercise can 10 

differently affect the salivary flow response. 11 

 12 

Stimulating saliva flow did not affect lysozyme concentration or -amylase activity. 13 

Rudney (1989) also reported that salivary lysozyme was unaffected by the flow rate. 14 

However, when these proteins were expressed as a secretion rate, significantly higher 15 

values in STIM compared with UNSTIM were observed. Similar increases in parotid 16 

-amylase activity secretion rate were reported by Proctor and Carpenter (2001) 17 

following chewing, as would be expected given that -amylase is an enzyme that 18 

functions to break down starch and glycogen to maltose in the oral cavity. In contrast 19 

to these proteins, stimulating saliva flow resulted in a significantly lower s-IgA 20 

concentration compared with UNSTIM throughout the exercise protocol, which has 21 

been previously attributed to the increased saliva flow rate from chewing activating 22 

the parotid gland functioning to dilute the saliva (Proctor and Carpenter, 2001). 23 

However, when expressed as a secretion rate s-IgA levels were slightly lower in 24 
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STIM compared with UNSTIM. These findings do not support other studies where 1 

stimulating saliva flow increased the secretion rate of s-IgA at rest (Proctor and 2 

Carpenter, 2001). However, Proctor and Carpenter (2001) stimulated saliva by 3 

chewing on a piece of polythene tube whereas the current study administered a 4 

commercially available flavoured chewing gum. The resulting differences between 5 

masticatory stimulation only, from chewing the polythene tube, and gustatory and 6 

masticatory stimulation combined when chewing flavoured gum, may explain some 7 

of these differences. Despite a detrimental effect on the rate of s-IgA secretion during 8 

exercise observed in STIM, levels remained above resting values, which may be 9 

relevant in terms of oral immunity. 10 

 11 

Significant increases in the salivary antimicrobial proteins were observed with 12 

exercise which has been reported in previous studies (Blannin et al., 1998; Walsh et 13 

al., 2004; Li and Gleeson, 2004; Sari-Sarraf et al., 2007; Allgrove et al., 2008; West et 14 

al., 2010, Costa et al., 2012). -amylase and lysozyme levels increased consistently 15 

during the exercise protocol, whereas S-IgA levels were elevated following the ride to 16 

exhaustion at 75% 2maxOV . These changes are thought to be related to an increase in 17 

sympathetic nervous system (SNS) activity enhancing their transport and/or secretion 18 

into saliva (Chatterton et al., 1996; Bishop et al., 2000; Walsh et al., 2002) and 19 

suggest that there may be a threshold level of SNS activity to increase s-IgA secretion 20 

during exercise, a finding that has been previously demonstrated in the rat model 21 

(Carpenter et al., 2000). 22 

 23 
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Differences in the secretion of the antimicrobial proteins with chewing may be related 1 

to the way these proteins are stored and secreted into saliva. Lysozyme and -amylase 2 

are stored in secretory granules which are released spontaneously upon autonomic 3 

stimulation (Bosch et al., 2002). However, s-IgA is secreted onto mucosal surfaces 4 

across epithelial cells via the polymeric immunoglobulin receptor, (Proctor and 5 

Carpenter, 2001) which is activated by neuronal stimuli that may differ to other 6 

salivary proteins. These findings show that the combination of masticatory and 7 

gustatory stimuli through chewing flavoured gum activate the secretion of stored 8 

salivary proteins into saliva (lysozyme and -amylase) but do not enhance the 9 

(transport and subsequent secretion) of the receptor mediated secretion of s-IgA. A 10 

further explanation may be related to the relative contributions of the different 11 

salivary glands during unstimulated and stimulated saliva flow, since specific salivary 12 

glands have been shown to be activated by some stimuli more than others (Noble, 13 

2000). For example, mastication predominantly activates the parotid glands, which 14 

produce large amounts of -amlyase. In contrast, strong taste stimuli activate the 15 

submandibular and sublingual glands (from which lysozyme is mainly produced) 16 

more than the parotid gland. Thus, the increase in -amylase and lysozyme by 17 

chewing flavoured gum may be explained by the increase of salivary secretion from 18 

these specific glands. The relative contribution of salivary glands for s-IgA secretion 19 

is not clear. Crawford et al. (1975) reported s-IgA concentration to be four times 20 

higher in the minor salivary glands than parotid glands although other data suggest a 21 

low parotid s-IgA secretion rate is associated with high susceptibility to dental caries, 22 

suggesting a greater role of the parotid gland in s-IgA secretion (Brandtzaeg, 1976). 23 

These uncertainties make it difficult to relate the changes in s-IgA secretion in 24 
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stimulated and unstimulated saliva flow to the stimulation of specific glands. From a 1 

practical standpoint, these findings show that when investigating s-IgA, the saliva 2 

flow rate must be considered. 3 

 4 

A limitation of these findings is that it is not possible to distinguish whether the 5 

differences between stimulated and unstimulated saliva flow were due to masticatory 6 

or gustatory stimuli alone or in combination and future work might seek to address 7 

this to determine which may have the most favourable response. In addition, the 8 

practice of chewing during exercise may not be recommended in case of a risk of 9 

choking, therefore administering a bitter isotonic beverage might be recommended as 10 

a potential alternative. Nevertheless, the finding of an increase in the secretion rates of 11 

lysozyme and -amylase with exercise which is further enhanced by stimulating 12 

saliva flow suggest mechanisms by which resistance to oral infections might be 13 

enhanced. These effects might have further benefits in immunocompromised 14 

individuals where significant reductions in salivary antimicrobial proteins (i.e. below 15 

basal levels) have been observed. At present, there are limited data to directly relate 16 

the levels of these proteins in saliva to a reduced risk of upper respiratory symptoms 17 

(Cunniffe et al., 2011) and given the present findings, this may be of interest.  18 

 19 

Perspective 20 

These findings show that prolonged exhaustive exercise in trained men can result in 21 

increases in salivary antimicrobial proteins probably via an increase in SNS activity, 22 

which may be regarded as beneficial to oral immune status. Moreover, a stimulated 23 

saliva flow collection with exercise through chewing flavoured gum has a further 24 

enhancing effect on α-amylase and lysozyme secretion rate but has little effect on s-25 
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IgA secretion. The differences in these effects are likely related to the way that these 1 

proteins are stored and secreted into saliva and/or by the activation of different 2 

salivary glands by masticatory and gustatory stimuli. Understanding the effect of 3 

exercise on salivary antimicrobial proteins and mechanisms or interventions that 4 

might affect this response can enable us to employ measures to enhance immune 5 

function which might reduce the incidence of URI. 6 

  7 
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 1 

Figure 1. Changes in lysozyme secretion rate during exercise in unstimulated (UNSTIM) and 2 

stimulated (STIM) flow conditions. Values are mean ±SE 3 
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Figure 2. Changes in -amylase secretion during exercise in unstimulated (UNSTIM) and 6 

stimulated (STIM) flow conditions. Values are mean ±SE 7 
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Figure 3. Changes in s-IgA secretion rate during exercise in unstimulated (UNSTIM) and 2 

stimulated (STIM) flow conditions. Values are mean ±SE 3 
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Table 1. Changes in saliva flow rate, s-IgA concentration, lysozyme concentration and -amylase activity during exercise in unstimulated 1 

(UNSTIM) and stimulated (STIM) flow conditions. Values are mean ±SD 2 

 Pre-ex 70 min 130 min Post-exh Main effects p values, 

trial; time; trial x time 

Saliva flow rate  

(ml.min
-1

) 

   UNSTIM  

   STIM 

 

 

0.45 (0.25) 

1.40 (0.62) 

 

 

0.48 (0.26) 

1.27 (0.43) 

 

 

0.47 (0.47) 

1.13 (0.38)* 

 

 

0.55 (0.24) 

1.20 (0.40)* 

 

< 0.001; 0.027; < 0.001 

S-IgA concentration 

(mg.l
-1

) 

   UNSTIM  

   STIM 

 

 

291 (250)  

76 (42) 

 

 

242 (123)  

73 (39) 

 

 

285 (194)  

80 (41) 

 

 

326 (186)  

111 (79) 

 

< 0.001;  0.015; > 0.1 

 

 

Lysozyme concentration 

(mg.l
-1

) 

   UNSTIM 

 

 

1.15 (1.34) 

 

 

4.66 (4.72)  

 

 

7.61 (5.15)  

 

 

9.73 (6.24)  

 

> 0.1; < 0.001; > 0.1 
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   STIM 2.08 (2.01) 4.52 (2.80) 6.49 (2.63) 8.50 (3.56) 

 

-amylase activity  

(U.ml
-1

) 

   UNSTIM 

   STIM 

 

 

143 (23)  

171 (22) 

 

 

352 (26)  

349 (22) 

 

 

418 (28)  

427 (17) 

 

 

463 (22)  

454 (17) 

 

> 0.1; < 0.001; > 0.1 

*Significantly different to pre-exercise (P<0.05) 1 

 2 


