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Abstract 

Greenhouse gas emissions are receiving greater scrutiny in many countries due to international 

forces to reduce anthropogenic global climate change. Industry and their supply chains represent 

a major source of these anthropogenic emissions. This paper presents a tactical supply chain 

planning model that integrates economic and carbon emission objectives under a carbon tax 

policy scheme. A modified Cross-Entropy solution method is adopted to solve the proposed 

nonlinear supply chain planning model. Numerical experiments are completed utilizing data 

from an actual organization in Australia where a carbon tax is in operation. The analyses of the 

numerical results provide important organizational and policy insights on (1) the financial and 

emissions reduction impacts of a carbon tax at the tactical planning level, (2) the use of 

cost/emission tradeoff analysis for making informed decisions on investments, (3) the way to 

price carbon for maximum environmental returns per dollar increase in supply chain cost. 
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1. Introduction 

Environmental issues are forcing management to be proactive rather than reactive in a variety of 

inter- and intra-organizational functions. Most manufacturing organizations have traditionally 

focused on internal environmental measures that they must, due to regulatory mandates, abide by 

or risk being penalized. This reactionary focus has evolved to more proactive measures such as 

improving environmental performance by focusing on efficiency and cost reduction, e.g. waste 

minimization (Sarkis et al., 2011). These proactive measures provide positive and joint economic 

and environmental returns, the so-called ‘win-win’ opportunities. These more proactive and 

competitively oriented opportunities may still be relatively short-sighted due to an internal and 

direct cost focus only (Sarimveis et al., 2008). Organizations have increasingly recognized that 

even more substantial environmental and economic savings can be achieved outside the 

organizational boundaries and immediate facility (Fahimnia et al., 2013b; Varsei et al., 2014). In 

addition, tangible environmentally proactive goals have expanded to integrate other more 

intangible factors such as improving image.  

Research and practice in the area of green (environmentally sustainable) supply chain 

management (GSCM) has continued to grow (Brandenburg et al., 2014; Seuring et al., 2008; 

Tang and Zhou, 2012). In fact, recent practitioner-oriented research has shown that executives 

are more than ever concerned with greening their supply chains (SCs) (Lacy et al., 2010; 

Vlachos et al., 2007). Although GSCM is a critical organizational sustainability issue, it presents 

the largest gap between which organizational sustainability programs they wish to implement and 

what they are implementing. A major barrier causing this gap is convincing suppliers that 
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collaboration on greening issues is paramount to a healthy SC, implying an evidential need for 

long-term competitive and economic improvements that SC members will accrue. 

Much of the research in this field, especially in the general GSCM literature, rather than its 

specific elements such as reverse logistics or green purchasing, has focused on general 

descriptive and qualitative analysis through empirical evaluations and case studies (Seuring and 

Müller, 2008). Formal modeling research has not seen the same level of research and 

development (Seuring, 2013). Formal modeling of GSCMs can certainly help steward and 

convince SC participants of the benefits of greening and its effectiveness (Brandenburg, et al., 

2014). 

The GSCM formal modeling that does exist has tended to focus less on operational and tactical 

levels of analysis, and more so on decision-making at strategic levels (Fahimnia et al., 2013b). 

For example, some strategic issues such as selection of greener suppliers and partnering have 

seen major decision modeling effort in this field (Bai and Sarkis, 2010a, b). Broader SC issues, 

such as integrated internal production management, transportation and warehousing, have not 

seen significant research from a formal modeling perspective, although the growth of research in 

this area has increased (Brandenburg, et al., 2014).  This lack of GSCM research is especially 

true for optimization techniques relying on mathematical programming (Brandenburg et al., 

2014; Srivastava, 2007). Models that can incorporate a broader set of SC activities and functions 

are still relatively rare, when compared to other GSCM decision modeling efforts such as 

strategic supplier selection.  

Optimization models, because of the additional environmental dimensions, in addition to 

operational business concerns, tend to become complex. The focus on tactical issues, which 
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include a variety of internal and external relationships in their management, introduces additional 

complexities. Focusing on not only the modeling, but solution approaches for these efforts 

requires additional investigation since much of the research focuses on the formulation and not 

necessarily solution characteristics. This type of focus can provide greater promise for improving 

operational activities and planning from both economic and environmental perspectives, as well 

as the greater acceptance of GSCM initiatives. 

Noting that this gap exists in the literature, we introduce in this paper a comprehensive tactical 

SC planning model that seeks to focus on both business operational and environmental 

performance. Business performance is based on traditional cost factors related to production, 

inventory, and logistics costs. The environmental factors in this paper focus on one of the more 

serious concerns within the environmentally aware community: carbon emissions. We adopt 

Nested Integrated Cross-Entropy (NICE) method to solve a nonlinear green SC planning model 

in an actual case situation where real world data is utilized to evaluate the impacts of a carbon 

tax on the economic and emissions performance of an organization.  

The motivation for this research is manifold: (1) organizations need to help make decisions 

related to GSCM; (2) formal models for GSCM, especially at the tactical and operational levels 

are virtually non-existent and can help organizations make GSCM decisions; and (3) these 

models can become complex and investigating the application of new solution techniques can 

help in their adoption and broader acceptance. Thus, the objective is to help address these major 

issues, providing a contribution to managerial, social, and modeling research. 

To help set the foundation for this study, we first provide an overview of the GSCM literature in 

Section 2 with a particular emphasis on characteristics and modeling efforts in this field. Section 
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3 introduces a green SC optimization model to address some of the issues identified in the 

literature. A CE-based solution methodology is discussed in Section 4 along with experimental 

runs in Section 5 using data from an actual case problem. Analysis of the numerical results and 

the managerial and policy insights gained are presented in Section 5. Conclusions are outlined in 

Section 6 with a clear identification of the significant work left for future investigation in this 

area. 

 

2. GSCM Modeling Efforts  

Focus on GSCM research has been increasing at a relatively rapid pace over the past decade due 

to the necessity by industry of observing and focusing on environmental issues (Sarkis et al., 

2011; Seuring and Müller, 2008). Multifaceted environmentally-oriented forces have caused 

organizations across a broad variety of industries to take notice of the need for expanding their 

focus beyond their organizational boundaries when it comes to environmental considerations 

(Sarkis, 2012). These forces include governmental regulations, community norms, consumer 

expectations, and competitor benchmarking, to name a few (Fahimnia et al., 2014a; Zhu et al., 

2011). The response has been evolving over the years with significant research developing 

amongst many methodological streams, empirical approaches, case studies, and formal modeling 

efforts (Brandenburg et al., 2014; Min and Kim, 2012). 

A critical issue is that GSCM has encountered many variations in its definition and terminology 

over the years. A comprehensive list characterizing this concept includes: sustainable supply 

network management, sustainable/green/ecological SCs, supply and demand sustainability in 
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corporate social responsibility networks, sustainable/green purchasing and procurement, and 

green/sustainable logistics. As can be seen, the scope can be very ambiguous and extensive. A 

slightly broader GSCM focus will define it as integrating environmental concerns into the inter-

organizational practices. For the scope of this study (i.e. tactical SC planning and optimization), 

we define this scope around three critical stages of internal operations management, external 

logistics, and inventory management. 

Some of the more rigorous attempts at GSCM-related modeling have occurred in the ‘closing-

the-loop’ or reverse logistics portions of the GSCM literature (Chaabane et al., 2012; Diabat et 

al., 2013; Fahimnia et al., 2013b). Yet, much of that literature has focused on cost-based 

measures or traditional financial metrics optimization, e.g. revenue generation or cost reduction 

(Chung and Wee, 2011; Quariguasi Frota Neto et al., 2009; Rubio et al., 2007). Interestingly, in 

many of these models, environmental measures have taken a minor role, if any, to operational 

and financial measures. Some other research efforts have started to close the gaps in formal 

modeling literature by investigating specific aspects of GSCM (Brandenburg et al., 2014; 

Seuring, 2013). Such modeling efforts are limited not because of the insignificance of the work, 

but more because of the complexities involved in GSCM (Sundarakani et al., 2010) some of 

which we face in this study. 

Some recent GSCM modeling efforts have focused on designing networks with emissions and 

life-cycle analysis considerations (Bojarski et al., 2009; Diabat et al., 2013; Wang et al., 2011). 

There are also studies with narrower focus on specific SC operations such as green supplier 

selection (Bai and Sarkis, 2010b; Lee et al., 2009; Yeh and Chuang, 2011) and fleet management 

(Ubeda et al., 2011). Mixed-integer linear programming (MILP) frameworks have been popular 
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for addressing sustainable SC design issues with material balance constraints from traditional 

operations and SC topics, to new technology introduction modeling (Chaabane et al., 2012). 

These strategic perspectives are introduced to determine the most effective SC design, while 

modeling efforts related to green SC planning at the tactical level are not well established in this 

literature set (Fahimnia et al., 2013a; Fahimnia et al., 2014a).  

Some models have also considered joint strategic and operational aspects of designing an 

environmentally conscious SC (Hugo and Pistikopoulos, 2005). These few existing GSCM-

oriented models still require significant life-cycle analysis information (Bojarski et al., 2009), 

with operational investigations left out of the modeling effort. They also usually tend to focus on 

single, general objective modeling approaches not explicitly considering multiple economic and 

environmental objectives. Linking up the operational with strategic dimensions of 

environmentally-oriented SC planning requires medium term, tactical planning approaches.  

Given the current and increasing interest in the development of formal analytical models to aid 

industry and advance research in GSCM, we seek to contribute to this body of knowledge in the 

following ways. First, we develop a realistic model motivated not only by theoretical 

considerations but by real word practical requirements faced by an actual organization. Second, 

our modeling effort and contribution seeks to focus on two critical organizational objectives at 

the tactical planning level, economic (or business oriented) and environmental dimensions. 

Third, we also contribute by providing additional supports for managerial acceptance of this 

model and further understanding of a unique CE-based solution technique. We utilize the model 

and solution method to investigate how a carbon taxing mechanism influences the economic and 

environmental performance of an actual organization from the manufacturing sector. 
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3. Mathematical Modeling 

We model a GSCM problem where multiple product types (i) are produced in different 

manufacturing plants (m) by travelling through a set of machine centers (g). Machine center g 

has its own production cost and emissions rate for processing product i. Finished products are 

then distributed to the warehouses (w) and from there to the end-users (e) in various geographical 

locations. Products can be shipped using different transport modes (k). Shipment costs and 

emissions generation rates may vary from one model of transport to another. The objective is to 

determine the tactical planning decisions, including production and distribution allocation 

strategies for the next planning horizon T (comprising t time periods) such that the overall SC 

cost and carbon emissions are minimized. 

An bi-objective optimization model is developed in this section in which the first objective 

concerns the economic dimensions of SC and the second objective focuses on environmental 

aspects. Objective 1 minimizes the overall SC costs including production costs in regular-time 

and overtime on a set of machine centers, inventory holding costs in manufacturing sites and 

warehouses, transportation costs, and shortage/penalty costs. Objective 2 minimizes the total 

production and transport air emissions (i.e. carbon-equivalent emissions). The following 

assumptions are considered for mathematical modeling of this problem: 

 Variety of product types (i) to be produced is known. 

 Number, location, and capacity of plants (m) and warehouses (w) are known. 

 Number and location of end-users (e), also identified as customer zones or retailers, are 

known. 
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 Demand is deterministic and aggregate demand for all product types in the concerned periods 

is assumed to be known for the next planning horizon. 

 The forecasted demand for each product has to be satisfied, sooner or later, during the 

planning horizon. Shortage/penalty cost is incurred if the demand for a certain product at one 

period is backordered. 

 A product type can be supplied from more than one manufacturing plant; however, the 

shipment of products between manufacturing plants is not allowed. 

 Capacity limitations for regular-time and overtime production (capacity hours of machine 

centers), capacity of raw material supply, limitations in storage capacity at manufacturing 

plants and warehouses as well as distribution capacities are known. 

 The required workforce is hired on casual/temporary bases. The hourly-paid wages are 

higher in the first period of plant opening. The rates will remain unchanged for the 

succeeding periods from the second period. The higher first-period wages reflect the one-off 

training/admin fees charged by labor hire services as well as the learning progress of labors. 

 Transportation costs and emissions rates are proportional to transport distances. 

 End-users are locations where products are delivered to the final customers with no holding 

capacity to store the products. 

 Air emissions rate is known for processing a product on a machine center. This is determined 

according to the required processing time and the manufacturing technology used (e.g. older 

machines may take longer to process an item and produce more carbon emissions). 

 Air emissions rates are known for different transport modes for the shipment of products 

from manufacturing plants to end-user. 

The following indices and sets are used for the problem formulation. 
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Product index i  Set of products I 

Manufacturing plant index m  Set of manufacturing plants M 

Machine center index g  Set of machine centers G 

Warehouse index w  Set of warehouses W 

Transport mode index k  Set of transport modes K 

End-user index e  Set of end-users E 

Time-period index t  Planning horizon T 

The input parameters include the followings: 

diet Forecasted demand for i in e at t 

omt Fixed costs of opening and operating m at t 

o'wt Fixed costs of opening and operating w at t 

himt Unit holding cost for i in m at t 

h'iwt Unit holding cost for i in w at t 

hcimt Holding capacity (maximum units) in m for i at t 

hc'iwt Holding capacity (maximum units) in w for i at t 

pigmt Processing time (hrs) to produce a unit of i on g in m at t 

ligmt Labor/hour cost (second-period onward) for regular-time production of i on g in m at t 

l'igmt Labor/hour cost (second-period onward) for overtime production of i on g in m at t 

l
1st

igmt First-period labor/hour cost for regular-time production of i on g in m at t  

l' 
1st

igmt First-period labor/hour cost for overtime production of i on g in m at t 

rimt Cost of raw material for producing a unit of i in m at t 

αimt Variable overhead cost of regular-time production of i in m at t 

βimt Variable overhead cost of overtime production of i in m at t 

sciet Unit backordering (shortage) cost for i in e at t 

s
max

iet Maximum amount of shortage permitted for i in e at t 

λigmt Capacity hours for regular-time production of i on g in m at t 

λ'igmt Capacity hours for overtime production of i on g in m at t 
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γimt Capacity units of raw material supply for i in m at t 

τimwkt Unit transportation cost of i from m to w through k at t 

τ'iwekt Unit transportation cost of i from w to e through k at t 

τ"imekt Unit transportation cost of i from m to e through k at t 

ε
min

imwkt Minimum allowed distribution of i from m to w through k at t 

ε
max

imwkt Maximum allowed distribution of i from m to w through k at t 

θ
min

iwekt Minimum allowed distribution of i from w to e through k at t 

θ
max

iwekt Maximum allowed distribution of i from w to e through k at t 

δ
min

imekt Minimum allowed distribution of i from m to e through k at t 

δ
max

imekt Maximum allowed distribution of i from m to e through k at t 

ηim Inventory level of i in m at the start of planning horizon (t=0) 

η'im Inventory level of i in m at the end of planning horizon (t=T) 

φiw Inventory level of i in w at the start of planning horizon (t=0) 

φ'iw Inventory level of i in w at the end of planning horizon (t=T) 

cigmt Estimated air emissions (kg/hr) to produce a unit of i on g in m at t 

aimwkt Estimated air emissions (kg) for the shipment of i from m to w through k at t 

a'iwekt Estimated air emissions (kg) for the shipment of i from w to e through k at t 

a"imekt Estimated air emissions (kg) for the shipment of i from m to e through k at t 

c
max

mt Maximum allowed air emissions generation (ton) in m at t 

 ρ Emissions function coefficient 

M ‘Big M’ standing for a very large number 

Decision variables include continuous and binary variables. The continuous variables include: 

Qimt Quantity of i produced in regular-time in m at t 

Q'imt Quantity of i produced in overtime in m at t 

Jimwkt Quantity of i shipped from m to w through k during t 

J'iwekt Quantity of i shipped from w to e through k during t 

J"imekt Quantity of i shipped directly from m to e through k during t 
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Ximt Inventory amount of i in m at the end of t 

Yiwt Inventory amount of i in w at the end of t 

Siet Quantity of i backordered in e at the end of t 

The two binary variables determine whether a plant/warehouse is open or closed at each period: 

Gmt = {
1,      If m operates in t                                  

0,     Otherwise                                             
 

G'wt = {
1,     If w is open in t                                    

0,     Otherwise                                             
 

Using the above parameters and decision variables, objective function 1 (cost function) is 

formulated in Equation 1 representing the sum of production costs in regular-time and overtime 

(the nonlinear components of objective function 1), inventory holding costs in manufacturing 

plants and warehouses, transportation costs, and penalty/shortage costs of backordered demand. 
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(1) 

Equation 1 consists of 10 components. Components 1 and 2 are the fixed costs of opening and 

operating plants and warehouses respectively. Components 3 and 4 (the nonlinear terms of 

objective function 1) express the regular-time and overtime production costs. The higher first-

period wages are incorporated in these two components. Components 5 and 6 represent the 

inventory holding costs in manufacturing plants and warehouses respectively. Components 7-9 

express the transportation costs for the distribution of items from plants to end-users. This can be 
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either directly from plants to end-users (component 9) or indirectly from plants to warehouses 

and from warehouses to end-users (components 7 and 8, respectively). Component 10 represents 

the sum of shortage costs if backlogging occurs at the end-users. 

Objective function 2 (i.e. emissions function) is presented in Equation 2 formulating the 

generated manufacturing and transport air emissions.  


i g m t

igmtigmtimt cpQZ2 
i g m t

igmtigmtimt cpQ  


i m w k t

imwktimwkt aJ  
i w e k t

iwektiwekt aJ   
i m e k t

imektimekt aJ

        

(2) 

Equation 2 consists of 5 components. Components 1 and 2 express the manufacturing air 

emissions in regular-time and overtime. Components 3-5 formulate the emissions generated in 

transportation of products from plants to warehouses (component 3), warehouses to end-users 

(component 4), and plants to end-users (component 5). 

The sum of cost function (Equation 1) and emissions function (Equation 2) forms the overall 

objective function presented in Equation 3. In this formulation, ρ is the emissions function 

coefficient (i.e. unit emissions price) which assigns a weight to objective function 2 converting 

the problem to a single-objective model.   

Z = Z1 + ρ Z2                                                                (3) 

The model is subject to the following constraints: 

Restrictions on raw material supply: 

imtimtimt QQ                   tmi ,,                                           (4) 
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Production capacity constraint (machine center capacity constraint) for regular-time and 

overtime production: 

igmtigmtimt pQ 
       

&

        
igmtigmtimt pQ                 tmgi ,,,                 (5) 

Storage capacity restriction in manufacturing plants: 

imtimt hcX                             tmi ,,                                            (6) 

Inventory balance in manufacturing plants: 

  

e k

imekt

w k

imwktimtimttimimt JJQQXX )1(

          

tmi ,,              (7)

 

Warehouse capacity restriction: 

iwtiwt chY                                twi ,,                                             (8) 

Inventory flow in warehouses: 

  

e k

iwekt

m k

imwkttiwiwt JJYY )1(                  twi ,,                          (9)  

Distribution capacity limits in manufacturing plants:  

maxmin

imwktimwktimwkt J                        tkwmi ,,,,                             (10)  

maxmin

imektimektimekt J                           tkemi ,,,,                            (11)  

Distribution capacity constraint in warehouses: 
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maxmin

iwektiwektiwekt J                           tkewi ,,,,                           (12)  

Demand satisfaction constraint: 

 
w

iw

w

iw

m

im

m

im

e t

iet

m t

imtimt dQQ          i            (13)  

Maximum allowed backlog/shortage at end-users: 

max

ietiet sS                              tei ,,                                         (14) 

Inventory balance at end-users: 

)1(   tieietiet

m k

imekt

w k

iwekt SSdJJ                   tei ,,                    (15)  

Constraint on the inventory level of finished products in manufacturing plants (Equation 16) and 

warehouses (Equation 17) at the start and end of the planning horizon: 

imimX 0

          

&          
imimTX 

                     

mi,                    (16) 

      
iwiwY 0

     

      &           
iwiwTY                        wi,                     (17) 

Air emissions constraint in manufacturing plants: 

max( ) /1000igmt igmt imt imt mt

i g

p c Q Q c                         tm,                      (18) 

Restrictions on decision variables: 

MGQMGQ mtimtmtimt  0&0                      tmi ,,                 (19) 
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MGJMGJ wtimwktmtimwkt

 0&0                      tkwmi ,,,,            (20) 

                                  
MGJ wtiwekt

0                        tkewi ,,,,                                 (21) 

MGJ mtimekt 0                        tkemi ,,,,                                  (22) 

imtX0                                  tmi ,,                                    (23) 

      iwtY0                                    twi ,,                                        (24) 

ietS0                                      tei ,,                                       (25) 

The resulting model has IT[3M+W+E+K(MW+ME+WE)] continuous variables, T(M+W) binary 

variables and I(1+M+W)+MT+IT[5M+3W+3E+GM+K(2MW+2ME+2WE)] constraints. 

 

4. The NICE Solution Method 

The Cross-Entropy (CE) method was first proposed by Rubinstein (1997) as a simulation method 

for estimating probabilities of rare events and was later adopted as an advanced optimization 

method to deal with both combinatorial and continuous optimization problems (Rubinstein, 

1999). The idea of the CE is to start with an initial probability distribution over a feasible region 

and updating it adaptively based on a random sample collected from the feasible region. In 

consecutive iterations, the process should converge to some degenerate distribution that assigns a 

probability of 1 to an optimal solution. This convergence may cost a large number of iterations 

and hence the algorithm needs to be terminated at a local optimal solution where a predetermined 

condition is satisfied. More details on the CE method can be found in (Rubinstein and Kroese, 

2004, 2007). Successful applications of the CE method have been reported in different 

optimization problems such as buffer allocation (Alon et al., 2005), capacitated lot-sizing 

(Caserta and Rico, 2009), vehicle routing (Wang and Qiu, 2012), project scheduling (Bendavid 
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and Golany, 2011), network design (Altiparmak and Dengiz, 2009) and more recently in SC 

planning (Esmaeilikia et al., 2014; Fahimnia et al., 2014b). 

The GSCM model encountered in this paper is an MINLP model comprising both continuous 

and binary variables. We initially tried to adopt the Projection Adaptive Cross-Entropy (PACE) 

method proposed by Eshragh et al. (2011) to solve this model. According to PACE, to solve a 

nonlinear binary programming model, a sample of 0-1 variables is randomly generated at each 

iteration from which only those that result in feasible solutions are considered. For each feasible 

solution, with already-known binary variables, the problem is reduced to a linear programming 

model which is solvable using standard LP solvers. The corresponding optimal objective value is 

used to update the vector of probabilities in a standard CE algorithm. However, PACE was 

shown as unable to solve the proposed GSCM model due to the tight model constraints. Almost 

all samples of randomly generated binary variables in the first iteration lead to infeasible 

solutions. Obviously, it is impossible to update the probability vector with no sample in hand. 

Overall, PACE may only be an appropriate solution method for solving SC optimization 

problems when problem constraints are sufficiently loose to allow the generation of feasible 

solutions in the first iteration. 

Fahimnia et al. (2014b) introduced NICE, a CE-based solution method, to tackle complex 

nonlinear SC planning problems. We adopt a similar technique to solve the MINLP model 

encountered in this paper. The proposed MINLP model would have feasible solutions when all 

0-1 variables are equal to 1 (i.e. when all the manufacturing plants and warehouses are open in 

all periods and hence the SC operates at the full production and distribution capacity). NICE 

starts with setting all binary variables (𝐺𝑚𝑡  and 𝐺′𝑤𝑡) equal to 1 in iteration 1. This reduces the 
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MINLP model to a linear model. Obviously, all generated solutions in this initial sample are 

feasible with identical objective values. In the next iteration, only one of the binary variables is 

randomly set equal to zero and all the others remain equal to 1 (note that depending on the 

problem characteristics we may choose to limit the binary variables that can turn to zero). A 

sample of such solutions (i.e. solution with one zero binary variable) is generated and then used 

to update the probability distribution over the feasible region. Accordingly, iteration t involves a 

sample of solutions with t-1 binary variables equal to zero. The best found objective value in an 

iteration would be an optimal solution to the problem unless a better objective value is obtained 

in succeeding generations. A conservative termination condition would be to stop the algorithm 

when all the generated solutions in an iteration are infeasible. Alternatively, the process can be 

terminated when the ratio of infeasible solutions generated in a sample exceeds a predetermined 

value (say 95% of the overall population). To summarize the process of the modified CE 

method:  

Step 1 Set all binary variables (𝐺𝑚𝑡  and 𝐺′𝑤𝑡) equal to 1. This reduces the nonlinear GSCM 

model to a linear model. Find an optimal solution to this problem and set it as best found 

solution. Set the iteration counter (t) equal to 0; 

Step 2 Set t = t + 1; 

Step 3 Use the standard CE method to generate a sample of binary variables, each with exactly 

t zeros. Discard those leading to infeasible solutions. Use the sets of binary values to 

reduce the corresponding nonlinear GSCM models to linear programming models. Find 

an optimal solution for each linear model. If the best solution in this sample is better 

than the best found solution thus far, replace the latter with the former; 

Step 4 If the ratio of feasible solutions generated in Step 3 is less than r% (say 5%), STOP and 
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claim the best found solution as a local optimal solution for the GSCM problem; 

otherwise return to Step 2. 

 

5. Model Implementation and Numerical Results 

The modified CE algorithm presented in Section 4 is now implemented to solve a real world 

GSCM problem. Due to the massive data scale as well as the sensitivity of some of the supply 

and demand data, it is not possible to provide the detailed data used for our analysis. But, we try 

to provide a clear illustration of the production and distribution situations in EOF, the case 

company. EOF is engaged in the production and distribution of outdoor furniture in Australia. 

The product offerings at EOF (for the sake of this case study) include five families of stylish 

dining settings which may come in either seven or nine pieces. Each product is produced by 

passing through seven machine centers at one of the three manufacturing plants located in 

Sydney, Melbourne and Adelaide. Production costs are slightly lower in Adelaide, but more 

carbon emissions are generated due to older and less efficient machinery used. The plant in 

Melbourne has an intermediate position in terms of production costs, but is the greenest of the 

three. Production plants supply five customer zones (the end-users of EOF) in five different 

states including New South Wales, Victoria, Queensland, Western Australia, and South 

Australia, in order of their demand size. The distribution from plants to customer zones can be 

completed either directly or indirectly through four established warehouses. The available 

transport options (modes of transport) may vary from one route to another. External logistics 

companies provide the costs and emissions rates for each transport route and mode. The tactical 

planning horizon at EOF is one year comprising 12 one-month periods.  
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With five product families (I=5), three manufacturing plants (M=3), seven machine centers at 

each plant (G=7), four warehouses (W=4), three possible transport modes (K=3), five customer 

zones (E=5) and twelve time periods (T=12), the proposed MINLP model has 11,700 continuous 

variables, 84 binary variables and 20,776 constraints. The GSCM model and the modified CE 

algorithm were coded in MATLAB 7.13. The sample size in all experiments is set at 100 and the 

termination condition is when the ratio of infeasible solutions generated in a sample is more than 

98% of the sample size (i.e. terminating the model when there are only two or less feasible 

solutions in a sample of 100). 

Contextually, from a policy perspective, for the first time in Australian history, carbon taxing 

legislation passed the Australian Federal Parliament in November 2011. Carbon is priced at $23 

per ton in 2012 rising to $24.15 in 2013 and $25.40 in 2014. Using this model, we aim to study 

the impacts of the proposed carbon tax policy scheme on the economic and environmental 

performance of EOF which represents a broad range of Australian businesses within the discrete, 

durable parts manufacturing sector. 

At a carbon price of $23 per ton, the emissions function coefficient (ρ) in Equation 3 is set equal 

to 0.023, the cost of carbon pollution per kg. The numerical results obtained from the model run 

at the carbon price of $23 per ton are presented in Table 1. The numerical results including the 

values of objective functions 1 and 2 and their components at each iteration provide insights on 

how the value of each component evolves in 23 iterations. The overall SC cost converges to a 

local optimal, completing 23 iterations in approximately 52 minutes. The local optimal solution 

(overall SC cost of $8,170,645) is obtained in iteration 22, showing a 7.4% improvement 

compared to the objective value of $8,821,143 in iteration 1, when all plants and warehouses are 
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open in all periods. Production cost is the primary contributor to the cost function constituting 

about 65% of the overall cost, whereas the major contributor to the emissions function is 

distribution emissions constituting about 60% of the overall emissions.  

These initial results show that emissions cost (Obj Fn 2 * 0.023) constitutes between 2.7% and 

3.4% of the overall SC cost. This rather minor contribution of emissions cost would cause the 

emissions function to have a limited impact on the production and distribution decisions made by 

the model. This situation is witnessed by the fact that the 7.4% reduction in the overall SC cost 

over 23 iterations has caused an 11.8% increase in the value of objective function 2 (i.e. the 

carbon emissions generated by EOF). In short, the algorithm tends to minimize the more 

significant contributors to the goal function (Equation 3) and hence gives a higher priority to 

production and distribution costs in objective function 1 and a relatively lower priority to 

shortage cost in objective function 1 as well as emissions costs in objective function 2. 
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Table1. Numerical results at the carbon price of $23 per ton 

 

 

Obj Fn 1 Prod Cost Dist Cost Short Cost Obj Fn 2 Prod Em Dist Em

1 100 8584353 5570490 3013863 0 10295216 4026178 6269038 8821143 236790 8821143 1

2 95 8538305 5504627 3033678 0 10540833 4118455 6422378 8780744 242439 8780744 2

3 97 8504320 5570489 2933831 0 10295191 4026176 6269015 8741109 236789 8741109 3

4 93 8466500 5474927 2991573 0 10531094 4118454 6412640 8708715 242215 8708715 4

5 86 8418758 5436299 2982459 0 10882965 4233803 6649162 8669066 250308 8669066 5

6 82 8386282 5441433 2944849 0 10923309 4256872 6666437 8637518 251236 8637518 6

7 79 8357816 5408099 2949717 0 10867298 4233802 6633496 8607764 249948 8607764 7

8 71 8332302 5515727 2816575 0 10531095 4118454 6412641 8574517 242215 8574517 8

9 71 8285675 5410249 2873276 2150 10848927 4225151 6623776 8535200 249525 8535200 9

10 69 8266916 5511239 2753524 2153 10291414 4017527 6273887 8503619 236703 8503619 10

11 60 8230959 5409368 2820090 1501 10975006 4279942 6695064 8483384 252425 8483384 11

12 50 8193571 5375620 2810597 7354 10982579 4271296 6711283 8446170 252599 8446170 12

13 50 8143729 5402935 2738972 1822 11020555 4291477 6729078 8397202 253473 8397202 13

14 49 8122042 5301725 2818160 2157 11426173 4444321 6981852 8384844 262802 8384844 14

15 40 8094049 5276372 2806889 10788 11264831 4375105 6889726 8353140 259091 8353140 15

16 36 8072478 5390609 2661293 20576 10957905 4282826 6675079 8324510 252032 8324510 16

17 20 8044332 5345357 2692586 6389 11346511 4406826 6939685 8305302 260970 8305302 17

18 19 7992250 5258701 2725499 8050 11738319 4509059 7229260 8262231 269981 8262231 18

19 13 7990681 5428779 2543561 18341 10692158 4187664 6504494 8236601 245920 8236601 19

20 17 7933349 5325278 2600971 7100 11334240 4428314 6905926 8194037 260688 8194037 20

21 8 7905267 5175904 2712813 16550 12030753 4638826 7391927 8181974 276707 8181974 21

22 10 7905906 5272373 2614808 18725 11510378 4421756 7088622 8170645 264739 8170645 22

23 4 7912097 5251931 2634746 25420 11560618 4470863 7089755 8177991 265894 8170645 22

Best Sol Found in IterNo of Feas SolIter
Objective Function 1 ($) Objective Function 2 (kg)

Overal SC Cost ($) Best Sol Found ($)Emi Cost ($)



23 

 

For the sake of comparative analysis, we run the model in three optimization scenarios. The first 

scenario only minimizes the cost function (Equation 1). This scenario best represents the current 

situation at EOF; that is minimizing the SC non-environmental costs with no emissions 

consideration. The model outputs include the value of objective function 1 and its three 

components, objective function two and its two components, and the overall SC cost. The second 

scenario minimizes the emissions function (Equation 2) without considering the consequent 

economic impacts. The third scenario concerns the concurrent minimization of cost and 

emissions functions (Equation 3) considering a current carbon tax of $23 per ton of emissions 

(2012 rate). Numerical results for the three optimization scenarios are shown in Table 2. 

 

Table2. Numerical results for the three optimization scenarios 

  Obj Fn 1 components  Obj Fn 2 components 

Opt Scenarios Obj Fn 1 ($) Prod Cost ($) Dist Cost ($) Short Cost ($) Obj Fn 2 (kg) Prod Em (kg) Dist Em (kg) Overall SC Cost 

Cost-Only 

Optimization 
7,788,619 5,242,576 2,530,439 15,604 11,841,063 4,587,628 7,253,435 8,060,963 

Emissions-Only 

Optimization 
10,688,849 6,618,534 3,616,623 453,692 71,32,311 4,017,523 3,114,788 10,852,892 

Cost+Emissions 

Optimization 
7,905,906 5,272,373 2,614,808 18,725 11,510,378 4,421,756 7,088,622 8,170,645 

 

We also design six carbon tax scenarios to investigate the effectiveness of the current taxing 

mechanism in terms of its financial and emissions reduction impacts. Table 3 shows the 

numerical results in six scenarios. Scenarios 1, 2 and 3 represent the actual carbon tax situations 

in Australia in 2012, 2013 and 2014, respectively. The next three scenarios are hypothetical and 

are designed to examine how EOF will be affected by larger carbon prices. Analyses of these 

numerical results are presented in Section 6. 



24 

 

Table3. Numerical results for six carbon tax scenarios 

  Obj Fn 1 components  Obj Fn 2 components 

Carbon Tax 

Scenarios 
Obj Fn 1 ($) Prod Cost ($) Dist Cost ($) Short Cost ($) Obj Fn 2 (kg) Prod Em (kg) Dist Em (kg) Overall SC Cost 

$23 7,905,906 5,272,373 2,614,808 18,725 11,510,378 4,421,756 7,088,622 8,170,645 

$24.15 7,986,443 5,513,574 2,467,676 5,193 11,354,959 4,383,852 6,971,107 8,260,665 

$25.40 8,077,204 5,420,950 2,644,216 12,038 11,266,152 4,385,063 6,881,089 8,363,364 

$46 8,150,891 5,410,154 2,710,874 29,863 10,362,401 4,269,014 6,093,387 8,622,961 

$115 8,238,118 5,397,808 2,795,827 44,483 9,715,376 4,273,526 5,441,850 9,131,933 

$230 8,635,482 5,522,033 3,084,622 28,827 7,837,213 4,213,620 3,623,593 10,438,041 

 

6. Discussion: Organizational and Policy Insights  

From Table 2, the cost-only and emissions-only scenarios show what happens at the two 

extremes. A minimum SC cost of just more than eight million dollars results when the emissions 

generation at EOF stays at its maximum (cost-only optimization). The reverse situation occurs in 

emissions-only optimization where the minimum carbon of approximately 7,132 tons is emitted 

at the maximum cost incurred. This result indicates that in the most optimistic scenario, carbon 

emissions at EOF can be reduced by about 40% at which the overall cost is increased by about 

34%. 

Not surprisingly, the results do show that without a regulatory requirement and a carbon taxing 

mechanism in place, the SC could be less costly to manage. Nevertheless, the emissions 

generated are also the highest when there is no penalty cost that encourages the internalization of 

the carbon emissions externality. At a carbon price of $23 per ton, the overall SC cost is 

increased by 1.4% compared to a no-tax scenario. Arguably, a 1.4% increase in costs is not 

prohibitive, so long as there is equal application of the costs across organizations and industries.  
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The true social costs of emissions are difficult to measure, but there are arguments that the $23 

per ton is quite conservative. Researchers and governments have made estimates of the social 

cost of emissions. Many of these estimates are made through integrated assessment models 

(IAM’s), which have their own limitations (Ackerman et al., 2009). The U.S. government, for 

example, has estimated that on average for 2015 the social cost per ton of carbon is $37 per ton 

(U.S. Government, 2013). Although higher than current market trading prices, this governmental 

valuation has been considered a conservative estimate by watch groups and activists who felt that 

a number of social impacts were not considered in the evaluation (Howard, 2014). 

Internal carbon prices are becoming an increasingly common business tool and are used by many 

firms for planning purposes (Economist, 2013). The Carbon Disclosure Project (CDP) found that 

29 American companies and 20 German companies (large multinationals) have used an internal 

carbon price (Hörisch, 2013). This number is increasing. The U.S. corporate prices range from 

$6-7 per ton of CO2 equivalent at Microsoft to $60 per ton of CO2 equivalent at Exxon Mobil. 

Thus, even if mandatory carbon pricing and taxes were not in place, companies and their SCs 

need to be wary of the potential future costs associated with their operations. 

If we look back at the general results for this study, clearly, there are conflicts between cost 

efficiencies and environmental emissions efficiencies, but not as much as potentially can exist. 

We admit that not all scenarios and real world situations will be like this, but an advantage of 

this type of analysis is that it allows organizations to determine whether ‘win-win’ opportunities 

do exist, and even compare their internal prices versus external carbon taxes.  This type of cost 

tradeoff analysis may also be valuable from an investment perspective for organizations or a 

policy setting decision by policy makers. For example, the additional costs from taxing 
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emissions are at approximately $265,000. This value can provide a margin for potential 

investments to reduce these emissions, or if it is lower than internal estimates of current and 

future prices continue to make emissions. 

Alternatively, from these results policymakers can see that there is more potential for EOF to 

reduce emissions generated in transport and storage, by as much as 4 million kilograms. The 

total emissions generated at a carbon tax of $23 per ton is still far away from the best-emissions 

scenario (emissions-only optimization), only reduced by 2.79% in comparison with the worst-

emissions scenario (production cost-only optimization). For a carbon price of $23 per ton, every 

1% increase in the overall SC cost yields approximately 2% carbon emissions reduction. While 

this may be a fairly good start for a country like Australia where no environmental regulatory 

policies have been practiced in the past, a further refined carbon taxing mechanism may result in 

additional improvements in environmental performance of SCs. For example, in the 

aforementioned CDP study, it was generally found that the companies with long productive lives 

and those affected by regulatory policies (such as oil companies) tend to use higher prices 

(Economist, 2013).  In this way that companies may identify their own risks and potential costs 

of carbon emissions, governments may decide that certain industries and products can be taxed 

differently. Broadly, governments may focus on industries, through their taxing system, by 

identifying what organizations can have the biggest influence on reducing emissions and focus 

the regulatory efforts on those organizations. Alternatively, governments may focus on certain 

products or materials that have larger carbon footprints identifying those that can most easily 

achieve reductions at relatively minimal SC costs. 
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The numerical results from the six carbon tax scenarios presented in Table 3 can also be used to 

evaluate tradeoffs in SC segments, not just overall SC performance. Numerical results in Table 3 

indicate that improvement in carbon emissions at EOF is highly dependent on the environmental 

performance of the transport sector. Admittedly, manufacturing emissions reductions are 

relatively stable for optimal solutions over the range of carbon credit costs. This can be due 

predominantly to the manufacturing inflexibility at EOF, that is, there is little excess capacity 

which can be eliminated to reduce the carbon emissions in the manufacturing operations while 

still meeting business goals. Also, EOF may be already very efficient in its manufacturing 

operations leaving only little room for additional improvements in its environmental 

performance. 

Numerically, we see that in the most-expensive-carbon scenario, the production emissions is 

reduced by about 5%, while the distribution emissions is down by about 50%. Therefore, the 

primary contributor to the carbon reduction at EOF is the distribution emissions generated 

through the external transportation and storage. An important managerial insight for EOF 

management is to focus investment on greener alternative transport options regardless of the 

level and type of environmental regulatory policies. On the other hand, although distribution 

emissions are where the greatest savings occur, the largest percentage increase in costs occurs in 

the shortage/backlog costs area (see the shortage costs for the three scenarios in Table 2). Thus, 

very high emissions penalties will not only increase costs throughout the company in terms of 

delivery and operations, but also customer service may be impeded in such cases. 

This segmentation of the costs and optimization structure across the SC provides greater 

flexibility for management to focus on particular activities within the SC. A finer grained 
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analysis, e.g. specific machining centers or warehouses, can help organizations make finer-tuned 

choices. In addition, not only are the magnitude of reductions important, but the costs of 

reductions may play a significant role. Right now, the cost/emissions tradeoffs are completed by 

reducing certain activities. However, additional analysis may reveal that it might be more cost-

efficient and competitively effective if investments are made in certain areas to help reduce the 

emissions rather than cutting back on production. Investments in more efficient manufacturing 

technology, better warehousing design, or improved transportation fleets can be amongst such 

alternatives. Cost and investment tradeoffs using this analysis can be important inputs into such 

decisions. 

One primary and broad-based policy question is to determine the carbon price at which the 

maximum environmental performance can be achieved without substantial impacts on the 

economy and competitive positioning of firms. We now introduce Figure 1 to illustrate the 

influence of various carbon prices on the financial and environmental performance of EOF. The 

percentage values for each scenario are given compared to a situation with no carbon tax 

introduced. From this figure, the price range of $40 to $60 appears to be the most effective and 

efficient option in terms of emissions generation and cost escalation. Within this period, a dollar 

increase in SC cost has the greatest positive impact on the carbon pollution reduction. The 2012-

2014 carbon tax rates seem to yield the lowest marginal environmental gain among these carbon 

tax scenarios. 
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Fig1. SC cost increase versus carbon emissions reduction at various carbon prices 

 

Given that EOF can represent discrete, durable parts manufacturing sector in Australia, our 

numerical results suggest that the government can take advantage of the maximum 

environmental returns per dollar investment offered in the carbon tax range of $40 to $60 per ton 

of emissions. While carbon prices above $60 will still continue to improve the environmental 

impacts of SCs, it may impose unacceptable economic costs that may be inappropriate for the 

present time when the national economic conditions are weak and there exists significant 

uncertainty in the global economy. 

It should be noted that important policy decisions such as these need more than simple cost-

benefit analysis (Hockley, 2014). The methodology can provide the necessary scientific, 

economic, and mathematical support to aid governments in making more robust decisions. How 

the data and assumptions are generated is also important. In this situation the various parameters 

were determined through corporate information and estimates. Utilizing additional tools to help 
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generate estimates, such as more accurate social costs of carbon emissions, can be integrated into 

these decision tools. 

The application of these tools to broader policy instruments such as regional emissions, such as 

ozone or sulfur emissions, using various permitting, rather than taxing, approaches can prove 

beneficial to policymakers. One aspect of these tools that was not explicitly considered is the 

regional considerations of SCs. Some regions, due to greater economic or population growth, 

may be unduly affected by regulatory policies such as carbon taxes (Sathaye and Shukla, 2013). 

Integrating geographical considerations and altering carbon taxes to more evenly distribute 

burden areas, especially poverty-stricken and underprivileged areas, can be utilized in these 

models. Although integration of these factors can be considered in these models, care must be 

taken that pollution havens and free-rider concerns do not cause these areas to be regions over 

represented with greater carbon or toxic emissions.  

 

7. Conclusions 

This article investigated the potential impacts of a carbon tax policy scheme on the financial and 

emissions reduction performance of SCs at the tactical planning level. A green SC planning 

model was presented incorporating realistic economic and environmental objectives and 

constraints. A modified CE-based optimization algorithm was designed to solve the developed 

MINLP model. The analyses from model implementation in an Australian case study indicate 

that a carbon tax of $23 per ton of emissions generated imposes a minor reduction of less than 

3% in carbon emissions when the overall SC cost is increased by about 1.5%. Additional 



31 

 

reductions in carbon emissions may be made through designing a more effective carbon 

pricing/trading mechanism in the future. For example, the most effective level of pricing can be 

first determined to cause true industry and SC reductions and then for transition to a cap-and-

trade market, caps can be adjusted in such a way that the equilibrium market price is comparable 

to the carbon tax. Some economists have argued that setting hard caps and minimum prices for 

trading prices is similar to carbon taxing (Wara, 2014).  This is just one example of identifying 

appropriate pricing that will be most economically and environmentally effective. 

From an organizational perspective, it was shown in this paper that there are certain areas across 

the SC where investments can be made to reduce emissions. But, there are also business goals 

that need to be met. With this model, not only can key decisions be made on investments, but 

also the model identifies on which costs organizations should focus. For instance, transport 

emissions were shown to be the primary contributor to the overall carbon emissions. Less 

carbon-intensive transport options may not only result in reduced carbon emissions, but such an 

investment may also help reduce shortage costs and improve customer service. However, if there 

are subcontractors and partner organizations in the SC, particular efforts to collaborate on 

identifying the best solutions and sharing the burdens can be more effectively completed since 

the influence of the regulatory measures may not be equal across SC partners. 

For the related policymakers, the findings of this research can be used as inputs for the design of 

more effective carbon tax or trading mechanisms. The numerical results for an Australian SC 

from discrete, durable parts manufacturing sector indicate that the maximum environmental 

returns per dollar increase in SC cost occur in the price range of $40 to $60. A carbon price 

above $60 may impose unacceptable economic costs that may be inappropriate in a situation 
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where national economic conditions are weak and there exists significant uncertainty in the 

global economy. 

The model and methodology presented in this paper has its limitations and these limitations 

allow for future improvements. More advanced models can be developed allowing for multi-

period investments addressing the volatility of carbon pricing. Even carbon taxes may have 

unforeseen influences, such as where the emissions may shift along the SC. Incorporating 

uncertainties into these deterministic models, such as likelihood of emissions and costs shifting 

along the SC given variations in carbon taxes, can be investigated. Bayesian analysis which can 

help identify potential uncertainties integrated with these deterministic models is one potential 

direction for future research. 

As the shift from carbon taxing to a carbon market trading environment occurs, there are greater 

uncertainties involved in the value of the carbon credits. This uncertainty will require a larger 

sensitivity analysis for evaluating the impact of the carbon prices/credits on the market. But, 

given the limitations and problems associated with cap-and-trade markets, both relating to 

uncertainties and political issues (Wara, 2014), considering mixed regulatory policies can be 

integrated into these types of decision tools. For example, investigations are required on 

introducing minimal carbon prices (taxes) in hybrid cap-and-trade systems.   

Regional and variable carbon taxes may occur to help economic development in certain areas. 

Although these might be perverse types of incentives, these subsidies can be utilized by 

governments to enhance economic wellbeing in certain areas by shifting some of the 

environmental burden reductions to other regions which can more readily afford the taxes or 

more easily eliminate the carbon emissions. This type of regional modeling can be integrated 
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into the carbon tax model. Alternatively, a hybrid regulatory scheme can be investigated, instead 

of choosing between carbon tax and cap-and-trade system. The differences in these types of 

policies can be examined by developing and comparing deterministic versus stochastic modeling 

efforts.  

Overall, there are many opportunities for further research, some of which are based on utilizing 

and advancing this model in a carbon tax environment, but also some that may integrate a wide 

variety of estimation and decision support tools. This field is still fertile and aiding both 

industries and governments in making these decisions is still an important requirement for 

economic and environmental improvements. 

 

References 

Ackerman, F., DeCanio, S.J., Howarth, R.B., Sheeran, K., 2009. Limitations of integrated assessment 

models of climate change. Climatic change 95, 297-315. 

Alon, G., Kroese, D.P., Raviv, T., Rubinstein, R.Y., 2005. Application of the Cross-Entropy Method to 

the Buffer Allocation Problem in a Simulation-Based Environment. Ann Oper Res 134, 137-151. 

Altiparmak, F., Dengiz, B., 2009. A cross entropy approach to design of reliable networks. European 

Journal of Operational Research 199, 542-552. 

Bai, C., Sarkis, J., 2010a. Green supplier development: analytical evaluation using rough set theory. 

Journal of Cleaner Production 18, 1200-1210. 

Bai, C., Sarkis, J., 2010b. Integrating sustainability into supplier selection with grey system and rough set 

methodologies. International Journal of Production Economics 124, 252-264. 

Bendavid, I., Golany, B., 2011. Setting gates for activities in the stochastic project scheduling problem 

through the cross entropy methodology. Annals of Operations Research 189, 25-42. 

Bojarski, A.D., Laínez, J.M., Espuña, A., Puigjaner, L., 2009. Incorporating environmental impacts and 

regulations in a holistic supply chains modeling: An LCA approach. Computers & Chemical 

Engineering 33, 1747-1759. 

Brandenburg, M., Govindan, K., Sarkis, J., Seuring, S., 2014. Quantitative models for sustainable supply 

chain management: Developments and directions. European Journal of Operational Research 233, 

299-312. 

Caserta, M., Rico, E.Q., 2009. A cross entropy-Lagrangean hybrid algorithm for the multi-item 

capacitated lot-sizing problem with setup times. Computers and Operations Research 36, 530-548. 

Chaabane, A., Ramudhin, A., Paquet, M., 2012. Design of sustainable supply chains under the emission 

trading scheme. International Journal of Production Economics 135, 37-49. 

Chung, C.-J., Wee, H.-M., 2011. Short life-cycle deteriorating product remanufacturing in a green supply 

chain inventory control system. International Journal of Production Economics 129, 195-203. 



34 

 

Diabat, A., Abdallah, T., Al-Refaie, A., Svetinovic, D., Govindan, K., 2013. Strategic Closed-Loop 

Facility Location Problem With Carbon Market Trading. IEEE Transactions on Engineering 

Management 60, 398-408. 

Economist, 2013. Companies and emissions: Carbon Copy. The Economist. 

Eshragh, A., Filar, J., Nazari, A., 2011. A Projection-Adapted Cross Entropy (PACE) method for 

transmission network planning. Energy Systems 2, 189-208. 

Esmaeilikia, M., Fahimnia, B., Sarkis, J., Govindan, K., Kumar, A., Mo, J., 2014. A tactical supply chain 

planning model with multiple flexibility options: an empirical evaluation. Annals of Operations 

Research, 1-26. 

Fahimnia, B., Reisi, M., Paksoy, T., Özceylan, E., 2013a. The Implications of Carbon Pricing in 

Australia: An Industrial Logistics Planning Case Study. Transportation Research Part D: Transport 

and Environment 18, 78–85. 

Fahimnia, B., Sarkis, J., Boland, J., Reisi, M., M, G., 2014a. Policy Insights from a Green Supply Chain 

Optimization Model. International Journal of Production Research in press. 

Fahimnia, B., Sarkis, J., Dehghanian, F., Banihashemi, N., Rahman, S., 2013b. The impact of carbon 

pricing on a closed-loop supply chain: an Australian case study. Journal of Cleaner Production 59, 

210-225. 

Fahimnia, B., Sarkis, J., Eshragh, A., 2014b. A Tradeoff Model for Green Supply Chain Planning: A 

Leanness-versus-Greenness Analysis. OMEGA in press. 

Hockley, N., 2014. Cost–benefit analysis: a decision-support tool or a venue for contesting ecosystem 

knowledge?. Environment and Planning C: Government and Policy 32, 283-300. 

Hörisch, J., 2013. Combating climate change through organisational innovation: an empirical analysis of 

internal emission trading schemes. Corporate Governance 13, 569-582. 

Howard, P.H., 2014. Omitted Damages: What’s Missing From the Social Cost of Carbon. The Cost of 

Carbon Pollution Project. 

Hugo, A., Pistikopoulos, E.N., 2005. Environmentally conscious long-range planning and design of 

supply chain networks. Journal of Cleaner Production 13, 1471-1491. 

Lacy, P., Cooper, T., Hayward, R., Neuberger, L., 2010. A New Era of Sustainability, UN Global 

Compact-Accenture CEO Study 2010. Accenture  

Lee, A.H.I., Kang, H.-Y., Hsu, C.-F., Hung, H.-C., 2009. A green supplier selection model for high-tech 

industry. Expert Systems with Applications 36, 7917-7927. 

Min, H., Kim, I., 2012. Green supply chain research: past, present, and future. Logistics Research 4, 39-

47. 

Quariguasi Frota Neto, J., Walther, G., Bloemhof, J., van Nunen, J.A.E.E., Spengler, T., 2009. From 

closed-loop to sustainable supply chains: the WEEE case. International Journal of Production 

Research 48, 4463-4481. 

Rubinstein, R., 1997. Optimization of computer simulation models with rare events. European Journal of 

Operational Research 99, 89-112. 

Rubinstein, R., 1999. The Cross-Entropy method for combinatorial and continuous optimization. 

Methodology and Computing in Applied Probability 1, 127-190. 

Rubinstein, R., Kroese, D.P., 2004. The Cross-Entropy Method: A Unified Approach to Combinatorial 

Optimization, Monte-Carlo Simulation, and Machine Learning. Springer-Verlag. 

Rubinstein, R., Kroese, D.P., 2007. Simulation and the Monte Carlo Method, 2 ed. Wiley-interscience. 

Rubio, S., Chamorro, A., Miranda, F.J., 2007. Characteristics of the research on reverse logistics (1995–

2005). International Journal of Production Research 46, 1099-1120. 

Sarimveis, H., Patrinos, P., Tarantilis, C.D., Kiranoudis, C.T., 2008. Dynamic modeling and control of 

supply chain systems: A review. Computers & Operations Research 35, 3530-3561. 

Sarkis, J., 2012. A boundaries and flows perspective of green supply chain management. Supply Chain 

Management: An International Journal 17, 202-216. 

Sarkis, J., Zhu, Q., Lai, K.-h., 2011. An organizational theoretic review of green supply chain 

management literature. International Journal of Production Economics 130, 1-15. 



35 

 

Sathaye, J., Shukla, P.R., 2013. Methods and Models for Costing Carbon Mitigation. Annual Review of 

Environment and Resources 38, 137-168. 

Seuring, S., 2013. A review of modeling approaches for sustainable supply chain management. Decision 

Support Systems 54, 1513–1520. 

Seuring, S., Müller, M., 2008. From a literature review to a conceptual framework for sustainable supply 

chain management. Journal of Cleaner Production 16, 1699-1710. 

Seuring, S., Sarkis, J., Müller, M., Rao, P., 2008. Sustainability and supply chain management – An 

introduction to the special issue. Journal of Cleaner Production 16, 1545-1551. 

Srivastava, S.K., 2007. Green supply-chain management: A state-of-the-art literature review. International 

Journal of Management Reviews 9, 53-80. 

Sundarakani, B., de Souza, R., Goh, M., Wagner, S.M., Manikandan, S., 2010. Modeling carbon 

footprints across the supply chain. International Journal of Production Economics 128, 43-50. 

Tang, C.S., Zhou, S., 2012. Research advances in environmentally and socially sustainable operations. 

European Journal of Operational Research 223, 585-594. 

U.S. Government, 2013. Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis 

Under Executive Order 12866. Interagency Working Group on Social Cost of Carbon, United States 

Government, Whitehouse, Washington, DC. 

Ubeda, S., Arcelus, F.J., Faulin, J., 2011. Green logistics at Eroski: A case study. International Journal of 

Production Economics 131, 44-51. 

Varsei, M., Soosay, C., Fahimnia, B., Sarkis, J., 2014. Framing sustainability performance of supply 

chains with multidimensional indicators. Supply Chain Management: An International Journal, 19, 

242-257. 

Vlachos, D., Georgiadis, P., Iakovou, E., 2007. A system dynamics model for dynamic capacity planning 

of remanufacturing in closed-loop supply chains. Computers & Operations Research 34, 367-394. 

Wang, C., Qiu, Y., 2012. Vehicle Routing Problem with Stochastic Demands and Simultaneous Delivery 

and Pickup Based on the Cross-Entropy Method, in: Lee, G. (Ed.), Advances in Automation and 

Robotics, Vol. 2. Springer Berlin Heidelberg, pp. 55-60. 

Wang, F., Lai, X., Shi, N., 2011. A multi-objective optimization for green supply chain network design. 

Decision Support Systems 51, 262-269. 

Wara, M.W., 2014. Instrument Choice, Carbon Emissions, and Information, Stanford Law School 

Working Paper. Stanford University, CA, USA. 

Yeh, W.-C., Chuang, M.-C., 2011. Using multi-objective genetic algorithm for partner selection in green 

supply chain problems. Expert Systems with Applications 38, 4244-4253. 

Zhu, Q., Sarkis, J., Lai, K.-h., 2011. Examining the effects of green supply chain management practices 

and their mediations on performance improvements. International Journal of Production Research 50, 

1377-1394. 

 

 


