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Abstract 

The Swiss Cheese Model (SCM) is the most popular accident causation model and 

is widely used throughout various industries. A debate exists in the research 

literature over whether the SCM remains a viable tool for accident analysis. Critics of 

the model suggest that it provides a sequential, oversimplified view of accidents. 

Conversely, proponents suggest that it embodies the concepts of systems theory, as 

per the contemporary systemic analysis techniques. The aim of this paper was to 

consider whether the SCM can provide a systems thinking approach and remain a 

viable option for accident analysis. To achieve this, the train derailment at Grayrigg 

was analysed with an SCM-based model (the ATSB accident investigation model) 

and two systemic accident analysis methods (AcciMap and STAMP). The analysis 

outputs and usage of the techniques were compared. The findings of the study 

showed that each model applied the systems thinking approach. However, the ATSB 

model and AcciMap graphically presented their finding sin a more succinct manner, 

whereas STAMP more clearly embodied the concepts of systems theory. The study 

suggests that, whilst the selection of an analysis method is subject to trade-offs that 

practitioners and researchers must make, the SCM remains a viable model for 

accident analysis. 

  



1. Introduction 

The systems thinking approach to understanding socio-technical system accidents is 

arguably the dominant paradigm within accident analysis research (e.g. Salmon et 

al., 2012; Stanton et al., 2012). It views accidents as the result of unexpected, 

uncontrolled relationships between a system’s constituent parts with the requirement 

that systems are analysed as whole entities, rather than considering their parts in 

isolation (Underwood and Waterson, 2013). 

Traditional cause–effect accident models suggest that complex systems accidents 

are caused by events such as catastrophic equipment failure or an unsafe human 

action. However, as system complexity has increased over time, many accidents 

(e.g. space shuttle Columbia; Comair flight 5191) have not simply resulted from such 

trigger events. Instead these accidents emerge as complex phenomena within the 

normal operational variability of a system (de Carvalho, 2011). Describing accidents 

in a sequential	 (cause–effect) fashion is, therefore, arguably inadequate. It can also 

lead to equipment or humans at the ‘sharp end’ of a system being incorrectly blamed 

for an accident. This represents a missed opportunity to learn important lessons 

about system safety and how to prevent accident recurrence. 

The use of the systems thinking approach, via systemic accident analysis (SAA), 

attempts to avoid these limitations and it has been used as the conceptual 

foundation for various SAA methods and models, such as: AcciMap (Rasmussen, 

1997); Functional Resonance Analysis Method (FRAM) (Hollnagel, 2004); Systems 

Theoretic Accident Modelling and Processes model (STAMP) (Leveson, 2004); 

systems dynamics simulation (e.g. Cooke, 2003);causal loop diagrams (e.g. Goh et 

al., 2010, 2012). A number of studies have compared SAA methods with established 

non-systemic analysis techniques, such as the Sequentially Timed Events Plotting 

method (e.g. Herrera and Woltjer, 2010) and Fault Tree Analysis (e.g. Belmonte et 

al., 2011). These studies and others like them (e.g. Ferjencik, 2011) suggest that the 

SAA techniques do indeed provide a deeper understanding of how dynamic, 

complex system behaviour contributes to accidents. 

The academic debate on accident models is, however, a lengthy one with new 

models often criticising or even disqualifying older ones (Ghirxi, 2010; Jacobsson et 

al., 2009). A notable case in point can be found when considering the Swiss Cheese 

Model (SCM) (Reason, 1990, 1997). 



1.1. SAA vs. the SCM 

Undoubtedly the most popular accident causation model, the SCM has been widely 

adopted in various industries (e.g. aviation and healthcare) (Salmon et al., 2012). 

Classified by some (e.g. Hollnagel, 2004) as an ‘epidemiological’ model, the SCM 

suggests that longstanding organisational deficiencies can create the necessary 

conditions for a frontline ‘active failure’ to trigger an accident. The presence of these 

conditions and events in the system represent the inadequacy/absence of defensive 

barriers (e.g. physical protection, training and procedures) designed to prevent 

accidents. The defences within a system and their associated inadequacies are 

graphically represented by layers of and holes in Swiss cheese (see Fig. 1). When 

the ‘holes’ in a system’s defences align, an accident trajectory can pass through the 

defensive layers and result in a hazard causing harm to people, assets and the 

environment, as depicted in Fig. 1 (Reason, 2008, p.101). 

 

Figure 1 – Swiss Cheese Model (adapted from Reason (2008)) 

The SCM has drawn criticism from a number of researchers (e.g. Dekker, 2006, p.89; 

Hollnagel, 2012, p.14; Leveson, 2012, p.19) who describe it as a sequential 

technique which oversimplifies accident causation by not considering the complex 

interaction of system components. In addition, some authors (e.g. Dekker, 2006, 

p.89; Hickey, 2012, p.19) suggest that the sequential nature of accident causation is 

portrayed in the signature image of the SCM (see Fig. 1). The implication is that the 

SCM no longer provides an appropriate description of accident causation. 



Other criticisms of the SCM focus on its application. For example, some researchers 

comment on the model’s lack of specificity about a number of its features, e.g. how 

the holes in the layers of cheese line up and how this affects its ease of use (e.g. Le 

Coze, 2013; Wiegmann and Shappell, 2003). Furthermore, Shorrock et al. (2004) 

suggest that an overly prescriptive application of the SCM can lead to accidents 

being entirely (and incorrectly) attributed to senior management, i.e. overlooking the 

contribution of individuals at the frontline. 

1.2. Performing SAA with the SCM? 

The perceived drawbacks of the SCM (see Section 1.1) only represent one side of 

the academic debate, however. In contrast to the idea that the SCM is a sequential 

model, Reason et al. (2006, p.9) state that it describes accident causation as the 

‘unlikely and often unforeseeable conjunction of several contributing factors arising 

from different levels of the system’. In other words, events and/or conditions happen 

together to produce an accident. As per SAA, the SCM provides a holistic multi-level 

analysis approach and later versions of the model also take account of the fact that 

‘active failures’ are not required for an accident to occur (see Reason, 1997,p.17). 

Furthermore, the connection made by the SCM between normative serialisation (i.e. 

cause–effect) and the temporal orderliness of events that occurred is entirely 

unintended (Reason et al., 2006,p.16). 

The SCM is underspecified but Reason et al. (2006, p.21) state that it was never 

intended to be a used as a detailed accident analysis model and that criticising it for 

a lack of specificity seems unjustified. Regardless, this issue has been resolved by 

the various methods which have been developed to operationalise its concepts such 

as HFACS (Wiegmann and Shappell, 2003) and Tripod-Delta (Hudson et al., 1994). 

Additionally, a number of organisations (e.g. the Australian Transport Safety Bureau 

(ATSB) and EUROCONTROL) have purposely neutralised the language used in 

their SCM-based models to avoid attributing blame, an important aspect of SAA. 

Whist the development of accident models has been required to explain the 

increasing complexity of socio-technical systems, the introduction of a new model 

does not necessarily mean that existing ones become obsolete (Hollnagel and 

Speziali, 2008, p.37; Reason et al., 2006, p.21). Indeed, the SCM (and methods 

based on it) is still used by researchers to perform accident analysis (e.g. Szeremeta 



et al., 2013; Xue et al., 2013) with some suggesting that it offers a systemic view of 

accidents (e.g. Salmon et al., 2012; Stanton et al., 2012). However, if the critiques of 

the SCM are justified then the continued use of this (arguably outdated) model 

means accident investigations may not achieve the necessary understanding of 

major accidents to prevent recurrence. Given that the SCM is in widespread use 

throughout various industries and SAA methods are yet to be widely adopted by 

practitioners (see Underwood and Waterson, 2013), the outcome of this debate has 

clear ramifications with regards to improving safety. Therefore, it is important to 

understand whether or not the SCM can provide a systems thinking approach and 

remain a viable option for accident analysis. 

1.3. Study objectives 

The aim of this paper is to consider whether the SCM can provide a systems thinking 

approach to accident analysis. In order to achieve this aim, the paper has three main 

objectives: 

1. Analyse a major accident (the train derailment at Grayrigg) using three techniques: 

an SCM-based model developed and used by practitioners (the ATSB investigation 

analysis model) and two SAA methods predominantly used by the research 

community (AcciMap and STAMP). 

2. Compare the outputs and application processes of the models, via an evaluation 

framework, in order to examine their theoretical and usage characteristics. 

3. Reflect on the similarities and differences between the models and the 

implications for applying the systems thinking approach in theory and practice. 

The intention is to examine this issue within an applied context, rather than a purely 

conceptual one. By giving a practical example of how the SCM compares to SAA 

techniques, it is hoped that the paper will be able to demonstrate whether the SCM 

does apply the systems thinking approach or not. An overview of the three analysis 

tools, a description of the Grayrigg accident, details of the analysis processes and 

the model evaluation criteria used in the study are provided in Sections 2, 3, 4.1 and 

4.2 respectively. 

  



2. The analysis methods 

2.1. ATSB investigation analysis model 

The ATSB investigation analysis model (referred to hereafter as the ‘ATSB model’) is 

a modified version of the SCM. As per the SCM, the ATSB model provides a general 

framework that can be used to guide data collection and analysis activities during an 

investigation (ATSB, 2008, p.36). However, various alterations to the original SCM 

were made by the ATSB to improve its usability and the identification of potential 

safety issues. Such changes include an enhanced ability to combine technical issues 

into the overall analysis, the use of neutral language and emphasising the impact of 

preventative, as well as reactive, risk controls. To highlight the changes made, the 

ATSB (2008) presented a latter version of the SCM (see Fig. 2) and their adaptation 

of it (see Fig. 3). 

 

Figure 2 – Latter version of the SCM (adapted from ATSB (2008)) 

 

 

Figure 3 – ATSB adaptation of the SCM (adapted from ATSB (2008)) 

As indicated by Fig. 3, the ATSB model views organisations as goal seeking systems 

whose performance can become unsafe from the result of interacting events and 



conditions. In this situation, risk controls are required to prevent an accident from 

occurring or minimise the severity of its consequences (ATSB, 2008, p.36). These 

risk controls are akin to the layers of defences portrayed in Fig. 1.Whereas Fig. 3 

highlights some of the changes that the ATSB made to the SCM, the official 

representation of the ATSB model which is used during investigations is presented in 

Fig. 4. 

 

Figure 4 – The ATSB Investigation Analysis Model (adapted from ATSB (2008)) 

The model represents the operation of a system via five levels of ‘safety factors’, 

where a safety factor is an event or condition that increases safety risk (ATSB, 2008). 

The first three levels correspond to ‘safety indicators’, i.e. safety factors dealing with 

the individual or local aspects of an accident. The upper two levels address ‘safety 

issues’, i.e. safety factors associated with organisational or systemic issues. 

The ATSB model was selected for use in this study for a number of reasons. Firstly, 

although modified, it is based on the SCM and therefore, according to various SAA 

researchers (see Section 1.1), can be classed as a sequential model. Secondly, the 

model has been used in transport accident investigations by the ATSB since 2002 

(ATSB, 2008). As such, the model has been empirically validated by a governmental 



investigation agency, which is highly regarded within the accident investigation 

community (ATSB, 2008). Therefore, the ATSB model represents a ‘tried and tested’ 

analysis technique used by investigation experts. Furthermore, a publically available 

description of the model and its use is provided by the ATSB (2008), thereby 

enhancing the reliability of its usage in this study. 

2.2. AcciMap 

The AcciMap, developed by Rasmussen (1997) and Svedung and Rasmussen (2002) 

was designed to take a control theory-based systems thinking approach to accident 

analysis. Consequently, accidents are considered to result from the loss of control 

over potentially harmful physical processes. According to Rasmussen (1997), every 

organisational level in a system affects the control of these hazards and a vertically 

integrated view of system behaviour is required. The dynamic nature of socio-

technical systems means that an accident is likely to be prepared over time by the 

normal efforts of many individuals throughout a system and that a normal variation in 

somebody’s behaviour can ‘release’ an accident (Rasmussen, 1997). The AcciMap 

was developed as a means of analysing the series of interacting events and 

decision-making processes which occurred throughout a socio-technical system and 

resulted in a loss of control (Branford et al., 2009). To do so, it combines the classic 

cause-consequence chart and the Risk Management Framework (Rasmussen, 

1997), which depicts the control of socio-technical systems over six organisational 

levels (see Fig. 5). 



 

Figure 5 – AcciMap diagram format (adapted from Svedung and Rasmussen (2002)) 

Although the AcciMap forms part of a broader risk management process, it has been 

used independently of this approach to analyse individual accidents (e.g. Salmon et 

al., 2012; Stanton et al., 2012) (Branford et al., 2009). The method was selected for 

use in this study for this reason and because: it is one of the most popular SAA 

methods; it has been used previously to analyse rail accidents (e.g. Branford et al., 

2009; Salmon et al., 2013); guidance material is available which would improve the 

reliability of the analysis (see Svedung and Rasmussen, 2002; Underwood and 

Waterson, 2012). 

2.3. STAMP 

The STAMP model, based on systems and control theory, focuses on safety as a 

control problem (as per the AcciMap approach). Emergent system properties (e.g. 

safety) are controlled by imposing constraints on the behaviour and interaction of 

system components (Leveson, 2012). Three basic constructs are used by STAMP to 



determine why control was ineffective and resulted in an accident: safety constraints, 

hierarchical safety control structures and process models. 

Safety constraints can be passive, which maintain safety by their presence (e.g. a 

physical barrier), or active, which require some action to provide protection (i.e. 

detection, measurement, diagnosis or response to a hazard). Accidents occur only 

when system safety constraints are not enforced. Hierarchical safety control 

structures are used by STAMP to describe the composition of systems (see Fig. 6). 

 

Figure 6 – General socio-technical system hierarchical safety control structure 

(adapted from Leveson (2011)) 

Each hierarchical level of a system imposes constraints on and controls the 

behaviour of the level beneath it. Control (two-way communication) processes 

operate between system levels to enforce the safety constraints. Process models are 

incorporated into STAMP as any human or automated controller requires a model of 



the process they are responsible for controlling, if they are to control it effectively 

(Leveson, 2012).The STAMP model was selected for comparison with the ATSB 

model and AcciMap for several reasons. It is the most frequently cited SAA model 

and has been used previously to analyse rail accidents and incidents (e.g. Ouyang et 

al., 2010; Song et al., 2012) (Underwood and Waterson, 2012). In addition, detailed 

guidance on the application of STAMP is provided by Leveson (2012) and, therefore, 

would enhance the reliability of the analysis. 

3. The Grayrigg accident 

3.1. Case study selection 

The train derailment at Grayrigg was selected as the analysis case study for various 

reasons. Firstly, the event represented a major accident on the UK rail network; a 

complex system with many stakeholders, including infrastructure controllers, train 

and freight operating companies and maintenance contractor organisations. 

Therefore, it was appropriate to utilise systems thinking concepts to analyse the 

event. Furthermore, the rail industry in the UK is currently expanding and creating an 

increased usage demand on the network and continued pressure to reduce costs 

(Office of Rail Regulation, 2013). With these conditions, it is clear that safety 

research within this industry is an on-going requirement. This is evidenced by the 

current rail-based research within and outside of the UK (e.g. Dadashi et al., 2013; 

Read et al., 2013; Salmon et al., 2013; Wilson, 2013). The accident garnered 

significant media coverage and resulted in Network Rail (the organisation that 

manages the rail infrastructure in the UK) receiving the largest fine imposed since 

the Office of Rail Regulation was established. As such, the derailment represents 

one of the highest profile accidents in UK rail history. Finally, the event resulted in a 

full investigation by the Rail Accident Investigation Branch (RAIB), the independent 

railway accident investigation organisation for the UK. The RAIB investigated a wide 

range of factors across various parts of the rail network system, e.g. the activities of 

frontline staff, management teams and regulatory inspectors. Therefore, the scope of 

the investigation and the comprehensiveness of the final report (RAIB, 2011) 

provided a suitable data source for a systemic analysis. 

  



3.2. Description of the accident 

On 23 February 2007 an express passenger train derailed as it entered the points 

(known as Lambrigg 2B points) located near Grayrigg in Cumbria, UK (RAIB, 2011). 

Points are an assembly of two movable (switch) rails and two fixed (stock) rails 

which are used to divert vehicles from one track to another (see Fig. 7). For a 

detailed description of points components and operation see RAIB (2011, p.210–

214). 

 

Figure 7 – Layout of points showing switch and stock rails and stretcher bars (from 

RAIB (2011)) 



All nine vehicles of the train derailed, eight of which subsequently fell down an 

embankment with five turning onto their sides (see Fig. 8). The train was carrying 

four crew and at least 105 passengers at the time of the accident. One passenger 

was fatally injured; 28 passengers, the train driver and one other crew member 

received serious injuries and 58 passengers received minor injuries (RAIB, 2011). 

 

Figure 8 – Aerial view of the derailed train (numbers represent train vehicle number) 

(from RAIB (2011)) 

The subsequent investigation determined that the train derailed as it passed over 2B 

points, which were in an unsafe state that allowed the left-hand switch rail to move 

towards the left-hand stock rail. The left-hand wheels of the leading vehicle were 

subsequently forced into the reducing width between the switch rails and derailed by 

climbing over the rails. All the other vehicles derailed as a consequence. The RAIB 

concluded that various operational and environmental aspects (e.g. the actions of 

the driver, the condition of the train, the weather) had no bearing on the accident 

(RAIB, 2011, p.14). Therefore, the derailment was a maintenance related accident. 

The unsafe state of the points was caused by successive failures of all three 

permanent way stretcher bar (PWSB) assemblies and the lock stretcher bar 

assembly. Three factors were deemed to have combined to create this situation: (1) 

the failure of the joint connecting the third PWSB to the right-hand switch rail which, 

together with (2) excessive residual switch opening (the gap between the rail heads 

of adjacent switch and stock rails on the closed side of points), caused the left-hand 

switch rail to be struck by passing train wheels. The resultant large cyclic forces 

caused rapid deterioration and the eventual failure of the remaining stretcher bars 



and their fasteners. (3) An inspection, scheduled for18 February 2007, which should 

have detected the degradation, was not performed. 

The omitted inspection was due to be undertaken by the local track section manager 

(TSM), who had volunteered to perform a routine visual check of the track. The RAIB 

concluded that restricted track access (resulting from a change in access policies in 

2005 and the reduced daylight hours in winter) and limited staff availability 

contributed to the decision of the TSM to combine his own supervisory inspection 

with a basic visual inspection. The TSM, however, forgot to complete the points 

inspection. This omission was not identified in the maintenance review meeting on 

the following day and the maintenance records were incorrectly updated to show that 

the inspection had been completed. These events, which reduced the likelihood of 

any corrective action being taken, were also considered by the RAIB to have 

contributed to the accident. 

A number of ‘underlying’ factors (which the RAIB associates with the overall 

management systems, organisational arrangements or the regulatory structure) were 

considered to have influenced the derailment. Examples include: (1) an incomplete 

understanding within Network Rail of points maintenance requirements, which 

resulted in an absence of clear, properly briefed standard for maintaining loose 

PWSB fasteners and residual switch opening; (2) the performance measurement of 

points was not based on a thorough understanding of risk and control measures; (3) 

underestimating the risks associated with the design of points with non-adjustable 

stretcher bars (as per the points involved in the derailment), which adversely affected 

inspection regimes, reporting of faults and maintenance activity. 

4. Methods 

4.1. Accident analysis process 

The ATSB model and STAMP analyses of the Grayrigg derailment was performed by 

the first researcher (Underwood), as per the processes described in Sections 4.1.1 

and 4.1.3. The AcciMap analysis of the accident was performed by the second 

researcher (Waterson) in accordance with the process described in Section 4.1.2. 

Both individuals (human factors researchers) have experience of applying accident 

analysis methods in various domains (e.g. rail, aerospace, healthcare) and used the 

RAIB (2011) investigation report as the data source for the analysis activities. The 



report was imported into NVivo 9 and the text contained within the document, 

considered relevant to each analysis, was qualitatively coded (see Sections 4.1.1–

4.1.3 for further details). This coded information was subsequently used to create the 

various analysis diagrams to ensure a direct link between the text in the report and 

the analysis outputs. Upon completion of the analyses, the researchers exchanged 

and reviewed the outputs and any discrepancies or disagreements were resolved 

through discussion until consensus was reached, as per the approach taken by 

Salmon et al. (2012). As the researchers were familiar with all three methods and 

their application processes prior to commencing the study, it was judged that the 

cross-checking process was sufficiently robust. Only pre-derailment events were 

analysed due to study resource limitations. 

4.1.1. ATSB model analysis process 

The guidance provided by the ATSB (2008) on the use of the ATSB model refers to 

its application within live investigations. Therefore, no specific guidance was 

available with regards to its use for the analysis of completed investigations. The 

analysis process consisted of applying the ATSB safety factor definitions, as a 

coding framework, to the information in the RAIB (2011) report (see ATSB, 2008, 

p.38–42). When a given piece of information was identified as a safety factor the text 

was coded with NVivo 9 and subsequently captioned, colour-coded and mapped on 

to the relevant section of an analysis chart, as per the format used by the ATSB (see 

ATSB, 2008, p.46). Relationships between the safety factors were represented by 

arrows to indicate the direction of influence, as per the ATSB (2008) approach. 

4.1.2. AcciMap analysis process 

AcciMap analyses have been conducted in various formats since the method’s 

creation. This prompted Branford et al. (2009) to develop a standardised application 

process for the method, aimed at improving the consistency of its usage. However, it 

was judged that this process was too far removed from the original format introduced 

by Rasmussen (1997), which has been used in more contemporary research (e.g. 

Stanton et al., 2012; Salmon et al., 2013).Therefore the guidance offered by 

Svedung and Rasmussen (2002)was selected for use in this study. Information 

within the investigation report was coded with NVivo if it described: (1) the 

topography of the accident scene; (2) a decision/action taken by an actor in the 



system; (3) a direct/indirect consequence; (4) a precondition requiring no further 

evaluation. This information was subsequently captioned, mapped on to the relevant 

sections of an AcciMap diagram and linked by arrows to represent the influence a 

given factor had on another, as per the format in Fig. 5. 

4.1.3. STAMP analysis process 

The process of applying STAMP to analyse an accident consists of nine stages and 

is defined by Leveson (2012, p.349) as the CAST (Causal Analysis based on 

STAMP) approach. The stages of CAST are summarised below: 

1. Identify the system(s) and hazard(s) involved in the loss. 

2. Identify the system safety constraints and system requirements associated with 

the hazard. 

3. Document the control structure in place to control the hazard and enforce the 

safety constraints. 

4. Determine the proximal events leading to the loss. 

5. Analyse the loss at the physical system level. 

6. Analyse the higher levels of the control structure. 

7. Examine the overall coordination and communication contributors to the loss. 

8. Determine the dynamics and changes to the system and its control structure over 

time. 

9. Generate recommendations. 

The first eight steps of the CAST process were completed in order, although this was 

not a necessity, as noted by Leveson (2012, p.350). The final stage, i.e. generating 

recommendations, was not performed as this was outside the scope of the study. 

The information required for each stage of CAST was used as a coding framework to 

facilitate the identification of relevant data within the RAIB (2011) report. For 

example, once a higher-system level component had been identified, text was coded 

if it described the component’s: safety-related responsibilities; unsafe decisions and 

control actions; the reasons for the unsafe decisions/actions; relevant contextual 

information (as per stage 6 of the CAST process). 



4.2. Analysis model evaluation 

The analysis techniques were evaluated against two topics of interest: (1) coverage 

of systems theory concepts and (2) usage characteristics. When considering 

whether a model actually applies systems thinking, it is necessary to operationalise 

the key concepts of systems theory (Read et al., 2013). Furthermore, using analysis 

techniques underpinned by systems theory does not necessarily mean that the 

systems thinking approach can be applied successfully, i.e. other characteristics of 

the methods which affect their usage must be considered. These systems theory 

concepts and usage characteristics are described in Sections 4.2.1 and 4.2.2 and 

are graphically summarised in Fig. 9. 

 

Figure 9 – Evaluation framework 

This diagram represents the evaluation framework used to assess the outputs and 

usage of the models. 

The outputs and usage of the models were assessed by both analysts in relation to 

the components of the evaluation framework in order to facilitate a systematic 

comparison. As per the accident analysis, any disagreements in the evaluations 

were resolved through discussion until consensus was reached. 



4.2.1. The components of system thinking within accident analysis 

Systems thinking has been advocated in accident analysis research at least since 

the 1980s (e.g. Leplat, 1984). Defining the core components of the systems thinking 

approach, however, is difficult task as there appears to be no firm agreement 

amongst researchers (Waterson, 2009). Nevertheless, some broad interrelated 

themes can be identified within the literature. 

4.2.1.1. System structure 

Systems are generally based on a hierarchy of subsystems which are formed in 

order to perform specific functions (Skyttner, 2005). In order to understand a system, 

it is necessary to examine each relevant hierarchical level and its relationship with 

adjacent levels. Moving up the hierarchy provides a deeper understanding of a 

system’s goals, whereas examining lower levels reveals how a system functions to 

meet those objectives (Vicente, 1999). Furthermore, determining the boundary of a 

system, i.e. distinguishing between what is part of the system and what is part of the 

environment, is an important aspect of specifying its hierarchy (Jönsson, 2007, p.41). 

4.2.1.2. System component relationships 

The interaction of system components results in emergent behaviour, e.g. safety 

(Leveson, 2012). Therefore, socio-technical systems will display characteristics and 

operate in ways not expected or planned for by their designers (Wilson, 2013). Such 

behaviour cannot be explained by studying system components in isolation: the 

whole is greater than the sum of its parts. A system must be studied holistically, i.e. 

all components, human and technical, need to be considered as well as the 

relationships between them (Read et al., 2013). 

4.2.1.3. System behaviour 

Inputs are converted into outputs, via transformation processes, in order to achieve 

system goals, e.g. safe operations. System components must be controlled via 

feedback mechanisms when deviations in behaviour occur if system goals are to be 

reached and safety maintained (Skyttner, 2005). Dynamic system behaviour means 

that a goal can be achieved from a variety of initial starting conditions (equifinality). 

Alternatively, systems can produce a range of outputs from an initial starting point 

(multifinality). This dynamic behaviour also means that systems can adapt over time 

to changing conditions and may migrate towards a state of increased risk and drift 



into failure (Dekker, 2011; Leveson, 2011). Furthermore, system components do not 

operate in a vacuum and their performance must be placed within context, i.e. how 

local goals, resources and environmental conditions influenced their behaviour. 

4.2.2. Model usage characteristics 

Establishing whether a given analysis technique is theoretically underpinned by 

systems thinking concepts is only one factor that will determine if an individual can 

effectively perform SAA. A number of researchers have identified a range of other 

issues which can hinder the usage of analysis methods (e.g. Benner, 1985; Stanton 

et al., 2012; Underwood and Waterson, 2013). 

4.2.2.1. Data requirements 

The output of any analysis is defined, in part, by the ability of a method to analyse 

and incorporate a given piece of evidence (e.g. photographic, documentary, witness 

testimony, etc.). Furthermore, the information that a method requires to produce a 

thorough analysis (e.g. data related to technical failures, human factors, 

organisational practices, etc.) can impact on the evidence collection process in an 

investigation. The importance of how a method processes information and its data 

requirements has been recognised in previous method evaluation studies (e.g. 

Herrera and Woltjer, 2010; Stanton et al., 2012; Waterson and Jenkins, 2010). 

 

4.2.2.2. Validity and reliability 

The closely related issues of validity and reliability are important factors in 

successfully applying any type of analysis method. Previous studies have 

acknowledged this significance by including validity and reliability (and topics related 

to them) as method evaluation criteria (e.g. Benner, 1985; Stanton et al., 2012; 

Wagenaar and van der Schrier, 1997). The need for valid and reliable methods was 

also identified as a requirement of practitioners, who are engaged in accident 

analysis, by Underwood and Waterson (2013). 

4.2.2.3. Usability 

The usability of an SAA technique will clearly affect whether an analysis is performed 

effectively and efficiently and, therefore, it must be easy to understand and apply. 

The availability and clarity of guidance material as well as the training and resources 



required to use SAA methods have all been cited as factors which can influence their 

usability (e.g. Branford et al., 2009; Johansson and Lindgren, 2008; Stanton et al., 

2012). 

4.2.2.4. Graphical representation of the accident 

The graphical output of a method also affects the ability of an individual (or team of 

investigators) to successfully perform an analysis. Graphically representing an 

accident has been considered to be useful by both researchers (e.g. Sklet, 2004; 

Svedung and Rasmussen, 2002) and practitioners (e.g. ATSB, 2008) for a number of 

reasons. For example, it can be easier to see the relationships between system 

components and identify gaps/weaknesses in the analysis. Charting an accident can 

also be useful for communicating the findings of complex investigations (ATSB, 

2008). 

5. Findings 

5.1. Applying the analysis models to the Grayrigg accident 

5.1.1. ATSB model analysis output 

The analysis chart produced by the ATSB model analysis is presented in Fig. 10. 
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Figure 10 – Chart of the safety factors associated with the Grayrigg accident (dashed 

lines indicate a possible but not probable factor/relationship) 



The derailment of the wheels of the leading vehicle was the single occurrence event 

attributed to the accident. However, various technical issues were included in the 

analysis chart to represent the gradual deterioration and failure of the points which 

led to the derailment. These technical problems were also incorporated to more 

clearly describe the multiple interactions between them and the individual actions 

and local conditions associated with the accident. The chart shows that there were 

few, albeit important, individual actions/inactions that contributed to the accident, 

such as the missed inspection of the points by the TSM. Conversely, a larger 

number of local conditions and inadequate risk controls were identified as factors 

which negatively affected the work of the maintenance staff and condition of the 

points. However, as showman Fig. 10, some of the local conditions resulted from 

technical problems and individual actions. 

Few organisational influences were classified during the analysis. However, these 

factors were shown to have a wide ranging adverse influence on numerous risk 

controls. In particular, Network Rail’s approach to maintenance management was 

identified as a significant influence on the ineffectiveness of many risk controls. The 

analysis chart shows six levels of safety factors to account for the role that regulatory 

oversight played in the accident. Although this sixth ‘regulatory’ level goes beyond 

the official format of the ATSB model (see Fig. 4), charting the influence of the 

regulators has occurred in previous ATSB investigations (ATSB, 2008, p.46). 

Therefore, given that the RAIB investigated the actions of the regulator, it was 

deemed acceptable to incorporate the additional safety factor level. However, as 

indicated on the analysis chart, the actions of the regulator were not considered to 

have a significant impact on Network Rail’s maintenance management. 

5.1.2. AcciMap analysis output 

The AcciMap diagram resulting from the analysis is presented in Fig. 11. 



 

Figure 11 – AcciMap diagram of the Grayrigg accident 

Similarly to the ATSB model analysis, the train passing over the failed 2B points and 

derailing were considered to be the critical event and its direct consequence 

respectively. Only two ‘equipment and surroundings’ related issues were identified 



during the analysis. However, they both influenced two key factors in the accident, 

i.e. the missed inspection by the TSM and the movement of left-hand switch rail, 

which contributed to the points being impassable. Five human actor activities were 

included in Level 5 of the AcciMap diagram and focused on two important activities: 

(1) the reuse of threaded fasteners and (2) the undetected physical faults. These 

actor activities either directly or indirectly contributed to the physical processes 

associated with the points’ degradation. For example, the reuse of threaded 

fasteners directly contributed to the inability of the points to withstand the physical 

loads from rail traffic. Furthermore, the missed TSM inspection indirectly contributed 

to the failure of the points, as an opportunity to identify the required maintenance 

was missed. A relatively higher number of physical processes, in comparison with 

actor activities, were incorporated into the analysis diagram to describe the gradual 

deterioration and failure of the points. A number of influential decisions taken at 

Level 4 of the system, i.e. technical and operational management, were identified. 

These decisions had direct consequences which subsequently affected the physical 

processes and actor activities linked with the derailment, e.g. local track access 

policies restricted the time available to conduct inspections. Conversely, the risk 

assessment and maintenance management decisions attributed to the higher-level 

company management influenced numerous direct and indirect consequences. 

These consequences, in turn, either directly or indirectly influenced activities at the 

lower system levels, as shown on the analysis chart. The AcciMap diagram did not 

include Level 1 of the system, i.e. national government, as no information was 

available in the report to populate this section of the chart. Adapted from RAIB (2011, 

p.123–124).  

5.1.3. STAMP analysis output 

The first stage of the STAMP analysis, as described in Section 4.1.3, required the 

identification of the system and hazard involved in the accident. These were defined 

as the ‘UK railway’ and ‘train derailment due to failed points’ respectively. Two 

system safety constraints were subsequently associated with controlling the hazard: 

(1) the physical points components must operate within design limits; (2) 

maintenance and repair activities must correct any points defects. The hierarchical 

control structure, as it existed at the time of the accident, consisted of multiple 



organisational functions which had a responsibility for ensuring safety on the railway 

(see Fig. 12). 

 

Figure 12 – The control structure in place at the time of the Grayrigg accident 



Defining the control structure involves describing the roles and responsibilities of 

each component in the system, as well as the controls and feedback available to 

them. However, for the sake of clarity and because some of this information was not 

available in the RAIB (2011) report, this description has not been included in Fig. 12.  

The proximate events leading up to the accident are described, in terms of the 

condition of the points and the maintenance activities, in Table 1. 

Date Event 

1st December 2006 
Supervisor’s inspection identified loose check rail bolts 
on crossing of 2B points 

6th-7th January 
2007 

Overnight repair of defects identified on 1st December 
2006 

7th January 2007 
Basic visual inspection identifies third PWSB right-hand 
bracket joint fasteners had failed and were renewed 

8th January - 12th 
February 2007 

Third PWSB right-hand bracket failed again, third PWSB 
subsequently fractures 

14th January 2007 Routine patrol reported no defects 
21st January 2007 Routine patrol reported no defects 

25th January 2007 
Supervisor's inspection identified alignment defects with 
rectification required within six months 

28th January 2007 Routine basic visual inspection reported no defects 
4th February 2007 Routine basic visual inspection reported no defects 
11th February 2007 Routine basic visual inspection reported no defects 
11th-21st February 
2007 

Second PWSB joints failed and PWSB missing from 
points 

18th February 2007 Missed basic visual inspection 
21st-23rd February 
2007 

First PWSB and lock stretcher bar failed 

23rd February 2007 Derailment 

Table 1 – The proximal events leading to the Grayrigg accident (adapted from RAIB 

(2011 p. 123 -124)) (PWSB = permanent way stretcher bar) 

These events, e.g. the missed inspection on 18 February 2007, acted as reference 

points to begin the analysis of the derailment at the physical system level and the 

lower levels of the control structure. The subsequent analysis of the system 

components, considered to have had the most influence on the accident, is 

presented in Figs. 13 and 14. 



 

Figure 13 – STAMP analysis of lower-level system components 



 

Figure 14 – STAMP analysis of higher-level system components 

Many of the actions and decisions taken by the higher levels of the control structure 

were summarised by the RAIB (2011) as Network Rail’s management arrangements. 

Therefore, these higher level components were amalgamated into a ‘Network Rail 

management’ component in order to facilitate the analysis. A number of longstanding 

and proximal issues were identified whilst assessing the overall coordination and 



communication throughout the system. Respective examples include: no training 

was provided to the maintenance teams concerning the required setting for residual 

switch opening; the points failure was undetectable by the signalling system. 

Network Rail experienced large changes to its control structure since it took over the 

running of the rail infrastructure in 2002. However, it was not possible to identify 

whether these changes resulted in the system migrating to a higher state of risk and 

increased the chance of an accident. 

5.2. Comparing the analysis models 

5.2.1. Systems thinking approach 

5.2.1.1. System structure 

All three techniques require the analysis of the whole system hierarchy which was 

responsible for preventing the accident, up to and including the regulatory level. 

However, the ATSB model and AcciMap require the description of events, actions 

and conditions, rather than system components. Therefore, their analysis charts 

provide little information about the structure of the system in question, or its 

boundary. Conversely, the STAMP analysis requires the documentation of the 

system control structure and provides a clear visual description of the system 

hierarchy. The boundary of the system (and those of its sub-systems) is defined by 

the boundary of responsibility for a given hazard and safety constraint. For example, 

the condition of the points was the responsibility of Network Rail, whereas the 

condition of the train involved in the accident was the responsibility of a different 

maintenance organisation (Alstom Transport West Coast Traincare Ltd.). 

5.2.1.2. System component relationships 

Each model requires the analyst to take a holistic view of the system, i.e. examining 

the interaction between the various elements of the system, albeit in different ways. 

The ATSB model and AcciMap analysis charts, rather than describing the system 

components and their relationships, show the outputs of these relationships and how 

they reduced system safety. By documenting the control structure, the STAMP 

analysis process shows the relationships between the various system components. 

The subsequent stages of the analysis then examine how the dysfunctional 

interactions between a given component and the rest of the system contributed to its 

unsafe actions and/or decisions (see Figs. 13 and 14). 



5.2.1.3. System behaviour 

The ATSB model and AcciMap analysis charts describe (via the caption boxes) key 

input and output conditions of system components. The transformation processes, 

which convert the inputs to outputs, are indicated by arrows, although details of the 

processes are not provided. In keeping with its control theoretic underpinnings, 

STAMP describes system inputs as the information available to a given component 

and the control instructions it receives. Component outputs, e.g. unsafe control 

actions, are described as well as the reasons why they happened, i.e. why the 

associated transformation processes failed. 

Neither the ATSB model nor AcciMap require the analyst to state the safety-related 

goals of the system. However, they are implicitly addressed, as the principal goal of 

the system is clearly the avoidance of the main occurrence/critical event. STAMP, 

however, explicitly defines the system- and component-level safety-related goals 

during the various stages of the analysis. 

The adequacy and impact of the controls and feedback within the system is 

addressed by the ATSB model via the analysis of the ‘risk controls’ created by the 

organisation. The same is true of the AcciMap method, although this information is 

presented in the decisions and/or consequences caption boxes across the diagram. 

However, the influence of missing/inadequate feedback on management activities 

and decisions is not included in either analysis chart. Examining the control and 

feedback in a system is a core requirement of the STAMP analysis process. As such, 

this is clearly documented in the system control structure and the detailed analysis of 

each component. 

The ATSB model prompts the investigation of how the system’s behaviour changed 

over time. This is achieved by examining and charting the proximal events and 

conditions that occurred locally to the accident site, as well as the organisational and 

regulatory factors that were created further back in the system’s history. This 

approach is also taken by the AcciMap method. The requirement of STAMP to 

determine the proximal and historic events leading to an accident ensures that the 

changes in system behaviour are analysed. 

The context in which actions and decisions were taken by the various frontline 

system components are explicitly incorporated into the ATSB model via the 



description of the local conditions. Although the context in which organisational and 

regulatory issues were created is not present in the analysis chart, the ATSB 

suggests that this contextual information can be a useful addition to an analysis 

(ATSB, 2008, p.44). By describing pre-conditions and the direct/indirect 

consequences created throughout the system, the AcciMap depicts the context in 

which decisions and activities took place at the various system levels. The local 

context in which system component behaviour took place is explicitly addressed by 

STAMP via the detailed analysis of the control structure (see Figs. 13 and 14). 

Given that accident investigation involves determining why a particular set of events 

and conditions contributed to an accident, the ability of the models to represent 

equifinality and multifinality is a moot point. A summary of the systems thinking 

approach comparison is provided in Table 2. 

  



Systems thinking approach comparison 
Model 
characteristic 

ATSB model Accimap STAMP 

System 
structure 

Requires analysis of the whole system. 
Describes system as combination of 
events, actions and conditions. Little 
information about system structure or 
boundary provided 

Requires analysis 
of the whole 
system. System 
structure and 
boundary defined 
by hierarchy of 
components 
responsible for 
controlling safety 
constraints. System 
structure 
graphically 
described. 

System 
component 
relationships 

Takes a holistic view of the system. 
Describes the safety-related outputs of 
relationships throughout the system and 
their affect on other relationships 

Takes a holistic 
view of the system. 
Describes 
component 
relationships 
throughout the 
system and their 
impact on safety 

System 
behaviour 

Incorporates all 
aspects of system 
behaviour, although 
some are only 
partially described 
(e.g. feedback 
availability and 
context of 
behaviour at the 
organisational 
level). Short- and 
long-term system 
history is examined. 

Incorporates all 
aspects of system 
behaviour, although 
some are only 
partially described 
(e.g. systems goals 
and feedback 
availability at the 
organisational 
level). Short- and 
long-term system 
history is examined. 

Incorporates all 
aspects of system 
behaviour, which 
are described in 
the analysis output. 
Short- and long-
term system history 
is examined.  

Table 2 – Systems thinking approach comparison 

5.2.2. Usage characteristics 

5.2.2.1. Data requirements 

Due to their holistic approach, all of the models require various types of data to be 

collected from all of the relevant parts of the socio-technical system and its 

environment. In practice, accident investigators will obtain this evidence in a variety 

of formats, such as photographic, documentary and witness testimony. A range of 

preliminary analysis activities is required to convert this data into a format suitable for 



the subsequent analyses (ATSB, 2008, p.49). This involves the use of techniques to 

interpret and organise data, e.g. employing photogrammetry to measure the 

distribution of a wreckage trail from an accident site photograph. The ATSB model, 

AcciMap and STAMP analyses are, therefore, summaries of the findings produced 

by these more specific analytical processes. Consequently, the type of information 

that either model can analyse is not restricted by the original format of that data. 

More data is, however, explicitly required by STAMP, e.g. details on the system 

structure and components. 

5.2.2.2. Validity 

Capturing all of the complexity in a large socio-technical system is seemingly beyond 

the capability of an individual analysis model and the resource constraints of 

accident investigation. Therefore, proving the internal validity of the three analysis 

techniques is not possible. In fact, the ATSB model does not attempt to describe all 

of the complexities involved in accident causation. Rather it favours providing a 

general framework that helps guide data collection and analysis during an 

investigation (ATSB, 2008, p.36). Conversely, AcciMap purposefully sets out to 

analyse the dynamic behaviour that exists within a system and how it contributes to 

accidents. Likewise, STAMP deliberately addresses how complexity within a system 

influences accident events. Regardless of these different approaches, each model 

was devised specifically for the purposes of accident analysis, is based on a 

recognised theory of accident causation and has been used across multiple domains, 

which suggests an acceptable degree of face and external validity exists. 

5.2.2.3. Reliability 

The qualitative nature of the models negatively impacts on their reliability. None of 

the techniques provide a detailed taxonomy of contributory factors, which further 

reduces their reliability and the chance to perform accident trend analysis. However, 

this also means the analyst has more freedom in how they classify such factors. It is 

understood that the ATSB use a taxonomy in their accident database, however, 

details about its content are not publically available (see ATSB, 2008, p.9). The 

reliability of the ATSB model and STAMP is, however, improved by the detailed 

descriptions of safety factors and accident causes and the model usage guidance 

provided by the ATSB (2008) and Leveson (2012, p.92–100). Therefore, both 



models are considered to have moderate reliability. The AcciMap guidance material 

(e.g. Svedung and Rasmussen, 2002) provides little support in comparison, albeit 

that it slightly improves the chance of performing a reliable analysis. Therefore, the 

method was considered to have low reliability. 

5.2.2.4. Usability 

Assessing how easy the analysis tools are to understand and apply clearly involves 

the subjective opinion of the user, an issue which is discussed in Section 6. However, 

a number of observations regarding the availability and clarity of the guidance 

material which supports the techniques can be made. 

The ATSB (2008) provide a substantial amount of information regarding the 

theoretical aspects of their model and how it can guide the collection and analysis of 

data in an investigation. Structured approaches for identifying potential safety factors 

and testing their validity are also given. The usage guidance provided for STAMP 

(Leveson, 2012) is also considerable and describes systems theory, how it is applied 

by STAMP and how to use STAMP to analyse accidents. Therefore, the analyst is 

provided with a body of information that can facilitate a more effective and efficient 

analysis. However, the ATSB model and STAMP guidance contains substantial 

amount of jargon, such as ‘safety factor’ and ‘safety constraint’, and the analyst is 

required to read a considerable amount of information to gain a full understanding of 

how to apply the models. The guidance available for AcciMap also provides detailed 

description about the conceptual aspects and purpose of the method, i.e. analysis of 

a system’s dynamic behaviour and the variable performance of its components. 

However, little guidance is provided about how to apply the method and, although 

there is arguably less jargon associated with the technique, it seems likely that the 

analyst would have to carefully study the available information to fully understand 

how to apply AcciMap. Whether the analyst is taught how to use any of these models 

via self-learning or a training course, conveying such a large amount of information 

will clearly require more time and funding compared with simpler analysis techniques. 

The holistic approach taken by the models also means significant resources will be 

required for data collection. 

  



5.2.2.5. Graphical representation of the accident 

The graphical output of the ATSB model, based on the AcciMap method 

(Rasmussen, 1997), provides a description of the accident scenario on a single 

diagram (see Fig. 10). The use of colour coding helps to distinguish between the 

various different types of safety factors presented on the chart. The influence that a 

given safety factor has had on others is clearly indicated by arrows linking the 

caption boxes. Furthermore, by including the sequence of occurrence events leading 

up to the accident, the reader is provided with a sense of how the accident 

developed over time. In combination, these features provide a relatively simple 

means of understanding and communicating the findings of an analysis, albeit that 

knowledge of the ATSB model and its terminology is required to interpret the 

diagram. Similarly, AcciMap describes the accident scenario on one diagram (see 

Fig. 11), provides information about the proximal sequence of events (via information 

contained in Level 5 of the analysis chart) and the relative influence of the identified 

actions, decisions and consequences etc. Given that there is comparatively little 

jargon associated with the method, the AcciMap chart is also relatively simple to 

understand. However, the lack of colour-coding utilised by Rasmussen (1997) and 

Svedung and Rasmussen (2002) (see Fig. 5) arguably increases the difficulty in 

reading an AcciMap analysis chart (additional colour-coding was implemented by the 

authors to ease the visual communication of the AcciMap findings).STAMP presents 

the findings of an analysis over several documents, some of which are mainly text 

based (e.g. Fig. 13), and does not lend itself to a simple graphical representation of 

an accident (Leveson, 2012, p.91). Therefore, graphical communication of the 

accident analysis findings is not performed as efficiently as the ATSB approach. A 

summary of the model usage characteristics comparison is provided in Table 3. 

  



Usage characteristic comparison 
Model 
characteristic 

ATSB model Accimap STAMP 

Data 
requirements 

Data required from all system levels.  Compatible with all forms of 
data. 

Validity 

Provides a general 
framework devised 
for accident 
analysis. 
Underpinned by a 
recognised 
accident causation 
theory. Used in 
multiple domains. 
Face and external 
validity provided. 

Specifically 
designed to 
analyse the 
dynamic behaviour 
of a system. 
Underpinned by a 
recognised 
accident causation 
theory. Used in 
multiple domains. 
Face and external 
validity provided. 

Specifically designed to 
analyse the complexity in 
a system. Underpinned by 
a recognised accident 
causation theory. Used in 
multiple domains. Face 
and external validity 
provided. 

Reliability 

Qualitative 
technique with no 
detailed (publically 
available) 
taxonomy of 
contributory 
factors. Safety 
factor definitions 
and analysis 
process guidance 
provided. Moderate 
reliability achieved. 

Qualitative 
technique with no 
detailed taxonomy 
of contributory 
factors. Little 
analysis process 
guidance provided. 
Low reliability 
achieved. 

Qualitative technique with 
no detailed taxonomy of 
contributory factors. 
Structured analysis 
process guidance and 
classification of accident 
causes provided. 
Moderate reliability 
achieved. 

Usability 

Substantial 
guidance provided 
about the model, 
its application and 
safety factor 
identification and 
testing. Resource 
intensive to learn 
and use. 

Substantial 
guidance provided 
about system 
behaviour and the 
purpose of 
Accimap.  Little 
application 
guidance provided.  
Resource intensive 
to learn and use. 

Substantial guidance 
provided about systems 
theory, its use in STAMP 
and the application of the 
model .  Resource 
intensive to learn and use. 

Graphical 
representation 
of the accident 

All (colour coded) 
safety factors, their 
relationships and 
proximal timeline 
included in one 
diagram. Effective 
visual 
communication of 
accident. 

All actions, 
decisions and 
consequences etc., 
their relationships 
and proximal 
timeline included in 
one diagram.  
Effective visual 
communication 
albeit lack of 
colour-coding 
reduces 
effectiveness. 

Findings presented over 
several documents.  Model 
does not lend itself to 
simple graphical 
representation. Ineffective 
visual communication of 
accident. 

Table 3 – Usage characteristic comparison 



6. Discussion 

6.1. Comparing the analysis models 

6.1.1. Systems thinking approach 

The ATSB model, AcciMap and STAMP all provide a systems thinking approach, i.e. 

they require the analysis of a system’s structure, the relationship of its components 

and its behaviour. However, there is a considerable difference between how the 

models achieve this. 

A number of the systems theory concepts are only implicitly and/or partially 

contained within the ATSB model. This is particularly true with respect to the 

description of the system structure and its boundary, the impact of 

missing/inadequate feedback and contextual factors on the actions and decisions 

made at the organisational level (see Section 5.2.1). Indeed, the ATSB (2008, p.47) 

suggest that the model does not fully explain the complex, dynamic nature of 

accident development. Therefore, strict adherence to the format of the ATSB model 

may result in an incomplete application of the systems thinking approach. However, 

although such usage may prevent investigators from exploring all of a system’s 

complexity, the model does not preclude this in anyway either (Ghirxi, 2010). If 

investigators understand and apply the systems theory concepts during an 

investigation then the ATSB model can fulfil its intended role as a framework for 

analysis activities and act as a gateway to SAA (see Section 2.1). 

Similarly to the ATSB model, AcciMap implicitly or partially describes the system 

structure, its boundary and the impact of missing/inadequate feedback. It does, 

however, provide a clearer representation of the context in which managerial 

decisions and activities took place. Nevertheless, a prescriptive application of the 

method may also result in an incomplete systemic accident analysis. Some of the 

system theory concepts implicitly covered by the ATSB model and AcciMap would 

naturally be addressed by investigators, such as identifying the components involved 

in an accident. For example, an ‘individual action’ cannot be examined until the 

person who performed that action is known. However, without explicit instructions to 

do so, some information may remain uncollected and/or undocumented, e.g. 

missing/inadequate feedback. In the case of AcciMap, this problem can be overcome 

by using the ActorMap and InfoFlowMap techniques that also form part of the risk 



management process suggested by Svedung and Rasmussen (2002, p.403). The 

ActorMap identifies the organisational bodies and individual actors involved in risk 

management whereas the InfoFlowMap graphically represents the communication 

between these decision makers. Whilst originally intended for use in risk 

management, these techniques could easily be utilised to provide information about 

the system components involved in an accident and any missing/inadequate 

communication. However, the use of additional techniques has usage implications, 

which are discussed in Section 6.1.2. 

STAMP more clearly embodies the core components of systems theory (see Table 

2). This is unsurprising, given that it was specifically designed to employ a systems 

thinking approach to accident analysis. Furthermore, the structured process for 

applying STAMP deliberately guides the analyst to consider these core components. 

By doing so, STAMP arguably provides a more effective means of applying the 

systems thinking approach. Therefore, when considering how much of the systems 

thinking approach could be applied during a live investigation, the difference 

between the models seems to be a small one. Instead, the more noticeable 

difference between the ATSB model, AcciMap and STAMP comes from how they 

guide investigators to apply the components of systems theory. The systems thinking 

approach comparison of the models is visually represented in Fig. 15. 

 

Figure 15 – Systems thinking approach comparison of the ATSB model, AcciMap 

and STAMP 

6.1.2. Usage characteristics 

As mentioned in Section 4.2.2, the ability of an individual to employ the systems 

thinking approach depends on the usage characteristics of their chosen method. 

When comparing the models in relation to these characteristics, it appears that the 



data requirements, validity and reliability of the ATSB model and STAMP are not 

significantly different (see Table 3). Therefore, it is arguable that these aspects of the 

techniques will not necessarily hinder the application of systems thinking relative to 

one another. Whilst similar in its data requirements and validity, the arguably lower 

reliability of AcciMap suggests that its application of the systems thinking approach 

may be more problematic. However, without formally testing the models, this 

evaluation is a subjective one.  

The usability of an analysis tool is affected not only by its features but also by the 

characteristics of its users (Thomas and Bevan,1996). Therefore, although aspects 

relating to the usability of the models seem to be similar, as mentioned in Section 

5.2.2.4, any judgement about a technique’s usability is a subjective one. This is 

evidenced by the conflicting opinions regarding the usability of AcciMap and STAMP 

contained within the research literature (see Underwood and Waterson, 2012). The 

most significant usability issue encountered by the authors of this paper related to 

the classification of evidence. In the case of the ATSB model analysis, some of the 

safety factors did not neatly fit into one of the levels of the model. Similarly with the 

STAMP analysis, it was sometimes hard to distinguish between the reason why 

unsafe decisions and control actions were made and the context they were made in. 

Furthermore, the lack of specificity in the investigation report, regarding which 

elements of the Network Rail management contributed to the accident, made it hard 

to determine which AcciMap system level to attribute various decision/actions and 

consequences to. The application time of STAMP in this study was approximately 

double that of the ATSB model and AcciMap. This was attributed to the greater 

number of steps required to complete the STAMP analysis and the associated need 

for more information about the system structure and its components. It is considered 

by the authors that, had the ActorMap and InfoFlowMap methods been employed to 

complement the AcciMap and produce a more thorough analysis, the application 

time would have been similar to that of STAMP. 

The clearest difference between the models, in terms of their usage characteristics, 

lies in their graphical outputs. The ATSB model and AcciMap analysis charts provide 

a relatively succinct summary of all of the safety factors which contributed to an 

accident. This similarity is not surprising, given that the ATSB model charting format 

is based on the AcciMap. However, the different features of the underlying models 



do produce notable variations in the graphical outputs of the techniques. For 

example, the authors believe that the ATSB model chart more clearly delineates the 

various events, activities and conditions that occurred at a local level. Conversely, 

incorporation of the Risk Management Framework (Rasmussen, 1997) format 

enables AcciMap to provide a more detailed description of the accident across the 

different organisational levels of the system. In the ATSB’s experience, the use of 

their charting format has helped investigators maintain awareness of their progress 

during an investigation and assists the explanation of complex occurrences to 

industry personnel (ATSB, 2008,p.45). It seems likely that AcciMap would provide 

the same benefits, particularly if colour-coding was used to improve the effectiveness 

of its visual communication (as per Fig. 11). In the authors ‘opinion, STAMP would 

also enable an awareness of an investigation’s progress to be maintained. However, 

given that STAMP does not lend itself to a simple graphical representation of an 

accident, its usefulness in communicating an investigation’s findings to a non-expert 

audience may be limited (Leveson, 2012, p.91). This problem may also exist if 

AcciMap were to be complemented by the ActorMap and InfoFlowMap techniques. 

The differing usage characteristics of the models are described in Fig. 16. 

 

Figure 16 – Usage characteristic comparison of the ATSB model, AcciMap and 

STAMP 

6.2. Systems thinking and accident analysis: a trade-off 

Comparing the three techniques shows that there are a number of similarities 

between them as well as some important differences. Indeed, a comparison of any 

analysis methods would highlight various strengths and weaknesses. It is clear that 

no single method can meet the needs of every analyst, otherwise there would be far 



fewer available. So, how does an individual select the most appropriate tool for a 

systemic analysis, if free to do so? A trade-off must be made between multiple 

factors associated with the requirements of the analysis and those of the user. These 

trade-offs are considered within the context of research and practice to help explain 

how the different needs of the two communities can affect the method selection 

process. 

6.2.1. Analysis trade-offs 

In any form of analysis, a compromise must be made between the thoroughness of 

the analysis and the resources available to complete it. Performing a systemic 

analysis of an accident is, by definition, a thorough process and, therefore, resource 

intensive. However there are some differences between the how the practitioner and 

researcher communities make this trade-off. Practitioners can be placed under 

intense amounts of pressure (e.g. commercial and legal) to provide an explanation 

for an accident (Hayward and Lowe, 2004, p.378). There is also a need to conclude 

an analysis quickly so that feedback does not come too late to be of any use and 

resource expenditure, which can be significant, can be optimised (Hollnagel, 2009, 

p.70). Therefore, practitioners are likely to require a method which provides a 

thorough enough analysis to generate useful safety lessons whilst also ensuring 

efficient resource usage. The ATSB (2008, p.47) claims that their model provides 

such a balance. Practitioner feedback on SAA methods, such as STAMP, AcciMap 

and FRAM, has not been widely publicised and, therefore, it is not possible (at 

present) to determine whether they can also satisfy this efficiency-thoroughness 

trade-off. However, given the similarities to the ATSB model (see Section 5.2), it is 

arguable that AcciMap may well meet this requirement. 

Whilst researchers are also required to make such a trade-off, the scope of their 

accident analysis is generally quite different. For example, accident case study 

analyses tend to focus on whether a given method can provide additional safety 

insights (e.g. Hickey, 2012; Stanton et al., 2012) or if it is suitable for use in a given 

domain (e.g. Kazaras et al., 2012). Furthermore, there is significantly less external 

pressure on researchers to deliver a timely analysis. Therefore, there is a justifiable 

tendency to perform as thorough an analysis as possible. Furthermore, the cost of 

performing such research is small in comparison to an accident investigation so the 

need for efficiency is arguably less. It is possible that, due to the procedural 



requirement for an extensive analysis which incorporates all of the systems thinking 

concepts, STAMP may be a more attractive option for researchers conducting SAA. 

This is not to say that practitioners would find that STAMP does not provide an 

appropriate balance of thoroughness and resource requirements. However, in 

everyday practice the efficiency of a method often outweighs the drawback of 

reduced thoroughness (Hollnagel, 2009, p.132). AcciMap, as a standalone method, 

may be better suited for use by practitioners. However, if it is combined with the 

ActorMap and InfoFlowMap, the increased coverage of systems theory concepts 

may better meet the analysis needs of researchers. 

Practitioners and researchers arguably have some dissimilar requirements of their 

analysis method outputs too. For example, practitioners will often need to classify the 

various findings of their analyses via a taxonomy, in order to conduct trend analysis. 

Although accident trend analysis is a well-established part of safety research, there 

is not such a pressing need for researchers to conduct accident case study analyses 

with a taxonomic method. Therefore, it is possible that researchers are afforded a 

wider choice of methods, including the SAA methods, which are yet to have industry-

specific taxonomies developed for them. 

6.2.2. User trade-offs 

The choice of method can be influenced by a number of factors, such as its usability 

and how it suits the user’s way of thinking (Underwood and Waterson, 2013). For 

example, it may be easier for someone to view safety inadequacies in a system as 

holes in allayer of Swiss cheese and, therefore, increase the chance of them using 

an SCM-based method (despite the fact, for example, that the ineffective safety 

constraint controls described by STAMP represent the same thing). The influence 

that an individual’s understanding of accidents has on their method selection is 

obviously common to both researchers and practitioners. On this basis, it is not 

possible to say whether SCM-based methods would be favoured over SAA 

techniques by one or both communities. However, it should be noted that one of the 

reasons for the success of the SCM (and its related methods) is that it offers a 

simple, easily remembered description of accident causation (Reason et al., 2006, 

p.9). Therefore, it is likely that the SCM will continue to be a popular choice of 

analysis technique. 



The impact that a method’s usability (which is partly affected by its compatibility with 

a user) has on its selection by researchers and practitioners is slightly clearer to 

distinguish. As described in Section 6.2.1, researchers tend to focus on performing 

very thorough analyses of accidents and are subjected to less intense pressure to 

deliver a timely outcome. Therefore, it is possible that they are more able to sacrifice 

the usability of a method for the level of analysis detail it provides. Consequently, 

given its higher resource requirements and its less efficient communication, STAMP 

(or the combined AcciMap, ActorMap and InfoFlowMap techniques) may be better 

suited for use by researchers. 

Selecting a method with an established track record in accident investigation can 

also influence an individual’s choice of technique. Practitioners may be reluctant to 

try new methods in a live investigation, particularly if they are conducting accident 

investigation on a consultancy basis and need to establish credibility with their client 

(Underwood and Waterson, 2013, p.159). Therefore, the ATSB model may be a 

more suitable option for them. Conversely, the research community, when 

conducting academic studies, may be incentivised to use relatively untested and/or 

developmental techniques (such as the SAA methods) in order to advance the 

understanding of accidents. The different factors that affect the method selection of 

researchers and practitioners are represented in Fig. 17.  

 

Figure 17 – Method selection trade-off factors 

The choice of analysis method is subject to a complex trade-off of various factors 

and, therefore, it is hard to prescribe any one method to a given individual 

undertaking an analysis. However, it may be that, in general, the SAA methods may 

offer a more suitable systems thinking approach to accident analysis researchers 

until their suitability for use in live accident investigations can bedemonstrated. 



6.3. Performing SAA with the SCM 

The discussion, so far, has focused on the similarities and differences between the 

ATSB model, AcciMap and STAMP. What implications do these factors have on the 

application of the SCM and the systems thinking approach? The modifications made 

to the SCM by the ATSB when developing their model (see Section 2.1) 

supplemented the concepts embodied by the SCM, rather than eliminate them. 

Therefore, as the various components of systems theory can be applied with the 

ATSB model, this suggests that the underlying SCM can also achieve this and act as 

a gateway to SAA. Consequently, it seems that the SCM does provide a viable 

means of applying the systems thinking approach. 

This statement, however, comes with an important caveat. As described in Section 

1.2, the SCM is not a detailed accident analysis model, nor was it intended to be 

(Reason et al., 2006, p.21).Therefore, it should be applied via a method to ensure 

that the systems thinking approach is correctly utilised. However, this places an onus 

on the developers of SCM-based analysis methods to ensure that their techniques 

promote, rather than restrict, this application. This requirement is obviously true of 

any systemic analysis method. However, methods which explicitly incorporate the 

key concepts of systems theory, such as STAMP, go some way to resolving this 

problem. Therefore, it could be argued that such SAA techniques represent an 

evolution, rather than a revolution, in the application of the systems thinking 

approach. 

6.4. Analysis and study limitations 

An important question in this type of study is whether any of the analysis techniques 

highlighted systemic issues that were not addressed in the investigation report. The 

findings presented in Section 5.1 indicate that insufficient information was provided 

in the report to complete the AcciMap and STAMP analyses. In the case of AcciMap 

this manifested as an inability to analyse the influence of the governmental level of 

the system, whereas it was not possible to examine the long-term changes to the 

system overtime with STAMP. Although the ATSB model analysis was relatively 

complete in comparison, the next stage of analysis would naturally be to examine 

why the organisational and regulatory issues existed. 



These limitations raise the important issue of when to stop evidence collection in an 

investigation. To fulfil the data requirements of AcciMap, STAMP and (to a lesser 

degree) the ATSB model, the RAIB would have needed to expand the boundary of 

the system they were investigating and look further back into the system’s history. 

The collection of this extra information may not have occurred fora number of 

reasons, e.g.: the resource constraints of the investigation; the analysis processes 

used by the RAIB did not need the information; the required evidence was not 

available. Even if one of the three models used in the study had been adopted by the 

RAIB, it is possible that resource constraints and/or evidence availability would have 

prevented a complete analysis. Therefore, suggesting that a more extensive SAA 

would have yielded more in-depth results, whilst true, does not necessarily account 

for the practicalities of accident investigation. Furthermore, the RAIB (2011) report 

was written for a general audience and therefore, it is unclear what information was 

left out of the report for the sake of readability, personal or commercial sensitivity, etc. 

Due to the resource constraints of this study, only three analysis models were 

utilised. Therefore, comments about how the SCM and its related methods compare 

in general to the SAA techniques are not necessarily representative of all of the 

available methods. However, it is felt that the comparison of the methods and the 

trade-offs associated with their selection is indicative of the current state of accident 

analysis in research and practice. The resource limitations of the study also 

prevented the researchers from independently performing an analysis of the 

derailment with each model. Whilst this would have been the ideal approach to take, 

the authors consider that the analysis process employed in the study (see Section 

4.1) was sufficiently robust and provides accurate findings. 

7. Conclusions 

The systems thinking approach is arguably the dominant concept within accident 

analysis research. Its application, via systemic accident analysis (SAA), supposedly 

provides an improved description of accident causation, avoids the incorrect 

apportioning of blame and helps inform more effective safety recommendations. 

Debate exists within the research literature over whether the popular and widely 

adopted Swiss Cheese Model (SCM) provides an out-dated view of accident 

causation or remains a viable means of applying the systems thinking approach to 

accident analysis. This issue was examined by applying an SCM-based analysis 



model (the ATSB accident investigation model) and two SAA methods (AcciMap and 

STAMP) to the Grayrigg train derailment. A comparison of the analysis outputs and 

usage of the techniques showed that each model did apply the systems thinking 

approach, albeit in different ways. The ATSB model and AcciMap did not explicitly 

address all of the key systems theory concepts, but graphically presented their 

findings in a more succinct manner. Conversely, STAMP more clearly embodied the 

concepts of systems theory but did not provide a simple graphical representation of 

the accident. Given the differing nature of accident analysis within the practitioner 

and research communities, the trade-offs associated with method selection suggest 

that ATSB model provides a suitable option for practitioners. Conversely, STAMP 

may be better suited for use within research. With the option to use it as a 

standalone method or in combination with the ActorMap and InfoFlowMap 

techniques, the AcciMap method may more easily meet the needs of both parties. 

Finally, this study suggests that the SCM remains viable model for understanding 

accidents and that SAA methods offer an evolutionary progression, rather than 

complete transformation, in accident analysis. 
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