B Loughborough
University

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the
following Creative Commons Licence conditions.

@creative
ommon

COMMONS D EE D

Attribution-NonCommercial-NoDerivs 2.5
You are free:
» to copy, distribute, display, and perform the waorlk

Under the following conditions:

Attribution. ¥ou rmust attribute the wark in the manner specified by
the author or licensor,

MWoncommercial. vYou may not use this work for commercial purposes,

Mo Derivative Works, vou may not alter, transform, or build upon
this work,

& For any reuse or distribution, vou must make clear to others the license terms of
this work,

® Any of these conditions can be waived if you get permission from the copyright
holder,

Your fair use and other rights are in no way affected by the above.

This is a hurman-readable summary of the Legal Code (the full license).

Disclaimer BN

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 12, DECEMBER 2007

1585

Study of the Effects of SEU-Induced Faults
on a Pipeline-Protected Microprocessor

Emmanuel Touloupis, Member, IEEE, James A. Flint, Member, IEEE,
Vassilios A. Chouliaras, Member, IEEE, and David D. Ward, Member, IEEE

Abstract—This paper presents a detailed analysis of the behavior of a novel fault-tolerant 32-bit embedded CPU as compared to a
default (non-fault-tolerant) implementation of the same processor during a fault injection campaign of single and double faults. The
fault-tolerant processor tested is characterized by per-cycle voting of microarchitectural and the flop-based architectural states,
redundancy at the pipeline level, and a distributed voting scheme. Its fault-tolerant behavior is characterized for three different
workloads from the automotive application domain. The study proposes statistical methods for both the single and dual fault injection
campaigns and demonstrates the fault-tolerant capability of both processors in terms of fault latencies, the probability of fault

manifestation, and the behavior of latent faults.

Index Terms—Fault injection, fault modeling and simulation, SEU, soft error, microprocessor test, fault tolerance.

1 INTRODUCTION

MA]OR contributors of faults within electronic integrated
circuit (IC) components include ionizing radiation,
electromagnetic interference (EMI), and electromigration.
Radjiation-induced faults were observed in the 1950s
during nuclear tests; however, the first specific report of
errors caused by alpha particles were published as late as 1979
[1]. The primary source of alpha particles within an IC are the
package materials (mold compound, underfill, solder, and so
forth); however, a number of elements that occur in the
fabrication process, such as uranium and thorium, also
contribute. A source of particles (for example, protons,
neutrons, pions, and muons) not in the control of the
semiconductor manufacturer is background radiation, which
includes extraterrestrial cosmic rays [2], [3]. When charged
particles travel through a semiconductor, they progressively
lose energy while ionizing the medium. Electron-hole pairs
are generated as a result, which, in turn, move due to the
electric field inside an individual transistor. The resulting
current may alter data in combinational and sequential
circuits, thus generating the so-called Single-Event Upsets
(SEUs), as they are more widely known. SEUs can occur
directly as a bit flip on memories and registers or indirectly
through transient pulses propagating in combinational
circuits, usually termed a Single-Event Transient (SET),

e E. Touloupis is with the Microelectronics Group, InAccess Networks SA,
12, Sorou Str, 15125, Maroussi, Athens, Greece.

E-mail: etoul@inaccessnetworks.com,

e |.A. Flint and V.A. Chouliaras are with the Department of Electronic and
Electrical Engineering, Loughborough University, Ashby Road, Loughbor-
ough, Leicestershire LE11 3TU, UK.

E-mail: james.flint@ieee.org, V.A.Chouliaras@lboro.ac.uk.

e D.D. Ward is with the Electrical Group, MIRA Ltd., Watling Street,

Nuneaton CV10 0TU, UK. E-mail: david.ward@mira.co.uk.

Manuscript received 31 Mar. 2006; revised 12 Dec. 2006; accepted 5 June
2007; published online 28 June 2007.

Recommended for acceptance by M. Gokhale.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0124-0306.
Digital Object Identifier no. 10.1109/TC.2007.70766.

0018-9340/07/$25.00 © 2007 IEEE

that may again affect memory elements. It must be noted
that the rate of radiation-induced SEUs is not negligible in
terrestrial applications and has been examined in detail by
Ziegler [4].

When an event causes multiple faults, it is termed a
“multiple-bit upset” (MBU) [2]. MBUs are becoming more
common in newer silicon processes as the feature density is
higher, so more transistors are potentially affected per unit
area of influence following a particle strike.

The increasing hostility of the electromagnetic environ-
ment, contributed substantially by the ubiquitous adoption
of wireless technologies (Wi-Fi, mobile telephones, and so
forth), is also a significant threat to reliability [5]. Externally
generated EMI is often coupled via the tracks on the printed
circuit board to the IC, although it is possible for it to
directly influence the silicon die at higher frequencies.
Apart from external EMI, other electronic subsystems or
even lines internal to the IC package can be problematic.
Crosstalk within multilayer devices, in particular, is known
to be a significant source of errors.

IC technology continues to follow Moore’s law [6]. A major
contributor to this progress is the improvement of lithogra-
phy and processes where ever-decreasing feature sizes are
becoming feasible. With the trend toward submicron tech-
nologies, there is an increase in the occurrence of soft errors
[7], [8], [9], [10]. Decreasing the power supply voltage has
reduced immunity to particle strikes because the total charge
used for storing each bit is lower. In addition, the increasing
clock frequency in newer devices presents problems. As the
frequency increases, the errors observed will be dominated
by transient faults originating in combinational logic rather
than SEUs on sequential logic [11], [12]. The increasing clock
frequency will tend to increase the occurrence of multiple-bit
errors since the duration of the transient pulse may overlap
more than one clock edge. As the complexity of on-chip
circuits continues to increase, higher currents flow through
the power supply lines, consequently increasing the suscept-
ibility to electromigration [13]. The electromigration problem

Published by the IEEE Computer Society

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on April 30,2010 at 13:22:25 UTC from IEEE Xplore. Restrictions apply.

1586

Read port 1

Read port 2 136x32 2RNAW

-t
X D aline
5 state integer pipeline <}« Register Flle

Write port

A A
Icache channel Dcache channel

l[e}

ICache | | DCache |
A A
A

A
Arbiter/AHB I/F
A

A

; 32bit AHB
AHB Arbiter/ | Y gk speedbus | AHB/APB
Distributed B

control A 9
v

AHB SDRAM slave

A

v
External SDRAM

UART

32-bit APB low bandwidth

peripheral bus

i

Timers

Fig. 1. Top-level architecture of the LEON2 processor.

is compounded by the reduction in feature sizes and the
consequential increase in current density. Furthermore,
the increased number of metal layers makes crosstalk
between the interconnection lines more probable as the
distance between them decreases.

As more industrial sectors adopt microprocessors in
safety-critical applications such as drive-by-wire systems in
the automotive industry, interest in the behavior in the
presence of SEUs is increasing. The purpose of this current
paper is to provide a very detailed analysis of a micro-
processor which has been replicated at the pipeline level for
the purpose of improving its reliability and availability. The
performance of the processor is considered under the
influence of both single and multiple nonconcurrent faults
and in the context of three workloads, which have been
selected to represent a typical application of the micropro-
cessor in the automotive sector. It should be emphasized that
the majority of techniques presented here are generic and
could be applied to any type of processor as a means of
revealing subtle responses to the effects of SEU and multiple
faults, including concurrent and nonconcurrent faults.

In Section 2, the processor core is discussed, along with
its single-CPU equivalent, which is used for comparative
purposes. In Section 3, the fault injection technique used in
this study is presented and, in Section 4, the results of the
fault injection campaign are discussed in detail. Finally, in
Section 5, we conclude with the benefits of applying this
approach for the microprocessor in question.

2 FAULT-TOLERANT PROCESSOR

In this work, we have used LEON2 [14], an open source
configurable processor, which is described by using the
VHDL hardware description language. It is a five-stage
pipeline processor that implements the Sparc V8 instruction
set and is equipped with various peripherals that inter-
connect through two types of the AMBA bus (AHB and
APB). A simplified top-level architecture of the processor is
shown in Fig. 1.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 12, DECEMBER 2007

Apart from the normal LEON2 architecture, a fault-
tolerant pipeline microarchitecture proposed previously is
tested [15]. Compared to the approach of Gaisler [16], which
uses the TMR configuration for all of the flip-flops of the
pipeline unit in the fault-tolerant version of LEON2, this
new configuration triplicates the whole pipeline in order to
offer additional protection against transient or permanent
faults on the combinational parts of its circuit. Any single-
bit fault that propagates to any of the pipeline units” outputs
is detected and the “faulty” pipeline is temporarily disabled
until correct register data are copied from one of the
remaining “healthy” pipelines and then is reintroduced in
the system. During this action, the system operates as a
standard self-checking pair and the program execution is
not interrupted. This redundant architecture also has the
ability to mask many types of multiple faults and can
remain fail silent when the faults cannot be corrected by
entering into the error mode. The key concept of this
architecture is the ability to not only detect but also to
eliminate faults whenever it is possible. The features of this
fault-tolerant microarchitecture make it suitable for applica-
tions that have very high reliability and availability
requirements. The fact that the whole pipeline is triplicated
allows the presence of one or even several permanent faults,
depending on their location. In this case, the fault is masked
whenever it propagates to the pipeline outputs.

This pipeline configuration introduces an area overhead
of around 26.6 percent and also a performance penalty of
23.7 percent in the maximum clock frequency as compared
to a non-fault-tolerant processor configuration. It must be
noted that the above results are only indicative of a specific
ASIC implementation.

All of the fault injection experiments have targeted only
the pipelined execution unit (shown shaded). The sensitiv-
ity of this part of the processor is of great interest since it
contains a significant amount of memory elements that
constitute the registers of each pipeline stage and are
therefore susceptible to SEUs. Soft faults in these parts of
the processor are becoming a significant proportion of the
overall error rate. In fact, the error rate of flip-flop and
latches is equal to the error rate of SRAMs in 90 nm
technologies, with a tendency to increase rapidly in future
technologies [10]. Considering the fact that the pipeline unit
is the “heart” of the processor and is responsible for its
correct, continuous, and reliable operation, the study of the
effects of single-bit and multiple-bit faults on the overall
failure rate is critical. The impact of soft faults on larger
memory arrays, such as caches and register files, has been
explored in many cases in previous work (for example, [17],
[18]). Furthermore, the level of the problem in this case is
well known and there exist several methods for protecting
them. For that reason, we have chosen to focus on the effects
of faults on the pipeline and present a comparison between
a standard and a fault-tolerant pipeline configuration. Such
results can give an indication of the extent of the problem
and the need to develop methods of protecting the control
parts of the processor. These conclusions are of great
interest to the safety-critical systems industry which assigns
the level of required fault tolerance according to the safety
integrity level of the system under study.

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on April 30,2010 at 13:22:25 UTC from IEEE Xplore. Restrictions apply.

TOULOUPIS ET AL.: STUDY OF THE EFFECTS OF SEU-INDUCED FAULTS ON A PIPELINE-PROTECTED MICROPROCESSOR

3 FAULT INJECTION SETUP AND EXPERIMENTS

This section describes the fault injection environment that
has been used and explains the various parameters of the
fault injection experiments.

3.1 Background

A number of different software and hardware techniques
have been previously reported in the literature. For example,
[19] presents a detailed analysis of transient fault injection
experiments on a fault-tolerant dual-processor configuration,
[17] addresses the impact of SEUs on the data cache memory,
and [18] presents a method for analyzing the susceptibility of
different parts (instruction unit, data cache, instruction cache,
and register file) of a pipelined processor. In [20], fault
injection experiments are performed on a deeply pipelined
out-of-order microprocessor in order to detect its most
vulnerable portions. Experiments were repeated on an
improved configuration, where these portions are protected
by using low-overhead fault-tolerant techniques. The effects
of transient and permanent faults on the program control
flow on a RISC processor is examined in [21].

In many cases, fault injection experiments have been
used for demonstrating the efficiency in error rate predic-
tion of a fault injection platform or method. Such an
example is the testing of an architecture based on an 80C51
microcontroller [22] by using the Code-Emulated Upset
(CEU) technique [23]. In [24], the effectiveness of a fault list
reduction technique is demonstrated, with results of fault
injection on combinational parts of microprocessors.

In most of the aforementioned work, the analysis of the
effect of faults on the targeted system is not the main
objective. For this reason, the results presented do not cover
in full detail many interesting subjects, such as fault
latencies or fault propagation. Furthermore, there is a gap
in the knowledge with regard to the effects of multiple
faults on microprocessor systems, which this current paper
seeks to address.

3.2 Fault Injection Environment

A popular method of injecting faults is the use of software
methods (for example, [23], [25], [26], [27], [28], [29]). The
main advantage of these techniques, often referred to as
Software-Implemented Fault Injection (SWIFI), is that they
are easy to implement and adapt to a target system. They are
also cost effective since they do not require extra hardware.
Furthermore, they are usually fast since they donot introduce
significant delay to the execution of the target applications.
Although they are built around a specific system, their
principles can also be transferred relatively easily to other
systems. A limitation in the context of this current paper is the
fact that SWIFI cannot inject faults into non-programmer-
visible locations. There are a significant number of flip-flops,
registers, signals, and microarchitectural states that cannotbe
accessed through the instruction set but are equally sensitive
to SEUs. Since the faults are injected through the software,
which executes on the target system, the results obtained are
unrealistic since the workload usually affects the fault-
handling mechanisms (the extra fault injecting routines
change the system’s microarchitectural state). Furthermore,
the time resolution in SWIFI is coarse. For example, it is

1587

impossible to inject a fault during the execution of an
instruction, only between instructions.

Another popular method of injecting faults is the
injection of physical faults on the actual target system
hardware. This can be achieved through pin-level fault
injection (for example, [30], [31]), heavy-ion radiation (for
example, [32], [33]), EMI [34], and laser fault injection [35].
The major advantage of these approaches is that the
environment is realistic (although much harsher than the
real world) and the results obtained can give accurate
information on the behavior of the system under such
conditions. However, they require special hardware and
instruments, which are usually very expensive. Further-
more, these experiments are complex to set up and control
and the internal signals can only be monitored in real time if
they are connected off the chip. There are also techniques
that emulate faults on the actual hardware, with the use of
built-in logic of the chip (for example, scan chains) [36]. In
other cases, faults are injected in an FPGA prototype of the
system under test, with the use of additional logic [37], [38].
In these cases, the fault injection experiments can be
significantly accelerated. However, the implementation of
such a scheme can be time consuming and not portable
since it will heavily depend on the system under test.

A simulation-based method has been chosen in this
current work. Although this approach is time consuming
since simulation time is considerably longer than real-time
execution, it is favored because it allows the testing of fault-
tolerant systems very early in the design stage. If a VHDL or
Verilog description of the system is available, testing through
simulation can be performed in great detail and is potentially
very accurate since it gives realistic emulation of faults and
detailed monitoring of their consequences on the system. The
Hardware Description Languages (HDLs) and the existing
simulation environments provide a variety of tools in order to
perform the fault injection and record the results. Most of the
simulation-based approaches use HDL; however, there are
some cases where other languages like C or C++ are used.
Many different examples can be found in the literature (for
example, [39], [40], [41], [42], [43]). Insummary, the choice of a
simulation-based method allows fast and easy implementa-
tion of the fault injection platform but limits the number of
experiments due to its high computational requirements.
However, as will be demonstrated in the following sections,
we have managed to perform a satisfactory number of
simulations by using this method.

In our system, the main fault injection support is
implemented through a nonsynthesizable VHDL entity that
can have access to all registers and alter their contents at
specified times based on the idea of “saboteurs” [40]. This
entity is “transparent” since it does not interfere or affect, in
any way, the microprocessor model during its simulated
operation. As can be seen in Fig. 2, faults are always
synchronous with the clock and the time of appearance is
expressed in clock cycles. When the cycle in which the fault
is to be injected is reached, the fault injector masks the
selected register inputs and creates a set of erroneous inputs
for that register. At the same time, it changes the select
signal of the multiplexer so that the erroneous inputs are
latched into the registers. The characteristics of each fault

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on April 30,2010 at 13:22:25 UTC from IEEE Xplore. Restrictions apply.

1588

A

Fault Injector

Normal
Inputs

\ Y

Pipeline Register

|<— clock

enable

Fig. 2. Fault injection mechanism.

(time of occurrence and location) are read by the fault
injector from a local file that is created before the beginning
of the simulation. When the fault or faults are injected, the
fault injector again reads the fault file to pick the next set of
faults. Since the whole injection process is performed within
one clock cycle, the fault injector is able to inject faults that
occur in consecutive clock cycles. If there are no other faults
to be injected, the fault injector does not interfere again in
the operation of the pipeline until the end of the simulation
run. It is important to note that this mechanism injects each
fault or set of faults on the fly, without altering the state of
the microprocessor or the program sequence and without
stalling the CPU.

Our system also makes extensive use of the Foreign
Language Interface (FLI) of the chosen commercial VHDL
simulator (ModelSim) in order to implement various
entities that deal with the fault injection, monitoring, and
control of the simulation while gathering data about the
state of the simulated system. The use of interfaces to
routines that are written in different programming lan-
guages (in this case, C), offers great benefits when
developing a fault injection tool (for example, easier file
I/O handling and more efficient use of mathematical
functions). At the same time, it is possible to have full
visibility of all VHDL objects (for example, signals) and to
control the simulator functions.

The steps of the fault injection campaign are given as
follows:

1. Perform a golden run in order to obtain information
such as possible fault locations, microarchitectural
parameters related to the executed program (con-
tents of registers and caches at the end of the
execution), program execution time, and correct
program outputs.

2. Generate a list of faults that define the time (clock
cycle) and location (register bit) of the injection. The
list is stored as a simple text file, which is read at the
start of the simulation by an FLI-implemented entity.

3. Define the number of faults to be injected in each
simulation and the total number of simulations for
the campaign. Any number of faults can be injected
per (simulation) time unit.

4. Run the simulations.

5. Analyze the output data. The output files contain
raw numerical data which are subsequently parsed
by simple PERL scripts.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 12, DECEMBER 2007

Simulation Phase
Faults Fault SYSTEM || | |system|
Faults Setup _m__. o —> UNDER TEST | Ysem

Execution System
Time State
Monitor Monitor

Data
Analysis

FLI
Report

The fault injection environment is depicted in Fig. 3. It
must be noted that this same process can be applied to any
system that can run a simulation of a microprocessor (such
as LEON2).

3.3 Fault Model

The most common fault model in the literature is the single-
bit flip of a state element, which is also used in this work.
Multiple faults have only been considered when testing
fault-tolerant memories, but, in these cases, these faults are
always assumed to have occurred concurrently. Noncon-
current fault pairs have been used in [44] purely for a
theoretical analysis of the effectiveness of design diversity
in redundant systems. However, the time of occurrence is
not modeled in detail. With increasing clock frequencies,
radiation and EMI-induced errors may occur in several
consecutive clock cycles. Furthermore, these errors may
occur in different locations, depending on the different
fault-propagation paths. In this work, we model noncon-
current multiple faults by using the normal distribution
[45]. We are interested in modeling a set of faults occurring
around a specific time within a specific time interval
(program execution time). The normal distribution provides
this specific time through the mean 1, whereas the standard
deviation o determines the level of distribution around . In
that sense, the normal distribution is an ideal choice
compared to other popular distributions like the Poisson
distribution, which is more suitable when the notion of fault
rate is used.

3.4 Workload

A number of different benchmark applications have been
used in these fault injection experiments:

Fig. 3. Fault injection environment.

o mtx4x4. This program multiplies two 4 x 4 integer
matrices and stores the result at a specified memory
location.

e bitent. This algorithm is used for testing the bit
manipulation abilities of the processor by counting
the number of bits in an array of integers using five
different methods. This is part of the automotive and
industrial control category of the MiBench embedded
benchmark suite [46] and a few minor modifications
havebeen made in order to adaptitsI/O operations to
the VHDL simulation environment.

e gsort. This program sorts a number of strings by using
a well-known quicksort algorithm. It is also a part of

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on April 30,2010 at 13:22:25 UTC from IEEE Xplore. Restrictions apply.

TOULOUPIS ET AL.: STUDY OF THE EFFECTS OF SEU-INDUCED FAULTS ON A PIPELINE-PROTECTED MICROPROCESSOR

TABLE 1
Execution Times of the Benchmark Applications

Program | Duration (clock cycles)
mtx4x4 3150
bitent 14740
gsort 46800

the automotive and industrial control category of the
MiBench benchmark suite, but it has been modified to
reduce its runtime and to adapt its I/O operations to
the VHDL simulation environment.

The execution times of each application are shown in
Table 1 and their dynamic instruction distribution is shown
in Fig. 4. The addition of several more test programs would
be desirable; however, the amount of simulation time
required is somewhat restrictive. The workloads chosen
were selected for their diversity within the set available.
Judging from the obtained results and also previously
published work, we consider that our choice of workloads,
in the context of this paper’s subject, raises many interesting
issues that are analytically discussed in the following
sections.

3.5 General Setup

As already mentioned, fault injection experiments have
been performed on two microprocessor architectures. The
first was the LEON2 microprocessor without any modifica-
tions (hereafter known as the single pipeline architecture)
and the second was a fault-tolerant version of LEON2, with
redundancy on the pipelined execution unit (hereafter
known as the redundant pipeline architecture).

There were two main categories of fault injection
campaigns: one in which single faults were injected in each
simulation and one where double faults were injected
following the fault model described in the previous section
to define the time of injection for each pair of faults. For
each pair, a random value for y was selected and the time of
injection for each fault was defined by using a preselected
value of ¢. Due to the long duration and the number of the
VHDL simulations, a selection of values for o has been
used. Since the processor being investigated has a 5-stage
pipeline, it is particularly interesting to observe its behavior
when both faults occur concurrently or within a small time
difference. By setting o = 0.833, 99.7 percent of the faults

100%
90%
80%

70% Emiscellaneous
60% M unconditional branch
50%
40%
30%
20%
10%
0%

Bl conditional branch

Oload/store
[Arithmetic & Logical

777

NN

gsort

mtx4x4 bitcnt

Fig. 4. Dynamic instruction distribution for the benchmarks used.

1589

TABLE 2
Fault Occurrence Classification

Concurrent The two faults are concurrent
o =0.833 99.7% of fault pairs occur within 5 clock cycles
o =10 99.7% of fault pairs occur within 10 clock cycles
o =510 99.7% of faults pairs occur within 3060 clock cycles
Uniform The time of the two faults is chosen by using
a uniform distribution

occur within five clock cycles. The fault distributions used
are summarized in Table 2.

The register to be affected by each fault is selected
randomly from the available registers/flops in the selected
pipeline stage. The probability of one register being selected
depends on the number of bits that it consists of. The
registers of the pipeline have been grouped according to the
stage to which they belong. As a result, there are five
groups for each stage (fetch, decode, execute, memory, and
write back) and one group of special purpose registers.

The output data for such a scheme consists of informa-
tion about the correctness of results, the presence of latent
faults inside the microarchitecture after the end of the
program execution, the status of the processor at the end of
the simulation, and the execution time. The simulation
categories, which are similar to those used in [18], are
defined as follows:

e No effect. The program terminates normally, the
results are correct, and the contents of the pipeline
registers and the register file are identical to those in
the golden run.

e Latent. The program terminates normally, the results
are correct, but the contents of the pipeline registers
and/or the register file are not the same as those in
the golden run.

e Wrong result. The program terminates normally, but
the results are incorrect.

o Timed out. The program failed to terminate within a
predefined time limit and the simulation was
halted externally. Since our work focuses on hard
real-time applications, this time limit has been kept
short (400 clock cycles).

e Exception. The processor detected an erroneous
condition and created a trap, forcing it into the error
mode.

Exhaustive tests are infeasible in this type of complex
system. The total number of possible faults depends on
space (the targeted bit) and time (the time of injection), thus
becoming very large, even for small benchmark programs.
For each benchmark program, two types of fault injection
experiments have been performed:

1. Single fault: one set of 6,000 simulations, with one
fault injected in each. The simulations are divided
equally, with 1,000 simulations for each of the six
register groups fe, de, ex, and so forth.

2. Double fault: one set of 2,000 simulations for each
register group and for every different level of the
distribution chosen (see Table 2), resulting in a total
number of 60,000 simulations. In every simulation, a

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on April 30,2010 at 13:22:25 UTC from IEEE Xplore. Restrictions apply.

1590

IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 12, DECEMBER 2007

100%
Single Pipeline Architecture
0% e
80%
W mtx4x4
70%) u
. 2|8 8 O bitent
60% 1 Cls Hgsort []
50%
40%
30% = =
20% e — Y £ e
N f_e 2 z_8.2%
10% 1 K.s—‘@g-“:-:i—«-“’-w-
0% -
No Effect Latent Wrong Result Timed Out Exception

(@)

Fig. 5. Performance of the two architectures under single fault injection.

fault pair is injected into the selected register group,
which means that both faults occur on the same
pipeline stage.

It must be noted that several hours were required to
perform such large sets of simulations on an average
Windows or Linux-based PC.

Through convergence tests, we observed that the final
results were almost identical to an experiment containing a
much smaller number of simulations. This allows us to be
confident that the chosen number of simulations was
sufficient to obtain an accurate result.

The data obtained from each campaign gives an
indication of the behavior of each pipeline stage. In order
to get the overall view of the pipeline behavior, the total
probability theorem can be used. This means that each
simulation result category is calculated by combining the
figures obtained for each stage and the probability of each
stage being hit by a fault. The latter depends on the number
of bits that each stage (register group) contains. The
probability for each category is thus calculated as

Ntntal Nmml
N, N, wr

+ ﬂpme + —Rur +
N, total N; total

Nde NE’T

F, de + F, ex
N; total
Neregs

N; total

PC Pfe+

Psre g

where Pc is the probability that a simulation will end in
category C, Nye, Nae, New, Npe, Nyr, and N4 are the
numbers of bits of each register group, N;uq is the total
number of bits in the pipeline unit, and Pyc, Pu, Pz, Pre,
P,,, and P, are the probabilities for each register group
for category C. These figures are measured directly from the
simulation results.

In the presentation of our results, all of the above
probabilities are expressed in percentages.

4 FAULT INJECTION RESULTS AND ANALYSIS

This section presents and discusses the results obtained
from the fault injection experiments.

4.1 Single Faults

The results from the fault injection experiments performed
on the single and the redundant pipeline architecture are
shown in Figs. 5a and 5b, respectively.

100%

Redundant Pipeline Architecture

90%
80%
70%
60%
50%
40%
30%
20%
10% 1
0% -

96.3%
97.5%

W mtx4x4
O bitent
Dqsort H

4.9%
3.6%
24%

0.1%

0.2%

0.0%

|

0.0%

0.0%

0.0%

0.1%

0.0%

0.0%

1L

Latent Wrong Result Timed Out

(b)

No Effect Exception

4.1.1 General Behavior

The dependence of the performance on the processor’s
workload in the single architecture is very clear. It can be
seen that mtx4x4 has the worst performance in producing
wrong results. This is due to the fact that this application
benchmark is computationally intensive, with the extensive
use of the arithmetic logic unit (ALU) and very few
references to the memory. This means that the vast majority
of the ALU operations in this benchmark are directly
associated with the actual data due to the lack of loops
within the code, having, as a result, higher rates in
producing wrong results. This explains the improved rate
observed in bitcnt, which is also ALU intensive. The gsort
benchmark is based on many comparisons in order to sort
an array of strings. The proportion of ALU-related instruc-
tions is smaller and the proportion of load/store instruc-
tions is higher, resulting in a generally better performance.
As can be observed in these graphs, there is a substantial
improvement in fault tolerance in the case of the redundant
pipeline architecture. Overall, a very important character-
istic of the redundant architecture, apart from its obvious
fault-tolerant properties, is the minimal dependency on the
application that is executed.

The generation of exceptions (for example, illegal
memory reference and illegal operator code (opcode)) is
also dependent on the workload in the single architecture.
However, the percentage of generated exceptions is quite
low in an architecture without any additional fault
detection mechanism, such as the one that has been used
for these simulations. The mechanisms that generate
exceptions are the only means of soft fault detection in this
case and the obtained results show that they are inadequate
when high data integrity is a requirement. Exceptions are
mainly generated when faults occur on the fetch stage or on
the special registers. In the case of the redundant
architecture, practically, no exceptions are observed since
all of the faults are masked.

The probability of a simulation being “Timed Out”
increases when the executed program uses recursive
algorithms and many loops. A fault may increase the
number of loops performed, thus delaying the termination
of the program. This is consistent with the obtained results,
where it is seen that gsort, which uses a recursive algorithm,
has an increased percentage of “Timed Out” simulations,
whereas mtx4x4 has the lowest. Again, the redundant

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on April 30,2010 at 13:22:25 UTC from IEEE Xplore. Restrictions apply.

TOULOUPIS ET AL.: STUDY OF THE EFFECTS OF SEU-INDUCED FAULTS ON A PIPELINE-PROTECTED MICROPROCESSOR

100%
90%

mtx4x4 (single)

W Overall
OIfe

B de
Elex
me
Ewr
Hsregs

80%
70%
60%
50%
40%
30%
20%
10%

0%

No Effect Latent Wrong Result Timed Out

(@)

bitcnt (single)

90% W Overall
h Ofe

80% mde

70% Elex
60% = Ome
Ewr

50% E sregs

Exception

100%

40%
30%
20%
10%

0%

)

No Effect Latent Wrong Result Timed Out Exception

(©

gsort (single)

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

M Overall
Ofe
Ede
Eex
Ome
Ewr
H sregs

B i

Timed Out

Exception

(e)

1591

100%
90%
80%
70%
60%
50%
40%

mtx4x4 (redundant)

M Overall—
Cife

Ede
Elex
Ome
Ewr —
Hsregs

30%
20%
10%

0%

No Effect Latent Wrong Result

(b)

bitcnt (redundant)

Timed Out Exception

100%
90%
80%
70%
60%
50%
40%
30%
20%

M Overall
Ofe
Elde
Elex
Ome
Ewr

B sregs

10%
0%

I

Wrong Result

No Effect Latent Timed Out Exception

(d)

gsort (redundant)

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

W Overall
Ofe —
Ede
Eex]
Ome
BEwr
Hsregs ||

No Effect Latent

Wrong Result Timed Out Exception

(f)

Fig. 6. Pipeline stages behavior in the single and redundant pipeline architecture.

architecture does not allow faults to alter the correct
execution sequence.

The probability of a fault remaining latent within the
microarchitecture can be affected by many different factors. A
fault may propagate to the register file and remain there
without being revealed. In other cases, a fault in the program
counter or on loop controlling data may alter the execution
sequence, thus changing the microarchitectural state at the
end, without, however, causing implications on the correct-
ness of results. Another class of latent faults is those that occur
on unused special registers. Each of these factors depends on
the workload; however, the overall rate of latent faults seems
to be the same for the three benchmarks used in the
experiments. This is clarified when examining the contribu-
tion of each stage in the generation of latent faults for each
different benchmark program. The rate of latent faults is
reduced in the redundant pipeline architecture due to the fact
that latent faults in this case can only remain in the pipeline
registers since no single fault can propagate to any output
signal without being detected and masked. Latent faults in
the redundant architecture originate in faults injected in (or
propagated to) special registers only. It can be argued that
latent faults in this architecture cannot cause a system failure

since, even if they propagate to the pipeline output at any
point, they will be detected.

4.1.2 Pipeline Stages Contribution

Fig. 6 depicts the contribution of each pipeline stage to the
overall pipeline behavior for the different benchmarks. The
first observation, as already mentioned, concerns the high
rate of latent faults in special registers. This is expected
since the majority of special registers are written during the
boot sequence and they are not changed or, in some cases,
even accessed during the execution of the application. The
second observation concerns the fetch stage, where there is
a high rate of generated exceptions. This can be explained
by the fact that the main register of the fetch stage is the
program counter and a fault in one of its bits can create an
illegal memory reference. The decode stage seems to have a
similar behavior, but to a lesser extent. The special registers
contribute an important percentage to the generated
exceptions in the bitcnt benchmark. This is due to the fact
that, with bitcnt, faults on special registers have a higher
probability of propagating to the pipeline’s output. The
reason for that is explained in the next section, where
propagation probabilities are presented. Faults in the

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on April 30,2010 at 13:22:25 UTC from IEEE Xplore. Restrictions apply.

1592

TABLE 3
Comparison of Results for the mix4x4 Benchmark

Results (%) Results from [18] (%)

N.E. La. W.R. T.O. Exc. N.E. La. W.R. T.0. Exc.

fe 44.4 8.5 11 57 30.6 65.48 3.93 6.56 5.89 18.14
de 70.9 25 11.6 0.3 7 74.07 0.38 12.42 1.85 11.28
ex 725 2 21.8 0.4 33 83.51 221 10.32 2.12 1.84
me 84.5 1.9 10.8 0.5 2.3 85.19 3.11 5.09 2.26 4.35
wr 89.4 2.8 5.9 0.1 1.8 84.32 7.96 2.29 1.41 4.02
sregs 27.7 65 0 4.4 2.9 N/A N/A N/A N/A N/A

execution stage are mainly responsible for the generation of
wrong results. This is more apparent in the two ALU
intensive benchmarks (mtx4x4 and bitcnt). Finally, faults in
the fetch stage appear to be the main cause of “Timed Out”
simulations. As explained previously, faults on the program
counter have a direct effect on the program executing
sequence and can significantly delay termination.

4.1.3 Comparison of Results

It is difficult to compare these results with other reported
work, mainly because of the lack of experiments on the
same microprocessor. The only relevant analysis made on
the LEON2 processor was carried out by Rebaudengo et al.
[18]; however, this used a hardware-based fault injection
platform. Making a full comparison is challenging as the
detailed fault injection mechanism and the exact processor
configuration are unknown. Furthermore, the registers are
grouped according to the pipeline stage to which they
belong, without information about the special registers.

Table 3 compares the fault injection results produced by
the method discussed in this paper and those produced by
the hardware technique in [18] for single fault injection
experiments for the mtx4x4 benchmark. The first column
identifies the pipeline stage at which faults were injected
(FE = fetch, DE = decode, EX = execute, ME = memory
return, WR = write-back, and SREGS = special registers),
whereas the second row from the top identifies the effects of
these experiments. NE stands for No Effect, La = latent
error, WR = wrong result, TO = processor time-out, and
EXC = processor exception. In comparison with [18], the
generation of wrong results occurs less frequently, but there
is a slightly higher number of timed-out executions.

Despite the challenge in producing comparative results,
the overall trends are comparable and the results have been
summarized here for completeness and as a benchmark for
the work in the current paper.

4.2 Propagation Probabilities and Latencies

Fig. 7 shows the probability of a fault propagating to the
output for the whole pipeline unit and for each stage
separately. All faults in the fetch stage immediately affect
the outputs since both the program counter and the branch
flag are connected to the instruction cache. It can be noted
that the propagation probability is similar for every bench-
mark program in each stage, except for the special registers.
Faults in a special register can remain dormant for a long
period of time and manifest their presence to an output only
when special conditions are met. For example, a fault in the
trap base address (TBA) register will only be activated if a
trap is caused during the execution of a program. This
example is highlighted in these fault injection experiments.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 12, DECEMBER 2007

100%

90%

W mix4x4
70% | Obitent ||
Egsort
60% —

80% —

50% 1 —

40% —
30% —

20% —
10% t
0%

Overall fe de ex me wr

Fig. 7. Probability of a fault propagating to the pipeline output.

As can be seen, the propagation probability in the special
registers is much higher in the bitcnt benchmark compared
with the other two benchmarks. This is due to the fact that,
during the execution of bitcnt, “window_overflow” and
“window_underflow” traps [47] are generated several
times. Since the TBA register is the largest among the
special registers, faults of this type are frequent in the fault
injection experiments, thus increasing the propagation rate
in this case.

A significant number of fault injection simulations
showed a delayed termination in the execution of the
program in the case of the single pipeline architecture. A
delay of even a few clock cycles can be very important in
hard real-time applications and their study is of great
importance. Some statistics related to this issue are shown
in Table 4.

4.3 Double Faults

The results obtained for the double fault injection experi-
ments are shown in Fig. 8. The following sections discuss
the results for each category and present a summary of
conclusions.

4.3.1 No Effect

As would be expected in both processor configurations,
fewer double fault simulations finish without any effects
than in the single fault case (Figs. 8a and 8b).

For the single processor case, this reduction is approxi-
mately the same for each benchmark and varies between
10 percent and 15 percent, depending on the value of ¢. The
effect of interfault occurrence time is not particularly large;
however, in general, the performance deteriorates as the
time between faults increases. The level of deterioration is
approximately the same for all of the benchmarks.

The equivalent reduction for the redundant pipeline
architecture varies between approximately 1 percent and
13 percent. In this case, the behavior of the system seems to be

TABLE 4
Delayed Simulations in the Single Pipeline Architecture
for Single Faults

Total
695 out of 6000
605 out of 6000
427 out of 6000

fe de | ex | me | wr | sregs

mtx4x4 | 489 | 97 | 73 21 15 0
bitent 396 | 60 | 65 | 40 23 21
gsort 315 | 41 | 23 9 6 33

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on April 30,2010 at 13:22:25 UTC from IEEE Xplore. Restrictions apply.

TOULOUPIS ET AL.: STUDY OF THE EFFECTS OF SEU-INDUCED FAULTS ON A PIPELINE-PROTECTED MICROPROCESSOR 1593

85% 100%
No Effect (single) 98% No Effect (redundant)
1 W mix4x4]
80% 96%
O bitent 94; - W mix4x4
75% Egsort c" O bitent —
_ - 92% Egsort
70% 90%
88%
65% 86%
60% 84%
82%
55% 80%
Single Concurrent 0=0.833 0=10 0=510 Uniform Single Concurrent 0=0.833 o=10 0=510 Uniform
(@) (b)
" 0.50%
Wrong Result (single) o Wrong Result (redundant)
20% 0.45%
0.40% |+ M mixdx4
15% 0.35% -} O bitent
’ 0.30% [HOagsort
0.25% B
% |
10% 0.20%
0.15%
5% 0.10%
0.05%
0% 0.00%
Single Concurrent 0=0.833 o=10 0=510 Uniform Single Concurrent 0=0.833 o=10 0=510 Uniform
(©) (d)

50% Timed Out (singl 0.10% Timed Out (redund

45% imed Ou (smgi) 0.09% imed Out (redundant)

4.0% — 0.08% W mitx4x4

3.5% - 0.07% Obitcnt

3.0% — 0.06% Egsort

25% — 0.05%

2.0% — 0.04%

1.5% — 0.03%

1.0% i - 0.02%

0.5% — 0.01% 4“'1* —

0om | L[] 0.00% L1 =

Single Concurrent 0=0.833 o0=10 0=510 Uniform Single Concurrent 0=0.833 0=10 0=510 Uniform
(e) ()
10.0% - 8.0%
B mixdxd Latent (single) 5 [E—_vt Latent (redundant)
9.0% H 7.0% +=
Obitcnt O bitent
o -
8.0% {=@gsort 6.0% @gsort]
5.0%
7.0%
4.0%
6.0%
3.0%
5.0% 20% |
4.0% 1.0%
3.0% 0.0%
Single Concurrent 0=0.833 o=10 0=510 Uniform Single Concurrent 0=0.833 0=10 0=510 Uniform
(9) (h)

13% 12%

Detected (single) Detected (redundant)

12% 1

| 10% T

1% —

10% 1 mmixdx4 8% W mtxdx4
9% 1= Obitent 6% O bitent
8% +=MDgsort \Bgsort |
7% 4%

6%
2%
5%
4% 0%
Single Concurrent 0=0.833 o0=10 0=510 Uniform Single Concurrent 0=0.833 0=10 0=510 Uniform
@))

Fig. 8. Performance of the two architectures under double, nonconcurrent fault injection.

much more dependent on interfault occurrence time. For register have the same effect as a single fault on that register).
concurrent faults, the rate of effectless fault pairsis thehighest However, when the two faults occur at different times, the
since, in many cases, they manifest as single faults (for probability of disrupting the normal processor operation
example, in most cases, two concurrent faults on the same increases. As can be observed, small interfault occurrence

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on April 30,2010 at 13:22:25 UTC from IEEE Xplore. Restrictions apply.

1594

times tend to have the most severe impact on this architecture.
This is expected because of the critical period that starts after
the detection of the first fault and lasts for two clock cycles. A
second fault occurring during that period may disrupt the
normal execution by either triggering a fault detection
mechanism or causing a failure. As the interfault occurrence
time increases, the effects of the fault pairs are less intense.
Another important observation in this graph is that the
behavior of this architecture does not depend heavily on the
workload since all benchmarks have approximately the same
percentages in all of the categories.

4.3.2 Wrong Result

These occur at a much higher rate in the single pipeline
architecture when double faults are injected (Fig. 8c). The
percentages for different values of ¢ do not change the
results very much; however, there is a general trend of
increasing in sympathy with an increase in the interfault
occurrence time. Compared to the results of the single fault
injection campaigns, the incorrect result generation rate is
almost doubled for some benchmarks.

The results for the redundant pipeline architecture are
quite different (Fig. 8d). For the two benchmarks (mtx4x4
and bitcnt), the percentage increases with a peak at o = 10,
but remains reasonably low. For gsort, the percentage is
even lower and remains unchanged for different levels of
interfault timing distribution. An apparently paradoxical
situation can be observed for mtx4x4 and, to a lesser extent,
for bitcnt in the category of concurrent faults. The result in
this case is lower than that obtained for single fault
injection. This can be explained by the fact that the presence
of two concurrent faults raises the probability of at least one
being detected before either creates any type of failure.
Hence, in some cases, the two concurrent faults are
equivalent to a more “easily detectable” single fault.

4.3.3 Timed Out

The percentage of timed-out simulations does not appear to
depend on the interfault occurrence time in the single
pipeline architecture (Fig. 8e). Both for the single and the
double fault injection campaign, the gsort benchmark has a
higher rate of timed-out simulations due to the high
number of conditional branch instructions that it contains,
which, when affected by a fault, may result in a delayed
program termination (for example, the program may
remain in a loop for more time than initially intended).
This is also observed in the redundant pipeline architecture
(Fig. 8f), where the timed-out percentage for ¢ = 10 is as
high as the average “Wrong Result” percentage for this
benchmark.

4.3.4 Latent Faults

The percentages of simulations that finish normally with
correct results but latent faults are found in the final
microarchitectural state are slightly increased in all cases
compared to the results obtained from the single fault
injection (Figs. 8g and 8h). There is no general trend that
characterizes the behavior of the two architectures in
relation to the interfault occurrence time since no significant
variation is observed for different values of o.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 12, DECEMBER 2007

4.3.5 Exception

The number of simulations where the faults are detected
tends to increase in the single pipeline architecture for
higher values of o (Fig. 8i). The relative increment is kept
the same among the three different benchmarks. Compared
to the results obtained from the single fault injection
campaign, the increment in the detection of fault conditions
by the mechanisms of the LEON2 processor varies between
the benchmark programs. In particular, it is significantly
augmented with mtx4x4, whereas it is almost doubled with
gsort and bitcnt. It must be noted that the detection in the
single pipeline architecture is performed by LEON’s own
fault detection mechanisms. On the other hand, fault
detection is performed mainly by the proposed fault-
tolerant mechanism [15] in the case of the redundant
pipeline architecture. In this case, only faults that are not
correctable are detected (Fig. 8j). When the fault pairs are
concurrent, very few cases are uncorrectable. However,
when the second fault occurs within a few cycles of the first,
it is difficult for both faults to be masked. Hence, the
detection percentages rise to 9 percent or 10 percent for
0=0.833. As o increases, fewer fault pairs become
uncorrectable and the percentage drops. As shown in the
relevant graph, this behavior is not dependent on the
benchmark program since the percentages in all three are
very similar.

5 CONCLUSION

Some interesting conclusions about the effects of multiple
faults on this microprocessor can be extracted from the
results. Concurrent multiple faults are not much worse
when compared with single faults. Especially when they
occur in the same location (for example, two bits on the
same register), they are equivalent to a single fault.
However, in the case of nonconcurrent faults, the impact
depends heavily on the specific features of the microarch-
itecture under study. In our case, we can observe that the
behavior of the single pipeline is not dependent on the fault
interoccurrence time. The redundant architecture, however,
is due to its microarchitecture, which is more sensitive to
nonconcurrent faults with small interoccurrence time. It
must be noted that, despite this trend, the redundant
pipeline offers a substantial improvement in the system’s
overall reliability. Finally, we can observe that, for large
values of ¢ and for the uniform distribution, the probability
of failure (wrong result or timed-out execution) in both
cases is doubled, as would be expected.

This paper has presented a very detailed analysis of fault
effects on two pipeline processor configurations. The results
have revealed very subtle features of both the LEON2
processor itself and its behavior in the presence of faults in
its pipeline unit. A substantial improvement in reliability
has been demonstrated for a proposed redundant architec-
ture by exploring the effects of injection of both single and
double faults. Triplication as an approach to the protection
of the pipeline has often been neglected due to the impact
on overhead. Nevertheless, our work has demonstrated
clear benefits of following this approach, particularly in the
context of handling multiple faults.

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on April 30,2010 at 13:22:25 UTC from IEEE Xplore. Restrictions apply.

TOULOUPIS ET AL.: STUDY OF THE EFFECTS OF SEU-INDUCED FAULTS ON A PIPELINE-PROTECTED MICROPROCESSOR

A new fault model for the injection of multiple faults has
been applied for the double fault injection. This model aims
at representing a radiation-induced soft fault that may be
nonconcurrent. The validity and usefulness of this model
has been proven since different behavior has been observed
when changing the time between the occurrence of the two
faults. Although this was more apparent in the redundant
architecture due to its nature, a dependency has also been
observed in many cases in the single pipeline architecture.
Although this paper has contributed results for a particular
processor, it raises more general questions about exercising
the failure modes in highly integrated multiprocessor
system-on-chip designs. By observing the data collected in
a study of this type, it is possible to observe weaknesses in
the fault-handling capabilities, with a view to improving
performance.

ACKNOWLEDGMENTS

This work was supported by MIRA Ltd., UK and the
Department of Electronic and Electrical Engineering of
Loughborough University, United Kingdom.

REFERENCES

[1] T.C. May and M.H. Woods, “Alpha-Particle-Induced Soft Errors
in Dynamic Memories,” IEEE Trans. Electron Devices, vol. 26, no. 1,
1979.

[2]].F.Ziegler, HW. Curtis, H.P. Muhlfeld, C.J. Montrose, B. Chin, M.
Nicewicz, C.A. Russell, W.Y. Wang, L.B. Freeman, P. Hosier, L.E.
LaFave, J.L. Walsh, J.M. Orro, G.J. Unger,].M. Ross, T.].
O’Gorman, B. Messina, T.D. Sullivan, A.J. Sykes, H. Yourke,
T.A. Enger, V. Tolat, T.S. Scott, A.H. Taber, R.J. Sussman, W.A.
Klein, and C.W. Wahaus, “IBM Experiments in Soft Fails in
Computer Electronics (1978-1994),” IBM]. Research and Develop-
ment, vol. 40, no. 1, pp. 3-18, 1996.

[3] R.C. Baumann, “Soft Errors in Advanced Semiconductor Devices
—Part I. The Three Radiation Sources,” IEEE Trans. Device and
Material Reliability, vol. 1, no. 1, pp. 17-22, 2001.

[4] J.E. Ziegler, “Terrestrial Cosmic Ray Intensities,” IBM]. Research
and Development, vol. 42, no. 1, pp. 117-139, 1998.

[5] “EMC for ICs,” http://www.ic-emc.org/, 2007.

[6] G.E. Moore, “Cramming More Components onto Integrated
Circuits,” Electronics, vol. 38, no. 8, 1965.

[71 A.H. Johnston, “Scaling and Technology Issues for Soft Error
Rates,” Proc. Fourth Ann. Research Conf. Reliability, Apr. 2000.

[8] E. Dupont, M. Nicolaidis, and P. Rohr, “Embedded Robustness
IPs for Transient-Error-Free ICs,” IEEE Design and Test of
Computers, vol. 40, no. 3, pp. 56-70, May/June 2002.

[9] C. Constantinescu, “Trends and Challenges in VLSI Circuit

Reliability,” IEEE Micro, vol. 23, no. 4, pp. 14-19, July-Aug. 2003.

R. Baumann, “Soft Errors in Advanced Computer Systems,” IEEE

Design and Test of Computers, vol. 22, no. 3, pp. 258-266, May/June

2005.

S. Buchner, M. Baze, D. Brown, D. McMorrow, and J. Melinger,

“Comparison of Error Rates in Combinational and Sequential

Logic,” IEEE Trans. Nuclear Science, vol. 44, no. 6, pp. 2209-2216,

1997.

F. Irom and F.F. Farmanesh, “Frequency Dependence of Single-

Event Upset in Advanced Commercial PowerPC Microproces-

sors,” IEEE Trans. Nuclear Science, vol. 51, no. 6, pp. 3505-3509,

2004.

P.-C. Li and TK. Young, “Electromigration: The Time Bomb in

Deep-Submicron ICs,” IEEE Spectrum, vol. 33, no. 9, pp. 75-78,

Sept. 1996.

“The LEON2 Processor User’s Manual,” http:/ /www.gaisler.com,

2007.

E. Touloupis, J.A. Flint, V.A. Chouliaras, and D.D. Ward, “A

Fault-Tolerant Processor Core Architecture for Safety-Critical

Automotive Applications,” SAE 2005 Trans.]. Passenger Cars:

Electronic and Electrical Systems, pp. 1-6, Feb. 2006.

(10]

(1]

(12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(33]

[30]

1595

J. Gaisler, “A Portable and Fault-Tolerant Microprocessor Based
on the SPARC v8 Architecture,” Proc. Int'l Conf. Dependable
Systems and Networks (DSN '02), pp. 409-415, 2002.

F. Faure, R. Velazco, M. Violante, M. Rebaudengo, and M.S.
Reorda, “Impact of Data Cache Memory on the Single-Event-
Upset-Induced Error Rate of Microprocessors,” IEEE Trans.
Nuclear Science, vol. 50, no. 6, pp. 2101-2106, 2003.

M. Rebaudengo, M.S. Reorda, and M. Violante, “Accurate
Analysis of Single Event Upsets in a Pipelined Microprocessor,”
J. Electronic Testing: Theory and Applications, vol. 19, no. 5, pp. 577-
584, 2003.

D. Gil, R. Martinez, J.V. Busquets, J.C. Baraza, and P.J. Gil, “Fault
Injection into VHDL Models: Experimental Validation of a Fault
Tolerant Microcomputer System,” Proc. Third European Dependable
Computing Conf. (EDCC "99), pp. 191-208, 1999.

N.J. Wang, J. Quek, T.M. Rafacz, and S.J. Patel, “Characterizing
the Effects of Transient Faults on a High-Performance Processor
Pipeline,” Proc. 2004 Int’l Conf. Dependable Systems and Networks
(DSN), 2004.

M. Rimén, J. Ohlsson, and J. Karlsson, “Experimental Evaluation
of Control Flow Errors,” Proc. 1995 Pacific Rim Int’l Symp. Fault
Tolerant Systems (PRFTS), 1995.

R. Velazco, S. Rezgui, and H. Ziade, “Assessing the Soft Error Rate
of Digital Architectures Devoted to Operate in Radiation
Environment: A Case Studied,” |. Electronic Testing: Theory and
Applications, vol. 19, no. 1, pp. 83-90, 2003.

R. Velazco, S. Rezgui, and R. Ecoffet, “Predicting Error Rate for
Microprocessor-Based Digital Architectures through C.E.U. (Code
Emulating Upsets) Injection,” IEEE Trans. Nuclear Science, vol. 47,
no. 6, pp. 2405-2411, 2000.

M.S. Reorda and M. Violante, “Efficient Analysis of Single Event
Transients,”]. Systems Architecture, vol. 50, no. 5, pp. 239-246, 2004.
Z. Segall, D. Vrsalovic, D. Siewiorek, D. Yaskin,]J. Kownacki, J.
Barton, D. Rancey, A. Robinson, and T. Lin, “FIAT: Fault Injection
Based Automated Testing Environment,” Proc. 18th Int’l Symp.
Fault-Tolerant Computing (FITCS-18), pp. 102-107, 1988.

W. Kao, RK. Iyer, and D. Tang, “FINE: A Fault Injection and
Monitoring Environment for Tracing the UNIX System Behavior
under Faults,” IEEE Trans. Software Eng., vol. 19, no. 11, pp. 1105-
1118, Nov. 1993.

S. Han, K.G. Shin, and H.A. Rosenberg, “DOCTOR: An Integrated
Software Fault Injection Environment for Distributed Real-Time
Systems,” Proc. Int’l Computer Performance and Dependability Symp.
(IPDS ’95), pp. 204-213, 1995.

G.A. Kanawati, N.A. Kanawati, and J.A. Abraham, “FERRARI: A
Flexible Software-Based Fault and Error Injection System,” IEEE
Trans. Computers, vol. 44, no. 2, pp. 248-260, Feb. 1995.

J. Carreira, H. Madeira, and]. Gabriel Silva, “Xception: A
Technique for the Experimental Evaluation of Dependability in
Modern Computers,” Software Eng., vol. 24, no. 2, pp. 125-136,
1998.

J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre,].-C. Laprie,
E. Martins, and D. Powell, “Fault Injection for Dependability
Validation: A Methodology and Some Applications,” IEEE Trans.
Software Eng., vol. 16, no. 2, pp. 166-182, 1990.

H. Madeira, M.Z. Rela, F. Moreira, and].G. Silva, “RIFLE: A
General Purpose Pin-Level Fault Injector,” Proc. First European
Dependable Computing Conf. (EDCC '94), pp. 199-216, 1994.

JK.U. Gunneflo and J. Torin, “Evaluation of Error Detection
Schemes Using Fault Injection by Heavy-Ion Radiation,” Proc. 19th
Int’l Symp. Fault Tolerant Computing, pp. 340-347, 1989.

J. Karlsson, P. Liden, P. Dahlgren, R. Johansson, and U. Gunneflo,
“Using Heavy-Ion Radiation to Validate Fault-Handling Mechan-
isms,” IEEE Micro, vol. 14, no. 1, pp. 8-11, 13-23, Feb. 1994.

J. Karlsson, P. Folkesson, J. Arlat, Y. Crouzet, G. Leber, and]J.
Reisinger, “Application of Three Physical Fault Injection Techni-
ques to the Experimental Assessment of the MARS Architecture,”
Proc. Fifth IFIP Working Conf. Dependable Computing for Critical
Applications (DCCA-5), pp. 267-287, 1995.

J.R. Samson, W. Moreno, and F. Falquez, “A Technique for
Automated Validation of Fault Tolerant Designs Using Laser Fault
Injection (LFI),” Proc. 28th Int'l Symp. Fault Tolerant Computing,
pp. 162-167, 1998.

J. Aidemark, J. Vinter, P. Folkesson, and]. Karlsson, “GOOQOFI:
Generic Object-Oriented Fault Injection Tool,” Proc. Int’l Conf.
Dependable Systems and Networks (DSN '01), 2001.

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on April 30,2010 at 13:22:25 UTC from IEEE Xplore. Restrictions apply.

1596

[37] N.A. Kanawati, G. Kanawati, and J. Abraham, “Dependability
Evaluation Using Hybrid Fault/Error Injection,” Proc. IEEE Int’l
Computer Performance and Dependability Symp. (IPDS ’95), p. 0224,
1995.

[38] P.L. Civera, L. Macchiarulo, M. Rebaudengo, M. SonzaReorda,
and M. Violante, “Exploiting FPGA for Accelerating Fault
Injection Experiments,” Proc. IEEE On-Line Testing Workshop
(IOLTW °01), pp. 9-13, 2001.

[39] G.S. Choi and R.K. Iyer, “FOCUS: An Experimental Environment
for Fault Sensitivity Analysis,” IEEE Trans. Computers, vol. 41,
no. 12, pp. 1515-1526, Dec. 1992.

[40] E. Jenn, J. Arlat, M. Rimén, J. Ohlsson, and]. Karlsson, “Fault
Injection into VHDL Models: The MEFISTO Tool,” Proc. 24th Ann.
Int’l Symp. Fault-Tolerant Computing, pp. 66-75, 1994.

[41] T.A. Delong, B.W. Johnson, and J.A. Profeta III, “A Fault Injection
Technique for VHDL Behavioral-Level Models,” IEEE Design and
Test of Computers, vol. 13, no. 4, pp. 24-33, Winter 1996.

[42] KK. Goswami, R.K. Iyer, and L.T. Young, “DEPEND: A
Simulation-Based Environment for System Level Dependability
Analysis,” IEEE Trans. Computers, vol. 46, no. 1, pp. 60-74, Jan.
1997.

[43] B. Parrotta, M. Rebaudengo, M. SonzaReorda, and M. Violante,
“New Techniques for Accelerating Fault Injection in VHDL
Descriptions,” Proc. Int’l On-Line Test Workshop (IOLTW ’00),
pp- 61-66, 2000.

[44] S. Mitra, N.R. Saxena, and E.J. McCluskey, “A Design Diversity
Metric and Analysis of Redundant Systems,” IEEE Trans.
Computers, vol. 51, no. 5, pp. 498-510, May 2002.

[45] E. Touloupis, J.A. Flint, V.A. Chouliaras, and D.D. Ward,
“Modelling Multiple Faults in Fault-Tolerant Processor Architec-
tures,” IEE Electronics Letters, vol. 41, no. 21, pp. 1162-1163, 2005.

[46] M.R. Guthaus,].S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge,
and R.B. Brown, “MiBench: A Free, Commercially Representative
Embedded Benchmark Suite,” Proc. Fourth IEEE Ann. Workshop
Workload Characterization, Dec. 2001.

[47] The SPARC Architecture Manual Version 8, http:/ /www.sparc.org/
standards/V8.pdf, 2007.

Emmanuel Touloupis received the diploma in
electrical engineering and computer technology
from the University of Patras, Greece, in 2002
and the PhD degree from Loughborough Uni-
versity, United Kingdom, in 2006 for his work on
the design and testing of fault-tolerant em-
bedded microarchitectures. He is currently a
microelectronics engineer with InAccess Net-
works. His main research interests include
embedded processor architectures, fault-toler-
ant computing, system-on-chip design, communication networks, and
safety-critical systems. He is a member of the IEEE.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 12, DECEMBER 2007

James A. Flint received the MEng and PhD
degrees in electronic and electrical engineering
from Loughborough University in 1996 and
2000, respectively. He was with the automotive
industry as a project engineer. He became a
lecturer in wireless systems engineering at
Loughborough University in 2001 and was
named a senior lecturer in 2006. He has acted
as a consultant of numerous high-profile com-
panies in the wireless and automotive sectors.
His research interests include fault-tolerant signal processing, novel
acoustic and electromagnetic transducers, metamaterials, and electro-
magnetic compatibility. He is a Chartered Engineer in the United
Kingdom. He is a member of the IEEE.

Vassilios A. Chouliaras received the BSc
degree in physics and laser science from
Heriot-Watt University, Edinburgh, in 1993 and
the MSc degree in VLS| systems engineering
from the University of Manchester Institute of
Science and Technology (UMIST) in 1995. He
was an ASIC design engineer with INTRACOM
and a senior research and design engineer/
processor architect with ARC International. He is
currently a senior lecturer in the Department of
Electronic and Electrical Engineering at Loughborough University,
where he leads the research in CPU architecture and microarchitecture,
SoC modeling, and software parallelization. His research interests
include superscalar and vector CPU microarchitecture, high-perfor-
mance embedded CPU implementations, performance modeling,
custom instruction set design, and Electronic Design Automation
(EDA). He is a member of the IEEE.

David D. Ward received the BA (with honors)
and MA degrees in natural sciences (physics
and theoretical physics) from Churchill College,
University of Cambridge and the PhD degree
from the University of Nottingham. He was a
research assistant in the Department of Elec-
trical and Electronic Engineering at the Univer-
sity of Nottingham, developing a 3D numerical
model of the electromagnetic effects of the
lightning return stroke. In 1991, he joined the

-=

i

staff of the Electromagnetic Compatibility (EMC) Department at MIRA
Ltd., UK. He is currently with the Electrical Engineering Department,
MIRA, where he is responsible for advanced engineering. He is active in
consultancy and technology development in a number of areas

concerned with vehicle electronics, related systems and functional
safety, including EMC, embedded software, communications systems,
and intelligent transportation systems. He is a member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on April 30,2010 at 13:22:25 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

