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Abstract 

A sophisticated and flexible understanding of the equals sign is important for arithmetic 

competence and for learning further mathematics, particularly algebra. Research has 

identified two common conceptions held by children: the equals sign as an operator, and the 

equals sign as signalling the same value on both sides of the equation. We argue here that as 

well as these two conceptions, the notion of substitution is also an important part of a 

sophisticated understanding of mathematical equivalence. We provide evidence from a 

cross-cultural study in which English and Chinese children were asked to rate the 

“cleverness” of operational, sameness and substitutive definitions of the equals sign. A 

Principle Components Analysis revealed the substitutive items were distinct from the 

sameness items. Furthermore, Chinese children rated the substitutive items as ‘very clever’, 

whereas the English children rated them as ‘not so clever’, suggesting that the notion of 

substitution develops differently across the two countries. Implications for developmental 

models of children’s understanding of equivalence are discussed. 
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Substitution and sameness: Two components of a relational conception of the equals sign  

 

Introduction 

Children need to learn that the equals sign symbolises an equivalence relation between 

two mathematical objects, such as numbers or expressions. Their understanding of the 

meaning of the equals sign is correlated with arithmetic competence and success at further 

mathematics (Kieran, 1981; Knuth, Stephens, McNeil, & Alibali, 2006; Li, Ding, Capraro, 

& Capraro, 2008; Rittle-Johnson, Matthews, Taylor, & McEldoon, 2011). However, many 

young children, in Western countries at least, view the equals sign not as expressing a 

relation but as an operation meaning “work out the answer” (Baroody & Ginsburg, 1983; 

Behr, Erlwanger, & Nichols, 1976; Kieran, 1981; Knuth, Stephens, et al., 2006; Rittle-

Johnson & Alibali, 1999).  Children are rarely explicitly taught the meaning of the equals 

sign (Li et al., 2008). They typically encounter it in equations such as 3 + 4 = ?, where an 

expression is evaluated to produce a result, and thus an operational interpretation is 

consistent with a correct solution of the problem (Baroody & Ginsburg, 1983; Denmark, 

Barco, & Voran, 1976; McNeil et al., 2006; Seo & Ginsburg, 2003). The operational view is 

reinforced by mathematics lessons and textbooks throughout the early years of schooling 

and so may become resistant to change (McNeil, 2008; McNeil & Alibali, 2005). Such a 

resistant operational view is problematic because it can hinder the development of 

arithmetic competence and learning of algebra in later schooling (Knuth et al., 2006; 

McNeil & Alibali, 2002). The operational and relational interpretations of the equals sign 

have been demonstrated to have good criterion validity, for example predicting performance 

on equation solving even after controlling for general mathematical achievement (Knuth et 

al., 2006). However, the operation-relation dichotomy risks neglecting other important 

components of mathematical equivalence. In this paper we present evidence that 
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substitution, i.e. the replacement of one representation with another, is an important and 

under-researched component of understanding mathematical equivalence relations. 

The equals sign is defined and introduced differently in teacher guidebooks around the 

world. Li et al. (2008) compared teacher guidebooks in China and the U.S. and found that in 

the U.S. the equals sign is rarely defined, and is often used interchangeably with 

computational terms such as “makes”. The majority of arithmetic equations presented in 

U.S. guidebooks are canonical (i.e. of the form expression = result). In China the equals 

sign, along with the greater-than and less-than symbols, is defined in the first year of 

schooling and presented in a variety of symbolic, verbal and pictorial contexts. For example, 

an exercise might ask students to choose which relational symbol (<, > or =) should go 

between a presented pair of numerals or pictures of objects. Arithmetic operations, 

expressions and equations are typically introduced only after students have learnt the 

meaning of the equals sign and other relational symbols, Li et al. investigated the impact 

these two approaches have on Chinese and U.S. students’ performance with equation 

solving at the end of primary schooling. Strikingly, 98% of the Chinese children solved 

equations and justified their answers correctly whereas only 28% of the American children 

were successful.  

Nevertheless, most Western children can and do develop a more relational 

understanding of the equals sign as they progress through the middle years of schooling. 

Over the past three and a half decades researchers have presented increasingly detailed 

models of development from operational to relational conceptions (Baroody & Ginsburg, 

1983; Behr et al., 1976; Carpenter, Franke, & Levi, 2003; Rittle-Johnson et al., 2011). The 

most recent model, by Rittle-Johnson et al., comprises four levels from operational through 

to relational, as shown in Table 1.  
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************************************** 

Insert Table 1 about here 

************************************** 

 

The literature to date usually operationalises the relational understanding of 

mathematical equivalence in terms of sameness (Jones & Pratt, 2012). For example, McNeil 

and Alibali (2005) described an instrument that included the two relational definitions 

“something is equal to another thing” and “two amounts are the same” (p. 887). Knuth et al. 

(2006) coded children’s definitions of the equals sign and provided relational examples 

including “what is to the left and right of the sign mean the same thing” and “the same as” 

(p. 303). Much research has investigated how students make use of general arithmetic 

principles to establish the sameness of both sides of the equals sign (e.g. Carpenter, Franke 

& Levi, 2003; Molina, Castro & Mason, 2008; Pirie & Lyndon, 1997; Sáenz-Ludlow & 

Walgamuth, 1998). For example, children can use their knowledge of commutativity to see 

that the equation 4 + 4 = 3 + 4 has the same value on both sides without having to calculate 

an answer (Baroody and Ginsburg, 1983). 

We propose that a relational understanding of the equals sign involves both sameness 

and substitutive components. We offer two justifications for the inclusion of substitution, 

one mathematical and one cognitive. 

Mathematically, any relation that is transitive, symmetric and reflexive is said to be an 

equivalence relation (e.g. Stewart & Tall, 1977). Importantly, the mathematical definition of 

equivalence makes no claims about the properties of a and b beyond how they are related 

via the equivalence relation. Formally a = b does not imply that a and b are “the same”, only 

that they are related by the given equivalence relation. However, a = b does imply, because 
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of transitivity, that given b = c we can deduce a = c (i.e. substitute a for b). To give a simple 

example, if one defines a relation by stating that a person a is related to a person b if a and b 

have the same birthdays, then one has an equivalence relationship (the relation is transitive, 

symmetric and reflexive). But of course a and b are not “the same” beyond their properties 

in the reduced context of birth dates. However, because of transitivity, a can be substituted 

for b in the statement “b has the same birthday as c”. 

The cognitive justification for considering substitution is based on studies into students’ 

difficulties with the notion when working with algebraic equations. Lima and Tall (2007) 

reported that secondary students, when solving equations containing an unknown on both 

sides of the equals sign, often used memorised rules (e.g. “change sides, change signs”) 

rather than substitutive solutions (e.g. substituting m = 0 to make 2m = 4m true). Filloy, 

Rojana and Solares (2010) found that some secondary students, when solving simultaneous 

algebraic equations, could often substitute numbers for unknowns (e.g. y = 5) but could not 

substitute variables for an expression containing another variable (e.g. y = 2x + 3). 

Little research has directly investigated the role of substitution for understanding 

equivalence within arithmetic contexts, although it has been implied in some studies. For 

example, McNeil, Fyfe, Petersen, Dunwiddie and Brletic-Shipley (2011) compared how 

practice with canonical and reversed canonical (i.e. result = expression) equations improved 

understanding of equivalence. The authors’ focus was on “non-traditional problem formats” 

but their approach can be viewed as substitutive because the reversed canonical equations 

were generated from the canonical equations by exchanging the two sides of the equals sign 

(see also Weaver, 1973).  In the same way, students at the ‘flexible operational’ level of 

Rittle-Johnson and colleagues’ construct map (see Table 1) accept reversed canonical 

equations as correct.  
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We predicted that a substitutive-relational conception is a component of understanding 

the equals sign, distinct from the sameness-relational1 conception. To explore this 

hypothesis we adapted the Conceptions of the Equals sign (CES) instrument from Rittle-

Johnson & Alibali (1999), which has been demonstrated to identify children at different 

levels of development (Knuth et al., 2006; McNeil & Alibali, 2005; Rittle-Johnson et al., 

2011). Our adapted CES included substitutive-relational items along with sameness-

relational and operational items. The language used for the items was informed by previous 

qualitative studies in which elementary students worked with a software program that 

supports a substitutive view of the equals sign (e.g. Jones & Pratt, 2012). 

The CES instrument was administered to two groups of 11 and 12-year-old students 

likely to have different levels of understanding of the equals sign. One group was drawn 

from England where primary schooling can be expected to support a predominantly 

operational view of the equals sign. Mathematics textbooks are used sparingly if at all in 

English primary classrooms (Mullis et al., 2008) and so cannot be assumed to impact greatly 

on students’ learning. However, an analysis of compulsory high-stakes national tests taken 

by our participants at the end of primary schooling indicated that their experience of the 

equals sign was predominantly operational (Jones, Inglis, Gilmore, & Evans, submitted). 

We therefore expected that the English students would mostly adhere to Rittle-Johnson et 

al.’s ‘flexible operational’ and ‘basic relational’ views of the equals sign, shown in Table 1. 

The other group of children was drawn from China where primary schooling can be 

expected to support a predominantly sameness-relational view of the equals sign (Li et al., 

                                                

1 In the remainder of the article we use the terms sameness-relational and substitutive-relational to 

distinguish between the two components that we argue make up a sophisticated relational understanding of the 

equals sign. 
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2008). In China, textbooks are central to school teaching (Mullis et al., 2008) and the 

children in the study were taught using the Beijing Normal University Press series 

guidebooks which promote a sameness-relational meaning of the equals sign (Li et al., 

2008), as well as a regional series (Zhejiang Education Press). We therefore expected that 

the Chinese sample would predominantly subscribe to Rittle-Johnson et al.’s ‘comparative 

relational’ view of the equals sign.  

These two groups provided an interesting contrast because the Chinese focus on 

sameness relations might also foster substitutive views of equivalence through, for example, 

exposure to reversed canonical equations. We also assumed that the Chinese children would 

be more competent at arithmetic and more ready to learn algebra than the children English 

sample. This assumption was based on Li et al.’s (2008) comparison of Chinese and U.S. 

children, and the similar algebraic and mathematical performance of children in the U.K. 

and U.S. in contrast to children in China (Mullis et al., 2008; OECD, 2009).  

We subjected the students’ responses to the CES instrument to two main analyses. 

First, a Principle Components Analysis (PCA) was undertaken to establish whether the 

substitutive-relational items loaded separately to sameness-relational and operational items. 

Second, an Analysis of Variance (ANOVA) was undertaken to establish whether the 

substitutive-relational items were more strongly endorsed by students in China than those in 

England.  
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Method 

Participants 

A total of 251 children aged 11 and 12 from two urban schools in England (N = 101) 

and China (N = 150) participated in the study. Both groups were in the first year of 

secondary school in which students first encounter algebraic equations. 

 

Materials and procedure 

The adapted CES instrument presents fictional definitions of the equals sign and 

participants rate as “not so clever”, “kind of clever” or “very clever”. The definitions in the 

original instrument correspond to the operational or sameness-relational conceptions, or 

were not meaningful in terms of arithmetic equivalence. We added three substitutive-

relational definitions to construct a final instrument with nine primary items and three 

distractor items, shown in the Appendix. We developed the adapted instrument in English 

and tested it with a small group of children. A Chinese speaker produced a Chinese 

language version, and a second Chinese speaker independently translated it back into 

English to check for consistency.  

The instrument was administered to children in class under test conditions by their 

regular mathematics teachers. Children worked individually through the instrument and 

were allowed ten minutes to complete all 12 items. The order of the items were randomised 

for each participant.  
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Analysis and results 

Preliminary analysis 

Children’s “cleverness ratings” of the sameness-relational, substitutive-relational and 

operational items were coded as 0 for “not so clever”, 1 for “sort of clever” and 2 for “very 

clever”2. Eight children did not complete all the items or had filled in more than one rating 

for an item and were removed from the analysis, leaving a total of 243 participants (95 from 

England, 148 from China).  

We checked the performance of the instrument in terms of the internal consistency of 

the items reflecting each component. We found Cronbach’s αs of .713 for the operational 

items, .644 for the sameness-relational items, and .765 for the substitutive-relational items, 

suggesting the instrument performed satisfactorily. 

 

Conceptions of the Equals Sign 

The suitability of the data for factor analysis was checked by assessing the factorability 

of the correlation matrix. The Kaiser-Meyer-Oklin value was .751, and Bartlett’s Test of 

Sphericity reached significance, p < .001, confirming the suitability of the data. The nine 

items (excluding the three distracter items) were subjected to a PCA on a matrix of 

polychoric inter-item correlations, as is advised for ordinal items (Holgado–Tello, Chacón–

Moscoso, Barbero–García, & Vila–Abad, 2008).  

The analysis revealed the presence of components explaining 34.2%, 25.0%, and 10.7% 

of the variance respectively. Scrutiny of the screeplot revealed a clear break after the third 

component, and thus three components were extracted. Oblimin rotation revealed strong 

loadings for all three components, and the interpretation of the three components was 
                                                

2 Group means for each item are shown in the Appendix. 
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consistent with our predictions. Operational items loaded strongly onto Component 2, 

Sameness-relational items loaded strongly onto Component 1, and Substitutive-relational 

items loaded strongly onto Component 3, as shown in Table 2. We therefore argue that a 

truly relational conception of the equals sign comprises distinctive substitution and 

sameness components, as predicted by Jones and Pratt (2012). 

 

************************************** 

Insert Table 2 about here 

************************************** 

 

Group Differences 

To investigate differences across the two countries, children’s overall cleverness ratings 

were calculated by summing their responses to the three items associated with each 

conception. Since each item was scored 0, 1 or 2, cleverness ratings for each conception fell 

on a 0 to 6 scale. These data are shown in Figure 1. Cleverness ratings were subjected to a 

2×3 ANOVA with one between-subjects factor (Country: England, China) and one within-

subjects factor (Conception: operational, substitutive-relational, sameness-relational). There 

was a significant main effect of conception, F(1.9, 468.3) = 15.9, p < .001 (Greenhouse-

Geisser correction), and a significant country × conception interaction effect, F(1.9, 468.3) 

= 146.7, p < .001. The main effect of country did not reach significance, F < 1. All within-

country comparisons of conception were significant (p < .001). To compare group 

differences we conducted three planned comparisons using a Bonferroni correction to adjust 

for the familywise error rate. The English group had a significantly higher mean operational 

rating, 4.35, than the Chinese group, 2.09, t(241) = 11.6, p < .001, and a significantly lower 
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mean substitutive-relational rating, 1.63 versus 3.61, t(241) = 9.7, p < .001. The Chinese 

group had a higher mean sameness-relational rating, 2.77, than the English group, 2.42, but, 

counter to our expectations, this (after Bonferroni correction) fell some way short of 

significance, t(241) = 1.7, p = .097. 

In sum, the between-countries difference in operational and substitutive-relational 

conceptions matched our expectations. We speculate on the implications of these findings 

for the development of relational understanding in the discussion section. 

 

************************************** 

Insert Figure 1 about here 

************************************** 

 

 

Relationship Between Factors 

To explore the relationships of the substitutive-relational conception to the sameness-

relational and operational conceptions we calculated correlation coefficients of the 

children’s cleverness ratings summed over the three items associated with each conception, 

as shown in Table 3. The coefficients revealed a negative significant correlation between the 

operational and substitutive-relational components, and a positive significant correlation 

between the sameness- and substitutive-relational components. This suggests the 

substitutive-relational conception is associated with the higher ‘relational’ levels but not the 

lower ‘operational’ levels of Rittle-Johnson et al.’s construct map (see Table 1). The 

coefficients also revealed, somewhat unexpectedly, a small but non-significant correlation 

between the operational and sameness-relational components. 



  13 

We also investigated whether the sameness- and substitutive-relational components 

appeared to be contingent on one another, that is whether the emergence of either 

component precedes the other. We coded children as either “accepting” a conception 

(having a score of 4, 5 or 6 on the 6-point “cleverness” scale) or “rejecting” a conception (a 

score of 0, 1 or 2). Of those children who accepted the sameness-relational conception, 

22.5% (n = 16) rejected the substitutive-relational conception; and of those who accepted 

the substitutive-relational conception, 31.4% (n = 27) rejected the sameness-relational 

conception. These figures suggest that there may not be a universal order in which children 

develop the two conceptions.  

We further develop our theoretical interpretation of these correlations and 

contingencies in the discussion section. 

 

Replication 

To further investigate the factor structure of our adapted CES, we replicated the study 

reported above by administering the CES to a further 133 children (England, N = 81; China 

N = 52) also aged 11 and 12 years from two further schools. The PCA revealed the presence 

of components explaining 21%, 20% and 18% of the variance respectively. The screeplot 

showed a clear break after the third component, and a oblimin rotation resulted in three 

components showing a number of strong loadings as shown in Table 4. As with the main 

study, loadings corresponded to operational, sameness- and substitutive-relational items. 

The pattern of group differences was also similar to that found in the main study.  
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Discussion 

The purpose of the study reported here was to test whether substitution is a distinct way 

of understanding the equals sign. We administered an instrument to children in England and 

China comprising operational, sameness-relational and substitutive-relational definitions of 

the equal sign, and asked them to rate each definition as “not so clever”, “kind of clever” or 

“very clever”. A PCA showed that the three different types of items loaded distinctly and 

strongly, providing evidence that the substitutive-relational conception is a way of 

understanding the equals sign that is distinct from the sameness-relational conception. 

Furthermore, we found that the Chinese and English children in our sample endorsed these 

components to varied extents, suggesting that conceptions of the equals sign are 

differentially developed across different countries. Whereas the Chinese children rated the 

substitutive-relational conception as cleverer than did the English children, the reverse was 

true for the operational conception. The Chinese children endorsed the sameness-relational 

conception more strongly than the English children although the difference fell short of 

significance.  

We concentrate our discussion on two theoretical positions that have emerged from the 

literature on children’s understanding of the equals sign. First, children develop from an 

operational conception to a sameness-relational conception in a broadly unidimensional 

fashion. Second, adopting an operational conception of the equals sign hinders the 

development of a sameness-relational conception, and so causes difficulty with learning 

further mathematics, particularly algebra. 

Rittle-Johnson et al. (2011) proposed and tested a four-level construct map for 

mathematical equivalence, as shown in Table 1. The model posits that children develop 

from a ‘rigid operational’ conception through to a ‘comparative relational’ conception, 

where they solve equations by successfully comparing the expressions on the two sides of 
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the equals sign. In this paper we have referred to the comparative relational conception as 

the sameness-relational conception. Our results suggest that there may be more to 

developing a truly relational conception of the equals sign than the unidimensional model 

suggests. We found a third distinct conception of the equals sign: one which prioritises the 

crucial mathematical idea of substitution. The observation of a third component of a 

relational understanding of equivalence leads to an important question about Rittle-Johnson 

et al.’s developmental trajectory: does the substitutive-relational conception develop in 

parallel with or after the sameness-relational conception, or do the two conceptions have 

entirely distinct developmental paths?  

In view of the substitutive-relational conception emerging as a separate component in 

our PCA, one might expect that the substitutive- and sameness-relational conceptions have 

separate developmental paths. However, as shown in Table 3 children’s cleverness ratings 

of the two conceptions were positively correlated in our data, indicating that it is possible 

that substitutive-relational and sameness-relational do develop somewhat concurrently, 

albeit at different rates across individuals. Another possibility is that children develop the 

substitutive-relational conception only after they have developed a sophisticated 

understanding of sameness. In other words, perhaps having reached Rittle-Johnson et al.’s 

fourth level, some children supplement their sophisticated sameness-relational conception 

with the substitutive-relational conception. If so, we would expect few children to rate the 

substitutive-relational conception as clever without also rating the sameness-relational 

conception as clever, but that many children may accept the sameness-relational conception 

while rejecting the substitutive-relational conception. In fact, our analysis of the 

contingency of the two conceptions suggests that there is no consistent order in which 

children develop them. Further work, with a longitudinal component, will be necessary to 
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disentangle the relationship between the development of sameness-relational and 

substitutive- relational conceptions. 

One of the strengths of Rittle-Johnson et al.’s construct modelling approach is that it 

provides a rigorous method for testing proposed learning trajectories and leads to a 

criterion-referenced measure that can be used to identify where individual children are 

within the trajectory. However, because the method relies upon a hypothesised construct 

map, it cannot lead to the identification of novel conceptions that may exist but have not 

already been hypothesised. We believe that our findings in this paper indicate that future 

studies on the development of children’s understanding of the equals sign should consider 

the substitutive-relational conception independently of the sameness-relational conception. 

Our findings also have implications for interpretations of the change resistance account 

of the development of equality. In an ingenious series of experiments, McNeil and 

colleagues have demonstrated that adhering to operational patterns of equality harms 

arithmetic and algebraic performance (e.g. McNeil & Alibali, 2002; McNeil, et al., 2010a; 

McNeil, et al., 2010b). Operational patterns have traditionally been interpreted as related to 

students’ lack or suppression of a sameness-relational conception of the equals sign. For 

example, McNeil, Rittle-Johnson et al. (2010) asked undergraduates to solve simultaneous 

equations of the form “John bought three shirts and two caps for $58. Sue bought two shirts 

and three caps for $52. What is the cost of one shirt?” Participants who tackled such tasks 

after having been asked to solve canonical single digit addition problems performed 

significantly worse than participants who had been asked to tackle non-arithmetic numerical 

tasks. McNeil et al. argued that being asked to perform arithmetic tasks activated an 

operational conception of equality, which hindered the necessary sameness-relational 

conception required to solve such problems.  
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However, solving simultaneous equations effectively, including those used by McNeil 

et al. (2010), necessitates an understanding of the mathematical notion of substitution: the 

solver must express one unknown in terms of another and substitute that expression into the 

second equation. Perhaps, then, a key reason why activating operational conceptions of 

equality hinders algebraic performance is that it de-emphasises substitutive-relational 

conceptions, aside from it de-emphasising sameness-relational conceptions. This would be 

consistent with our unexpected finding that Chinese children’s endorsement of sameness-

relational items was not significantly stronger than English children’s. It would also be 

consistent with the strong inverse relationship in our data between cleverness ratings of the 

operational and substitutive-relational conceptions, shown in Table 3. (It is also consistent 

with the weak positive relationship between cleverness ratings of operational and sameness-

relational conceptions, although this was non-significant and unexpected.) If our 

interpretation of the findings in Table 3 is correct then we would expect a manipulation 

which emphasised the substitutive-relational conception of the equals sign to improve 

algebraic performance compared to a control condition, and perhaps even to a condition in 

which the sameness-relational conception was made salient. 

We note that we have only used a single instrument to assess children’s understanding 

of the substitutive component of equivalence relations, based on endorsements of fictitious 

definitions. Further work is required to establish the extent to which our measure 

corresponds to others based on definition generation, and equation analysis and solving 

(Rittle-Johnson et al., 2011). Such evidence would enable us to explore the predictive power 

and validity of measures of the substitutive-relational conception. Equation based 

instruments would also enable us to directly test the assumption that Chinese children are 

more proficient at relational thinking and better prepared to learn algebra than English 

children. Neither definition nor equation based instruments have previously detected the 
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substitutive-relational component and may require adaptation as was the case for the 

instrument used in the present study. 

To conclude, a correct understanding of the equals sign has traditionally been defined 

in terms of understanding, implicitly or explicitly, that both sides must have the same value. 

However, the “same value” definition is limited because it does not incorporate the 

important mathematical idea of substitution, that one side of the equals sign can be used to 

replace the other. Our study showed that the mathematical idea of substitution has a 

detectable cognitive analogue, and that children with a sophisticated conception of the 

equals sign explicitly endorse it. Instruments designed to investigate children’s conceptual 

development should therefore incorporate the substitution component of a truly relational 

conception. 
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Appendix  
 
All 12 items used in the Conceptions of the Equals Sign (CES) instrument along with group 
means. 
 
 

Definition  
= means… 

Predicted 
Conception 

Group means 
English             Chinese 

…the answer to the problem Operational 2.52 1.72 
…work out the result Operational 2.24 1.64 
…the total Operational 2.59 1.73 
…that two amounts are the same Sameness 1.64 1.86 
…both sides have the same value Sameness 1.71 1.94 
…that something is equal to another thing Sameness 2.07 1.97 
…one side can replace the other Substitutive 1.46 2.26 
…that the right-side can be swapped for the left-side Substitutive 1.47 2.13 
…that two sides can be exchanged Substitutive 1.69 2.22 
…the end of the problem Distractor 2.19 1.95 
…the start of the problem Distractor 1.35 2.24 
…to repeat the numbers Distractor 1.29 1.71 
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Table 1: Construct map for mathematical equivalence (adapted from Rittle-Johnson et 

al., 2011, p.87). 

Level Description 
4. Comparative relational Explicitly view “=” as a relation signalling the same value on each side and able to define it as 

such. Accept a wide range of arithmetic equation types. Draw on arithmetic principles 
(commutativity, associativity and inversion) in order to evaluate and solve equations in terms of 
their structural properties; e.g. recognise that 3 + 5 = 5 + 3 and 6 + 9 = 7 + 8 are true by drawing on 
the commutative and associative properties of addition respectively. 

3. Basic relational Implicitly view “=” as a relation signalling the same value is on each side but unable to define it as 
such. Accept a wide range of arithmetic equations as properly formed, including those with 
expressions on both sides. 

2. Flexible operational View “=” as an operator. Accept as properly formed equations that contain a result on at least one 
side of the equal sign. 

1. Rigid operational View the symbol “=” as an operator. Consider only canonical equations to be properly formed. 
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Table 2. Results of the Principal Components Analysis, after oblimin rotation. Loadings 

>.4 are shown in bold. 

Definition  
= means… 

Predicted 
Conception 

Loading on 
Factor 1 

Loading on 
Factor 2 

Loading on 
Factor 3 

…the answer to the problem Operational -0.116 0.896 0.001 
…work out the result Operational 0.190 0.733 -0.071 
…the total Operational -0.071 0.832 -0.034 
…that two amounts are the same Sameness 0.929 -0.158 -0.09 
…both sides have the same value Sameness 0.750 -0.004 0.213 
…that something is equal to another thing Sameness 0.596 0.322 0.090 
…one side can replace the other Substitutive 0.047 -0.08 0.793 
…that the right-side can be swapped for the left-side Substitutive 0.040 -0.039 0.865 
…that two sides can be exchanged Substitutive -0.049 0.044 0.909 
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Table 3. Correlations between children’s summed cleverness ratings for each 

component. Fisher’s r-to-z Tests showed all correlations to be significantly different to one 

another at p < .001. 

 r p 
operational and sameness .104 .105 
operational and substitutive -.236 < .001 
sameness and substitutive .385 < .001 
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Table 4. Results of the replicated Principal Components Analysis, after oblimin 

rotation, for the replication study. Loadings >.4 are shown in bold. 

Definition  
= means… 

Predicted 
Conception 

Loading on 
Factor 1 

Loading on 
Factor 2 

Loading on 
Factor 3 

…the answer to the problem Operational 0.113 -0.064 0.826 
…work out the result Operational -0.184 0.052 0.789 
…the total Operational 0.089 -0.024 0.698 
…that two amounts are the same Sameness 0.773 0.168 0.187 
…both sides have the same value Sameness 0.788 0.085 -0.213 
…that something is equal to another thing Sameness 0.686 -0.115 0.042 
…one side can replace the other Substitutive -0.150 0.815 -0.004 
…that the right-side can be swapped for the left-side Substitutive 0.169 0.725 0.171 
…that two sides can be exchanged Substitutive 0.079 0.665 -0.225 
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Figure 1. Chinese and British children’s conceptions of the equals sign. Error bars give the 

standard error of the mean. 
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