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Abstract—In this study, the authors proposes to develop an
efficient formulation in order to figure out the stochastic security-
constrained generation capacity expansion planning (SC-GCEP)
problem. The main idea is related to directly compute the
line outage distribution factors (LODF) which could be applied
to model the N − m post-contingency analysis. In addition,
the post-contingency power flows are modeled based on the
LODF and the partial transmission distribution factors (PTDF).
The PTDF-based generation capacity planning formulation has
been reformulated in order to include the post-contingency
constraint solving both pre- and post-contingency constraints
simultaneously. The methodology includes in the optimization
problem the load uncertainty using a two-stage multi-period
model, and a K−means clustering technique is applied to reduce
the load scenarios. The main advantage of this methodology is the
feasibility to quickly compute the post-contingency factors espe-
cially with multiple-line outages (N −m). This idea could speed
up contingency analyses and improve significantly the security-
constrained analyses applied to stochastic GCEP problems. It is
conducted several experiments with two electrical power systems
in order to validate the performance of the proposed formulation.

Index Terms—Linear distribution factors; security-
constrained; stochastic programming; two-stage problem;
uncertainty;

I. INTRODUCTION

The GCEP is an issue of determining, i) how many capacity
to add, ii) what type of generation is needed, and iii) when and
where to locate new generating units so that the load customers
are adequately supplied for a foreseen future, typically 10-20
years.

Capacity expansion planning was first formulated as an
optimization problem in 1957 [1], but it was only after
development of computing and decomposition techniques that
capacity expansion plans for simple models of real power
systems could be obtained [2]. Assuming that the electricity
market is centrally operated (e.g. Chile situation), and that the
generation companies do not have the ability to accomplish
local market power, the GCEP optimization problem can be
formulated as a cost minimization in which operational costs
are modeled using a DC-network through an optimal power

flow (DC-OPF) model [3], [4]. Additionally, the objective of
security analysis is to determine a minimum operation point
where the system is kept in a normal state after a major
disturbance such as transmission line, transformer or generator
outage [5]. The preventive security-constrained formulation
minimizes some cost function by considering only the normal
case control variables that are feasible for both normal and
contingency conditions. The reader is referred to [6], [7] for
a recent literature review.

In the literature review, the most accepted model used by
researchers is the so-called DC-based model. In electrical
power systems, this classical formulation has been broadly
used by researchers to solve different operation and plan-
ning problems [8]–[11]. In addition, deterministic models;
i.e. assuming perfect foresight, have been widely studied,
and several methods to solve the GCEP problem have been
proposed using dynamic programming [12], [13] and branch-
and-bound methods [3], [6], [14], [15]. Another very important
factor in operation and planning problems is the modeling of
uncertainty in input variables. Actually, stochastic generation
planning models have been investigated by different authors
[10], [15]–[18]. In these references, the uncertainty of input
variables has been included with different approaches.

In this study, it is modeled the load uncertainty using the
two-stage stochastic mixed-integer problem (SMIP) [19] based
on non − anticipativity constraints. The model uses the
K −means clustering algorithm [20] in order to reduce the
load scenarios [10] keeping the associated optimization prob-
lem smaller; furthermore, the clustering algorithm computes
their respective probability for its use in the SMIP objective
function. This approach has been used by several researchers
[10], [15].

This study is based on the previous methodology carried
out by Hinojosa [4]. The methodology uses linear distribution
factors in order to model the pre- and post-contingency con-
straints simultaneously. It should be pointed out that promi-
nent results were obtained modeling the pre- and the post-
contingency (N − 1 and N − 2) analyses. On the other hand,



the framework to model the post-contingency constraints has
some complications when the algorithm needs to model and
include more that two contingencies. Since each contingency
requires separate LODFs, a quick calculation of LODFs, espe-
cially with multiple-line outages, could speed up contingency
analyses and improve significantly the security analyses of
power systems [21].

The proposed methodology has not been implemented in
the technical literature. Moreover, there is no evidence about
the performance in the simulation time; therefore, it would be
very interesting to conduct several analyses with large-scale
power systems and increasing the number of load scenarios in
order to validate the simulation time.

II. DC-BASED PREVENTIVE SECURITY-CONSTRAINED
PROBLEM

The uses of scenarios to represent the uncertainty allows
to formulate the SMIP starting from a deterministic MILP
formulation as the minimization of the expected value of
the deterministic objective function, which turns out to be
the weighted sum of the objective function for S possi-
ble realization of the uncertainty parameter (scenarios) with
their respective probabilities of occurrence (ωs) [22]. In the
proposed formulation, the first stage variables (investment
decisions of generation capacity) are the decisions to make
under uncertainty and are the same for all different realizations
of the uncertain parameter (long-term load forecasting). The
second stage variables (power generation of each unit) must
supply the load customers for each scenario considering a DC-
network through a security-constrained DC-OPF problem.

From a central planner point of view, stochastic GCEP
problem can be formulated as the minimization of the fol-
lowing terms: 1) investment cost from candidate power units;
2) fixed operational & maintenance cost from candidate power
units; 3) variable operational cost from existing and candidate
power units; and 4) unserved energy cost. Moreover, it is
assumed that m potential contingencies (N − m) could be
added in the operational problem in order to model a security-
constrained problem. Note that it is supposed that the active
power generation is the same for both the pre-contingency
(N −0) and the post-contingency analysis (for instance N −1
or N−2). Notice that only one equation is needed to maintain
the pre- and post-contingency balance. More details about
pre- and post-contingency transmission modeling using linear
factors could be reviewed in [3], [4], [23], [24].

A. Mathematical formulation

The DC-based transmission power losses have not been in-
cluded in the optimization problem; therefore, the optimization
problem can be formulated as follows:

∑
s∈S

ωs{
∑
t∈T

αt[
∑
g∈B

(Ig · (ns,t,g − ns,t−1,g) +OMg · ns,t,g) · PM
g︸ ︷︷ ︸

fixed (investment + O&M) cost

+

∑
y∈Y

∑
g∈(B∪E)

Fg · hy · Ps,t,y,g︸ ︷︷ ︸
variable (operational) cost

+V oLL · hy ·
∑
g∈R

Ps,t,y,g︸ ︷︷ ︸
unserved energy cost

]}

(1)

s.t.
Capacity reserve margin: planning reserve margin is designed
to measure the amount of generation capacity available to
meet expected demand in planning horizon. Coupled with
probabilistic analysis, calculated planning reserve margins
have been an industry standard used by planners for decades
as a relative indication of adequacy (NERC).

∑
g∈B

PM
g · ns,t,g +

∑
g∈(E∪r)

PM
g ≥ dpeaks,t + SR (2)

Load balance: in spite of the fact that there are three balance
conditions (N − 0, N − 1 and N − 2), only one equation
is needed since active power generation for each condition is
the same. This equation will be called global power balance
equation (3), and it is used to satisfy the load for the pre- and
post-contingency cases simultaneously.

∑
g∈(B∪E∪r)

hy · Ps,t,y,g = Ds,t,y (3)

Transmission limits: the power flow through transmission
elements (either lines or transformers) should not violate its
respective capability regarding normal (L), N −1 (L−1) and
N −m (L−m) conditions.

|GN−0 · (Ps,t,y,k − ds,t,y,k)| ≤ fM
l ∀l ∈ L

|GN−m · (Pt,y,k − dt,y,k)| ≤ fM
l ∀l ∈ L−m (4)

Nonlinear transformation: because of the nonlinear transfor-
mation, it is necessary to include a inequality constraint to
limit the active power supplied by candidate units g.

Ps,t,y,g ≤ PM
g · ns,t,g (5)

Sequential installation: these constraints represent the logical
relationship for the construction status of different generating
units within the planning horizon.

ns,t−1,g ≤ ns,t,g (6)

Maximum power units: the maximum (accumulated) number
of power units is limited considering a maximum number of
generators to be built.



ns,t,g − ns,t−1,g ≤ nM
g (7)

Non-anticipativity constraints: the SMIP is solved using
non − anticipativity constraints, which force the first stage
variables (investment decisions of generation capacity) to be
the same for each scenario.

n1,t,g = ns,t,g

∀s ∈ S, ∀t ∈ T, ∀y ∈ Y (8)

where S, G, L, T , and Y are load scenarios, set of
all generators, transmission elements, years in the planning
horizon, and load duration curve (LDC) blocks, respectively.
B ⊂ G, E ⊂ G and r ⊂ G are the indexes of generators with
building decisions, actual generators and virtual generators
(load shedding). Ig is the investment cost of generator g, OMg

is the operation and maintenance cost, V oLL is the value of
lost load, αt is the discount economic factor, h is the number
of hours in LDC block; SR is spinning reserve; dpeak is peak
load; D is the total load; and fM

l is the maximum power flow
through line l. Ps,t,y,g is the total active power supplied by
the plant g (block y, planning stage t, scenario s), PM

g is
the maximum active power, ns,t,g is the number of units to
build, and nM

g is the maximum number of units with building
decisions.

B. Improved method to compute directly the LODFs

In [3], [4], the pre- and post-contingency transmission
constraints are formulated using the partial transmission dis-
tribution factors (PTDF) and LODF.

1) Pre-contingency transmission limits: For the pre-
contingency transmission constraint, the following matrix is
defined GN−0 = PTDFN−0.

2) Post-contingency transmission limits: In this study, it is
used the LODF definition [5] in order to compute the post-
contingency transmission constraints (9):

fN−1
l = fN−0

l + LODFN−0
l,o1 · fN−0

o1 ∀l ∈ L− 1 (9)

where fN−0
l and fN−0

o1 are the pre-contingency power flows
on l− th line and line o1, respectively, and fN−1

l is the N−1
power flow (post-contingency) on l− th line with line o1 out.

Using the PTDF-based formulation and equation (9), it is
possible to compute the N − 1 (m = 1) linear factor (10):

GN−1 = PTDFN−0
l + LODFN−0

l,o1 ∗ PTDFN−0
o1 (10)

On the other hand, the N − 2 (m = 2) analysis is solved
using the following expressions (11):

fN−2
l = fN−1

l + LODFN−1
l,o2 · fN−1

o2 ∀l ∈ L− 2 (11)

where fN−1
o2 = fN−0

o2 + LODFN−0
o2,o1 · fN−0

o1 .

Using the PTDF-based formulation and equation (11), it is
possible to compute the N − 2 (m = 2) linear factor (12):

GN−2 = PTDFN−0
l + [(LODFN−0

l,o1 + LODFN−l
l,o2 ∗

LODFN−0
o2,o1) ∗ PTDFN−0

o1 ] + LODFN−l
l,o2 ∗ PTDFN−0

o2

(12)

where line o1 and o2 are out simultaneously.
These expressions (GN−0, GN−1 and GN−2) are used for

computing the pre- and post-contingency power flows in the
transmission network.

C. Post-contingency transmission limits using a generalized
formulation

In spite of the fact that the N − 3 (m = 3) could be math-
ematically formulated, it is proposed to apply the algorithm
and methodology proposed in [21] in order to compute the
N −m power flows using the LODFs 13):

fN−m
l = fN−0

l + LODFl,O · fN−0
O ∀l ∈ L−m

;LODFl,O = PTDFN−0
l ∗AT

Or
∗ (IO − PTDFN−0

O ∗AT
Or

)−1

(13)

where O represents the set of lines on outage, AT
Or

is the
reduced bus-to-tripped line incidence matrix, and IO is the
identity matrix for the outage lines. Note that it is changed the
original notation in order to show clearly the classical PTDF
definition; i.e., LODFl,O = PTDFl ·AT

Or
and LODFO,O =

PTDFO ·AT
Or

.
Using the PTDF-based formulation (GN−0) and previ-

ous LODFl,O definition, it is possible to change the pre-
contingency power flows considering only the PTDF matrix
and the net power injections. As a result, the N − m trans-
mission constraints can be computed using (14).

|GN−m · (Pt,y,k − dt,y,k)| ≤ fM
l ∀l ∈ L−m (14)

where GN−1 = PTDFN−0
l + LODFl,O ∗ PTDFN−0

O .
Arranging the mathematical terms, the final expression used

to compute the power flow through l− th line when O-th are
out is as follows (15):

GN−m = PTDFN−0
l ∗ [Ib−1 +AT

Or
∗ (IO − PTDFN−0

O ∗
AT

Or
)−1 ∗ PTDFN−0

O ] (15)

where I is the identity matrix, and (b) is the number of
buses.

III. SIMULATION RESULTS

Two power systems are considered to inspect and verify the
proposed formulation. It is conducted several experiments in
order to validate the formulation, and determine the perfor-
mance in the simulation time. In addition, the optimization
problem was solved using MATLAB and Gurobi on a
computer with the following characteristics: Intel Core i7 3930
(3.20GHz) with RAM 32GB.



A. 6-bus test power system

The first test system used to validate and illustrate the
proposed formulation is the classic 6-bus power system in-
troduced by Wood and Wollemberg. Technical transmission
data is obtained from [5], but transmission limit constraints
are changed to 300 [MW ]. This problem considers a 20% of
capacity reserve margin; i.e. 1.2 times the yearly peak load.
Also, the maximum number of power units to be built is 3,
and the V oLL value is 10000[$/MWh]. The interest rate used
is 10%. For the MILP problem, the gap used is 0.0001%.
Besides, tenth investment periods have been modeled in the
optimization problem. Generation data for the new, virtual and
existing power generation is shown in Table I. Information
about the number of hours (ht) for each time period could be
reviewed in [4].

Table I
GENERATOR DATA FOR IEEE 6-BUS TEST SYSTEM

Bus Capacity Inv. cost OM cost Oper. cost
(MW) ($/MW) ($/MW) ($/MWh)

1 250 existing unit - 18.50
4 100 existing unit - 14.36
4 50 existing unit - 22.11
1 150 300000 12000 20.41
3 100 250000 30000 25.95
5 250 350000 36000 14.08

4,5,6 999 virtual unit - V oLL

1) Representation of load uncertainty: The optimization
problem requires the definition of future scenarios in order to
model load uncertainty. In expansion capacity planning, one
of the most popular model to represent adequately the load
evolution is the Geometric Brownian Motion [25]. For each
case analyzed, the methodology simulates 100 scenarios (total
expected behaviour) using the Geometric Brownian Motion.

Before sending the problem to the solver with all scenarios,
one important step is the scenario reduction. The basic idea
of the scenario reduction is to cluster similar load scenarios
into groups. Accordingly, scenario reduction techniques can be
employed to reduce the number of scenarios while maintaining
a good approximation of the system uncertain behaviour.

The K−means clustering algorithm is applied to reduce the
load scenarios as well as to obtain their respective probabilities
of occurrence in order to formulate the SMIP optimization
problem.

For instance in Fig. 1, it is shown both the long-term
load scenarios (10 years with four periods: valley, rest, mean,
peak) and scenario reduction using the clustering algorithm in
order to model 10 scenarios. A higher number of generated
scenarios results in a better modeling of uncertainties but also
the simulation time will be higher.

400
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1400

lo
a
d
 [
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W
]

100 load scenarios for 10 years (4 periods)

periods
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a

d
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]

10 load scenarios using -meansK
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Figure 1. Uncertainty load modeling using a Geometric Brownian
Motion

In this figure, it is shown the yearly load modeling. For
this first test system and for each load scenario, the total load
(valley, rest, mean and peak) is divided proportionally for each
load bus (bus 4, bus 5 and bus 6) in order to carry out the
GCEP problem.

2) SMIP formulation considering a N − 2 analysis and 5
load scenarios: A N−2 analysis, with line 1−2 and line 3−6
out, is solved. The optimal cost for the proposed formulations
is $947848572.00. The optimization problem includes one unit
for bus 1 in t1; one unit for bus 3 in t8 and t9; and one unit
for bus 5 in t1 and t4. Moreover, there is not load shedding
in the solution regarding all scenarios but there are forty-nine
periods with congestion on transmission line 5 − 6 for the
N − 2 condition.

For this case, it is decided to compare the solution obtained
using the PTDF&LODF-based formulation [4]. Both solutions
are the same; therefore, it is confirmed the accuracy and
optimality of the new mathematical formulation validating the
LODF algorithm.

3) SMIP formulation considering a N − m analysis and
5 load scenarios: A N − 3 analysis, with line 1 − 2, line
2 − 4 and line 1 − 2 out, is solved. The optimal cost for
the proposed formulations is $963409712.71. The optimization
problem includes one unit for bus 1 in t1 and t4; one unit for
bus 3 in t6, t8 and t9; and one unit for bus 5 in t1. Moreover,
there is not load shedding but there are sixty-nine periods with
congestion.

A N −4 analysis, with line 1−2, line 2−4, line 2−5 and
line 1 − 2 out, is solved. The optimal cost for the proposed
formulations is $1091668691.74. The optimization problem
includes one unit for bus 1 in t3 and t8; one unit for bus 3 in
t1, t5 and t7; and one unit for bus 5 in t1. There is not load
shedding but there are one hundred and thirty periods with
congestion.

A N−5 analysis, with line 1−2, line 1−5, line 2−4, line
2 − 5 and line 1 − 2 out, is solved. The optimal cost for the
proposed formulations is $1107315292.10. The optimization
problem includes one unit for bus 1 in t10; one unit for bus 3
in t1, t5 and t7; and one unit for bus 5 in t1 and t3. There is



not load shedding but there are one hundred and thirty periods
with congestion.

These results lead to conclusion that inclusion of security
criteria in the optimization problem strengthens the investment
plan so that the system is kept in a normal operation state in
order to supply the load customers and avoid load shedding
after a major disturbance (N − 1, N − 2, and so on).

Finally, a N−6 analysis, with line 1−2, line 1−5, line 2−4,
line 2−5, line 2−6 and line 1−2 out, is solved. However, the
solution has load shedding. It is worth to mentioning that there
is not possible to supply the load of the customers when six
lines are out simultaneously; therefore, the virtual generation
(lost of load) is activated.

4) SMIP formulation considering different load scenarios:
Considering the lower simulation time and using the proposed
formulation, we have conducted several analyses increasing
the number of load scenarios to 10 scenarios and taking into
account that a higher number of scenarios results in a better
modeling of load uncertainty. Table II shows simulation results
for each case using the proposed formulation (PF). It is also
included the objective function (FO).

Table II
SIMULATION RESULTS APPLIED TO 6-BUS POWER SYSTEM

model S bus 1 bus 3 bus 5 FO, $
PFN−2 5 t1 t8, t9 t1, t4 947848572.00
PFN−3 5 t1, t4 t6,t8, t8 t1 963409712.71
PFN−4 5 t3, t8 t1,t5, t7 t1 1091668691.74
PFN−5 5 t10 t1,t5, t7 t1, t3 1107315292.10
PFN−2 10 t1, t4, t8 t6, t10 t1 954777275.18

Notice that generation plans with 5 load scenarios are
different. In fact, this is the reason for the bigger objective
function when a stronger post-contingency analysis is modeled
in the security-constrained optimization problem.

Additionally, it can be seen that solutions are different
depending on the number of load scenarios. Considering
10 scenarios, there are more power units included in the
generation planning solution in comparison with 5 scenarios.

These results lead to conclusion that inclusion of security
criteria in the optimization problem strengthens the investment
plan; therefore, the system is kept in a safe operational state
after a major disturbance (N −m).

The performance of N − m post-contingency analysis,
scenario reduction and SMIP applied to stochastic security-
constrained GCEP could be measured evaluating a security-
constrained DC-OPF (operational problem) for all scenarios.
More details could be reviewed in [4].

B. 2383-bus test power system

The Polish power system added in MATPOWER is used
for testing the proposed approach applied to large-scale power
systems. This study case includes 400, 220 and 110 [kV ]
transmission lines, and consists of three hundred twenty-
seven generators and two thousand eight hundred ninety-
six transmission lines. Tenth investment periods have been
modeled in the optimization problem, and the maximum load

in the last year is D = 26 220[MW ]. This problem considers
a 20% of reserve. Data for actual power units can be reviewed
using MATPOWER, and data for the future generation
system is provided in Table III. In addition, transmission line
6 − 31 is limited to 600 [MW ]. For the MILP problem, the
gap used is 0.01%.

Table III
GENERATOR DATA FOR FUTURE POWER UNITS

Bus PM nM F I OM

MW US$/MWh MMUS$/MW US$/MW

1 100 2 170 2.50 12000
3 130 3 140 0.40 30000
95 50 3 40 1.50 36000

123 250 3 165 3.50 36000
754 150 2 160 2.00 25000
795 150 3 90 1.50 30000
799 250 2 145 3.50 20000
800 100 3 190 2.50 20000
833 75 4 185 0.45 20000
861 90 3 90 1.10 40000
899 80 3 40 1.00 5000
990 150 3 150 3.00 36000
997 120 2 140 2.00 25000
998 100 3 175 0.50 30000
999 180 3 120 1.50 20000

For this power system test, it is decided to compare the
N − 1 and N − 2 post-contingency analyses with the solution
obtained using the PTDF&LODF-based formulation [4]. Ob-
tained solutions are the same. Consequently, it is confirmed
the accuracy and optimality of the mathematical formulation
using the proposed LODF methodology.

A N − 3 analysis, with line 8− 18, line 18− 101 and line
238 − 361 out, is solved. The optimal cost for the proposed
formulations is $68715041639.31. The optimization problem
includes four units for bus 3 in t8; three units for bus 95 in
t5; three units for bus 833 in t10; five units for bus 861 in t8;
three units for bus 899 in t2; and one unit for bus 998 in t8.
Besides, there is not load shedding but there are two hundred
periods with congestion.

The optimization algorithm includes more power units in
the generation planning. The main goal is to supply the load
of the customers when a stronger contingency is affecting the
security of the power system.

These simulation results are very important in order to
realize the performance of the simulation when the proposed
formulation is applied to large-scale power systems.

IV. CONCLUSIONS

This study demonstrated the applicability of an improved
methodolody to directly compute the LODF in order to model
the N −m post-contingency constraint proposed formulation
solving the stochastic security-constrained GCEP problem. In
addition, the post-contingency power flows are modeled based
on a generalized LODF and the PTDF. The PTDF-based gen-
eration capacity planning formulation has been reformulated
in order to include the post-contingency constraint solving
both pre- and post-contingency constraints simultaneously.
The main advantage of this methodology is the feasibility



to quickly compute the post-contingency factors especially
with multiple-line outages (N −m). This idea could speed up
contingency analyses and improve significantly the security-
constrained analyses applied to stochastic GCEP problems. It
is conducted several experiments with two electrical power
systems in order to validate the performance of the proposed
formulation. It is worth to mentioning that this approach is
carried out without sacrificing optimality.

Currently, authors are studying decomposition techniques
(Benders) in order to apply this methodology to the stochas-
tic security-constrained generation and transmission capacity
expansion planning problem.
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