

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

i

The Investigation of a Method to Generate Conformal Lattice

Structures for Additive Manufacturing

James Brennan-Craddock

Doctoral thesis submitted in partial fulfilment of the requirements for the award of Doctor of

Philosophy of Loughborough University

November 2011

© James Brennan-Craddock 2011

ii

i

Abstract

Additive manufacturing (AM) allows a geometric complexity in products not seen in conventional

manufacturing. This geometric freedom facilitates the design and fabrication of conformal

hierarchical structures: three-dimensional arrays of struts arranged into lattices that fit within a

particular shape. Entire parts or regions of a part can be populated with lattice structure,

designed to exhibit properties that differ from the solid material used in fabrication. Multiple

components can be consolidated into a single part.

Current computer aided design (CAD) software used to design products is not suitable for the

generation of lattice structure models. Although conceptually simple, the memory requirements

to store a virtual CAD model of a lattice structure are prohibitively high. Conventional CAD

software defines geometry through boundary representation (B-rep); shapes are described by the

connectivity of faces, edges and vertices. While useful for representing accurate models of

complex shape, the sheer quantity of individual surfaces required to represent each of the

relatively simple individual struts that comprise a lattice structure ensure that memory limitations

are soon reached. Small arrays of geometrically simple structures can be generated, however this

severely restricts the design opportunities afforded by AM. Additionally, the conventional data

flow from CAD to manufactured part is arduous, involving several conversions between file

formats. As well as a lengthy process, each conversion risks the generation of geometric errors

that must be fixed before manufacture.

A cut down version of B-rep modelling was implemented that, despite measures to simplify the

process was still prohibitively slow. Before the potential of AM fabricated conformal structures

could be thoroughly investigated a method was needed that could generate large arrays of

complex conformal lattice structures. A literature review was conducted to investigate alternative

methods of geometry representation that are more suitable towards representing lattice

structure geometry.

A method was developed to specifically generate large arrays of lattice structures, based on a

general voxel modelling method identified in the literature review. The method is much less

sensitive to geometric complexity than conventional methods and thus facilitates the design of

considerably more complex structures. The ability to grade structure designs across regions of a

part (termed ‘functional grading’) was also investigated, as well as a method to retain

connectivity between boundary struts of a conformal structure. In addition, the method

ii

streamlines the data flow from design to manufacture: earlier steps of the data conversion

process are bypassed entirely.

The effect of the modelling method on surface roughness of parts produced was investigated, as

voxel models define boundaries with discrete, stepped blocks. It was concluded that the effect of

this stepping on surface roughness was minimal. This thesis concludes with suggestions for

further work to improve the efficiency, capability and usability of the conformal structure method

developed in this work.

iii

Acknowledgements

I would like to sincerely thank my supervisors, Prof. Richard Hague and Prof. Ricky Wildman for

their advice, guidance and motivation over the last few years.

I would also like to thank the EPSRC through the IMCRC for funding this work, and my fellow

Scuta project researchers who offered critique, direction and collaboration.

To past and present members of the AMRG, I thank you for your support. In particular, I would

like to thank Mark East (for always making space), Dr. Guy Bingham (for advice and assurance)

and Dave Brackett (for the expertise and endless patience exhibited while I learned Matlab!).

Finally, my thanks goes to my friends and family. You have provided the encouragement, support

and invaluable proof-reading skills that I could not have done without.

iv

Table of Contents

Abstract .. i

Acknowledgements .. iii

List of Figures .. viii

1 Introduction and Background Work ... 1

1.1 Additive Manufacturing .. 1

1.2 Overview of Scuta ... 5

1.3 AM Lattice Structures ... 7

1.4 Foam as an Energy Absorbent Material .. 8

1.4.1 Mechanisms of Energy Absorption ... 9

1.5 Design of Energy Absorbent AM Lattice Structures.. 11

1.5.1 Compromises in the Design of Foam-Inspired AM Lattice Structures 12

1.5.2 The Kelvin Cell as a Mathematical Representation of Foam .. 13

1.5.3 Concept Designs for Energy Absorbent AM Lattice Structures .. 14

1.6 The Greater Potential of Lattice Structures .. 16

1.7 Conclusions from Background Work: Issues with Modelling Lattice Structures 17

2 The Generation of 3D Geometry and the Implications for Lattice Structure Design - the

Conventional Route... 19

2.1 Conventional route - Generation of Lattice Structures through Conventional CAD 21

2.1.1 Overview of Conventional CAD ... 21

2.1.2 Applications - Structure Generation using Conventional CAD.. 27

2.1.3 Suitability of Conventional CAD for Structure Design ... 30

2.2 Stage 2 of Conventional Route - Generating Lattice Structures at STL 32

2.2.1 The STL File Format ... 32

2.2.2 Applications - Processes that use STL ... 34

2.2.3 Advantages and Disadvantages of STL manipulation ... 38

2.3 Stage 3 of Conventional Route - Generating Structures at Slice Level 40

2.3.1 Slice formats.. 40

2.3.2 Applications - Processes that use Slice Files ... 42

2.3.3 Suitability .. 48

2.4 Summary of the Conventional Route .. 49

v

3 The Generation of 3D Geometry and the Implications for Lattice Structure Design -

Alternate Methods .. 50

3.1 STL 2.0 ... 51

3.2 Voxels .. 55

3.2.1 Voxel Methods for Structure Generation ... 56

3.2.2 Suitability of Voxels for Structure Generation .. 60

3.3 Function Representation .. 64

3.4 Conclusions ... 66

4 The Design of Conformal Lattice Structures .. 68

4.1 Overview of General Lattice Structure Design .. 68

4.2 Methods to Generate Conformal Lattice Structures .. 69

4.2.1 Trimmed Structures .. 69

4.2.2 Swept Structures ... 74

4.2.3 Meshed Structures .. 76

4.2.4 Voronoi Tessellations .. 79

4.3 Summary of Conformal Structure Methods ... 82

5 Research Methodology.. 84

5.1 Problem Identification .. 84

5.2 Research Aims ... 85

5.3 Research Approach ... 85

6 Preliminary Work: Adapting Boundary Representation .. 86

6.1 Skinning a Trimmed Structure .. 86

6.1.1 The Net Skin .. 87

6.2 B-rep Net Skin Construction Method .. 90

6.3 Basic Implementation of the Method ... 90

6.3.1 Defining the Conformal Shape .. 90

6.3.2 Defining the Base Tessellation .. 91

6.3.3 Connecting Intersection Points ... 94

6.3.4 Constructing Net Skin Geometry .. 95

6.3.5 Writing Formats Suitable for Manufacture ... 97

6.3.6 Summary of the Basic Implementation .. 99

vi

6.4 Advanced Implementation of the Method ... 100

6.4.1 Representation of the Conformal Shape .. 100

6.4.2 New Unit Polyhedron .. 103

6.4.3 Reduction of Intersection Checking .. 106

6.5 Discussion.. 109

6.6 Summary ... 111

7 The Development of a Conformal Structure Method .. 112

7.1 The Conformal Structure Method... 112

7.1.1 Importing a CAD Model for Processing ... 113

7.1.2 Trimming Structure to a Conformal Shape ... 116

7.1.3 Constructing the Net Skin ... 119

7.1.4 Combining Structure Elements ... 124

7.1.5 Conversion to Slice File ... 125

7.2 Functional Grading .. 126

7.3 Ensuring Net Skin Connectivity ... 128

7.4 Constructing a Skin from a Conformal Shape ... 132

7.5 Structure Visualisation .. 133

7.6 Strengths and Limitations of the Conformal Structure Method ... 135

7.6.1 Speed and Robustness .. 135

7.6.2 Initial Overhead ... 137

7.6.3 X-Y Plane ... 137

7.6.4 Pixel Stepping .. 138

7.7 Summary ... 138

8 The Effect of Pixel Stepping on the Surface Roughness of Conformal Structure Method

Produced Parts .. 140

8.1 Experiment Aims ... 141

8.2 Experiment Method .. 141

8.2.1 Sample Design and Manufacture .. 141

8.2.2 Surface Roughness Measurement .. 143

8.3 Fourier Analysis ... 145

8.4 Methods to Reduce Pixel Stepping ... 158

8.5 Conclusions ... 159

vii

9 Conclusions and Further Work ... 160

9.1 Achievement of Research Aims .. 160

9.2 Key Conclusions .. 160

9.3 Recommendations for Further Work .. 161

References ... 165

viii

List of Figures

Figure 1-1: AM parts, clockwise from top left: 'Trabecular' tray [9], ‘Lightpoem' personalised

candle holder [10], Prosthetic leg [11], 'Dahlia' wall light [9], volume and flow

optimised frontplate [12], hydraulic component [13], bionic handling assistant [14].. 2

Figure 1-2: Topology optimised bracket concept for use in a commercial aircraft [16] 3

Figure 1-3: A 16-part duct assembly consolidated into a single part for AM [2] 3

Figure 1-4: A self-supporting powder bed versus support structures. The ‘low angled’ face on the

right side of the part does not require support structures ... 4

Figure 1-5: A schematic of the laser sintering process .. 5

Figure 1-7: a) An equidistant mesh, b) a single AM textile link and c) a conformal AM textile [24] . 7

Figure 1-8: Examples of lattice structures: a) ‘octet truss’ and b) bitruncated cubic array of

truncated octahedra .. 8

Figure 1-9: Formation of cellular structure; bubble expansion pushes material into walls and struts

 ... 9

Figure 1-10: the cellular structure of closed-cell [26] and open-cell [34] foam................................ 9

Figure 1-11: Comparison of elastic behaviour of solid and foam made from same material, for a

given peak stress (taken from [27]) ... 10

Figure 1-12: Compression of a hexagonal honeycomb. Although not a true representation of

foam, it illustrates localised collapsing and how it propagates [25] 11

Figure 1-13: A Kelvin cell (with curved faces) and the planar-faced truncated octahedron it is

based on .. 13

Figure 1-14: An FE model of a Kelvin cell structure [45] .. 14

Figure 1-15: Straight strut structure design with a) no node fillet and b) large node fillet 15

Figure 1-16: The number of triangles required to represent a) cylindrical and b) triangular struts is

vast ... 15

Figure 1-17: The compressive response of examples of the straight strut samples Error! Bookmark

not defined.

Figure 1-18: Helical strut structure design ... 16

Figure 1-19: The compressive response of examples of the helical strut samples .. Error! Bookmark

not defined.

Figure 1-20: Straight and helical struts samples before, during and after maximum compression

 .. Error! Bookmark not defined.

Figure 1-21: Shin protector concept, designed as a demonstration part somewhere between

football shin guard and cricket shin pad ... 18

Figure 2-1: Conventional route of data flow from design to additive manufacture 20

Figure 2-2: Screenshots from NX of hole feature with CNC-influenced parameters 21

Figure 2-3: a) A cube and it's implicit functions, b) the 'Y < Ymax' half space and c) the half-spaces

that define a cube from infinite space .. 22

Figure 2-4: Boolean operations between two primitives .. 23

Figure 2-5: CSG hierarchy tree ... 23

Figure 2-6: Planar, toroidal and quadratic B-rep surfaces ... 24

Figure 2-7: Union of two B-rep cubes - vertices are first modified which cascades down into edge

and face modification .. 25

Figure 2-8: Simple CAD model with two parametric controls.. 26

ix

Figure 2-9: A selection of cell types available in CASTS [80] .. 27

Figure 2-10: a) Input shape, b) tessellated structure & c) section of trimmed structure with hip

joint model [56] ... 28

Figure 2-11: 3D printed tissue scaffolds [55] ... 28

Figure 2-12: a) Cell placement, b) cell designs with torus-shaped common interface visible & c)

photograph of fabricated part [54] ... 29

Figure 2-13: Porous structure modelled in CSG [64].. 29

Figure 2-14: a & b) valid models & c) invalid model, but each with a Euler's characteristic of 2

(based on a figure from [72]) ... 31

Figure 2-15: Example geometry as a) a CAD model & b) an STL model ... 32

Figure 2-16: The ASCII STL file format .. 33

Figure 2-17: The relationship between triangle count and size of a binary STL file 34

Figure 2-18: AutoFab structure generation software - showing lattice structure and solid skin

option [92] ... 35

Figure 2-19: Conforming a structure to a shape through sweeping .. 35

Figure 2-20: Watertight connection between two unit cells [93] & inset: surface model of a unit

cell .. 36

Figure 2-21: Examples of the complexity achievable with the Gibson et al. conformal structure

method [70] ... 36

Figure 2-22: Efficient geometry design in STL modelling ... 37

Figure 2-23: TetraLattice structure [95] ... 38

Figure 2-24: Manifold errors: a) mismatching connecting surfaces and b) intersecting triangles .. 39

Figure 2-25: Layers of a slice file corresponding to AM process' layer manufacture 40

Figure 2-26: Relationship between slice format and AM machine type .. 41

Figure 2-27: Trimming a structure to a shape at the slice level with netFabb Studio software [106]

 ... 42

Figure 2-28: Approximate trimmed structure visualisation in netFabb Studio [106] 43

Figure 2-29: Pillar, diagonal and octahedral struts .. 44

Figure 2-30: Fine metal structures produced with Manipulator [52,108] 44

Figure 2-31: Side view of interpolated laser profiles of a diagonal strut in Manipulator software . 45

Figure 2-32: Constructing regular tessellations with structured placement of seeding points [96] 45

Figure 2-33: Generating multiple slices of structure by 'animating' seeding points [96] 46

Figure 2-34: SEM images of FDM bead lattice structures [109] .. 47

Figure 2-35: SEM images of spaced scan patterns [112] ... 47

Figure 3-1: Integrating into the conventional route from design to additive manufacturing 50

Figure 3-2: Redundant code in the ASCII STL file format (facet A and facet B are neighbours) 51

Figure 3-3: Defining multiple and graded materials in the AMF format [115] 52

Figure 3-4: Defining a structure in the AMF format [115] ... 53

Figure 3-5: AMF pseudo-code, based on [118] .. 53

Figure 3-6: a) Planar face with 1 normal, b) curved face with three and c) subdivided further to

more accurately represent a curved surface [118] ... 54

Figure 3-7: Low resolution pixel image of a circle and voxel model of a sphere 55

Figure 3-8: Tissue scaffold modelled with voxels [125] ... 56

Figure 3-9: Filling a slice of voxels with structure [125] ... 57

Figure 3-10: Random porous structures generated from voxel models [127] 57

x

Figure 3-11: a) Voxel model - stepping in three axes. b) approximation of a laser sintered model -

stepping in one axis. .. 58

Figure 3-12: a) A voxel model and b) the isosurface constructed from it 59

Figure 3-13: a) Eight voxel group, b) midpoint selection and c) midpoints connected to form

triangular faces .. 59

Figure 3-14: a) Triangulation of a flat face of a B-rep model (2 triangles), b) triangulation through

isosurface construction of a voxel representation of a flat face (200 triangles) 60

Figure 3-15: 2D quadtree decomposition .. 61

Figure 3-16: 3D-Coat voxel modeller: capable of complex and organic geometry, including surface

texture [134] .. 62

Figure 3-17: The implicit functions and the Booleans to generate the cubic lattice structure 64

Figure 3-18:Modifying structure geometry through manipulation of a function [59] 65

Figure 3-19: F-rep structure dimensions grading as a function of a) distance along x-axis, b)

distance from surface of sphere and c) random noise [59] .. 65

Figure 3-20: Integrating alternate methods into the conventional route. F-rep and voxel methods

can generate geometry independently or import from CAD (hence dashed arrows),

whereas STL 2.0 (as primarily a translation language) requires a CAD model 67

Figure 4-1: Lattice structure naming convention ... 69

Figure 4-2: Trimming a structure to fit a shape ... 70

Figure 4-3: Trimmed structures investigated for medical applications [78][79] 70

Figure 4-4: Trimmed structure generation by Wettergreen et al. [54] ... 71

Figure 4-5: Topology optimisation - selection of structure through a density map [81] 72

Figure 4-6: Trimming a structure to a thin-walled conformal shape ... 72

Figure 4-7: A lattice structure partially covered by a skin.. 73

Figure 4-8: Sweeping a structure around a shape ... 74

Figure 4-9: Swept structure mapped to thin-walled geometries [49,70] .. 75

Figure 4-10: Sweeping a structure between two surfaces ... 75

Figure 4-11: Difficulty in sweeping a structure around a shape with tight bends and no clear 'top'

and 'bottom' .. 76

Figure 4-12: A finite element mesh .. 77

Figure 4-13: Mesh and structure [81] .. 78

Figure 4-14: a) tet, b) penta and c) hex finite elements .. 79

Figure 4-15: Construction of a 2D Voronoi diagram (based on a figure from [153]) 79

Figure 4-16: Constructing a random structure from a 3D Voronoi cell ... 80

Figure 4-17: Applications of 3D Voronoi tessellations: a) in modelling of granular flow [159] and

b) general modelling [151] .. 81

Figure 4-18: Constructing a regular Voronoi tessellation .. 81

Figure 4-19: Conformal structure methods: trimmed, swept, meshed and Voronoi 82

Figure 4-20: a) alternating cubic and b) bitruncated cubic tessellations ... 83

Figure 6-1: A trimmed structure with a) no skin and b) a solid skin .. 87

Figure 6-2: a) a trimmed structure, b) a trimmed structure with net skin and c) just the net skin . 88

Figure 6-3: Constructing a net skin for a single cell by considering a structure as a based on a

tessellation of polyhedra ... 88

Figure 6-4: Types of net skin .. 89

Figure 6-5: 'Nearest neighbour' failure to properly re-connect cut struts on a thin-walled part 89

xi

Figure 6-6: Representation of point cloud data ... 91

Figure 6-7: Constructing a surface from the point cloud .. 91

Figure 6-8: Structure of unit polyhedron matrix ... 92

Figure 6-9: A polyhedron intersecting with a surface and interpolated points generated on its

edges .. 93

Figure 6-10: Instances of a face intersecting a surface .. 93

Figure 6-11: Finalised intersection points and correctly joining those points 94

Figure 6-12: The necessity of spheres when mapping geometry to struts 95

Figure 6-13: Generating the points to be enclosed by a convex hull .. 96

Figure 6-14: 2D convex hull example ... 96

Figure 6-15: Net skin struts generated from convex hulls ... 97

Figure 6-16: Varying level of faceting of convex hull struts ... 97

Figure 6-17: STL ASCII format [2]... 98

Figure 6-18: The completion the basic implementation ... 99

Figure 6-19: Mesh grid stretching on steeper curvature ... 101

Figure 6-20: a) FE mesh generated from CAD model of a section of a body armour concept b) Net

skin struts constructed from intersection with FE mesh nodes (every 10th node

shown) ... 102

Figure 6-21: Triangulation of a shape: a) standard STL conversion and b) FE mesh 103

Figure 6-22: Complete and partial unit polyhedra - duplication apparent when tessellated 103

Figure 6-23: Partial polyhedron definition matrices .. 104

Figure 6-24: Using the partial polyhedron definition matrices to determine which intersection

points connect ... 105

Figure 6-25: Constructing base tessellation to fit a conformal shape ... 106

Figure 6-26: Identification of selection windows for individual polyhedra 107

Figure 6-27: Number of times fewer checks required by advanced method compared to basic

method .. 108

Figure 6-28: Irregularities in pattern of a surface mesh .. 110

Figure 6-29: An intersection tolerance that is suitable for a region of fine mesh may not be for a

coarser region .. 110

Figure 7-1: Straight strut (with triangular cross section) and helical strut structures 113

Figure 7-2: Data flow .. 114

Figure 7-3: The conventional flow of data from modelling to manufacture 115

Figure 7-4: A single layer of a vector and raster slice file .. 116

Figure 7-5: Basic code structure of the conformal structure method ... 116

Figure 7-6: Bitmap to matrix conversion of a single slice .. 117

Figure 7-7: Trimming structure to a conformal shape - analogous to a Boolean intersection 118

Figure 7-8: Generating trimmed structure slice - analogous to a Boolean intersection 119

Figure 7-9: Comparison of cell and 'hole' ... 120

Figure 7-10: Difference between conformal shape and skin ... 120

Figure 7-11: Net skin matrix calculation .. 121

Figure 7-12: Net skin generation by Boolean subtraction ... 122

Figure 7-13: Method of generating a 'hole cell' from a given structure .. 123

Figure 7-14: Partially formed net skin where hole cell tessellation does not completely intersect

solid skin .. 123

xii

Figure 7-15: Modified hole cell that completely intersects skin in dashed region, although the

same modifications on other instances of cell destroys neighbouring struts (compare

with Figure 7-14) .. 124

Figure 7-16: Combining structural elements.. 124

Figure 7-17: Tracing boundary of pixellated shape .. 125

Figure 7-18: Structure of a Common Layer Interface (CLI) file .. 126

Figure 7-19: Functionally grading a conformal shape .. 127

Figure 7-20: Functionally graded structures generated from input gradients 128

Figure 7-21: Misalignment between a complex strut and the net skin ... 129

Figure 7-22: A graded boundary .. 129

Figure 7-23: Convolution calculation for a single element of a conformal shape matrix 130

Figure 7-24: Trimming the blurred conformal shape matrix to the original conformal shape 131

Figure 7-25: Re-aligning a complex strut with the net skin ... 132

Figure 7-26: Generating a hollow skin from a conformal shape .. 133

Figure 7-27: Structure visualisation with isosurfaces .. 134

Figure 7-28: Effect of sampling resolution on isosurface quality ... 135

Figure 7-29: Shapes with different volumes in the same 3D envelope ... 136

Figure 7-30: Orientation lock of sliced parts .. 138

Figure 7-31: A concept chest protector for taekwondo designed by the author on the Scuta

project .. 139

Figure 8-1: Pixel stepping at a boundary .. 140

Figure 8-2: Data flow for conventionally generated and method generated samples 142

Figure 8-3: Repetition of pixel stepping ... 143

Figure 8-4: Excessive reflection off a rough surface with optical measurement 144

Figure 8-5: Talysurf CLI 2000 test bed .. 144

Figure 8-6: Profile and Fourier transform of 10° sample ... 145

Figure 8-7: Low frequency aliasing ... 146

Figure 8-8: Transformation from a sawtooth profile to closer representation of actual pixel-

stepped profile... 147

Figure 8-9: Transformation from a sawtooth profile to a closer representation of an actual pixel-

stepped profile... 148

Figure 8-10: Calculating expected periodicity of the pixel stepping on a 10° sample 149

Figure 8-11: Uniform and non-uniform pixel stepping when approximating a straight, angled line

 ... 149

Figure 8-12: Identified pixel stepping patterns .. 150

Figure 8-13: Differences between pixel profiles and traced profiles ... 151

Figure 8-14: Edge effects - the source of low frequency peaks ... 152

Figure 8-15: Comparing original signal with Hann windowed signal for 10° method sample 154

Figure 8-16: Comparing windowed samples of all 10° samples - conventionally and method

generated... 155

Figure 8-17: Hann windowed signal for 5° method samples ... 155

Figure 8-18: Hann windowed signal for 5° conventional samples ... 156

Figure 8-19: Fourier spectra for all samples generated through conformal method 157

Figure 8-20: Hann windowed signal for 25° and 40° conventional samples 158

xiii

Figure 9-1: A B-rep cell constructor where cell type, cell diameter, strut diameter and helical

diameter can be adjusted .. 163

Figure 9-2: Integrating a density map from a topological optimisation approach into the conformal

structure method ... 164

1

1 Introduction and Background Work

The geometric freedom afforded by additive manufacturing (AM) allows the fabrication of complex

lattice structures. These lattice structures can be designed to possess a variety of physical properties

that have potential applications in a number of fields. However, conventional computer-aided design

(CAD) tools are unsuitable for designing lattice structures due to the underlying method in which

they handle geometry. The work in this thesis addresses this assertion with the investigation of a

modelling method specifically for the generation of complex lattice structures, however this chapter

first summarises the background work conducted by the author that led to it. The chapter is split into

sections that detail each stage of this background work as well as an overview of the literature used

as direction.

1.1 Additive Manufacturing

The technologies behind the emerging field of AM stem from those developed under the term 'Rapid

Prototyping' (RP) [1]. As the name suggests, the application for RP technologies is to quickly create a

prototype part, while the aim of AM is to provide the freedom to design end use parts exactly as

require2(2)(2)(I. Gibson, David W. Rosen, & Stucker, 2009)d [1,2]. Sometimes referred to as

rapid manufacturing' (RM), 'solid freeform fabrication' (SFF), 'layer manufacturing technologies'

(LMT) and others, the term 'additive manufacturing' has nonetheless been adopted by an ASTM

International standard [2-6].

There are many existing or potential advantages of additive manufacturing, from the reduction of

product development time and costs, reduction of resources required and the removal of tooling

associated with conventional manufacturing [1,2]. Arguably the most significant of these is the

removal of the tooling, as this has two major advantages. The first is that tooling (e.g., moulds or

machine tools) is expensive to manufacture, which prohibits product variation [1]. The second is that

the tooling itself obstructs a part during manufacture, limiting the geometric complexity of

conventionally manufactured products [7].

2

Parts produced by injection moulding, for example, require draft angles on faces parallel to the

direction the mould closes, to ensure easy removal after moulding [8]. Some features of a design

may not be possible with a standard two-part mould and may require a more expensive multi-part

mould. Certain features (like internal geometries) are impossible in injection moulding [1,8].

Essentially, production cost is linked to part complexity. This is not the case with additive

manufacture [1]. A selection of products designed for AM are shown in Figure 1-1.

Figure 1-1: AM parts, clockwise from top left: 'Trabecular' tray [9], ‘Lightpoem' personalised candle holder [10],

Prosthetic leg [11], 'Dahlia' wall light [9], volume and flow optimised frontplate [12], hydraulic

component [13], bionic handling assistant [14]

Rather than forming parts in a subtractive (e.g., machined) or formative (e.g., moulded) manner,

additive manufacturing 'prints' parts in layers. AM covers a broad range of manufacturing processes,

which all share this layer by layer approach to manufacturing. This allows the fabrication of

geometrically complex products that cannot be made by any other method [1], and reduces the link

between cost and complexity. The lack of tooling allows the design of customised and personalised

products, rather than the conventional 'one size fits all' [15].

The freedom to design a part unconstrained by conventional manufacturing processes allows its

function to become the main consideration of the design process. It has been proposed that design

optimisation techniques commonly used in the construction industry could be used extensively in the

design of products when fabricated by AM processes [1]. Figure 1-2 shows an example aircraft

bracket that has been designed using OptiStruct, a topology optimisation software package.

Boundary conditions and loads are applied to a 3D design envelope and the topology optimisation

software determines the optimum shape to withstand the environment. If performance of a product

3

is not the most important consideration, AM allows products to be optimised in terms of weight,

aesthetics or environmental impact.

Figure 1-2: Topology optimised bracket concept for use in a commercial aircraft [16]

Another advantage of AM technologies is that of part consolidation [1]. Manufacturing constraints in

conventional manufacturing mean that a product may have to be made in several parts, to allow for

their removal from tooling. As AM processes have no physical tooling within the build area, an

assembly can be reduced down to a minimum number of parts, where once separate components

can be merged together. This will reduce assembly time as well as eliminating any potential

weaknesses between mated surfaces [2]. An example of part consolidation applied to the design of

an aircraft duct is shown in Figure 1-3.

Figure 1-3: A 16-part duct assembly consolidated into a single part for AM [2]

4

Arguably the most significant disadvantage currently associated with AM is the available material

selection. The narrow range of materials that can be processed have relatively poor material

properties compared to conventional alternatives [4]. As a relatively new set of technologies, AM is

expensive to run, and the materials expensive to buy [17]. AM is also much slower than conventional

processes for the mass production of parts and accuracy is also an issue [4,18]. However, the

combination of customisation, geometric complexity and part consolidation present a new way to

design products, a 'new design paradigm' [17].

There are a wide range of technologies that fall under the term ‘additive manufacturing’, each

fabricating parts in a layer by layer fashion. 3D printers run a print head over a powder bed that

deposits a coloured binder that glues successive layers together [19]. The powder bed is lowered by

the thickness of one layer, a new layer of powder is rolled over and the process repeats. Jetting is a

similar technique that uses a print head to deposit droplets of thermosetting polymer onto a build

platform, that is subsequently cured with a UV lamp [1,20]. A ‘support structure’ must also be built at

the same time for overhanging portions of the part to build onto, although ‘low angled’ faces may be

self-supporting, as shown in Figure 1-4. This support structure is removed in post processing. Fused

deposition modelling (FDM) machines work in a similar fashion to the jetting process. Rather than a

multitude of print heads depositing droplets of thermosetting polymer, FDM extrudes a single fine

bead of nearly molten thermoplastic (such as ABS) [21]. Each layer is ‘drawn’ by the FDM nozzle,

which also requires a support structure to be built concurrently.

Figure 1-4: A self-supporting powder bed versus support structures. The ‘low angled’ face on the right side of

the part does not require support structures

Stereolithography (SLA) uses a laser to scan over the surface of a vat of resin, the laser spot curing

the resin into a solid polymer [1]. Unlike the other processes, the part is submerged in a liquid resin

vat during manufacture, however like jetting and FDM a support structure is still required to prevent

the part drifting away. Laser sintering (LS) utilises a similar setup to SLA, but rather than a vat of

resin, the laser scans over a powder bed, sintering (or melting, depending on the process) powder

together [21]. Laser sintering can process a range of materials, from polymers (such as nylon-11 and

5

nylon-12), to ceramics and metals (such as stainless steel and titanium). Like 3D printing, the powder

bed supports the fabricated part so an extra support structure is not required. Metal laser sintering is

an exception, as often a support structure is required to prevent the sintered part from warping

during building [22]. A schematic of the laser sintering process is shown in Error! Reference source

not found..

Figure 1-5: A schematic of the laser sintering process

1.2 Overview of Scuta

The work in this thesis was undertaken as part of an EPSRC-funded, multi-disciplinary research

project called Scuta. The aim of Scuta (Latin for ‘shields’) was to investigate the use of AM in the

production of protective garments for sports. The geometric freedom afforded by AM potentially

allows the design of PPE that is tailored to the unique shape of an individual’s body. The impetus

being that by more closely fitting an individual athlete than generic PPE can, a conformal garment

could potentially both improve performance and reduce the risk of injury [23]. Three sports were

selected for investigation: football, cricket and taekwondo. To provide focus to the research, a single

piece of PPE from each sport was nominated: a shin guard, a shin pad and a hogu (a wrap-around

chest protector) respectively.

Laser

Piston that lowers

powder bed

Powder bed or ‘build

volume’
Wiper blade

Part, built layer

by layer

6

Scuta was a multi-disciplinary project involving several departments and research groups across

Loughborough University. Sport and Exercise Science focused on the simulation of human-inflicted

impacts and the associated reactions/injuries, i.e. the working environment of sports PPE. Electrical

and Electronic Engineering developed wearable wireless impact sensors to facilitate automatic

scoring (specifically for taekwondo). The Sports Technology Institute (STI) tested existing

conventional PPE: both the mechanisms behind energy transfer and absorption as well as users’

perceptions of comfort and fit. Finally, the Additive Manufacturing Research Group (AMRG)

investigated the implementation of AM technologies in sports PPE.

 The research carried out by the AMRG was itself split into two broad fields: the investigation of more

flexible, elastomeric materials that could be processed by laser sintering and the investigation of a

means to design conformal, energy absorbing garments. The work in this thesis was instigated to

address the latter research question, officially titled ‘Work Package 4 (WP4): Generation of 3D

Conformal Data’, its position within the project structure detailed in Table 1-1.

 WP1: Human Related Impact Intensity during Contact Sports (Sport and Exercise Science)

 WP2: Perception of Comfort of Protective Equipment (STI)

 WP3: Advanced Modelling of Protective Equipment of Sports (STI)

 WP4: Generation of 3D Conformal Data (AMRG, focus of this thesis)

 WP5: Materials Analysis (AMRG)

 WP6: Instrumentation and Validation (Electrical and Electronic Eng.)

Table 1-1: Scuta project structure

Laser sintering was determined to be the AM process with the most potential for sports personal

protective equipment (PPE). Compared to other AM processes, laser sintered polymer parts are

relatively strong and suitable for functional applications [21]. Significantly, polymer laser sintering

does not require additional support structures to be built as parts are self-supporting within the

powder bed [19,21]. This is advantageous because complex parts can be built without having to

consider strategies to minimise or remove supports. This is particularly advantageous for designs

with complex internal geometries, where support removal may be laborious or impossible.

To achieve the goal of conformal energy absorbent AM garments, WP4 was further split into two

areas of research: the design and development of energy absorbing AM samples and the

investigation of a method to conform these samples to fit a particular shape. Initially, AM textiles

were investigated as a means to generate energy absorbent garments, such as the example shown in

Figure 1-6 [24]. However, the capability of energy absorbent textiles were limited, specifically in

7

terms of the capability to conform to a given surface. It is not possible to map textiles links across

particularly tight curves, due to the size of the links.

Figure 1-6: a) An equidistant mesh, b) a single AM textile link and c) a conformal AM textile [24]

In terms of the mechanical properties of AM textiles, because AM textiles are generally composed of

discrete links, loosely linked together to facilitate flexibility, they are not suitable for energy

absorption. An AM textile cannot efficiently transfer energy from a localised impact over a large area,

due to this loose assembly. For this reason, all the energy transferred from a localised impact would

have to be absorbed by the few links in the local area. In terms of energy absorbing conformal PPE,

AM textiles lack potential both as energy absorbers and conformal capability.

1.3 AM Lattice Structures

The three items of sports PPE selected for focus on the Scuta project (football shin guard, cricket shin

pad and taekwondo hogu) all perform in a broadly similar role. The energy from a projectile (either

ball or body contact) impacts the PPE at a single point. Enough of this energy must be absorbed by

the PPE to prevent injury. While AM textiles were deemed unsuitable for further development,

lattice structures were identified as a potential basis for energy absorbing sports PPE. Like AM

textiles, a lattice structure is composed of a repeating element that are tessellated over a region.

Rather than a loose array of interlocking links however, a lattice structure is a solid arrangement of

interconnected struts, examples shown in Figure 1-7. As a single body, movement, force or energy

are more easily transferred from one region to another. This theoretically allows the energy of an

impact to spread over a wider region of an AM sports PPE garment, reducing the strain in any one

area and making the PPE concept more resilient.

a) c)

b)

8

Figure 1-7: Examples of lattice structures: a) ‘octet truss’ and b) bitruncated cubic array of truncated octahedra

Preliminary work for this thesis investigated compliant lattice structures that could be used for

energy absorption. In the design of energy absorbent lattice structures, inspiration was found while

investigating the mechanisms behind the compression of foam.

1.4 Foam as an Energy Absorbent Material

The most commonly used material in energy absorbing applications [25], polymeric foams are also

used in the majority of existing sports PPE. Polymeric foams are also used in general PPE, footwear,

bumpers, seating, mattresses and packaging [26-28]. Foams are suited to absorbing energy because

they have a low density, cellular structure that deforms readily under load [25].

Polymeric foam products are often moulded; a viscous mixture of the liquid polymer, blowing agent

and water (as well as a surfactant and catalyst) is poured into a mould [29]. The blowing agent and

water react, producing gas which is absorbed into the liquid mixture. Upon the point of super

saturation within the mixture, nucleation of bubbles occurs [30]. As the bubbles expand, the polymer

between bubbles is stretched to a membrane, pushing excess polymer into struts between these

bubbles. These struts form irregular polyhedral-like cells, as illustrated in Figure 1-8. The

manufacturing process is a source of anisotropy in foams. For example, in moulding the foam

expands in a mould much like bread rising, and cells elongate in the rise direction [31,32].

a) b)

9

Figure 1-8: Formation of cellular structure; bubble expansion pushes material into walls and struts

There are two broad categories of foam: open cell and closed cell. A closed-cell structure consists of

walls and struts, forming isolated cells of gas. An open-cell structure consists solely of struts – during

manufacture, the cell walls formed between nucleating bubbles are pierced and shrink into the

forming struts. This creates a structure where a fluid (ie: air) can flow freely through it [25,33].

Figure 1-9: the cellular structure of closed-cell [26] and open-cell [34] foam

1.4.1 Mechanisms of Energy Absorption

Foams are particularly good at absorbing energy, due to their low density cellular structure that

deforms elastically. Energy absorption is the ability to compress when kinetic energy is exerted on

the object without rebounding [28]. A foam absorbs the energy from an impact, reducing the

transfer of energy to the object it is protecting to specified levels. The mechanisms of energy

absorption vary depending on the type of foam. An open cell foam absorbs energy through strut

Bubble

nucleation site

Bubble expansion

Cell wall

Cell strut

10

buckling and the work done in pushing air out of the complex structure. Closed cell foams absorb

energy through strut buckling, cell wall bending and the compression of the gas trapped within each

cell [27].

The cellular structure also lends itself well to absorbing oblique impacts [25]. Compared to a solid

block of the same material, foams will always generate a lower peak force when absorbing the same

amount of energy [27]. This is demonstrated by the difference in area under the curves in Figure

1-10.

Figure 1-10: Comparison of elastic behaviour of solid and foam made from same material, for a given peak

stress (taken from [27])

Foams in general undergo compressive behaviour of three regimes [35,36]. Initially, the foam

exhibits a linear elastic region where very little energy is absorbed. A wide plateau region follows,

with a densification phase where stress rises steeply [36]. Low relative density foams only have two

regimes of compression: a longer linear elastic region, followed by densification [35].

For high relative density foams, the initial linear elastic region is short, it only occurs at small

deformations. The foam structure compresses relatively uniformly across the area of impact [35]. In

open-cell foams, energy is absorbed through the bending of the structure’s struts. Closed-cell foams

will generally absorb higher impacts as compression of the gas trapped inside cells will contribute to

its energy absorption mechanisms [37]. However, it has been shown that closed-cell foams will suffer

from fatigue as air permeates through its cell walls and escapes. Over repeated compressions this

lowers the foam’s resilience (the ability to recover to the original shape) [37].

Wide stress plateau Linear elastic Densification

Compressive Strain , ε

C
o

m
p

re
ss

iv
e

 S
tr

e
ss

,
 σ
 (
kP

a
)

Fully dense

elastic solid

Energy absorbed by solid

Energy absorbed by foam

Foam

11

The wide ‘stress plateau’ illustrated in Figure 1-10 is a characteristic of foams; the reason why they

make such good energy absorbing materials. It is a stage of elastic, localised collapse where

weaknesses in the structure buckle [32,35]. Further deformations will spread from these localised

areas until the foam is completely compressed. This is illustrated in Figure 1-11.

Figure 1-11: Compression of a hexagonal honeycomb. Although not a true representation of foam, it illustrates

localised collapsing and how it propagates [25]

The final regime of compression sees significant stiffening of the foam in a phase known as

densification [25,35]. The point at which this occurs is at the foam’s peak stress and is shown by the

rapid gradient increase at about 70% strain in Figure 1-10 [27,28]. Cells have completely collapsed

and the struts of the structure are compressed into contact. The structure now more closely

approximates the properties of a solid block, hence the similarity in gradients between the ‘fully

dense elastic solid’ and the densification phase of the foam Figure 1-10. Plastic deformation will start

to occur sporadically throughout the structure, reducing the foam’s resilience [32]. This will occur

primarily at the joints between struts, forming ‘plastic hinges’ [25].

1.5 Design of Energy Absorbent AM Lattice Structures

An energy absorbing material would have a stress plateau just below that which was identified as the

damaging level of the object it is protecting [25]. In effect, the foam would not reach the

densification phase during normal operating conditions. This would ensure that the product does not

suffer fatigue, but it would also ensure that minimal impact energy is transferred to the object that it

is protecting.

12

With an understanding of the effects of the cellular structure on the compressive behaviour of foam,

concept energy absorbing AM lattice structures were developed. With the control that AM brings in

structure design, AM lattices have the potential to exhibit the exact properties and fit the exact

shape required, as opposed to conventional foams bound by the foaming process and tooling

constraints. Despite the freedom that AM brings however, there are key differences between the

structure of a perfect foam and what can be fabricated through AM.

1.5.1 Compromises in the Design of Foam-Inspired AM Lattice Structures

The difference in scale between conventional foams and AM lattice structures means that replicating

the random cellular structure would not be conducive to purposefully designed lattice structures.

While foams can consist of individual cells less than a millimetre in diameter, a key constraint of

current AM fabrication is resolution. Laser sintering, for example, is limited to a minimum feature

size of 0.4mm [38]. in terms of lattice structure design, this means that practically the smallest

feasible strut diameter imposed is 0.4mm. With this as a consideration, cell diameter must be

roughly an order a magnitude higher than strut diameter, making minimum cell diameters in the

order of 5 to 10mm.

Another constraint of AM is the removal of support material after fabrication. Whether the process

requires the building of an actual support structure (such as stereolithography or jetting) or merely

the removal of unsintered powder (like laser sintering), the lattice structure design must facilitate

this. For a structure inspired by foams, only an open cell foam could be feasibly replicated by AM.

These two constraints remove a number of the energy absorption mechanisms attributed to

conventional foams from the potential of AM structures based on foam. Namely, cell wall bending

and trapped air cannot contribute as closed cell foams cannot be manufactured. The support

material could not be removed from a closed cell lattice structure. Also, the scale possible in AM is an

order of magnitude higher than the micro-scale of conventional foam cellular structure. Air flow will

not be significantly impeded by an AM structure at the macro scale like a micro-scale foam, so will

not contribute to energy absorption to any useful level. This leaves cell strut bending as the only

remaining mechanism for energy absorption in an AM lattice structure.

Just as varying cell size, relative density and anisotropy of the cellular structure of foams affects

compressive behaviour, It can be assumed that modifying the geometry of a lattice structure will

have an effect on its mechanical properties. In essence, cells of different size and shape will exhibit

different properties. This is true for the random cellular structure of conventional foams, however

13

the scale of a foam’s cellular structure is an order of magnitude below the scale of any impacting

objects. When a cellular structure is composed of many thousands of cells, the properties of each cell

are averaged out [39]. In their analysis of the effect of the sample size on shear properties of a foam,

Rakow and Waas found that when a sample was reduced to a size that consisted of only tens of cells,

the mechanical behaviour of individual cells was magnified [39].

Because AM lattice structures consist of much larger cells than conventional foams, a randomised

structure will effectively ensure that the properties of the lattice structure will also have a degree of

randomness. AM lattice structures have the potential to exhibit purposeful and exactly designed

properties, but an underlying random cellular structure would ‘overwrite’ this. It was therefore

required that a regular foam structure was investigated as the base of an energy absorbing lattice.

1.5.2 The Kelvin Cell as a Mathematical Representation of Foam

During the manufacture of foams, the foaming process generates a three-dimensional cellular

structure that is controlled by the principle of minimal surface energy [25,40]. In (1887), Sir William

Thomson (later Lord Kelvin), investigating the minimum surface qualities of aqueous foams,

developed a repeatable unit cell for a perfectly ordered, regular foam. This later became known as

the ‘Kelvin cell’ [41]. The Kelvin cell is a modified truncated octahedron (a polyhedron composed of

six square and eight hexagonal faces): the hexagonal faces have zero mean curvature, while the

square faces are flat with outwardly curved edges [41], as illustrated in Figure 1-12.

Figure 1-12: A Kelvin cell (with curved faces) and the planar-faced truncated octahedron it is based on

The Kelvin cell has since been used as the basis for finite element analyses of foam structures to

better understand the mechanical properties of foam [42-44]. Closed- and open-cell foams can be

modelled by taking the Kelvin cell as either a surface model of edges and faces or just by modelling

the edges, For more accurate FE models, The Kelvin cell can be augmented by assigning geometry to

edges to more closely represent the struts of a foam structure (as shown in Figure 1-13) [44]. Finite

element analysis of the deformation mode of a Kelvin cell by Gong et al. was found to be similar to

14

that from empirical foam testing, exhibiting cell strut buckling - characteristic of the wide stress

plateau found in foam compression [25,43].

Figure 1-13: An FE model of a Kelvin cell structure [45]

Unlike random foams, the Kelvin cell has an orthotropic elastic response: it is isotropic in the three

orthographic axes [46]. The Young’s modulus of the Kelvin cell has been predicted to vary about 10%

with a change in direction from these orthographic axes [47]. As a regular representation of the

cellular structure of foam, the Kelvin cell makes a promising candidate for the basis of energy

absorbent AM lattice structures.

1.5.3 Concept Designs for Energy Absorbent AM Lattice Structures

Concepts for energy absorbent AM lattice structures were designed, based on the Kelvin cell model

of foams. A simple design is shown in Figure 1-14 with straight struts. The designs were modelled in

the CAD software NX, which allowed the integration of parametric expressions to control key

dimensions. As an extension of the foam-inspired background, the dimensions used to define these

AM lattice structures is based in foam terminology. An individual repeating unit is termed a ‘cell’, the

width of which is measured as ‘cell diameter’. The thickness of individual struts is termed ‘strut

diameter’. An optional feature of this design is the ‘node fillet’, which eliminates sharp corners that

may act as the starting point for cracks and more closely approximates the smooth and organic shape

of foams.

15

Figure 1-14: Straight strut structure design with a) no node fillet and b) large node fillet

The CAD model is converted into the STL format before fabrication by an AM machine, a process

discussed in detail in Chapters 2 and 3. The STL format approximates curved geometry with flat,

triangular polygons. To minimise the number of triangles required to represent each cell (and thus

reduce file size and memory requirements) the struts were given triangular cross-sections. With no

node fillet, each strut is fully represented by only six triangular polygons, as opposed to the dozens

required to accurately represent a cylindrical strut, as shown in Figure 1-15. The manner in which

struts join to form the Kelvin cell facilitates smooth connections between triangular struts. Four

struts meet at each node of the structure, so for any strut in that group of four, its triangular cross

section is in line with the other three struts, also shown in Figure 1-15.

Figure 1-15: The number of triangles required to represent a) cylindrical and b) triangular struts is vast

a)

b)

Strut with triangular

cross-section, in line

with the edges of three

neighbouring struts

a) b)

16

When compressed, the samples exhibited the characteristic three stage compression seen in foams

[48]. Taking advantage of the geometric freedom that AM provides, a more complex structure design

was also tested. The Kelvin cell was augmented with helical struts, as shown in Figure 1-16. The helix

is constrained to a ‘law curve’ that reduces the radius of the helix to zero at each end. This allows

helical struts to connect as a structure without intersecting each other. The reasoning behind this

helical design was that by increasing the overall length of each strut would allow more deformation

within the structure (both for struts in tension and compression) and thus increase energy

absorption.

Figure 1-16: Helical strut structure design

This augmented design was also subjected to compression testing, the modifications giving the

samples a two stage compressive profile quite unlike the response seen in standard foams [48].

Further to these preliminary tests, a whole series of compression tests were carried out to quantify

how cell diameter, strut diameter and node fillet affected the compressive behaviour of the straight

strut design. However, none of the samples were at a level that could be used as sports PPE. A

combination of both limited material options for laser sintering and the absence of many of the

mechanisms of energy absorption available in foams (as discussed in Section 1.5.1) meant that the

energy absorption capabilities of the structures were limited.

1.6 The Greater Potential of Lattice Structures

Although energy absorption for sports PPE was shown to be out of the reach of current AM lattice

structures, there are other applications that they are ideally suited to. Lattice structures provide a

way to modify the properties of a part, or regions of it, with a wide range of potential applications.

Lattice structures with high stiffness have applications in the aeronautical, automotive and space

Law curve

Helical curve

Helical axis

17

industries, or any industry where weight reduction is a primary objective in component design

[49,50]. Compliant structures could provide flexibility to regions of a component, as well as acting as

energy absorption or impact protection [51,52].

There are even medical applications for lattice structures, such as the development of scaffolds

designed to promote in vivo tissue growth [53-57]. The complexity achieveable with AM is

particularly apparent here as the organic form of the human body can be replicated. Dampening of

noise or vibrations is another potential application, as well as heat exchangers [51,58]. Lattice

structures can also have purely aesthetic applications. These can all be achieved in a single,

consolidated part when designed for AM. Components with regions of structure that have different

properties can be made without the need for assembly. While some research has gone into the

construction of lattice structures through complex extrusions [58] or wire weaving [59], these are

basic in comparison to what can be achieved through AM.

1.7 Conclusions from Background Work: Issues with Modelling Lattice Structures

The test samples, being simple 3D arrays of a unit cell, were fairly straightforward to model in

conventional CAD software (NX, Siemens). A single cell was parametrically modelled and tessellated a

number of times in x, y and z directions. However, even modelling the relatively small samples of the

more geometrically complex lattice structures (e.g., the helical struts), the CAD software reached

memory limits. For lattices of a few hundred struts, the CAD software became unstable and

frequently crashed due to exceeding available computer memory. A workaround was discovered by

modelling a single cell in CAD and converting this to an STL format, which could be tessellated a

greater number of times before reaching limits. As discussed extensively in the following literature

review, this is due to differences in the geometry representation between CAD formats and the STL

format (in the latter models are faceted; surfaces are merely approximated with triangular polygons).

However, this was not a suitable solution and memory limits were still reached manipulating the

simplified STL geometry.

This issue was exacerbated when lattice structures were manipulated into a useful shape, i.e. for

generating a conformal structure. The constraints that conventional CAD imposes on duplicating

geometry are even more apparent when attempting to modify it. Figure 1-17 shows a generic ‘shin

protector’ designed as a concept for the Scuta project. In conventional CAD the sole task of

18

generating geometry took three hours on five separate PCs. It was not possible to generate in one go

without reaching memory limits.

It became clear through the course of this early work that the benefits of AM lattice structures

cannot be fully realised until the tools exist to generate them. The ability to conform them to any

required shape is also of paramount importance, as there is no use for a lattice structure with ideal

properties that cannot be shaped to fit a working environment.

Figure 1-17: Shin protector concept, designed as a demonstration part somewhere between football shin guard

and cricket shin pad

The following chapters investigate why the underlying geometry representation methods used in the

creation of these lattice structures are not suitable, as well as the alternatives. The literature review

also highlights currently available structure generation software that overcome these issues to some

degree, but shows that there is still a gap: a requirement for a structure generation method that can

efficiently generate structure geometry.

19

2 The Generation of 3D Geometry and the Implications for

Lattice Structure Design - the Conventional Route

There are two aims of this and the following chapter: to review the existing methods of generating

three-dimensional, virtual geometry and to assess the suitability of these methods in the design of

conformal lattice structures for additive manufacturing. To fully exploit additive manufacturing for

structure design, the underlying method must be capable of both efficiently representing large,

complex structures as well as facilitating the ability to manipulate these to fit a shape. The term

'complexity' can be a vague, general word with many meanings. Gibson, Rosen and Stucker have

suggested four categories of complexity that additive manufacturing affords [2]:

• Shape complexity - it is possible to manufacture a product of virtually any shape, such as

organic, freeform shapes with complex internal geometries that would prove too costly to

machine or impossible to remove from moulds.

• Hierarchical complexity - the ability to manufacture lattice structures from micro- to

macrostructure that have particular mechanical properties.

• Material complexity - because material is processed one layer at a time, the possibility exists

that material properties can be graded across and between layers.

• Functional complexity - the ability to manufacture functional mechanisms that are built fully

assembled.

For the purposes of this work, the ability to construct geometry with hierarchical complexity is

important, and any references to complexity will refer to this particular category, unless otherwise

stated.

Commercial computer-aided design (CAD) systems are typically used in the design of products that

are to be manufactured by conventional processes, and do not fully exploit the design freedoms of

additive manufacture [60,61]. Despite this, CAD software is still the primary environment to design

AM products in due to the lack of readily available, commercialised alternatives.

There is a conventional route for designing a product for additive manufacture with CAD software,

shown in Figure 2-1. A wide range of CAD software is commercially available, each utilising their own

20

file formats to store 3D data. Similarly, there are a wide number of AM processes that - in general -

require data input in their own proprietary formats. Because this many-to-many arrangement would

require each AM process vendor to provide conversion algorithms for every CAD system available (as

well as continuous updates as needed), a single neutral format is used as an interface between the

two. This is the STL format, named for the AM process that it was originally developed for:

stereolithography [62]. An STL model is a faceted representation: the surfaces that comprise a CAD

model are decomposed into a series of triangular polygons [63].

Figure 2-1: Conventional route of data flow from design to additive manufacture

A slicing algorithm then converts the STL model into a slice file: a series of cross sections that

correspond to the layer-based fabrication of an additive manufacturing process [62]. This slicing is

usually done by software specific to a particular additive manufacturing machine. The slice file is

input into the machine, which then converts it to a machine code-like format that controls the

mechanics directly. This last conversion step is completed automatically, the results of which cannot

usually be observed by the user.

A number of groups have attempted lattice structure design and generation at each of the stages of

this conventional route, while others have investigated implementing entirely different methods of

geometry creation, detailed in the next chapter. Due to the confidentiality around data flow within

most AM machines, the methods that avoid the conventional route for structure generation must

CAD software 2 STL

Slice file format 2

Process specific

machine code

M(0,1)

G(1,2,4,5.0,4,6)

M(0,2)

M(0,3)

G(4,32,5,23,6,3,6)

G(4,23,5,6,36,43)

G(4,3232,6,3,65,3

M(45,6,2,1,1,2,43)

M(0,1)

G(1,2,4,5.0,4,6)

M(0,2)

M(0,3)

G(4,32,5,23,6,3,6)

G(4,23,5,6,36,43)

G(4,3232,6,3,65,3

M(45,6,2,1,1,2,43)

M(0,1)

G(1,2,4,5.0,4,6)

M(0,2)

M(0,3)

G(4,32,5,23,6,3,6)

G(4,23,5,6,36,43)

G(4,3232,6,3,65,3

M(45,6,2,1,1,2,43)?

Accessible file formats Inaccessible formats

CAD software 3

CAD software 1
Slice file format 1

Slice file format 3

Slice file format 4

Process specific

machine code

Process specific

machine code

Process specific

machine code

21

inevitably re-join it at some stage to format the data in a way that the machines can read and

manufacture.

This chapter discusses the issues surrounding the manipulation of geometry at each of the stages of

the conventional route. Alternative methods are discussed in the following chapter. This chapter is

split into sections that describe and asses each of these methods: the method of geometry

representation is first described, followed by any applications in structure generation and finally the

method's suitability.

2.1 Conventional route - Generation of Lattice Structures through Conventional CAD

2.1.1 Overview of Conventional CAD

'Conventional CAD' is the first step in the conventional route from design to additive manufacture.

Modern commercial CAD packages - such as NX or Pro ENGINEER - are powerful tools for the design,

analysis and process planning of many conventionally manufactured products. This is because these

feature-based modelling methods have been tailored to represent geometry in a way that is

analogous to conventional manufacturing processes, describing geometric features of a part with

functional meaning [64]. For example, 'draft' and 'hole' are two common features available to the

user in CAD packages - the former a feature that relates directly to a design requirement for

injection-moulded parts and the latter a common machining process, as shown in Figure 2-2.

Figure 2-2: Screenshots from NX of hole feature with CNC-influenced parameters

22

Due to this design methodology, conventional CAD is better suited to designing traditional products

than to fully realising the design freedoms of additive manufacture. The same can be claimed for the

underlying methods that have been used to represent geometry in a CAD package. These methods

are called 'constructive solid geometry' (CSG) and 'boundary representation' (B-rep) [2,60]. CSG is

historically easier to implement than B-rep, although more limited in the geometry it can represent

and thus is not common as the basis for modern CAD software.

Constructive Solid Geometry

CSG models are based on the use of pre-defined 'primitives' that when combined by Boolean

operations can form highly complex models [65,66]. Examples of primitives include cuboids, cylinders

and spheres, which are implicitly defined functions in the form of f(x,y,z)=0 [65,67]. For example, the

implicit functions that define a cube consists of six inequalities, as shown in Figure 2-3a. Each of

these inequalities corresponds to a 'half-space' - an infinite plane that splits 3D space into two. One

side of the half-space is considered 'inside', the other 'outside', as shown in Figure 2-3b [67,68]. Six

half spaces when arranged as shown in Figure 2-3c form a fully enclosed cube of finite dimensions.

Figure 2-3: a) A cube and it's implicit functions, b) the 'Y < Ymax' half space and c) the half-spaces that define a

cube from infinite space

Because the half-space definition of solids makes it straightforward to determine what lies inside and

outside of a particular primitive, CSG models are easily combined to form more complex shapes with

Boolean operations. CSG utilises three Boolean operations: union, subtraction and intersection, also

illustrated in Figure 2-4. A union operation combines two shapes into a single solid, whereas an

intersection operation retains the space that both solids inhabit. A subtraction (also known as

'difference') removes a 'tool' solid from the 'target' solid, and is unique in that an order must be

specified when selecting primitives as there are two possible solutions (i.e. A-B and B-A).

a)

X > Xmin Y > Ymin Z > Zmin

X < Xmax Y < Ymax Z < Zmax

c) b)

Half-space

Y = Ymax bisecting space

Y < Ymax

Inside

half-space

Y > Ymax

Outside

half-space

23

Figure 2-4: Boolean operations between two primitives

CSG models are described in a hierarchical tree, with each component primitive stored as a 'leaf'.

Boolean operations, as well as general transformations such as translations and rotations, are stored

as intermediate nodes in the branches of the tree [65,68]. This concept is illustrated in Figure 2-5.

With an ordered combination of transformations and Boolean operations, complex composite

models can be constructed. CSG trees are binary: each node can only have two branches [69]. This

means that only two primitives can be combined per operation.

Figure 2-5: CSG hierarchy tree

Cuboid A

Cylinder B

Union

A U B

Subtraction

B - A

Intersection

A U B

∩

-

U

U

90° rotate in x

90° rotate in y

Primitive as leaf

Transformation as

intermediate node

Boolean as

intermediate

node

Final composite

model as root

24

Boundary Representation

The complexity of CSG models are ultimately limited by the set of base primitives. Sweeping,

freeform shapes such as the aerodynamic surfaces of an aircraft or the bodywork of a sports car

cannot be achieved with CSG. Boundary representation indirectly represents a part through explicit

definition of its boundary surfaces [70] and is capable of defining freeform complexity. B-rep

definition of a model is split into two categories: topological information and geometric information

[69].

Topological information describes the connectivity between faces and edges of a model whereas

geometric information is the mathematical equations of these elements [69]. These equations can be

linear or higher-order polynomial (e.g: quadratic), which determines what classification of boundary

representation the model is. The STL file format is technically classified as faceted boundary

representation: the triangular polygons that compose an STL model are derived from linear

equations. Modern CAD systems utilise advanced boundary representation which in addition to

planar surfaces also include quadratic, toroidal and spline surfaces such as NURBS (non-uniform

rational B-splines) [70]. Examples of these surface types are shown in Figure 2-6.

Figure 2-6: Planar, toroidal and quadratic B-rep surfaces

These surfaces have zero thickness - to define a solid shape, a set of surfaces are further

characterised with topological information that define their connectivity. An edge is defined by

vertices: when a set of edges form a closed loop, a face is defined. When a set of faces form a closed

volume a solid body has been defined. [67,71]. Although intuitive, in practice this means that even

simple shapes have lengthy and complex B-rep descriptions [72,73].

A B-rep model structure is essentially a set of lists - a vertex list (containing the vertex co-ordinates),

an edge list (denoting vertex pairs that form edges), and a face list (that groups edges) [74]. The

Vertex

Edge

Face

25

order in which this topological information is listed determines what side of the boundary is classed

as inside or outside of the body. Usually the vertices that compose a face are ordered counter-

clockwise - a normal vector for each face is calculated using the 'right-hand rule' [69].

Unlike CSG, Boolean operations are not integral to boundary representation and as such are much

more difficult to perform [74]. Consider the union of two cubes, as shown in Figure 2-7. In CSG, this

is achieved by manipulating the simple set of implicit functions shown in Figure 2-3. The united cubes

are represented by a function that is a combination of the two whole inputs. In B-rep however,

depending on the positioning of the two cubes, some data must be deleted while new data is

generated when the two B-rep cubes are combined into one structure. In the example in Figure 2-7,

Vertices of one cube that are determined to be inside the other must be deleted (and vice versa),

while new vertices are generated at intersections. Intersecting edges must be shortened by

reassigning them to the newly generated vertices. Likewise, any intersecting faces must be replaced

by referencing the newly modified edges. Euler's characteristic can be used to check the result is

valid (e.g. to ensure that no new vertices have been missed) [73,74].

��. �����	�
 � ��. ��
�
 � ��. ��	�
 � 2

Equation 2-1: Euler's characteristic

Figure 2-7: Union of two B-rep cubes - vertices are first modified which cascades down into edge and face

modification

A B-rep CAD systems allow geometry - once created - to be controlled with variables or equations, a

function termed 'parametric modelling' [60]. The ability to define relationships between dimensions

o o

o o

o o

o o

o o

o

o

o

o

o o

o

o

1) Vertex modification 2) Edge modification 3) Face modification

A

ft
e

r

26

gives the user greater control over a model [75], an example shown in Figure 2-8. By changing the

variable assigned as the rib thickness in this example, the model can be modified as required to suit a

particular situation. The cylinder and hole diameters are related to each other: the equation

controlling the diameter of the cylinder references that of the hole, which itself is controlled by

another variable.

Figure 2-8: Simple CAD model with two parametric controls

Hybrid Modelling

B-rep modelling is much more flexible than CSG. However, CSG still retains some advantages, such as

the integration (and thus more efficient use) of Boolean operations. The two methods are

complimentary in the sense that they each address the disadvantages of the other. For this reason,

some work went into developing a hybrid modelling approach that exploits the advantages of both B-

rep and CSG [76]. These CAD systems combined the hierarchy tree of CSG with the modelling ability

of both methods. B-rep modelling was implemented on 'low level' geometric entities, such as

individual faces of a shape. CSG integration allowed for robust Boolean operations between 'high

level' primitives, i.e. the shape as a whole [76,77].

To utilise both CSG and B-rep in the modelling of the same design, a hybrid modeller must be able to

convert between both methods. It is fairly straightforward to convert from CSG to B-rep - this is

common practice in CSG modellers to generate a model that can be rendered for visualisation [72].

However, because the majority of freeform, sculpted shapes possible by B-rep are impossible in CSG,

no all-encompassing B-rep to CSG conversions exist [72]. Hybrid modellers couldn't overcome the

limitations of CSG modelling and are no longer a focus of research.

27

Summary

Most modern CAD systems utilise boundary representation as a base because it is much more

flexible than CSG. However, CSG still influences modern CAD systems in the implementation of model

history trees [78]. Like CSG hierarchy trees, a model history tree describes a model by the individual

features that compose it. This gives context to a model and allows for relationships between

features. Edges can be placed in parallel, circles can be placed concentrically, et cetera.

The next section details how various groups have utilised the inherent advantages of conventional

CAD software to design and construct lattice structures.

2.1.2 Applications - Structure Generation using Conventional CAD

Due to their relative ease of use, several groups have attempted to design and generate lattice

structures with commercial CAD systems [54-57,79,80]. Tissue engineering has been a common

application in much of this research, for example the generation of rigid, porous scaffolds to promote

bone growth in prosthetic joints [57,81]. The majority of these methods trim a structure to a shape,

discussed in Chapter 4. Naing et al. developed a system dubbed the 'computer aided system for

tissue scaffolds' (CASTS) which links together several commercial systems to generate tissue scaffolds

from MRI data [57]. The actual geometry construction module of the CASTS system runs

Pro/ENGINEER, utilising B-rep modelling [57,60] A cell type is first selected from a built-in library

within CASTS, examples shown in Figure 2-9. The parametric aspect of the software is exploited; a

unit cell is scaled to desired dimensions with cell length, breath and height parameters [57].

Figure 2-9: A selection of cell types available in CASTS [81]

To generate a scaffold that is conformal to the required shape (for example, a bone segment), a

regular, cubic array is trimmed to fit it, an example shown in Figure 2-10. The bone segment that is to

be populated with structure is imported into the Pro/ENGINEER environment (a) and the cell design

28

is orthogonally arrayed to fully enclose it (b). The segment is then Boolean intersected with the

scaffold to generate a trimmed structure, conformal to the bone.

Figure 2-10: a) Input shape, b) tessellated structure & c) section of trimmed structure with hip joint model [57]

This trimmed structure is converted from a CAD model into an STL, through Pro/ENGINEER's built-in

conversion tool. The data conversion process follows the conventional route described in Section

Error! Reference source not found.; the STL is converted to a slice file and input into an additive

manufacturing process (laser sintering in this case) for fabrication. A similar approach was taken by

Lam et al. to conformal structure generation [56]. Tissue engineering scaffolds were generated and

trimmed in the CAD package Unigraphics (now called NX), which then needed conversion to STL and

then slice file format for manufacture on a 3D printer. Examples are shown in Figure 2-11.

Figure 2-11: 3D printed tissue scaffolds [56]

b) Arrayed scaffold c) Intersection: bone segment U arrayed scaffold

a) Bone segment

29

Wettergreen et al. have also utilised conventional CAD to design a range of cells that can be

combined to form functionally graded structures [55]. A range of cell designs have been developed

that tessellate orthogonally, termed 'building blocks' across an example human vertebral body. To

ensure that any particular building block can connect with any other in the range, each design

includes a torus-shaped common interface, as shown in Figure 4-4.

Figure 2-12: a) Cell placement, b) cell designs with torus-shaped common interface visible & c) photograph of

fabricated part [55]

An approach to modelling complex structures with CSG was investigated by Schroeder et al. [65]. A

mathematical framework was developed to model the heterogeneous structure of natural porous

materials such as bone. The method utilised CSG due to its efficient application of Boolean

operations, as the structures are generated by subtracting spheres from a part, as shown in Figure

2-13. While capable of constructing these complex, randomised structures, the method is limited in

the overall conformal shape that encloses it. Because CSG can only construct models from the

combination of simple primitives, this method can approximate the porous structure of bone, but it

cannot approximate a bone's overall shape.

Figure 2-13: Porous structure modelled in CSG [65]

a) b)

c)

30

2.1.3 Suitability of Conventional CAD for Structure Design

Geometric Complexity

While the underlying methods of B-rep and CSG modelling allow for the generation of complex

shapes through freeform surfaces or primitive combinations, conventional CAD is unsuitable for the

generation of large, complex structures. Naing et al. showed that the parametric nature of

commercial CAD software was well suited to the construction of relatively simple structures [57,81].

This was further exploited by Gervasi and Stahl and Wettergreen et al. in the construction of

functionally graded structures with varying geometry throughout [55,82]. However, the relatively

simple structure designs produced by these are as a consequence of conventional CAD systems being

tailored towards the constraints of traditional manufacturing systems [83]. They do not exploit the

geometric freedom afforded by additive manufacture [1].

Additionally, the overall sizes of the generated structures were relatively small: on the scale of bone

segments with only a few hundred cells per part. Wettergreen et al. found, when constructing the

vertebral body structure, that anything larger could not be attained with current CAD software due

to limited computing resources [55]. When attempting to generate structure arrays on a larger scale,

many other groups have found conventional CAD unsuitable for the task: limited on the number of

surfaces that can be constructed [2].

The Boolean functions inherent in CAD systems were utilised to unite arrays of cells together and, in

some cases, to intersect with a bounding shape to generate a trimmed, conformal structure [56,57].

In a pure CSG environment, as stated in Section 2.1.1, Boolean operations are integral to the method,

however they are the most demanding component of a B-rep environment [84]. This is the case

when a conventional CAD modeller is used to generate large arrays of structure because these

Boolean operations are required for each and every strut in the structure [50,85]. While

computational resources of modern PCs and CAD software continually improve, the requirement to

generate large structures is a current issue.

Model Structure

This parameterisation of geometry by conventional CAD modellers is tied into a construction history

that not only describes the model but the order in which it was created. While useful for assigning

relationships between features of a model (as well as giving context to individual topographic

features), this structure also hinders the modifications to a model that weren't considered by the

31

original designer. Changes to a model must cascade down through the construction history tree to

check for dependant relationships between features. For this reason, modifying large models with

complex history trees is an prohibitively slow process, as the entire branches of the model tree must

be updated for every minor modification [78]. This is particularly noticeable when modelling large,

tessellating structures as the branches of the tree become extremely long as individual cells are

constructed and duplicated.

Model Validity

For a CAD model to be suitable for manufacture, it must be unambiguous as to what lies inside and

outside of the model; the model must be solid. While CSG defines solids as standard, B-rep does not.

A single surface defined by boundary representation could not be manufactured because it has no

thickness. A solid model is only defined in B-rep by a group of surfaces that perfectly match up at

their boundaries [1]. As a B-rep model gets more complex – such as when tessellating a cell to form a

structure – the likelihood increases that slight errors will occur that mean surfaces do not match up

exactly [60]. Similarly, it is possible to create invalid geometries that, in the virtual environment of B-

rep modelling obey checks (such as Euler's characteristic), but could not exist in the real world [73].

An example of a model that would be impossible to manufacture is shown in Figure 2-14.

Figure 2-14: a & b) valid models & c) invalid model, but each with a Euler's characteristic of 2 (based on a figure

from [73])

In summary, the limitations of conventional CAD software are particularly notable when modelling

lattice structures. CSG cannot represent all shapes that may be required when designing lattices.

Although B-rep is much more flexible in terms of geometry construction, the Boolean operations

required to combine many thousands of individual structural elements are so computationally

demanding that it makes the use of the method unfeasible. Additionally, there are issues with model

validity with B-rep.

a) b) c)

Euler's characteristic:

V - E + F: 9 - 16 + 9 = 2 9 - 16 + 9 = 2 9 - 16 + 9 = 2

32

The next section details geometry creation methods that avoid conventional CAD, the first step of

the conventional route from design to additive manufacture. Rather than generating conformal

structures in CAD software, which must then be converted to STL and then a slice format, geometry

is directly manipulated at the STL stage.

2.2 Stage 2 of Conventional Route - Generating Lattice Structures at STL

2.2.1 The STL File Format

The STL format is the second stage of the conventional route of data flow, a stage that exists as a

neutral format that any CAD software can convert to, and any slice format can be produced from. It

has been argued that including slicing algorithms in every CAD system would be cumbersome, as a

range of algorithms would need to be included to cover every format in use [2].

At present, the STL format is widely accepted as the de facto standard for the translation of data for

all AM processes [1]. Most CAD packages include export functions that convert a CAD model into an

STL file. An STL model is a faceted boundary representation of a model: a surface model composed of

triangular polygons and as such can only ever approximate curvature. An example of an STL file is

shown in Figure 2-15. There are a number of other neutral file formats that exist to exchange data

between CAD systems, such as IGES (initial graphics exchange system) and STEP (standard for the

exchange of product model data) [72,86]. The STL format, however, was developed specifically for

the translation of CAD model data to AM systems [87].

Figure 2-15: Example geometry as a) a CAD model & b) an STL model

A solid model is represented as a closed surface, with the inside and outside distinguished by the

triangle normals. This is often referred to as a 'watertight' model [88-90]. Each polygon in an STL file

a) b)

33

is described as a set of three vertex co-ordinates and a normal vector, although the vector is

superfluous as the polygon's normal can be interpreted by the order in which vertex co-ordinates are

listed. There are several types of STL format. The ASCII format is often used in prototype software as

it has a simple code structure, whereas the binary format is more compact in its representation of

geometry and thus most suitable for normal use [2,63]. A colour STL format allows colour

information to be stored, for use with processes such as 3D Printing [91]. A portion of STL ASCII code

is shown in Figure 2-16.

Figure 2-16: The ASCII STL file format

Because of the manner in which surfaces are triangulated during the conversion process, certain

geometric features require a large number of triangles compared to their complexity. Polygon count

is dependent on surface curvature. Any curved surface must be decomposed into a number of flat

surfaces in a manner analogous to representing a circle with an n-sided polygon. At a fine tolerance,

a circle may be represented with a polygon of hundreds of edges, at a coarse tolerance, a hexagon. A

flat, square surface is efficiently represented with two triangles; however as soon as some

complexity is added to an edge of this surface, the number of triangles increases dramatically.

The degree of faceting can be controlled in the conversion functions of most CAD software, two

examples shown in Figure 2-17. A fine tolerance will produce a surface that more closely represents

the original model, but at the cost of a larger file size, due to the increased number of polygons

required. A compromise between model accuracy and file size is often an issue that must be

considered with STL models. The level of faceting must be fine enough that it is not visible on a

manufactured part, while not too fine to make file sizes too large for practical handling.

Vertex 1

Vertex 2

Vertex 3

Facet

Solid

solid name

...

facet normal ni nj nk

outer loop

vertex v1x v1y v1z

vertex v2x v2y v2z

vertex v3x v3y v3z

endloop x

endfacet

...

endsolid name

34

Figure 2-17: The relationship between triangle count and size of a binary STL file

Tolerances can be set so high that generated STL models can be significantly larger in file size than

the CAD model that it has been exported from. Conversely, for a particular geometry it is usually

possible to define a set of tolerances that constructs an STL of suitable accuracy that is significantly

smaller than the original CAD model. Manipulating these STL models will demand less computer

memory which - in the case of generating repeating structures - implies that a higher hierarchical

complexity can be achieved before a computer's memory limit is reached. The next section details

structure generation processes that have been developed to capitalise on this potentially reduced

memory requirement.

2.2.2 Applications - Processes that use STL

Several commercial software packages are available that are able to generate lattice structures at the

STL level. As previously stated, Materialise Magics is an STL checking and manipulation program,

however it also includes an optional structure generation module [92]. A watertight model can be

populated with one of a small library of structure types and the structure is trimmed to fit it. The

option to add a solid skin around the structure is also possible. Another STL checking program that

includes a structure generation module is from AutoFab [93]. Like Magics, an STL structure is

constructed to fit a model and a solid skin can be applied as shown in Figure 2-18. In addition to a

small library of included structure types, both Autofabb and Magics structure generation modules

allow user-designed cells to be added. These can be modelled through any method, as long as it is

finally converted to an STL model.

Triangle count: 28208

Binary STL size: 1,378 KB

Triangle count: 666

Binary STL size: 33 KB

35

Figure 2-18: AutoFab structure generation software - showing lattice structure and solid skin option [93]

A method has been developed by Gibson et al. that constructs conformal structures with STL shells,

which takes advantage of the reduced memory requirements of the format [50,71]. This 'swept

structure' method is discussed in detail in Chapter 4. A conventional CAD module (ACIS) is used to

generate individual cells which are then converted to STL and positioned as such to form a conformal

structure [50,94]. This method constructs conformal structures by deforming each cell to fit a curved

surface - an example shown in Figure 4-8.

Figure 2-19: Conforming a structure to a shape through sweeping

Essentially, a B-rep surface model of each cell is individually generated in ACIS - deformed to fit a

specific location within the warped structure - which is then converted to STL. These models are not

watertight - the flat faces at the boundary of each cell are removed, as shown in the inset of Figure

2-20. The conversion algorithm is configured in a way that ensures the vertices of the STL model at

the edges of the cell are coincident to the edges of neighbouring cells when stacked to form the

conformal structure [50,94], as shown in Figure 2-20. Because the vertices (and by extension,

polygon edges) of neighbouring STL cells match exactly, a watertight structure is generated without

36

the need for further Booleans [50]. As discussed in the previous section, Boolean operations are the

most demanding component of any B-rep modelling environment.

Figure 2-20: Watertight connection between two unit cells [94] & inset: surface model of a unit cell

This method combines an advantage of a conventional CAD modeller (the ability to parameterise the

cell geometry) with the reduced memory requirements of the STL format in the construction of the

conformal structure. An example of the complexity achievable with the method is shown in Figure

2-21. Cell geometry can be constructed with varying dimensions in the first stage of the method,

which has facilitated investigation into the generation of functionally graded structures [71,88].

However once a cell has been constructed and stacked into the structure, it can no longer be

modified.

Figure 2-21: Examples of the complexity achievable with the Gibson et al. conformal structure method [71]

The avoidance of Booleans is the major advantage of this method, a technique that capitalises on the

faceted topology of an STL surface. However, this is not transferrable to all methods of generating

conformal geometry; it is specific to this structure sweeping method. STL cells are lined up perfectly

Coincident vertices
Boundary faces removed

from unit cell

A single layer of swept

structure (with solid skin)

Two layers of swept

structure (with solid skin)

37

to construct an already conformal structure that is essentially watertight without further

modification. With this structure sweeping method, the final structure topology is determined before

any actual structure is constructed. If this geometry construction technique was applied to the

trimming method, this advantage would be lost. A regular, bulk structure could be efficiently

constructed, but to be made conformal it must be trimmed or intersected with a shape; significant

Boolean operations would then still be required to trim this regular structure.

As stated in the previous section, STL file size is dependent on number of triangles, which in turn is

dependent on both the coarseness of faceting and the actual shape and surface curvature of the

model. A flat surface requires significantly fewer triangles than a curved surface. In the context of

structure design, a structure comprised of triangular struts will be represented by a significantly

smaller file than a similar structure of cylindrical struts, as shown in Figure 2-22. Several STL structure

generation techniques capitalise on this simplification of geometry to facilitate the generation of

many-celled structures.

Figure 2-22: Efficient geometry design in STL modelling

The general-purpose 'TetraLattice' developed by Gervasi et al. has many proposed applications from

expendable patterns for investment casting to conformal filters [95,96]. The structure design

facilitates large tessellations at the STL level because only six triangles are required to form each

strut, as shown in Figure 2-23. This structure design highlights how the reduced memory

requirements of the STL format can be exploited at the design stage.

Triangular strut

Triangle count: 28

Binary STL size: 1.44 KB

Cylindrical strut

Triangle count: 865

Binary STL size: 42.4 KB

38

Figure 2-23: TetraLattice structure [96]

2.2.3 Advantages and Disadvantages of STL manipulation

Design Environment

Generally, methods based around STL manipulation are capable of generating larger structural arrays

when compared to conventional CAD methods. This is essentially because certain geometries can be

constructed which require less memory to manipulate. However, conventional CAD is still often used

at some point to design the structure's unit cell, as no robust STL design environment exists.

The lack of an ability to parameterise geometry (for future modification) is a significant disadvantage

which removes flexibility from the design process. There is no built-in knowledge within the STL

format that defines particular features of a design. Whereas higher-order B-rep models define

surfaces according to their topology (such as flat faces or cylindrical faces) an STL model decomposes

every surface into a set of flat polygons. The original knowledge of the surface type is lost. This is

significant because designs are usually parameterised around these surface types. For example, a

structure's 'strut diameter' may be a common structure dimension to vary, which in advanced B-rep

would directly correspond to a set of cylindrical features that could be located and subsequently

modified. The triangles that represent the faceted version of those cylindrical struts do not stand out

in the STL model and so cannot be easily isolated for modification.

Radical changes to geometry that are useful are not permitted as the topological information of a

design is lost in conversion. Software such as Magics can attempt to re-distinguish such topological

features as flat faces or curved surfaces or a part, as well as allowing manipulation of individual

Six triangles per strut

39

polygons. Certain transformations can be applied to these selection groups, however the usefulness

of this is limited.

Manifold Errors

As a boundary representation, the STL format is prone to certain errors without robust checking,

much like conventional CAD [60,82,97]. An edge of a solid is defined where two faces meet:

depending on the CAD software used for modelling, these two faces may be two separate surfaces. If

this information isn't preserved, the two surfaces may be triangulated in such a way that their

faceted representations do not match, as shown in Figure 2-24. This is because it is possible for

different triangulation patterns to represent the same geometry [2]. Another potential error can

occur when surfaces overlap, for example, two surfaces from different bodies that haven't been

combined with Booleans. Triangles will intersect where these surfaces overlap which may cause

ambiguity in shell watertight checks [98].

Figure 2-24: Manifold errors: a) mismatching connecting surfaces and b) intersecting triangles

Errors are most likely to occur because a conversion algorithm doesn't include robust checking,

however most modern algorithms do not allow such errors to be generated [2] and STL checking and

pre-processing software such as Materialise Magics offer an extra level of checking [92]. A simple

calculation, derived from Euler's characteristic, to determine if a particular model is watertight is

shown in Equation 2-2 [2,99]. Additionally, there is ongoing research into slicing STL files with errors:

an STL is sliced and any defects are repaired in 2D across the slices [98].

��. �����
��

2
� ��. �����	�
 � 2 � ���. �����
 � ��. ��

�
�
�

Equation 2-2: Watertight STL calculations ('passages' refers to holes going all the way through a body) [2]

a) b)

40

In summary, the STL file format allows the construction of larger structure arrays compared to

conventional CAD, due to reduced memory requirements for faceted geometries. Structure

geometry can be optimised to take advantage of triangular polygon surface topology by minimising

the number of triangles required to represent geometry. However, these optimised geometries

aren't particularly complex - the complexity afforded by AM processes isn't fully realised. Inevitably,

direct STL structure generation still reaches a memory limit that prevents the representation of

larger, more complex structures. The STL modelling environment is inflexible and lacking - as the

second stage of the conventional route, the majority of design work is expected to occur at the CAD

stage. STL geometry must be converted to a slice format before manufacture, so any gains in

modelling at the STL stage must be compared with the further operations required to translate the

data into a slice format. The next section discusses several methods developed that bypass both CAD

and STL stages of conventional route by generating conformal structures at slice level.

2.3 Stage 3 of Conventional Route - Generating Structures at Slice Level

2.3.1 Slice formats

The final stage of the conventional route of data flow that can be accessed and manipulated is the

slice file. A slice file represents a model in a layer-by-layer format, corresponding to the layer

manufacturing technique of AM processes, as shown in Figure 2-25. Conventionally, a slice file is

derived from an STL model. Direct slicing of a CAD model has been investigated, however due to the

sheer range of CAD formats in use, it is currently more feasible to use the neutral STL format as a

starting point [100,101].

Figure 2-25: Layers of a slice file corresponding to AM process' layer manufacture

Slice file

41

The format of a slice file varies between AM process, and even between manufacturers. Broadly,

slice formats can be split into two categories: Vector formats and raster formats [102], illustrated in

Figure 2-26. Vector formats are used by AM processes such as laser sintering, stereolithography and

FDM. Vector slice files define geometry with 2D splines and polygons, comprised of vertices and

edges. These are analogous to the scan lines of the AM processes, such as the laser path in laser

sintering. Many of these formats are proprietary, such as 3D System's SLC format and EOS' SLI format

for their own laser sintering processes. The common layer interface format (CLI) is an open source

alternative [103]. Raster formats are essentially an ordered series of bitmap images. The term ‘raster’

comes from the field of computer graphics, where it refers to both the pixel array that comprises

bitmap images and that of monitors and televisions. In a raster format slice file, pixels of a particular

value define where material is deposited. 3D printers build from raster slice formats, much like a

standard printer prints bitmap images.

There are several methods to convert an STL into a slice format. For vector formats, a plane can be

intersected with the model, each polygon edge at a time. From this, individual intersection points are

generated which can then be connected to form an outline of the part at the height of that plane.

The plane can be moved to the height of each layer to completely slice the model [104].

Figure 2-26: Relationship between slice format and AM machine type

A method to generate raster slices involves performing a Boolean intersection between the model

and a single layer-thick cuboid, for each layer. The result is then rendered from a top-down

Boundary

polyline

Boundary

scanned and

inside filled

in by point

source

Shape defined

by pixels

Shape

formed row

by row by

multiple

nozzles

Vector slice format:

Raster slice format:

Compatible machine (e.g. laser sintering)

Compatible machine (e.g. 3D Printing)

42

perspective and saved as an image file. This method could be employed in, for example, the

rendering software POV-Ray [105]. While conversion from vector to raster formats is trivial, the

reverse is not. As all computer graphics are displayed on a monitor comprised of pixels, even a vector

output, when drawn on the screen is represented by pixels. The location of the pixels can be

captured to generate raster files.

Rather than generating slice files from any other geometry representation, some groups have

investigated actual geometry construction at the slice level. These are discussed in the following

section.

2.3.2 Applications - Processes that use Slice Files

‘Selective Space Structures’, the commercially available software from netfabb, generates conformal

structures in a slice by slice approach [106,107]. Like most of the methods detailed in this chapter,

the conformal structures are constructed by trimming a regular structure to an input shape. An input

shape (in STL format) is first converted to a vector slice format by the software, and a structure type

is selected by the user. The structure type is stored within a library also in a vector slice format and is

overlaid over the input shape, as shown in Figure 2-27. To trim the structure in this format, the

operation is a simple series of 2D Boolean intersections. A series of discrete, less computationally

intensive operations, this method is a more robust alternative to a single 3D operation, such as when

trimming CAD or STL models.

Figure 2-27: Trimming a structure to a shape at the slice level with netFabb Studio software [107]

By constructing a part at the slice stage, it becomes difficult to visualise it, thus reducing the level of

confidence a user has in the design. Viewing the part as a series of cross-sections is no alternative to

43

viewing it as one 3D model that can be explored and verified. In an effort to address this, netfabb

provide an approximate representation of the trimmed structure before the Boolean intersection

operations are completed, as shown in Figure 2-28.

Figure 2-28: Approximate trimmed structure visualisation in netFabb Studio [107]

Rather than actual, solid geometry, the visualisation is a wireframe model of the structure. The

wireframe model is not actually trimmed to fit the shape, rather the structural cells that would

intersect with the shape are displayed as an approximation of the conformal structure. In addition to

the Selective Space Structures software, netfabb also sell the ‘Structure Generator’ add-on that

allows users to design or import new structure types, rather than being constrained to the library of

structure types built into the original software.

Although a more efficient approach to conformal structure generation than both standard CAD and

STL techniques, its speed is still dependent on structure and shape complexity. Any more complex

structure designs imported through the software's add-on will take longer to process. In a similar

manner to how a complex shape must be represented with a larger number of triangles in the STL

format, slices of a complex shape must contain a greater number of polylines to represent complex

cross-sections with this method.

A unique method of generating trimmed structures in a layer by layer approach has been developed

by Brooks et al. [108]. The software, 'Manipulator' was developed in conjunction with an actual

Selective Laser Melting process (SLM) at MCP (now Renishaw AMPD) and the University of Liverpool.

This structure trimming method is unique in its control over how the laser sweeps across the powder

bed, giving unprecedented control over the construction of fine metal structures [52,53].

45

Figure 2-31: Side view of interpolated laser profiles of a diagonal strut in Manipulator software

The method has also been modified to produce pseudo-randomised structures that more closely

approximate the structure of trabecular bone for use in orthopaedic applications [109].

A novel layer-based approach to the construction of structure geometry has been investigated by

Chow et al. Structures are generated with a series of 2D Voronoi diagrams - a means of subdividing

space determined by a set of points (as discussed in Chapter 2) [97]. Voronoi diagrams are often used

for modelling the random structure of foam, however through judicious placement of seeding points,

Chow et al. have demonstrated specific, regular structure designs can be constructed, examples

shown in Figure 2-32. The inside and outside of the structure are defined by assigning either a solid

or void value to corresponding seeding points [97].

Figure 2-32: Constructing regular tessellations with structured placement of seeding points [97]

Each layer of the structure is described with a different Voronoi diagram. To generate successive

layers of the structure, the seeding points are animated; each point has a velocity specified to it

which warps the Voronoi diagram accordingly. Discrete steps of this motion correspond to each slice

Layer

Corner of diagonal strut

Interpolated point

calculated from corner

co-ordinates

Melt pools of single laser

points across layers join to

form thin strut

46

of the structure. This is illustrated in Figure 2-33: points travel in the direction of their arrows to join

two nearby struts together. By grouping the seeding points in rings (shown in Figure 2-32), the

structure is parameterised - changing the ring diameter modifies the structure in a controlled and

specific manner [97].

Figure 2-33: Generating multiple slices of structure by 'animating' seeding points [97]

Due to the nature of Voronoi diagrams, complete, watertight boundaries are always formed. This is a

robust method of boundary representation when compared to conventional CAD methods and the

STL format. However, the user must be familiar with the relatively abstract technique of

manipulating Voronoi diagrams to fully exploit this method. Although constructing geometry in a

layer by layer approach, this method still currently uses a conventional CAD modeller (ACIS) to

generate the geometry [97]. Thus it benefits from one advantage of manipulating slice files (breaking

down potentially complex 3D operations into a series of simpler 2D operations), although still suffers

from the resource-expense issues of conventional CAD. However, it would be a relatively trivial task

to format the output for direct slice file writing.

Structure generation methods have been developed specifically to utilise the material deposition

process of AM processes. The FDM process constructs a part by laying down an extruded bead of

near-molten polymer [19]. The usual process is to lay down hatches of parallel beads to construct a

solid part, however various groups have investigated methods to construct lattice structures directly

by spacing out these beads [110-112]. Structural elements are build out of single beads, examples

shown in Figure 2-34.9

Slice 1

Start of motion
Slice 13

Middle of motion

Slice 24

End of motion

47

Figure 2-34: SEM images of FDM bead lattice structures [110]

Process parameters of FDM include setting the bead diameter and spacing. Bead orientation is varied

between layers as standard in FDM to ensure manufactured parts are not weak in a particular

direction [112]. Normally, bead spacing is related to bead diameter to ensure solid parts; by

purposefully increasing the spacing, the beads are laid down with gaps between them. Successive

layers lay beads at different angles, forming simple lattice designs. A similar technique has been

implemented by Stamp et al. for the SLM process [113]. The hatch spacing between laser scans is

widened to generate the individual structural elements shown in Figure 2-35.

Figure 2-35: SEM images of spaced scan patterns [113]

This method of structure generation is unusual because it utilises the manufacturing process rather

than any particular geometry construction method to generate geometric complexity. For this

reason, the design information required is merely the conformal shape for structure to populate,

rather than a complex 3D structure. Although a much more efficient manner of structure

manufacture, this method is limited by the types of structure design that are possible. Only simple

a) b)

48

hatch-like structures are possible, where the 'struts' that compose the structure are oriented in the

layer plane. The geometric freedom facilitated by AM is not fully exploited.

2.3.3 Suitability

The immediate advantage of working at the slice level is that once geometry is constructed, there is

no need for further conversions into other formats. With the majority of commercially available AM

machines, the slice file is the last step with public knowledge of the format. However, slice formats

are specific to their machine - there is no standard format that is independent of technology [114].

Design Visualisation

There are certain disadvantages with generating geometry at the slice level. When observing 3D

geometry as a series of 2D slices, the ability to clearly visualise the design is lost. The ability to clearly

visualise a model is an important one – to be able to check manually for otherwise unapparent

mistakes, as well as for aesthetic considerations. It could be argued that layer by layer observation is

a superior alternative to viewing the model in 3D, as internal geometry isn’t hidden, however this

benefit does not outweigh the overall loss of clarity. Indeed many conventional CAD packages allow

for section views of models, diminishing this perceived advantage of working at the slice level.

Although, viewing a model that has been discretised into slices is a more realistic representation of a

part manufactured through additive manufacturing, which will be stepped in the same way.

Flexibility of Process Planning

Working at the slice level also limits flexibility in terms of positioning models in the build volume of

an AM process. Parts may be translated relatively easily. Vector slices can be easily rotated in Z-axis

(without altering geometry), but not X- and Y-axes, raster slice geometry will be altered with any

rotations. Similarly it is relatively difficult to scale parts; if a part is to be increased in size, new layers

must be constructed through the interpolation of existing layers. While not impossible, the

transformation of parts at the slice level is not ideal. As such, extra care must be taken to ensure

correct dimensioning from the start of the design process.

49

2.4 Summary of the Conventional Route

Regardless of lattice structure design or its application, a considerable level of hierarchical

complexity is required of the geometry creation method. This chapter has shown that of the three

broad methods of the conventional route of design for additive manufacture, manipulating slice

formats is most suitable for the construction of lattice structures. A complex 3D problem can be

decomposed into a series of simpler 2D tasks. Working at the final stage of the conventional route

also has the significant advantage of reducing the number of data conversion steps into a format

suitable for a particular additive manufacturing process.

However, what manipulating slice formats gains from higher achievable complexity, it is limited in

terms of useability. Although conventional CAD software reaches complexity limits relatively early, a

modelling environment exists that facilitates relatively straightforward structure design. The STL

format allows the construction of larger structures, however only basic STL modelling software exists.

Additionally, the STL format does not lend itself well to parametric or feature-based modelling due to

the low-level way in which geometry is stored. This is also the case with most slice formats - vector

formats may decompose part cross-sections into 2D primitives such as polylines, but these only have

relevance to a particular cross-section, rather than a structural design feature. On top of this, slice

formats (being two-dimensional cross-sections of 3D models) do not allow for straightforward

visualisation of designs. Any confidence in design decisions is undermined if the user cannot clearly

visualise the design.

Although conventional CAD software is the easiest to use, the fact remains that it has been designed

to model conventionally manufactured parts. Conventional CAD does not exploit the geometric

freedom afforded by additive manufacturing methods. At best, CAD software gives some control

over complex freeform shapes such as aerodynamic panels or aesthetically styled devices, however

random and organic shapes such as foam or bone structure are difficult to approximate.

It is entirely possible that - with a powerful enough computer, enough time and a particularly skilled

(and patient) user - the large, complex structures that the work discussed in the chapter aims

towards could be accomplished in any of the stages of the conventional route. To do so however

would be an inefficient task when there are other methods to construct geometry that are

potentially more suitable for this application. These methods are the focus of the next chapter of

this literature review.

50

3 The Generation of 3D Geometry and the Implications for

Lattice Structure Design - Alternate Methods

This chapter details methods of creating virtual 3D geometry that are not part of the conventional

route from design to additive manufacture, as defined in the previous chapter. Each method is

assessed in terms of suitability for constructing complex lattice structures and any existing attempts

are documented. To be able to manufacture designs modelled in one of these methods, it must be

converted into one of the stages of the conventional route, as shown in Figure 3-1. Because

conversion steps contribute to the overall time taken from design to manufacture, the point at which

each method enters the conventional route is taken into consideration.

Figure 3-1: Integrating into the conventional route from design to additive manufacturing

The first new geometry construction methods to be considered are commonly referred to as "STL

2.0". The intention is to replace the STL format with a more capable and detailed representation of

an original CAD model as the second, neutral step of the conventional route.

CAD software 2 STL

Slice file format 2

Process specific

machine code

Accessible file formats

Other methods of

geometry

construction

CAD software 3

CAD software 1
Slice file format 1

Slice file format 3

Slice file format 4

Process specific

machine code

Process specific

machine code

Process specific

machine code

Inaccessible formats

D
E

SI
G

N
 I

D
E

A

M
A

N
U

FA
C

T
U

R
E

D
 P

A
R

T

51

3.1 STL 2.0

Although the STL format is the de facto standard for exchanging data between CAD systems and

additive manufacture, it is not without its limitations, as discussed in the previous chapter. Being a

form of boundary representation, manifold errors can occur where surfaces don't perfectly meet,

producing invalid geometries that cannot be manufactured. Additionally, the format contains

redundant data: Each triangular polygon (a facet) is described by three vertices (x,y,z coordinates)

and a normal vector. The facet normal is superfluous as it can be calculated by using the right-hand

rule on the facet's vertices [115]. Additionally, in the current format a vertex shared between facets

is duplicated for each facet that shares it [116]. This is shown in Figure 2-16. This unnecessarily

inflates an STL file size and thus the time it takes to read and write.

The STL format is also limited in the information about a model that is translated [115,116]. Surface

texture, material properties and the grading of such properties are all areas of potential in additive

manufacture that the STL format cannot represent [116]. Some groups have attempted to extend the

format to include some of these features, as well as eliminate the redundancy [115,117]. In short,

however, the STL format is not future-proof. As AM processes improve, CAD software can be

upgraded to incorporate new features - the STL format in its current state cannot.

Figure 3-2: Redundant code in the ASCII STL file format (facet A and facet B are neighbours)

Over the last two decades, a number of groups have developed entirely new formats to replace the

STL format. Notable examples include: the RPI (Rapid Prototyping Interface) and the LMI (Layer

…
facet A normal ni nj nk

outer loop

vertex 1x 1y 1z

vertex 2x 2y 2z

vertex 4x 4y 4z

endloop x

endfacet

facet B normal ni nj nk

outer loop

vertex 2x 2y 2z

vertex 3x 3y 3z

vertex 4x 4y 4z

endloop x

endfacet

…

Duplicated

vertices

Duplicated

vertices

Redundant:

normal can be

calculated

from vertex

order

Vertex 1

Vertex 2

Vertex 3

Vertex 4

Facet B

Facet A

52

Manufacturing Interface) [101,118]. The RPI format supports advanced B-rep and CSG modelling as

well as the original faceted representation to ensure backwards compatibility with STL [118]. The LMI

format builds on the faceted representation while implementing a topological hierarchy and again,

eliminates redundancy [101]. Neither of these formats have gained particular peer approval and the

STL format has remained dominant.

A more recent attempt to succeed the STL format has been proposed as the AMF (additive

manufacturing file) [116]. With future-proofing in mind, the ability to assign materials as well as the

ability to define smooth grading between material types are built into the format (examples shown in

Figure 3-3). Material categories are initially assigned at the start of the file and each body (or 'region')

of the model is assigned one of these materials [116]. Materials can be graded within a region with

the use of coordinate dependant equations [116,119]. This works on the assumption that whatever

software reads the AMF file already has a library of material properties stored, and that the AM

process is capable of depositing this material range.

Figure 3-3: Defining multiple and graded materials in the AMF format [116]

Rather than grading materials smoothly across the model, the AMF format allows the definition of

lattice structures by tiling materials in discreet portions - a simple example shown in Figure 3-4.

Structures may be defined by function representation, a standard STL mesh or with a voxel matrix

[116]. Voxels are discussed in detail in Section 3.2 while function representation is discussed in

Section 3.3. When using equations or functions to design graded materials or structures, post

processing software must be utilised to generate physical 3D geometry to visualise and manufacture.

Region 1

Material = 1

Region 2

Material = 2

Region 1

Material = 3

Material 3 combines materials

1 and 2 as so:

At any position 'z' of height 'Z':

• Use 0.3 x z of material 1

• Use 0.3 x (Z-z) of material 2

Z

53

Figure 3-4: Defining a structure in the AMF format [116]

The redundancy of STL files is eliminated by structuring the AMF file more like a standard B-rep

model. As stated in the previous chapter, B-rep models can be considered as a structure of lists. A

vertex list stores co-ordinates of vertices, an edge list groups vertices into pairs and a face list groups

bounding edges into faces. Rather than individually defining each face with three vertices (as the STL

format shown in Figure 2-16 does), every vertex is first defined, followed by a facet list (termed

'triangle list') that is defined with three vertex IDs [119]. These IDs point to a single set of vertex

coordinates that is only listed once, rather than listing that set every time a triangle that shares it is

defined. An example of this structure is shown in Figure 3-5.

Figure 3-5: AMF pseudo-code, based on [119]

Structure defined by a matrix of voxels:

1 1 1 1 1 1 1 1

1 0 0 1 0 0 1 0

1 0 0 1 0 0 1 0

1 1 1 1 1 1 1 1

1 0 0 1 0 0 1 0

1 0 0 1 0 0 1 0

1 1 1 1 1 1 1 1

1 0 0 1 0 0 1 0

…
<Vertices>

 <V1>

 <VertexLocation x1 y1 z1>

 <V2>

 <VertexLocation x2 y2 z2>

 <V3>

 <VertexLocation x3 y3 z3>

 <V4>

 <VertexLocation x4 y4 z4>

…
</Vertices>

<Region>

<Triangle A = V1 V2 V3>

<Triangle B = V2 V3 V4>

…
</Region>

…

V1

V2

V3

V4

Triangle B

Triangle A

List of

vertex co-

ordinates

Triangles

defined by

vertex IDs

54

Not only does this structured method of representing triangles eliminate redundancy, but it

guarantees that neighbouring triangles align perfectly. If a vertex is shared three times, and written

separately three times into a file, there is a possibility that small rounding errors may modify the

coordinates slightly between duplicates. This creates holes in the model, making it invalid and in

need of fixing. The chance of this occurring with the AMF format is avoided because the vertex is only

written once [116].

An STL file requires the calculation of a single vector normal per triangular facet, to determine what

is inside and outside of the model. The AMF format allows the inclusion of different vector normals

for each vertex of a triangular facet, which can be used to represent curved surfaces, as shown in

Figure 3-6 [119]. The triangle to be curved may be subdivided into four new triangles that more

closely represent the curved surface. This may be repeated until the desired accuracy of curvature is

achieved. All the information required to define curved surfaces can be stored in the AMF format

with a single triangle with three vertices [119]. This is merely an efficient manner to translate the

data; the actual subdividing to construct a smooth surface must be completed in post processing

software to be visualised.

Figure 3-6: a) Planar face with 1 normal, b) curved face with three and c) subdivided further to more accurately

represent a curved surface [119]

In summary, the proposed AMF format is a significant improvement over the STL format, although it

still suffers from some of the same limitations. Despite being a boundary representation, the AMF

format has some control over volume properties. However, volume properties cannot be controlled

as explicitly as boundary geometry. Certain manifold errors have been eliminated, however invalid

geometries may still be generated in CAD and passed through the AMF format unchecked (such as

the 'impossible geometries' described in the previous chapter).

The ability to curve facets with normal manipulation potentially allows a reduction in file size of

complex freeform shapes when compared to the STL format. Rather than generating a high tolerance

a) c) b)

55

STL file to capture smooth variations in surfaces, a relatively low number of triangles with varying

normals may be written, to be post-processed at a later step. In terms of structure design, the AMF

format provides syntax to efficiently store the description of a structure, rather than the explicit

dimensions of the structure itself. However it is not a solution in its own right; the AMF is merely a

translation language, neither a design tool or post processor. Additional software must currently be

used to convert the structure design information into an explicit representation. The choice of this

method, be it B-rep or other, will ultimately define the complexity limits of this particular route.

3.2 Voxels

Voxels (an abbreviation of 'volume elements') were originally introduced as a means of 3D geometric

modelling as an alternative to conventional surface modelling [120,121]. Rather than representing a

shape only by its surface (as B-rep methods do), a voxel model defines it as a volume. Analogous to

the rectangular pixels that represent a 2D image such as a bitmap, voxels are discrete blocks and as

such voxel models are 'stepped' in nature [83]. This analogy is illustrated in Figure 3-7.

Figure 3-7: Low resolution pixel image of a circle and voxel model of a sphere

A voxel model is essentially a 3D matrix, with each element of the matrix a voxel. At its most simple,

these voxels can have a value of one or zero, with one indicating the solid model and zero indicating

void space [121]. Because a voxel model represents shape through volume rather than through a

series of boundaries, there is no associated risk of generating manifold errors or invalid geometries.

Anything created in a voxel model is valid for manufacture, as any physical thing that exists in the

real world is composed of volumes rather than boundaries.

Pixel 'Void' voxel

'Solid' voxel

56

A key advantage of voxel models which set them apart from boundary representation is the ease at

which additional information can be represented across a solid [120,122,123]. Density variation can

be represented by assigning voxels through a range of values [1,124], rather than just values of zero

and one representing void and a homogenous solid. However, this level of detail requires significant

computer storage [124]. For this reason, voxel modelling has only become a feasible proposition over

the last decade, with the developments in computer performance [125].

There are two methods to visualise voxel models. The voxels that comprise a model can be directly

rendered or may be converted to a surface model and rendered conventionally. One method to do

this is to construct an isosurface - discussed in more detail in the following section.

3.2.1 Voxel Methods for Structure Generation

Hollister et al. essentially used a voxel method to generate tissue scaffolds for reconstructive surgery

[126], an example shown in Figure 3-8. The method generates lattice structures that are trimmed to

fit a region of damage highlighted by an MRI or CT scan. MRI and CT scans are methods used in

medical applications to acquire 3D models of patients’ soft tissue [125], although MRI machines also

have industrial applications. The output from both medical scanners are a series of 2D bitmap slices:

images that represent successive cross-sections of the patient [126]. When stacked on top of each

other, these 2D images (with a thickness corresponding to the distance between scans) can be

considered a voxel model.

Figure 3-8: Tissue scaffold modelled with voxels [126]

The method developed by Hollister et al. isolates a region within the voxel volume as a shape to be

tessellated with a tissue scaffold design. A simple voxel model of a lattice structure is generated using

mathematical formulas to construct and combine voxelised primitives (such as spheres, cuboids and

cylinders) [126]. The structure is tessellated orthogonally to dimensions that would fully enclose the

isolated region. The voxels that comprise the void space of both the region and structure have a

value of zero, whereas the structure voxels that represent solid have a value of one. The structure

57

voxels are overlaid onto the region voxels, slice by slice. These voxel slices are multiplied together,

element by element. Any structure voxels that are multiplied with the region slice void voxels also

become void voxels, as any value multiplied by zero becomes zero. This effectively trims the

structure voxels to the region, an example shown in Figure 3-9.

Figure 3-9: Filling a slice of voxels with structure [126]

An advantage of voxel models is the ease at which shape complexity can be represented, an

interesting application of this being the ability to represent natural structures such as bone or foams.

It is a straightforward process to extract the relevant tissue from an MRI or CT scan, the bitmap slices

easily converted to voxels. This has been achieved by several groups for the purpose of analysis [127-

129]. The capture of this geometry is a potential starting point for the characterisation and

optimisation of organic, freeform, additively manufactured lattice structures. Examples of these

random porous structures are shown in Figure 3-10.

Figure 3-10: Random porous structures generated from voxel models [128]

A voxel model is compatible with the data flow of the conventional route, through several routes

depending on the AM process. As discussed in Chapter 2, slice files can be categorised into two

types: raster and vector formats. Raster formats are essentially a sequence of bitmap slices. A voxel

model can quite easily be converted to a raster slice format in the reverse manner that MRI and CT

58

scans are converted to voxels [83,126]. Each raster slice will correspond to a one voxel thick layer of

the voxel model; single layers of voxels become 2D images comprised of pixels [83]. In some ways,

this conversion from voxel model to raster slices could be considered an advantage in its own right

over the conventional route, as a voxel model of a part becomes a WYSIWYG ('what you see is what

you get' [130]) representation. The stepping inherent in a voxel model is, in the vertical axis,

equivalent to the stepping between layers associated with additive manufacturing processes [83].

Unlike the majority of AM processes (i.e. those that utilise vector-based slice files, such as laser

sintering), voxel models are stepped in all three axes, so this claim is not applicable to all AM

processes, as demonstrated in Figure 3-11.

Figure 3-11: a) Voxel model - stepping in three axes. b) approximation of a laser sintered model - stepping in

one axis.

Laser sintering - like most modern AM processes - require slice files in a vector format, so the

approach described for converting to raster slices is not applicable. A voxel model must be converted

into a format that is compatible with the conventional route for laser sintering, and the approach

employed by Hollister et al. is an established route to convert a voxel model to a surface model:

isosurfaces [126,127].

An isosurface is a boundary representation method that generates surfaces comprised of triangular

polygons from a voxel volume [127,131], an example shown in Figure 3-12. Isosurfaces are

commonly used to convert from voxel models to allow for straightforward visualisation and

manipulation in more common CAD software. One such method of generating an isosurface is by

using the 'marching cubes' algorithm [131].

a) b)

59

Figure 3-12: a) A voxel model and b) the isosurface constructed from it

The voxel model is interrogated in eight-voxel groups at a time. The group consists of eight

neighbouring voxels arranged in a larger cube, as shown with two examples in Figure 3-13 (a). An

isosurface is generated between a threshold - in this simple case where the voxel is in a binary state

of zero (void) or one (solid), the threshold is set between the two values. The eight voxels within a

voxel group are connected to form a cube. If an edge of that cube lies between one voxel that is

below the threshold and one that is above, a node for one of the triangular polygons that compose

the isosurface is placed at its midpoint (b). These nodes are then connected to form triangular

polygons (c) [131].

Figure 3-13: a) Eight voxel group, b) midpoint selection and c) midpoints connected to form triangular faces

Because an isosurface is composed of triangular polygons, it is a simple operation to reformat the

information into an STL file format. This provides an alternative means for a voxel model to be

a) b)

a) b) c)

60

inserted into the conventional route for additive manufacture, and one compatible with laser

sintering.

This is a far from satisfactory route, however, due to the size of the STL files generated. To avoid

obvious stepping on a voxel model, the resolution must be high enough to exceed the resolution of

the AM process. Because each polygon of the isosurface is generated on the scale of the eight-voxel

groups, the polygons will be on the same scale as the voxels. Where a standard triangulation from a

B-rep CAD surface to STL would construct few polygons whose size is dependent on the curvature of

the surfaces, an isosurface is always constructed of small polygons, dependant on the original voxel

resolution. This is illustrated with the worst case example: triangulation of a flat surface, in Figure

3-14.

Figure 3-14: a) Triangulation of a flat face of a B-rep model (2 triangles), b) triangulation through isosurface

construction of a voxel representation of a flat face (200 triangles)

This inefficient means of boundary representation ensures that any large voxel model converted to

an STL will inevitably require significant computational resources to manipulate. However, in STL

manipulation software such as Magics, functions exist for triangle count reduction.

3.2.2 Suitability of Voxels for Structure Generation

Shape Complexity

Voxel modelling shows great potential for the generation of large, complex lattice structures, due to

the ability to efficiently generate complex geometry. Because voxel models represent volume rather

than surfaces, a highly complex geometry requires the same memory as a completely empty space of

the same size. A voxel volume of a particular size is composed of a set number of voxels. Whether

the voxels are solid or void in nature has a huge impact on the geometric complexity of the model,

but no impact on the overall file size of it, as the memory requirements to store a solid voxel are the

same as a void voxel. This essentially means a voxel model's file size is independent of geometric

a) b)

61

complexity [83]. The issue with this memory structure, however, is that for even a simple or empty

model, the memory requirements are considerable [83]. However, as the memory capabilities of

modern computers improve, voxel modelling has become more viable [132].

Both the accuracy of a model and it's memory requirements are tied to the model's resolution - the

size of the voxels relative to the model. No matter how high the resolution, the voxel model will

always represent angled and curved surfaces with a stepped boundary: a result of the discrete block

nature of voxels. A low resolution voxel model will require less memory, but the stepping will be on a

relatively larger scale. However, methods have been developed that reduce the memory

requirements of a voxel model. 'Octree decomposition', is such a method, where regions of a model

of the same value are grouped into single, larger voxels [133]. For clarity, the 2D version (quadtree

decomposition) is shown in Figure 3-15. As with PCs, however, AM processes are always improving:

as surface quality of AM produced parts improves, the voxel resolution of models will have to

increase to compensate, further driving up memory requirements.

Figure 3-15: 2D quadtree decomposition

Voxel models allow shape, material and hierarchical complexity that conventional CAD cannot

achieve. For example, voxel modelling allows for surface textures to be easily defined, using

algorithms analogous to image processing techniques (like adding noise) that can generate texture

like fur or stone (as shown in Figure 3-16). Each voxel can also contain additional information such as

material properties [122,134].

62

Figure 3-16: 3D-Coat voxel modeller: capable of complex and organic geometry, including surface texture [135]

Additionally, because it's a volume representation rather than a boundary representation, any voxel

model generated is of a valid geometry. There is no possibility of manifold errors - gaps in surfaces or

overlapping boundaries - which could prevent a model from being fabricated. Volume models are

more appropriate representations of real-world parts, which makes a voxel-based approach more

robust in terms of constructing manufactureable models.

However, there is no topological information stored in a voxel model that gives meaning to its

features. For example, conventional CAD methods can define individual struts of a lattice structure,

along with topological constraints that ensure correct connectivity with neighbouring structural

elements. A voxel model cannot provide this connectivity - a voxel is known by its location, not its

purpose.

Useability

As well as the equation-based construction of geometric primitives that Hollister et al. demonstrated

[126], commercial voxel modellers exist that supply a familiar, standard CAD-like interface for the

construction of voxel models. 3D Coat is such an example, its user interface shown in Figure 3-16.

However, conventional CAD is arguably better at controlling part dimensions: many voxel modellers

are content with providing tools for artists rather than engineers and as such don't focus on accurate

placement of features [135,136]. Also, if a feature happens to need to be placed between two

63

discrete voxels, it is not possible to represent without either locally or globally increasing voxel

resolution. Alternatively, any geometry that can be constructed in CAD can be easily converted to

voxels through a process called voxelisation. In the same way that it is trivial to evaluate a

mathematical function to generate discrete points that can be plotted, voxelisation is a relatively

straightforward process that samples a 3D model to generate discrete voxels [102]. The reverse is

significantly more arduous, much like taking a set of points and attempting to fit a function to them.

Trying to convert a voxel model to a boundary representation (as discussed with isosurfaces) is not a

particularly efficient process.

With the ability to import CAD models, utilising any combination of these geometry construction

methods allows a freedom to create lattice structures of any design in a voxel environment.

However, the topological information of a model is lost in the voxelisation process. When

decomposed into a series of discrete voxels, all connectivity information that defined a surface is

discarded. This is similar to the effect when converting a CAD model to an STL, as described in the

previous chapter. Similarly, it is difficult to assign specific dimensional information to regions of a

voxel model when built from scratch. Where in a B-rep model it is known that a specific face of a

model is, for example, cylindrical, a diameter can be assigned to parameterise it. The voxels that

approximate a cylindrical face of a voxel model do not contain this information. They cannot be

automatically grouped as such and thus this cylindrical face cannot be modified in a meaningful way.

From a technical standpoint, voxel models can take full advantage of modern, multiple-processor

computer [132]. Due to the discrete nature of voxel models, the model can be split and manipulated

in parallel between multiple processors. For a conventional CAD model this is more difficult, as a

particular surface can have implications across the whole model. However, even with modern

computers, the size of a high-resolution voxel model can still make manipulation a slow process.

Data flow

A notable disadvantage from modelling with voxels is that it is not part of the conventional route of

information flow for the majority of AM processes. Isosurfaces have been shown as a possible but

unsatisfactory conversion route due to memory requirements. The raster-based slice files that can be

easily generated from a voxel model are incompatible with most AM processes that require vector-

based slice files. The advantages gained from voxel modelling are nullified if the geometric

information cannot be efficiently transferred to an AM machine for manufacture. If an efficient

64

manner can be developed, then voxel modelling has considerable potential for the design of lattice

structures.

3.3 Function Representation

Function representation (F-rep) defines geometric objects implicitly, that is, with functions that

determine whether a point is inside, outside or on the surface of the object [137]. F-rep can be

considered an evolution of CSG. Whereas CSG is only capable of determining if a point is inside or

outside of a solid, F-rep is capable of defining heterogeneous solids [1,138]. Like CSG, F-rep can

construct geometry with Booleans and primitives, but has been expanded to allow operations to

further modify geometry such as parametric models, skeleton-based models and complex sweeps

[1,137,139]. 'HyperFun' is a freely available programming language that models parts through

function representation [140].

An F-rep model only exists as a set of highly computationally efficient functions during modelling,

allowing the construction of complex geometry [1,141]. Consider the rectangular 'slabs' shown in

Figure 3-17. Each slab is represented by a single function that defines its size and position, rather

than the multiple lists of vertex co-ordinates, edge and face connectivity required by boundary

representation.

Figure 3-17: The implicit functions and the Booleans to generate the cubic lattice structure

 To define an

 infinite set of

 'slabs' (sx) as a

 function:

sx (x,y,z) = sin(qxx + px)-lx

Where:

 qx = distance between slabs

 px = position from origin

 lx = thickness of slab

sin() = periodic function

 repeating to infinity:

Slabs 'anchored' to

position on a sine

wave, allowing

infinite repetition

65

These slabs are, by nature of the implicit functions that represent them, repeated into infinity (as

shown in Figure 3-17), which facilitates the representation of lattice structures that are also infinite

in size [60]. These slabs are combined with Boolean operations to form the basic structure and finally

trimmed to a boundary shape of finite size. To vary the distance between struts, for example, the

frequency value of the structure's function need only be changed [60]. This compares favourably

with B-rep modelling, where to generate a structure with more struts, each new strut would need to

be duplicated and repositioned. Examples of an F-rep structure are shown in Figure 3-18, the only

difference between the lattice structure's F-rep description are the frequency values of the function.

Figure 3-18:Modifying structure geometry through manipulation of a function [60]

As well as functions that define primitives, additional functions have been developed that augment

or warp geometry. Examples of warping are shown in Figure 3-19: a) the struts of the structure

increase in thickness linearly along one axis; b) the distance between struts is dependent on the

distance to the external surface; c) a pseudo-random structure is generated by adding a noise

function to a regular tessellation [142,143]. A blending function has also been applied to example b)

in Figure 3-19 to generate a smoother, more organic structure[137]. Like voxel modelling, F-rep is

also capable of using noise functions to define surface textures, which further expands the

capabilities of this method [138].

 a) b) c)

Figure 3-19: F-rep structure dimensions grading as a function of a) distance along x-axis, b) distance from

surface of sphere and c) random noise [60]

66

A key development in F-rep modelling is the method in which models are visualised, which was until

recently a major disadvantage of the method [2]. Visualisation is crucial in allowing real-time

feedback during the design process - ensuring confidence in a design - especially as complexity

increases. In conventional visualisation of geometry, an explicitly defined surface is required for a

rendering engine to produce a shaded model. The most basic rendering techniques (e.g., Gourard

and Phong shading) polygonise a surface and shade each polygon depending on its angle relative to a

light source [133]. This is readily compatible with B-rep models, as they are already polygon surfaces,

but an extra conversion step is required when using these methods to render F-rep models.

An F-rep model can be converted to a B-rep model for visualisation [144], but the advantage of

modelling in F-rep over B-rep (the ability to efficiently represent complex structures) is lost if this is

necessary. This was a necessary conversion that limited F-rep until a method was devised by

Fryazinov and Pasko to directly ray trace a model at real-time rates on modern PCs, without the need

to generate explicit surfaces [60,139]. Ray tracing is a more advanced rendering method that projects

virtual light beams that - when reflected from a surface - bounce back with an intensity value that

determines the model's shading [145]. Fryazinov and Pasko have utilised a computer's graphics card

to accelerate the process, to allow for interactive viewing and modification of an F-rep model of a

greater complexity than possible with standard rendering of conventional B-rep models [139].

One inherent issue with function representation, however, is that designs aren't modelled directly.

To model a part the functions that best fit it must be determined. In some cases it is difficult to

model exactly what is required, although in these cases where a part cannot be represented with

functions, it can be used as a starting point and then modified with any other modelling method as

required.

3.4 Conclusions

Several alternate methods of geometry creation have been discussed in this chapter. The various STL

2.0 formats - while showing significant advantages over the standard STL format - don’t show

particular promise in the design of lattice structures. The AMF format contains a function for the

storage of structure design information but no conformal structure is explicitly created. Function

representation is a promising method and has been shown to efficiently generate large arrays of

particular lattice structures.

Voxel models have the potential to allow the design of geometrically complex lattice structures.

Structure design is limited by overall part size rather than geometric complexity. Being a volume

67

modelling technique rather than a boundary representation, any modelled geometry is valid for

manufacture. Where AM processes require raster-based slice files, voxel models can be easily

converted and for AM processes that require vector-based slice files, isosurfaces may be used to

convert voxel models into STLs. This particular route however will result in particularly large files that

may be difficult to handle.

The STL 2.0 formats have been specifically designed to replace STL and as such integrate into the

conventional route of design to manufacture well. F-rep and voxel modelling are integrated into

conventional route to some extent. It has been stated that F-rep can be easily converted into STL and

slice formats [1] however the efficiency of these conversions is not clarified. Voxel models can be

quite easily converted to the raster slice formats required by 3D printing, however for the majority of

AM processes (that require vector formats) this conversion is not so straightforward.

Figure 3-20: Integrating alternate methods into the conventional route. F-rep and voxel methods can generate

geometry independently or import from CAD (hence dashed arrows), whereas STL 2.0 (as primarily

a translation language) requires a CAD model

The incorporation of a modelling method into the conventional route is important due to drivers at

both ends. At the beginning of the process (the design idea), users are generally comfortable and

familiar with current design tools (such as CAD software). At end (manufacture of an AM part), the

majority of AM machines have narrow allowances for what can be read. For any realistic uptake of a

new structure generation method, it should be able to integrate between these two fixed points. In

summary, voxels and function representation have potential for the generation of conformal,

complex lattice structures but must be formatted for or incorporated into conventional route in a

way that satisfies both users and existing infrastructure.

The following chapter discusses methods for conforming a structure to a shape.

Accessible file formats Inaccessible

formats

Process specific

machine code
Slice file format STL CAD software

STL 2.0

F-rep

Voxels

68

4 The Design of Conformal Lattice Structures

The previous chapters discussed applications of geometry representation methods in the design of

lattice structures. In terms of designing conformal lattice structures, there are a range of approaches.

The purpose of this chapter is to review these methods. A number of groups have investigated

methods to generate large, complex lattice structures and are also noted. How this geometric

complexity is achieved is the topic of the following two chapters. This chapter is solely concerned

with presenting general methods of conforming a structure to a shape.

4.1 Overview of General Lattice Structure Design

Throughout this thesis, the topology of a lattice structure is categorised as follows. A lattice structure

can be considered as a hierarchy of different structural elements - depending on the situation it may

be useful to consider the structure at different levels of this hierarchy. At the lowest level, a structure

is comprised as a series of 'struts' (labelled in Figure 4-1). While the design of the struts may be

identical throughout the structure, they will be oriented as such that they can join to form a lattice.

The next level of the hierarchy is a 'cell'. The cell is this arrangement of struts and defines their

connectivity.

The term 'structure' is used to describe the entire lattice of struts or cells. Because the shape of a cell

can vary between different structure types the generic term 'cell diameter' is used in this work as a

measure of the size of a cell. The 'conformal shape' is the boundary to which a conformal lattice

structure must fit. A conformal structure may also have a 'skin', a solid sheet of material across all or

a portion of boundary of the conformal shape that can serve a number of roles, from aesthetics to

reinforcement.

69

Figure 4-1: Lattice structure naming convention

As discussed previously in Section 1.5, it can be assumed that both the strut geometry and cell

geometry will affect the properties of a lattice structure. For example, regardless of the cell type,

increasing the thickness of the struts will tend to stiffen a structure. Similarly, reducing a cell's

diameter while retaining the strut thickness will also stiffen a structure. Generally, the higher the

ratio of cell diameter to strut thickness, the stiffer a structure will be. It can be assumed that any

modification to the size or shape of a cell will modify its properties. This simple assumption is an

important consideration to note in the following section that details the methods by which a

structure can be manipulated to conform to a shape.

4.2 Methods to Generate Conformal Lattice Structures

4.2.1 Trimmed Structures

The majority of conformal structure methods reviewed trim a regular tessellation of a cell to the

required shape. This method of conforming structures to a shape is often employed because it is a

relatively straightforward method to implement that in general consists of two steps. First, a

structural cell is arrayed to encompass a shape and then second, regions of the structure that are

determined to be outside of the required shape are removed. A simple 2D example of a trimmed

structure is shown in Figure 4-2.

Strut

Cell

Conformal shape

70

Figure 4-2: Trimming a structure to fit a shape

Medical applications are common between many attempts at generating trimmed structures. For

example in vivo tissue scaffolds have been designed to promote new cell growth, as shown in Figure

4-3 [55-57]. For these applications the porosity of the structure is the primary consideration (to

permit the movement and growth of biological cells or for modelling purposes) rather than strength

or rigidity [54]. Several software packages also generate trimmed conformal structures, such as

Materialise Magics, Selective Space Structures from netfabb and Marcam Engineering's AutoFab

[92,93,107]. Magics and Autofab generate structures at the STL stage, whereas Selective Space

Structures uses a vector-based slice format, as discussed in Chapter 2.

Figure 4-3: Trimmed structures investigated for medical applications [79][80]

Certain groups have taken the trimmed method further by implementing techniques that vary

geometry across the structure, commonly termed 'functional grading' [55][82]. Wettergreen et al.

designed a series of different cell geometries that incorporate a common mating point [55]. The

structure was designed to resemble a human vertebrae. To functionally grade the structure, finite

element analysis was conducted on a model of the vertebrae. This resulted in a 'modulus map' used

as a key for the selection and location of suitable building blocks.

a) Unit cell b) A trimmed structure

71

Figure 4-4: Trimmed structure generation by Wettergreen et al. [55]

A modulus map is a two-dimension graphical representation of a particular mechanical property,

such as stress [146]. Different colours of a modulus map correspond to different levels of stress that

a region of the part is enduring, which was used to determine an appropriate structure for that

region [55].

A similar method of generating functionally graded structures was investigated by Gervasi and Stahl

[82]. An optimisation procedure following the Solid Isotropic Material with Penalisation method

(SIMP) was implemented on a two-dimensional design domain with initial conditions that described

loadings and constraints, as shown in Figure 4-5. After several iterations, the SIMP method generated

a density map, a two-dimensional grid of different density values. This grid was used as a basis to

map a simple structure that was manipulated to match the required density at each point.

The method is currently only capable of generating single-layer structures; the structure was

arbitrarily repeated four times to thicken the part. Unlike the other trimmed structure methods

discussed in this section, this method does not actually trim the structure to the input conformal

shape, it approximates the boundary to the nearest whole cell.

72

Figure 4-5: Topology optimisation - selection of structure through a density map [82]

The main advantage of the trimming method of conformal structure generation is that it is robust. An

outcome can be generated given any unit cell and any input conformal shape. This is a significant

advantage as the method is not limited to particular forms of a conformal shape. Whether or not the

outcome is useful is down to the choice of cell and conformal shape rather than the method. For

example, trimming a structure to a thin-walled conformal shape is liable to separate a structure into

multiple parts that will be unconnected when manufactured. In general, a conformal shape with

geometry that is thinner than the diameter of the cell risks this issue, as shown in Figure 4-6.

Figure 4-6: Trimming a structure to a thin-walled conformal shape

 Initial conditions Iteration 1 Iteration 2 Iteration 3

Structure graded to density map

• Higher density elements of

map correspond to

structure cells with thicker

struts

a) Unit cell b) Trimmed structure

Structure separated into

multiple parts

73

A disadvantage of this conformal method is that trimming a structure inevitably weakens it at the

boundary. The strength of any structure is dependent on the interconnections between neighbouring

struts. At the boundary the connectivity between cut struts is lost when regions of the structure

outside of the conformal shape are removed. Structure trimming software such as Magics and

AutoFab provides the option to add a skin to the structure in an attempt to address this issue. An

example of a skin is shown in Figure 4-7.

Figure 4-7: A lattice structure partially covered by a skin

Another disadvantage of this method is that there is usually an obvious structural orientation relative

to the conformal shape. Fully isotropic behaviour is an unlikely property in any structure designed for

the macro scale. Orthotropic behaviour (the same properties in x, y and z axes) are potentially

obtainable in a cubically-arrayed lattice structure, although considering the anisotropy inherent in

parts fabricated by additive manufacturing even this is not straightforward. For structure designs that

maximise rigidity this is less of a concern as the structure can be designed in a way that even the

weakest orientation is rigid enough. For compliant structure designs where a small range of low

rigidity values is acceptable this could become a significant issue.

The trimmed structure method of generating conformal structures is capable of yielding a result for

any conformal shape or cell design supplied. However, the orientation of a trimmed structure does

not consider the curvature of the conformal shape's surfaces. Essentially a trimmed structure is

capable of populating any volume with structure, but the quality of the boundary is not considered.

74

4.2.2 Swept Structures

The swept structure method deforms a unit cell to fit a particular surface, as shown in Figure 4-8.

When a structure is swept in this manner, it is always oriented in the same direction relative to the

surface. This is in contrast to the trimming method of conforming a structure, where the surface of a

conformal shape has no impact on the structure's orientation.

Figure 4-8: Sweeping a structure around a shape

Gibson et al. have extensively investigated sweeping structures to follow a surface [50,71,85,147].

Normal and tangent information is calculated for points on the surface, and a unit cell deformed to

fit it.

Improved strength to weight ratio and stiffness are cited as applications for these particular

conformal structures [50]. As such, the structure design most often employed is derived from a 3D

tessellation of octahedra and tetrahedra (called the 'octet truss structure’) - polyhedra composed of

triangular faces that exhibit high rigidity as shown in Figure 4-9a [50,147]. At the most basic, the

method has been employed to map a few rows of structure to thin-walled sheet-like parts, such as

the 'skin' concept also shown in Figure 4-9.

b) Swept structure a) Unit cell

75

Figure 4-9: Swept structure mapped to thin-walled geometries [50,71]

The method has been developed to warp a structure between two different surfaces. Figure 4-10

shows a simplified 2D representation of a structure swept between two surfaces with different

curvature. Wang and Rosen have developed a method which generates a number of intermediate

surfaces between the original external surfaces. These intermediate surfaces are generated by

linearly interpolating between discrete points on each of the original surfaces [85].

Figure 4-10: Sweeping a structure between two surfaces

As with the trimmed structure method, by varying strut geometry, a swept structure can be

functionally graded. However, the sweeping itself adds a layer of complication to structure design. By

deforming a cell to fit a surface, any properties specific to the original dimensions are changed. As

discussed in Section 4.1, a simple way to control a structure's properties is to vary strut diameter or

cell diameter. The diameter of swept cells can vary dramatically depending on the surfaces that the

structure must conform to. The fundamental issue with the sweeping structure method is that the

properties of the structure will inevitably become a function of the curvature of the surface.

a) Octet-truss unit cell b) Skinned concept

a) Unit cell b) Swept structure between two surfaces

Original

surfaces

Intermediate

surface

Interpolating mid-

point to generate

intermediate

surface

76

From a technical standpoint, the system developed to generate a swept structure employed by

Gibson et al. is complex. Sweeping a structure is a mathematically difficult task; for any point on the

conformal surface, normal and tangent information must be calculated to construct a region to place

a swept cell. For this reason, the chosen conformal shape is approximated by a series of Bézier

surfaces [85]. A Bézier surface is one that is defined by a series of equations which are manipulated

by a set of control points [148]. This allows a complex freeform surface to be approximated by a

series of more simple Bézier equations, which simplifies the determination of normal and tangent

information in the construction of structural cells.

Regardless of the technical system developed to generate swept structures, the actual conformal

method is limited in terms of conformal shape complexity. As structure is deformed to fit a surface

curvature, a surface can bend so tightly that it is impossible to fit the structure around it. An example

is shown in Figure 4-11. Additionally, even with the modifications that allow sweeping between two

different surfaces, the conformal shape must have clearly defined 'top' and 'bottom' surfaces to map

structure between, also shown in Figure 4-11.

Figure 4-11: Difficulty in sweeping a structure around a shape with tight bends and no clear 'top' and 'bottom'

In general, the sweeping method is only suitable for conforming structures to certain geometries -

with a high length to thickness ratio that generally follow a single surface. The swept method is

severely limited in this respect.

4.2.3 Meshed Structures

Finite element analysis (FEA) simulates the physical properties of an object and how it reacts under

loads and constraints. FEA can be used to solve 2D and 3D problems and represents an otherwise

complex model as a mesh of simpler discrete elements [148]. When meshing a 3D object, a

volumetric mesh is usually generated - a mesh of 3D elements that discretises the whole volume

77

rather than just the surface. The field of FEA is well developed and by extension so too are the

meshing algorithms used to discretise the object in question [148]. One relatively straightforward

method of constructing a conformal structure is to take such a volumetric mesh and use it as a base

to map structural geometry to.

An FE mesh is constructed at an early stage of finite element analysis [149]. It is an approximation of

a part's geometry - a volumetric mesh is usually generated directly from a CAD model to certain

accuracy and resolution conditions [149]. This volumetric mesh is comprised of many elements, as

such a single complex problem is broken down into a series of simpler ones [150]. FEA can be

conducted on 2D and 3D models, but the latter are of interest in the design of structures. Because

the primary aim of FE mesh construction is to match a mesh to a particular shape, the basis for a

conformal structure is generated without need for further modification.

There are a wide range of different volumetric meshing techniques that generate 3D polyhedral

meshes for use in FEA, and some groups have investigated their use as the basis for conformal

structures. A simple, 2D quadrilateral mesh is shown in Figure 4-12.

Figure 4-12: A finite element mesh

One method to generate a structure from a mesh is to extract the edges to use as a wireframe

skeleton to map strut geometry to. Alternatively, a unit cell of structure can be warped to fit the

elements of the mesh, as investigated by Stahl et al [82] (Figure 4-13). Although the distorted

structure fits the conformal shape, the level of distortion of the structure raises into question the

suitability of the method - the shape and size changes between distorted cells modifying its

properties. However, it could be argued that the conformal shape shown in Figure 4-13 could have

been meshed to a higher quality, in terms of minimising shape and size differences between

elements.

78

Figure 4-13: Mesh and structure [82]

The advantage of constructing conformal structures based on FE meshes is that it is a long

established field and a number of software packages already exist that specialise in generating FE

meshes [148,150]. This can then be used as a starting point - the basis to map structural geometry to.

Like the swept method of generating conformal structures as discussed in the previous section,

elements of an FE mesh are deformed to fit the conformal shape. Unlike the swept method, the FE

meshes are much more capable in terms of shape complexity that can be meshed - they are not

limited to the thin wall-like shapes that swept methods are. There are different types of meshes

available for different purposes (such as four-sided tetrahedra, five-sided 'pentas' or six-sided 'hex'

elements [151]) which would influence the properties of the types of structure designed. These

examples are shown in Figure 4-14. These mesh types can even be combined, which has interesting

implications for the generation of functionally graded conformal structures. However, only the

tetrahedral mesh is particularly flexible in terms of shape complexity achievable [151].

A user has advanced control over the shape of an FE mesh, such as the level of deviation or

deformation allowable between elements during the meshing process [151]. Despite this control, the

final mesh will still exhibit a level of variation in element shape.

79

Figure 4-14: a) tet, b) penta and c) hex finite elements

4.2.4 Voronoi Tessellations

Voronoi tessellations are techniques to subdivide space, commonly used to model the structure of

materials and in computer graphics [152]. The method can be applied in two and three dimensions. A

2D Voronoi tessellation is the dual of a Delaunay triangulation - itself a method of constructing a

triangular mesh from a set of points. A Voronoi tessellation is generated by constructing

perpendicular bisectors from each edge of the Delaunay triangulation [97,153], as shown in Figure

4-15. Another way to consider the construction of a 2D Voronoi tessellation is that each vertex of the

Delaunay tessellation acts as a seeding point for a cell, termed a 'Voronoi region' [154]. If a circular

wave is imagined to expand at the same speed from each seeding point, straight boundaries are

formed where waves from neighbouring points meet [154,155], also shown in Figure 4-15.

Figure 4-15: Construction of a 2D Voronoi diagram (based on a figure from [154])

 a) b) c)

Voronoi region

Seeding point

Voronoi tessellation 'Expanding waves' analogy Construction from

Delaunay triangulation

80

A 3D Voronoi tessellation can be derived from a Delaunay tetrahedralisation in a similar manner.

Rather than constructing perpendicular edges that bisect each edge of the triangulation, a surface is

constructed normal to the midpoint of each edge of the tetrahedralisation. An example is shown in

Figure 4-16.

Figure 4-16: Constructing a random structure from a 3D Voronoi cell

By default, Voronoi tessellations are infinite in size. The cells that are not fully bound by neighbouring

cells expand indefinitely. However a boundary can be included in Voronoi calculations to trim the

tessellation. This is usually referred to as a clipped Voronoi tessellation [152]. This essentially means

that to make a Voronoi tessellation conformal to a shape, it must be passed through the trimming

method as discussed in Section 4.2.1.

Voronoi tessellations have been used to model natural cellular and crystalline materials [25,156,157]

and molecular structures [158,159]. In these instances, a finite block of the tessellation is

constructed, bound by a simple cuboid. Voronoi tessellations have also been implemented in the

simulation of granular flow porosity [160] and as the basis of futuristic architectural concepts [161].

These Voronoi tessellations were clipped to slightly more complex shapes as a model of real-world

objects. A particularly efficient algorithm for constructing Voronoi diagrams for use in refining

tetrahedral meshes was developed by Yan et al. [152]. Implementations with Voronoi tessellations

constrained by more geometrically complex boundaries are shown in Figure 4-17.

a) Voronoi cell from Delaunay tetrahedralisation b) Geometry mapped to Voronoi cell edges

Seeding point

for this cell

Midpoint of

edge

81

Figure 4-17: Applications of 3D Voronoi tessellations: a) in modelling of granular flow [160] and b) general

modelling [152]

As with the general meshing techniques discussed in the previous section, a level of randomness is

inherent in Delaunay and Voronoi tessellations. Random structure at the microscopic scale (as in

many natural cellular materials) is considered as a bulk homogenous material at the macroscopic

[25]. However, at the macroscopic scale that cellular structures can be replicated at by current AM

technology, the ratio between cell size and part size is such that randomised structure would only

serve to randomise its properties. With judicious placing of seeding points however, regular

Delaunay and Voronoi tessellations can be constructed. By placing seeding points in a cubic array, a

Voronoi tessellation will reveal an array of cubes. The more complicated regular array of seeding

points as shown in Figure 4-18 will create a tessellation of truncated octahedra - a close

approximation of the 'Kelvin cell' [25].

Figure 4-18: Constructing a regular Voronoi tessellation

a) b)

a) Voronoi cell from Delaunay tetrahedralisation b) Geometry mapped to Voronoi cell

edges

82

4.3 Summary of Conformal Structure Methods

This chapter detailed several methods of conforming a structure to a shape: trimming, sweeping,

meshing and Voronoi tessellations. A Voronoi tessellation is constructed from its dual, a Delaunay

tessellation, which can actually be generated with FE meshing techniques. Because a Voronoi

tessellation is infinite in size and must be trimmed to conform to a shape, it is categorised separately

from standard meshing techniques. The trimming and sweeping methods generate structural

geometry directly, while the mesh-based techniques generate what is essentially a polyhedral

tessellation that must then have geometry mapped to it. Two dimensional examples of the

conformal structure methods are shown in Figure 4-19 for comparison.

Figure 4-19: Conformal structure methods: trimmed, swept, meshed and Voronoi

The trimming method is the most robust in terms of the complexity of the shape it is possible to

conform to. The mesh-based methods are also very robust, while the sweeping method is only

suitable for certain types of conformal shape geometry. For this reason, sweeping is not considered

further as a viable conformal method.

Each of these methods deform a structure in some way to fit a conformal shape. The sweeping and

mesh-based methods consider the surface of the conformal shape as the basis of the structure

generation, and 'fill in' the volume with a warped structure. As a result, these methods form 'closed'

structures of intact (but varied) cells. In contrast, the trimming method populates a volume with

structure and cuts it to fit the surface of the conformal shape. This results in a perfectly regular

structure with 'open' cells at the boundary.

83

While meshing techniques allow the discretisation of an object into a variety of element types (such

as tetrahedral or hex elements), the trimming method is compatible with any three dimensional

tessellation. With this greater variety of tessellations brings a wider range of structure types, each

with potentially different physical properties when manufactured. For example, the alternating cubic

tessellation of tetrahedra and octahedra (as shown in Figure 4-20) will exhibit high rigidity, as the

majority of the structure composed of triangular connections. In contrast, the bitruncated cubic

tessellation of truncated octahedra (also shown in Figure 4-20) will produce a relatively compliant

structure as it is very similar to the Kelvin cell which - as previously discussed - replicates the

compressive profile of foams. While having completely different mechanical properties, both of

these structures can be cropped to fit a repeatable unit cell that can be best implemented with the

trimming method.

Figure 4-20: a) alternating cubic and b) bitruncated cubic tessellations

The trimming method is the most viable method of conforming a structure to a shape as it is robust

and flexible. The trimming method can generate a conformal structure from any shape, can

manipulate the widest range of structure types and minimises deformation of the structure. The

main disadvantage is that regions of the structure are weakened from the boundary being cut. Ways

around this are discussed in detail in Chapter 6.

 a) b)

84

5 Research Methodology

5.1 Problem Identification

The literature has shown that there is a requirement for efficient modelling of conformal lattice

structures for additive manufacture. The literature has shown that conventional CAD is unsuitable for

the task as it is an inefficient method for representing models of high hierarchical complexity. As such

conventional CAD cannot fully exploit the geometric freedom associated with AM when modelling

lattice structures. Other methods of geometry representation were investigated and the voxel

method in particular shows promise in the design of complex structures. Initial work on using the

voxel method for structure generation was carried out by Hollister et al. [126], although due to the

limited requirements the resulting structures were relatively simplistic.

Methods to conform a structure to a particular shape were also discussed and four were identified:

trimming, sweeping, general meshing and Voronoi tessellations. The trimming method is the most

widely adopted as it is the most robust, the most flexible in terms of structure types that can be

processed and subjects the structure to the least deformation. The main issue with the trimming

method, however, is the loss of connectivity between trimmed struts at the boundary of the

structure. This region of trimmed struts are potentially weakened by the removal of supporting

neighbours. No implementation of the trimmed method satisfactorily addresses this.

In short, a gap exists that could be filled by a voxel-based trimming method of conformal structure

generation that addresses the issue of the weakened boundary. By ensuring compatibility with laser

sintering, the method can be advanced to fully exploit the geometric freedom afforded by additive

manufacturing.

85

5.2 Research Aims

The following work is split into two broad research aims:

1. Investigate a method to retain structural connectivity at the boundary of a trimmed

structure.

2. Develop a conformal structure method that:

a) Utilises the trimming method of conformal structure generation

b) Implements research aim 1

c) Develops the voxel method to fully exploit the geometric freedom of AM

d) Efficiently integrates into the conventional route - the route of data flow from design

to additive manufacture as described in Chapter 2

5.3 Research Approach

Research Aim 1 is developed as 'preliminary work' in Chapter 6. At this stage it is a concept that is

investigated through an implementation of boundary representation. At the same time, a 'cut down'

version of boundary representation is investigated to determine if this more conventional modelling

method is a potential route when geometric accuracy is reduced. The chapter shows that reducing

accuracy only works to a degree.

The conformal structure method required by Research Aim 2 is developed throughout Chapter 7. The

method exploits voxel modelling to create an advanced structure trimming method that fully

integrates this alternate modelling method with the existing infrastructure associated with the

conventional route of data flow discussed in the literature. The concept developed as a response to

Research Aim 1 is implemented, as are a number of extra features that capitalise on the geometric

complexities that additive manufacturing is capable of.

Chapter 8 details testing of samples passed through the conformal structure method as, despite the

advantages it presents, parts made by the method exhibit an extra artefact of surface roughness not

present in conventionally designed AM parts. The primary goals of this testing are to quantify this

artefact and suggest means to minimise it if necessary. Conclusions are discussed in Chapter 9, as are

suggestions for future work to further develop the conformal structure method.

86

6 Preliminary Work: Adapting Boundary Representation

As the literature review demonstrated, the trimmed structure method of generating conformal

structures is the most robust and flexible. However, out of the methods discussed it is unique in that

elements of the structure are removed, i.e. the struts at the boundary. This implies a weakness at the

boundary of the lattice structure where struts are no longer supported by neighbours. This chapter

discusses existing skinning methods to address this and presents an alternative, novel method.

The literature also showed that the underlying advanced boundary representation (B-rep) method of

geometric modelling used by CAD software was not suitable for generating complex conformal

structures. The literature review showed that the simplified faceted B-rep modelling was more

suitable. The reduction in accuracy of faceted models allows larger structures to be modelled before

computer memory limits are reached. This chapter utilises what has been termed a 'sampled B-rep'

method which takes this simplification of geometry further. The work discussed in this chapter was

implemented in Matlab [162]. Although not the most promising modelling method identified by the

literature, it is relatively straightforward to implement and thus useful for exploring the concept

presented in the following section.

6.1 Skinning a Trimmed Structure

As discussed in Chapter 4, when trimming a structure to fit a conformal shape, the cells at the

boundary are essentially cut open. This inevitably weakens the region of the structure at the

boundary as the cut cells are no longer self-supporting. A strut, once it has been cut, immediately

loses the support it gained from its now-removed neighbours. The entire boundary region of a

trimmed structure will be weaker than the bulk structure which has serious consequences for the

design of such conformal structures. One method to overcome this is to apply a skin to the trimmed

structure boundary - a solid conformal shape that fully or partially encompasses the structure. An

example of this is shown in Figure 6-1.

87

Figure 6-1: A trimmed structure with a) no skin and b) a solid skin

A solid skin increases the stiffness of a trimmed structure at the boundary. Sometimes potentially

useful, this is nonetheless an undesirable modification for an application where flexibility is a key

design requirement. A fully encompassing solid skin also makes manufacture a more difficult

proposition. A completely solid skin makes it impossible to remove any supports as required by the

additive manufacturing process, whether the additional support structure constructed by

stereolithography or FDM, or the un-sintered, supporting powder that surrounds the part in powder-

based processes such as laser sintering.

Drainage holes can be built into the solid skin at key locations to allow the removal of supporting

material, however the effectiveness of this cannot be guaranteed. This may be completely ineffective

for complex structure designs as well as particular conformal shape geometries that trap supporting

material within them.

6.1.1 The Net Skin

This chapter presents a compromise between a solid skin and no skin. It has been named a 'net skin'

by the author for its resemblance to a fishing net - an example is shown in Figure 6-2.

a) b)

88

Figure 6-2: a) a trimmed structure, b) a trimmed structure with net skin and c) just the net skin

The net skin, defined by this work, is a method to re-connect the cut struts of a trimmed structure. If

the boundary of a trimmed structure is considered as an array of individually trimmed cells, then cut

struts can be grouped with others of the same cell. With this knowledge, these groups are bridged

with new struts that form the net skin.

Any repeating structure can be defined with a unit cell of some sort. A unit cell is an arrangement of

struts, and this arrangement usually takes the form of a polyhedron or group of polyhedra.

Considering the polyhedron by itself, if it is trimmed to the same boundary as that of the structure, a

new face with its own edges is formed. New strut geometry can be mapped to these edges to form

connecting struts. This concept is illustrated in Figure 6-3. If this operation is performed with every

intersecting cell of the structure these connecting struts combine to form a net skin. The polyhedral

tessellation whose edges are used to map structure geometry is hence called a structure's 'base

tessellation'.

Figure 6-3: Constructing a net skin for a single cell by considering a structure as a based on a tessellation of

polyhedra

A net skin can be considered as an element of a structure, rather than a specific type of geometry.

Any type of geometry can be mapped to the newly formed edges that are generated when trimming

a) b) c)

A 'cut

strut'

89

a structure's base tessellation. In terms of actually creating the net skin geometry shown in Figure

6-4, it is a relatively simple operation to sweep a 2D section across the length of a 3D guide: 'a' is

generated by sweeping a circular profile across each edge, 'b' from a square profile and 'c' constructs

a helical curve from the edge and subsequently sweeps a circular profile across that.

Figure 6-4: Types of net skin

Knowledge of the connectivity of the structure (i.e.: the a base tessellation) is important to ensure

robust construction of net skin. A structure could potentially be trimmed without this knowledge,

with nearest neighbours reconnected, but this will not always work. This is shown for a thin-walled

conformal shape in Figure 6-5.

Figure 6-5: 'Nearest neighbour' failure to properly re-connect cut struts on a thin-walled part

a) b) c)

a) Knowledge of structure

 connectivity allows correct

 connection of intersection

 points

b) Connecting nearest intersection

 points together results in points

 from opposite surfaces to be

 erroneously connected

90

6.2 B-rep Net Skin Construction Method

The method presented in this chapter is solely concerned with the generation of a net skin for a

particular conformal shape; the generation of the trimmed structure would be a second step.

Generating a net skin is essentially the Boolean intersection of a conformal shape with the base

tessellation of a particular structure. In an attempt to speed up the process, the B-rep method of

representing geometry is reduced to the minimum information required to fully describe geometry.

There are two phases of geometry manipulation to generate a net skin:

1. The intersection calculation between conformal shape and base tessellation. All geometry

input into the method is sampled:

• The conformal shape is reduced to a series of surface points. Rather than the standard

set of vertex, edge and face tables used to represent B-rep geometry (see: Section

4.2.1), the conformal shape is defined by points only - essentially just a vertex table.

• The base tessellation is also reduced to a series of points, only the points are still

structured in a way that it is known what face and edge each point belongs to. This is

achieved in a similar way to standard B-rep (tables that reference connectivity) but is

distinct in that this description is not modified by the intersection calculation. The

intersection calculation reads in the description of both conformal shape and base

tessellation and generates new tables that represent intersecting geometry.

2. The generation of net skin geometry. The intersection information calculated by the first

stage is used is as template to build actual net skin struts. This uses faceted B-rep geometry

to facilitate straightforward conversion to the STL format.

The following section details the basic method developed to generate net skin geometry, essentially

the initial attempt. Section 6.4 details the individual changes made in the development of a more

advanced method that still works on the basic principles of the initial method.

6.3 Basic Implementation of the Method

6.3.1 Defining the Conformal Shape

To demonstrate the principle that this method can be used on real world objects, a point cloud

representing scan data is imported into Matlab. The point cloud in shown in Figure 6-6.

91

Figure 6-6: Representation of point cloud data

A surface is constructed based on this point cloud in the form z=f(x,y), or where the height (in the z-

axis) of each cloud point is a function of its x and y coordinates. From this the surface is created by

generating a series of equally spaced points (in the x-y plane), the heights of which calculated from

the interpolation function. In this case the interpolation method is linear - the surface generated

between the original point cloud is linearly interpolated, as shown in Figure 6-7.

Figure 6-7: Constructing a surface from the point cloud

6.3.2 Defining the Base Tessellation

The next step is to populate space with a large enough base tessellation to fit the surface. An

example truncated octahedron that intersects with the surface is shown in Figure 6-9. The base

tessellation is created by calling a predefined matrix that represents a unit polyhedron and placing an

instance of it at every point required to construct a tessellation that fills the surface. The unit

Point cloud, e.g., scan data

y x

z

Mesh generated from points

Mesh point

Cloud point

92

polyhedron matrix consists of vertex and face information, as depicted in Figure 6-8. Each face of the

polyhedron is defined by the co-ordinates of the vertices that form it. Included for each vertex are

variables that multiply and translate each point to allow control over polyhedron size (practically, the

structure's cell diameter) and location in space (not shown in figure).

In this method, the base tessellation is evaluated as individual faces rather than a connected

polyhedra. This is achieved through a FOR loop; a standard programming operator that allows code

to be repeated a finite number of times. The FOR loop iterates through every face of the base

tessellation. Any faces that intersect the surface will generate individual net skin struts that join up to

form the complete net skin.

Figure 6-8: Structure of unit polyhedron matrix

Because a matrix must have the same number of rows and columns per page, the 'unit truncated

octahedron matrix' is actually two matrices - one that defines the polyhedron's eight hexagonal faces

(6 rows of coordinates in each of the eight pages for the hexagons' six vertices) and one for the six

square faces (4 rows in 6 pages). Due to the layout of the unit polyhedron matrix, the edges of the

polyhedron can be defined. The vertices that join to form a face are listed in a clockwise order, so the

edges that define a face lie between sequential vertices. 'Edge 1' is defined by vertex 1 and vertex 2,

edge 2 by vertex 2 and 3 and so on up to edge 6, defined by vertex 6 and vertex 1.

From this edge information a series of interpolated points are generated for each of the edges of the

polyhedron. The interpolated points are stored within an interpolated points matrix; each set of edge

interpolation points is grouped in together with the other edge sets that define a face of the

polyhedron. This is what facilitates the correct reconnection of trimmed struts to form the net skin.

face '1' = [vert1_x, vert1_y, vert1_z;

 vert2_x, vert2_y, vert2_z;

 vert3_x, vert3_y, vert3_z;

 vert4_x, vert4_y, vert4_z;

 vert5_x, vert5_y, vert5_z;

 vert6_x, vert6_y, vert6_z;

face '2' = [vert1_x, vert1_y, vert1_z;

 vert2_x, vert2_y, vert2_z;

 vert3_x, vert3_y, vert3_z;

 vert4_x, vert4_y, vert4_z;

 vert5_x, vert5_y, vert5_z;

 vert6_x, vert6_y, vert6_z;

...

face 'n' = [vert1_x, vert1_y, vert1_z;

 vert2_x, vert2_y, vert2_z;

 vert3_x, vert3_y, vert3_z;

 vert4_x, vert4_y, vert4_z;

 vert5_x, vert5_y, vert5_z;

 vert6_x, vert6_y, vert6_z];

Page - one for

each face

Row - one

for each

vertex

93

Figure 6-9: A polyhedron intersecting with a surface and interpolated points generated on its edges

Both the number of interpolation points and density of conformal shape points can be controlled

with a resolution factor. The higher these two factors, the more accurate the intersection calculation.

The intersection between each face and the surface is calculated by searching for matching pairs of

co-ordinates between the two. This search is conducted within a tolerance as it is unlikely that

between sampling both the surface and faces will yield identical co-ordinates. The base tessellation is

checked for every edge of every face and in determining intersection points between faces and

conformal shape, the method assumes the following (illustrated in Figure 6-10):

• That where an edge intersects the conformal shape, one and only one intersection point is

required.

• That any face that intersects the conformal shape does so on two and only two of its edges.

Figure 6-10: Instances of a face intersecting a surface

Where matching pairs of co-ordinates are identified, the intersecting edge point is written to an

'intersection points matrix'. These intersection points are shown in Figure 6-11. As each face is

Interpolated

points on a

polyhedron

edge

94

checked, if an edge is found to intersect the surface the method expects to find a second. These are

grouped as a pair in the generated intersection points matrix.

Figure 6-11: Finalised intersection points and correctly joining those points

6.3.3 Connecting Intersection Points

The next step is to correctly join the intersection points with lines to generate the net skin, also

shown in Figure 6-11. Due to the way 'intersection points matrix' is structured, the connectivity of

the original polyhedra is retained and the pairs of intersection points of each face form the start and

end of each intersection line.

A straight line is constructed between points rather than a curved line that follows surface curvature,

so only an approximation of the surface is constructed. However, because it is likely (in most cases)

the surface curvature of the conformal shape is large enough to be considered almost straight

between intersection points, this approximation is insignificant.

Intersection points derived by

identifying closest structure point

to surface grid point

Points correctly

joined to form

intersection between

surface and polyhedra

95

At this point, only the lines that form a wireframe representation of the net skin have been

constructed. 3D solid geometry must be constructed that follow these lines to generate the

structure. As a more straightforward example for this method, cylindrical struts are constructed

along the intersection lines. Further improvements to the method could be developed that take this

information to construct more complex net skin geometry, such as helical struts.

6.3.4 Constructing Net Skin Geometry

Initial attempts to generate structure topology were focused on sweeping a cylinder along

intersected lines, illustrated in Figure 6-12a. This replicates the method conventional CAD utilises to

sweep geometry along curves. It is an appropriate method, although spheres must be generated

between struts to close gaps on the net skin. As shown in Figure 6-12b, spheres must be positioned

at the ends of each cylindrical strut to bridge the gap between struts at angles to each other.

 a) b)

Figure 6-12: The necessity of spheres when mapping geometry to struts

Without a Boolean operation to unite them, this process also generates three separate bodies per

strut. Although a perfectly feasible approach it is not the most elegant. For straight struts, a method

was investigated to efficiently construct the sphere-capped geometry required as shown in Figure

6-12b.

The first step of the method is to generate points of a surface of a sphere at each intersection point

on the net skin, demonstrated for a single line in Figure 6-13. The diameter of these spheres in

practical terms is the 'strut diameter' of the structure. Sphere surface points are generated with a

built-in Matlab function, derived from the equations shown in Figure 6-13 [163]. A specific point on

the surface of a sphere can be measured with two angles: theta (θ) and phi (φ) analogous to

longitude and latitude respectively. A series of sampled points are generated from these equations.

96

Figure 6-13: Generating the points to be enclosed by a convex hull

A convex hull is generated between the pair of spheres to create a watertight shell of polygons. This

is also achieved with a built-in Matlab function. A simple 2D example is shown in Figure 6-14. For a

set of points, the convex hull is the smallest convex polyhedron that contains all these points -

analogous to a rubber band stretched around nails hammered into a board [164,165].

Figure 6-14: 2D convex hull example

Because the spheres used to generate convex hulls are translated between points irrespective of line

orientation, where the convex hulls of intersecting struts meet they mesh into each other creating a

smooth join. This is shown in the inset of Figure 6-15. A second advantage to this approach is that

the convex hull is constructed with triangular polygons - facilitating straightforward conversion to the

STL file format. This provides integration of the method with the conventional route from design to

additive manufacture as defined in Chapter 2.

Intersection line

a)

For a sphere with centre (x0,y0,z0) and radius

r, coordinates of points on the sphere can be

calculated with:

 x = x0 + rsinθ cosφ

 y = y0 + rsinθ sinφ

 z = z0 + rcosθ

where: 0 ≤ φ ≤ 2π and 0 ≤ θ ≤ π

φ

θ

2D convex hull

97

Figure 6-15: Net skin struts generated from convex hulls

By varying the sampling of the sphere surface points equation, control is gained over the level of

faceting of the strut. Reducing the resolution will reduce the number of surface points generated, in

turn reducing the number of polygons constructed and thus the file size of the written STL, as shown

in Figure 6-16. There are more points generated by this method that are required for any particular

strut (see that approximately half of the sphere points are within the convex hull in Figure 6-15), but

there is no extra solid geometry constructed. Compared to the cylinder/sphere method, the polygon

count for a similarly faceted convex hull is considerably lower.

Figure 6-16: Varying level of faceting of convex hull struts

6.3.5 Writing Formats Suitable for Manufacture

There are two types of STL file format, both compatible with additive manufacture machines: ASCII

and binary format. As discussed in Chapter 2, The ASCII format is structurally simpler to binary but

less efficient with more complex geometry. Whereas the binary format is preferred for functional

use, the more straightforward structure of the ASCII format is ideal for prototyping software. For this

3D convex hull

Smooth meshing where struts meet

a) sampling: 2π/4 radians per point b) sampling: 2π/20 radians per point

98

reason, the geometry to STL conversion process writes ASCII format files. An example of the ASCII

format is shown in Figure 6-17.

Figure 6-17: STL ASCII format [2]

Each strut generated in the process is considered as a separate body and written accordingly, with

each polygon of the strut described by its vertices and normal data. The conversion process takes

place directly after the strut geometry creation. The output of this process is an STL file of the entire

net skin of the conformal part. The method is controlled with a GUI (graphical user interface) that

prompts the user for structure parameters (i.e. cell and strut diameters) as well as the various

resolutions and tolerances used to calculate intersection points, shown in Figure 6-18.

solid 001

 facet normal 0.000000e+000 -1.000000e+000 0.000000e+000

 outer loop

 vertex 0.000000e+000 0.000000e+000 0.000000e+000

 vertex -1.500000e+002 -1.000000e+002 0.000000e+000

 vertex -1.500000e+002 -1.000000e+002 -5.000000e+001

 endloop

 endfacet

 facet normal 0.000000e+000 -1.000000e+000 0.000000e+000

 outer loop

 vertex 0.000000e+000 0.000000e+000 0.000000e+000

 vertex -1.500000e+002 -1.000000e+002 0.000000e+000

 vertex -1.500000e+002 -1.000000e+002 5.000000e+001

 endloop

 endfacet

endsolid 001

solid 002

 facet normal ...

 outer loop ...

 endloop

 endfacet

endsolid 002

Shapes are

separated by

'solid name'

and 'endsolid'

Facets

(triangular

polygons) are

described by

normals and

vertices in

anticlockwise

Normal vector and

vertex coordinates

should be standard

form

99

Figure 6-18: The completion the basic implementation

6.3.6 Summary of the Basic Implementation

This basic implementation of a method to construct a net skin uses a faceted form of boundary

representation. The method simplifies the intersection between conformal surface and base

tessellation by sampling both. Rather than calculating a perfect intersection between an edge and a

mathematically complex surface, each are reduced to a series of points and similar pairs are

identified through comparing their co-ordinates. However, the way this initial attempt was

implemented is not suitable for scaling up. Currently, for every edge that is checked for intersections,

every surface point is checked. The method slows dramatically for larger surfaces - if the number of

points that describe the surface doubles, the time taken to check each edge for matches also

doubles.

Additionally, the representation of the base tessellation is inefficient. The method checks the base

tessellation for intersections one face at a time. For a single polyhedron, each face is checked once.

For the two neighbouring polyhedra shown in Figure 6-18, the two faces that touch each other are

both checked for intersections. In this example, two identical net skin struts are generated in the

same location. As well as duplicating net skin struts, the actual storage of the base tessellation is also

larger than necessary. For any edge of a polyhedron there are three copies of it stored.

Furthermore, the type of surface used to represent a section of a conformal shape is also limited in

terms of complexity of shape achievable, as discussed in the following section.

100

6.4 Advanced Implementation of the Method

A more advanced version of the method was subsequently implemented to address the three

limitations discussed in the previous section. The underlying method (i.e. the sampling of surface and

base tessellation into a series of points to be compared for matches) is retained, so only the

improvements are discussed. Additionally, the advanced implementation also presents a manner to

automatically determine where the base tessellation is likely to intersect with the conformal shape

and only constructs it in that region.

6.4.1 Representation of the Conformal Shape

In the basic implementation of the method, a surface in the form 'z=f(x,y)' was generated to define a

section of a conformal shape. This surface is constructed from an irregular array of points,

representing a point cloud from scan data. From this surface, a more regular array of points can be

derived which is advantageous for intersection checks, as every region of the surface has a similar

density of points. This means that intersection checks for one region of the surface will be as

accurate as another and, thus, the same tolerance can be used for the whole intersection calculation.

There are two issues with this approach. Firstly, the resolution of the surface in the form 'z=f(x,y)'

actually varies across it, depending on the surface curvature. The interpolation method spaces points

equally along the x-y plane and projects them onto the surface, thus the resolution of the mesh is

essentially lower on steep surfaces. This is shown in Figure 6-10 - viewed from the top, the surface

appears to be an equally spaced grid, but on a steep section of the surface it is shown that the grid is

stretched. The consequence of this is that the surface is less accurate on steeper sections. This can be

overcome by setting the initial mesh resolution higher, but practically, a better way of constructing

the surface mesh is required.

101

Figure 6-19: Mesh grid stretching on steeper curvature

A second issue is that it is not realistic to expect scan data as a common means to represent a

conformal shape. As the literature review showed, conventional CAD is not suitable for representing

large and complex lattice structures (high hierarchical complexity). CAD software is however suitable

for models with shape complexity, i.e. technically able to represent any kind of shape. It would be

considerably more useful for this method to accept CAD models as an input for the conformal shape,

or indeed any kind of model discussed in the literature.

The advanced method has addressed both of these issues to some degree, by accepting an FE mesh

as an input for the conformal shape. Rather than the volume meshes discussed in Chapter 4, this

advanced method uses a surface mesh of the conformal shape, i.e. a mesh of polygons that solely

represents its boundary, as shown for a region of a body armour concept as shown in Figure 6-20a.

The mesh type used is comprised of triangular elements.

z

x

y

x

y

Surface in the form 'z=f(x,y)'

Surface viewed as square in x-y plane

Elongated

grid

elements

on 'steeper'

region of

surface

102

Figure 6-20: a) FE mesh generated from CAD model of a section of a body armour concept

b) Net skin struts constructed from intersection with FE mesh nodes (every 10th node shown)

FE meshing algorithms are packaged into to some CAD programmes (such as Siemens NX), as well as

in FEA software, and as such are fairly common. This is just as a means to sample the conformal

shape and reduce it to a series of points for the intersection calculation. By meshing the conformal

shape, elements and nodes are saved to a file - the nodes are extracted by the advanced method and

used as surface points, as shown in Figure 6-20b . Although not a perfectly regular spacing (as this is

not necessarily possible for complex shapes) the node spacing can be controlled by the meshing

software, with distance between nodes set to within a tolerance.

The use of STL files was considered as another means of converting a CAD model to a triangular

mesh, as CAD models are converted to STLs before fabrication already. However, unlike FE meshing,

standard triangulation in STL conversion is controlled by surface curvature rather than by triangle

size, as discussed in Chapter 2 and shown in Figure 6-21. This means that flat surfaces are described

by a few large triangles, while highly curved surfaces are described by more smaller triangles. This is

not conducive to a regular spacing of surface points and thus FE meshing was utilised.

CAD model

FE mesh

a) b)

103

Figure 6-21: Triangulation of a shape: a) standard STL conversion and b) FE mesh

6.4.2 New Unit Polyhedron

For the specific base tessellation used in the previous implementation (the Kelvin cell), it was shown

that, as the basic method worked on a face by face basis, duplicate net skin struts were generated

where neighbouring polyhedra touched. This would be the case for any tessellation used in the

method. This is because a complete polyhedron was used as the repeating unit. By removing some

faces from the unit polyhedron this duplication can be eliminated. For the Kelvin cell, this partial

polyhedron is shown in Figure 6-22.

Figure 6-22: Complete and partial unit polyhedra - duplication apparent when tessellated

The manner in which this new unit polyhedron is checked for intersection with the conformal shape

has also been changed. The basic implementation discussed in the previous section checked the base

tessellation one face at a time. As such, each face was described by its own set of vertices and edges.

As each vertex of the Kelvin cell is shared by three faces, each vertex was listed three times in the

a) b)

Complete polyhedron:

 Vertices: 72 (48 duplicates)

 Edges: 72 (36 duplicates)

 Faces: 14

Partial polyhedron:

 Vertices: 18

 Edges: 24

 Faces: 7

104

unit polyhedron matrix. Similarly, each edge was listed twice as two faces share every edge. While

this doesn't lead to any duplicated net skin geometry to be constructed (like duplicated faces do),

this inflates the size of the matrices that represent the base tessellation unnecessarily, and hence the

time to read them and the overall speed of the process increases.

The advanced implementation fully represents the new unit polyhedron and minimises duplication

with a more formally structured series of matrices. Rather than a hierarchical structure where

vertices are grouped according to which face they are in, the unit polyhedron is defined by a 'vertex

matrix', an 'edge matrix' and a 'faces of edge matrix', as shown in Figure 6-23. This kind of geometry

definition is similar to the structure of a standard boundary representation model as discussed in

Chapter 2. The vertex matrix lists the co-ordinates of each of the polyhedron's vertices. The edge

matrix lists the pairs of vertices that form each edge. The 'faces of edge' matrix list the two faces that

share each edge. Some edges only exist on one face - those edges that border the polyhedron. While

the exact structure of these matrices is specific to this particular tessellation, similar matrices could

be defined for any tessellation.

Figure 6-23: Partial polyhedron definition matrices

Checking for intersections between polyhedron and conformal shape works in the same way as

described for the basic implementation of the method. The method generates interpolated points for

each edge of the polyhedron as described in Section 6.3.2. For the intersection calculation, matches

between these interpolated edge points and conformal shape points are identified. At this point, just

intersection points are known. To generate the net skin, the correct connectivity between

intersection points must be identified. While the vertex and edge matrices construct the polyhedron;

105

the 'faces of edge' matrix is used to connect the intersection points to form the net skin. For the

particular polyhedron shown in Figure 6-24, intersection points a, b, c and d were found. 'a' is one of

the interpolated points generated for edge 11 (e11). Similarly, 'b' is on edge 9 (e9), 'c' on edge 17

(e17) and 'd' on edge 19 (e19). This is already known to the method - the method checks for

intersections between the polyhedron and conformal shape one edge at a time, so when an

intersection point is found the edge that it is on can be identified. To correctly join the edges, the

'faces of edge matrix' is used to group the intersection points into pairs.

Figure 6-24: Using the partial polyhedron definition matrices to determine which intersection points connect

According to the 'faces of edge' matrix, e11 (the edge with intersection point 'a' on) is only a part of

face 3 (f3). The edge with intersection point 'b' (e9) is shared by two faces - f3 and f5. Because f3 is

identified to be shared by both e9 and e11, then the two intersection points associated with these

two edges can be joined to form a net skin strut. This process is followed for each of the four edges:

• e11 and e9 are both on f3, therefore 'a' and 'b' connect

• e9 and e17 are both on f5, therefore 'b' and 'c' connect

• e17 and e19 are both on f6, therefore 'c' and 'd' connect

This method of representing the base tessellation stores geometric information much more

efficiently than the implementation in the basic method. No net skin struts are duplicated across the

tessellation and within each polyhedron, no vertices or edges are duplicated. There is still some

106

duplication of vertices and edges between neighbours within the tessellation but this is minimised.

The reduction in duplication improves the overall speed of the process as less geometry must be

checked for intersections and matrix size is reduced.

6.4.3 Reduction of Intersection Checking

For each point of the base tessellation that is checked by the basic method, every single point of the

conformal shape was also checked. For a conformal shape comprised of 'n' points, and a structure

comprised of 'm' points, the total number of intersection checks is 'm x n'. Additionally, the basic

method presented no method to automatically populate the conformal shape with base tessellation.

For any conformal shape imported (as an FE mesh), the first step of the advanced method is to

populate a cuboid envelope around the shape with 'seeding points'. These seeding points are equally

spaced and represent the centres of the polyhedra comprising the base tessellation, as shown in

Figure 6-25a.

a) conformal shape and structure b) seeding points in proximity to c) polyhedra constructed around

 seeding points conformal shape highlighted highlighted seeding points

Figure 6-25: Constructing base tessellation to fit a conformal shape

The distance between each seeding point and the surface points of the conformal shape are

calculated and those found to be within half the width of the polyhedron are identified, as shown in

Figure 6-25b. Polyhedra are then constructed from these highlighted seeding points, as shown in (c).

This generates a base tessellation solely of polyhedra that are likely to intersect with the conformal

shape, drastically reducing the number of intersection calculations to be required. The partial

polyhedron discussed in the previous section is implemented here.

Without further modification to the method, every structure point would still be checked for

proximity to every conformal shape point. The advanced method greatly reduces the number of

intersection checks required for each polyhedron by first identifying a small 'selection window' of

107

conformal shape points for each polyhedron. For each seeding point, conformal shape points within

an 'outer radius' are selected. Points in that selection closer to the seeding point than an 'inner

radius' are discarded from the selection. This constructs a window of conformal shape points that are

likely to intersect with the points attributed to a particular polyhedron. This concept is illustrated in

Figure 6-26.

Figure 6-26: Identification of selection windows for individual polyhedra

Rather than checking every surface point against every set of edge points, this small ‘selection

window’ of points is identified for use with each polyhedron. This means that the entire conformal

shape is checked once per polyhedron, as opposed to for every point of every edge of the base

tessellation. The same small window is used for every edge of a particular polyhedron and a different

window is defined for every other polyhedron. This greatly reduces the number of intersection

checks required between tessellation and conformal shape, as shown with the following example.

Take a theoretical conformal shape (of 100,000 surface points) and assume that there are 25

polyhedra intersecting it. Using the partial unit polyhedron discussed in the previous section:

Outer radius

Inner radius

Selection window

Examples of selection windows for polyhedra in different locations:

108

Number of conformal shape points sp = 100,000

Base tessellation:

 Number of polyhedra p = 25

 Edges per polyhedron pe = 24

 Points per edge ep = 20

Basic method:

 Number of points in base tessellation tp = p x pe x ep = 25 x 24 x 20 = 12,000

 Total number of checks required cb = sp x tp = 100,000 x 12,000 = 1.2 x 10
9

Advanced method:

 Approx. no. points per window* wp= 200

 No. points per polyhedron pp = pe x ep = 24 x 20 = 480

 No. checks required to calculate windows cw = sp x p = 100,000 x 25 = 2.5 x 106

 Total number of checks required ca = wp x pp x p + cw = 200 x 480 x 25 + 2.5 x 106

= 4.9 x 10

6

Efficiency:

 Total number of checks (basic / advanced) = 1.2 x 10
9
 / 4.9 x 10

6
 = 245 times fewer checks

*Number will vary depending on conformal shape and location of polyhedron relative to that shape

For a conformal surface comprised of 100,000 surface points, the advanced method requires 245

times fewer checks than the basic method. This relationship is shown in Figure 6-27, the ratio of

'fewer checks' calculated from varying the number of conformal shape points.

Figure 6-27: Number of times fewer checks required by advanced method compared to basic method

0

50

100

150

200

250

300

350

400

450

500

0 200,000 400,000 600,000 800,000 1,000,000

T
im

e
s

fe
w

e
r

c
h

e
c

ks

Number of conformal shape points, sp Total number of checks

(basic/advanced)

109

By the instance the conformal shape is represented by a million points, the advanced method

performs almost 440 times fewer checks for intersections than the basic method. This is because the

number of points generated by the advanced method is not as dependent on total number of

conformal shape points as the basic method.

6.5 Discussion

This chapter has presented a way to skin a trimmed structure with a ‘net skin’ - an alternative

method to re-connect the cut struts of a trimmed structure. The method utilised what has been

termed a 'sampled' boundary representation technique in an attempt to speed up the process of

generating geometry. In terms of surface complexity, boundary representation types as discussed in

Chapter 2 can be classed as 'advanced' (as used in CAD software) or 'faceted' (e.g., the STL format).

What complexity is lost in the faceted type is offset by reduced memory requirements and thus an

increase in the size of lattice structures that can be represented. This sampled method takes

boundary representation a step further, by reducing all input geometry to a series of points.

Before the method was fully investigated it became clear that it was still not a particularly suitable

method for representing large structures. Despite the improvements made in the advanced

implementation discussed in the previous section, the time taken to generate even the intersection

points used as a basis for constructing net skin geometry became impractically long.

A more fundamental issue arose that further impeded progress with the method. The reduction of

geometry to points requires that all intersections between conformal shape and tessellation points

are checked to a tolerance, as discussed in Section 6.3.2. This is because it is very unlikely that

conformal shape and tessellation points will match exactly. The conformal shape is converted to a

series of evenly spaced points for use with the method - the advanced method uses an FE meshing

algorithm to achieve this. However, for any given conformal shape there is no guarantee that an

even mesh can be generated across it, an example shown in Figure 6-28.

110

Figure 6-28: Irregularities in pattern of a surface mesh

As stated in Section 6.3.2, a single tolerance value is used to check for intersections between

conformal shape and tessellation points. The tolerance is used to check for proximity between these

points rather than exact matches. For conformal shape points generated from an uneven mesh, a

proximity tolerance suitable for one region may not be for every other. For example, a tolerance that

accurately picks the closest conformal shape point in the region of smaller elements (shown in Figure

6-28) may not yield any match in a region of larger elements. This is shown in Figure 6-29: the

tolerance suitable for finding a match for ‘edge b’ does not yield a match for ‘edge a’, where the

conformal shape points are more spread out.

Figure 6-29: An intersection tolerance that is suitable for a region of fine mesh may not be for a coarser region

Inevitable irregularities in mesh

spacing caused by curvature of

surface

Region of relatively regular mesh

spacing

Region of smaller elements

Conformal shape

Conformal shape

point

Base tessellation

point

Region within

tolerance

Edge a
Edge b

Matching point

within tolerance

111

For this reason, it is not possible to check that a complete and correct net skin has been generated.

The method cannot guarantee that any combination of FE mesh resolution and intersection

tolerance will find all intersections between conformal shape and base tessellation.

6.6 Summary

This chapter has defined an alternative method to skin a trimmed structure to either a solid skin or

no skin, termed a 'net skin'. The work in this chapter implemented a Matlab-based method to realise

it. The method presented throughout this chapter was defined as a sampled boundary

representation method. This 'sampling' was achieved by decomposing continuous B-rep surfaces into

two sets of points and checking for pairs of points in close proximity. This was with the aim of

developing a less accurate but faster alternative to standard B-rep modelling. Despite the changes,

this method is ultimately not a robust way to generate a net skin, nor particularly fast. The

preliminary work discussed in this chapter was dropped in favour of another approach to geometric

modelling that was being investigated in parallel. This approach is voxel-based which, as discussed in

the literature, shows greater promise in the construction of hierarchically complex lattice structures.

This work is presented in the following chapter.

112

7 The Development of a Conformal Structure Method

The findings of the literature review have shown that conventional CAD is not optimised for the

generation and manipulation of large arrays of structures, to the extent that alternate methods of

structure generation have been developed specifically for the purpose of bypassing conventional

CAD entirely. A 'conventional route' of data flow from design to additive manufacture exists: a CAD

model is converted to an STL file, which is then converted to a slice file that inputs into the AM

process. Structure generation methods have been developed that construct geometry at each of

these steps, as well as some methods that avoid this route altogether. Such alternate methods of

geometry creation include voxel modelling and function representation.

The aim of this chapter is to present a novel method that has been developed to generate trimmed

structures quickly and in a robust manner. The method is based on voxel modelling and as such, has

the ability to generate structures with geometrically complex strut types. Its speed is largely

independent of structure complexity. The method is capable of processing any repeating structure

and a method to functionally grade a conformal structure is also presented. On top of this, the

process also generates a net skin. The process has been written in Matlab and the code can be found

in Appendix I.

7.1 The Conformal Structure Method

This section details the step-by-step process the conformal structure method takes to generate a

trimmed, skinned structure from an input shape, termed the 'conformal shape'. The conformal

structure method detailed in this chapter can be considered as a post-processing step of a CAD

model. The conformal shape is modelled in a conventional CAD package and input into the structure

trimming process which populates the conformal shape with structure. A solid skin can also be

supplied by the user as a secondary input if either a solid or net skin is required. The solid skin is

generated by hollowing the conformal shape input, a relatively straightforward task for conventional

CAD or STL manipulation software. This allows the user to utilise the strengths of the CAD package

(such as freeform, parametric geometry creation) whilst removing the dependence on it for areas

113

where it is not optimised (generating large arrays), as discussed in Chapter 2. The net skin is

generated separately, but in parallel to the trimmed structure and combined in a subsequent step by

this method. A general overview of this method is shown in Figure 7-2.

The conformal structure method presents several significant advantages over conventional CAD

modelling. When compared to conventional CAD, complex structure creation is faster with this

method. It is also largely independent of structure complexity, which is presented in this chapter with

the trimming of two structure types. These two structure types are shown in Figure 7-1. A straight

strut structure and a more geometrically complex helical strut structure, comprised of spring-like

struts.

Figure 7-1: Straight strut (with triangular cross section) and helical strut structures

Both of these structure types are based on the Kelvin cell detailed in the previous chapter, but it

should be noted that this process will function with any 3D tessellation supplied to it.

7.1.1 Importing a CAD Model for Processing

To generate a trimmed structure, the conformal shape must first be modelled in CAD. The model

must be solid: a 'watertight' boundary with no gaps between faces. As discussed in Chapter 2, the de

facto standard file format used in the translation between CAD file formats and additive

manufacturing machines is the STL file - a boundary representation of the model composed of

triangular polygons.

114

 Figure 7-2: Data flow

Convert to STL

Hollow

Conformal shape Skin STL

Convert to slices Convert to slices

Conformal shape Skin slices

Cell CAD Hole CAD

Convert to STL

Convert to slices

Convert to STL

Convert to slices

Cell slices Hole slices

SUBTRACT

hole array from skin

INTERSECT

structure with conformal

shape

UNITE trimmed structure with net skin

Trimmed structure Net skin

Combined structure

Tessellate to fit Tessellate to fit

Structure slices Hole array slices

Build file

Extract

boundaries

Manufactured part

Sc
o

p
e

 o
f

C
o

n
fo

rm
a

l S
tr

u
ct

u
re

 M
e

th
o

d

CAD model of conformal shape

115

Each polygon is described with a normal vector - by assessing the normals of each of the polygons

that comprise an STL body, interior and exteriors can be determined. Examples of a CAD model and

an STL representation are shown in Figure 7-3.

As additive manufacturing machines build parts layer by layer, the STL file is converted to a 'slice

file'. A slice file is essentially a layer-by-layer representation of the part; cross-sections of the part

taken at increments equal to the layer thickness of the machine, as shown in Figure 7-3. Depending

on the AM process, a slice file can take one of two broad formats: a raster-based slice file or vector-

based slice file. The structure trimming process deviates from convention here by requiring raster-

based slice files regardless of the AM process used to fabricate the parts.

Figure 7-3: The conventional flow of data from modelling to manufacture

The actual slicing process is performed by a freeware command line utility called 'Slice' [166],

although the process is not dependent on any particular slicer. The slicer outputs a series of black

and white bitmaps - by convention black signifies solid model while white signifies empty void. As

the bitmaps only consist of black or white pixels, the boundary of the model is represented by a

stepped profile - the closest approximation that a binary bitmap can make of a smooth profile. This

'pixel-stepping' is shown in Figure 7-4. When trimming a structure for manufacture by laser

sintering, one raster file represents a 0.1mm build layer. With the conformal shape converted to a

suitable format, the structure trimming process can begin.

Slice file STL file CAD Model

116

Figure 7-4: A single layer of a vector and raster slice file

7.1.2 Trimming Structure to a Conformal Shape

The entire method is structured in a way that a single layer of structure is generated and written to

an output file at a time. This applies to both elements of the structure - the internal structure and

net skin are generated for the first slice, combined and written before the second slice is processed.

This is achieved through a FOR loop: for this application, the number of times the process must be

completed is equal to the total number of layers that comprise the conformal shape. The process

starts with the bottom layer of the part (layer 1) and once all structure generation code is

completed, the FOR loop executes the code again for layer 2. A summary of this process loop is

shown in Figure 7-5.

Figure 7-5: Basic code structure of the conformal structure method

Vector slice format:

� Smooth boundary

defined by splines

� Hatching represents

internal solid

Raster slice format:

� Stepped boundary

formed by pixels

� No distinction between

boundary and internal

Select conformal shape and cell type

for current layer (increment from first layer to last layer)

 read conformal shape and cell slice

 generate internal structure slice

 generate net skin slice

 combine internal structure and net skin slices

 write combined structure to output slice file

end

117

During the investigation of this process, a library of cell types were designed. A selection of these

are shown in Table 7-1. The cell types have been modelled in CAD and were sliced into a sequence

of raster slices in the same manner as the conformal shape. The trimming process is not limited to

the specific types shown in Table 7-1; any 3D structure can be processed. Once a new structure

type has been sliced it can be added to the structure library. The structure is reduced to a single

cell: a repeatable element of the structure that when arrayed orthographically will reconstruct it.

C
e

ll

Kelvin / truncated octahedron
Weaire-

Phelan
Cubic

Alternated

cubic

S
tr

u
t

ty
p

e

Triangular

cross-section
Cylindrical 'Wave' Helical Cylindrical Helical Cylindrical

M
o

d
e

l v
ie

w

E
xa

m
p

le
 s

li
ce

Table 7-1: A selection of structure types integrated into the structure trimming process

At this stage, a series of cell and conformal shape raster slices have been generated and numbered

to retain their correct order. To trim the structure to the conformal shape, an operation analogous

to a Boolean intersection (logical operator: ∩) is applied between corresponding conformal shape

and cell slices. The bitmap slices are first converted to a binary colour depth (black pixels = 0, white

pixels = 1) and read in to Matlab as a matrix, where each element of the matrix represents a pixel of

the bitmap. A simplified example is shown in Figure 7-6.

 9 x 10 pixel bitmap 9 x 10 matrix

 1 1 1 1 1 1 1 1 1 1

 1 1 0 0 0 0 0 0 1 1

 1 0 0 0 1 1 0 0 0 1

 1 0 1 1 1 1 1 1 0 1

 1 0 1 1 1 1 1 1 0 1

 1 0 0 1 1 1 1 0 0 1

 1 1 0 0 1 1 0 0 1 1

 1 1 1 0 0 0 0 1 1 1

 1 1 1 1 1 1 1 1 1 1

Figure 7-6: Bitmap to matrix conversion of a single slice

Element

Void pixel

Solid pixel

118

The structure trimming process first registers the size of the conformal shape matrix (i.e.: row and

column dimensions). An empty matrix is created that is the same size as the conformal shape

matrix, termed the 'trimmed structure matrix'. A cell type is selected and the size of the cell matrix

is also registered. Starting from the top-left corner, the conformal shape matrix is checked element

by element. If the element is a one (i.e. a white pixel/empty space), a value of one is written to the

trimmed structure matrix in the corresponding location, as demonstrated with 'check a' in Figure

7-7.

If the element of the conformal shape matrix is a zero (i.e. a black pixel/geometry) then a

corresponding element from the cell is copied to the trimmed structure matrix. Two examples of

this are shown by 'check b' and 'check c' in Figure 7-7.

 Conformal shape Trimmed structure

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 0 0 0 0 1 1 2

1 1 0 1 0 1 1 1 2

1 0 0 0 0 0 0 1 3

1 0 1 0 1 0 1 1 3

1 0 0 0 0 0 0 1 4 1 0 1 0 1

1 1 0 1 0 1 0 1 4

1 0 0 0 0 0 0 1 5 0 1 0 1 2

1 0 1 0 1 0 1 1 5

1 1 0 0 0 0 1 1 6 1 0 1 0 3

1 1 0 1 0 1 1 1 6

1 1 1 1 1 1 1 1 7 0 1 0 1 4

1 1 1 1 1 1 1 1 7

1 2 3 4 5 6 7 8

 1 2 3 4

1 2 3 4 5 6 7 8

Figure 7-7: Trimming structure to a conformal shape - analogous to a Boolean intersection

The cell matrix is smaller than the conformal shape matrix even in this simple example - in practice

the conformal shape can be many times larger than the cell matrix. In order to fit the cell matrix to

the conformal shape, it is tessellated to fit it. In this simple example, the top left corners of both the

conformal shape (conformal shape(row 1,column 1)) and the cell (cell(1,1)) line up. So when the

process identifies a zero value element at conformal shape(2,3) (check b), it copies the value of

cell(2,3) to the corresponding location on the trimmed structure matrix.

A counter is employed to repeat the cell matrix across the length (x direction) of the conformal

shape matrix. A counter is a function that is set to a particular value that resets when that value is

reached. In this case, the counter is set to the width (x direction) of the cell matrix. In this example,

the cell matrix is four elements long, so when the process reaches the fifth column of the conformal

shape matrix, the counter resets to one and the first element of the cell is copied over. ‘Check c’ in

Figure 7-7 demonstrates this. The location of the element to be checked is conformal shape(4,6).

This is beyond the initial position of the 4x4 cell matrix, so the matrix is translated 4 columns to the

Check a

Cell

Check b

Check c

119

right to be in a position where it overlays with the element being checked. This results in the value

from cell(4,2) being copied to the corresponding location on the trimmed structure matrix. A

second counter is used for the width (y direction) of the cell in a similar manner.

Additionally, the cell needs to be tessellated against the height of the conformal shape. For

example, if a cell is 15mm high and the layer thickness is 0.1mm, the cell will be described by 150

matrices. Therefore the first and 151st layers will use the first cell matrix; a third counter

increments as each new layer is processed. A more complex example of a layer of trimmed

structure generation is shown in Figure 7-8. The process is analogous to a Boolean intersection

between the conformal shape and a structure of repeated cells; the result is any solid that occurs

on both the conformal shape and the structure.

Figure 7-8: Generating trimmed structure slice - analogous to a Boolean intersection

7.1.3 Constructing the Net Skin

The net skin is constructed in a parallel process to the trimmed structure and as such requires the

combining of the two in a subsequent step. In a similar manner that the trimmed structure step

utilises a library of cells, the net skin step of this method also requires a library of repeatable

elements. Whereas the trimmed structure step intersects structure with conformal shape, the net

skin step subtracts 'holes' from a solid skin. The 'hole cell' is similar to an inverted version of a cell,

where the internal cavity of a cell is now a solid volume as shown in Figure 7-9.

Conformal shape Structure Trimmed structure ∩ =

Boolean intersection:

120

Figure 7-9: Comparison of cell and 'hole'

The analogy to the conformal shape in this step of the conformal structure method is the skin.

Figure 7-10 shows a section view of a conformal shape and a solid skin. The solid skin is a hollowed

version of the conformal shape, with a wall thickness that is by default set as the strut diameter of

the structure.

Figure 7-10: Difference between conformal shape and skin

The skin is generated from the conformal shape before slicing - either during the CAD model or STL

conversion stages. The hole cell is stored in a library as bitmap slices. The skin is sliced at the same

time as the conformal shape and the hole slices are tessellated to fit the skin slices. Where the net

skin process differs is how the two sets of slices (matrices) are combined. To generate the net skin,

the hole matrix is subtracted from the skin matrix.

An empty matrix is created the same size as the skin matrix which becomes the net skin matrix. The

process checks the skin matrix element by element - if the element has a value of one, a one is

Cell and internal cavity 'Hole cell' - the repeating element

Conformal shape - solid body Skin - hollowed body

121

written in the corresponding location on the net skin matrix. If the element has a value of zero, the

value of one minus the corresponding element from the hole matrix is copied to the net skin

matrix, as shown by ‘check b’ and ‘check c’ in Figure 7-11. The hole matrix is repositioned as

required in the same manner that the internal structure process tessellates the cell matrix.

 Skin Net skin

1 0 0 0 0 0 0 1 1

1 1 0 1 1 0 1 1 1

1 0 0 0 0 0 0 1 2

1 1 0 1 1 0 1 1 2

0 0 1 1 1 1 0 0 3

0 0 1 1 1 1 0 0 3

0 0 1 1 1 1 0 0 4 0 0 0

1 1 1 1 1 1 1 1 4

0 0 1 1 1 1 0 0 5

1 1 1 1 1 1 1 1 5

0 0 1 1 1 1 0 0 6 0 0 1 1

0 0 1 1 1 1 0 0 6

1 0 0 0 0 0 0 1 7 0 0 1 2

1 1 0 1 1 0 1 1 7

1 0 0 0 0 0 0 1 8 1 1 1 3

1 1 0 1 1 0 1 1 8

1 2 3 4 5 6 7 8 1 2 3

1 2 3 4 5 6 7 8

 Check a: netskin(1,1) = skin(1,1) = 1

 Check b: netskin(4,7) = 1 - hole(1,1) = 1-0 = 1

 Check c: netskin(6,7) = 1 - hole(3,1) = 1-1 = 0

Figure 7-11: Net skin matrix calculation

This particular method of generating a net skin is limited in the type of geometry that can be

constructed. For example, this process could not construct a net skin of cylindrical struts. This is

because the method does not create individual struts (as the method described in the preliminary

work chapter does), rather the struts are what is left from the subtraction operation. The geometry

of the net skin that this process constructs is shown in Figure 7-12.

The strut geometry can be controlled to some extent by varying the geometry of the hole cell. The

width of the struts is controlled by the diameter of the hole cells and the height of the struts is

equal to the wall thickness of the skin.

Solid skin (1-) Hole array Net skin - =

Boolean subtract:

Check a

Hole

Check b

Check c

(1-0)

(1-1)

122

Figure 7-12: Net skin generation by Boolean subtraction

Although the hole cell shown in Figure 7-9 is shown with a particular strut type, the design of it is

solely dependent on the cell type selected for trimming to a structure. Regardless of the type of

strut geometry trimmed to generate the internal structure (see Table 7-1 for a selection), the hole

cell will remain the same for a particular cell type. This is shown in Table 7-2.

C
e

ll

ty
p

e

Kelvin / truncated octahedron

S
tr

u
t

ty
p

e
 Triangular

cross-section
Cylindrical 'Wave' Helical

C
e

ll

H
o

le
 c

e
ll

Table 7-2: Hole cell selection

A procedure has been further investigated to design the hole cell that corresponds to a particular

structure type, illustrated in Figure 7-13. The structure in question (Figure 7-13a) is selected and its

base tessellation determined (b). The faces of the polyhedra are offset inwards by half of the

required strut diameter (c). An optional step is to apply a small fillet to the edges of the polyhedra

(d) - this will have the effect of filleting the holes of the net skin (e) in an effort to prevent cracks

from propagating on otherwise sharp corners.

Skin Hole cell Net skin Strut

Hole cells intersecting with skin Net skin after subtraction

123

Figure 7-13: Method of generating a 'hole cell' from a given structure

This method of constructing a net skin, while exploiting all the advantages of the conformal

structure method, is limited in terms of net skin design. A second disadvantage is that the net skin

is not always completely formed. In most cases the hole cell completely intersects the solid skin;

when the hole cell is subtracted the hole passes completely through the solid skin. Depending on

the position and shape of the solid skin, there may be instances where the subtraction of a hole cell

does not pass all the way through, an example shown in Figure 7-14.

Figure 7-14: Partially formed net skin where hole cell tessellation does not completely intersect solid skin

By reducing the offset value applied to the base tessellation (Figure 7-13b) the likelihood of these

partial hole formations can be minimised. However this also has the effect of reducing the overall

strut thickness of the net skin. Modifying the design of the hole cell was also investigated with the

a) Structure b) Base

tessellation

c) Offset

polyhedra

d) Filleted

polyhedra

e) Example of

net skin

Hole cells

Hole cell

tessellation

A

A Section A-A

Solid skin

Partial

intersection

124

addition of extrusions on each of the faces of the hole cell. An example is shown in Figure 7-15. The

problem with this approach however is that the same extrusions used to cut through partially

formed holes also cut through other correctly generated struts of the net skin.

Figure 7-15: Modified hole cell that completely intersects skin in dashed region, although the same

modifications on other instances of cell destroys neighbouring struts (compare with Figure 7-14)

As stated at the beginning of this section, the hole cell is similar to an inverted version of the

structural cell, although not identical. If an inverted cell is used as a hole cell, a similar result as

Figure 7-15 is observed.

7.1.4 Combining Structure Elements

By this point, the trimmed structure and net skin have been separately generated. They exist as a

pair of equal size matrices. To combine the two, an IF statement is used as follows: for every

element of the net skin matrix, if the value is zero (i.e. black pixel, or solid geometry), convert the

corresponding element of the trimmed structure matrix to zero. This overlays the net skin matrix

on top of the trimmed structure, essentially uniting the two to form a combined structure matrix.

This is shown in Figure 7-16.

Figure 7-16: Combining structural elements

Section A-A

A

A

Complete

intersection

Internal structure Net skin Combined structure U =

Boolean unite:

125

7.1.5 Conversion to Slice File

The combined structure matrix represents the complete trimmed structure, which is compatible

with AM processes that utilise raster slices, such as 3D printing. However to be suitable for AM

processes that require vector-based slice files (such as laser sintering) the matrices of ones and

zeroes must be converted to a more meaningful format. Essentially, to convert each matrix to a

vector slice file, the outlines of the shapes represented by the matrix are traced. This is depicted on

a small section of an individual strut in Figure 7-17.

Figure 7-17: Tracing boundary of pixellated shape

The method to trace boundaries already exists in Matlab - a built-in function called 'bwboundaries'.

The method is an image processing tool and works by scanning a bitmap matrix for a boundary

pixel, i.e. a black pixel with white neighbours. When a boundary pixel has been located, the eight

neighbouring pixels are checked under the same criteria and from this a string of ordered boundary

pixels are generated. Due to this eight-neighbour search, diagonal lines are constructed at pixel

corners, as shown in Figure 7-17. This means that a 45° line of pixels will generate as smooth a

boundary as a 0° line. Separate strings are generated for each individual shape on the bitmap. Each

boundary pixel is defined by its row and column co-ordinates; these co-ordinates are multiplied by

a scaling factor to convert to millimetre measurements. This scaling factor is dependent on the

resolution of the bitmap slices input into the methodology: by default, one pixel equals 0.14mm.

Each boundary string is written as a 'polyline' to a Common Layer Interface (CLI) file - a type of slice

file compatible with laser sintering machines [103]. There are two types of CLI file - ASCII and

binary. ASCII CLI files are structured with a header section at the start of the file, followed by a

geometry section that is split into layers, as depicted in Figure 7-18. This structure makes the

integration of writing a CLI file into the process relatively straightforward because - as discussed

previously - the conformal structure method works layer by layer. As a layer of trimmed structure is

1 pixel = 0.14mm

2.38mm

Pixellated shape

Traced boundary

126

generated, the boundaries for that layer are written to the CLI file and it is appended with new data

as each layer is generated.

Figure 7-18: Structure of a Common Layer Interface (CLI) file

This section has detailed how by taking a part modelled in CAD and converting it to a bitmap slice

format, a conformal structure can be generated. The next section develops this concept further by

detailing a method to create functionally graded structures - structures where the strut geometry

can be varied across them. Subsequent sections detail further advances of the conformal structure

method.

7.2 Functional Grading

The potential of functionally graded structures is to be able to design optimised structures with

different properties in particular regions, determined by a set of loading and boundary conditions.

This can be achieved by varying strut geometry across a part. While the conformal structure

method is not at the stage where optimised structures are possible, this section details the

groundwork that has been completed to make it a possibility.

The conformal structure method described in the previous section considers matrices of zeroes and

ones to represent solid and void respectively. This is analogous to the black and white bitmaps used

to describe the process: where a conformal shape is black, a particular structure is constructed. The

conformal structure method has the capability to generate functionally graded structures by

$$HEADERSTART

$$ASCII

$$UNITS/1

$$DATE/27/01/10

$$LAYERS/3

$$HEADEREND

$$GEOMETRYSTART

$$LAYER/1.0

 $$POLYLINE/1,1,6, 2.0,5.0, 7.0,5.0, 5.0,3.5, 7.0,1.0, 2.0,1.0, 2.0,5.0

$$LAYER/1.1

 $$POLYLINE/2, ...

 $$POLYLINE/3, ...

$$LAYER/1.2

 ...

 ...

 ...

 ...

$$GEOMETRYEND

Header section - defines start of data

'1.0' denotes height

(in mm) of layer

Polyline I.D. - unique to

particular polyline

Polyline direction - 0=internal boundary,

1=external boundary

Number of co-ordinates

per polyline

Polyline (x,y)

co-ordinate pairs

(in mm)

127

overlaying a greyscale image on to the conformal shape. A simple example would be to overlay a

gradient, as demonstrated in Figure 7-19.

 Figure 7-19: Functionally grading a conformal shape

Rather than the binary reasoning of 'if black, construct structure', the process becomes 'if a pixel is

a particular shade of grey, construct a particular increment of structure'. A gradient is depicted with

an 8-bit greyscale image that is overlaid over each conformal shape slice with a Boolean

intersection (to allow the assignment of different structure types to a range of values), the resultant

conformal shape slice is also a greyscale, 8-bit bitmap.

To be able to generate a functionally graded structure, a library of cells is required that increment

from one end of the graded range to another. The example in Figure 7-19 grades from a straight

strut to a wave-like strut design. Between the two extremes are wave-like struts that gradually

reduce in amplitude to zero. Another simple example of a suitable range would be to grade from a

thin strut of a particular design to a thicker variant, as shown in Figure 7-20. As before, the cells

have been modelled in conventional CAD software and converted to a series of bitmap slices.

For the particular example shown in Figure 7-19, there are sixteen increments of the strut design;

the difference in amplitude between increments is less than can be resolved by the bitmap

resolution (i.e. less than the pixel width: 0.14mm). In practice, any number of design increments

could be implemented for functional grading. The overlaid image used to determine the placing of

strut increments is an 8-bit bitmap. This is a 256 state greyscale range (values of 0-255), so when

divided up into the sixteen increments shown in Figure 7-19, sixteen shades of grey correspond to

each strut increment. 8-bit greyscale bitmaps are a standard bitmap format and thus many

programmes exist that can generate them.

C
e

ll
lib

ra
ry

128

Many image-manipulation programmes can generate gradients that can be written as 8-bit

bitmaps, making the generation of gradients a straightforward task. Any 8-bit bitmap can be input

to generate functionally graded structures, a few examples (composed in Adobe Photoshop) are

shown in Figure 7-20. The eventual aim is to accept density maps from optimisation software to

construct varying structures optimised to a specific purpose, as detailed in Section 9.3 as

recommendations for further work.

The functionally graded structures generated by this methodology are varied very smoothly -

blending between strut design increments is not constrained to a cell-by-cell or strut-by-strut limit.

If the gradient requires that a change in strut increment should occur over the length of a strut, this

is what is constructed. This same method is used as the basis for the work completed in the next

section.

Figure 7-20: Functionally graded structures generated from input gradients

7.3 Ensuring Net Skin Connectivity

The conformal structure method generates internal structure and net skin in two separate steps.

For the two structural elements to line up, the process ensures that the cell and 'hole cell' are

initially positioned in the same place when tessellated over the conformal shape and skin slices.

This ensures that the trimmed struts of the internal structure line up with the nodes of the net skin.

a) b) c)

129

Depending on the strut type used on the internal structure, this may not be sufficient to ensure

correct connection with the net skin. The geometry of the net skin is determined by the base

tessellation of structure, as detailed in Section 7.1.3. So if the structure has been augmented with a

helical strut for example, a strut when trimmed will not necessarily line up with the constructed net

skin. The helical strut shown in Figure 7-21 illustrates this.

Figure 7-21: Misalignment between a complex strut and the net skin

Utilising the functional grading method developed for the generation of structures with variable

geometry, this problem can be overcome. The neatest and most robust way to ensure net skin

connectivity is to reduce the strut's helical diameter to zero before the point the strut intersects

with the conformal shape boundary. The functional grading approach detailed in the previous

section can blend between strut types given a greyscale image. Given the correct greyscale image,

this approach can be used to ensure net skin connectivity. A graded outline that follows the

boundary of the conformal shape will achieve this, as shown in Figure 7-22.

Figure 7-22: A graded boundary

130

For any given conformal shape, this graded outline can be generated automatically, which is

achieved by blurring the image. The entire image is blurred, but because there is only contrast

between black and white at the conformal shape boundary, the result is that only the boundary

appears blurred.

Each conformal shape is blurred through 2D convolution - the conformal shape slice is again

considered as a matrix rather than an image for this process. The conformal shape matrix is

convolved with a mask matrix, simple examples of which are shown in Figure 7-23a. The mask

matrix is a square matrix that contains a set of multipliers. The example in Figure 7-23a shows a 3x3

mask matrix - the sum of the multipliers must equal one, so each element equals 1/9. The

conformal shape matrix is blurred element by element - the calculated values of each blurred

element are influenced by its neighbours.

 255 255 255 255 255 255 255 255

 255 227 198 170 170 198 227 255

 255 255 0 0 0 0 255 255

 227 170 113 85 85 113 170 227

1/9 1/9 1/9 255 0 0 0 0 0 0 255

 198 113 28 0 0 28 113 198

1/9 1/9 1/9 x 255 0 0 0 0 0 0 255

= 170 113 0 0 0 0 113 170

1/9 1/9 1/9 255 0 0 0 0 0 0 255

 198 113 28 0 0 28 113 198

 255 255 0 0 0 0 255 255

 227 170 113 85 85 113 170 227

 255 255 255 255 255 255 255 255

 255 227 198 170 170 198 227 255

Figure 7-23: Convolution calculation for a single element of a conformal shape matrix

For any initial element (an example highlighted in red in Figure 7-23a), the mask matrix is multiplied

with it and its neighbours (highlighted in blue). The matrix multiplication is a dot product where

Conformal shape matrix Blurred conformal shape matrix Convolution mask

a) Matrix convolution:

113

Initial element Initial element

b) Convolution calculation:

Matrix element

multiplication

Sum of elements

113.32

131

each element of the mask matrix is multiplied by the corresponding conformal shape element

(Figure 7-23b). The multiplied elements are then summed and the nearest integer of this value

becomes the value of that initial element in the blurred conformal shape matrix. This is because the

blurred conformal shape matrix is reconverted back into an 8-bit bitmap, that only accepts integers

between 0 and 255.

The blurred conformal shape matrix possesses the required graded boundary, however the

boundary of the conformal shape has expanded in the convolution process. This is shown in Figure

7-24. This would result in a trimmed structure that was slightly larger than the input geometry. To

rectify this, the blurred conformal shape matrix is trimmed to the original conformal shape matrix

(through the same method that trims structure to the conformal shape as described in Section

7.1.2).

Figure 7-24: Trimming the blurred conformal shape matrix to the original conformal shape

In practice, the mask matrix is larger than the 3x3 matrix used in the example in Figure 7-23.

increasing the size of the mask matrix increases the level of blurring. By default a 30x30 mask

matrix is used to generate a wide enough greyscale band around the conformal shape, although

this can be varied as required.

The functional grading process detailed in Section 7.2 uses this blurred conformal shape as an input

to generate a structure composed of helical struts that transform into straight struts at the

conformal shape boundary. This ensures that each boundary strut connects to the net skin. Figure

7-25 demonstrates this geometric grading. The blurring process has generated a graded boundary

around the conformal shape - for the lightest value of grey, a straight strut is mapped to the

internal structure slice; as the greys get darker, helical struts of increasing helical diameter are

mapped to the internal structure slice. The majority of the conformal shape slice remains black and

the actual strut type chosen for the structure is mapped to it.

 b) Blurred conformal shape a) Conformal shape c) Blurred shape trimmed to

original

132

Figure 7-25: Re-aligning a complex strut with the net skin

7.4 Constructing a Skin from a Conformal Shape

The conformal structure method requires two inputs to generate a skinned, trimmed structure,

although some work has been done to reduce the inputs required to one. A method has been

devised to automatically construct the skin slices from the conformal shape input. The advantage of

this is that it reduces the work load on the user. The method uses 3D convolution (rather than the

2D convolution implemented in the previous section), applied to the entire conformal shape, rather

than individual slices.

Each conformal shape slice is read and written as a page of a three dimensional matrix. In much the

same manner in which a square mask is used to blur an image in 2D convolution, a cube mask blurs

the conformal shape volume in 3D convolution. An individual slice depicts this blurring in Figure

7-26. Any element of the matrix that retains its original value or zero or one (i.e.: any element that

Section of blurred boundary

Connected boundary strut

Net skin

Boundary strut

Connected boundary strut Unconnected boundary strut

Blurred boundary region

133

has not been blurred) is converted to one. Any element that has been blurred (i.e.: any element

that has any value between zero and one) is converted to a zero, as also shown in Figure 7-26. This

has the effect of generating a solid skin, with a thickness that is controlled by the strength of the

convolution. The stronger the convolution (i.e. the larger the convolution mask), the thicker the

generated skin. This can then be used as the input for the construction of the net skin.

Figure 7-26: Generating a hollow skin from a conformal shape

The advantage of this convolution method is that a hollowed conformal shape can be automatically

generated as the input skin required by the conformal structure method. The user need only supply

the one conformal shape for trimming a structure to and any type of skin required can be

automatically produced within the method. The disadvantage with 3D convolution is that it is

computationally expensive. The time taken to convolute a voxel model is generally higher than that

of performing a 'hollow' operation in conventional CAD software. As conformal shape size

increases, the time taken to generate a skin through convolution quickly becomes long enough to

be considered unfeasible, although with further work a similar or more efficient means may be

developed.

7.5 Structure Visualisation

When generating structure at the slice level it becomes difficult to visualise a design. This can be an

important issue for a user that is unable to have complete confidence in a design that cannot be

visually inspected. It also makes communication of a design to other stakeholders difficult. The

structure can be observed layer by layer, but this is not a particularly clear visualisation technique

as the design cannot be viewed as a whole.

To rectify this, a method has been developed to generate a 3D surface model from the raster slice

data using isosurfaces. As discussed in Chapter 3, isosurfaces are a common means to convert a

voxel model to a surface model. By generating a triangular polygon from groups of neighbouring

voxels that comprise the boundary of the trimmed structure, a faceted boundary representation is

134

generated. An example of the method is shown in Figure 7-27, with a GUI that has been developed

to allow the user to import saved data from a particular structure design that is automatically

output from the conformal structure method.

Figure 7-27: Structure visualisation with isosurfaces

Stepping between layers is observed with the isosurface, which, while aesthetically unpleasing is a

more accurate representation of an additively manufactured part. In that sense, this structure

visualisation method can be considered more of a WYSIWYG ('what you see is what you get')

display than the mathematically perfect curves and surfaces represented in a conventional CAD

model.

As also discussed in Chapter 3, the issue with an isosurface generated from a voxel model is that

each isosurface polygon is on the same scale as the voxels it is constructed from. This generates a

surface that is composed of many small polygons and quickly becomes computationally expensive

to display. The structure visualisation function utilises a simple method to alleviate this problem.

When loading the trimmed structure data, the user also selects a sampling resolution value to

construct the isosurface at. At a sampling resolution of 1, the exact isosurface is constructed. At a

sampling resolution of 2, the method skips every other voxel in the model to construct a coarser

isosurface. A sampling resolution of 3 utilises every third voxel and so on. Examples are shown in

Figure 7-28.

135

 Resolution = 1 Resolution = 2 Resolution = 3 Resolution = 10

Figure 7-28: Effect of sampling resolution on isosurface quality

The voxel skipping occurs in all three axes and considerably increases isosurface construction speed

and interaction rates with the model (smoothness of zoom and rotation). The obvious trade-off is

that the displayed model is less accurate with increased sampling resolution. For pure visual

communication of a design, empirical observations suggest that a sampling resolution of 3 allows a

reasonable compromise between accuracy and rate of interactivity.

Also included in the visualisation function is a script to write the isosurface in an ASCII STL format if

required. The standard process of writing a CLI slice file is still recommended (especially for larger

trimmed structures), but the ability to write STL files gives further freedom to the user.

7.6 Strengths and Limitations of the Conformal Structure Method

7.6.1 Speed and Robustness

The speed of the conformal structure method is dependent on the size of the input slices. A large

slice with no conformal shape geometry on it will take approximately the same time to processes

(for the majority of the steps in the method) as the same size slice full of geometry. The process

that actually trims geometry considers one pixel at a time. As stated in Section 7.1.2, if a conformal

shape pixel is black (solid geometry) then a corresponding structure pixel is copied over. If the

conformal shape pixel is white (empty void) then the original void pixel is copied over. Either way,

the same operation is carried out, just referencing pixels from different origins. The same is true

when considering structure complexity.

Table 7-3 compares processing time for simple and complex structures trimmed to a particular

conformal shape. The conformal shape is comprised of 250 x 460 pixel slices and totals 350 pixels

(otherwise considered as 250 x 460 x 350 voxels). A simple, straight strut structure and a helical

136

strut structure were each trimmed to fit the conformal shape 25 times. The mean completion time

and standard deviation are presented.

Straight strut

Helical strut

Breakdown of method steps Mean time (s) SD Mean time (s) SD

Initialising 0.17 0.03 0.18 0.01

Reading input slices 48.48 0.59 46.11 0.72

Generating trimmed structure 1.77 0.06 1.77 0.06

Generating net skin 1.63 0.19 1.60 0.22

Combing internal and net skin 0.32 0.01 0.32 0.01

Tracing boundaries and writing CLI file 0.04 0.00 0.04 0.00

Total time 52.42 0.82 50.02 1.00

Table 7-3: Breakdown of time spent by each stage of the conformal structure method for two strut types

As highlighted, the actual time spent trimming is the same for both structure types. The majority of

the time is spent reading the input slices of the conformal shape and skin. The method has high

repeatability, as shown by the low standard deviations across 25 iterations.

The method has no concept of how complex a structure is, because regardless of its geometric

complexity, it is still represented by the same number of pixels as any other structure. Conversely,

the method is less efficient at trimming structures to a conformal shape that do not fit efficiently in

a cuboid envelope, as shown in Figure 7-29.

Figure 7-29: Shapes with different volumes in the same 3D envelope

The two shapes shown in Figure 7-29 will take approximately the same time to process through the

method, despite having very different volumes, and thus different volume of structure required.

This new method is highly robust in that regardless of input, a trimmed structure will be generated

as long as the matrix is of the right format. There are no issues with surface validity that are readily

137

apparent in conventional B-rep CAD models. Additionally, the process is scaleable; resolution can

be easily changed to generate large parts at a low resolution (for 'draft quality' structures or for

coarser AM processes) or small parts at a high resolution.

7.6.2 Initial Overhead

An important issue of the method is the high level of initial overhead. Currently, every cell type that

the method uses has been modelled in CAD and then converted to raster slices. The geometry in

this form is not parametric - there is no elegant way to vary the dimensions of these voxelised cells.

Cell diameter can be varied by resizing the slices, but this will also scale any other parameters, such

as strut diameter accordingly. Currently, the cell library includes cells with 2mm and 2.5mm

diameter struts. If a 2.2mm strut diameter cell is required, a new cell must be modelled and

imported into the library. For the infinite combination of cell types and cell parameters available,

adding new, specific cell designs to the library quickly becomes unfeasible. A potential fix for this is

to implement structure construction within the method. The user selects a cell type, which is then

automatically constructed and sliced. As they are required, cell types can be constructed, sliced and

stored for future use.

7.6.3 X-Y Plane

A constraint of the process is that structure orientation must be set at the beginning of process.

Unlike the conventional route of CAD-STL-slice file, where orientation and positioning of a model in

a build can be determined at the STL manipulation stage, generating a trimmed structure with this

methodology requires correct orientation at the beginning. Once the part has been sliced and

cross-sections determined, the part is frozen at its current angle. The part may still be rotated

around the z-axis (as shown in Figure 7-30) but the part cannot be easily rotated in other axes

without significant deformation.

138

Figure 7-30: Orientation lock of sliced parts

The repercussion of this is that some planning is required at the early stages of trimmed structure

generation to ensure that the output can fit into the laser sintering build volume. This becomes

particularly important if the part is to share the build volume with other models.

7.6.4 Pixel Stepping

Stepping in the z-axis (between layers) is a given for an AM process, but this method also generates

stepping in the x and y-axes due to the pixel-based geometry manipulation that occurs.

The nature of bitmaps means a part's boundary is ultimately described as a stepped profile. Parts

made by this process will potentially have this surface artefact that parts from other processes

won't. The method of tracing the bitmap when converting to a vector-based slice file reduces the

jaggedness of a part boundary as discussed in Section 7.1.5. Nevertheless, the pixel stepping will be

a component of the surface of any part produced. Bitmap resolution can be increased so that this

component will be insignificant compared to other roughness factors attributed to AM processes,

however there is a trade-off with the speed at which the conformal structure method works.

7.7 Summary

This chapter has detailed the investigation of a novel method for fast and robust generation of

conformal structures. The method is also capable of constructing a 'net skin', a new skin type that

allows easy post-processing of parts while retaining the connectivity of the structure at the

Plan view of build volume

• x-y plane

� Translations

� Rotations

x

y

z

y

Side view of build volume

• y-z (and x-z) plane

� Translations

� Rotations

Build volume

139

trimmed boundary. An example part that has been generated with an internal structure of helical

struts in excess of 100,000 in number is shown in Figure 7-31.

Figure 7-31: A concept chest protector for taekwondo designed by the author on the Scuta project

The conformal structure method also implements several complimentary features, such as the

ability to visualise the trimmed structure as a 3D surface, the ability to export STL files as well as the

default CLI slice files, and the means to automatically generate the input required for skin

generation. This chapter has also demonstrated the method's ability to generate functionally

graded structures, laying the groundwork for integration with optimisation techniques.

While the pixel-based process affords many advantages, the primary being that the method's speed

is largely independent of structure complexity, it is the basis of the method's weaknesses. The most

significant weakness is that any part constructed has a stepped surface, due to the discrete nature

of the pixels that describe it. This 'pixel stepping' is an extra geometric artefact on parts produced

by this method that other processes do not. For this reason, the effect of pixel stepping must be

quantified, which is the aim of the next chapter.

140

8 The Effect of Pixel Stepping on the Surface Roughness of

Conformal Structure Method Produced Parts

The conformal structure method described in the previous chapter generates trimmed structures

for additive manufacture in a rapid and robust manner. This is achieved through converting 3D

geometry into a series of rasterised slices. Any geometry created through this methodology is

ultimately described with a jagged boundary as a direct result of the discrete pixels that form it.

Parts made by this methodology will have this 'pixel stepping' that parts generated conventionally

would not, as shown in Figure 8-1.

Figure 8-1: Pixel stepping at a boundary

There are two primary disadvantages associated with surface roughness. Aesthetically, an extra

source of roughness can detract from the look of the part. More importantly, the stepping

attributed to the conformal structure method could potentially form the starting point for cracks to

propagate from, ultimately weakening the structure.

Although the conformal structure method could generate parts for any of the additive

manufacturing processes, the significance of any pixel stepping will be determined on polymer

parts produced by laser sintering. As discussed in Chapter 1, laser sintering is the only AM process

that can fully realise the geometrically complex structures that this method is capable of

generating. It is intended that the resolution of the raster slices used in the method is high enough

that this pixel stepping will be insignificant compared to the roughness attributed to the powder-

based process. However, since the method produces parts with an extra source of roughness, the

extent of this must be identified.

Cross-sectional slice of geometry

Stepped boundary,

'pixel stepping'

141

8.1 Experiment Aims

The primary aim of this experiment was to determine if the pixel-stepped profile of parts produced

by the conformal structure method was manifest on manufactured samples. Because pixel stepping

varies depending on the angle of the boundary, the experiment aimed to determine at what angles

this is most significant.

Because laser sintering is a powder-based process, the surface roughness of parts produced is

relatively high [167]. This experiment aimed to ascertain if and to what degree this existing source

of surface roughness masked a pixel-stepped boundary. If pixel-stepping was obviously apparent in

manufactured parts, the need to improve the output of the conformal structure method would be

evident.

8.2 Experiment Method

8.2.1 Sample Design and Manufacture

Rather than attempting to measure pixel-stepping on a complex structure, a series of simple test

samples were designed, as shown in Figure 8-2. The sample was a 25x25mm flat square of 4mm

thickness; a set of which were oriented through a range of angles in the slice plane. The samples

were manufactured on an EOS Formiga P100 polymer laser sintering machine.

Two sets of samples were generated - one set generated in CAD, one set generated through the

conformal structure method. The CAD set were generated conventionally; modelled in CAD and

converted to STL before conversion to a standard vector slice format for the P100 (the open source

CLI format). The second set were also modelled in CAD, but then converted to a raster slice format.

The raster slices were input into the conformal structure method (omitting the structure generation

step) and the pixel-stepped boundaries of the rasterised shapes were traced and written to a vector

slice file (CLI). This resulted in a set of samples with pixel-stepped boundaries through a range of

angles. This ensured that the experiment objectives were met - comparing the conformal structure

method samples with the conventional samples would determine if there was an effect on surface

roughness, while comparing conformal structure method samples with each other would

determine where any stepping artefacts were most significant.

As discussed in the previous chapter (in Section 7.3.6) the method of tracing employed in the raster

to vector conversion slightly modifies the profile of a part. Rather than a part exhibiting the sharp

stepping of a pixelated border, the tracing method essentially chamfers this 90° stepping to 45°

142

steps, as shown in the inset of Figure 8-2. Although this reduces the jagged effect of pixel-stepping

somewhat, the stepping artefact is still present. For this reason, the stepping is still referred to as

'pixel stepping' as pixellation is the cause.

Figure 8-2: Data flow for conventionally generated and method generated samples

The range of rotation through the sample set was 0° to 45°, at 5° increments - this covers the full

360° range of pixel stepping 'patterns' that could be generated while maintaining a reasonable

number of samples to analyse. For example: the pixel stepping patterns that form from 0° to 45°

are reflected at 45° to 90°, meaning that the 45° to 90° do not need to be tested. Similarly, 90° to

180° is a reflection of 0° to 90°, and 180° to 360° is a reflection of 0° to 180°. This is shown by

transforming a sample in Figure 8-3; by reflecting and rotating the 10° sample, an 80° and 170°

sample can be generated that have the same stepping pattern.

Convert to STL

Convert to vector slice

format (SLI)

Convert to raster slices

(.BMP)

Trace pixel boundaries

Write to vector slice format

CAD model of test samples

Slice of sample generated conventionally Slice of sample generated by

conformal structure method

Smooth,

continuous

boundary

Smoothed

stepped

boundary from

raster

143

Figure 8-3: Repetition of pixel stepping

The conformal structure method can generate parts at any resolution, which affects the scale of

pixel stepping. For the purpose of this experiment, the resolution of parts produced by the

conformal structure method was set at 0.14mm/pixel - the default resolution of the slicer used to

generate the input bitmaps.

On the underside of each sample the name, build angle and whether it was generated in 'CAD' or by

the conformal structure method ('MAT' - short for Matlab) were written to allow for easy

identification. The sample set was duplicated to allow comparison between examples of the same

angle; for each angle, two samples were manufactured. This would also go some way to mitigate

the potential of external factors affecting a particular sample and skewing results.

The samples were built in the centre of the build volume of the P100, where the process scans at its

most accurate [168]. The samples were built on the machine's 'speed' setting - a default scan

setting available in the control software that optimises build parameters for build time. Virgin

PA2200 - EOS' standard nylon material - was used to manufacture the samples.

8.2.2 Surface Roughness Measurement

A Taylor-Hobson Talysurf CLI 2000 system was used to measure the surface profile of each sample.

A 2D profile was measured across the width of each sample in the direction that stepping could

occur on the conformal structure method-generated samples.

The Talysurf system has the capability to measure both with contact and non-contact methods. The

contact method drags a diamond-tipped stylus across a surface to accurately measure a profile. The

 10° sample 80° sample 170° sample

 pixel stepping: 1 x 6 pixel stepping: 1 x 6 pixel stepping: 6 x 1

mirror

rotate by

90°

144

non-contact method uses optical means to measure surface roughness and has the advantage that

the risk of scratching samples is eliminated. The method is called scanning white light

interferometry (SWLI) [169]: A light source is reflected off the measured surface and compared

with a reference. From this the position of the surface can be determined [169]. On this apparatus

the contact method has a higher resolution; the stylus has a finer point than the laser spot (0.2μm

versus 0.8μm) and the spacing between measurements is twice that of the optical alternative (0.5

μm versus 1.0μm).

Figure 8-4: Excessive reflection off a rough surface with optical measurement

The test setup is shown in Figure 8-5. The sample was placed onto the platform with the potential

pixel-stepping direction parallel to the direction of platform movement. The sample was lined up

with an arrangement of locator pins and bar and fixed into place with a small amount of putty. The

identifying 'CAD' or 'MAT' markings on each sample were used to ensure a standard orientation

between them.

Figure 8-5: Talysurf CLI 2000 test bed

 a) Contact method: stylus resting b) Optical method: rough surface

 on rough surface reflecting beam away from receiver

Receiver

Emitter

Locator pin

Sample

Stylus (before sample

 is raised into position)

Locator bar

Putty

Platform

Direction of

platform movement

Platform moves under

stylus

145

To perform the profile measurement, the platform first raised the sample into position. The

platform itself moves while the stylus mounting remains stationary, although the stylus is free to

move vertically to trace over the surface features of the sample. Each sample was 25mm in length,

but the scan length for each measurement was set to 23mm. This was to prevent the stylus from

'falling off' the edge of the sample which could potentially damage it. At a 500μm/s scanning speed,

there was a 0.5μm spacing between measurements. This measurement resolution exceeds both

the minimum feature size the laser sintering process is capable of (0.1mm [170]) and that that the

conformal structure method was set to (1 pixel = 0.14mm). This ensured adequate sampling for the

analysis discussed in the next section.

8.3 Fourier Analysis

For any physical, fluctuating wave - such as a sound wave or a radio transmission - Fourier theory

can be employed to decompose it into the range of sine waves that compose it [171,172]. Fourier

transforms convert the wave into the 'frequency domain' by plotting it as its constituent sinusoids

of different frequencies and amplitudes [173]. The magnitude of a sinusoid's amplitude is a

measure of how significant a component it is of the wave. Fourier analysis has a broad range of

uses, and was utilised in this testing to analyse surface roughness.

By converting a surface profile to the frequency domain it was possible to view the constituent

spatial frequencies (or ‘wavenumbers’) of the surface roughness. Figure 8-6 illustrates this for one

of the samples generated through the methodology (a sample rotated by 10°).

Figure 8-6: Profile and Fourier transform of 10° sample

Spatial frequency (cycles/mm)

146

The form of the profile in the frequency domain is termed the 'Fourier spectrum'. Figure 8-6 shows

the original profile in its entirety, and a cropped view of the spectrum which highlights the region of

interest. This region is of interest because it is the area of the Fourier spectrum with highest

amplitudes. Thus in this region are the spatial frequency components that are of greatest

significance to the surface profile.

For computational analysis, any real-world profile must be sampled; a continuous analogue wave

must be converted into a digital sequence of values. The Nyquist sampling theorem governs proper

sampling in Fourier analysis, which states that sampling rate must be at least twice that of the

highest frequency component in the waveform being sampled [174]. The average grain size of

PA2200 powder diameter (56μm [175]) was considered the highest possible frequency component

of surface roughness for this testing. The 0.5μm measurement spacing detailed in the previous

section is used as the sampling rate, which at ten times smaller than average grain size satisfies the

Nyquist sampling theorem requirement.

The purpose of the Nyquist sampling theorem is to ensure that the phenomenon of aliasing does

not occur during analysis [174]. An insufficient sampling rate can obscure the true nature of a

waveform, as shown in Figure 8-7. In this example, the true, high frequency signal has been

insufficiently sampled, so when reconstructed digitally prior to analysis, aliasing makes the signal

incorrectly appear as a lower frequency.

Figure 8-7: Low frequency aliasing

For any sample generated by the conformal structure method, the expected periodicity of the pixel

stepping can be calculated. The pixel-stepped profiles resemble what in signal processing is called a

sawtooth wave, a standard waveform that periodically ramps upwards then sharply drops.

However, there are some notable differences between a sawtooth wave and the stepped profiles,

illustrated in Figure 8-8. The first profile shows the sawtooth wave used for comparison with one of

the pixel-stepped profiles, and has been scaled appropriately. The first major difference is that the

 True signal

Aliased signal

Low sampling rate

147

stepped profiles do not necessarily possess the perfect periodicity that a sawtooth waveform has.

This is shown in the second profile in Figure 8-8.

Figure 8-8: Transformation from a sawtooth profile to closer representation of actual pixel-stepped profile

The third profile possesses the aforementioned chamfering of the stepped profiles that occurs

because of the tracing method employed in the generation of a slice file. With this modification, the

profile resembles the actual slice file used in manufacture. During manufacture, the laser used to

sinter the part has a diameter of 0.1mm. Taking this into account, the corners of any sintered

profile will have rounded corners at the diameter of the laser. These rounded corners have also

been applied to the third profile.

Figure 8-9 shows the sawtooth waveform in the frequency domain, a series of discrete peaks

reducing in amplitude as frequency increases. The other two profiles are also shown. Just by adding

some irregularity, the distinctiveness of the sawtooth profile is reduced. Most of the peaks are

reduced in amplitude, with the exception of the lowest frequency, highest amplitude peak at

0.6 cycles/mm. This corresponds to the ‘wavelength’ of 1.6mm shown in Figure 8-8.

1.6mm

Perfect sawtooth waveform

Irregular sawtooth profile

Chamfered, rounded profile

Laser spot

Laser path

 0.1mm diameter

148

Figure 8-9: Transformation from a sawtooth profile to a closer representation of an actual pixel-stepped

profile

The effects of chamfering the waveform add to the decimation of the distinctive sawtooth

frequency domain shape. Again, with the exception of the lowest frequency peaks, each peak has

dramatically reduced in amplitude to the point where all frequencies above 6 cycles/mm are

reduced to almost nothing. This is to be expected as it is the high frequency components that give a

sawtooth profile its sharp corners. What this essentially shows is that although a sawtooth

waveform has apparent visual similarities to the pixel-stepped profiles in the spatial domain, in the

frequency domain there is not much to be gained in comparing them. However, the lowest

frequency component remains relatively unchanged between the profiles, so becomes a reliable

signal in and of itself to check whether pixel stepping is a significant component of a particular

profile. This lowest frequency corresponds to the wavenumber of the overall stepping; the

fundamental frequency of the profile’s repetition.

For each of the samples tested, the expected fundamental wavenumber of pixel stepping can be

calculated. The empirically derived ‘scaled wavenumber’, k* is used throughout this chapter as it

matches calculated wavenumbers with actual results.

Perfect sawtooth waveform

Irregular sawtooth profile

Chamfered, rounded profile

149

Figure 8-10: Calculating expected periodicity of the pixel stepping on a 10° sample

As previously stated, pixel-stepping profiles for the other samples are not necessarily a simple

pattern repetition. A straight line can only be approximated by a pixelated representation. For any

particular angle, the position of the pixels used to represent it may not follow a simple recurring

pattern. The pattern will be periodic, but as a group of different length steps rather than a

consistent single step: a 'non-uniform stepping', as shown in Figure 8-11.

Figure 8-11: Uniform and non-uniform pixel stepping when approximating a straight, angled line

Wavelength of the pixel stepping:

 1 pixel = 0.14mm

 a = 6 x 0.14 = 0.84mm

 b = 1 x 0.14 = 0.14mm

 Using Pythagoras' Theorem:

 h
2
 = a

2
 + b

2

h

2
 = 0.84

2
 + 0.14

2
 =

0.73

 h = 0.85mm = λ

Wavenumber of the pixel stepping:

Wavenumber:																					%		 � 	
2&

'

Scaled	wavenumber: 							%∗ �
%

2&
�
1

λ
�

1

0.85
� 2. 23

1 pixel 6 pixels

Pixel stepping of a 10° rotated sample:

a = 0.84mm
b = 0.14mm

h θ = 10°

Actual traced

boundary that is

manufactured

Wavenumber:

Scaled wavenumber: cycles/mm

a) Uniform pixel stepping b) Non-uniform pixel stepping c) Uniform pixel stepping

150

As such, there are multiple wavenumbers to identify that can be attributed to pixel stepping on

several of the samples. Figure 8-12 illustrates the periodic stepping patterns apparent on each of

the samples and the calculated wavenumbers as detailed in Figure 8-10.

Figure 8-12: Identified pixel stepping patterns

For the sake of clear quantification, this figure shows actual pixel patterns rather than the slightly

different traced boundaries. In Figure 8-12 and any following figures where wavelength or

wavenumber are presented, the subscript 'u' refers to a uniform stepping pattern, 'n' refers to a

non-uniform stepping and 'c' the major repeating component of that particular pattern.

For the 5° sample, only a simple uniform stepping pattern is observed. For the 10° to 40° samples, a

non-uniform stepping is shown as a pattern of different length red and blue steps. Most of the non-

uniform stepping patterns include a significant repeating component themselves that may be

identified by the Fourier analysis, the wavenumber of which is also calculated. The 0° sample has no

pixel stepping and while the 45° sample has a simple pixel stepping, when the profile is traced the

result is a smooth line. As such, there are no wavenumbers to search for in the Fourier analysis of

the 45° samples.

0°

30°

20°

10°

5°

45°

35°

15°

λu = 1.69mm

ku = 0.60cycles/mm

λn = 2.42mm

kn = 0.41cycles/mm

λc = 0.85mm

kc = 1.18cycles/mm
λn = 1.60mm

kn = 0.63cycles/mm

λc = 0.58mm

kc = 1.73cycles/mm

λn = 1.64mm

kn = 0.61cycles/mm

λc = 0.44mm

kc = 2.26cycles/mm

25° λc = 0.31mm

kc = 3.19cycles/mm

λn = 5.01mm

kn = 0.20cycles/mm

λc = 0.31mm

kc = 3.19cycles/mm

λn = 1.71mm

kn = 0.59cycles/mm

40° λn = 1.09mm

kn = 0.91cycles/mm

λn = 2.94mm

kn = 0.34cycles/mm

151

In fact, any profile that has elements of the same pattern observed in the 45° sample (i.e. a step

after every pixel) will also have segments of a completely smooth line at those locations. This is

shown in Figure 8-13: the 40° sample has segments of the 45° pattern and as such has a straight

line component. This results in a traced boundary profile similar to that of the 5° sample, despite

the very different pixel profiles.

Figure 8-13: Differences between pixel profiles and traced profiles

When the sample profiles are transformed into the frequency domain (as shown previously for the

10° sample in Figure 8-6) a low frequency, high amplitude peak is observed that does not

correspond to those expected from Figure 8-12 if stepping is significant. This unexpected frequency

is actually a consequence of the finite length of the sample. Fourier analysis implicitly assumes that

the input profile is periodic: that it is a section of an infinitely repeating signal [176-178]. Figure

8-14 shows the 23mm length, 10° sample repeated as Fourier analysis assumes it to be. As the

figure demonstrates, there is an obvious discrepancy between the end of one profile and the start

of the next.

0° 45°

40° 5°

152

Figure 8-14: Edge effects - the source of low frequency peaks

This periodic discrepancy emerges in the frequency domain as a low frequency, high magnitude

peak and is termed an 'edge effect' [178,179]. It is this edge effect that is the cause of the identified

peak. Fourier theory states that viewing a profile in either the spatial or frequency domain are just

two different ways of viewing the same data [173]. By applying a windowing function to the original

profile, the edge effects apparent in the frequency domain can be mitigated. A windowing function

will also reduce the effects of spectral leakage also caused by the discrepancy between the start

and end of the profiles [180].

A window is a weighting function that promotes certain features of a profile - examples of

windowing functions and their uses are shown in Table 8-1. [173,181]. There are many more types

of windowing functions designed for specific signal processing applications which are not likely to

be appropriate for this study.

23mm

%∗ �
1

λ
�
1

23
� 5. 56

Length of sample

Fourier analysis assumes input signal repeats into infinity:

10° Methodology Sample - Fourier spectrum

Scaled wavenumber (cycles/mm)

Scaled wavenumber of sample repetition:

 cycles/mm

153

Windowing Function Uses

Rectangular

(no window)

Synchronous sampling, where start and

end of profile meet seamlessly.

Bartlett

Random profiles

Hann

Random profiles

Flat Top

Sinusoids

Table 8-1: Selection of windowing functions (modified from [177,182])

Both the Bartlett and Hann windows are suitable for supposedly random profiles [177,182]. The

samples tested in this study can be considered as having irregular surface profiles due to the

manufacturing process. After some experimentation with applying the different windows to the

data, the Hann function was considered to yield the clearest results. Figure 8-15 shows how the

Hann window modifies the original 10° sample profile and compares the windowed and non-

windowed samples in the frequency domain.

The window function, when applied to the original profile, artificially reduces the profile to zero at

its start and end. This essentially formats the profile for the Fourier analysis: the majority of the

profile is left intact by the window, while the smoothing of the ends allows the profile to seamlessly

repeat into infinity.

As shown in Figure 8-15, the high amplitude peak attributed to edge effects has been substantially

diminished in the Hann-windowed profile. The sharp disparity between repeated profiles is

removed by the windowing function. However, there are still no particularly significant frequencies

appearing above the general noise. There are no significant high amplitude peaks to match the

expected wavenumber of either the non-uniform stepping pattern (0.41 cycles/mm) or the

significant repeating component of that pattern (1.18 cycles/mm).

154

Figure 8-15: Comparing original signal with Hann windowed signal for 10° method sample

From this it can be determined that - for a 10° angle - the pixel stepping surface artefacts produced

by the conformal structure method are not a significant contribution to a manufactured part's

surface roughness. This is supported by Figure 8-16, which compares Hann-windowed frequency

domains of both 10° conformal structure method samples and both 10° conventionally generated

samples. Neither of the conformal structure method samples exhibit significant peaks at any

frequency, including the expected 1.18 cycles/mm; the Fourier spectra consist almost entirely of

low-amplitude noise like their conventionally generated counterparts.

155

Figure 8-16: Comparing windowed samples of all 10° samples - conventionally and method generated

The only significant instance where stepping was noticeable was on the 5° samples. Less significant

instances are discussed subsequently. The 5° angle was the most acute of the angles tested and

exhibited a stepping pattern with the longest periodicity. The frequency spectra of the two 5°

samples are shown in Figure 8-17 and clearly show this periodicity as a significant component of the

manufactured samples' surface roughness, with a high amplitude peak at the expected

wavenumber.

Figure 8-17: Hann windowed signal for 5° method samples

156

This same wavenumber is observed on both samples, which corresponds to the expected

wavenumber calculated from the original stepped profile. This wavenumber does not appear on

the conventionally generated 5° samples, as shown in Figure 8-18, which proves that it can only be

attributed to pixel stepping.

5° Conventionally Generated Samples - Fourier Spectra (Hann Windowed)

Figure 8-18: Hann windowed signal for 5° conventional samples

Figure 8-19 shows the Fourier spectra for each of the samples generated through the conformal

method. For the benefit of clarity, the x-axis omits the spectra from 0 - 0.1 cycles/mm (i.e. the

peaks attributed to edge effects). The expected wavenumbers (i.e. those corresponding to the

pixel-stepping wavelengths as shown in Figure 8-12) are shown for each sample. As discussed, it is

clear that the 5° sample has the only significant pixel stepping-produced peaks.

Two wavenumbers are highlighted with dotted lines on the 25° and 40° samples. While the

amplitude of these peaks are not much higher than the general noise, the wavenumbers do

correspond to the expected non-uniform stepping patterns apparent on the pixel profiles. These

samples as shown in more detail in Figure 8-20 highlight these potential peaks.

There is a correlation between the expected wavenumbers and peaks in both sets of samples. For

both the 25° and 40° sets each of the samples peak at the expected wavenumbers, whereas other

relatively high peaks in one sample do not agree with those of the other. As previously discussed,

the actual traced boundary of the 40° sample is similar to that of the 5° sample despite very

different pixel stepping patterns. It is this pattern's distinct similarity that is the reason the Fourier

analysis has picked up on it. Like the 5° samples, the long uniform stepping is noticeable above the

general roughness of the laser sintered parts.

157

Figure 8-19: Fourier spectra for all samples generated through conformal method

k*c = 1.17 cycles/mm

k*n = 0.63 cycles/mm

k*n = 0.61 cycles/mm

k*c = 3.19 cycles/mm

k*c = 3.19 cycles/mm

k*n = 0.59 cycles/mm

k*u = 0.60 cycles/mm

10°

5°

0°

15°

20°

25°

30°

35°

40°

45°

All Methodology Samples - Fourier Spectra

No pixel stepping

1.64mm

0.85mm

0.53mm

0.41mm

0.33mm

0.28mm

0.24mm

0.22mm

0.20mm

k*n = 0.91 cycles/mm

k*n = 0.34 cycles/mm

Sample Profile

Scaled wavenumber (cycles/mm)

k*n = 0.41 cycles/mm

k*c = 1.73 cycles/mm

k*c = 2.26 cycles/mm

k*n = 0.20 cycles/mm

158

Figure 8-20: Hann windowed signal for 25° and 40° conventional samples

However, the amplitude of these particular wavenumbers (while significant over the general noise)

are not nearly as significant as that found on the 5° samples discussed previously. The non-uniform

stepping patterns expected on the other samples (10°, 15°, 20°, 30° and 35°) are not observed on

the Fourier spectra at all. This makes the 5° sample a good measure of the effects of pixel stepping

on any particular AM process at any particular method resolution. A 5° sample could be fabricated

as a worst-case benchmark test piece. A 5° sample could also be used as an indicator of the effects

of any methods taken to reduce pixel stepping.

8.4 Methods to Reduce Pixel Stepping

To reduce the level of pixel stepping, one of two routes can be considered. By increasing the

resolution of the conformal structure method, the amplitude of the stepping would be reduced.

Because the conformal structure method already has the ability to vary its output resolution, a

159

control is already in place to reduce the effects of pixel stepping to an appropriate level. However

with this approach, a compromise will always exist with the method's speed.

Another route to reduce pixel stepping would be to apply a smoothing function to the stepped

profiles before parts are built, such as point averaging routines or mathematically fitting curves to

the shapes. This is considered further work and out of the scope of this research. Even if pixel

stepping is completely removed from the generated profiles, parts produced by additive

manufacturing still exhibit stepping between layers which limits the level of overall surface

smoothness that is achievable.

8.5 Conclusions

An experiment was carried out to determine how the pixel-stepping of parts produced by the

conformal structure method affected the surface roughness of manufactured parts. Only the 5°

rotated samples - with the longest uniform pixel-stepping periodicity - showed to have a significant

effect on surface roughness at the resolution tested. This result could potentially be used as a

means of calibrating the output of the structure trimming method to particular build parameters of

AM processes. Knowing that a surface at a 5° angle in the X-Y plane will exhibit the most significant

pixel stepping, test samples could be made at a range of resolutions through the structure trimming

method.

Although pixel stepping is significant on the 5° sample in this experiment, it is important to note

that the flat samples tested are a worst case scenario. The periodic stepping is only noticeable

because it is the only feature of the surface. In practice, when the conformal structure method is

generating complex, freeform lattice structures, the surface angle in any one region will rarely be a

sustained 5°. Regardless, the testing showed that at the current conformal structure method's

resolution

(1 pixel = 0.14mm) surface artefacts attributed to pixel stepping are apparent. To rectify this either

increasing the resolution of the method or investigating smoothing algorithms has been suggested,

the latter of which is considered further work.

160

9 Conclusions and Further Work

9.1 Achievement of Research Aims

The work presented in this thesis was guided by two broad research aims:

1. To investigate a method to retain structural connectivity at the boundary of a trimmed

structure

2. To develop a conformal structure method that:

a) Utilises the trimming method of conformal structure generation

b) Implements Research Aim 1

c) Develops the voxel method to fully exploit the geometric freedom of AM

d) Efficiently integrates into the conventional route of design to additive manufacture

Research Aim 1 was addressed with the development of a 'net skin', a method to re-connect cut

struts at the boundary of the trimmed structure. Both in the B-rep concept and final voxel-based

method, the process retains information regarding the connectivity of the structure. This ensures

the correct construction of the net skin, always forming new struts between struts of the same cell.

In the voxel-based conformal structure method, the net skin is generated by subtracting a 'hole cell'

(that is aligned with the structure) from a solid skin. Although the net skin is not perfectly formed

by the conformal structure method, this is considered a fair trade-off against speed.

Research Aim 2 was achieved with an advanced conformal structure method that implemented a

voxel-based method to trim a selected structure type to a conformal shape. It generates a slice file

to integrate into the conventional route; implements a net skin to strengthen the structure

boundary and provides the foundation for functional grading of structures. Additional features to

improve useability were developed, such as the ability to visualise parts and convert to the STL

format if required.

9.2 Key Conclusions

• The voxel-based method was investigated as the basis of a method to generate conformal

lattice structures. It is much more efficient than conventional CAD software at generating

161

conformal lattice structures and the speed at which it works is largely independent of

geometric complexity.

• The novel ‘net skin’ method developed in this thesis has been shown to maintain connectivity

at the boundaries of trimmed lattice structures, providing a major benefit over other methods

of skinning. The net skin facilitates easier post-processing of conformal lattice structures.

• Although geometric complexity has minimal effect on the speed of the conformal structure

method, the efficiency in which the conformal shape fits within a cuboid volume has a

significant effect. This means that care must be taken to make the most efficient use of space.

• Voxel models are inherently stepped, although the coarseness of this can be controlled by

changing the resolution of the voxel model. However, this has an impact on speed of the

conformal structure method. Testing has shown that the default resolution set for the process

(once converted to a slice file) is sufficiently fine to minimise noticeable stepping on laser

sintered parts.

• The layer by layer stepping inherent in AM processes will always be a component of overall

surface roughness regardless of the resolution of the method. The set resolution is adequate

for the particular LS machine, although this would need to be reconsidered as the accuracy of

the LS process improves in the future and indeed between different machine models and

materials used.

9.3 Recommendations for Further Work

A grant from the East Midlands Development Agency Transport iNet has been awarded to develop

the work in this thesis towards a standalone piece of software. To that end, there is still significant

progress to be made to move from a Matlab-based concept to product that can be commercialised.

The most substantial step would be to establish independence from Matlab by translating or re-

writing the work into an actual programming language like C [183].

There are a number of improvements that must be made to the method as a whole first, to include

steps of the method that are currently fulfilled by external processes. One such external step at the

moment is slicing. Developing a slicing algorithm within the process enables it to be tailored to the

specific needs of the method. Currently, the slicing algorithm exports a series of bitmaps, which the

conformal structure method must convert to matrices for the trimming operation. An internal slicer

could export a 3D matrix (the voxel model) of the sliced model directly.

162

Similarly, conventional CAD software is currently used to design both the conformal shape and

every cell type included in the process. It is advantageous to permit the design of the conformal

shape through conventional CAD which excels at representing models with 'shape complexity'.

However the existing method of designing structures can be improved. Currently a separate CAD

model must be sliced for each iteration of a particular cell type. For a Kelvin cell with a 15mm cell

diameter, a CAD model must be constructed and sliced with a 1mm strut diameter, 2mm strut

diameter, 1.1 mm etc. This is because it is difficult to modify voxel models, as there is no parametric

information to label voxels with particular topological detail. The generation of a multitude of voxel

cells is necessary, but it need not be a process that includes the user. The conformal structure

method could include a 'cell constructor' function that would automatically construct and slice a

cell given a set of dimensions. An example is shown in Figure 9-1.

The example gives the user several controls in the design of a particular cell type (based on the

Kelvin cell); different cell types could be introduced as cell constructor functions are written. Cell

diameter, strut diameter and helical diameter of the strut are entered. The cell constructor actually

makes use of boundary representation, which - unlike voxels - can be parameterised to allow the

same model to be resized as required. The result would then be sliced with the method's internal

slicer to produce the voxel model (as a 3D matrix). This takes advantage of both modelling

methods. B-rep is used to parametrically model a single cell, while voxels are used to efficiently

represent the entire structure.

Data flow through the method would change to a situation where the required cell would be

modelled and sliced at the start of the process. In contrast to the current situation which requires

an ever-expanding library of every cell type and its iterations stored as voxel models.

As a method that constructs geometry at the slice level, there is currently no sufficiently developed

means to visualise the generated conformal structures. For a user to have real confidence in the

output of the method an interactive 3D visualisation is important. Within Matlab, isosurfaces were

used to construct 3D models of the output as previously discussed, however the time taken to plot

these lessened its usefulness. This is largely due to the method being run in Matlab, so migration to

an actual programming language like C++ should go some way to rectifying this.

Another issue with generating geometry at the slice level, the output is specific to a particular

process. The method currently only outputs slice files in the CLI format, which – while open source

– is not a de facto standard that all AM machines are obligated to conform to. Although laser

sintering was deemed the most capable AM process for fabricating lattice structures, other

processes can fabricate certain structure types.

163

Figure 9-1: A B-rep cell constructor where cell type, cell diameter, strut diameter and helical diameter can be

adjusted

Some structure geometries are self-supporting and can be built by AM processes that it would

otherwise be unwise to do so. One such process is selective laser melting (SLM) from MCP – a

process similar to laser sintering, but specifically for metals. The ability to construct some types of

lattice structures in metal would be a useful addition to the method, so the necessity arises to

obtain and integrate a file type compatible with SLM (such as the F&S format). Another potentially

interesting AM process to integrate would be the jetting technologies from Objet; combining the

functionally graded structures the method is capable of with the multiple material capabilities of

jetting.

The capability to functionally grade between different strut types presented in this work is just a

foundation to build from. A simple linear grading of structure across the length of a part has visual

impact, but it is not ever likely to be useful in a real product. For a structure to be graded

meaningfully, a whole new design philosophy must be developed. A structure must be graded

according to regional loading and stresses. Integration with the finite element method could be one

route to investigate. Stress variation according to FEA could direct functional grading. Another

potential route would be the integration of the method with topological optimisation techniques.

Given loading conditions to withstand, topology optimisation seeks to find the optimal location of

material. Topology optimisation essentially works with voxels - material is moved around by

changing the density of each voxel. These voxel densities could be linked to a specific cell type

164

within the conformal structure method as a means to guide functional grading. A simple example is

shown in Figure 9-2.

A particular density as determined by a topology optimisation result would need to match up with a

particular cell geometry. Before any method of functional grading is progressed, the actual

mechanical properties of each structure must be characterised. Considering the level of control

over structure geometry that is possible, as well as differences between AM processes and

materials available, this is not a trivial task. But for a specific setup, it would be possible if only to

prove the concept.

Figure 9-2: Integrating a density map from a topological optimisation approach into the conformal structure

method

The pixel stepping of models as highlighted in the surface roughness testing would not exist if more

advanced forms of boundary recognition tools were employed at the voxel-to-slice conversion

stage. Vector graphics software such as Adobe Illustrator [184] provide tools to convert a bitmap

image into 2D splines and polylines for further manipulation. The technique behind these could be

investigated and implemented in the conformal structure method. However, testing did show that

the effect of pixel stepping was a minimal component of surface roughness. Any bitmap to spline

conversion process would need to be extremely quick, as it would be implemented for every slice

of the model. Additionally the process would need to be robust - always producing a repeatable

and closed-loop result to ensure manufacturability and continuity between slices.

Boundary

condition: Entire

left wall 'fixed'.

Region cannot

move in any

direction

Vertical load on

corner of region

Iteration of topology optimisation

with density variation

Portion of FG structure from top-op result

165

References

[1] N. Hopkinson, R. J. M. Hague, and P. M. Dickens, Eds., Rapid Manufacturing: An Industrial

Revolution for the Digital Age. Wiley, 2006.

[2] I. Gibson, D. W. Rosen, and B. Stucker, Additive Manufacturing Technologies: Rapid

Prototyping to Direct Digital Manufacturing. Springer, 2009.

[3] K.-H. Grote, E. K. Antonsson, and (Eds.), Springer Handbook of Mechanical Engineering, vol.

10. Springer, 2009.

[4] I. Gibson, “Rapid Prototyping: A Review,” in Virtual Modeling and Rapid Manufacturing, P. J.

Bártolo, Ed. Taylor & Francis/Balkema, 2005, pp. 7-18.

[5] J. J. Beaman, J. W. Barlow, D. L. Bourell, R. H. Crawford, H. L. Marcus, and K. P. McAlea, Solid

Freeform Fabrication: a New Direction in Manufacturing. Kluwer Academic Publishers, 1996.

[6] P. C. Smith and A. E. W. Rennie, “Using Additive Manufacturing Effectively: A CAD Tool to

Support Decision Making,” in Proceedings of the 36th International MATADOR Conference,

2010, pp. 381-384.

[7] S. Mansour and R. Hague, “Impact of rapid manufacturing on design for manufacture for

injection moulding,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal

of Engineering Manufacture, vol. 217, no. 4, pp. 453-461, Jan. 2003.

[8] R. A. Malloy, Plastic Part Design for Injection Moulding: An Introduction. Hanser Gardner

Publications, 1994.

[9] “Freedom Of Creation: Pioneers in 3D Printed Designs.” [Online]. Available:

http://www.freedomofcreation.com/. [Accessed: 17-Jan-2011].

[10] “Shapeways: Passionate About Creating.” [Online]. Available: http://www.shapeways.com/.

[Accessed: 17-Nov-2011].

[11] “Fraunhofer-Allianz Generative Fertigung: Bio-Medizin.” [Online]. Available:

http://www.generativ.fraunhofer.de/index.php?l1=branchen&l2=b. [Accessed: 20-Jan-

2011].

[12] D. Watts, “A Genetic Algorithm Based Topology Optimisation Approach for Exploiting Rapid

Manufacturing’s Design Freedom,” Loughborough University, 2008.

[13] K. Højbjerre, “Additive Manufacturing of Porous Metal Components,” in Proceedings of the

6th International Conference on Additive Manufacturing, 2011.

[14] “Festo Corporate - Bionic Handling Assistant.” [Online]. Available:

http://www.festo.com/cms/en_corp/9655.htm. [Accessed: 17-Jan-2011].

[15] G. N. Levy, R. Schindel, and J. P. Kruth, “Rapid Manufacturing and Rapid Tooling with Layer

Manufacturing (LM) Technologies, State of the Art and Future Perspectives,” CIRP Annals -

Manufaturing Technology, vol. 52, no. 2, pp. 589-609, 2003.

166

[16] D. J. Brackett, I. Ashcroft, and R. J. M. Hague, “Topology Optimisation for Additive

Manufacturing,” in In press.

[17] A. K. Kamrani and E. A. Nasr, Collaborative Engineering: Theory and Practice. Springer, 2008.

[18] R. Hague, S. Mansour, and N. Saleh, “Material and design considerations for rapid

manufacturing,” International Journal of Production Research, vol. 42, no. 22, pp. 4691-

4708, Nov. 2004.

[19] C. K. Chua, K. F. Leong, and C. S. Lim, Rapid Prototyping: Principles and Applications, 2nd ed.

World Scientific Publishing, 2004.

[20] A. Liberman and H. Gothait, “Photopolymer material jetting in rapid prototyping,” in Virtual

Modelling and Rapid Manufacturing, P. J. Bártolo, Ed. 2005, pp. 355-360.

[21] T. Grimm, User’s Guide to Rapid Prototyping. Society of Manufacturing Engineers, 2004.

[22] K. Mumtaz and N. Hopkinson, “Selective laser melting of Inconel 625 using pulse shaping,”

Rapid Prototyping Journal, vol. 16, no. 4, pp. 248-257, 2010.

[23] “Tailored Injury Prevention and Performance Improvement for Protective Sports Garments

(SCUTA).” [Online]. Available:

http://www.lboro.ac.uk/research/amrg/research/current/protective-sports-garments-

scuta.html. [Accessed: 02-May-2011].

[24] G. Bingham, “The Generation of 3D Data for Rapid Manufactured Textiles,” Loughborough

University, 2007.

[25] L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, 2nd ed. Cambridge

University Press, 1997.

[26] N. J. Mills, C. Fitzgerald, A. Golchrist, and R. Verdejo, “Polymer foams for personal

protection: cushions, shoes and helmets,” Composites Science and Technology, vol. 63, pp.

2389-400, 2003.

[27] J. Zhang and M. F. Ashby, “Mechanical selection of foams and honeycombs used for

packaging and energy absorption,” Journal of Materials Science, vol. 29, pp. 157-63, 1994.

[28] Erg-Aerospace, “Duocel foam for impact absorption applications,” 2007. [Online]. Available:

http://www.ergaerospace.com/foamproperties/applicationguide/energy.htm. [Accessed:

04-Feb-2008].

[29] C. Benning, Plastic foams: The Physics and Chemistry of Product Performance and Process

Technology. New York: Wiley-Interscience, 1969.

[30] G. Woods, Flexible Polyurethane Foams: Chemistry and Technology. Galliard (Printers) Ltd.,

1982.

[31] A. E. Simone and L. J. Gibson, “Aluminum Foams Produced by Liquid State Processes,” Acta

Materialia, vol. 46, no. 9, pp. 3109-23, 1998.

[32] A. T. Huber and L. J. Gibson, “Anisotropy of Foams,” Journal of Materials Science, vol. 23, pp.

3031-40, 1988.

167

[33] H. X. Zhu, N. J. Mills, and J. F. Knott, “Analysis of the high strain compression of open-cell

foams,” Journal of the Mechanics and Physics of Solids, vol. 45, pp. 1875-904, 1997.

[34] “Acoustic Properties of Metallic Foams.” [Online]. Available: http://www-

diva.eng.cam.ac.uk/energy/acoustics/metalfoam.html. [Accessed: 17-May-2011].

[35] B. Wang, Z. Peng, Y. Zhang, and Y. Zhang, “Compressive response and energy absorption of

foam EPDM,” Journal of Applied Polymer Science, vol. 105, pp. 3462-9, 2007.

[36] Z. Wang, H. Ma, L. Zhao, and G. Yang, “Studies on the dynamic compressive properties of

open-cell aluminum alloy foams,” Key Engineering Materials, vol. 306, pp. 905-10, 2006.

[37] R. Verdejo and N. J. Mills, Performance of EVA foam in running shoes. Blackwell, 2002.

[38] “EOS Literature.” [Online]. Available: http://www.eos.info/en/news-events/press-

material/literature.html. [Accessed: 22-Aug-2011].

[39] J. Rakow and A. Waas, “Size Effects in Metal Foam Cores for Sandwich Structures,” AIAA

Journal, vol. 42, no. 7, pp. 1331-1337, Jul. 2004.

[40] A. M. Kraynik, “The Structure of Random Foam,” Advanced Engineering Materials, vol. 8, no.

9, pp. 900-6, 2006.

[41] W. Thompson, “On the division of space with minimum partitional area,” Philosophical

Magazine, vol. 24, no. 151, p. 503, 1887.

[42] K. Li, X. L. Gao, and G. Subhash, “Effects of cell shape and strut cross-sectional area

variations on the elastic properties of three-dimensional open-cell foams,” Journal of the

Mechanics and Physics of Solids, vol. 54, pp. 783-806, 2006.

[43] L. Gong, S. Kyriadekes, and N. Triantafydllidis, “On the stability of Kelvin cell foams under

compressive loads,” Journal of the Mechanics and Physics of Solids, vol. 53, no. 771-94,

2005.

[44] N. J. Mills, “The high strain mechanical response of the wet Kelvin model for open-cell

foams,” International Journal of Solids and Structures, vol. 44, pp. 51-65, 2007.

[45] L. Gong, S. Kyriakides, and W. Jang, “Compressive response of open-cell foams. Part I:

Morphology and elastic properties,” International Journal of Solids and Structures, vol. 42,

no. 5-6, pp. 1355-1379, Mar. 2005.

[46] W. E. Warren and A. M. Kraynik, “Linear elastic behavior of a low-density Kelvin foam with

open cells,” Journal of Applied Mechanics, vol. 64, pp. 787-94, 1997.

[47] M. Janus-Michalska and R. B. Pecherski, “Macroscopic Properties of Open-Cell Foams Based

on Micromechanical Modelling,” Technische Mechanik, vol. 23, no. 2-4, pp. 234-44, 2003.

[48] J. P. J. Brennan-Craddock, G. A. Bingham, R. J. M. Hague, and R. D. Wildman, “Impact

Absorbent Rapid Manufactured Structures (IARMS),” in Proceedings of the Solid Freeform

Fabrication Symposium, 2008, pp. 266-277.

168

[49] S. Tsopanos et al., “The Influence of Processing Parameters on the Mechanical Properties of

Selectively Laser Melted Stainless Steel Microlattice Structures,” Journal of Manufacturing

Science and Engineering, vol. 132, no. 4, p. 041011, 2010.

[50] H. Wang, Y. Chen, and D. W. Rosen, “A Hybrid Geometric Modeling Method for Large Scale

Conformal Cellular Structures,” 25th Computers and Information in Engineering Conference,

Parts A and B, vol. 3, pp. 421-427, 2005.

[51] a Evans, “The topological design of multifunctional cellular metals,” Progress in Materials

Science, vol. 46, no. 3-4, pp. 309-327, 2001.

[52] D. Dutta, F. B. Prinz, D. Rosen, and L. Weiss, “Layered Manufacturing: Current Status and

Future Trends,” Journal of Computing and Information Science in Engineering, vol. 1, no. 1,

p. 60, 2001.

[53] L. Mullen, R. C. Stamp, W. K. Brooks, E. Jones, and C. J. Sutcliffe, “Selective Laser Melting: a

regular unit cell approach for the manufacture of porous, titanium, bone in-growth

constructs, suitable for orthopedic applications.,” Journal of biomedical materials research.

Part B, Applied biomaterials, vol. 89, no. 2, pp. 325-34, May. 2009.

[54] S. Yang, K.-F. Leong, Z. Du, and C.-K. Chua, “The design of scaffolds for use in tissue

engineering. Part II. Rapid prototyping techniques,” Tissue engineering, vol. 8, no. 1, pp. 1-

11, Feb. 2002.

[55] M. a Wettergreen, B. S. Bucklen, W. Sun, and M. a K. Liebschner, “Computer-aided tissue

engineering of a human vertebral body,” Annals of biomedical engineering, vol. 33, no. 10,

pp. 1333-43, Oct. 2005.

[56] C. Lam, “Scaffold development using 3D printing with a starch-based polymer,” Materials

Science and Engineering: C, vol. 20, no. 1-2, pp. 49-56, May. 2002.

[57] M. W. Naing, C. K. Chua, K. F. Leong, and Y. Wang, “Fabrication of customised scaffolds using

computer-aided design and rapid prototyping techniques,” Rapid Prototyping Journal, vol.

11, no. 4, pp. 249-259, 2005.

[58] H. N. G. Wadley, “Multifunctional periodic cellular metals,” Philosophical transactions. Series

A, Mathematical, physical, and engineering sciences, vol. 364, no. 1838, pp. 31-68, Jan.

2006.

[59] J. Lim and K. Kang, “Mechanical behavior of sandwich panels with tetrahedral and Kagome

truss cores fabricated from wires,” International Journal of Solids and Structures, vol. 43, no.

17, pp. 5228-5246, Aug. 2006.

[60] A. Pasko, T. Vilbrandt, O. Fryazinov, and V. Adzhiev, “Procedural Function-Based Spatial

Microstructures,” in Shape Modeling International Conference, 2010, no. c, pp. 47–56.

[61] R. Hague, S. Mansour, and N. Saleh, “Design opportunities with rapid manufacturing,”

Assembly Automation, vol. 23, no. 4, pp. 346-356, 2003.

[62] M. Burns, Automated Fabrication: improving productivity in manufacturing. Prentice Hall,

1993.

169

[63] C. C. Kai, G. G. K. Jacob, and T. Mei, Interface between CAD and rapid prototyping systems.

Part 1: a study of existing interfaces, vol. 13. 1997, pp. 566-570.

[64] H. Zhu, “B-Rep model simplification by automatic fillet/round suppressing for efficient

automatic feature recognition,” Computer-Aided Design, vol. 34, no. 2, pp. 109-123, Feb.

2002.

[65] C. Schroeder, W. C. Regli, A. Shokoufandeh, and W. Sun, “Computer-aided design of porous

artifacts,” Computer-aided design, vol. 37, no. 3, pp. 339–353, Mar. 2005.

[66] D. Baldwin, “Surface Reconstruction from Constructive Solid Geometry for Interactive

Visualization,” in Advances in Visual Computing: Third International Symposium, ISVC 2007,

Lake Tahoe, NV, USA, November 2007. Proceedings, Part 1, 2007, pp. 321-330.

[67] D. Marsh, Applied Geometry for Computer Graphics and CAD, 2nd ed. Springer, 2004.

[68] S. Ghali, Introduction to Geometric Computing. Springer, 2008.

[69] C. R. Alavala, Computer Graphics. PHI Learning Private Ltd., 2009.

[70] J. Vuoskoski, “Exchange of Product Data between CAD systems and a Physics Simulation

Program,” Tampere University of Technology, 1996.

[71] C. Chu, G. Graf, and D. W. Rosen, “Design for Additive Manufacturing of Cellular Structures,”

Computer-Aided Design and Applications, vol. 5, no. 5, pp. 686-696, 2008.

[72] M. K. Agoston, Computer Graphics and Geometric Modeling: Implementation and

Algorithms. Springer, 2005.

[73] E. A. Nasr and A. K. Kamrani, Computer-Based Design and Manufacturing: an Information-

Based Approach. Springer, 2007.

[74] D. E. LaCourse, Handbook of Solid Modeling. McGraw-Hill, 1995.

[75] M. S. Tawfik, “An efficient algorithm for CSG to b-rep conversion,” in Proceedings of the first

ACM symposium on Solid modeling foundations and CAD/CAM applications, 1991, pp. 99–

108.

[76] U. Roy and C. R. Liu, “Feature-Based Representational Scheme of a Solid Modeler for

Providing Dimensioning and Tolerancing Information,” Robotics & Computer-Integrated

Manufacturing, vol. 4, no. 3, pp. 335-345, Feb. 1988.

[77] A. J. P. Gomes and J. G. Teixeira, “Form feature modelling in a hybrid CSG/BRep scheme,”

Computers & Graphics, vol. 15, no. 2, pp. 217-229, 1991.

[78] D. Ushakov, Variational Direct Modeling: How to Keep Design Intent in History-Free CAD

(white paper). 2008.

[79] G. Chu, G. Brady, W. Miao, J. Halloran, S. Hollister, and D. Brei, “Ceramic SFF by direct and

indirect stereolithography,” in Materials Research Society Symposium Proceedings, 1999,

vol. 542, no. 7, pp. 119–124.

170

[80] C. M. Langton, M. a Whitehead, D. K. Langton, and G. Langley, “Development of a cancellous

bone structural model by stereolithography for ultrasound characterisation of the

calcaneus.,” Medical engineering & physics, vol. 19, no. 7, pp. 599-604, Oct. 1997.

[81] C. M. Cheah, C. K. Chua, K. F. Leong, and S. W. Chua, “Development of a Tissue Engineering

Scaffold Structure Library for Rapid Prototyping. Part 2: Parametric Library and Assembly

Program,” The International Journal of Advanced Manufacturing Technology, vol. 21, no. 4,

pp. 302-312, Feb. 2003.

[82] V. R. Gervasi and D. C. Stahl, “Design and fabrication of components with optimized lattice

microstructures,” in Proceedings of the Solid Freeform Fabrication Symposium, 2004, pp.

838–844.

[83] V. Chandru and S. Manohar, “Voxel-based modeling for layered manufacturing,” IEEE

Computer Graphics and, vol. 15, no. 6, pp. 42-47, 1995.

[84] M. Mäntylä, An Introduction to Solid Modeling. Computer Science Press, 1988.

[85] H. Wang and D. W. Rosen, “Parametric Modeling Method for Truss Structures,” in

Proceedings of DETC’02 2002 ASME Design Engineering Technical Conferences and

Computers and Information in Engineering Conference, 2002, pp. 759-767.

[86] M. Bhandarkar, “STEP-based feature extraction from STEP geometry for Agile

Manufacturing,” Computers in Industry, vol. 41, no. 1, pp. 3-24, Jan. 2000.

[87] C. Elanchezhian, T. S. Selwyn, and G. S. Sundar, Computer Aided Manufacturing, 2nd ed.

Laxmi Publications (P) Ltd., 2007.

[88] Y. Chen, “3D Texture Mapping for Rapid Manufacturing,” Computer-Aided Design &

Applications, vol. 4, no. 6, pp. 761–771, 2007.

[89] H. T. Yau, C. C. Kuo, and C. H. Yeh, “Extension of surface reconstruction algorithm to the

global stitching and repairing of STL models,” Computer-Aided Design, vol. 35, no. 5, pp.

477–486, Apr. 2003.

[90] W. Zhu, “A Visibility Sphere Marching algorithm of constructing polyhedral models for haptic

sculpting and product prototyping,” Robotics and Computer-Integrated Manufacturing, vol.

21, no. 1, pp. 19-36, Feb. 2005.

[91] D.-xing Wang, D.-ming Guo, Z.-yuan Jia, and H.-wen Leng, “Slicing of CAD models in color STL

format,” Computers in Industry, vol. 57, pp. 3-10, Oct. 2005.

[92] “Materialise: replace solid parts with metal lattice structures.” [Online]. Available:

http://www.materialise.com/materialise/view/en/1979905-Metal+Structures.html.

[Accessed: 17-Jan-2011].

[93] “Marcam Engineering -Software solutions for Rapid Technologies - AutoFab.” [Online].

Available: http://www.marcam.de/cms/autofab.82.en.html. [Accessed: 17-Jan-2011].

[94] Y. Chen, “A Mesh-based Geometric Modeling Method for General Structures,” in 2006 ASME

Design Engineering Technical Conferences and Computers and Information in Engineering

Conference, Philadelphia, PA, 2006.

171

[95] V. R. Gervasi, “Net Shape Composites using SLA TetraCast Patterns,” in Solid Freeform

Fabrication Symposium, 1997, pp. 149-157.

[96] “Rapid Prototyping Research - Milwaukee School of Engineering.” [Online]. Available:

http://www.msoe.edu/academics/research_centers/rpc/research.shtml. [Accessed: 18-Jan-

2011].

[97] H. Chow, S. Tan, and W. Sze, “Layered Modeling of Porous Structures with Voronoi

Diagrams,” Computer-Aided Design & Applications, vol. 4, no. 1-4, pp. 321–330, 2007.

[98] S.-H. Huang, L.-C. Zhang, and M. Han, “An Effective Error-Tolerance Slicing Algorithm for STL

Files,” The International Journal of Advanced Manufacturing Technology, vol. 20, no. 5, pp.

363-367, Sep. 2002.

[99] N. Alves and P. Bartolo, “Integrated computational tools for virtual and physical automatic

construction,” Automation in Construction, vol. 15, no. 3, pp. 257-271, May. 2006.

[100] V. Kumar, “An assessment of data formats for layered manufacturing,” Advances in

Engineering Software, vol. 28, no. 3, pp. 151-164, Apr. 1997.

[101] C. C. Kai, G. G. K. Jacob, and T. Mei, “Interface between CAD and Rapid Prototyping Systems.

Part 2: LMI - An Improved Interface,” The International Journal of Advanced Manufacturing

Technology, vol. 13, no. 8, pp. 571–576, 1997.

[102] X. Wu, “Voxel-based model and its application in advanced manufacturing,” Proceedings of

SPIE, vol. 5444, pp. 383-388, 2004.

[103] “Common Layer Interface (CLI): Version 2.0 Specification.” .

[104] M. Vatani, A. Rahimi, F. Brazandeh, and A. Sanati Nezhad, “An enhanced slicing algorithm

using nearest distance analysis for layer manufacturing,” Proceedings of World Academy

Science, Engineering and Technology, vol. 15, pp. 721-726, 2009.

[105] T. Plachetka, “POV Ray: Persistence of Vision Parallel Raytracer,” in Proc. of Spring Conf. on

Computer Graphics, Budmerice, Slovakia, 1998, pp. 123–129.

[106] G. M. Ovidiu, T.-T. Mirela, P. Radu, and V. Dinu, “Influence of the Lattice Structures on the

Mechanical Behavior of Hip Endoprostheses,” 2010 Advanced Technologies for Enhancing

Quality of Life, pp. 6-11, Jul. 2010.

[107] “netfabb: Selective Space Structures.” [Online]. Available:

http://www.netfabb.com/structure.php. [Accessed: 17-Jan-2011].

[108] W. Brooks, C. Sutcliffe, W. Cantwell, P. Fox, J. Todd, and R. Mines, “Rapid design and

manufacture of ultralight cellular materials,” in Proceedings of the Solid Freeform

Fabrication Symposium, 2005, pp. 231-241.

[109] L. Mullen, R. C. Stamp, P. Fox, E. Jones, C. Ngo, and C. J. Sutcliffe, “Selective laser melting: a

unit cell approach for the manufacture of porous, titanium, bone in-growth constructs,

suitable for orthopedic applications. II. Randomized structures.,” Journal of biomedical

materials research. Part B, Applied biomaterials, vol. 92, no. 1, pp. 178-88, Jan. 2010.

172

[110] D. W. Hutmacher, “Scaffolds in tissue engineering bone and cartilage,” Biomaterials, vol. 21,

no. 24, pp. 2529-43, Dec. 2000.

[111] M. Too et al., “Investigation of 3D non-random porous structures by fused deposition

modelling,” The International Journal of Advanced Manufacturing Technology, vol. 19, no. 3,

pp. 217–223, 2002.

[112] K. C. Ang, K. F. Leong, C. K. Chua, and M. Chandrasekaran, “Investigation of the mechanical

properties and porosity relationships in fused deposition modelling-fabricated porous

structures,” Rapid Prototyping Journal, vol. 12, no. 2, pp. 100-105, 2006.

[113] R. Stamp, P. Fox, W. O’Neill, E. Jones, and C. Sutcliffe, “The development of a scanning

strategy for the manufacture of porous biomaterials by selective laser melting.,” Journal of

materials science. Materials in medicine, vol. 20, no. 9, pp. 1839-48, Sep. 2009.

[114] G. Jacob, “Development of a new rapid prototyping interface,” Computers in Industry, vol.

39, no. 1, pp. 61-70, Jun. 1999.

[115] I. Stroud and P. Xirouchakis, “STL and Extensions,” Advances in Engineering Software, vol.

31, no. 2, pp. 83–95, Feb. 2000.

[116] J. D. Hiller and H. Lipson, “STL 2.0: A Proposal for a Universal Multi-Material Additive

Manufacturing File Format,” in Solid Freeform Fabrication Symposium (SFF’09), 2009, no. 1,

pp. 266-278.

[117] W. Chiu and S. Tan, “Multiple material objects: from CAD representation to data format for

rapid prototyping,” Computer-aided design, vol. 32, no. 12, pp. 707–717, Oct. 2000.

[118] S. J. Rock and M. J. Wozny, “A flexible file format for solid freeform fabrication,” in Solid

Freeform Fabrication Symposium Proceedings, University of Texas, Austin, TX, 1991, pp. 1–

12.

[119] “Standard Specification for Additive Manufacturing File Format (AMF) Draft 0.45,” Structure.

.

[120] S. Gibson, “Beyond Volume Rendering: Visualization, Haptic Exploration, and Physical

Modeling of Voxel-based Objects,” Proceedings of Eurographics Workshop on Visualization

in Scientific Computing. pp. 10–24, 1995.

[121] A. E. Kaufman, “Volume visualization of the ascending thoracic aorta using isotropic MDCT

data: protocol optimization.,” ACM Computing Surveys (CSUR), vol. 28, no. 1, pp. 165–167,

Nov. 1996.

[122] H. Jones, Computer Graphics through Key Mathematics. Springer, 2001.

[123] T. R. Jackson, W. Cho, N. M. Patrikalakis, and E. M. Sachs, “Memory Analysis of Solid Model

Representations for Heterogeneous Objects,” Journal of Computing and Information Science

in Engineering, vol. 2, no. 1, p. 1, 2002.

[124] M. Chen, A. Kaufman, and R. Yagel, Volume Graphics. Springer, 2000.

173

[125] F. Guo, L. Wang, and D. Dong, “Human Head 3D Dimensions Measurement for the Design of

Helmets,” in Digital Human Modeling: Second International Conference, ICDHM 2009, 2009,

pp. 624-631.

[126] S. J. Hollister, R. A. Levy, T. M. Chu, J. W. Halloran, and S. E. Feinberg, “An image-based

approach for designing and manufacturing craniofacial scaffolds,” International Journal of

Oral & Maxillofacial Surgery, vol. 29, no. 1, pp. 67–71, 2000.

[127] E. Verges, D. Ayala, S. Grau, and D. Tost, “3D Reconstruction and Quantification of Porous

Structures,” Computers & Graphics, vol. 32, no. 4, pp. 438-444, Aug. 2008.

[128] S. Vanis, O. Rheinbach, a Klawonn, O. Prymak, and M. Epple, “Numerical computation of the

porosity of bone substitution materials from synchrotron micro computer tomographic

data,” Materialwissenschaft und Werkstofftechnik, vol. 37, no. 6, pp. 469-473, Jun. 2006.

[129] W. Sun, B. Starly, J. Nam, and A. Darling, “Bio-CAD modeling and its applications in

computer-aided tissue engineering,” Computer-Aided Design, vol. 37, no. 11, pp. 1097-1114,

Sep. 2005.

[130] J. D. Foley, V. Dam, Feiner, and Hughes, Computer Graphics: Principles and Practice, 2nd ed.

Addison-Wesley, 1997.

[131] T. A. Galyean, “Sculpting: An interactive volumetric modeling technique,” Computer

Graphics, vol. 25, no. 4, pp. 267-274, 1991.

[132] T. Vilbrandt, E. Malone, H. Lipson, and A. Pasko, “Universal Desktop Fabrication,”

Heterogeneous objects modelling and applications: collection of papers on foundations and

practice, p. 259, 2008.

[133] I. Zied, CAD/CAM Theory and Practice. McGraw-Hill, 1991.

[134] S. W. Wang and A. E. Kaufman, “Volume-Sampled 3D Modeling,” IEEE Computer Graphics

and Applications, vol. 14, no. 5, pp. 26-32, 1994.

[135] “3D-Coat - Voxel sculpting, Retopology, UV-mapping, Texture painting.” [Online]. Available:

http://www.3d-coat.com/. [Accessed: 22-Jan-2011].

[136] “Welcome to Voxelogic.” [Online]. Available: http://www.voxelogic.com/. [Accessed: 22-Jan-

2011].

[137] A. Pasko, V. Adzhiev, A. Sourin, and V. Savchenko, “Function representation in geometric

modeling: concepts, implementation and applications,” The Visual Computer, vol. 11, no. 8,

pp. 429-446, Aug. 1995.

[138] Q. Liu and A. Sourin, “Function-based representation of complex geometry and

appearance,” in Proceedings of the tenth international conference on 3D Web technology,

2005, vol. 1, no. 212, pp. 123–134.

[139] O. Fryazinov and A. Pasko, “Interactive ray shading of FRep objects,” in WSCG 2008

Communications Papers Proceedings, 2008, pp. 145-152.

[140] “HyperFun.” [Online]. Available: http://www.hyperfun.org/wiki/doku.php?id=main.

[Accessed: 18-Jan-2011].

174

[141] A. Pasko and V. Adzhiev, “Constructive function-based modeling in multilevel education,”

Communications of the ACM, vol. 52, no. 9, pp. 118–122, 2009.

[142] G. Y. Gardner, “Simulation of natural scenes using textured quadric surfaces,” ACM

SIGGRAPH Computer Graphics, vol. 18, no. 3, pp. 11–20, 1984.

[143] J. P. Lewis, “Algorithms for solid noise synthesis,” ACM SIGGRAPH Computer Graphics, vol.

23, no. 3, pp. 263-270, Jul. 1989.

[144] J. Bloomenthal, “Polygonization of implicit surfaces,” Computer Aided Geometric Design, vol.

5, no. 4, pp. 341-355, Nov. 1988.

[145] A. S. Glassner, Ed., An Introduction to Ray Tracing. Morgan Kaufmann, 2002.

[146] M. Dickinson and R. Nay, Modulus Mapping of a Metal Oxide Film. .

[147] D. W. Rosen, “Computer-aided design for additive manufacturing of cellular structures,”

Computer-Aided Design & Applications, vol. 4, no. 5, pp. 585–594, 2007.

[148] G. E. Farin, Curves and surfaces for CAGD: a practical guide, 5th ed. Academic Press, 2002.

[149] J. Fish and T. Belytschko, A First Course in Finite Elements. John Wiley & Sons, 2007.

[150] C. T. F. Ross, Finite Element Methods in Structural Mechanics. Ellis Horwood Ltd, 1985.

[151] V. Adams, A Designer’s Guide to Simulation with Finite Element. NAFEMS, 2008.

[152] D. M. Yan, W. Wang, B. Lévy, and Y. Liu, “Efficient Computation of 3D Clipped Voronoi

Diagram,” Advances in Geometric Modeling and Processing, pp. 269–282, 2010.

[153] F. Nielsen and R. Nock, “Hyperbolic Voronoi Diagrams Made Easy,” 2010 International

Conference on Computational Science and Its Applications, pp. 74-80, 2010.

[154] F. Aurenhammer, “Voronoi diagrams - a survey of a fundamental geometric data structure,”

ACM Computing Surveys (CSUR), vol. 23, no. 3, pp. 345–405, Sep. 1991.

[155] L. P. Chew and R. L. (Scot) Dyrsdale, “Voronoi diagrams based on convex distance functions,”

Proceedings of the first annual symposium on Computational geometry - SCG ’85, vol. 75,

pp. 235-244, 1985.

[156] O. Watanabe, H. M. Zbib, and E. Takenouchi, “Crystal plasticity: micro-shear banding in

polycrystals using Voronoi tessellation,” International Journal of Plasticity, vol. 14, no. 8, pp.

771-788, 1998.

[157] F. Fritzen, T. Böhlke, and E. Schnack, “Periodic three-dimensional mesh generation for

crystalline aggregates based on Voronoi tessellations,” Computational Mechanics, vol. 43,

no. 5, pp. 701-713, Oct. 2008.

[158] F. Dupuis, J.-F. Sadoc, and J.-P. Mornon, “Protein secondary structure assignment through

Voronoï tessellation.,” Proteins, vol. 55, no. 3, pp. 519-28, May. 2004.

175

[159] W. Brostow, M. Chybicki, R. Laskowski, and J. Rybicki, “Voronoi polyhedra and Delaunay

simplexes in the structural analysis of molecular-dynamics-simulated materials,” Physical

Review B, vol. 57, no. 21, pp. 13448-13458, Jun. 1998.

[160] C. Rycroft, G. Grest, J. Landry, and M. Bazant, “Analysis of granular flow in a pebble-bed

nuclear reactor,” Physical Review E, vol. 74, no. 2, pp. 1-16, Aug. 2006.

[161] S. Mulders, “Archive of Voronoi for Maya.” [Online]. Available:

http://www.digisan.nl/dse/?cat=11. [Accessed: 17-Jan-2011].

[162] “MATLAB - The Language of Technical Computing.” [Online]. Available:

http://www.mathworks.com/products/matlab/. [Accessed: 23-Jan-2011].

[163] H. J. Weber and G. B. Arfken, Essential Mathematical Methods for Physicists. Academic

Press, 2003.

[164] R. Goldman, Pyramid Algorithms: A Dynamic Programming Approach to Curves and Surfaces

for Geometric Modeling. Morgan Kaufmann, 2003.

[165] L. O’Gorman, M. J. Sammon, and M. Seul, Practical Algorithms for Image Analysis, 2nd ed.

Cambridge University Press, 2008.

[166] “Freesteel.” [Online]. Available: http://www.freesteel.co.uk/wpblog/frontpage/. [Accessed:

23-Jan-2011].

[167] I. Gibson and D. Shi, “Material properties and fabrication parameters in selective laser

sintering process,” Rapid Prototyping Journal, vol. 3, no. 4, pp. 129-136, 1997.

[168] G. M. Fadel and C. Kirschman, “Accuracy issues in CAD to RP translations,” Rapid Prototyping

Journal, vol. 2, no. 2, pp. 4-17, 1996.

[169] J. M. Coupland and J. Lobera, “Measurement of Steep Surfaces Using White Light

Interferometry,” Strain, vol. 46, no. 1, pp. 69-78, Feb. 2010.

[170] “EOS Plastic Laser Sintering Systems.” [Online]. Available:

http://www.eos.info/en/products/systems-equipment/plastic-laser-sintering-systems.html.

[Accessed: 17-Jan-2011].

[171] R. N. Bracewell, “The Fourier Transform,” Scientific American, pp. 86-95.

[172] D. Sundararajan, The Discrete Fourier Transform: Theory, Algorithms and Applications. World

Scientific Publishing, 2001.

[173] S. Gade, N. Thrane, H. Konstantin-Hansen, and J. Wismer, “Time Windows.” Brüel & Kjær.

[174] R. W. Ramirez, The FFT Fundamentals and Concepts. Prentice Hall, 1985.

[175] EOS, “Material data sheet PA 2200.” .

[176] J. Ramanathan, Methods of Applied Fourier Analysis. Birkhäuser Boston, 1998.

[177] A. F. Harvey and M. Cerna, “The Fundamentals of FFT-Based Signal Analysis and

Measurement in LabVIEW and LabWindows.” National Instruments, 1993.

176

[178] K. C. Tan, H. Lim, and B. Tan, “Windowing techniques for image restoration,” CVGIP:

Graphical Models and Image Processing, vol. 53, no. 5, pp. 491–500, 1991.

[179] Y. Ge, Q. Cheng, and S. Zhang, “Reduction of edge effects in spatial information extraction

from regional geochemical data: a case study based on multifractal filtering technique,”

Computers & Geosciences, vol. 31, no. 5, pp. 545-554, Jun. 2005.

[180] J. Arrillaga and N. R. Watson, Power system harmonics, 2nd ed. John Wiley & Sons, 2003.

[181] H. Hauser, E. Groller, and T. Theussl, “Mastering Windows: Improving Reconstruction,” 2000

IEEE Symposium on Volume Visualization (VV 2000), pp. 101-108, Oct. 2000.

[182] “Understanding FFT Windows.” LDS Dactron, 2003.

[183] R. Albert and T. Breedove, C++: An Active Learning Approach. Jones and Bartlett Publishers,

2009.

[184] “Adobe.” [Online]. Available: http://www.adobe.com/. [Accessed: 22-Jan-2011].

