
– 1 – 

Gait and Posture (2015) http://dx.doi.org/doi:10.1016/j.gaitpost.2014.08.004 

 

The Effect of Running Velocity on Footstrike Angle – A Curve-Clustering 

Approach 

 

S.E. Forrester and J. Townend 

 

Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, 

Loughborough, LE11 3TU, UK 

 

Keywords: footstrike pattern, footstrike angle, running velocity, curve-cluster analysis 

 

Address for correspondence: 

Dr Stephanie Forrester, Wolfson School of Mechanical and Manufacturing Engineering, 

Loughborough University, Loughborough LE11 3TU, UK.  Email: s.forrester@lboro.ac.uk.  Tel: 

+44 (0)1509 564824 

 

Received date: 15-8-2013 

Revised date: 10-6-2014 

Accepted date: 8-8-2014 

 

DOI: http://dx.doi.org/doi:10.1016/j.gaitpost.2014.08.004 

  



– 2 – 

ABSTRACT 

 

Despite a large number of studies that have considered footstrike pattern, relatively little is known 

about how runners alter their footstrike pattern with running velocity.  The purpose of this study 

was to determine how footstrike pattern, defined by footstrike angle (FSA), is affected by running 

velocity in recreational athletes.  One hundred and two recreational athletes ran on a treadmill at 

up to ten set velocities ranging from 2.2–6.1 m·s
-1

.  Footstrike angle (positive rearfoot strike, 

negative forefoot strike), as well as stride frequency, normalised stride length, ground contact time 

and duty factor, were obtained from sagittal plane high speed video captured at 240 Hz.  A 

probabilistic curve-clustering method was applied to the FSA data of all participants.  The curve-

clustering analysis identified three distinct and approximately equally sized groups of behaviour: 

(1) small / negative FSA throughout; (2) large positive FSA at low velocities (≤4 m·s
-1

) 

transitioning to a smaller FSA at higher velocities (≥5 m·s
-1

); (3) large positive FSA throughout.  

As expected, stride frequency was higher, while normalised stride length, ground contact time and 

duty factor were all lower for Cluster 1 compared to Cluster 3 across all velocities; Cluster 2 

typically displayed intermediate values.  These three clusters of FSA – velocity behaviour, and in 

particular the two differing trends observed in runners with a large positive FSAs at lower 

velocities, can provide a novel and relevant means of grouping athletes for further assessment of 

their running biomechanics.  
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1.0 INTRODUCTION 

 

There has been growing interest in footstrike patterns (FSP) during running, particularly given 

recent suggestions of a link to injury [1–4].  Footstrike patterns have been most commonly 

considered for middle- and long-distance runners and qualified by discrete classification, i.e. 

rearfoot strike (RFS) where the heel contacts the ground first; midfoot strike (MFS) where both 

the heel and ball of the foot land at approximately the same time; and forefoot strike (FFS) where 

the ball of the foot contacts the ground first, e.g. [5].  Studies on long-distance runners of varying 

ability have reported that 75–99% RFS, 0–24% MFS, and the remaining 0–2% FFS [5–8].  Thus, 

the majority of long-distance runners RFS, while differences in the prevalence of MFS are most 

likely due to the subjective nature of the discrete classification method and, in particular, the 

difficulty in distinguishing between MFS and FFS (e.g. see Figure 1 in [5]) as well as differences 

in the ability and type of runners studied. 

 

Running velocity has been suggested as a factor affecting FSP.  Hasegawa et al. [5] found 

evidence for a trend towards reduced RFS and increased MFS in faster half-marathon runners.  

Hayes and Caplan [9] found a more even distribution of discrete FSP classifications in high-

calibre middle-distance runners (800m and 1500m track races) with 27% RFS, 42% MFS and 31% 

FFS.  Although these studies have suggested a trend away from RFS as running velocity increases, 

they are unable to differentiate between the contributions of running velocity, the runners 

themselves (i.e. are faster runners more likely to MFS regardless of velocity?) and footwear. 

 

Both Keller et al. [10] and Nigg et al. [11] were able to isolate the effects of running velocity by 

measuring FSP [10] or sole angle [11] for a group of runners in consistent footwear over a range 

of velocities (3–7 m·s
–1

). Both studies found that runners who predominantly RFS at running 

velocities below 5 m·s
–1

, shifted towards a more MFS or FFS at velocities above ~5–6 m·s
–1

.  This 
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was suggested to enable them to cope with the higher collision forces associated with the higher 

velocities [11].  These studies provide stronger evidence that a runner’s FSP is dependent on 

running velocity; however, both had limitations.  Keller et al. [10] estimated FSP from 30 Hz 

video which may have been too low for reliable classification.  Nigg et al. [11] presented only 

group mean and standard deviation sole angles, thus individual differences could not be assessed 

despite the standard deviation increasing by almost a factor of two between the lowest and highest 

velocities (from 4.7° at 3 m·s
-1

 to 7.9° at 6 m·s
-1

).  A further limitation of the discrete FSP 

classification method, i.e. RFS, MFS or FFS, is the poor resolution meaning that subtle changes in 

FSP with running velocity are missed.  Indeed, considering the injury statistics for long-distance 

runners (between 19% and 79% attain at least one injury per year [1,12]) and the suggested link to 

FSP [1–4], is it really beneficial to group >75% of runners into a single category (RFS) in our 

search for greater understanding? 

 

Despite the widespread use of discrete classification, in reality FSP is a continuum from extreme 

RFS to extreme FFS.  Indeed, FSP was first quantified by the continuous measure of Strike Index 

[13]; the centre of pressure location at touchdown measured as a percentage along the long axis of 

the foot from heel to toe, i.e. 0–33% indicates RFS, 34–67% MFS, and 68–100% FFS.  However, 

force platforms have their limitations: they are difficult to use in natural running environments; 

targeting is a recognised issue; and centre of pressure values tend to be inaccurate until the ground 

reaction forces exceed a threshold value [14,15].  More recently, footstrike angle (FSA) has been 

shown to be an acceptable continuum measure of FSP [16] that overcomes the limitations 

associated with Strike Index and discrete classification methods.  Footstrike angle is the sagittal 

plane foot angle measured with respect to the ground at the instant of touchdown and can be 

determined from 3D motion capture [16] or high speed video [11]. 
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Despite the large number of studies that have considered FSP, very few have considered the 

effects of running velocity on an individual’s FSP.  Hence, our current knowledge of how 

individuals adapt their FSP across the range of velocities representative of slow jogging through to 

sprinting remains largely unknown.  Such information may be relevant in our search for 

understanding of FSP and injury.  Therefore, the purpose of this study was to determine how FSP 

(defined by FSA) is affected by running velocity in recreational athletes.  It was hypothesized that 

the majority of individuals would have large positive FSAs at lower velocities (i.e. RFS) and that 

FSA would reduce as velocity increased (i.e. move towards MFS / FFS) particularly above 5 m·s
–1

. 

 

 

2.0 METHODS 

 

2.1 Participants 

One hundred and two participants (67 males 23.3 ± 5.1 years, 1.80 ± 0.07 m, 76.8 ± 10.7 kg and 

35 females 23.5 ± 6.6 years, 1.68 ± 0.07 m, 61.7 ± 5.6 kg) provided voluntary written informed 

consent to participate in the study which was approved by Loughborough University Ethical 

Advisory Board.  All participants took part in physical activity at a recreational level for a 

minimum of one hour a week, with an average participation of 7.7 ± 4.2 hours per week. The 

physical activities carried out by the participants were varied and included: running (track, road 

and trail), badminton, basketball, soccer, hockey, netball, rugby union, squash, tennis and triathlon.  

All participants had been free from running related injuries in the three months prior to testing. 

 

2.2 Protocol 

All running trials were performed on a treadmill (Mercury LT med, HP Cosmos, Nussdorf-

Traunstein, Germany) with footstrike characteristics measured from sagittal plane high speed 

video (Casio Exilim EX-FH100, Casio America, Inc., Dover, NJ, USA) recording at 240 Hz 
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(shutter speed: 1/250th second; spatial resolution: 448 × 336 pixels).  The camera was positioned 3 

m from the treadmill which ensured that any out of plane foot movement would give only small 

errors in FSA, estimated at <1° [17,18]. 

 

Following a short warm up, of self-selected speed and duration, participants were asked to run at 

ten incrementally increasing velocities from 2.2 to 6.1 m·s
–1

 with the gradient maintained at 0% 

throughout.  The lowest velocity was just above the walk-run transition [19] while the highest 

velocity was limited by the treadmill maximum.  The participants were required to run for 

60 seconds at each velocity and were allowed to stop as soon as they felt they no longer had the 

ability to run at the set speed.  Up to two minutes rest was provided between velocities to 

minimise the effects of fatigue.  High speed video was captured for five seconds starting 30 

seconds into each running velocity trial.  Due to the uncertainty in the highest velocity that would 

be reached by each participant and to allow the participants to become accustomed to the highest 

treadmill velocities, all started at the lowest velocity and progressed towards the highest velocity. 

 

2.3 Data analysis 

The high speed video footage was analysed using Image-Pro Plus 6.0 (Media Cybernetics Inc., 

Rockville, MD, USA) to determine the following five variables: footstrike angle; stride frequency; 

stride length (normalised to body height), ground contact time and duty factor (ratio of ground 

contact time to stride time).  Footstrike angle was determined according to the method described 

by Altman and Davis [16] with the aid of markers placed on the rear and forefoot of the 

participant’s shoe.  Moderate to large positive angles represented a rearfoot strike, angles close to 

0° a mid-foot strike and moderate to large negative angles a forefoot strike.  Three footstrikes per 

participant and velocity were analysed with the mean used in further analysis.  In addition to 

measuring FSA, discrete FSP classification was conducted based on the definitions for RFS, MFS 

and FFS given in the Introduction, i.e. rearfoot strike (RFS) where the heel contacts the ground 
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first; midfoot strike (MFS) where both the heel and ball of the foot land at approximately the same 

time; and forefoot strike (FFS) where the ball of the foot contacts the ground first.  Footstrike 

angle boundaries for RFS–MFS and MFS–FFS were then set as the mean ± one standard deviation 

of all footstrikes visually classified as MFS (as equivalently done by Altman and Davis [16] based 

on Strike Index).  This resulted in boundaries of 10° for RFS–MFS and -7° for MFS–FFS. 

 

A probabilistic curve-clustering approach using a regression mixture model [20] was used to 

analyse the FSA data with the purpose of grouping participants based on those that showed similar 

trends in FSA with running velocity.  This analysis was completed using the Curve Clustering 

toolbox [21] developed for Matlab (MathWorks Inc., Natick, MA, USA).  The selection process 

for polynomial order (quadratic) and number of clusters (three) followed the recommendations of 

Gaffney [20].  The mean and standard deviation for each of the five footstrike variables for the 

participant data within each cluster were evaluated. 

 

To determine the extent to which a reliable solution had been reached in the curve-clustering 

process an adapted bootstrapping approach was used [22].  Random resampling of the complete 

data set was conducted over sample sizes from 10 to 102 participant’s data and the clustering 

process repeated in each case (25 repeat random samples for each sample size).  The root mean 

square (RMS) difference between the random resampled and fully sampled cluster centre curves 

was evaluated as a measure of the reliability. 
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3.0 RESULTS 

 

Of the 102 participants, 99 reached 4.0 m·s
–1

, thereafter there was a rapid drop off with only 59 

participants reaching 5.3 m·s
–1

 and 45 completing all ten velocities (Table 1).  The discrete FSP 

classification method indicated an overall trend away from RFS towards MFS and FFS at velocities 

≥5.0 m·s
–1

.  For velocities between 2.2–4.9 m·s
–1

 approximately 70% were RFS, 24% were MFS 

and 6% FFS, at 5.3 m·s
–1

 these percentages changed to 55% RFS, 38% MFS and 7% FFS and at 6.1 

m·s
–1

 they were 47% RFS, 47% MFS and 6% FFS. 

 

The curve-clustering analysis indicated that the FSA – running velocity data were best represented 

by the following three clusters with an approximately equal number of participants in each (Figure 

1 and Table 1): 

• Cluster 1: small / negative FSA throughout (n = 30) 

• Cluster 2: large positive FSA at low velocities, i.e. ≤4 m·s
–1

, transitioning to a smaller FSA 

at higher velocities, i.e. ≥5 m·s
–1

 (n = 37) 

• Cluster 3: large positive FSA throughout (n = 35) 

Typical footstrikes for each cluster are shown in Figure 2. 

 

   
(a) (b) (c) 

Figure 1. The three clusters of behaviour for FSA as a function of running velocity: (a) Cluster 1: small / negative FSA 

throughout; (b) Cluster 2: Large positive FSA at low velocities transitioning to a smaller FSA at higher velocities; and 

(c) Cluster 3: Large positive FSA throughout.  In each plot the thick black line represents the cluster centre and the thin 

black lines the data for the individual participants within that cluster.  Those participants with a low probability of 

cluster membership, i.e. probability < 0.9, are shown as dashed lines.  The three shaded regions on each plot 

approximately represent RFS (darkest), MFS (mid) and FFS (lightest). 
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The curve-clustering reliability analysis indicated a rapid drop in RMS difference, to <2°, between 

cluster centre curves for sample sizes up to 60 followed by a more gradual decrease thereafter 

(Figure 3(a)).  This suggests that a reliable cluster analysis solution, representative of the broader 

population of recreational athletes, had been achieved using the 102 participants. 

 

 
Figure 2. Footstrikes for a typical participant in each cluster at low, intermediate and high running velocities. 

 

The probability of an individual’s data set belonging to the cluster to which they had been assigned 

provides another means of assessing confidence in the clustering process. (Figure 3 and Table 1).  

The probabilities were generally very close to one, with only five participants in Cluster 2 and four 

in Cluster 3 with membership probabilities <0.9 (Figure 3). 

 

  
(a) (b) 

Figure 3. (a) Sample size versus RMS difference for the random resampling analysis.  The x-axis represents the number 

of participants randomly selected, while the y-axis represents the RMS difference between the random resampled and 

fully sampled cluster centre curves. (b) Membership probability histogram for each cluster. 
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The mean values for each cluster in footstrike angle, stride frequency, normalised stride length, 

ground contact time and duty factor are shown in Figure 4.  The trends in FSA with running 

velocity, both within and between clusters, reflect the clustering results presented above.  Both 

stride frequency and normalised stride length increased with increasing running velocity.  Cluster 3 

demonstrated lower stride frequencies and higher normalised stride lengths compared to Clusters 1 

and 2.  Notably, Cluster 2 values were closer to Cluster 1 values across all running velocities.  Both 

ground contact time and duty factor decreased with increasing running velocity.  Cluster 3 

demonstrated higher ground contact times and duty factors compared to Cluster 1.  In this case, in 

contrast to stride frequency and normalised stride length, Cluster 2 tended to track Cluster 3 at 

lower velocities but shifted towards Cluster 1 at higher velocities, i.e. tracking the FSA results. 

 

   
(a) (b) (c) 

  

 

(d) (e)  

Figure 4. The effect of running velocity on (a) footstrike angle; (b) stride frequency; (c) normalised stride length, (d) 

ground contact time; and (e) duty factor for each of the three clusters.  The data is shown as the mean and one standard 

deviation.  The three shaded regions on plot (a) approximately represent RFS (darkest), MFS (mid) and FFS (lightest). 

 

 

 

4.0 DISCUSSION 
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This study has quantified how FSA is affected by running velocity in recreational athletes.  It was 

hypothesized that there would be an overall trend of reducing FSA, i.e. towards a more MFS / FFS, 

with increasing running velocity particularly above 5 m·s
–1

.  The results indicated three distinct 

clusters of behaviour: Cluster 1 characterised by participants with a small / negative FSA 

throughout; Cluster 2 characterised by participants with a large positive FSA at low velocities (≤4 

m·s
-1

) transitioning to a smaller FSA at higher velocities (≥5 m·s
-1

); and Cluster 3 characterised by 

participants with a large positive FSA throughout.  Thus, the results were only in partial support of 

the hypothesis with only one of the three clusters (36% of runners) showing a decrease in FSA with 

increasing running velocity. 

 

For comparison to previous studies it is necessary to consider the discrete FSP classification results.  

Considering the whole group, the RFS–MFS–FFS percentages at running velocities below 5 m·s
–1

 

were consistently around 70%–24%–6%; thereafter, there was a substantial shift away from RFS 

towards MFS and FFS with the distribution being 47%–47%–6% at the highest velocity.  This 

supports an overall group trend away from RFS towards MFS and FFS at running velocities above 

5 m·s
–1

; however, of the 70 participants in the RFS category only nine converted to a MFS and one 

to a FFS, and of the 30 that reached the highest velocity 21 remained RFS throughout (see 

Supplementary Material for detailed numbers).  These results are in good agreement with previous 

studies in terms of: the distribution of RFS–MFS–FFS runners at long-distance velocities [5–8]; the 

shift away from RFS towards MFS and FFS at velocities ≥5 m·s
–1

 [10,11]; and partially with the 

distribution of RFS–MFS–FFS runners at middle-distance velocities [9]. 

 

The FSA boundaries between RFS–MFS and MFS–FFS were wider than those reported by Altman 

and Davis [16] (10° and -7° here versus 8° and -2° in [16]).  The main reason for this is likely to be 

the differing methods used to define MFS runners from which the angle boundaries were set.  This 
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study used visual classification whereas [16] used Strike Index.  Notably, in [16] although visual 

classification suggested the 60 shod trials to be equally split between RFS–MFS–FFS, i.e. 20–20–

20, when the same trials were analysed using Strike Index these numbers changed to 29–6–25.  This 

suggests that more subjects tend to be classified as MFS through visual classification than through 

Strike Index; thus FSA boundaries are likely to be wider for the former, as found here.  It is also 

worth noting that the difference was greater for the MFS–FFS boundary reinforcing the challenge in 

differentiating these footstrikes visually. 

 

Curve-clustering analysis was considered the most appropriate means of investigating how 

recreational athletes adapt their FSA with running velocity.  Clustering is often used as an initial 

data assessment method in order to group large amounts of data that display some inherent 

properties that lend themselves to natural groupings [20].  Therefore, it requires the data set to have 

natural groupings as opposed to being uniformly distributed, which was the case in the current study 

(a two-sample Kolmogorov-Smirnov test confirmed non-uniform distributions for all but the three 

highest velocities).  This technique finds clusters that best describe the individual participants’ data 

in an inclusive manner, i.e. it is robust in dealing with data sets of differing lengths, and requires no 

initial assumptions on how the participants might be best grouped.  Thus, it addresses the purpose 

of this study whilst overcoming potential limitations of traditional statistical methods, e.g. <50% of 

participants did not complete the full ten velocities. 

 

The main limitation of curve-clustering analysis occurs if the clusters overlap, which can reduce the 

efficiency of the clustering process [20].  This may have occurred to some extent with Clusters 2 

and 3, which displayed similar FSA values and trend over the lower velocities, potentially 

increasing the difficulty of clustering participants who failed to reach the higher velocities.  This is 

reflected in the few lower membership probabilities for these two clusters (Figure 3).  A solution 
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would have been to neglect participants who failed to reach a velocities >4 m·s
-1

; however, this only 

accounted for three participants. 

 

The effect of running velocity on the remaining gait cycle variables of stride frequency (increased), 

normalised stride length (increased), ground contact time (decreased) and duty factor (decreased) 

were in good overall agreement with previous studies [23–27].  Furthermore, the difference in these 

variables between Clusters 1 and 3 were in agreement with studies comparing MFS / FFS and RFS 

runners [5,9]. Perhaps of greatest interest is the behaviour of Cluster 2 runners and, in particular, the 

relatively high stride frequencies and low stride lengths even at low velocities where FSAs were 

large positive, i.e. they tended to track Cluster 1 despite FSAs closer to Cluster 3.  Given existing 

evidence for a positive relationship between stride length and impact loading, e.g. [28,29], Cluster 2 

runners appear to adopt a stride length which may result in reduced impact loading compared to 

Cluster 3 runners. 

 

All clusters demonstrated an underlying trend for FSA to increase very gradually with running 

velocity for velocities up to 5 m·s
-1

 as similarly reported in previous studies [11,30].  For Cluster 1 

this was minimal at ~2° over the velocity range.  For Cluster 2 this was only present up to 4 m·s
–1

 

and was again small at ~3°, before FSA started to reduce (as similarly reported in [11]).  For Cluster 

3 the increase was largest at ~5°.  This trend of increasing FSA for runners already exhibiting a 

large positive FSA is of some concern.  It could be hypothesized that it was due to Cluster 3 runners 

increasing stride length through increasing hip range of motion without altering knee and ankle 

kinematics, which may have implications for over-striding.  A first approximation to examine this 

hypothesis can be achieved based on simple trigonometry; by considering a fixed leg length at 

touchdown [30–32] and using the treadmill velocity and ground contact time to establish horizontal 

touchdown position to estimate FSA.  This approximation predicted an increase in FSA very similar 

to that observed experimentally, to within 1° for velocities up to 4.4 m·s
–1

; however, confirmation 
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of the hypothesis would require further study.  From a biomechanics perspective, as running 

velocity increases, touchdown thigh angle tends to become more horizontal which dominates 

smaller increases in knee flexion and negligible change in ankle angle [30].  This leads to 

touchdown extending further in-front of the body [31].  Cluster 2 appear to modulate these changes 

by reducing footstrike angle which, similarly to the lower stride length for these runners as 

discussed above, may result in reduced impact loading compared to Cluster 3 runners ([11,33]).  

Although whether these technique changes represent a conscious effort by Cluster 2 runners to 

reduce impact loading is not currently known. 

 

Cluster analysis is often used as an initial step of grouping data prior to further analysis.  In this 

study it has provided an objective means of classifying the runners into one of three groups of 

behaviour, an efficient way of summarising the results from all 102 participants as well as a means 

to allow additional runners to be classified.  The current approach may also help to explain previous 

FSA versus running velocity results and, in particular, the increased standard deviations at higher 

velocities [11,30].  Specifically these groups may not have been homogenous but have contained a 

mix of runners from the different Clusters identified here.  Finally, this novel approach has 

identified some specific areas that warrant further investigation.  Principally the biomechanical 

differences between Clusters 2 and 3 at low velocities (where FSAs are similar) versus high 

velocities (where FSAs differ) in order to better understand how the observed behaviours are 

achieved and any implications these may have for performance and / or injury. 

 

The main limitations of this study were the fixed velocity range used for all participants and the 

lack of counterbalancing of these velocities.  Ideally subject-specific velocities would have been 

used spanning an individual’s walk-run transition to maximum sprint velocity.  This approach was 

infeasible based on the number of participants recruited as it would have required two sessions per 

participant, the first to establish these limiting velocities.  Furthermore, maximal sprint velocity 
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would have been challenging to accurately determine given the recreational athlete population some 

of whom were un-used to and / or uncomfortable running at high velocities.  The fixed velocities 

approach also allowed the results to be considered in the context of comparable previous studies as 

presented herein [11,30].  Thus, although the current data lacks a subject-specific velocity scaling, 

this is unlikely to have influenced the main outcomes of the curve-clustering analysis.  The threat of 

fatigue influencing the results due to the lack of counterbalancing was considered small.  All 

participants were encouraged to use the two minute rests between velocities, only the final two or 

three velocities pushed the participant beyond their comfortable running range and all were engaged 

in regular exercise that included running. 

 

In summary, using FSA to quantify FSP has allowed the changes with velocity to be examined with 

greater resolution than previous studies that relied on discrete classification.  The curve-clustering 

analysis on the FSA – running velocity data provided a novel and relevant means of grouping 

participants for further assessment of their running biomechanics.  Three distinct patterns of FSA – 

velocity behaviour were identified: small / negative FSA throughout; large positive FSA at low 

velocities transitioning to a smaller FSA at higher velocities; and large positive FSA throughout.  

Notably, there were two trends in behaviour for runners with large positive FSAs at lower velocities, 

only one of which demonstrated a decrease in FSA with increasing running velocity. 
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