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Ab,traci 

ABSTRACT 

The aim of this research was to report the physiological demands of America's Cup yacht 

racing. The nature of racing was quantified, specifically the activity pattern and exercise 

intensity, and the anthropometric, and fitness characteristics of the athletes documented. 

This included physiological assessment (aerobic power and anaerobic power) of the 

athletes during' grinding' (standing arm-cranking) the primary activity of America's Cup 

sailing. The influence of crank velocity, crank length, crank-axle height and the role of the 

lower limbs were evaluated in order to determine the conditions for optimal power 

production during grinding. The acute thermoregulatory responses to racing were assessed, 

and the chronic responses to training in terms of upper respiratory infection (URI), 

salivary-immunoglobulin A (s-IgA) and subjective fatigue documented. The exercise 

intensity of racing was high, but intermittent, and influenced by how evenly matched the 

boats were and the role of the athlete. America's Cup sailors had the highest upper body 

aerobic power 4.7 Lmin·1 and anaerobic power 1420 W values that have been reported 

during arm-cranking. The parabolic power-crank velocity relationship had an optima at 

125 rpm. The optimal crank length for power production was 12.3% of arm-span (241 mm 

for a cohort of grinders and similar to the 250 mm cranks used in the America's Cup). The 

optimal crank-axle height was between 50 and 60% of stature (950-1150 mm in a cohort of 

grinders and substantially greater than the 850 mm height used on America's Cup yachts). 

Dynamic movement of the lower limbs reduced the physiological strain of grinding, 

indicating that involvement of the lower limbs was beneficial to grinding performance. 

Bowmen were at risk of hyperthermia (peak Teoro 39.2°C) and dehydration (sweat loss, 

3.7% body mass), which may impair performance and could lead to heat illness. 

Downwind sailing resulted in greater cardiovascular and thermal strain than upwind 

sailing. The relationship between the group relative s-IgA concentration and the incidence 

of URI indicated that for the cohort relative s-IgA determined a substantial proportion of 

the variation in URI incidence. In summary, it is evident that the physiological demands of 

America's Cup yacht racing are high and varied, and the elite athletes studied are adapted 

and selected for the unique demands of this sport. 

Keywords: Sailing; Thermoregulation; Immunology; Arm-cranking; Performance; 

Physiology; Anthropometry 
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Chapter I: inu'oduc1ion 

1.1 Background to the Study 

The America's Cup is one of the most prized and sort after trophies in sport. It boasts being 

the oldest trophy in modem day sport, predating the modem Olympic Games by 45 years. 

The America's Cup was first raced around the Isle of Wig ht, off the English south coast, in 

1851 and was won by the American yacht, 'America', hence the origin of the name. To 

date there have been 32 Challenges for the America's Cup (Appendix 1) with the current 

winner, 'Alinghi', from Switzerland. The event is held approximately every three to four 

years between challenging yacht clubs, representing their respective countries (called 

'Challengers') and the winner of the previous America's Cup (known as the 'Defender') 

who also hosts the event (Whiting 2007). The America's Cup is unique in that the format is 

still largely based on the original' Deed of Gift', where the Defender is automatically in the 

final 'Match'. In other words, all the Challengers compete against each other in a 

Challenger series, where the winner then advances to race against the Defender in the final 

Match. Hence it is extremely difficult to win the coveted trophy. 

Regarded as the pinnacle of sailing, the America's Cup has similarities to Formula 1 motor 

racing, with teams at the forefront of advancing yachting technology and requiring 

substantial financial support (budgets of up to US$ 300 million per campaign). The 

primary investment in resources and time has been in the research and development of the 

sailing technology and hardware. Some teams have as many as 40 professional designers 

developing the four main components ofthe racing yachts, namely, the hull, sails, mast and 

appendices (rudder, fin and bulb). The design process includes innovative science and 

technology, such as Finite Element Analysis (FEA), Computational Fluid Dynamics 

(CFD), computer modelling, wind tunnel and tank testing with scaled models as well as 

hundreds of hours of full-scale testing. The International America's Cup Class (IACC) 

version 5 rules, allow teams to build two new yachts for each event. The 24,000 kg, 26 m 

yachts are built from high performance materials, such as carbon fibre, kevlar, titanium, 

titanium alloys, nitronic steel and poly-phenylene-2,6-benzobisoxazole (PBO) fibre 

rigging. They have a fully adjustable 32 m carbon fibre mast, and a combined sail area of 

over 750 m2 (Figure 1.1). 
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Chapter 1: inlrodul;tioll 

Figure 1.1 America's Cup (IACC version 5) racing yachts, showing the bowmen dropping the 
genoa (upwind foresail) after rounding the windward mark (courtesy of Luna Rossa © Luna 
Rossa Trademark Sari) 

The America's Cup is one of the largest sporting events in the World, over 2-million 

spectators attended the 320d America's Cup in Valencia, Spain, and more than 100 million 

people from 150 countries watched the event on television (Sheahan 2007). In addition, 

US$ 2.6 billion was spent on the infrastructure to host the 320d America's Cup in Valencia 

with an estimated economic benefit of ~ 40,000 new jobs as a result of the event (CNN 

2007). Considering the profile of the event, very little scientific research has examined the 

physical role of the crew and optimising the performance of these professional sailors. 

Preparation for the America's Cup usually entails 3 to 4 years of crew and yacht 

development, during which the professional athletes sail and train together on a full-time 

basis. The high estimated total daily energy expenditure for America's Cup sailors, in 

particular grinders (~ 5800 kcal) indicates a high 'physical work load (Bernardi et al. 

2007a). During the 31 st America's Cup, Challenging teams competed in up to 50 races over 
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Chaplet 1: ll1lrodllct;o" 

22 weeks, with two races per day during the earlier rounds of the competition (Neville et 

a!. 2006). America's Cup racing is a 'match-race' format (i.e. two boats at a time) around a 

two lap upwind and downwind course which typically lasts between 60 and 120 min. The 

racing crew on-board an America's Cup yacht comprises 17 skilled athletes. The physical 

requirements of each position are determined by the primary activities specific to the role 

(Blondelle and Simonnet 1984; Bertrand and Robinson 1985; Bessinger 2002). The 

athletes can be divided into five groups of similar physical and technical requirements, 

namely; grinders, bowmen, trimmers, utilities and afterguard (Allen 1999; Neville et a!. 

2006; Bernardi et a!. 2007b). 

In America's Cup sailing all manoeuvres occur manually without the assistance of stored 

energy, hence the physiological demands placed on the crew have been suggested to be 

high (Bauer 1986), but have not been carefully researched. An individual's exercise 

intensity during racing is thought to depend largely on the weather conditions, the race 

tactics, the role of the athlete within the crew (Allen and De Jong 2006; Neville et a!. 

2006), and perhaps also on how evenly the competing boats are matched (Whiting 2007). 

There is evidence that some positions, for example bowmen are able to sustain a mean 

heart rate of> 70% of their maximum for the duration of a 2.5 h race, and grinders achieve 

a V02 as high as 90% of V02peak during certain manoeuvres (Bernardi et al. 2007b). 

However, there has been no systematic investigation of exercise intensity during America's 

Cup sailing. 

There are some indications that body composition may be specific to the role of the athlete 

(Lambert and Lelguen 2001; Pearson et a!. 2005), however, little is known of the physical 

characteristics (anthropometry and fitness) of the athletes, particularly with respect to the 

different positions. The America's Cup protocol limits the total weight of the crew hence 

maximising performance for a given body mass is important with clear implications for 

body composition. 

Grinding (standing arm-cranking) is the primary physical activity during America's Cup 

sailing (Figure 1.2). Grinding drives the winches, which in turn, control the sails and mast 

of the yacht (Whiting 2007) and is therefore a key activity in all manoeuvres. Grinding 

involves short bursts of high intensity exercise in order to complete each manoeuvre, 

interspersed with longer rest intervals, but no quantitative description of the activity pattern 

of grinding has been completed. America's Cup (lACe version 5) yachts typically have 
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four ann-crank stations (grinding pedestals), each manned by one or two athletes 

(grinders), depending on the prioritisation of grinding and other tasks. As the difference 

between competing yachts is often most apparent during manoeuvres, grinding is 

considered an important component to overall race perfonnance. Therefore it appears 

useful to document the athlete's maximal capability for grinding and consider the 

optimisation of this activity. 

To date the majority of ann-cranking research has been perfonned seated, with restricted 

lower limb involvement. The physiological responses to standing ann-cranking have not 

been widely documented, with only a few reports on aerobic power (Vokac et al. 1975; 

Bernardi et al. 2007b) and peak power (Vandewalle et a!. 1989; Hubner-Wozniak et a!. 

2004; Bouhlel et a!. 2007; Pearson et al. 2007) present in the literature. The only reports of 

standing ann-cranking in America's Cup sailors appear to suggest reasonably high V02peak 

(47 ml'kg·l.min·I, n=J6, (Bernardi et a!. 2007b» and high peak anaerobic power values 

(929 ± 100 W, n=6, (Pearson et a!. 2007». 

Figure 1.2 America's Cup sailors shown grinding at a grinding pedestal (courtesy of luna 
Rossa © luna Rossa Trademark Sari) 
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The optimisation of perfonnance during standing ann-cranking has received very little 

scientific attention. The peak velocity of grinding during America's Cup racing has been 

reported to be between 120 and 150 revolutions per minute (Bernardi et al. 2007), but the 

optimum velocity for power production and the nature of the torque-velocity and power­

velocity relationships during standing arm-cranking are largely unknown. This may have 

an important bearing on the selection of gear ratios and the optimisation of power 

production during America's Cup sailing. In cycling, the manipulation of joint angles, 

through changes in the structure of bicycle components, has been shown to influence 

perfonnance (Hamley and Thomas 1967; Too and Landwer 2000; Martin and Spirduso 

2001). For example, changes in seat height and cycle crank lengths directly affect hip and 

knee joint angles, the range of motion and angular velocity of the joints, and thus cycling 

perfonnance (Too and Landwer 2000). It seems highly likely therefore that changes to the 

configuration of ann-crank ergometry, specifically crank length and crank-axle height, 

could also affect perfonnance. Given the angle-torque and torque-velocity relationships of 

human muscle function, there is a clear rationale for how interventions that effect upper 

extremity joint range of motion and angular velocities may influence arm-cranking 

perfonnance. It appears that the crank length and crank-axle height of the grinding 

pedestals on America's Cup yachts have been largely detennined by other aspects of yacht 

design, such as the height of the boom and aerodynamics, without any understanding or 

consideration of the effects on grinding perfonnance. 

Although grinding is regarded as predominantly upper-body exercise, some athletes grind 

with distinct flexion and extension of the knee joint, and rotation of the pelvis in the 

horizontal plane, whilst for others the lower body is more rigid. It has been proposed that 

the lower limbs and trunk musculature contribute substantially to grinding perfonnance 

(Bernardi et al. 2007b; Pearson et al. 2007), but this idea is equivocal. One report 

suggested that the trunk and lower limbs should "remain square", and "rotation of the hips 

should be avoided" during grinding (ChisneU 2008). During other predominantly upper 

body sports activities (e.g. cross-country skiing (Holmberg et al. 2006), tennis serving 

(Girard et al. 2007)) restriction of lower limb mobility impaired perfonnance and elicited 

greater physiological stress. This evidence might indicate that involvement of the lower 

limbs is beneficial to grinding perfonnance, although the optimum grinding technique has 

not been researched. 
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America's Cup yacht racing predominantly takes place during the summer months when 

athletes may be exposed to hot and humid environmental conditions for prolonged periods. 

The high energy expenditures of sailors, combined with prolonged exposure to hot 

environmental conditions will result in elevated body temperatures and substantial sweat 

losses during racing. There are reports of heat illness during sailing (Miller 1987; Allen 

2003; Allen and De Jong 2006; Neville et al. 2006) and evidence that dehydration is a 

common problem for elite Dinghy sailors (Mackie and Legg 1999). One report of 

recreational Dinghy sailors found a modest rate of sweat loss (- 0.4 L'h- I
) over a 5 h 

sailing period (Slater and Tan 2007). In addition to water, important electrolytes are lost in 

sweat, most notably sodium, chloride, potassium and magnesium (Maughan 1991), that 

could compromise endogenous electrolyte concentrations during competition. During 

America's Cup sailing large differences (- 4-fold) in the apparent wind speed (AWS), and 

thus expected evaporative cooling, exist between upwind and downwind sailing. Upwind 

sailing also typically results in sailing against the prevailing waves with increased exposure 

to sea spray. Thus the environmental conditions can vary widely during a race. 

Furthermore, athletes typically wear waterproof clothing to prevent saturation, and this 

may impair thermoregulation in hot conditions. Hyperthermia and dehydration are well 

known to negatively influence cognitive and physical performance (Howe and Boden 

2007), but their occurrence in America's Cup sailing has not been investigated. 

Upper respiratory infections (URI) are the most common medical complaint of athletes, 

including America's Cup sailors (Robinson and Milne 2002; Neville et al. 2006), and can 

negatively affect training and performance (Pyne and Gleeson 1998). During a two year 

training period prior to the 31 SI America's Cup, 40% of all illnesses were URI and 

accounted for> 60% of days absent from sailing due to illness (Neville et al. 2006). The 

risk of illness seems to increase during periods of heavy training and competition (Peters 

and Bateman 1983; Novas et al. 2003; Libicz et al. 2006). This increased susceptibility to 

URI is thought to be largely due to a depression of immune system function as a result of 

multifactorial stress including physiological, psychological, environmental and behavioral 

(Dawes 1972; Tomasi et al. 1982; Cohen et al. 1999; Calder and Jackson 2000). 

The majority of all infections (-95%) are initiated at the mucosal surfaces (Bosch et al. 

2002), which are protected by complex immune surveillance through the secretion of 
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antimicrobial proteins. The most abundant and responsive salivary antimicrobial protein is 

salivary immunoglobulin A (s-IgA) (Lamm 1997; Woof and Kerr 2006), which plays a 

crucial role in immune defence (Mazanec et al. 1993). Elite athletes are frequently exposed 

to exercise stress, and the effects of both acute and chronic exercise on s-IgA have been 

well documented (Tomasi et al. 1982; Mackinnon et al. 1993b; Gleeson et al. 2000b; 

Novas et al. 2003; Libicz et al. 2006). Much of the immunology research in athletes has 

concentrated on post-exercise salivary immunity when athletes seem to experience a 

transitory decrease in s-IgA for up to 24 h post strenuous training or competition. It is 

during this "open window" period of immune depression (Pedersen et al. 1994) when 

athletes are thought to be at greatest risk of URI. However, there are few longitudinal 

studies that have examined the relationship between immune depression and the incidence 

of URI (Mackinnon et al. 1993a; Gleeson et al. 1999b; Novas et al. 2003; Fahlman and 

Engels 2005) and these typically have had a low number of subjects· or low sample 

collection frequency. 

1.2 Aims and Organisation of the Study 

The aim of this research was to report the physiological demands of America's Cup yacht 

racing. The progression of six experimental studies is shown in Figure 1.3. The first 

experiment (Chapter 3) analysed the nature of America's Cup racing; quantified the 

activity pattern of grinding and the exercise intensity of the crew during racing; as well as 

documenting the anthropometric and fitness characteristics of the athletes. The second 

study (Chapter 4) assessed the physiological characteristics of elite America's Cup sailors 

during grinding (standing arm-cranking). In particular, key indices of aerobic endurance 

performance (aerobic power and the onset of blood lactate accumulation) and the torque­

crank velocity and power-crank velocity relationships during maximal grinding, and thus 

the peak power and optimum crank velocity, were determined. The third investigation 

(Chapter 5), attempted to identify the optimal crank lengths and crank-axle heights for 

maximum power production during standing arm-cranking. In order to quantify the 

importance oflower limb movement to grinding the fourth study (Chapter 6) compared the 
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physiological stress of grinding with free and restricted knee joint motion. The fifth 

experiment (Chapter 7) assessed the acute thermoregulatory responses (core and skin 

temperatures, fluid and electrolyte losses) to racing. The sixth and final study (Chapter 8) 

examined the chr.onic responses to training by documenting the interrelationships between 

UR!, s-IgA and fatigue during a prolonged period of preparation and training. 

Race Analysis & Physical 

Characteristics 

Physiological 
Characteristics of the 

Athletes 

Grinding; 

Arm-crank Configurations 

Grinding; 

Lower Limb Contribution 

Thermoregulatory 
Demands of Racing 

Training Demands; 
Immune Status & Illness 

Figure 1.3 Schematic of the research studies, in order to determine the physiological demands 
of America's Cup yacht racing. 
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Chapter 2: Literature Review 

The literature review is divided into three major sections. The first section highlights the 

literature relevant to America's Cup yacht racing, arm-cranking (grinding) and upper body 

work. The second and third sections review the literature on thermoregulation, fluid and 

electrolyte balance; and stress, fatigue and salivary immunology, respectively. 

2.1 America's Cup Yacht Racing 

During the 31 st America's Cup, Challenging teams competed in up to 50 races over 22 

weeks, with two races per day during the earlier rounds of the competition (Neville et al. 

2006). America's Cup racing is a 'match-race' format (i.e. two boats at a time) around a 

two lap upwind and downwind course of -11 nautical miles (20 km) (Figure 2.1). Races 

typically last between 60 and 120 min. A number of technical manoeuvres occur during 

racing, requiring skill and effort, the most common being upwind tacking and downwind 

gybing, where a yacht changes direction from one side of the wind to the other 

(port/starboard) (see magnified insert, Figure 2.1). The timing and magnitude of these 

manoeuvres are largely dependent on the direction of the wind, the sea current, the position 

of the other yacht and the tactics employed during the race. Other critical manoeuvres are 

the mark roundings, where the yacht rounds the upwind or downwind mark during which 

time the foresail (genoa or spinnaker) is lowered and a new sail hoisted (Figure 1.1). 

Numerous other manoeuvres occur during racing such as 'peeling' (changing a sail during 

a leg), 'circling' (positional jousting during the pre-start), and 'dialing-up' (forcing the 

other yacht to point into the wind), all requiring high technical precision. Racing is 

strategically challenging, with each team trying to out-manoeuvre the opposition, by 

locating more favourable wind or drawing a technical penalty (foul) that requires the other 

yacht to perform a 'penalty turn' (a full-circle taking -30 s). In fact one crew position, the 

tactician, is devoted almost entirely to these strategic considerations. 

One observation of a single team during the 31st America's Cup noted an average of 30 

upwind tacks and 15 downwind gybes per race (Bemardi et al. 2007b), each manoeuvre 

taking on average 13 s and 19 s, respectively (this data was reported from a semi­

professional team that was ranked last during the 31 st America's Cup and thus these results 
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should be interpreted with caution). However, many aspects of America's Cup racing have 

not· been clearly documented for example: the precise race duration, number of 

manoeuvres and activity cycles, duration and intensity of manoeuvres as well as the 

environmental strain. 

~~ , ' , " , , , , , , , , , , , , , , , , 

, 

, , , , , , " , 

Wind 

t 

\. 

Figure 2.1 An America's Cup match-race course, with 
each leg being 4.6 to 5.6 km (2.5 to 3.0 nautical miles) in 
length. 1 & 3 are upwind legs and 2 & 4 are downwind 
legs. Teams can choose to round either mark at the end of 
leg 2. Magnified insert shows the boats tacking upwind. 

The racing crew on-board an America's Cup yacht comprises 17 skilled athletes. The 

physical requirements of each position are determined by the primary activities speCific to 

the role (Blondelle and Simonnet 1984; Bertrand and Robinson 1985; Bessinger 2002). A 

brief description of each role and their position on-board is provided in Figure 2.2. The 

athletes can be divided into five groups of similar physical and technical requirements, 

namely; grinders, bowmen, trimmers, utilities and afierguard (Table 2.1) (Alien 1999; 

12 



Chapter 2: Literature Review 

NevilIe et al. 2006; Bemardi et al. 2007b). The majority of teams have two full crews of 

athletes to enable competitive in-team training and practice racing. 

1. Bowman (bowman): Works on the narrow foredeck; organises the hoisting and 
dropping of sails; climbs out to the end of the pole if necessary; assists with 
grinding upwind 

2. Mid-bowman (bowman): Works on narrow foredeck with bowman and below 
deck for packing and connecting sails 

3. Mastman (grinder): Responsible for attaching and gybing the spinnaker pole; 
assists bowman and mid-bowman; main task is grinding 

4. Pltman (utility): Controls all the ropes at the base of the mast; the 
communication link between the crew and the bowmen during manoeuvres; 
grinds upwind 

S. Port Grinder (grinder): Primary task is grinding. which provides the power to 
turn the winches 

6. Starboard Grinder (grinder): Primary task is grinding, which provides the 
power to turn the winches; responds to instruction from the trimmer 

7. Upwind Trimmer (trimmer): Trims the shape of the genoa sail by continually 
adjusting hydraulics and easing and trimming the sail according to the changes in 
wind speed; sail shape determines the speed of the boat 

8. Downwind Trimmer (trimmer): Trims the shape of the spinnaker sail by 
continually easing and trimming the sail according to the changes in wind speed; 
sail shape determines the speed of the boat 

9. Mainsail Trimmer (trimmer): Adjusts the shape of the main sail by continually 
trimming and easing the sail and by adjusting the shape of the mast, through a 
series of hydraulic pumps. The shape of the main sail largely determines the 
speed of the boat. 

10. Mainsail Grindet (grinder): Primary task Is grinding and pumping the mast 
hydraufics; predominantly works with the mainsail trimmer 

11. Traveler Strategist (utility): Works with the mainsail trimmer and adjusts the 
position of the mainsail block according to the waves and wind speed; goes up 
the mast to look for wind during light conditions. 

12. Helmsman (ajterguard): Steers the boat and ultimately responsible for how 
the boat manoeuvres. 

13. Tactician (afterguard): Makes the tactical race decisions, such as when to tack 
or gybe or how to out manoeuvre the opposition. 

14. Navigator (ajterguard): Controls the on-board computer systems and 
instruments; gives information on the position of the boat as well as on the 
opposition. 

1S. Uti1ity (utility): Responsible for reporting the wind changes; assists with 
grinding upwind; assists the bowmen downwind 

16. Runner Trimmer (utility): Adjusts the tension In the backstays which control 
the stiffness of the mast and effect the shape of both the mainsail and genoa sail. 

17. Runner Grinder (grinder): Grinds the runners for the runner trimmer and 
assists with the mainsail grinding. 

Figure 2.2 An International America's Cup Class version 5 racing yacht, showing the position 
and role of the 17 athletes. 
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Table 2.1 America's Cup crew divided into groups of similar on-board physical requirements. 

Position 

Grinders 

Bowmen 

Trimmers 

Utilities 

Afterguard 

5 

2 

3 

4 

3 

Strength, power and endurance 

Speed, agility, strength, flexibility, low centre of gravity, and good 
peripheral vision 

Speed, fast hand eye coordination, strong upper body pulling power, 
good visual acuity and depth perception 

High strength to weight ratio, good peripheral vision and general 
conditioning 

High level of technical skill, good communication and decision making 
skills 

Preparation for the America's Cup usually entails 3 to 4 years of training and yacht 

development, during which time professional athletes sail and train together on a full-time 

basis. Training consists of daily land-based conditioning (1 - 2 h), such as strength and 

power development, and on-water sailing and training (3 - 6 h). Other daily tasks involve 

technical meetings, video analysis, debriefings, boat maintenance and packing and carrying 

sails. The working day usually lasts 8 to 12 hours (NeviIle et al. 2006). 

Based on measurements of energy expenditure during sailing and training activities, 

combined with estimations of energy expenditure for other daily activities, Bemardi et aJ. 

(2007a) estimated the total daily energy expenditure for America's Cup grinders to be -

5800 kcal (56 kcaI.kg'l.day·l) (Bemardi et aJ. 2007a). The energy expenditure for bowmen 

and "all other crew" was estimated to be 5300 and 4000 kcal'day'l, respectively. These 

estimations of energy expenditure highlight the high physical demands of this sport. As a 

result of the high volume of training, overall workload and multifactorial stress of 

America's Cup preparation, fatigue, illness and 'over-training' can occur in America's Cup 

sailors (NeviIle et al. 2003; Neville et aJ. 2006), 
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2.1.1 Anthropometric Characteristics 

The total weight of the 17 athlete racing crew is restricted by the International America's 

Cup Class (lACC) version 5 rule to 1,570 kg (92.4 kg / athlete), and crews are subjected to 

pre-regatta weight controls as well as random post-race checks. The body mass and 

anthropometry of the athletes appear to depend on the position or role of the athlete 

(Lambert and Lelguen 2001; Pearson et al. 2005; NeviIIe et al. 2006; Bernardi et al. 2007b) 

(Table 2.2). Pearson et al. (2005) reported grinders to be significantly heavier (and have a 

greater lean body mass) and taller than all other positions. 

Table 2.2 Anthropometric characteristics of America's Cup sailors 

Bemardi et al. 2007 
31'( America's Cup-team ranked bottom 2 

N 6 2 5 3 
Age 28±5 29±2 29±8 30±7 
Body mass 103 ±4 77 ± 1 80±8 78±6 

Fat % 13 ±2 10 ± 1 10 ± 1 15 ± 1 

Neville et al. 2006 
31" America's Cup - team ranked top 4 

N 12 6 7 10 
Age 31±5 32±4 35±5 36±7 
Body mass 99±5 83±6 84±6 89±9 
Fat % 10 ±4 12 ±4 12 ± 4 17 ± 7 

Pearson et al. 2005 
31" America's Cup - team ranked top 4 

N 12 5 7 11 
Age 29±5 32±7 35±6 38 ± 10 

Body mass 105 ± 7 78±4 82 ± 10 83±7 

Fat % 17 ± 1 13±2 14 ± 3 15 ± 3 
.---. 

Lambert & Le/guen 2001 
30th America's Cup - team ranked bottom 2 

N 7 5 4 5 
Age 30±6 31±6 30±4 35±4 

Body mass 95 ± 10 75±4 79±8 82 ± 10 

Fat % 19± 6 17 ±2 18 ±6 22±3 

All data are mean ± SO 
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Due to the body mass restrictions, a common strategy of teams is to reduce the body fat of 

the whole crew in order to maximise lean muscle mass of the positions with the greatest 

strength and power requirements, such as the grinders. As grinding requires high levels of 

strength and power, grinders are selected, in part, for their large muscle mass and power 

(Bauer 1986; Pearson et al. 2005). The mean body mass of two of the top four teams 

during the 31 st America's Cup was 90 kg and the percentage body fat was 14% (pearson et 

al. 2005; Neville et al. 2006). Whereas two teams ranked in the bottom two during the 30th 

and 31st America's Cups had lower mean body mass (84 and 88 kg, respectively; Table 

2.2) (Lambert and Lelguen 2001; Bemardi et al. 2007b). By calculating lean body mass 

from the data in Table 2.2, there is a suggestion of a greater lean mass in the top ranked 

teams when compared to lower ranked teams. 

2.1.2 Physical Activities and Demands during America's Cup Racing 

The physiological demands placed on the crew have been suggested to be high (Bauer 

1986), but have not been carefully researched. An individual's exercise intensity during 

racing is thought to depend largely on the weather conditions, the race tactics, the role of 

the athlete within the crew (Alien and De Jong 2006; Neville et al. 2006), and perhaps also 

on how evenly the competing boat are matched (Whiting 2007). However, there has been 

no systematic investigation of exercise activity profiles or intensity during America's Cup 

sailing. 

The activities and the work intensity performed by all the athletes (other than the 

helmsman) are varied, with each role having a primary task as well as being required to 

perform some activities which are common to all the crew, such as grinding, the main 

physical activity in America's Cup yacht racing. Examples of other activities include, 

trimming (trimmers adjust the angle of the sails), top-handle winching (utilities often 

adjust a winch with a top-handle as opposed to grinding), packing sails (bowmen prepare 

used sails below deck for rehoisting), and bouncing the halyard (mastman hoisting a sail by 

hand). Heart rate data (unpublished data collected by the author) illustrates that bowman 

can sustain an average heart rate of>70% of their maximum for the full duration ofa 2.5 h 

race. In addition, the analysis of on-board video data (unpublished data) has indicated an 

average work to rest ratio of approximately 1:3 during strenuous racing. Furthermore, 
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blood lactate levels of -5 mmolL-1 have been found in grinders during sailing (Lambert 

and Lelguen 200 I). 

The physical preparation of the athletes is largely specific to their role (Figure 2.2), with 

grinders perfonning predominantly functional power exercises and high intensity interval 

training on arm-crank ergometers. Other positions such as the bowmen train to improve 

their reaction speed and agility, while tril(lmers require visual depth perception and hand­

eye coordination (Valencia-Sailing 2006; Neville 2008). ' 

One of the most physically demanding activities in America's Cup sailing is grinding. As 

all manoeuvres are perfonned manually without the assistance of stored energy, the sailors 

drive arm-cranks (grinding pedestals) that supply the power to turn the winches which pull 

the ropes for trimming and hoisting the sails (Figure 2.3). Big-boat yacht racing is one of 

the only able bodied sports where arm-cranking is the primary physical activity. America's 

Cup yachts (lACC version 5) typically have four grinding pedestals, and although all the 

crew (other than the helmsman) contribute to grinding during racing, there are between five 

and six athletes (grinders) from the crew primarily dedicated to this activity. The grinding 

cranks are unidirectional, due to the trans-directional gear shift mechanism of the winch 

system transfer-boxes. In other words, gear selection can be changed by changing the 

direction of crank rotation. A grinder can select from as many as 9 different gears, with the 

primary grinders mainly grinding in the, more efficient, forward direction (Pearson et al. 

2007). Grinding involves short bursts of high intensity exercise in order to complete each 

manoeuvre, interspersed with longer rest intervals. Bernardi et al. (2007) found the oxygen 

uptake of grinders during gybing and tacking to be 53 and 68% of V02peak, respectively, 

and increased to 65 and 91% of V02peak, respectively, after a series of manoeuvres (>3) 

(Bernardi et al. 2007b). Although this study was perfonned by semi-professional 

America's Cup sailors perfonning simulated race manoeuvres, the authors suggested that 

the accumulative effect of frequent grinding required substantial aerobic energy provision 

in addition to anaerobic metabolism. The heel angle of the yacht can also influence 

grinding perfonnance. A heel angle of 250 has been found to reduce peak power by as 

much as - 20% (Pearson et al. 2007). However, the majority of grinding usually occurs 

when the yacht is relatively flat; passing head-to-wind during tacking and all of the 

downwind leg, hence the heel angle is of little importance. To date there has been no 

thorough quantitative description of the activity pattern of grinding during sailing. 
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Figure 2.3 An America's Cup grinder, driving a 
grinding pedestal which supplies the power to turn 
the winches for trimming and hoisting sails (courtesy 
of Romolo Ranieri, © Vernon Neville 2008) 

2.1.3 Upper body Exercise 

Chapter 2: Literature IIp,;pw 

Arm-cranking exercise has received some scientific attention, due to its role in 

cardiovascular (Lazarus et al. 1981; Westhoff et al. 2008) and injury rehabilitation (Carson 

1989), as well as being an appropriate means of exercise for individuals with spinal cord 

injury or lower limb disability (Hicks et al. 2003; Valent et al. 2008), particularly with the 

recent increase in the profile of Paralympic and disability sport (Goosey-Tolfrey and 

Tolfrey 2004; Goosey-Tolfrey et al. 2006; Smith et al. 2006). Arm-cranking has also been 

used as an appropriate mode for assessing upper-body trained able bodied athletes (Tesch 

1983; Driss et al. 1998; Hubner-Wozniak et al. 2004; Pearson et al. 2007; Zagatto et al. 

2008), including America's Cup sailors (Pearson 2003; Pearson et al. 2005; Bemardi et al. 

2007b). Upper body exercise (arm-cranking) has been found to elicit - 70% of the 

maximal aerobic power achieved during lower body exercise (cycling) in untrained 
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participants (Bergh et al. 1976; Sawka et al. 1982; Pandolf et al. 1984; Martin et al. 1991). 

Upper body peak power appears to range from 50% less than the lower body, up to just 

15% less, depending on upper body training and competition status (Zagatto et a\. 2008; 

Hubner-Wozniak et al. 2004). These differences in performance are due to a range of 

anatomical, physiological and biomechanical factors that distinguish upper body from 

lower body exercise, which will be considered in the first part of this section of the review. 

Many of the differences between the arms and the legs may be attributed to the relative 

infrequent use of the arms compared to the legs during daily activities and that the arms are 

not load bearing limbs. Hence, arm muscle quantity and quality may be 'underdeveloped' 

in untrained individuals (Turner et al. 1997). Therefore this review tries to draw upon data 

from upper body trained populations where possible, whilst also recognising that evidence 

from untrained individuals may highlight underlying differences between the upper body 

and lower body musculature. 

2.1.3.1 Anatomical and Morphological Considerations 

Leg muscle volume is on average - 5 fold greater than arm muscle volume in untrained 

individuals (6300 vs. 1200 cm3
) (Stalm et al. 2007). It is expected that this difference could 

be considerably less in upper body trained athletes. Both autopsy and biopsy studies have 

confirmed a greater proportion of type II muscle fibres in the arm than the leg muscles 

(Johnson et al. 1973b; Turner et al. 1997). Type II fibres in the arms have a lower total 

mitochondrial volume density than the legs (3.9 vs. 5.0%) (Turner et al. 1997), and a 

smaller capillary cross sectional area (Turner et al. 1997; Calbet et al. 2005), in addition to 

type II fibres having a lower oxidative, but higher glycolytic, enzyme activity compared to 

type I fibres (Stallknecht et al. 1998). These differences in the physiology of the fibre types 

have consequences for the metabolic and cardiovascular responses to upper body exercise. 

2.1.3.2 Cardiovascular Considerations 

In untrained individuals, at a given submaximal exercise power output, upper body work 

(arm-cranking) elicits a higher heart rate (Bevegard et al. 1966; Toner et al. 1990) and 

systolic and diastolic blood pressure (Bevegard et al. 1966), lower stroke volume (Toner et 

al. 1990) and greater peripheral resistance (Stenberg et al. 1967) than lower body exercise 

(cycling). In addition, at the same V02 as leg cycling, upper body exercise has been found 
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to result in greater physiological stress, rate of perceived exertion (RPE; Borg 1982) and 

heart rate (pandolf et al. 1984; Leicht et al. 2008). 

A lower oxygen extraction capacity has been reported in the arms of both untrained 

individuals (V olianitis and Secher 2002), and well trained athletes (Calbet et al. 2005) 

compared with the legs. This is probably due to a shorter blood transit time and smaller 

diffusion area in the arms than legs (Calbet et al. 2005). Even though oxygen diffusion is 

considerably greater in upper body trained athletes compared with healthy individuals 

(Volianitis et al. 2004), arm muscle oxygen extraction remains lower than that of leg 

muscle in elite cross-country skiers, despite high levels of upper body training (Calbet et 

al. 2005). In addition, the smaller active muscle mass of upper body exercise has 

cardiovascular consequences; it provides reduced muscle pump activity, and thus smaller 

venous return, and greater peripheral resistance that elevates blood pressure (Stenberg et al. 

1967). 

2.1.3.3 Metabolic Considerations 

There is evidence to suggest catecholamine and blood lactate thresholds are lower for arm­

cranking than cycling (Schneider et al. 2000). During arm-cranking at relatively low 

intensities· the release of epinephrine stimulates the onset of muscle glycogenolysis via the 

activation of phosphorylase (Chasiotis 1988), which leads to an earlier onset of lactate 

production (Aminoff et al. 1998; Schneider et al. 2000; Van Hall et al. 2003). Congruently, 

several studies have reported higher rates of lactate production in the arms (arm-cranking) 

compared to the legs (cycling) at the same relative workloads (Aminoff et al. 1998; 

Schneider et al. 2002). The relatively low muscle oxidative capacity of the upper body due 

to the anatomical differences described above, and the greater proportion of type II muscle 

fibres and their earlier recruitment during upper body work (Bigland and Lippold 1954; 

Sawka 1986; Kang et al. 1997), may explain the earlier anaerobic contribution and lactate 

response of arm-cranking. 

Arm muscle has been found to release more lactate per active muscle mass than leg muscle 

in both untrained participants (Ahlborg and Jensen-Urstad 1991) and elite cross-country 

skiers (Van Hall et al. 2003). In addition, Van Hall et al. (2003) found arm muscle to have 

a lower ability to utilise lactate than leg muscle during moderate to high intensity activity 

(Van Hall et al. 2003). These findings have been attributed to differences in muscle fibre 
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type between the arms and legs; with the rate of lactate production greater in fast­

glycolytic (type II) fibres, and the uptake and oxidation greater in slow-oxidative (type I) 

fibres. 

2.1.3.4 Biomechanical Considerations 

Upper and lower body ergometry differ in freedom of movement available. During cycling, 

hip, knee and ankle flexion and extension are performed in one·plane of movement and the 

trunk: remains relatively fixed, due to being seated. Whereas during arm-cranking the wrist, 

elbow and shoulders move in different planes, and the trunk: is unrestricted, which 

facilitates greater trunk: movement and requires more stabilisation (Toner et al. 1983). This 

greater freedom of movement results in larger variations in the movement 

strategy/technique employed by individuals, and thus also the degree and pattern of muscle 

recruitment (Calbet et al. 2005). During leg cycling the dominant phase of movement and 

force generation is the push phase (with the major force component vertically downward), 

where the weight of the limb and to a lesser extent the trunk can be utilised. Whilst there 

appear to have been no measurements of the unilateral power profile during a revolution of 

arm-cranking the dominant phase of the movement is also considered to be the push phase 

(with the major force component horizontally forwards). As the crank handles at this point 

of the arm-cranking revolution are above (sitting) or at a similar height (standing) to the 

centre of mass there is little opportunity to apply body mass to the movement. These 

biomechanical differences may explain the significantly lower mechanical efficiency of 

arm-cranking compared to cycling (Kang et al. 1997). 

2.1.4 Standing Arm-crank Ergometry 

Standing arm-cranking has been used to train and evaluate upper body athletes, for 

example wrestlers and javelin throwers (Hubner-Wozniak et al. 2004; Bouhlel et al. 2007), 

and is also becoming increasingly popular in the health and fitness industry with the recent 

launch of 'Kranking®' fitness classes, as the upper body equivalent to 'Spinning®' 

(Finnegan 2008). Whereas seated arm-cranking is an important exercise for disabled and 

wheel chair athletes, as well as for sports such as kayaking, where the athlete is seated, 

standing arm-cranking may be a more functional activity for a wider range of sports 

applications. As opposed to seated arm-cranking, where the involvement of the lower 
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limbs is restricted, during standing arm-cranking there is more potential for the proximal 

kinetic chain to generate force. America's Cup grinding is essentially standing arm­

cranking, hence this mode of ergometry is highly specific to the activity of the athletes in 

this sport. 

To date the majority of research has been performed during seated arm-cranking that 

restricts lower limb involvement. The physiological responses to standing arm-cranking 

have not been widely documented, with only a few reports on aerobic power (Vokac et al. 

1975; Vrijens et al. 1975; Mercier et al. 1993; Bemardi et al. 2007b) and peak power 

(Vandewalle et al. 1989; Driss et al. 1998; Hubner-Wozniak et al. 2004; Bouhlel et al. 

2007; Pearson et al. 2007) present in the literature. Surprisingly, the one study to compare 

standing and seated arm-cranking, found no difference in the cardiorespiratory response, 

although a higher work load was evident (13%) during standing arm-cranking (Vokac et al. 

1975). The higher peak power output values reported during standing compared to seated 

arm-cranking appear to indicate a greater ability for power production when standing 

(Table 2.5). 

2.1.5 Physiological Capacity during Arm-cranking/Grinding 

The first indication of the physical status of America's Cup sailors was by Bauer (1986), 

who reported that a bowman training for the 26th America's Cup had a treadmill V02max of 

61 ml"kg,l.min,l (Bauer 1986). A few subsequent studies have evaluated the maximal 

oxygen uptake of America's Cup crews during the much more appropriate exercise mode 

of arm-cranking (Lambert and Lelguen 200 I; Bemardi et al. 2007b). However there 

remains little data available in the literature on the physiological or performance 

characteristics of America's Cup athletes, hence comparison to other upper body athletes is 

informative. 

2.1.5.1 Upper body Aerobic Power 

The lower aerobic power (-70%) of the upper body in untrained individuals appears to be 

due to peripheral factors including a smaller active muscle mass with limited oxidative 

capacity (Pandolf et al. 1984; Sawka 1986), The marked difference in cardiovascular 

response and aerobic power between upper and lower body exercise in untrained 
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participants (Sawka et al. 1982; Pandolf et al. 1984) is not as clear in well trained athletes. 

In athletes, any differences seem to depend largely on the nature of exercise performed 

(Secher et al. 1974). Well trained upper body athletes have smaller differences between 

upper and lower body V02peak (-12%) (Secher et al. 1974; Seals and Mullin 1982). In fact, 

some upper body trained athletes (swimmers) appear to have greater V02peak during arm­

cranking than cycling (Secher et al. 1974). Hence, it is not uncommon for well trained 

upper body athletes (such as swimmers, rowers, kayakers and America's Cup sailors) to 

have high arm-crank V02peak values, greater than 4.0 Lmin·[ (Table 2.3) (Secher et al. 

1974; Tesch 1983; Mercier et al. 1993; Bernardi et al. 2007b). The high aerobic power of 

these athletes seems to be due to their increased arm muscle mass, as well as elevated 

vascular conductance and diffusion capacity for oxygen compared with untrained 

participants (Secher and Volianitis 2006), supporting an enlarged regional vascular 

capacity. With the substantial variations in V02peak depending on the activities performed 

by the athlete, it is clear that in order to determine maximal oxygen uptake, the mode of 

testing should be closely related to the actual activities performed by the athlete. 

With the relatively smaller muscle mass of the upper limbs, it has been suggested that 

maximal oxygen uptake testing should be short enough to avoid local fatigue (Sawka et al. 

1983a; Goosey-Tolfrey et al. 2006), hence discontinuous protocols have been suggested 

(Washburn and Seals 1983). However, neither the duration (5 to 7 min vs. 14 to 19 min), 

nor the mode of testing (continuous vs. discontinuous) seems to effect V02peak during 

maximal arm-cranking (Washburn and Seals 1983). Furthermore, similar results have been 

found between ramp and step protocols (Smith et al. 2004). On the other hand, crank rate 

has been shown to affect V02peak (Sawka et al. 1983a; Smith et aI. 2001; Smith et al. 2007), 

with constant crank rates of between 70 and 80 rpm resulting in significantly greater 

V02peak than slower crank rates (Sawka et al. 1983b; Smith et al. 2001). 
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Table 2.3 Peak oxygen uptake of athletes in different sports during arm-cranking 

Sport L .. vel;,! n,. 
!!<ivc'!i" 

2peak<""",< 
·i! [tmin·'].!!!'! 

Secher et al. 1974 Swimming Elite 4.73 

Mercier et al. 1993' Swimming Competitive 8 4.38 

Secher et al. 1974 Rowing Elite 6 4.35 

Tesch 1983 Kayak Elite 5 4.30 

Bernardi et al. 2007b • America's Cup sailing Competitive 16 4.13 

Holmberg et al. 2006 Cross-country skiing Elite 11 3.98 

Vrijens et al. 1975 • Kayak Elite 5 3.95 

Seals & Mullin 1982 Sailing Competitive 12 3.36 

Secher et al. 1974 Kayak Elite 2 3.22 

Seals & Mullin 1982 Swimming Competitive 11 3.22 

Forbes & Chilibeck 2007 Kayak Competitive 10 3.14 

Seals & Mullin 1982 Wrestling Competitive 10 3.10 . 

Horswill et al. 1992 Wrestling Elite 14 3.01 

Seals & Mullin 1982 Gymnastics Competitive 10 2.82 

Swaine & Winter 1999 Swimming Competitive 12 2.40 

Jemni et al. 2006 Gymnastics Elite 12 2.20 

Goosey-T olfrey et al. 2008 Wheelchair athletes Elite 8 1.48 

Goosey-T olfrey et al. 2006 Quadriplegic games players Elite 8 0.96 

1< Standing arm-crank ergometry 

The only study to report aerobic power in America's cup sailors during arm-crank 

ergometry found a mean V02peak for the crew of 16 athletes to be 47 ml'kg-l.min-l
, with 

bowmen reportin g the highest relative values (52 ml'kg-l.min-l
) (Table 2.4). The high 

relative V02peak found for bowmen is thought to be a result of their activities on-board 

being largely continuous in nature. Interestingly, the high peak power values reported by 

Bemardi et al. (2007) for the grinders, are similar to those found in competitive cyclists. 
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Table 2.4 Physiological characteristics of America's Cup sailors 
during incremental arm-cranking to exhaustion (Bernardi et al. 
2007b) 

V02~'~'ak VOi~eak pe~kP~Vi~{ 
[L'min-') [mlkg-"min-') [WJ 

Grinders (n=6) 4.6 45 393 

Bowmen .(n=2) 4.0 52 350 

Trimmers (n=5) 3.8 47 334 

All Others (n=3) 3.6 46 280 

2.1.5.2 Peak Power 

Chapter 2: Literature Revkw 

Similar differences to aerobic power have been found in peak power between the upper 

body (arm-cranking) and the lower body (cycling). The large variations in the proportion 

of upper body compared to lower body power are dependent on the exercise activities and 

the mode of training performed by the athlete. Elite table tennis players have more than 

50% difference in upper body to lower body power (Zagatto et al. 2008), whereas elite 

wrestlers have as little as 15% difference in peak power output (Hubner-Wozniak et al. 

2004). Other athletes, such as elite gymnasts and competitive javelin throwers have -35% 

greater leg power (Jemni et al. 2006; Bouhlel et al. 2007). Swimmers have been found to 

have amongst the highest relative upper body power with values of 11.5 Wkg-1 (828 W) 

during standing arm-cranking (Mercier et al. 1993), and during seated arm-cranking, 

gymnasts achieved upper body power of 10.6 Wkg-1 (700 W, Table 2.5) (Jemni et al. 

2006). 

To date, the highest reported upper body peak power was 929 ± 100 W for a cohort of elite 

America's Cup grinders performing standing arm-cranking (Pearson et al. 2007). Although 

impressive, this is still considerably less than the highest individual power output reported 

in elite track sprint cycling (2282 W) (Gardner et al. 2005). In addition, Pearson et al. 

(2007) found a 17% difference in peak power between grinding forwards and backwards 

(Pearson et al. 2007), indicating that grinding forwards is considerably more effective. 

More detailed physiological assessment of America's Cup athletes during relevant activity, 
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primarily grinding, is required to more clearly describe the characteristics of this cohort of 

elite athletes, and any differences due to crew position. 

Table 2.5 Peak power output of athletes in different sports during arm-cranking 

Pearson et al. 2007 6 Standing America's Cup Elite 929 

Mercier et al. 1993 8 Standing Swimming Competitive 828 

Hubner-Wozniak et al. 2004 10 Standing Wrestling Elite 732 

Bouhlel et al. 2007 10 Standing Javelin Competitive 720 

Oriss et al. 1998 18 Standing Volleyball Competitive 719 

Vandewalle et al. 1989 18 Standing Swimming Competitive 718 

Jemni et al. 2006 12 Seated Gymnastics Elite 701 

Horswill et al. 1992 14 Seated Wrestling Elite 537 

Aziz et al. 2002 13 Seated Waterpolo Elite 479 

Aschenbach et al. 2000 8 Seated Wrestling Competitive 370 

2.1.5.3 Torque- and Power-Velocity Relationships 

During elite sprint cycling a polynomial power-velocity relationship has been described 

(Martin et al. 1997; Dorel et al. 2005; Gardner et al. 2007), and contrary to the hyperbolic 

force-velocity relationship of isolated muscle (Wilkie 1949), the relationship between 

torque and velocity appears to be linear (Martin et al. 1997; Dorel et al. 2005; Gardner et 

al. 2007). Similar results have been found during arm-cranking (VandewaJle et al. 1989; 

Vanderthommen et al. 1997). The determination of the optimum pedalling rate for peak 

power, as determined from the maximum of the power-velocity curve (128 rpm), has been 

used to determine optimal gearing for elite track sprint cycling (Gardner et al. 2007). 

Interestingly, the optimum crank velocity, determined from the predicted maximum crank 

velocity, reported by junior swimmers during arm-cranking (-127 rpm) was similar to that 
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of elite cyclists (Vandewalle et al. 1989), although further investigation is required to 

confirm these findings. 

The peak velocity of grinding during America's Cup racing has been reported to be 

between 120 and 150 rpm (Bemardi et al. 2007b), but the optimum velocity for power 

production and the nature of the torque-velocity and power-velocity relationships of elite 

upper body trained athletes during standing arm-cranking are largely unreported. This may 

have an important bearing on the selection of gear ratios and the optimisation of power 

production during America's Cup sailing. 

2.1.6 Influence o/Crank Configuration on Performance 

Since power is the product of force and velocity, changes to muscle length, muscle 

moment-arm length and the torque-velocity relationship will affect power output (Hoy et 

al. 1990; Too and Landwer 2000). The manipulation of joint angles affects muscle length 

which can change the muscle force produced, and taken together with a change in muscle 

moment-arm, will affect torque and angular velocity and therefore power production (Hoy 

et al. 1990). In cycling, the manipUlation of joint angles, through changes in the structure 

of bicycle components, has been shown to influence performance (Hamley and Thomas 

1967; Too and Landwer 2000; Martin and Spirduso 2001). For example, changes in seat 

height and cycle crank lengths directly affect hip and knee joint angles, lower limb muscle 

lengths, the range of motion and angular velocity of the joints, and thus cycling 

performance (Too and Landwer 2000). Changes in hip angle as a result of posture (sitting 

upright or leaning forward) also significantly influences power output during cycling 

(Welbergen and Clijsen 1990; Too 1994). The optimal crank length for maximum power 

production has been reported to be 20% of leg length (Martin and Spirduso 2001) and the 

optimal seat height appears to be 109% of inseam length (ischium to foot) (Hamley and 

Thomas 1967). It seems highly likely therefore that changes to the configuration of arm­

crank ergometry, specifically crank length and crank-axle height, could also affect 

performance. Given the angle-torque and torque-velocity relationships of human muscle 

function, there is a clear rationale for how interventions that effect upper extremity joint 

range of motion and angular velocities may influence arm-cranking performance. The only 

study to determine the influence of crank length on arm-crank ergometry, compared the 

configurations of two different ergometers; a standard arm ergometer (crank length, 140 
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mm) and a modified leg ergometer (crank length, 170 mm) (Kang et al. 1999). The arm 

ergometer resulted in greater cardiorespiratory and metabolic responses than the modified 

leg ergometer, however it is not known if these results were due to the difference in crank 

length or the difference in diameter and weight of the flywheels. The majority of arm­

cranking studies have used modified cycle ergometers and substituted pedals for handles 

(Vokac et al. 1975; Bohannon 1986; Vandewalle et al. 1989; Mercier et al. 1993; Bouhlel 

et al. 2007). Hence the crank length adopted by most arm-crank studies is 170 to 175 mm, 

which may not be ideally suited to the upper limbs. 

On IACC version 5 yachts the typical crank length and crank-axle height are 250 and -850 

mm, respectively (Bemardi et al. 2007b; Pearson et al. 2007). Considering the 

advancement in yachting technology evident in the America's Cup, it is surprising that 

there seems to be no scientific rationale for the crank length and crank-axle height of the 

grinding pedestals. The height of the grinding crank-axle appears to have been largely 

determined by other aspects of yacht design, such as the height of the boom and 

aerodynamics, without an understanding or consideration of the effects of crank height on 

grinding performance. 

2.1. 7 Lower Limb Contribution to Upper body Exercise 

For most upper body open kinetic chain sporting activities (e.g. tennis and throwing), the 

majority of kinetic energ~ and force is derived from the larger proximal body segments, 

such as the upper leg, back and trunk, and transferred through the body segments to the 

terminal link, the hand (Figure 2.4) (Kibler 1998). 

The contribution of the lower limbs to upper limb force generation has been studied in a 

number of sports activities, including the tennis serve and cross-country skiing double­

poling (Holmberg et al. 2006; Girard et al. 2007). Tennis serve performance (accuracy and 

speed) was significantly affected by restricted knee joint motion, when the knee joint was 

splinted to prevent flexion and extension, confirming the importance of the lower limbs in 

force generation (Girard et al. 2007). In addition, restricting knee joint mobility during 

submaximal double-po ling in a group of elite cross-country skiers elicited a higher blood 

lactate concentration and heart rate response with no difference in oxygen consumption at 

the same work load (Holmberg et al. 2006). These findings suggest that the dynamic use of 

the lower limbs may benefit performance by decreasing the cardiovascular and metabolic 
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stress compared to upper body exercise alone. Moreover, in a study with various different 

proportions of arm-cranking and cycling, cardiovascular strain (heart rate and stroke 

volume) were found to reduce when slight involvement of the lower body (cycling) was 

added to upper body exercise (arm-cranking) (Toner et aI. 1990). The authors suggested 

that the engagement ofthe lower body during upper body exercise may attenuate the strain 

placed on the cardiovascular system by the added muscle pump activity of the legs 

facilitating venous retum (Toner et al. 1990). In addition, Van Hall and colleagues found 

the arm muscles of elite cross-country skiers to have a lower ability to utilise lactate and a 

higher ability to produce lactate during moderate to high activity (Van Hall et al. 2003). 

The authors attributed these differences to the contrasting muscle fibre type composition of 

the arms and legs, with increased rate of lactate production occurring in type II fibres and 

greater uptake and oxidation in type I fibres. These results may also suggest that activation 

of the leg muscles during arm exercise may assist in lactate clearance. Taken together, it is 

evident that the use of the legs during upper limb exercise may increase performance and 

reduce physiological stress. 

Figure 2.4 Illustration of the transfer of 
kinetic energy and force from the base of 
support (the feet), to the terminal link (the 
hand) during a tennis serve (Kibler 1998) 
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2.1.8 Grinding and Injury Risks 

America's Cup sailors are at risk of injury (Allen 1999; Allen 2005; Neville et al. 2006), 

similar to that of other elite non-contact team sports (Hootman et al. 2007). The anatomical 

locations most frequently injured are the lumbar spine (range: 12-30%) and shoulder 

regions (15-18%) (Allen 1999; Allen 2005; Neville et al. 2006), while the positions at 

greatest risk of injury seem to be the bowmen (3.2 I 1,000 h sailing) and grinders (3.1 I 

1,000 h sailing) (Neville et al. 2006). Chronic injuries (predominantly tendinopathies and 

neuropathies) were found to be largely attributed to high repetition activities, such as 

grinding (Neville et al. 2006). Poor grinding technique has also been suggested as a 

possible risk factor for lower back and shoulder injuries (Neville et al. 2003; Allen 2005; 

Molloy et al. 2005), particularly if there is an overreliance on the upper extremity as the 

force generator. In addition, the majority of activities performed during America's Cup 

sailing, such as grinding, require forward flexion of the spine with repetitive lumbar 

rotation (see Figure 1.2), and often with high loads (Allen 2005; Neville et al. 2006). This 

posture places excessive strain on the lumbar spine and thus may increase the risk oflower 

back injury (Bono 2004). Allen (2005) suggested that appropriate ergonomics of the 

grinding pedestals may reduce this potential risk of injury and therefore warrants 

investigation. 
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2.2 Thermoregulation 

The majority of the chemical energy consumed by human metabolism is converted to heat. 

During exercise, metabolic rate increases substantially causing dramatic increases in heat 

production and several complex heat loss mechanisms attempt to prevent excessive heat 

gain. Hot environmental conditions add to the thermal strain imposed by exercise, as the 

transfer of heat from the body to the environment is reduced, further promoting the rise of 

core temperature (hyperthermia). During prolonged exercise in the heat, sweating in order 

to attenuate the rise in core temperature by evaporation, leads to significant fluid losses 

(hypohydration) that may compromise ongoing thermoregulation. Both hyperthermia and 

hypohydration can lead to significant performance decrements and in extreme cases, heat 

illness. As the intensity of exercise during America's Cup yacht racing is relatively high, 

and it is usually sailed during the summer months in hot and humid environmental 

conditions, compromised performance is likely. Neville et al. (2006) reported a number of 

incidents of heat illness and dehydration during the 31st America's Cup, similarly, Miller 

(1989) reported a risk of dehydration during training for the 26th America's Cup. 

The human body is considered to be in a thermo-neutral state at approximately 37 ± 1°C 

(Benzinger 1969). A rise in body temperature greater than _1°C above the resting core 

body temperature, results in hyperthermia characterised by an increased strain on the 

cardiovascular system in an effort to reduce body heat (Cheung 2007). To maintain a 

tolerable level of body temperature and prevent the progressive storage of body heat, an 

efficient means of heat dissipation is required. This occurs via a complex thermal system 

that transports excess heat from deep body tissues to the skin surface where it is lost to the 

environment. A temperature gradient between deep tissues and the blood enables heat to be 

transferred to the blood, which is carried to the skin surface for dissipation of heat. 

Heat is lost to the environment by the processes of conduction, thermal radiation, 

convection and the evaporation of water from the respiratory tract and the skin. The loss of 

heat via conduction is minimal, unless one is submerged in water (Brotherhood 2008). 

Radiative heat is emitted by the body as infrared radiation, but can also be gained by 

exposure to direct sunlight or reflective heat off water or reflective surfaces. Convection 

occurs between the body and the surrounding air (Nielsen et al. 1988). The overall heat 

loss through conduction, radiation and convection largely depends on the temperature 
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gradient between the skin surface and the environment, and is therefore relatively small in 

cooler environments (Webb 1995). As the ambient temperature rises, the gradient declines 

and at approximately 33°C the gradient is reversed and heat is gained by the body through 

conduction, radiation and convection (Saunders et al. 2005). Therefore evaporation, 

primarily from perspired sweat on the skin surface, becomes the main means of heat loss in 

hot environmental conditions. The main factors contributing to the regulation of body 

temperature are summarised by the following heat balance equation (Cheuvront and 

Haymes 2001): 

Heat storage = Metabolism ± Radiation ± Convection ± Conduction - Evaporation 

2.2.1 Performance and Thermoregulation during Exercise in the Heat 

Fatigue, as defined by the inability to maintain a required power output during exercise, 

occurs as a result of several complex factors including; metabolic by-products, finite 

energy stores, thermoregulatory stress and reduced motor drive (Hargreaves 2008), all of 

which are influenced by the intensity and duration of exercise. During exercise, metabolic 

heat production is elevated leading to an increase in core temperature. If the exercise takes 

place in a hot and humid environment it has been surmised that the rise in body 

temperature during exercise is the primary cause of fatigue (Adams et al. 1975; Gonzalez­

Alonso et al. 1999; Galloway and Maughan 2000). 

2.2.1.1 Hyperthermia and Critical Core Temperature 

The human body has an upper limit core temperature, where biological processes are 

compromised, performance deteriorates and heat illness becomes a risk. It is widely 

accepted that the human body reaches this "critical" core temperature at 39 to 41°C 

(Nielsen et al. 1993; Gonzalez-Alonso et al. 1999; Galloway and Maughan 2000; Morris et 

al. 2005). 

In laboratory studies, fatigue seems to occur at critical core temperature regardless of 

exercise intensity or initial body temperature. Gonzalez-Alonso et al. (1999) found that 

fatigue occurred at a core temperature of 40.1 °C during cycling to exhaustion in hot 

conditions and exercise capacity (measured as the time to exhaustion) was dependent upon 

the initial starting temperature and the rate of heat storage (Gonzalez-Alonso et al. 1999). 

32 



ChUP{('f 2: Literature -,j{t'vjcw 

In a review of laboratory and field studies, the majority of all subjects reached exhaustion 

at a core temperature of 38.6 and 39.5°C, respectively (Sawka et al. 2001a), suggesting that 

subjects are able to tolerate greater heat gain in the field compared with laboratory studies. 

This implies that laboratory studies may lack ecological validity, and that field studies are 

required to fully understand the thermoregulatory demands and consequences of outdoor 

sports. 

2.2.1.2 Exercise Duration and Intensity 

The influence of hot environmental conditions on endurance performance has been 

extensively studied during steady state exercise such as cycling (Galloway and Maughan 

2000; Tucker et al. 2004; Tucker et al. 2006) and running (Gonza1ez-Alonso et al. 1999). 

Pugh et al. (1967) reported a mean Tree of 39.0QC (range: 36.7 to 41.1 QC) in 47 runners at 

the end of a marathon, with the first four runners, and therefore the highest exercise 

intensities, leading to the highest core temperatures (pugh et al. 1967). More recently after 

15 min of high intensity (93% of V02m",) treadmill running at a constant ambient 

temperature (29°C), oesophageal temperature (Toes) was elevated by 2.2°C above baseline, 

compared with a 1.0°C rise after moderate intensity (70% of V02m",) exercise (Kenny and 

Niedre 2002). Therefore the rise in core temperature is strongly influenced by the rate of 

metabolic heat production. In prolonged exercise, the rate of body heat production is 

therefore largely dependent on the intensity of exercise. 

The effects of the heat on intermittent exercise, similar to that performed in 'stop-and-go' 

team sports is less well understood, largely due to the difficulty in measuring performance, 

the random nature of the exercise, and the different activity patterns in each specific sport. 

Drust et al. (2000) found little evidence to indicate any difference in the physiological 

responses between intermittent and steady state exercise at the same mean power output, 

suggesting that the effect of heat was similar (Drust et al. 2000). During intermittent 

exercise the majority of studies have found substantially reduced performance, as 

measured by the distance run in hot compared with moderate conditions (Morris et al . 

. 1998). This was attributed to a greater rate of rise in core temperature during the hot trial. 

Similar results have been found in repeated high intensity exercise; where an 11 % decrease 

in mean power output occurred in repeated 15 s maximal sprint cycle performance with 

hyperthermia (39.5
Q
C) (Drust et al. 2005). In contrast, during maximal exercise « 15 s), 
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the influence of any rise in core temperature seems negligible, due to the short duration of 

the activity (Cheuvront et al. 2006; Judelson et al. 2007a; Judelson et al. 2007b). 

With upper body exercise resulting in greater cardiorespiratory and metabolic strain than 

lower body exercise (Sawka 1986), it could be expected that it would also elicit greater 

heat storage. However, at the same absolute intensity (V02, 1.6 L'min'\ core temperature 

and sweat responses were similar for arm-cranking and cycling, whereas thennoregulatory 

responses were lower during the same relative arm-cranking intensity (Sawka et al. 1984). 

These results suggest that thennoregulatory responses are dependent on the absolute 

metabolic intensity rather than the nature of activity. 

2.2.1.3 Cardiovascular Consequences 

The need to transfer heat to the skin increases the demand on the cardiovascular system 

and cardiac output increases to service both metabolic and cutaneous thennal requirements 

in the heat. The demand for blood in both the exercising muscles and at the skin surface 

reduces the central blood volume and cardiac filling pressure (Montain and Coyle 1992), 

which reduces stroke volume. In order to preserve cardiac output heart rate is increased 

resulting in a "cardiovascular drift" to compensate for the reduced stroke volume (Montain 

and Coyle 1992). At the point when near maximum heart rate is reached, cardiac output 

peaks and blood flow to the skin is reduced in order to maintain central blood pressure 

(Adams et al. 1975; Patterson et al. 1994; Gonzalez-Alonso et al. 1999). This, in turn, 

compromises heat dissipation and causes core body temperature to rise further. The actual 

mechanisms regulating cardiac output maintenance during exercise in the heat are 

complex, multifactorial (Gonzalez-Alonso et al. 1999) and outside of the scope of this 

report. 

2.2.1.4 Metabolic Changes during Hyperthermia 

The rate of muscle glycogen degradation and concomitant lactate accumulation are faster 

during exercise in the heat (Febbraio et al. 1994; Morris et al. 2005); but as glycogen stores 

are not depleted at exhaustion following intennittent high intensity exercise, it is unlikely 

that these metabolic changes are the cause of fatigue (Maxwell et al. 1999; Morris et al. 

2005). Nevertheless, carbohydrate ingestion during exercise in the heat appears to prolong 
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time to fatigue (Below et al. 1995; Galloway and Maughan 2000; Carter et al. 2003) and 

attenuate decreases in skill performance (Vergauwen et al. 1998); the mechanisms for 

which are currently unclear. In most circumstances though, high core temperature seems to 

be the critical factor for fatigue in the heat. 

2.2.1.5 Central Fatigue Mechanisms 

An alternative more recent model suggests that fatigue during prolonged exercise 

(continuous or intermittent) in the heat, may not be due to critical core temperature per se, 

but rather to the anticipatory regulation of cellular preservation for the avoidance of 

catastrophe (Marino 2004; Noakes et al. 2004). During self-paced running (Noakes 2007a) 

or cycling (Tucker et al. 2004), speed (or power output) seems to be regulated by a 

. sensational feedback of the environmental conditions and the known exercise duration in 

order to anticipate the avoidance of catastrophe. Numerous neural mechanisms occur in the 

brain and central nervous system (CNS) during exercise in the heat which may provide 

some evidence to this "central governor model of exercise regulation" (Noakes et al. 2001; 

Noakes et al. 2005). There is a decrease in the electrical activity of the brain, which is 

highly correlated with the rise in core temperature (Toes) (Nybo and Nielsen 200la), and 

associated with the rating of perceived exertion (RPE) (Nybo and Nielsen 2001b). It has 

been suggested that exercise intensity· is controlled by the perception of the rate of heat 

storage in order to avoid excessive heat accumulation and catastrophic elevation of core 

body temperature (Tucker et al. 2006). Furthermore, since RPE is the only variable that 

always seems to be at or near maximum at the time of exhaustion during all forms of 

exercise (Noakes 2007b), it may be that a reduction in motivational drive to continue 

exercise under thermoregulatory strain has the greatest influence on fatigue. 

2.2.1.6 Core Temperature Measurement 

Core body temperature refers to the deep central temperature of the body, however, it is 

not consistent and variations occur throughout the organs of the body. Core temperature 

has been measured at· different sites and by various methods including; rectal, oesophageal, 

oral, auxiliary, aural (tympanic) and more recently intestinal. Oesophageal, rectal, and 

intestinal temperatures provide the most valid and reliable measures of core body 

temperature (O'Brien et al. 1998; Lee et al. 2000; Gant et al. 2006; Byrne and Lim 2007; 
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Casa et al. 2007). Oesophageal temperature (Toes) is considered to be the most accurate 

measure of core temperature due to the proximity to the left atrium. However, this 

technique causes discomfort during exercise and is temporarily influenced by the ingestion 

of fluids. Rectal temperature (Tree) has been the most widely used index of core 

temperature in exercise studies, but this method is limited to steady-state exercise due to 

its' slow response (Byme and Lim 2007). Intestinal temperature (Tint) has recently gained 

popularity in field research, as it is simple to use and less invasive than Toes and Tree (Lim 

et al. 2008). Tint has only been measured during a limited number of studies of intermittent 

team sports training (American football (Godek et al. 2006» and competition (soccer 

(Edwards and Clark 2006», especially at elite level. A number of validity studies have 

confirmed the accuracy of Tint in a range of exercise and environmental conditions 

(O'Brien et al. 1998; Gant et al. 2006; Casa et al. 2007). The reliability of Tint is dependent 

on the timing of the sensor ingestion prior to measurement, ensuring that it travels beyond 

the stomach and is not influenced by the ingestion of fluids or solids (Lee et al. 2000), but 

also avoiding expulsion (O'Brien et al. 1998). Transit durations have been reported as 

ranging from 8 h to 5 days (Lee et al. 2000). Lee et al. (2000) recommended that the 

sensors be ingested approximately 6 h prior to measurement to avoid temperature 

fluctuations and the risk of expulsion (Lee et al. 2000). 

2.2.1.7 Skin Temperature Measurement 

Cutaneous vasomotor control is important in thermoregulation and is influenced largely by 

skin temperature (Regan et al. 1996; Savage and Brengelmarm 1996), and therefore by 

underlying muscle tissue temperature and the environmental conditions. In order to 

conserve body heat, vasoconstriction occurs at skin temperatures below thermoneutral 

(-33°C) (Hardy et al. 1965), whereas in hot conditions or during exercise, when skin 

temperature increases (> 33°C), cutaneous vasodilation occurs to promote heat loss 

(Johnson et al. 1973a). Regional differences in skin temperature are largely dependent on 

the nature of exercise performed (Sawka et al. 1984), exposure to environmental conditions 

(Regan et al. 1996) and the distribution of clothing worn (Stephenson et al. 2007). 

Numerous body surface area (BSA) weighted formulae have been suggested for the 

determination of mean skin temperature (Jirak et al. 1975), with the following 4-site 
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formula proposed by Ramanathan (1964) commonly accepted in field studies (Ramanathan 

1964): 

Mean skin temperature = (0.34*TchesJ + (0. 15*Tfo,"o,,,J + (0.33*Tth;gJJ + (0.18*TcaW 

2.2.2 Hypohydration and Fluid Balance 

Exercise in hot environmental conditions results in body fluid loss through evaporation, as 

sweat is secreted on the skin surface to assist in the dissipation of heat. If insufficient fluids 

are consumed to counter the fluid lost via sweating, dehydration occurs. Excessive sweat 

losses lead to plasma hyperosmolality, as sweat is hypotonic relative to plasma (Sawka et 

al. 1985), and reduce blood plasma volume which is detrimental to central blood pressure 

and cardiac output. In order to protect blood volume and maintain cardiac output, and 

therefore blood flow to the working muscles and skin, fluids are redistributed from the 

intracellular to extracellular compartments (Nose et al. 1988; Sawka et al. 2001b). As 

blood becomes hypovolaemic, the ability to maintain central venous pressure and adequate 

cardiac output to support metabolism and thermoregulation during exercise is 

compromised and skin blood flow and sweat rate are reduced (Sawka 1992). An early 

study by Adams et al. (1975) attributed running fatigue in hot environmental conditions to 

thermoregulatory overload as a result of dehydration induced attenuation of cutaneous 

blood flow (Adams et al. 1975). 

2.2.2.1 Prolonged Endurance Exercise and Hypohydration 

The effects of hypohydration on the cardiovascular response to prolonged endurance 

exercise has been well documented (Saltin 1964; Armstrong et al. 1985; Montain and 

Coyle 1992; Below et al. 1995; Gonzalez-Alonso et al. 1995), with as little as a 1-2% 

decrease in body mass effecting performance (Armstrong et al. 1985). For example, in well 

trained cyclists performance at 90% V02peak in hot conditions (32°C) was reduced by 31 % 

after initially cycling for 60 min at a moderate intensity with restricted fluid intake 

(dehydration - 2% of body mass), compared with regular fluid intake (9.8 ± 3.9 min vs. 6.8 

± 3.0 min) (Walsh et al. 1994). Thus even moderate levels of dehydration may have a 

detrimental effect on prolonged exercise performance in hot conditions. However, in 

temperate conditions, Sharwood and colleagues (Sharwood et al. 2004) reported fluid 
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losses as high as 10% of body mass during an Ironman triathlon with little detrimental 

effect on 'health' or performance. Similarly, Pugh et al. (1967) reported a 6.7% loss of 

body mass by the winner of a marathon, which may indicate that for endurance running, a 

loss of body mass may compensate for reduced performance when dehydrated (Pugh et al. 

1967). Taken together, the effects of hypohydration seem less critical in temperate 

compared with hot conditions (Sharwood et al. 2004; Oliver et al. 2007a), and it is the 

combined effect of dehydration and hyperthermia which seems to have the greatest effect 

on cardiovascular function. Gonzalez-Alonso (1998) showed that dehydration (4% of body 

mass) and hyperthermia (l°e increase in core temperature) independently reduced stroke 

volume (7 to 8%) and increased heart rate without compromising mean arterial pressure or 

cardiac output. However when dehydration was combined with hyperthermia, during 

prolonged cycling, the decrease in mean arterial pressure and stroke volume (20%) was 

substantial, resulting in a decline in cardiac output (Gonzalez-Alonso 1998). Hence, the 

physiological consequences of hypohydration during exercise seem to be exacerbated in 

the heat. 

2.2.2.2 Intermittent Exercise and Hypohydration 

The effects of hypohydration on intermittent exercise are less well understood than in 

prolonged endurance exercise. Maxwell et aI., (1999) observed a 4% decrement in sprint 

performance during an intermittent maximal anaerobic running test (MART) after subjects 

were dehydrated by -1.5% of body mass (Maxwell et al. 1999). Similar reductions in 

performance have been reported in other sport specific intermittent tests (e.g. LIST) 

conducted in hot conditions (30°C) (Morris et al. 1998). Decrements in performance during 

field studies are often difficult to quantify, particularly in team sports. Few field studies 

have accurately measured fluid loss during competition, particularly at elite level (see 

Table 2.6 for a review of fluid balance during various sports (Sawka et al. 2007)). In 

intermittent team sports, soccer has received the greatest attention, with the majority of 

research indicating mean sweat losses of approximately 0.7 - 1.3 L'h- l during training 

(Maughan et al. 2004; Maughan et al. 2005; Shirreffs et al. 2005) and 1.2 - 1.6 L'h- l during 

competition (Broad et al. 1996; Maughan et al. 2007b), with individuals varying between 

0.4 and 3.2 Lh- l (Shirreffs et al. 2006). Sweat loss seems to be independent of 

environmental conditions, with similar sweat rates reported in warm and cooler conditions, 
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possibly as a result of self-adjustment in exercise intensity and clothing selection (Broad et 

al. 1996; Shirreffs et al. 2006; Maughan et al. 2007b). Similar losses have been reported 

during tennis training (- 1.1 L"h·l, (Bergeron et al. 2006» and indoor netball competitions 

(- 1.0 Lh·], (Broad et al. 1996», with indoor basketball players experiencing slightly 

greater sweat losses (- 1.6 Lh- I
, (Broad et al. 1996». Godek and colleagues recently 

reported considerably higher sweat losses (- 2.1 Lh·] with some athletes as high as 3.6 L"h­

I) in both college and professional American football players during training (Godek et al. 

200Sb; Godek et al. 2006). These relatively high sweat losses appear to be related to the 

large body surface area (BSA) of these athletes; as after adjusting for BSA, their sweat rate 

was similar to cross-country runners training in the same enviromnent (Godek et al. 

200Sa). There is currently little data available on fluid loss during sailing, with no reports 

in the published literature on big-boat sailing. Recently, Slater and Tan (2007) reported 

mean sweat losses of - O.S L"h-I in amateur Dinghy sailors during competition (Slater and 

Tan 2007). However, the duration between pre- and post-sailing measurements was S h, 

despite a competition period being less than 2 h; therefore, the sweat rate during 

competition was probably considerably higher than that reported. 
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Table 2.6 Sweat rates, voluntary fiuid intake and levels of dehydration in various sports. Adapted from 
(Sawka et al. 2007) 

Sweat Rat~fLh"]l:i' :i;,,::~> '", ",' ",,,,<,,,,,,,' """''''''i'' ':'::';:"" • ' .• Dehydration 
.:.:,. ",Iuid}ntake [L·h' ]""" .. [% BMf,.·; . 

""';''i''''c'~'~di'ti~n''L:; , • Range '::;;:;;::;;i'Mea'n';:!; ;<:: Rang'e'<''< i\{ MeaiJ::' >"R~iige \;'d 

Waterpolo (Cox et al. 2002) Training 0.29 [0.23·0.35] 0.14 [0.09·0.20] 0.26 [0.19·0.34] 

Competition 0.79 [0.69·0.88] 0.38 [0.30·0.47] 0.35 [0.23·0.46] 

Basketball (Broad et al. 1996) Training 1.37 [0.90·1.84] 0.80 [0.35·1.25] 1.00 [0.0·2.0] 
Competition 1.60 [1.23·1.97] 1.08 [0.46·1.70] 0.90 [0.2·1.6] 

Netball (Broad at al. 1996) Training 0.72 [0.45·0.99] 0.44 [0.25·0.63] 0.70 [+0.3·1.7] 
Competition 0.98 [0.45·1.49] 0.52 [0.33·0.71] 0.90 [0.1·1.9] 

Soccer (Shirreffs et al. 2005) Training 1.46 [0.99·1.93] 0.65 [0.16-1.15] 1.59 [0.4·2.8] 

Soccer (Maughan el al. 2005) Training 1.13 [0.71.1.77] 0.28 [0.03·0.63] 1.62 [0.87·2.55] 

Soccer (Maughan et al. 2007b) Competition 1,12 [0.55·1.51] 0.58 [0,05·1.46] 1.10 [+0.05-2.07] 

American Football (Godakelal. 2005a) Training 2.14 [1.10·3.18] 1.42 [0.57·2.54] 1.50 

Cross-country running (Godek el a1. 2005a) Training 1.77 [0.99-2.55] 0.57 [0.00·1.30] 0.97 

Dinghy Sailing (Slaler and Tan 2007) Competition 0.47 [0.37-0.56] 0.24 [0.15·0.34] 1.00 

Mean voluntary fluid intake during intermittent team sport exercise is usually from 0.5 to 

1.0 Lh'! (Broad et al. 1996; Godek et al. 2005b; Shirreffs et al. 2006; Maughan et al. 

2007b; Zetou et al. 2008), equivalent to a replacement of - 40-60% of the fluid lost. 

Hence, mean dehydration is seldom> 2% of body mass in team sports. However, large 

individual variability occurs, with some team sport athletes experiencing dehydration> 3% 

of body mass during training (Godek et al. 2005a; Shirreffs et al. 2006), hence the 

American College of Sports Medicine recommendations for rehydration strategies to be 

individualised (Sawka et al. 2007). During prolonged sailing 88% of New Zealand 

Olympic class sailors reported symptoms of dehydration during one season (Mackie and 

Legg 1999), highlighting dehydration as a common problem in this sport. Dehydration has 

also been reported to occur during America's Cup yacht racing (Miller 1987; Neville et al. 

2006). 
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During competition the replacement of fluid is often limited by the nature and regulations 

of the sport, with the majority of team sports (e.g. soccer, rugby and hockey) only allowing 

for fluid replacement during stoppages in play. Fluid replacement in competitive sailing is 

usually limited by the constraints of added weight and little space for storing fluids on the 

deck of the yacht (Slater and Tan 2007), hence sailors rarely carry adequate fluids (Mackie 

and Legg 1999; Slater and Tan 2007). However, in America's Cup yacht racing, sailors are 

able to carry sufficient fluids on-board without compromising technical weight restrictions. 

2.2.2.3 Maximal Exercise and Hypohydration 

Shorter duration exercise, such as a single repetition of peak power (vertical jump height) 

or peak force (isometric squat) do not seem to be effected by moderate hypohydration (up 

to 5% loss of body mass) (Judelson et al. 2007b). In addition, maximal efforts lasting 15 s 

(sprint cycle performance) do not seem affected by dehydration (3.5%) and moderate 

hyperthermia (1°C) when compared with euhydrated trials (Cheuvront et al. 2006). 

Whereas, performance in multiple-repetitions and sets of resistance exercise, decreased 

when subjects were dehydrated (2.5-5.0% of body mass) and moderately hyperthermic 

(38.5°C), compared with euhydration (Judelson et al. 2007a; Judelson et al. 2007b). In 

addition, Hickner et al. (1991) reported that performance during a 6 min arm-cranking 

protocol, similar to America's Cup grinding, deteriorated by 3.4% following a 3 day, 4.5% 

reduction in body mass (Hickner et al. 1991). Therefore it is concluded that a single bout of 

short-duration maximal exercise is not affected by hypohydration, although prolonged or 

repeated maximal exercise is significantly influenced by fluid loss. 

Fluid balance is a measurement of the change in hydration status of an individual. Clearly 

any pre-exercise fluid deficit exacerbates the dehydration that occurs during exercise. 

Maughan et al. (2007) recently reported that 35% of the soccer players competing in an 

English Premier League Reserve game were dehydrated prior to the start of the game 

(>900 mmolL-1 urine). Therefore, the measured level of dehydration after the game 

(-1.1 %) would have been a considerable underestimate for the pre-game dehydrated 

athletes (Maughan et al. 2007b). 
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2.2.2.4 Fluid Balance Measurement 

Although there is no clear definition or clinical symptoms of dehydration per se, it is 

usually determined as the percentage of body mass lost due to the acute loss of total body 

water (TBW) as a consequence of exercise, hypohydration, environmental conditions, 

illness or pharmacological intervention. The most common type of dehydration relating to 

exercise, is hypertonic dehydration, which is characterised by reductions in plasma 

volume, serum hyperosmolality (>300 mrnol"kg-l) and serum hypematraemia (sodium 

>145 mrnol-L"l) (Weinberg and Minaker 1995). Various methods of determining fluid 

balance status (TBW) have been adopted, including changes in body mass, bioelectrical 

impedance, urine indices (volume, colour, osmolality, specific gravity) and serum indices 

(osmolality, sodium and haemoglobin concentration, haematocrit and specific hormone 

levels) (Shirreffs 2000; Oppliger and Bartok 2002; Armstrong 2005). As yet there is no 

consensus as to a single indicator of hydration status and the choice is usually dependent 

on the application or the equipment available_ Urine osmolality has been recommended as 

a valid and relatively simple indicator of hydration status, with urine osmolality >900 

mmol-L"l indicating dehydration (Shirreffs and Maughan 1998). Urine specific gravity (as 

measured by refractometry) has been shown to be equally reliable and highly correlated 

(l=0.96) to urine osmolality, with values greater than 1.030 gmrl indicating dehydration 

(Armstrong et al. 1998). The most commonly used indicator of dehydration is the acute 

change in body mass, which is a simple and reliable measure, particularly for the field­

based practitioner (Maughan et al. 2007a). The National Athletic Trainers Association 

(NATA) position statement regarding fluid replacement recommends using the change in 

body mass, urine specific gravity and urine colour as indicators of hydration status (Casa et 

al. 2000). More recently the American College of Sports Medicine (ACSM) position 

statement on fluid replacement suggested the following first morning measurement as 

indices of dehydration (Sawka et al. 2007): 

• Body mass loss> 2% of body weight 

• Plasma osmolality> 290 mmol-L-l 

• Urine specific Gravity> 1.020 gmrl 

• Urine Osmolality> 700 mmol-L-l 
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2.2.3 Electrolyte Balance 

During exercise a number of electrolytes are lost in sweat, most notably; sodium, chloride, 

potassium and magnesium. The concentration of each in sweat is variable, both between 

and within individuals and largely dependent on the level of aerobic fitness, rate of 

secretion, diet, hydration status and the degree of heat acclimation. The sweat electrolyte 

concentration may also be related to specific activities, such that runners have been shown 

to have lower sodium and chloride concentrations than equally well trained swimmers 

(Henkin et al. 2007). Sweat rate (Cotter et al. 1995) and sweat electrolyte composition 

(Costa et al. 1969) seem to vary by body region, with some regional electrolyte 

concentrations being greater than whole-body sweat concentrations (Lemon et al. 1986; 

Shirreffs and Maughan 1997). 

Electrolytes are reabsorbed back into the plasma via active transport, as sweat passes 

through the sweat glands to the skin surface. However, the rate of reabsorption is unable to 

match high sweating rates and electrolyte loss generally increases with the rate of sweat 

loss (Morgan et al. 2004). As sodium is the major ion in extracellular fluid and sweat, 

considerable amounts are lost during heavy sweating, with as much as 109 lost during a 2 

h professional American football training session in warm conditions (Stofan et al. 2002). 

In team sports, sweat sodium concentrations range between 22 and 101 mmol'L'l (513 to 

2330 mg'L'l) (Stofan et al. 2002; Maughan et al. 2007b), reflecting large individual 

variations, and reinforcing the need for individualised assessments and electrolyte 

replacement strategies (Maughan et al. 2007b). Typical sweat and plasma concentrations 

for each of the main electrolytes are listed in Table 2.7 

Replacing electrolytes, particularly sodium, during and after exercise is important in 

maintaining euhydration. Apart from aiding in the absorption of water, sodium also plays 

an important role in stimulating thirst and increasing voluntary fluid consumption. An 

alternative and effective means of replacing lost electrolytes post-exercise is the 

consumption of solid foods and water (Maughan et al. 1996). Other electrolytes are also 

important in maintaining fluid balance and cellular function. Potassium is the major ion in 

intracellular fluid that is important in enhancing water retention in the intracellular space 

(Maughan et al. 1994); while there is some evidence that magnesium loss may play a role 

in muscle cramping (Roffe et al. 2002; Mooren et al. 2005). 

43 



Table 2.7 The individual range of concentrations of the main 
electrolytes found in sweat and plasma 

Sodium (mmoLL·' ) 

Chloride (mmoLL·') 

Potassium (mmoLL·' ) 

Magnesium (mmoLL·' ) 

....•.. Plasma .... ·Sw~a~ .••• 

130-155 20-100 

96-110 10-70 

3.2 - 5.5 2 - 10 

0.7 -1.5 0.2 -1.2 

2.2.3.1 Mean Sweat Concentration 

Chapter:: Literature Review 

Although it is generally accepted that some specific regional sweat electrolyte 

concentrations are greater than whole-body concentrations (Costa et al. 1969), the mean of 

specific regional sites may provide an accurate indication of whole-body sweat 

concentrations (Patterson et al. 2000; Maughan and Shirreffs 2004; Maughan et al. 2004). 

Patterson et al. (2000) determined that mean whole-body sweat concentrations for sodium 

and chloride can be accurately determined from an area-weighted mean of four skin 

regions (Patterson et al. 2000): 

Mean whole-body concentration = 28.2% chest + 28.2% back + 11.3%forearm + 32.3% 

thigh. 

Other researchers have suggested that a simple mean of four sites (chest, scapular, forearm 

and thigh) is a valid indicator of whole-body sweat concentration (Maughan et al. 2004). 

2.2.4 Motor Skill and Cognitive Function 

Intermittent sports such as soccer, hockey and competitive sailing, not only require the 

maintenance of physiological function, but are multi-tasked and require specific complex 

motor and decision making skills. The preservation of motor skill and cognitive 

performance function during strenuous exercise in hot humid conditions is therefore 

important. Hypohydration affects both, sports skill and cognitive function during exercise. 

Following 90 min of intermittent running (LIST) in moderate conditions, soccer specific 

skill performance was found to deteriorate by 5% when subjects were moderately 
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dehydrated (2.4% of body mass) compared with ad libitum fluid replacement (McGregor et 

aL 1999). Soccer skill performance has also been found to decrease when subjects were 

dehydrated by as little as 1.5 to 2% of body mass (Edwards et aL 2007). Furthermore, 

dehydration of 2% after exercise in the heat impairs cognitive performance, (8% decrease 

in arithmetic ability, 11 % decrease in short-term memory) (Gopinathan et aL 1988). 

Similarly, in hot conditions (35°C vs. 23°C), tennis skill performance (service, 

groundstroke and volley accuracy and power) was significantly reduced after 60 min of 

exercise (Dawson et al. 1985). In addition, Sunderland and Nevill (2005) reported a 6% 
, 

reduction in field hockey skill performance after 30 min of interval exercise in hot (30°C, 

38% RH) vs. moderate (l9°C, 51 % RH) conditions, and attributed the decrease to a higher 

core temperature (Tree) at the end of the exercise (39.6 vs. 39.0°C) (Sunderland and Nevill 

2005). 

2.2.5 Environmental Conditions 

A recent retrospective survey of heat related injuries in Australian sport requiring 

hospitalisation over a 2-year period, reported the majority of cases occurring during the 

summer months (Driscoll et aL 2008). Sports which result in the greatest exposure to the 

environment, such as: triathlon, cricket and endurance running were at greatest risk of heat 

illness (Driscoll et aL 2008). Interestingly, there were no reported cases of heat illness in 

sailing. 

Body heat loss is particularly challenged during exercise in hot environments. The 

effectiveness of evaporation is determined by both the water vapour pressure gradient 

between the skin surface and the air (i.e. the environmental humidity), and the rate of 

airflow over the skin surface (Wendt et a1. 2007; Brotherhood 2008). The guidelines 

published by the United States National Weather Service on the risk of heat related illness 

during exercise, based on the heat exchange capacity of the environment, states that 

exercise in environmental conditions greater than 41°C with 40% RH or 31 °C with 100% 

RH increases the risk of heat stroke (Figure 2.5). 
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Figure 2.5 Risk of possible heat illness, based on the environmental capacity for 
heat exchange. (http://weather.noaa.gov/weather/graphics/heatindexchart.jpg 
[Accessed 2008 February19]) 

The importance of airflow for evaporation is clear; velocities greater than 3 m·s· 1 result in 

lower skin and core temperature (Tcee) during exercise, compared with wind speeds of less 

than 2 m·s·1 in hot conditions (35°C) (Adams et al. 1992). Higher wind speeds facilitate 

increased heat transfer to the environment and thus reduced heat transfer. This evidence 

also indicates that the limitation for heat transfer is not a result of thermoregulatory 

capacity of the human body but the inability to dissipate heat to the environment. 

Similarly, a well controlled study by Saunders et aI., (2005) showed that higher wind 

velocities resulted in increased performance (longer time to exhaustion) and significantly 

lower Tree than lower wind velocities during moderate intensity cycling at 33°C and 59% 

RH (Figure 2.6) (Saunders et al. 2005). 
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Figure 2.6 Heat storage of the human body during exercise 
trials with different air velocities (Saunders et al. 2005) 

2.2.6 Clothing 

Clothing provides an important protective barrier from the environment. In hot conditions, 

clothing prevents direct radiant heat gain from the sun or reflective surfaces such as water 

(Pascoe et al. 1994a; Pascoe et al. I 994b ). The colour of clothing also plays an important 

role in reducing radiant heat gain; white fabrics gain less radiant heat than black (Nielsen 

1990). However, clothing can also increase thermal strain by creating a layer of insulation 

which restricts air flow and concomitant evaporation from the skin surface during exercise 

in hot conditions (Kenny et al. 1999). Therefore, in the heat, clothing which provides the 

least resistance to evaporation 'may be preferable (Nagata 1978; Brotherhood 2008). Close 

knit polyester fabrics (with little permeability) generally cause greater sweat production 

and increased thermal strain than cotton or wool fabrics (K won et al. 1998), however 

cotton and wool have a higher rate of regain (i.e. cotton fibres absorb more sweat than 

synthetic fibres), which decreases the skin-clothing-air vapour pressure gradient, thereby, 

reducing evaporative potential and increasing the weight of the garment. Hence in hot and 

humid conditions, the ideal fabric should be highly permeable (high wicking ability) with 

little regain. 
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2.2.7 Heat Acclimatisation 

Prolonged (acclimatisation) or repeated exposure (acclimation) to heat results in 

physiological adaptations which can attenuate the impact of hot environmental conditions 

on exercise performance (Nielsen et al. 1993; Montain et al. 1996; Cheung and McLellan 

1998). These adaptations include decreased core temperature at rest and a lowered rate of 

rise in heart rate and core temperature during exercise (Nielsen et al. 1993), increased 

sweat rate and earlier onset of sweating response (Arm strong and Maresh 1991) and 

decreased sweat electrolyte concentrations (Allan and Wilson 1971). Large increases in 

sweat rate (68%) and decreases of up to 50% in sweat sodium concentration have been 

reported when individuals were acclimatised to hot conditions over a period of 3 weeks 

(Allan and Wilson 1971). The improved ability of the acclimatised athlete to reabsorb 

sodium from sweat, maintains extracellular electrolyte concentration (hypertonic plasma) 

which assists in the redistribution of fluid from intracellular spaces in order to preserve 

plasma volume (Patterson et al. 2004). The increase in plasma volume is important in 

preserving cardiac output during exercise in the heat (Patterson et al. 2004). Adaptations 

begin after just a few days of exercise in the heat with complete physiological adaptation 

usually taking 7 to 14 days of moderate to high intensity training (Montain et al. 1996; 

Pandolf 1998). The rate of adaptation is largely dependent on the degree of thermal strain 

during exercise, as the rise in core temperature and sweating response seem to be the 

critical stimuli for acclimation. Hence, intensity rather than volume of exercise appears to 

be most important in determining an adaptation response (Armstrong and Maresh 1991). 

Furthermore, as many of the physiological adaptations to heat exposure are similar to those 

developed in well trained endurance athletes, athletes with high aerobic fitness are able to 

perform longer in hot environments and tolerate higher levels of body temperature than 

subjects with lower aerobic fitness levels (Cheung and McLellan 1998). 

In summary, strategies to attenuate the rise in core temperature, such as; euhydration, 

clothing selection and acclimatisation are important in maintaining performance in hot 

environmental conditions. 

48 



Chaptcr 2: Literature Rcview 

2.3 Immune Function and Illness 

2.3.1 Upper Respiratory Infections 

The most common medical complaint of athletes, including America's Cup sailors, are 

upper respiratory infections (URI), such as viral rhinitis (common cold), pharyngitis, 

bronchitis and sinusitis (Peters 1997; O'Kane 2002; NeviIle et al. 2006; Simasek and 

Blandino 2007). Most URI are caused by respiratory viruses through exposure to infectious 

pathogens either by direct physical contact or aerosolised droplets (O'Kane 2002). The 

onset of symptoms usually occurs I to 3 days after exposure to an infectious agent. 

Symptoms usually last for 5 to 10 days (Simasek and Blandino 2007; Spence et al. 2007) 

and can include nasal congestion, sore throat, rhinorrhea, cough, sneezing, feeling unwell 

and can be accompanied by muscle aches and fatigue and occasionally headaches . 

(Department of Health 2005). The infectious period of an individual usually begins one 

day before the start of symptoms and continues for up to five days of illness (Department 

of Health 2005). 

2.3.1.1 URI and the Athlete 

It is well accepted that moderate levels of physical activity may reduce the incidence and 

severity of URI (Nieman 2000; Klentrou et al. 2002; Matthews et al. 2002). When 

sedentary individuals engaged in 45 minutes of moderate physical activity three times per 

week over a 12 week period, the severity of common cold symptoms and the number of 

days of influenza were reduced significantly (Klentrou et al. 2002). This is in contrast to 

that seen in elite athletes where elite female rowers, for example, reported 57% more URI 

than matched non-athletic controls over a two month training period (Nehlsen-Cannarella 

et aI. 2000). In a recent cross-sectional study, elite triathletes reported three times as many 

URI incidents than sedentary controls and one-and-a-half times more than recreationally 

competitive triathletes during a five month training and competition period (Spence et al. 

2007). Although much of the research on the incidence of illness in athletes has 

concentrated on endurance athletes (Peters and Bateman 1983; Nieman et al. 1990; 

Nieman et al. 2006), there is evidence that elite athletes in most sports involving intense 

training experience a similar pattern (Novas et al. 2003; Fahlman and Engels 2005; Francis 
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et al. 2005). In general, athletes involved in high training and competition loads seem to be 

more susceptible to URI than both recreational athletes and the general population 

(Nieman 2000; Spence et al. 2007), with illness often occurring in periods of heavy 

training load and during or after competition (Peters and Bateman 1983; Nieman 2000; 

Novas et al. 2003). This relationship between physical work load and risk of URI has been 

described previously as a "J-shaped" curve (Nieman 1994) (Figure 2.7). This model 

suggests that whereas sedentary individuals are at moderate risk of URI, individuals 

performing regular moderate physical activity have a reduced risk of URI, and athletes 

performing high training loads have an increased risk of URI (Nieman 1994). URI 

accounted for 60% of the days absent from sailing due to illness in one team, over a 2 year 

period prior to and during the 31 sI America's Cup (Neville et al. 2006). This high incidence 

of URI was attributed to the high volume of training and sailing performed by America's 

Cup athletes. 

2.3 .1.2 Sailing and URI 

Upper respiratory infections are the most common illness in America's Cup sailing (40% 

of all illnesses), followed by other stress related disorders such as hypertension and 

insomnia (13% of all illnesses) (Neville et al. 2006). Illness also affects performance and 

availability for training. In an illness and injury epidemiology report during a 2 year 

training period prior to the 31 sI America's Cup, clinically diagnosed URl accounted for 

more than 60% of all the illness related days absent from sailing and training and more 

than 10% of the total number of days absent (injuries and illnesses) from sailing (Neville et 

al. 2006). 
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Sedentary Moderate Activity High Activity 

Figure 2.7 The relationship between training load and risk of 
upper respiratory infections (URI). "J-shaped" model (Nieman 
1994) 

2.3.2 Immune Function in Athletes 

2.3 .2.1 Acute effects of Exercise on Immune Function in Athletes 

There is increasing evidence that the susceptibility to UR! is largely due to suppression of 

immune system function as a result of stress, either physiological or other (Gleeson 2006). 

A number of immune cell functions are temporarily altered following an acute bout of 

heavy load exercise (Gabriel and Kindermann 1997; Gleeson 2007). The effects are largely 

dependent on the volume and intensity of the exercise (Nieman 1998), with exhaustive 

endurance exercise lasting longer than 2 h (McDowell et al. 1992; Nieman 2007) and 

exhaustive maximal intensity exercise above VOZmax (MacKinnon and lenkins 1993; 

Fahlman et al. 2001) resulting in immunosupression. This decrease in immune function has 

been associated with increased incidence of UR! in the days and weeks following heavy 

training load or competition (Heath et al. 1992). During heavy load exercise the plasma 

concentration of several stress hormones increases, including: epinephrine, growth 

hormone and cortisol. These changes are thought to have regulatory effects on many 
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immune cell functions (Pedersen et al. 1997), including high levels of circulating pro­

inflammatory and anti-inflammatory cytokines (Suzuki et al. 2002), decreases in the 

number and function of circulating leukocytes (Pedersen and Toft 2000), suppressed 

natural killer cell count and T cell activity (Mackinnon et al. 1987), as well as decreases in 

mucosal secretions including immunoglobulins (MacKinnon 2000; Halson et al. 2003; 

Lakier Smith 2003; Fahlman and Engels 2005). 

An "open window" period has been used to describe this post-exercise' period of 

vulnerability (Pedersen and Bmunsgaard 1995), where immune function is compromised 

for a period of 1 to 72 h depending on the immune parameter (Malm et al. 2004). It is 

during this "open window" of immune suppression that athletes are at increased risk of 

infection. See GIeeson (2007) for a comprehensive review. 

2.3.2.2 Chronic effects of Exercise on Immune Function in Athletes 

Regular moderate exercise has important health benefits in stimulating immune function 

and increasing resistance to URl as well as other illnesses. However, when athletes 

perform prolonged periods of high intensity training or are experiencing "overreaching" (a 

temporary reduction in performance), immune function remains suppressed resulting in 

increased susceptibility to illness, at least until adequate recovery is achieved (Gleeson 

2002). These periods are often accompanied by insufficient energy intake, tissue trauma as 

a result of increased training load, disturbed sleep and psychological stress, all of which 

have a cumulative effect on the suppression of innate and adaptive immunity (Lakier Smith 

2003; Gleeson 2007). The affects on immune cell function are similar to those seen with 

chronic infection and trauma (Northoff et al. 1998). In extreme circumstances if recovery 

time is insufficient, the athlete may develop "overtraining syndrome" resulting in persistent 

underperformance, psychological disturbances, hormonal changes and chronically 

suppressed immune function with associated sustained illness (Figure 2.8) (GIeeson 2002; 

Lakier Smith 2003). 

In summary, resistance to infection is influenced by the effectiveness of the immune 

system in protecting the body against pathogenic microorganisms. With temporary 

immunodepression being relatively unavoidable during heavy load training, it is the degree 

of depression together with exposure to infectious pathogens during this "open window" 

period of vulnerability that increases the risk ofiIIness in athletes (Figure 2.9). 
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2.3.3 Salivary Immunity 

It is estimated that 95% of all infections are initiated at the mucosal surfaces (Bosch et al. 

2002). These mucosal surfaces are protected by compl~x immune surveillance through the 

secretion of antimicrobial proteins by the mucosal exocrine glands. These antimicrobial 

proteins act as the first line of defence against infection and disease by neutralizing and 

preventing microbial entry and replication (Lamm 1997; Bosch et al. 2002; Teeuwet al. 

2004). Salivary proteins are synthesized and secreted in the oral cavity by three pairs of 

major salivary glands (submandibular, sublingual and parotid glands) and many minor 

glands (Crawford et al. 1975). The main salivary antimicrobial proteins are 

immunoglobulins, of which secretary immunoglobulin A (s-IgA) is by far the most 

abundant and responsive to fluctuations in stress (Lamm 1997; Woof and Kerr 2006). 

Salivary IgA antibodies play a crucial role in immune defence by providing protection at 

mucosal surfaces via several complex mechanisms (Mazanec et al. 1993). 

2.3.3.1 Salivary Immunoglobulin A 

The· primary function of s-IgA is to provide an immunological barrier by preventing 

microbes, viruses and toxins from penetrating the body through the mucosal surfaces and 

inhibiting microbial adhesion to epithelial surfaces (Lamm 1997; Woof and Kerr 2006). 

Salivary IgA antibodies are also able to neutralize specific viruses intracellularly within the 

mucosal epithelium and prevent microbial internalization and viral replication (Mazanec et 

al. 1993). There is also evidence that s-IgA antibodies play an important role in 

phagocytosis by binding to antigens in the mucosal lamina propria and aiding in their 

excretion into the lumen (Mazanec et al. 1993). Salivary gland function is largely 

controlled by neurohormonal regulation, and the synthesis and secretion of the 

antimicrobial proteins respond almost instantaneously to stress (Bosch et al. 2002), 

resulting in transitory fluctuations in the concentration and flow rate of salivary proteins 

(Stone et al. 1987b). It is this sensitivity to stress, together with the relatively simple and 

non-invasive procedure of collection which has resulted in saliva being a focus of 

immunological research over the past two decades. Furthermore with salivary glands 

similar in morphology and function to many other exocrine glands they are thought to 

provide a representative picture of the secretary immune system (Bosch et al. 2002). 
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Saliva composition and secretion are affected by a number of endogenous and exogenous 

factors including: the health of the individual, fitness level, age, presence of infection, 

circadian rhythms and hormonal variations, nutritional deficiencies, fasted state, fluid 

intake and dehydration, sleep deprivation, psychological stress and the volume and 

intensity of exercise. There is evidence to suggest that basal s-IgA concentration and the 

secretion rate may be related to the physical training status of the individual (Francis et al. 

2005; Maim 2006). Francis et al. (2005) found elite swimmers to have significantly higher 

basal s-IgA concentrations than active or sedentary individuals and similar results have 

been reported in elite female rowers (Nehlsen-Cannarella et al. 2000; Francis et al. 2005). 

In contrast, an earlier study on elite Nordic skiers reported significantly lower s-IgA 

concentrations compared with controls, although the authors acknowledged that the 

athletes may possibly have been in a state of chronic fatigue and stress following a period 

of intense competition (Tomasi et al. 1982). These findings may also be influenced by the 

effects of genetic selection or adaptation to training. 

The age of the individual can also influence salivary secretion, as flow rate decreases 

significantly with increasing age (Ben-Aryeh et al. 1984; Navazesh et al. 1992). The 

presence of infection, particularly during the incubation period, may reduce salivary flow 

rate and IgA concentration (Mackinnon et al. 1993a; Francis et al. 2005). Circadian 

rhythms in saliva flow rate and concentration have been reported, with peak values 

occurring in the afternoon (Dawes 1972). Nutritional deficiencies are known to impair 

immune function and have been shown to increase the risk of illness (Calder and Jackson 

2000; Gleeson and Bishop 2000). Energy restricted diets and low carbohydrate intake not 

only affect exercise performance but also increase stress hormone secretion that can lead to 

exercise induced immunodepression (Gleeson et al. 1998). In addition, sufficient intake of 

specific micronutrients are known to be essential for optimal immune function, including 

vitamins A, B6, B 12, folic acid, C, E, and minerals iron, zinc, selenium and copper (Calder 

and Jackson 2000; Gleeson et al. 2004a), although excessive intakes of several 

micronutrients can be potentially harmful to immune function (Gleeson and Bishop 2000). 

Saliva secretion is also sensitive to the proximity of meals (Dawes 1972), with greater 

concentrations of IgA reported when fasted (Calder and Jackson 2000). Fluid restriction 

over a period of 48 h causes a decrease in salivary flow rate (Oliver et al. 2007b), 

furthermore, fluid intake during exercise prevents dehydration induced increases in stress 

hormones which may attenuate the decrease in saliva secretion when compared with 
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restricted fluid intake (Bishop et al. 2000). Chronically disturbed sleep patterns and sleep 

deprivation negatively influence immune function (Shephard and Shek 1997; Cohen et al. 

1998). Radomski et al. (1992) reported that after just two days of sleep deprivation, plasma 

levels of stress hormones increased resulting in immunodepression (Radomski et al. 1992). 

It has been suggested that subjects should have at least 8 h sleep for several days prior to 

testing for basal values (Shephard and Shek 1997). 

It is widely recognized that psychological stress and negative mood state are associated 

with depressed immune function (Bosch et al. 2002; Phillips et al. 2006). In a recent 

community study, the West of Scotland Twenty-07 Study, experience of stressful life 

events were found to be negatively related to s-IgA secretion rate (phillips et al. 2006). 

Salivary IgA was also associated with daily mood fluctuations in male students, with a 

negative mood being related to decreased s-IgA secretion (Stone et al. 1987a). 

2.3.3.2 Acute effects a/Exercise an S-IgA 

The acute effects of exercise on s-IgA are equivocal, and appear to depend on the fitness 

level of the subjects as well as the training load and type of sporting activity. The general 

consensus in the literature is that elite athletes experience a transitory decrease in s-IgA 

after performing heavy load exercise or competition. The effects are usually temporary and 

normally return to pre-exercise values within 1 to 24 h post-exercise. This was first 

reported by Tomasi et al. (1982) who showed a significant decrease in pre- to post-exercise 

parotid s-IgA in elite Nordic skiers after a National Nordic race (Tomasi et al. 1.982). 

Similar results have been reported with elite athletes in kayaking (Mackinnon et al. 1993b), 

swimming (Gleeson et al. 2000b), tennis (Novas et al. 2003) and triathlon (Libicz et al. 

2006). The response of s-IgA to exercise in recreational athletes is less convincing and 

appears to depend even more on the fitness condition of the individual and the intensity 

and duration of the exercise performed (Glee son 2000). Studies involving recreational 

athletes, have reported post-exercise decreases in s-IgA only after employing maximal or 

exhaustive intensity exercise protocols or high volume exercise, for example: marathon 

and ultramarathon running (Nieman et al. 2002; Nieman et al. 2006) or a series of Wingate 

tests (Fahlman et al. 2001). 
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2.3.3.3 Chronic effects of Exercise on S-IgA 

The cumulative effect of intense training has a more pronounced effect on mucosal 

immune depression (Mackinnon and Hooper 1994; Gleeson et al. 1999b; Gleeson et al. 

2000a; Fahlman and Engels 2005; TioIIier et al. 2005; Libicz et al. 2006). In a recent study 

of elite triathletes competing in the French Iron Tour, which included six triathlons 

performed on six consecutive days, basal s-IgA concentrations decreased significantly over 

the course of the competition (Libicz et al. 2006). A case study of an elite Australian 

kayaker performing multiple daily training sessions reported a significant decrease in pre­

training s-IgA concentration over a 2-week training period (-170 mg-L'l to -50 mg'L'I) 

(Gleeson et al. 2000a). Similar results were reported in army cadets taking part in as-day 

high intensity combat course where the combined stress of high activity load, sleep 

deprivation, psychological pressure and food restriction resulted in a significant drop in s­

IgA concentration (120 ± 14 mg'L'1 to 71 ± 9 mg-L,l) (Tiollier et al. 2005). 

2.3.4 Salivary IgA and URI 

The effects of exercise on s-IgA and the potential risk of URJ associated with heavy 

training load has been extensively debated over the past two decades and although there is 

little evidence of a direct link between s-IgA and URI, the general consensus within sports 

immunology is that elite athletes engaged in high training load and or competition may be 

at an increased risk of URI. It is undoubted that increased incidence of URJ are associated 

with high load training periods and stress in elite athletes; however, the mechanisms are 

still largely unknown and few studies have shown a direct association between immune 

depression and the incidence of URI (Gleeson 2007). In a much cited study of elite 

Australian swimmers, where 7 saliva samples were collected over a 7 month training 

period in preparation for the National swimming championships (Gleeson et al. 1999b), the 

pre-season, pre-training absolute concentration of s-IgA was associated with the incidence 

of URI during the season. The authors suggested that monitoring the rate of decrease in 

IgA at regular intervals during the season may assist in predicting illness and concluded 

that s-IgA concentrations below 40 mg'L,1 were associated with an increased risk of URI 

(Gleeson et al. 1999a; GIeeson et al. 1999b). In a more recent study of college American 

Football players, 8 saliva samples were collected over the duration of a season and showed 

that the secretion rate of s-IgA decreased during competition and intense training periods 
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. and was inversely related to the incidence of URI (Fahlman and Engels 2005). Moreover, 

an absolute s-IgA secretion rate ofJess than 40 Ilg'min-1 indicated an increased risk ofURI. 

Other studies have shown less convincing associations, in elite level tennis for example, no 

significant association was found between s-IgA and URI over a 12 week training period, 

even though s-IgA was significantly related to the training load (Novas et al. 2003). This is 

perhaps not surprising given the rather large individual variation in resting s-IgA levels 

(Francis et al. 2005). 

2.3.4.1 Expressing S-IgA 

Various methods of expressing s-IgA have been adopted which may account for some of 

the discrepancies in the literature. Salivary IgA has been reported as absolute concentration 

(Tharp 1991; Gleeson et al. 1999b), secretion rate (Mackinnon et al. 1993a; Fahlman and 

Engels 2005), ratio to total protein (Tomasi et al. 1982; Steerenberg et al. 1997; Fahlman et 

al. 2001) or ratio to saliva osmolality (Blannin et al. 1998; Walsh et al. 1999). It has been 

suggested that during exercise the concentration of IgA should be corrected for saliva flow 

rate (Stone et al. 1987b; Blannin et al. 1998), as any changes in saliva flow rate during 

exercise could alter the concentration of IgA. During heavy load exercise salivary flow rate 

may decrease as a result of dehydration (Walsh et al. 2004), evaporative process during 

hyperventilation (Reid et al. 2001) and vasoconstriction of salivary gland blood vessels due 

to sympathetic nervous system activation (Chicharro et al. 1998). Blannin et al. (1998) also 

reported that the IgA to saliva osmolality ratio was an appropriate measure of s-IgA, as 

exercise induced changes in concentration would then be accounted for (Blannin et al. 

1998). Other studies have suggested that s-IgA should be expressed relative to total saliva 

protein (Tomasi et al. 1982; Steerenberg et al. 1997; Nieman et al. 2002) in order to 

account for the effects of exercise induced changes in saliva volume. However, IgA 

accounts for a relatively small proportion of the total protein found in saliva (-15%) and 

changes in other saliva proteins also occur with exercise and therefore may be 

inappropriate to use in relation to exercise (Blannin et al. 1998; Walsh et al. 1999; Libicz et 

al. 2006) or other interventions (Reid et al. 2001). The absolute concentration of s-IgA 

seems appropriate for determining resting values, as there is no need to adjust for any 

exercise or intervention related influences on saliva flow rate (Libicz et al. 2006). 
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2.3.4.2 Methodological Limitations 

Immunological research has generally been either cross sectional, intervention or 

longitudinal in design (Mackinnon 1997). There are few longitudinal studies in the 

literature, with most having as little as 2 to 8 resting samples over a period of 3 to 12 

months, and as long as 2 to 24 weeks between sample collections. The most 

comprehensive longitudinal mucosal immunity study performed to date, collected saliva 

samples from elite swimmers, active and sedentary individuals every 2 to 3 days for a 4 

week period and reported large within and between subject variations, particularly in the 

elite athlete group (Francis et al. 2005). Similar large variations in s-IgA have been 

reported earlier by (Nehlsen-Carmarella et al. 2000) in elite woman rowers. These 

variations have important implications for the interpretation of studies which have few 

sample measures. For example, a study on 41 elite Australian swimmers collected only two 

saliva samples before and after a 4-month training period and concluded that training had 

no effect on s-IgA concentration and that there was no association between s-IgA and URI 

(Pyne et al. 2001). Whereas an earlier study on a similar group of 26 elite Australian 

swimmers where saliva samples were collected at monthly intervals over a period of 7 

months reported that s-IgA concentration decreased over the course of the season and pre­

training s-IgA was negatively associated with the incidence ofURI (Gleeson et al. 1999b). 

In general, the interpretation of results in most of the mucosal immunity literature is often 

difficult, due to substantial differences in study design, variations in exercise protocols and 

saliva collection procedures and other methodological limitations (Chicharro et al. 1998). 

The methods used in the collection of basal resting saliva samples for example, are varied, 

particularly with respect to the time of day, the proximity to meals and the time after 

previous training sessions. Much of the variation found in the literature may be due in part 

to this lack of standardization and failure to control for factors affecting the temporal 

fluctuations in saliva composition. Some studies have collected saliva in the morning after 

overnight fast (Nehlsen-Carmarella et al. 2000; Tiollier et al. 2005; Libicz et al. 2006), 

others have collected at midday (Fahlman and Engels 2005; Sari-Sarraf et al. 2007b) odn 

the afternoon (Mackinnon et al. 1993b; Francis et al. 2005), with some studies having as 

long as a 4 hour collection window (Fraucis et al. 2005; Sari-Sarraf et al. 2007b). The 

proximity to previous training sessions has also varied with samples collected as little as 4 

h (Fraucis et al. 2005) to 6 h (Mackinnon et al. 1993b) post-exercise. The concentration of 

s-IgA can also be influenced by the collection procedure. For example, saliva extracted 
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from the parotid gland has lower s-IgA concentration to that found in whole mixed saliva 

(Crawford et al. 1975). Stimulated saliva secretion, either by chewing paraffin wax (Libicz 

et al. 2006), using absorbant cotton swabs (Nakamura et al. 2006) or forced spitting can 

also reduce s-IgA concentration (Navazesh and Christensen 1982). Furthermore, analytical 

methods, storage temperature and calibration protocols can all influence the concentration 

ofs-IgA. 

Depending on the diagnosis and severity of illness, the incidence of URI can vary 

considerably (Neville et al. 2006). The majority of studies have used self-reported illness 

questionnaires, which are open to inconsistencies in interpretation as the reporting of 

symptoms is subjective and may not necessarily be infection related (Pyne and G1eeson 

1998; Spence et al. 2007). The incidence, symptomatology and pathogenic aetiology of 

URI was recently determined in a 5-month surveillance study in elite athletes, active and 

sedentary subjects (Spence et al. 2007). Of the 37 URI episodes reported, infectious 

pathogens were identified in only 11 (30%), suggesting that not all URI symptoms result 

from infections and respiratory tract inflammation may be an alternative aetiology for 

many sore throat symptoms. Consistent diagnosis procedures and reporting of infectious 

URI, preferably qualified clinical diagnoses are important for accurate URI studies. 
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3.1 Introduction 

The America's Cup is the oldest competing trophy in sport, having first been raced in 

1851. It is widely regarded as the pi~acle of sailing and held approximately every three to 

four years between challenging yacht clubs (representing their respective countries) and 

the winner of the previous America's Cup (the Defender) who also hosts the event 

(Whiting 2007). The America's Cup is unique in that the format is stilllargeiy based on the 

original Deed of Gift, where the Defender is automatically in the final Match. The 

International America's Cup Class (lACC) versionS yachts are 25 m long, weigh 24 tons, 

have a mast height of 32 m, a downwind sail area of -700 m2 and are constructed from 

specialised composite materials. These high performance yachts are sailed by 17 skilled 

athletes in a match-race format (i.e. two boats at a time) around a two lap upwind and 

downwind course of -11 nautical miles (20 km) (Figure 2.1). For a Challenging team to 

win the 32nd America's Cup, could have involved between 35 and 47 races, however the 

nature of racing has not been systematically documented. One observation noted an 

average of 30 upwind tacks and 15 downwind gybes per race for a single team during the 

31't America's Cup (Bernardi et al. 2007b), but many aspects of racing remain poorly 

understood. A thorough analysis of racing (race duration, number of manoeuvres and 

winning margin), environmental conditions (wind speed, temperature and humidity) and 

crew selection strategy (number of rotations) would help to increase our understanding of 

this sport. 

In America's Cup sailing all manoeuvres, including: hoisting and dropping sails before to 

the start, pre-start circling, sail trimming, tacking and gybing, and upwind and downwind 

mark roundings, are performed manually without the assistance of stored energy. The 

physiological demands placed on the crew are high (Bauer 1986), but have not been 

carefully researched. An individual's exercise intensity during racing is thought to depend 

largely on the weather conditions, the race tactics, the role of the athlete within the crew 

(Alien and De Jong 2006; Neville et al. 2006), and perhaps also on how evenly the 

competing boats are matched (Whiting 2007). However, there has been no systematic 

investigation of exercise intensity during America's Cup sailing. Each of the 17 positions 

on board are role specific, with the athletes typically divided into five groups of similar 

roles. A brief description of each position is provided in Figure 2.2. Grinding (standing 
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arm cranking) is a key activity in driving the winches for all the boat's manoeuvres, with 

between five and six athletes ('grinders') from the crew primarily dedicated to this 

activity. Grinding involves short bursts of high intensity exercise in order to complete each 

manoeuvre, interspersed with longer rest intervals, but no quantitative description of the 

activity pattern of grinding has been completed. The manoeuvres that require maximal 

effort grinding in order to change the direction of the boat, and where teams strive to gain 

an advantage, are tacks (upwind turns), gybes (downwind turns) as well as the mark 

roundings (Figure 1.1 and Figure 2.1). Grinding is also used to trim (adjust) the sails in 

order to optimise speed and position of the yacht. 

Although America's Cup sailors are heterogeneous with respect to body composition 

(Lambert and Lelguen 200 I; Pearson et al. 2005), little is known of the physical 

characteristics (anthropometry and fitness) of the athletes, particularly with respect to the 

different positions. The America's Cup protocol limits the total weight ofthe crew to 1,570 

kg (92.4 kg per athlete) hence maximising performance for a given body mass is important 

with clear consequences for body composition. The teams that compete in the America's 

Cup are of heterogenous standard, with some teams having substantially larger budgets, 

and a greater number of sailors and support staff. It is unknown if the difference in 

performance between teams is in part attributed to the physical fitness of the crew, as 

opposed to technical, tactical and technological factors. 

The aims of this study were threefold. Firstly, to analyse the nature of America's Cup 

racing. Secondly, to quantifY the activity pattern of grinding and the exercise intensity of 

the different crew positions during racing. Thirdly, to document the anthropometric and 

fitness characteristics of athletes in different positions, and compare the physical fitness of 

two teams of different standard and experience. 
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3.2 Methodology 

3.2.1 Race Analysis 

The 32nd America's Cup (including the Louis Vuitton Cup Challenger series) took place 

from April to July 2007 in Valencia, Spain, between 12 participating teams (11 

Challengers and 1 Defender). The race format comprised of a double round-robin 

qualifYing series, where all the challenging teams raced each other twice over 20 days. The 

top four teams then contested for the Challenger series semi-finals and final, both being 

best-of-9 races, with the winner competing against the Defender in the 32nd America's Cup 

final Match. This resulted in 135 races over the 10 weeks of competition. Race statistics 

including: race duration, winning margins, number of manoeuvres (tacks and gybes), true 

wind speed and crew rotations were taken from the official America's Cup website 

(www.americascup.com) and from data presented by Virtual Spectator®. Environmental 

temperature and relative humidity were taken from a Meteorological Data Service buoy 

close to the race course at 6 m above sea level. 

The apparent wind speed (A WS) was calculated using the formula (Larsson & Eliasson 

2007): 

AWS =Y(TWS+vS-2*rwS*VS*cos(TWA)) 

Where TWS is true wind speed, VS is boat speed, and TWA is true wind angle in degrees. 

3.2.2 Participants 

The participants were all male professional America's Cup sailors who consented to 

participation in the study which was approved by the University's Ethical Advisory 

Committee. The body composition measurements were made on 92 athletes representing 4 

teams during the 32nd America's Cup and one team from the 31 st America's Cup. Their 

collective experience included 212 America's Cup campaigns. Fitness data was collected 

on a subset of 66 athletes from two teams that competed in the 32nd America's Cup. Team 

A (n=37) was ranked in the top 4 (budget: -€120 million; support staff: -110; sports 

science and medical staff: 6), and Team B (n=29) ranked in the lower 7 (budget -€30 

million; support staff: -25; sports science and medical staff: 2). The mean age of Team A 

and Team B was 36 ± 6 and 32 ± 8 y respectively and their collective experience included 
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106 and 34 America's Cup campaigns respectively. The exercise intensity data were 

collected from two America's Cup teams (n=34) during 9 Challenger series races. 

3.2.3 Exercise Intensity and the Activity Pattern of Grinding 

Heart rate data (Polar Team System, Finland) was collected during 7 round-robin and 2 

semi-final races, and used as an index of exercise intensity. The duration of grinding bouts 

and rest intervals were determined from on-board video footage of 11 races from 3 

qualifying and 4 non-qualifying teams during the Challenger series. Specifically, video of 

the three mid-deck grinding pedestals (Port, Starboard and Mainsheet grinders) was 

analysed and the manoeuvre associated with each grinding bout noted. 

3.2.4 Anthropometry 

Anthropometic measurements were taken in accordance with the prescribed methods of the 

International Society for the Advancement of Kinanthropometry (Marfell-Jones et al. 

2006). Nude body mass was measured with digital scales to the nearest 0.1 kg (Tanita 

BWB-800, Tokyo, Japan and Seca 769, Hamburg, Germany) and stature was measure with 

a stadiometer to the nearest 0.005 m. Skinfold thickness was measured in duplicate at 

seven sites (biceps, triceps, subscapular, supraspinale, abdomen, thigh, calf) using 

Harpenden skinfold calipers (Baty International, West Sussex, UK). Body fat % was 

calculated from the sum of seven skinfolds (Siri 1961; Jackson and Pollock 1978). 

Body surface area (BSA) was calculated using the Mosteller formula (Mosteller 1987): 

BSA = V((height*body mass)/3600). 

3.2.5 Fitness Testing 

Fitness tests were performed on the same day with a -45 min recovery period between 

strength or strength endurance tests and -2 h rest prior to rowing. The test protocol 

included: bench press, followed by pull-ups, push-ups, sit-ups and 2,000 m indoor rowing. 

Upper-body Strength (Bench Press). One repetition maximum (IRM) was used to assess 

upper body strength (Logan et al. 2000). The weight was lowered unassisted until the bar 

was in contact with the chest and pushed up vertically until the arms were locked straight. 
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After completing a warm up of submaximal lifts, an initial weight of - 10 kg below the 

athlete's expected maximum weight was selected, whereafter five attempts were given to 

progressively increase the weight by 2.5 to 5 kg with a 5 min rest interval between each 

attempt. 

Strength Endurance. Three standardised field tests were used to assess muscular endurance 

(pull-ups, push-ups and sit-ups) (Pate et al. 1993; Legg et al. 1997). Pull-ups were recorded 

as the maximum number of repetitions performed with an underhand grip, beginning with 

the arms fully extended and raising the chin above the level of the hands. Movement of the 

lower body was restricted with the hips maintained in extension and the knees bent at 90°. 

Push-ups were recorded as the maximum number performed in 60 s. With hands shoulder 

width apart, the chest was lowered to touch the investigator's hand which was 50 mm from 

the ground, and returned to the straight arm position. Sit-ups were performed for 120 s 

with knees bent at 90° and the feet restrained on the floor. Hands gripped the ear at all 

times and the athletes were required to flex the trunk and touch their knees with both 

elbows and return to touch the investigator's hand which was placed on the mat in line 

with the athlete's scapular. 

Rowing Performance. Indoor rowing is commonly used by sailors to train aerobic and 

anaerobic endurance (Legg et al. 1997; Legg et al. 1999). The time taken to row 2,000 m 

on an indoor rower (Concept 2, Vermont, USA), with the drag factor set at 125, was 

recorded. 

3.2.6 Statistical Analysis 

Anthropometric and heart rate data for the different crew positions were compared with 

one-way ANOV A. An independent t test was used to determine the difference in the 

duration of tacks and gybes between qualifying and non-qualifying teams. Differences in 

physical fitness between positions and teams were compared using a two-way ANOV A. 

Bonferroni post hoc tests were used to determine differences between positions, and make 

pairwise comparisons of the same position from each team. Bivariate relationships were 

assessed with Pearson's product moment correlation. Statistical analysis was performed 

with SPSS version 14 for Windows. The level of significance was set at P<0.05, and data 

are presented as mean ± SD. 
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3.3 Results 

3.3.1 Race Analysis 

Over the 135 races, mean race duration was 82 ± 9 min (range: 64 to 105 min) with 

upwind and downwind stages being on average 22 ± 3 min (range: 14 to 31 min) and 19 ± 

3 min (range: 13 to 28 min) respectively. Challenging teams completed between 20 and 39 

races, with teams having two races on 40% of the race days during the qualifYing series. 

The mean winning margin was 74 ± 77 s for all races and 24 ± 11 s during the America's 

Cup final Match. The mean number of upwind tacks and downwind gybes was 20 ± 10 

(range: 5 to 53) and 8 ± 3 (range: 2 to 18) respectively, with a combined total of 30 ± 11 

manoeuvres per race (range: 12 to 65). The true wind speed (TWS) was 5.1 ± 1.1 m's·1 

(range: 2.6 to 8.7 ms· I
), resulting in upwind and downwind A WS of 9.7 and 2.7 ms· l

, 

respectively. The environmental temperature was 27 ± 4 °C (range: 22 to 38°C) and 

relative humidity 60 ± 13% (range: 34 to 82%). Race duration was inversely related to 

wind speed (r=-OAl, P<O.OOI) and the number of manoeuvres (tacks and gybes) was 

inversely related to the winning margin between the two boats (r=-OA3, P<O.OOI). During 

the qualifying series (first two round-robins) an average of 1.8 athletes were rotated for 

each race, while an average of only 0.2 athletes were rotated during the knock-out rounds. 

3.3.2 Exercise Intensity and the Activity Pattern of Grinding 

The mean work period of grinding during tacking and gybing was 5.5 ± 0.5 s and 11.2 ± 

lA s respectively, with the qualifYing teams grinding for less time than the non-qualifying 

teams during both tacks (5.1 ± 004 s vs. 6.2 ± 0.7 s, P<O.OOI) and gybes (10.2 ± lA s vs. 

12.5 ± 2.6 s, P<O.OOI). The longest grinding bouts occurred when rounding the upwind 

(10.5 ± 4.8 s) and downwind (35.8 ± 12.5 s) marks. In contrast the most frequent grinding 

task, sail trimming, lasted 3.7 ± 2.1 s. Grinders performed on average 143 work bouts 

lasting 5.5 ± 504 s (range: 2.2 to 66.3 s) during a race, which equated to a work:rest ratio of 

-1 :6, and as high as 1:3 during the most strenuous races as a result of an increase in the 

number of tacks and gybes. Mean heart rate (HR) during racing was -64% of laboratory 

determined HRmax for all positions, with bowmen significantly higher than trimmers and 

afterguard (71 ± 4% vs 61 ± 6% and 56 ± 7%, P<0.05; Table 3.1). Peak HR achieved 
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during racing was 92% of HRmax for all positions with bowmen and grinders attaining 

96% and 93%, respectively. Figure 3.1 shows the HR (mean HR, 79% of HRmax) of a 

grinder during a strenuous race. 

Table 3.1 Mean and Peak heart rate (HR) during America's Cup yacht racing 
according to position. Laboratory HRmax values are shown for reference. Data are 
mean ± SO of 9 America's Cup races. 

1; •• ~OSitio~[nli.ji ·······;:···.;;·;[~~~E~~~;· 

Grinders [131 

Bowmen [41 

Utilities [61 

Trimmers [5J 

Afterguard [61 

ALL [341 

[beals'min"1 

189 ± 4 

195 ± 5 

189 ± 7 

187± 3 

190 ± 6 

189 ± 5 

124 ± 15 

138 ± 9' 
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115'± 11 
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Figure 3.1 Heart rate of a grinder during a typical America's Cup yacht race (A: 
warm-up; B: pre-start; C: upwind leg1; 0; downwind leg1; E: upwind leg2; F: 
downwind leg2). Race duration: 1 h 29; Mean HR: 150 beatsmin·1 (79% of HRmax) 

i:: 
'E 
~ 
Q) 

.e. .. -.. a:: 
t:: .. .. :z: 

68 



Chapter 3: Race Demands 

3.3.3 Anthropometry and Fitness 

The anthropometric characteristics of all 92 athletes are shown in Table 3.2. Grinders were 

significantly taller and heavier than all other positions (P<O.OI) and had a greater body 

surface area (BSA, P<O.OI). Percent body fat was similar between positions with a mean 

for all athletes of 13 ± 4%. When comparing the physical fitness between two teams of 

different standard and experience (mean number of America's Cup campaigns per athlete; 

Team A, 2.9 ± 1.4 vs. Team B, 1.2 ± 0.5; Table 3.3), Team A had significantly greater 

bench press lRM, number of push-ups and sit-ups than Team B (P<O.Ol). Pairwise 

comparisons between comparable positions from each of the teams revealed differences 

between grinders (bench press, push-ups, pull-ups and sit-ups, all P<O.Ol) and utilities 

(push-ups and sit-ups, P<0.05). When comparing fitness between positions, grinders had a 

greater bench press 1RM than all other positions (P<O.Ol), and completed the 2,000 m row 

quicker than the afterguard and utilities (P<O.05). The afterguard were lower than all 

positions for bench press (P<O.05), and lower than grinders and bowmen (P<O.Ol) for 

push-ups and performed less pull-ups than bowmen (P<O.Ol). There was little difference in 

sit-ups between positions. 

Table 3.2 Anthropometric characteristics of America's Cup athletes from four teams according to position 

.', : Am'er'ic'a,'s'n ",,,',Age',,l,,,,, <::>:;"Stature Body Mass n Skin/old. Body Fat "'" Body Surf"c~,,:1 
'i'< N 

'CUpS"T " "i[YJ::" T,;> [I)'J [kgp ':"'''';[I)'m], :":,,::,, [%J "'",: ' Area [m2r:;"ii 

Grinders 34 73 32± 6 U8 ±0,05' 103 ± 7' 75 ± 22 13 ±4 0,23 ± om' 

Bowmen 11 26 32±6 L77 ± 0,04 82± 10 67 ± 19 11 ±4 020±Om 

Utilities 15 35 34±7 UO ±0,06 88± 9 80 ± 23 14 ±4 0,21 tOm 

Trimmers 16 35 36±5 UO±0,06 82± 5 70 ± 16 12 ± 3 0,20±om 

Afterguard 16 44 41 ± 7' U3± 0,06 87± 9 80 ± 31 15 ± 6 021 tom 
--------- ------------ --,-,-

All 92 212 35± 7 U3±0,07 92 ± 12 75±23 13 ± 4 022 ± 0,02 

[rangeJ [21 to 54J [1,66 to 2,00J [60 to 121J [35 to 155J [4 to 301 [0,17 to 0,25J 

8 greater than grinders, bowmen and utilities (P<O.01); b greater than all other positions (P<O.001) 
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Table 3.3 Physical fitness of two teams of different standard and experience competing in the 32"d America's 
Cup (Team A: ranked in top 4/12 and Team B: ranked in bottom 7). 

TEAM A 

Grinders 12 

Bowmen 5 

Utilities 7 

Trimmers 6 

Afterguard 7 

All 37 

TEAMB 

Grinders 10 

Bowmen 4 

Utilities 6 

Trimmers 4 

Afterguard 5 

All 29 

Total 

[rangeJ 

66 

33 

17 

18 

16 

22 

106 

10 

4 

8 

5 

7 

34 

140 

36±6 

36± 5 

33 ±6 

36±7 

41±7 

36± 6 

27±4 

28± 5 

33 ± 10 

34±6 

43 ±7 

32±8 

34 ± 7 

: .• Body Mass ::: Bench Press 
. [kg]. .. [kg] 

106 ± 6 

83±6 

93± 9 

81 ± 5 

87±4 

93± 12 

102 ± 8 

81 t 16 

83±8 

84±5 

84 ± 12 

90 ± 13 

91 ± 12 

142 ± 14b 

100 ± 7 

104 ± 17 

106 ± 18 

78 ± 12 

113±28' 

119±25 

100 ± 20 

80± 22 

90 ± 20 

58 ± 16 

94 ±30 

[21 to 54J [60 to 121] 

104 ± 30 

[40 to 175J 

PushIJpsPulluPS;. Situps. 2000 ';'Row:::: 
[N in 6.0 s]:: [N1i [':lin 1.2.o •. s1:: : [l)1i~:sl:.:.:.i 

77±10 b 17±5b 108±9b 

67±5 16±4 89±10 

62±10' 13±4 88±16' 

64±11 15±4 95±10 

54±13 12±8 78±16 

66±13' 15±5 93±16' 

56 ± 10 

60±8 

50±7 

60 ± 28 

38 ± 4 

52 ± 12 

60 ± 14 

11± 3 

19 ± 6 

15 ±4 

12 ± 4 

7±4 

12 ± 5 

14 ± 5 

67 ± 14 

72 ± 10 

59± 5 

84 ± 16 

68 ± 25 

69 ± 16 

83 ± 20 

6:50.7 ± 17.5 

7:05.0 ± 12.0 

7:12.1 ± 15.0 

7:14.6 ± 17.2 

7:15.8±31.2 

7:05.6 ± 20.7 

6:54.2 ± 18.1 

7:17.4 ± 28.6 

7:13.3 ± 16.4 

7:06.9 ± 20.4 

7:37.9 ± 30.4 

7:10.6 ±25.6 

[35 to 90] [3 to 27] [45 to 125] [8:09.0 to 6:20.3] 

8 Team A significantly greater than Team B (P<O.001); b grinders in Team A significantly greater than grinders in Team B (P<O.01); C utilities in 
Team A significantly greater than utilities in Team B (P<O.05) 

3.4 Discussion 

This is the first detailed report on the nature of America's Cup yacht racing. The mean race 

duration (82 min) was less than the 2 to 3 h reported for the 31st America's Cup (Neville et 

al. 2006; Bemardi et al. 2007b), and can be explained by the reduced race distance (2 laps 

instead of 3 laps) for the 32nd America's Cup. Race duration (64 to 105 min) and the 

number of tacks and gybes (9 to 62) were highly variable, with race duration partially 

dependent on the wind speed; as the wind speed increased, race duration decreased (r=-

0.41). The number of manoeuvres (tacks and gybes) increased with how closely matched 

the boats were (determined by the winning margin, r=-0.43). The greater number of 

manoeuvres in a close race, in addition to the psychological effect of direct competition 
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would be expected to elevate exercise intensity. The mean winning margin of only 1.5% 

(-300 m) of race duration for all races (and only 0.4% during the America's Cup final 

Match) suggests that the difference in speed between the yachts was relatively small. 

Given these narrow margins of success/defeat, all aspects of performance appear 

important, including the skill, experience, and fitness of the athletes. 

The activity pattern of grinders was very intermittent, with grinding bouts lasting on 

average 5.5 s, and a work:rest ratio of 1 :6, which was as high as 1:3 in strenuous races, due 

to an increase in the frequency of manoeuvres. Hence it can be surmised that the energy 

demands are predominantly anaerobic, with a substantial aerobic contribution possible, 

depending on the frequency of the activity cycles. The shortest duration grinding activity 

was sail trimming (-3.7 s), and this was also the most frequent activity, as the sails are 

continuously adjusted according to the ever changing wind and sea conditions. Grinding 

bouts were twice as long for gybing compared with tacking (11.2 vs. 5.5 s), mainly due to 

the larger sail area of the downwind sails. Arguably the most important and technically 

challenging manoeuvres are the mark roundings, where large gains or losses can be made. 

The downwind mark rounding required the longest duration of continuous maximal effort 

grinding (36 s), and was in excess of 60 s in some races. Interestingly, the mean grinding 

duration for tacks and gybes by the top ranked teams were -20% quicker than the lower 

ranked teams. This indicates that the best teams complete the manoeuvres more quickly, 

presumably due in part to more effective grinding. This clearly highlights the importance 

of effective grinding to America's Cup performance. However there has been very little 

research of the physical capability of elite sailors during grinding, and no scientific 

attention to the optimisation of power production during grinding. The influence of factors 

such as crank velocity, grinding configuration (crank length and crank-axle height) and 

technique have not been considered. Future research should also strive to measure the 

actual power produced during on-board grinding, and more carefully examine how this 

relates to the speed of manoeuvres. 

The typical environmental conditions of the 32nd America's Cup are regarded as moderate 

(temperature, 27°C; relative humidity, 60%; mean TWS, 5.1 ms-I), although temperatures 

of up to 38°C were not uncommon. The environmental conditions combined with the 

prolonged exercise of sailing, including 105 min of racing as well as pre- and post-race 

sailing sometimes twice per day, may challenge the crew's capacity for thermoregulation. 

The thermal strain may be particularly severe during downwind sailing due to the low 
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A WS (28% of upwind A WS), with a consequent reduction in evaporative cooling, and the 

greater physical work required to gybe the larger downwind sails. The thermoregulatory 

stress of America's Cup sailing has not been documented, although heat illness and 

dehydration have been reported during this event (Neville et al. 2006). 

Mean HR for all positions during racing was 64% of HRmax, indicating a significant level 

of cardiovascular stress throughout competition. This was most marked for bowmen (mean, 

71%; peak, 96%) and grinders (mean, 66%; peak, 93%). Although bowmen assist with 

grinding upwind, their tasks are varied and more dynamic than that of grinders who are 

predominantly stationed at one position. The pre-start and mark roundings appear to elicit 

the greatest rise in HR during grinding, followed by gybing and tacking (Figure 3.1). The 

afterguard had the lowest mean HR (although non-significant) as a result of their 

predominantly cognitive tasks while racing. 

The crew rotation was higher during the qualifying rounds than the knockout stages (1.8 

vs. 0.2 rotations per race), likely due to the double race days during the earlier rounds. The 

positions that were typically rotated were bowmen, grinders and utilities, considered to be 

the more physically demanding positions. The relatively low number of rotations may be 

indicative of the highly technical and specialised nature of the sport and of each crew 

position, as well as the close nature of all the racing. 

The body fat of the athletes in this study (13 %) was lower than previous reports during the 

30th (19% (Lambert and Lelguen 2001» and 31 st (15% (Pearson et al. 2005» America's 

Cups. However, body mass was greater (92 vs. 84 and 89 kg respectively), indicating a 

substantial increase in lean body mass over the last three America's Cups. In fact a 

common strategy of the teams has been to reduce the body fat of the whole crew in order to 

maximise lean muscle mass of the positions with the greatest strength and power 

requirements. When comparing positional differences, as expected grinders were taller and 

heavier than all other positions. As power production during short bouts of grinding is 

fundamental to this position, grinders are selected, in part, for their large muscle mass. 

Interestingly, the body mass of bowmen has increased considerably since the 30th 

America's Cup, from 73 kg (Lambert and Lelguen 2001) to 82 kg in the current study. This 

could be due to the increased physical requirements of working with the larger IACC 

version 5 sails. When comparing physical fitness between positions (Table 3.3), it is not 

surprising that grinders had greater upper-body strength (bench press) than all other 
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positions, and the aflerguard, who have the least physically demanding roles, were lower 

than the other positions. Surprisingly, there was little difference in sit-ups between 

positions, which may indicate an equal importance of torso stability between roles. The 

fitness tests used in the current study were relatively crude generic measures of muscular 

·strength, strength endurance and rowing performance. More detailed physiological 

assessment of America's Cup athletes during relevant activity, primarily grinding, is 

required to more clearly describe the characteristics of this cohort of elite athletes, and any 

differences due to crew position. 

When comparing the physical fitness of athletes from two teams of different standard and 

experience, Team A had greater strength and strength endurance (bench press, push-ups 

and sit-ups) as a whole, than Team B. These differences were most marked between 

grinders and utilities (the two positions primarily responsible for grinding). This contrast 

in physical fitness may in part explain the difference in the speed of manoeuvres between 

the higher and lower ranked teams, and may highlight the importance of physical fitness of 

these athletes to performance of the whole team. The discrepancy in physical fitness may 

be the result of differences in athlete recruitment and/or athlete preparation and 

management. For example, fatigue is common to America's Cup athletes, even in well 

resourced teams (Neville et al. 2008), as a result of the high volume of work and sailing 

involved. This may be further exacerbated in less well resourced teams, where athletes are 

typically required to take on multiple roles within the team due to the limited number of 

support staff. Consequently, their ability to prioritise on athletic performance could be 

compromised. Greater support and care of athletes may help to optimise their physical 

fitness and response to training (Neville 2008; Neville et al. 2008). 

3.4.1 Conclusions 

The exercise intensity of America's Cup yacht racing is high, but intermittent, and 

influenced by how evenly matched the boats are and the role of the athlete. Grinding bouts 

were on average quite short (-5.5 s) but frequent (work:rest ratio 1:6), indicating 

predominantly anaerobic energy provision, with implications for training prescription. The 

anthropometric and physical characteristics of the athletes varied according to their role, 

with grinders being bigger and stronger than all other positions. In addition, there appears 

to have been a substantial increase in lean body mass and a reduction in body fat over the 
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past three America's Cups. The differences in strength and strength endurance between 

high and low ranked teams likely contributes to the discrepancy in their speed of 

manoeuvres, and highlights the importance of athlete fitness and preparation in America's 

Cup yacht racing. 

74 



Chapter 4: Char"actcristics 

CHAPTER 4 

PHYSIOLOGICAL CHARACTERISTICS: AEROBIC POWER 

AND PEAK POWER 
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4.1 Introduction 

Standing arm cranking ('grinding') is the main physical activity performed during 

professional big-boat yacht racing, including the America's Cup. During America's Cup 

yacht racing, all manoeuvres are powered manually without the assistance of stored energy 

(Neville et al. 2006). There are four grinding pedestals on International America's Cup 

Class version 5 yachts, each manned by two athletes. The grinding cranks are manually 

driven by a cyclic upper body action whilst standing. This provides the mechanical power 

to turn the winches which in turn controls the sails and mast, and hence the manoeuvres of 

the boat (Whiting 2007). There are typically five or six designated grinders in the crew of 

17, however, all athletes assist with grinding, with the exception of the helmsman. It has 

been suggested that America's Cup grinding utilises both anaerobic and aerobic energy 

systems, depending on the intensity of racing (Bemardi et al. 2007b), but the physiological 

characteristics of America's Cup sailors are poorly understood and very little research has 

been published on standing arm cranking. 

Arm cranking has received some scientific attention, due to its role in cardiovascular and 

injury rehabilitation (Carson 1989; Westhoff et al. 2008), as well as being an appropriate 

mode for assessing upper body athletes (Tesch 1983; Driss et al. 1998; Hubner-Wozniak et 

al. 2004; Pearson et al. 2007; Zagatto et al. 2008) and individuals with spinal cord injury or 

lower limb disability (Hicks et al. 2003; Goosey-Tolfrey et al. 2006; Valent et al. 2008). 

During upper body exercise, athletes trained for this type of work appear to be able to 

achieve a high proportion of their lower body VOZpeak, with seated arm cranking values of 

-4.1 L'min'! being reported for elite upper body trained athletes such as wrestlers, 

kayakers, rowers and swimmers (Secher et al. 1974; Tesch 1983; Horswill et al. 1992). To 

date the majority of arm cranking research has been performed seated, with restricted 

lower limb involvement. The physiological responses to standing arm cranking have not 

been widely documented, with only a few reports on aerobic power (Vokac et al. 1975; 

Bernardi et al. 2007b) and peak power (Vandewalle et al. 1989; Hubner-Wozniak et al. 

2004; Bouhlel et al. 2007; Pearson et al. 2007) present in the literature. Standing arm 

cranking appears to elicit a similar cardiorespiratory response to seated arm cranking, but 

with a higher peak work load evident (13%) (Vokac et al. 1975). This indicates that 

cranking is more efficient when standing than when sitting. A recent report of a relatively 
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inexperienced America's Cup team found an average V02peak of 4.1 Lmin-l (47 mlkg­

lmin-l) (Bemardi et al. 2007b). 

Grinding has always been considered an important factor in overall America's Cup 

performance, supported by the finding in Chapter 3 that top level teams complete 

manoeuvres more quickly, which is attributed in part to more effective grinding. Therefore 

it appears useful to document the athlete's maximal capability for grinding and consider 

the optimisation of this activity. The peak velocity of grinding during America's Cup 

racing has been reported to be between 120 and 150 revolutions per minute (Bemardi et al 

2007), but the optimum velocity for power production and the nature of the torque-velocity 

and power-velocity relationships during standing arm cranking have not been determined. 

This may have an important bearing on the selection of gear ratios and the optimisation of 

power production during big-boat sailing. During elite sprint cycling a polynomial power­

velocity relationship has been described (Martin et al. 1997; Dorel et al. 2005; Gardner et 

al. 2007), and contrary to the hyperbolic force-velocity relationship of isolated muscle 

(Wilkie 1949), the relationship between torque and velocity appears to be linear (Martin et 

al. 1997; Dorel et al. 2005; Gardner et al. 2007; Sprague et al. 2007). Similar results have 

been found during seated arm cranking CV andewalle et al. 1989; Vanderthommen et al. 

1997). 

This study aimed to describe two important components of physical performance in elite 

America's Cup sailors during standing arm cranking ('grinding'). The first objective was 

to report key indices of aerobic endurance performance (aerobic power and the onset of 

blood lactate) and to determine any differences between crew positions. The second was to 

document the torque-crank velocity and power-crank velocity relationships, and thus 

determine the peak power and optimum crank velocity, of America's Cup grinders. 
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4.2 Methodology 

4.2.1 Participants 

Thirty-three elite professional male America's Cup sailors participated in the study. Their 

physical characteristics are shown in Table 4.1. All athletes sailed for a team ranked in the 

top three during the 32nd America's Cup. Their combined sailing experience included 8 

Olympic medals and 98 America's Cup campaigns. Informed consent was obtained from 

all athletes, and the study was approved by the University's Ethical Advisory Committee. 

4.2.2 Experimental Design 

All athletes visited the laboratory for an initial test where anthropometric measurements 

were taken prior to the athletes performing a step test to exhaustion to determine upper 

body peak oxygen uptake (V02peak) and anaerobic threshold. A sub-group of ten athletes 

(grinders) then returned to the laboratory one month later to perform four maximal 7 s 

isokinetic sprints, at different velocities of arm cranking in a randomised order, for the 

measurement of peak torque and power at each crank velocity. 

4.2.3 Anthropometry 

All measurements were taken in accordance with the prescribed methods of the 

International Society for the Advancement of Kinanthropometry (Marfell-Jones et al. 

2006). Nude body mass was measured with a digital scale to the nearest 0.1 kg (Tanita 

BWB-800, Tokyo, Japan) and height was measure with a stadiometer to the nearest 0.005 

m. Skinfold thickness was measured in duplicate at seven sites (biceps, triceps, 

subscapular, supraspinale, abdomen, thigh, calf) using Harpenden skinfold calipers (Baty 

International, West Sussex, UK). Body fat % was calculated from the sum of seven 

skinfolds (Siri 1961; Jackson and Pollock 1978). Body surface area (BSA) was calculated 

using the Mosteller formula (Mosteller 1987): 

BSA = -V((height x body mass)/3600). 
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4.2.4 Equipment 

All tests were performed on an adjustable SRM electronically-braked scientific ergometer 

(Schoberer Rad Me13technik Scientific, Jiilich, Germany), which was specifically modified 

for standing arm cranking (Figure 4.1). The centre of the ergometer handles were 0.44 m 

apart (medio-lateral displacement), and the crank arm length was kept constant at 0.25 m 

for all measurements. Torque was recorded continuously at 200 Hz (SRM torque software) 

and averaged over 360°. Crank velocity was measured every revolution. The SRM 

Powercrank was calibrated daily according to the manufacturer's guidelines. Pulmonary 

gas exchange was measured breath-by-breath, using an automated on-line gas analysis 

system (Oxycon Pro, Jaeger, Hoechberg, Germany). The athletes wore a nose clip and 

breathed through a sealed low-resistance mouthpiece and impeller turbine digital sensor 

(TripleV, Jaeger) that measured inspired and expired gas volumes, and was connected to 

the analysis system via a capillary line. The gas was analysed for O2 and C02 

concentrations using paramagnetic and infrared analysers, respectively. The analysers were 

calibrated automatically before each test with gases of known concentration and the 

volume sensor was calibrated using a 3-L syringe. The on-line values were calculated by 

the Jaeger computer software (IntelliSupport). Heart rate (HR) was monitored every 5 s 

with a telemetric HR monitor (Polar S720, Finland). 
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Figure 4.1 Image of the modified SRM arm ergometer 
used for America's Cup grinding performance analysis. 
Crank length was 0.25 m and the distance between 
the handles was 0.44 m. (courtesy of Federico 
Giovanelli, © Vernon Neville 2008) 

4.2.5 Aerobic Power 

Each athlete was able to self-select the height of the arm ergometer axis, which was 

typically -50% of stature. A step protocol (Washbum and Seals 1983; Smith et al. 2004) 

was adopted with up to eight, 4 min stages each consisting of 3 min of constant work, 

followed by a 30 s rest interval and a 30 s ramp up to the next step. The initial power 

output was 75 W which was increased by 40, 45 or 50 W at each step, based on the 

athlete's previous response to a laboratory aerobic power test, and with the aim of reaching 

exhaustion after 6 or 7 steps. The athletes were required to maintain a constant cranking 

rate of 80 rpm (Smith et al. 2001), and the test was terminated when the athlete was no 
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longer able to maintain a rate above 75 rpm despite verbal encouragement. Earlobe blood 

samples (-25 ilL) were taken during each 30 s rest interval and immediately analysed for 

the lactate concentration using an automated blood lactate analyser, YSI 2300 Stat (Yellow 

Springs Instruments Inc., Ohio, USA). A further blood sample was analysed 3 min post­

exercise. The rating of perceived exertion (Borg 1982) was also recorded at the end of each 

step. The cardiorespiratory variables were averaged over the final 30 s of each step, and the 

highest 30 s average oxygen uptake was taken to be the V02peak• An absolute blood lactate 

[BLa] concentration of 4.0 mmolr l
, also referred to as the 'onset of blood lactate 

accumulation' (OB LA) (Sjodin and Jacobs 1981) was used as an indication of the 

anaerobic threshold (Heck et al. 1985). Heart rate, V02 and work load at OBLA were 

calculated using linear interpolation between the relevant data points. 

4.2.6 Peak Power 

The height of the arm ergometer's central axis was set at 0.9 m from the ground. The 

ergometer's isokinetic mode (constant velocity) was adopted for the sprints. After an initial 

5 min self paced warm-up, athletes performed four maximum effort isokinetic sprints at 

different crank velocities in a randomised order, from a range of six crank velocities: 80, 

90, 100, 110, 120 and 140 rpm. Each sprint was 7 s in duration with a 10 min rest interval 

between trials. A 10 s countdown was given to the start of the sprint during which time a 

velocity of 50 rpm was maintained with no resistance. Verbal encouragement was given 

throughout the test. Torque and angular velocity (crank velocity) were recorded throughout 

each sprint and analysed off-line. Once the prescribed crank velocity for each sprint was 

achieved, the highest torque and power values (over 360°) were calculated. 

Power was determined as the product of torque (T) and crank velocity (w) expressed in 

radians·s· l
. Linear regression of the torque-crank velocity relationship was used to 

determine maximal torque (T max) and maximal crank velocity (Wmax) by extrapolation to the 

respective intercepts. For each individual, maximal power (Pmax) was determined as the 

apex of the power-crank velocity relationship, and optimal crank velocity (wopt), the crank 

rate at which P max occurred. 
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4.2.7 Statistical Analysis 

Anthropometric, aerobic power and OBLA data for the different crew positions were 

compared with one-way ANOV A. When significant main effects were found, a Bonferroni 

post hoc test was used to determine differences between positions. Pearson product­

moment correlation coefficients were calculated to assess bivariate relationships. Statistical 

analyses were performed with SPSS version 14.0 for Windows. Statistical significance was 

set at P:S0.05, and data are presented as mean ± SD. 

4.3 Results 

The anthropometric characteristics of the sailors are shown in Table 4.1. Grinders were 

heavier than all other positions (P<O.Ol), while bowmen had a lower body fat percentage 

than utilities (P=0.05). 

Table 4.1 Anthropometric characteristics of America's Cup sailors (mean ± SO) 

Age': s'iat~i~:::: > B()dylill~,,~ , "',,',r,7::'" 
,Bcid/Fat i'",Fat Free:",> '" B~dY Sort~ce': Skinfolds',,: 

[Y] '[m]":,:' ':: [kg] 
[mmJ!. ',[%] Mass [kg]: "\::' Area [m']"!'l 

Grinders 10 36±7 1.88 ± 0.05' 105 ± 6' 77 ± 15 13 ± 4 91 ± 5' 0.23 ± 0.01' 

Utilities 6 34 ±6 1.83±0.06 94 ± 9' 99 ± 16 17 ± 3 77±6 0.22 ± 0.01 

Bowmen 6 35±6 1.79 ± 0.02 84±5 67 ± 19' 11 ±4' 74±4 0.20 ± 0.01 

Trimmers 5 34±6 1.80 ± 0.08 82±5 68 ± 14 12 ± 3 72±6 0.20 ± 0.01 

Afterguard 6 40±7 1.84 ± 0.04 88±4 78 ± 10 14 ± 2 75±4 0.21 ± 0.01 
_._-_._------------- .. _-------_._-----_. 

All 33 36±6 1.84 ± 0.06 92 ± 11 78 ± 18 14 ± 4 79± 9 0.22 ± 0.02 

range [25 to 47] [1.66 to 1.95] [74 to 117] [48 to 126] [7 to 22] [63 to 96] [0.18 to 0.25] 

• Grinders taller than Bowmen (P=O.01) and Trimmers (P=O.04); bGrinders heavier than all other positions (P<O.01); CUtilities heavier than Trimmers 
(P=O.OS); d Bowmen less than Utilities (P<O.05); • Grinders greater than all other positions (P<O.001); I Grinders greater than all other positions 
(P<O.03) 
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The mean V02peak for all athletes was 4.69 ± 0.50 Lmin·1 (range: 3.58 to 5.48 L'min'\ 

which occurred after 26 min 29 s ± 2 min 27 s of the step test at a mean power output of 

332 ± 44 W (range: 235 to 425 W). Grinders achieving a higher power output than the 

afterguard (369 ± 35 vs. 297 ± 50 W, P=O.OI) and bowmen had a higher relative V02peak 

than grinders (56 ± 6 vs. 48 ± 4 mlkg·1min·1
, P=0.04; Table 4.2). Figure 4.2 shows the 

BLa response to increasing V01 as a percentage OfVOlpeak. 

Table 4.2 Maximal physiological responses of America's Cup sailors during a standing 
arm-cranking (grinding) step test (mean ± SD). 

1::':'/P'O:S:itiOi/;: ,::: N' 
HR 'max':' '">,:,, <:V02~k'::; ;\;: E;,;, VO~~~~',\;<, Peak Power BLa 

U[beatsmin"] ',' [Lmin"] [ml'kg"min;'] [WJ [mmol'L"] 

Grinders 9 186 ±8 5,04 ± 0.41 48±4 369±35' 11.3±1.3 

Utilities 6 191 ± 8 4.74 ± 0.35 51.4 332.19 11.7.1.2 

Bowmen 6 187.7 4.63' 0.39 56.6' 328.35 12.0 ± 2.4 

Trimmers 5 190 ± 9 4.50± 0.50 55 ± 5 311 ± 45 13.2 ±2.0 

Afterguard 6 181 ± 10 4.18.0.66 49±6 297 ± 50 10.6 ±2.4 
---,----------~----.- ------"-"---"-------""------, 

All 32 187 ± 9 4.69 ± 0.50 51 ± 6 332 ± 44 11.7 ± 1.9 

range [167 to 201] [3.58 to 5.48] [41 to 62] [235 to 425] [8.2 to 15.9] 

• Bowmen greater than Grinders (P=O.04); b Grinders greater than Afterguard (P=O"01) 

For the whole crew the OBLA occurred at a power output of 202 ± 31 W (61 ± 6% of 

Wmax) and V02 of 3.34 ± 0.04 Lmin'l (71 ± 5% ofV02peak), with grinders having greater 

power output than trimmers at OBLA (227 ± 7 vs. 177 ± 28 W, P=O.OI; Table 4.3). 
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Figure 4.2 Blood lactate concentration [Bla] with increasing VD, as a percentage 
of VD,pe., during each stage of an incremental step testing to exhaustion on a 
standing arm-crank ergometer (n=33). Data are mean ± SO. 

Table 4.3 Physiological responses at OBLA of America's Cup athletes, during standing 
arm cranking (grinding) (mean ± SO). 

. ..•...••. \lCl,· ....... ..' .....) ... : V(), .... ; .••.•• • ..•••••• 'i"VCl,;:: 
[lmin"J •. . .[m!'kg·'min"1 ... [% of VO,,..;;1 

Grinders 9 229±21' 159 ± 10 3.67 ± 0.33' 34.7 ± 3.6 73±4 

Utilities 6 197± 23 168 ± 9 3.34 ± 0.33 35.9 ± 2.4 71 ± 6 

Bowmen 6 198 ± 22 163 ± 5 3.26 ± 0.33 39.2 ± 2.7 70±6 

Trimmers 5 177 ± 28 155 ± 5 3.10 ± 0.56 37.7 ± 6.2 68±6 

Afterguard 6 192± 36 158 ± 10 3.13 ± 0,46 35.3 ± 4.9 72±4 
------"---------". --------. 

All 32 202± 30 161 ± 9 3.34 ± 0.43 36.3 ±4.2 71 ± 5 

range [136 to 2611 [139 to 1801 [2.46 to 4.00J [28.7 to 44.11 [61 to 791 

• Grinders greater than Tnmmers (P=O.01) 
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For each of the grinders the relationship between torque and crank velocity during the 

isokinetic sprints was linear (r=0.94 ± 0.06). The torque-crank velocity relationship for this 

cohort of grinders was expressed by the following equation: T = -0.8421 co + 211.68 (r=-

0.99, P<O.OOI), with predicted Tmax, 212 N'm and w';ax, 251 rpm (Figure 4.3). 
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Figure 4.3 Torque and crank angular velocity relationship during 
standing arm-cranking (grinding) (r=-0.99, P<0.01, n=10). 

Peak power during the 7 s sprints is displayed in Figure 4.4. Peak power at 120 rpm was 

significantly greater (17%) than at 80 rpm (P=0.03, Figure 4A), as was relative peak power 

(P=O.OI, Figure 4B). Peak power was significantly correlated to body mass (r = 0.58, P = 

0.04). The power-crank velocity relationship was a parabola described by the equation: P 

= -O.l206w2 + 29.201w - 361.73 (r=O.73). Pmax, the apex of the power-crank velocity 

relationship, was 1420 ± 37 W (range: 1192 to 1617 W), and when normalised for body 

85 



Chapter 4: Physiological Characteristics 

mass was 13.7 ± 1.0 W"kg·1 (range: 12.0 to 15.4 W"kg'l). Wopt occurred at 125 ± 6 rpm 

(range: 114 to 133 rpm). 
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Figure 4.4 Relationship between [A] Peak Power (W) and Crank Velocity 
(angular velocity) during standing arm-cranking (grinding) (r=0.73, n=10). 
* 120 significantly greater than 80 rpm (P=0.03); [B] Relative Peak Power 
(W/kg) and Crank Velocity (r=0.81, n=10). * 120 significantly greater than 80 
rpm (P=0.01). 
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4.4 Discussion 

The main findings of this study were that America's Cup sailors are characterised as 

having high absolute upper body aerobic and anaerobic power. To the best of our 

knowledge no other cohort of athletes has achieved an average V02peak for arm cranking of 

4.7 Lmin-1 (51 mlkg-l.min-1
) that we have found for a whole crew of America's Cup 

sailors, or the PmfIX of 1420 W (13.7 Wkg-l) for a sub-group of grinders. America's Cup 

grinding is unique in that it is the only able bodied sporting activity where arm cranking is 

the primary physical activity. 

The P max produced by grinders in this study was substantially more than that previously 

reported during arm cranking. To our knowledge, no other study has reported a cohort of 

athletes to have P mfIX greater than 1000 W during arm cranking. A recent study also on 

America's Cup grinders performing standing arm cranking, found Pmax of 929 ± 100 W 

(Pearson et al. 2007). Other studies of standing arm cranking have reported P max values of 

720 to 732 W (8.5 to 9.6 Wkg-1
) injave!in throwers and elite wrestlers (Hubner-Womiak 

et al. 2004; Bouhle! et al. 2007) and 700 W (10.6 Wkg-1) during seated arm cranking in 

elite gymnasts (Jemni et al. 2006). In addition, the peak aerobic power values observed 

during this study are the highest reported during arm cranking exercise. Slightly lower 

results have been reported during seated arm cranking by elite rowers (4.4 L·min-1 (Secher 

et al. 1974» and elite sprint kayakers (4.3 Lmin-1 (Tesch 1983», both activities requiring 

substantial upper body aerobic power. The impressive peak power and aerobic power 

values in this study are characteristic of the unique requirements of this cohort of athletes 

that are selected and trained for the specific activity of standing arm cranking. The large 

body size (and fat-free mass) of these elite sailors would certainly be expected to 

contribute to the high absolute values recorded. In fact the grinders, who recorded the 

highest absolute aerobic power (5.0 Lmin-1
) and produced Pmax values more than 40% 

above any previously documented, had a significantly greater fat free mass (91 kg) than all 

other crew positions. However when normalising for body mass, bowmen had the greatest 

relative V02peak (56 mlkg-l.min-1
). Similar results have been reported previously with 

bowmen, 52 mlkg-l.min-1 (Bemardi et al. 2007b). This disparity between positions is likely 

due to differences in body mass between roles, with grinders -20 kg heavier than bowmen 

as a result of their high power requirements. In addition, the activities performed by 
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bowmen are typically more prolonged with short recovery periods, and thus more 

continuous and aerobic in nature than the activities of grinders. The high aerobic power 

seen in all crew positions indicates the importance of upper body aerobic power for this 

sport. Although the activity profile of most crew roles is considered to be intermittent with 

the most intense periods during manoeuvres, the prolonged nature of racing (-100 min), 

the high number of work bouts and the relatively short rest intervals suggests a heavy 

reliance on aerobic energy metabolism (Gaitanos et a!. 1993) that may explain the high 

aerobic power values of these athletes. 

Compared to seated arm cranking, where the involvement of the lower limbs is restricted, 

standing arm cranking has a greater contribution from the proximal kinetic chain in force 

production, hence, one might expect a higher performance during standing than seated arm 

cranking. However, it has previously been reported that the maximal cardiorespiratory 

response is unaffected by the type of arm cranking (Vokac et a!. 1975). Other factors likely 

to influence performance during standing arm cranking are crank length, ergometer height 

and the distance between the crank handles, which are seldom reported in the literature. In 

this study, these were all similar to that typically employed on America's Cup racing 

yachts, but the greater crank length and handle separation compared to standard arm 

ergometers, likely facilitates a greater range of movement and involvement of a larger 

muscle mass. 

A discontinuous step test protocol was selected for the current study in order to determine 

both aerobic power and the OBLA. Although it has been suggested that maximal arm 

crank tests of aerobic power should be short in duration «14 min) in order to avoid local 

fatigue (Goosey-Tolfrey et al. 2006), this has not been confirmed, and no significant 

differences have been observed in any measured variables during arm cranking between 

step and ramp protocols despite a 3-fold difference in test duration (Washburn and Seals 

1983; Smith et al. 2004). 

The OBLA has repeatedly been found to be an important determinant of endurance 

performance (Sjodin and Jacobs 1981; Mujika and Padilla 2001). The mean V02 at OBLA 

of the sailors in the present study was 71% of V02max which is less than that typically 

reported in elite cyclists (-86% (Mujika and Padilla 2001» and well trained kayakers (81% 

(van Someren and Oliver 2002». The nature of grinding during America's Cup yacht 

racing is highly intermittent and characterised by short bouts of maximal effort 
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interspersed by longer rest intervals (Bernardi et al. 2007b; Neville 2008). This intermittent 

activity profile may explain the lower OBLA of grinders compared to the continuous 

activities of cycling and flat water kayaking. Unfortunately there is almost no comparable 

data for OBLA during arm cranking. One observation of elite paraplegic wheelchair 

athletes reported as high as 75% of maximum power and 80% of HRmax at OBLA during 

seated arm cranking (Schmid et al. 1998). However, the numerous physiological 

differences between able bodied and disabled athletes make it difficult to compare these 

findings. 

It is generally acknowledged that substantial differences exist between arm cranking and 

lower body exercise, such as cycling. For example, the maximal aerobic capacity of the 

upper body in untrained subjects seems to be limited by peripheral factors, including a 

small involved muscle mass, a greater proportion of type II fibres (Johnson et al. 1973b), a 

low density of capillaries (Turner et al. 1997; Calbet et al. 2005) and mitochondria (Turner 

et al. 1997), and a greater peripheral resistance (Stenberg et al. 1967). In addition, arm 

cranking exercise results in greater physiological stress (RPE and HR) at the same V02 

(Leicht 2008) when compared with cycling in untrained subjects. Despite these physiologic 

and energetic disadvantages the current study demonstrates the large exercise capacity of 

trained elite upper body athletes. 

The torque- and power-crank velocity relationships of elite upper body trained athletes 

have received little attention, with the few reports in the literature indicating a linear 

relationship between torque and velocity (Vandewalle et al. 1989; Vanderthommen et al. 

1997; Driss et al. 1998), similar to that in cycling. The parabolic power-crank velocity 

relationship seen in this study emphasises the influence of crank rate on peak power. The 

optimum angular velocity for maximum power output was 125 rpm, which is surprisingly 

similar to the WOp! during elite track cycling (- 129 rpm (Dorel et al. 2005; Gardner et al. 

2007». The relatively short upper limbs and greater crank length of grinding compared to 

cycling (250 vs 170 mm (Dorel et al. 2005» would be expected to lead to a greater joint 

excursion during each revolution with grinding. Hence for a given crank velocity, 

considerably greater joint angular velocities would be expected with grinding compared to 

cycling. It is surprising therefore that WOP! of the two activities appears to be so similar, and 

may be indicative of a greater proportion of type II fibres in the upper body musculature of 

elite grinders compared to the leg musculature of cyclists. There is some evidence, that the 
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upper body muscles tend to have a greater proportion of type II fibres compared to the 

lower body (Johnson et aI. 1973b). 

The only documented evidence of crank velocity during America's Cup racing reported 

peak velocity of between 120 and 150 rpm (Bemardi et aI. 2007b). From the results of the 

current study it seems that a narrow range of crank velocities between 115 and 135 rpm 

would be beneficial for optimising power production. This has considerable implications 

for the design of winch gear ratios and gear selection during big-boat sailing. The on-board 

winch systems typically have up to eight gears, which are usually changed by either 

stopping the crank rotation for the newly selected gear to engage, or by changing the 

direction of crank rotation (i.e. grinding backwards). Both of these gear changing 

techniques result in a loss of momentum and a velocity substantially outside of the 

optimum range whilst the grinders are striving to exert maximum power during a 

manoeuvre. In addition, grinding backwards elicits substantially less power (-17%) than 

grinding forwards (Pearson et aI. 2007). Therefore, it would be highly beneficial if it were 

mechanically possible to maintain momentum (within the optimum crank velocity range) 

in the forward direction during gear change; i.e. to change gear while grinding forwards 

without stopping, such as the use of a 'crash-box' gear change system. 

Taken together the results of this study underscore the unique nature of this cohort of elite 

athletes who have high levels of both anaerobic and aerobic upper body power. This poses 

a challenge to the conditioning of these athletes as both explosive power and endurance are 

required. Future research may look to investigate the influence of specific training 

interventions on upper body power and endurance. In addition, research should aim to 

investigate the physiological demands during competition, particularly the determination of 

the actual power output of grinders during racing. 

4.4.1 Conclusions 

The high P max with concomitant high V02peak suggests that America's Cup grinders require 

substantial upper body anaerobic power in addition to high aerobic power. The elite nature 

of these athletes, their high fat-free mass, training and selection for standing arm cranking, 

as well as the mechanics of the 'grinding' ergometer used contributed to their high values. 

In addition, the influence of crank velocity on peak power implies that power production 
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during on-board 'grinding' could be optimised through the use of appropriate gear-ratios 

and development of efficient gear change mechanisms. 
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CHAPTERS 

INFLUENCE OF ARM-CRANK CONFIGURATION ON GRINDING 

PERFORMANCE 
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5.1 Introduction 

Arm-cranking, in particular standing arm-cranking has become increasingly popular as a 

means of assessing upper-limb performance (Hubner-Wozniak et al. 2004; Bouhlel et al. 

2007; Pearson et al. 2007). However, the optimal configurations for power production 

during arm-cranking have not been determined. In cycling, the manipulation of joint 

angles, through changes in the structure of bicycle components, has been shown to 

influence performance (Hamley and Thomas 1967; Too and Landwer 2000; Martin and 

Spirduso 2001). For example, changes in seat height and cycle crank lengths directly affect 

hip and knee joint angles, the range of motion and angular velocity of the joints, and thus 

cycling performance (Too and Landwer 2000). The optimal crank length for maximum 

power production has been reported to be 20% of leg length (Martin and Spirduso 2001) 

and the optimal seat height appears to be 109% of inseam length (ischium to foot) (Hamley 

and Thomas 1967). It seems highly likely therefore that changes to the configuration of 

arm-crank ergometry, specifically crank length and crank-axle height, could also affect 

performance. Given the angle-torque and torque-velocity relationships of human muscle 

function, there is a clear rationale for how interventions that effect upper extremity joint 

range of motion and angular velocities may influence arm cranking performance. 

Big-boat yacht racing is one of the only able bodied sports where arm-cranking is the 

primary physical activity. In the majority of professional big-boat yacht racing classes, 

manoeuvres are performed manually, without the assistance of stored energy, and arm­

cranking (,grinding') is used to drive the winches, which in turn, controls the sails and 

mast (Whiting 2007). As the difference between competing yachts is often most apparent 

during manoeuvres, grinding is considered an important component to overall race 

performance. In support ofthis idea data presented in Chapter 3 found that a top level team 

completed manoeuvres more quickly than a lower ranked team, which was attributed in 

part to more effective grinding. International America's Cup Class version 5 yachts 

typically have four arm-crank stations ('grinding pedestals'), each manned by two athletes 

('grinders'). The typical crank length and crank-axle height are 250 and 830-870 mm, 

respectively, but there seems to be no scientific rationale for these settings (Bemardi et al. 

2007b; Pearson et al. 2007). The height of the grinding crank-axle appears to have been 

largely determined by other aspects of yacht design, such as the height of the boom and 
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aerodynamics, without an understanding or consideration of the effects of crank height on 

'grinding' performance. 

No studies have examined the effect of changes in crank length and crank-axle height on 

power production during standing ann-crank ergometry. The identification of optimal 

crank lengths and crank-axle heights would further our understanding of standing arm­

crank ergometry and may enhance the performance of America's Cup grinders. Therefore, 

the aim of this study was to assess the effects of different crank lengths and crank-axle 

heights on standing ann-cranking power and determine the optimal crank length and crank­

axle height for maximum power production. 

5.2 Methodology 

5.2.1 Participants 

Nine elite professional male America's Cup yacht racing grinders (mean ± SD; age: 36 ± 7 

yrs) volunteered to participate in this study. Their physical characteristics are shown in 

Table 5.1. The athletes had all represented teams that competed in the 32nd America's Cup, 

with their collective experience including 28 America's Cup campaigns and 13 World 

Championship titles. Informed consent was provided by all the athletes and the study was 

approved by the Loughborough University Ethical Advisory Committee. 

5.2.2 Anthropometric Measurements 

All anthropometric measurements were taken in accordance with the prescribed methods 

of the International Society for the Advancement of Kinanthropometry (Marfell-Jones et 

al. 2006). Nude body mass was measured to the nearest 0.1 kg using a calibrated digital 

scale (Metier Toledo KcC ISO, Leicester, United Kingdom) and height was measured to 

the nearest 0.001 m using a stadiometer (Seca 222, Hamburg, Germany). Skinfold 

thickness was measured in duplicate at seven sites (triceps, biceps, subscapular, abdominal, 

supraspinale, thigh and medial calf) using calibrated skinfold callipers (Harpenden, Baty 
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International, West Sussex, United Kingdom). Percentage body fat was calculated from the 

sum of seven skinfolds (Siri 1961; Jackson and Pollock 1978). Arm span was measured 

with the athlete standing back against a wall, heels together and arms stretched out· 

horizontally, and the distance between the tips of the furthest fingers on each hand was 

recorded (Marfell-Jones et al. 2006). 

5.2.3 Experimental Design 

All tests were conducted between 09hOO and 12hOO. Anthropometric measurements were 

taken on arrival at the laboratory. After an initial 10 min self-paced warm-up, athletes 

performed eight maximum effort sprints at pre-determined combinations of crank length 

and crank-axle height in a randomised order. The protocol included variable crank lengths 

(162, 199, 236 and 273 mm) at a constant crank-axle height of 1050 mm, and variable 

crank-axle heights (850, 950,1050 and 1150 iron) with a constant crank length of250 mm. 

Each sprint was 6 s in duration with a 10 min rest interval between trials to ensure 

complete recovery. A 5 s countdown was given prior to the start of each sprint during 

which time a crank velocity of -50 rpm was maintained. Verbal encouragement was given 

throughout the test. Torque and crank velocity were recorded throughout each sprint and 

analysed off-line. Power was determined as the product of torque (1) in Newton metres 

and crank velocity (m) expressed in radians·s· l
. 

5.2.4 Arm-crank Ergometer 

All tests were conducted on an adjustable standing arm-crank ergometer (Technogym Top 

Excite, Gambettolla, Italy), which was secured to the ground whilst remaining clear of the 

force plates (Figure 5.1). The resistance of the ergometer was set at level 30 (maximum), 

after the software was upgraded (Technogym Excite version SW50.22.7) to provide 

increased resistance. The crank handles were 0.52 m apart (medio-Iateral displacement). 

An SRM power crank (SRM Science Powermeter V, liilich, Germany) was fitted to the 

centre axle of the ergometer. Torque was recorded continuously at 200 Hz (SRM torque 

software) and averaged over 360°. Crank velocity was measured every revolution. The 

SRM Powercrank was calibrated prior to each test protocol, according to the 

manufacturer's guidelines. 
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Figure 5.1 Adjustable standing arm-crank ergometer 
(Technogym Top Excite). (1) Adjustable crank length, 
(2) SRM scientific powercrank, (3) Adjustable crank­
axle height, (4) Ground reaction force platforms 
(Kistler). Lateral distance between handles, 0.52 m. 

5.2.5 Vertical Ground Reaction Force Measurement 

Vertical ground reaction forces (VGRF) were measured usmg two calibrated force 

platforms (Kistler Instrument AG, 9253A2 [right] and 9281 CA [left], Winterthur, 

Switzerland) with a sampling rate of 200 Hz. The arm-crank ergometer was positioned 

centrally over the two force platforms to allow the athletes to stand with one foot on each 

platform. The force platforms were calibrated according to the manufacturer's guidelines 

and zeroed prior to each sprint. The vertical ground reaction forces were analysed for each 

sprint over 5 s, beginning 1 s after the start of the sprint. The data was analysed to find the 

total VGRF (VGRFtotal, i.e. the sum of both plates) averaged over 5 s, and average 

unilateral amplitude of the VGRF (VGRFamplitude, i.e. average of each plate). During 
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each crank rotation there is a shift in weight from one foot to the other producing a 

sinusoidal force trace. The amplitude of the sinusoidal force trace of each platform was 

measured as the average difference between the peaks and troughs. 

5.2.6 Video Analysis 

Reflective markers were attached to the right side of each athlete at the following 

anatomical positions: iliac crest, greater trochanter and lateral epicondyle of the femur, and 

lateral malleolus of the fibula. All sprints were recorded by a video camera (Panasonic 

NV -DS99EG mini DV, Japan) at 25 Hz, which was positioned perpendicular to the sagital 

plane of the ergometer, 7 m from the athletes and at a fixed height of I m. Four 500 W 

lamps were projected onto the athlete to provide additional lighting. Hip joint angle, 

between the iliac crest, greater trochanter and the knee, knee joint angle and foot-to-floor 

angle were measured after 3 s of maximal grinding, on the right side of the body, when the 

right knee was at maximum extension. The determination of joint angles was performed 

using a digital software program (SiliconCOACH PRO, Dunedin, New Zealand). 

5.2.7 Statistical Analysis 

Peak power, VGRFtotal and VGRFamplitude for the different crank lengths and crank-axle 

heights were compared with one-way repeated-measures ANOVA. Bonferroni post-hoc 

tests were used to determine where any differences lay. Pearson product-moment 

correlation coefficients were calculated to assess bivariate relationships. Analyses were 

performed using SPSS for Windows version 15.0. Significance was defined as P:S0.05, and 

all data are presented as mean ± SEM. 
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5.3 Results 

The anthropometric characteristics of the grinders are shown in Table 5.1. The athletes 

were characterised as having a high fat-free mass. There was a significant difference in 

peak power between crank lengths (P=O.006), with a lower peak power for 162 mm than 

all other crank lengths (P<O.03, Table 5.2). When crank length was normalised for arm­

span, the relationship between maximum power and crank length (CL) was parabolic and 

fitted by the equation: Power = -11.l27(CL)2 + 274.7(CL) - 361.2; r=1.0 (computed to five 

decimal places; Figure 5.2). From this relationship, the highest theoretical peak power 

occurred at a crank length of 12.3% of arm span which in these grinders equated to 241 ± 

9 mm. 

Table 5.1 Anthropometric characteristics of Amer!ca's Cup grinders 

';:;:~(ld~M~~~;: >r7;~;~i~((llds;·;~6d;~F~t.;·' F~!:freeM~~~:; 
,. [kg].' . [mrn];:; . [%1;' [kg]:' ..... 

'H~i!lhtAnn spa'" 
'f'[m] E" [m] 

Mean 103.6 ± 1.3 71±8 13 ± 2 89.8 ± 1.8 1.90 ± 0.01 1.96 ± 0.02 

Range 100.3 to 109.9 35 to 106 6to 24 76.7 to 94.7 1.83 to 1.95 1.86 to 2.05 

Data are mean ± SEM (n=9) 

Table 5.2 Peak Power during maximal arm-cranking with varying crank lengths and crank-axle heights 

Crank Length Imm] . Crank-axle Height [mm] 

162 199 236 273 850 950 1050 

Peak Power IWl 1153±56' 1276 ± 47 1335±66 1303 ± 46 1252 ± 43' 1340±51 1303±53 

1150 .. 

1347 ± 46 

Range 929 to 1379 1078 to 1455 1104to 1691 1127 to 1523 1062 to 1442 1187 to 1609 1138 to 1649 1151 to 1523 

"less than all crank lengths (P<0.03); b less than crank-axle height of 1150 mm (P=0.01); Data mean ± SEM (n=9) 
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Figure 5.2 Relationship between Peak Power and Crank Length (CL), as 
a percentage of arm span, during standing arm cranking ('grinding'). The 
equation was: Power = -11.127(CLj' + 274.7(CL) - 361.2 (r=1.0, n=9). 
Data are mean ± SEM .• Significantly less than all other crank lengths 
(P<0.03) 

Peak power was significantly less for the crank-axle height of 850 mm compared to 1150 

mm (P=O.OI) (Table 5.2). Prior to normalising crank-axle height to stature, two athletes 

were excluded from the data analysis as they exhibited significant differences in technique 

from all other athletes. This included substantial ankle plantar fIexion, measured by foot­

fIoor angle (53 ± 4° and 42 ± 5° for the excluded athletes vs. 4 ± 2° for the remaining 

athletes, ANOVA P<O.OOI), thereby confounding their true stature. The theoretical 

optimum for crank-axle height for the group (n=7) was 57.3% of stature (Figure 5.3), 

which was 1087 mm in this cohort of grinders. 
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Figure 5.3 Relationship between Peak Power and Crank-axle Height, as a 
percentage of stature, during standing arm-cranking (grinding). Data are mean 
± SEM (r=0.97, n=7) .• Significantly less than Crank-axle Height of 60.7% of 
stature (P=O. 01) 

Hip joint angle during arm-cranking was influenced by crank-axle height (P=O.OOI, Figure 

5.4), with the hip joint angle at 850 mm significantly less than at 1050 and 1150 mm (127 

± 3° vs. 142 ± 3° and 146 ± 3° respectively, P<O.OI, n=7), but similar to 950 mm (136 ± 

3°). Knee joint angle was unaffected by crank-axle height. 

VGRFtotal was significantly different between crank-axle heights (P<O.OOI, Table 5.3), 

with 850 mm less than all other heights (P<0.02) and 950 mm greater than 850 mm and 

less than 1050 and 1150 mm (P<0.02). VGRFtotal was not influenced by crank length. 

VGRFamplitude was unaffected by crank length, although it did show a correlation to 

crank length (r=0.97, P=O.02, n=4); these differences were non-significant. 
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Figure 5.4 Images showing grinding at different crank-axle heights CA = 850 mm, B = 950 mm, C = 1050 mm, 
0= 1150 mm). For the group the hip angle in A was significantly less than C and 0 (n=7, P<0.01). (courtesy of 
Neville & Folland, © Vemon Nevilie 2008) 

Table 5.3 Vertical ground reaction forces, mean total vertical ground reaction force (VGRFtotal) and 
unilateral peak-ta-trough amplitude (VGRFamplitude) averaged for left and right legs, during maximal 
arm-cranking sprints with varying crank lengths and crank-axle heights 

Crank Length [mm] > .. . ·.· •. ·Crank.axl .. Heighf [mm] 

199 . ····236 273 ···.850· 950 1050 

VGRFtotal [N] 956 ± 21 970 ±23 968 ±24 966 ±20 883 ± 19' 925 ± 17b 957 ±20 984 ± 16 

VGRFamplitude [N] 959 ± 87 964 ± 100 977 ± 98 996 ± 96 1011 ±79 979 ± 89 997 ±85 993 ± 106 

"ess than all o/hercrank·axle heights (P<0.02); b greater/han 850 and 'ess than 1050 and 1150 (P<0.02); All data are mean ± SEM 
(n=9) 
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5.4 Discussion 

The main findings of this study were that changes in crank length and crank-axle height 

influenced performance during maximal standing arm-crank ergometry. The parabolic 

curves observed for peak power with increasing crank lengths and crank-axle heights can 

be attributed to interactions between torque, crank velocity, and posture. The design and 

configuration of arm-crank ergometers and grinding pedestals should recognise the 

importance of these variables to performance, and we suggest an optimum crank length of 

12 - 12.5% of arm span and an optimum crank-axle height of 50 - 60% of stature (-241 

and -1087 mm, respectively, in this cohort of grinders). 

The peak power values reported in this study (range: 929 to 1691 W, Table 5.2) are among 

the highest reported during arm-cranking. This is likely due to the unique nature of this 

cohort of athletes, who are selected and trained for the specific activity of standing arm­

cranking (N eville 2008), and the use of more favourable arm-crank configurations than 

have often been employed. The selection of optimal arm-crank length for maximal power 

may be of interest to big-boat grinders and to studies using standing arm-crank ergometry 

as a measure of performance. Our data demonstrate that the optimal crank length for 

maximal power production was 12.3% of arm span, which equated to an optimal crank 

length of 241 mm (range, 228 to 252 mm) in this cohort of athletes (Figure 5.2). This 

optimum crank length for the cohort was within 4% (9 mm) of the standard crank length 

used on America's Cup racing yachts (250 mm or 12.8% of arm span in this cohort). From 

the crank length-power relationship (Figure 5.2), this equates to a reduction in power of 

<0.2% for the standard crank length compared to the optimum we have found. Essentially, 

the standard crank length used in big-boat sailing facilitates very close to optimal power 

production for these elite grinders who have a wide arm span. OveraJl, the 68% variation 

in crank lengths used in this study elicited a 16% variation in maximum arm-cranking 

power, which is considerably greater than the variation reported in cycling (Martin and 

Spirduso 2001). The optimal crank length in cycling has been determined to be 20% of leg 

length which equates to -170 mm for the average population (Martin and Spirduso 2001). 

Standard cycling cranks (170 to 180 mm) have also been used extensively for arm-crank 

ergometry studies, with the pedals replaced by handles (VandewaJle et al. 1989; Bouhlel et 

al. 2007). This length of crank appears to be substantially less than the optimum we have 
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found, and based on our data would have resulted in a 13% reduction in power production, 

although individual differences in physique might attenuate the magnitude of this 

decrement. 

The influence of crank length on performance is due to the complex interaction of force, 

torque and angular velocity (Gardner et al. 2007). Shorter crank lengths tend to decrease 

torque and elevate crank velocity (Martin and Spirduso 2001). Therefore grinding at 

different crank lengths involves changing the contractile conditions across the range of the 

power-velocity relationship. As the power-crank velocity relationship is parabolic (Martin 

and Spirduso 200 I; Dore1 et al. 2005), it is not surprising therefore that the power-crank 

length relationship is also parabolic. Hence peak performance (power) occurs at an 

optimum combination of torque and angular velocity. 

In order to remove differences in physique and provide a normalised measurement, crank­

axle height was calculated relative to stature. However, two athletes had an obviously 

different technique to the rest of the cohort, which included substantial plantar flexion of 

the ankle that changed their effective stature, and they were therefore excluded from the 

relative height data. There was little difference in performance between crank-axle heights 

of 50 to 60 % of stature, however, peak power was significantly reduced when the crank­

axle height was less than 50% of stature. These results indicate that the typical height of 

the grinding pedestals used on America's Cup yachts (-850 mm) would reduce peak power 

by as much as 7% for the athletes tested in this study. Unfortunately, the highest crank-axle 

height investigated in this study was 60.7% of stature, as it would have been interesting to 

determine the effect of greater heights. 

In cycling, seat-to-pedal height distance influences performance due to changes in joint 

angle at the hip and knee (Harnley and Thomas 1967). Although it could be assumed that 

crank-axle height may have a similar effect on standing arm-crank performance, the joints 

with the greatest range of motion during arm-cranking, the elbow and shoulder, are not 

directly affected by the crank-axle height. Rather, it is the hip angle which had the greatest 

change according to the crank-axle height. The decreased hip angle at lower crank-axle 

heights resulted an increased portion of the athlete's body mass being supported by the 

ergometer, as shown by the decreased VGRFtotal through the feet, presumably due to the 

athletes centre of gravity shifting forwards. The additional weight bearing of the upper 

limbs in this off-balance position results in an increase in energy required to move the 
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limbs and to stabilise the upper body. This internal work is likely to be greater when the 

athlete is in an unbalanced posture, reducing the energy available at the crank, and may 

explain the attenuated peak power at the lowest crank-axle height. Another consideration is 

that with the increased hip flexion at lower crank-axle heights (Figure 5.4), the load on the 

lower back would be expected to be greater. The incidence of lumbar spine injuries in 

America's Cup yacht racing is high (AlIen 1999; AlIen 2005; NeviIle et al. 2006), and this 

has been previously attributed to the forward flexed and rotated position of the spine 

during grinding at standard crank-axle heights (AlIen 2005; NeviIle et al. 2006). Future 

research should investigate optimal body posture and joint angles on the technique of 

grinding performance. 

5.4.1 Conclusions 

Crank length and crank-axle height influence performance in standing arm-crank 

ergometry. The optimal crank length for maximal power was 12.3% of arm-span or 241 

mm for the cohort in this study. These results, suggest that standard cycle crank lengths are 

inappropriate for maximal arm-cranking performance. Optimal crank-axle height was 

between 50 and 60% of stature (950 to 1150 mm in this study), and a crank-axle height of 

<50% of stature, which is typically used in America's Cup sailing, may result in reduced 

performance. The design and configuration of arm-crank ergometers and grinding 

pedestals should use these findings in optimising performance. 
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CHAPTER 6 

LOWER LIMB CONTRIBUTION TO GRINDING TECHNIQUE 

105 



Chapter 6: Cirinding Technique 

6.1 Introduction 

Standing ann-cranking (,grinding') is the primary physical activity in professional big-boat 

yacht racing such as the America's Cup. Racing yachts are powered by the wind flowing 

over the sails, which act as aerofoils to create lift, which propels the yacht. The sails are 

manipulated ('trimmed') by grinding performed on standing ann-crank assemblies 

(,grinding pedestals') which drive the winch system that in turn controls the sails (Pearson 

et al. 2007). There are typically four grinding pedestals on an International America's Cup 

Class version 5 racing yacht, each manned by two athletes ('grinders'). Grinders are 

characterised by having a large muscle mass and body size (Bernardi et al. 2007b; Neville 

2008) in order to generate a high power output during manoeuvres such as tacking and 

gybing, and while trimming the sails, which have loads of up to several tons. Grinding is 

largely an intermittent activity, with work bouts ranging from a few seconds to more than 

60 s during strenuous manoeuvres, such as the mark roundings. A typical America's Cup 

race involves -31 manoeuvres (3 mark roundings, 20 tacks and 8 gybes), and in close 

racing all manoeuvres require maximal effort grinding. The difference between competing 

yachts is often most apparent during manoeuvres, hence grinding is considered an 

important component of overall race performance. 

Although grinding is regarded as predominantly upper-body exercise, some athletes grind 

with distinct flexion and extension of the knee joint, and rotation of the pelvis in the 

horizontal plane, whilst for others the lower body is more rigid. It has been proposed that 

the lower limbs and trunk musculature contribute substantially to grinding performance 

(Bernardi et al. 2007b; Pearson et al. 2007), but this idea is controversial. One report 

suggested that the trunk and lower limbs should "remain square", and "rotation of the hips 

should be avoided" during grinding (Chisnell 2008). Hence the optimum grinding 

technique with respect to the role of the legs is largely unknown. During tennis serving and 

cross-country skiing double-paling, the influence of the lower limbs on performance has 

recently been investigated (Holmberg et al. 2006; Girard et al. 2007). As with grinding 

these activities involve the upper-body performing the majority of the physical work, with 

a smaller, but perhaps important contribution of the lower-body. A study of the effects of 

restricted knee and ankle joint mobility on submaximal double-poling in a group of elite 

cross-country skiers found that lower limb restriction elicited a higher blood lactate 
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concentration and heart rate response with no difference in oxygen consumption 

(Holmberg et al. 2006). These findings suggest that the dynamic use of the lower limbs 

may benefit double-poling performance by decreasing the cardiovascular and metabolic 

stress of exercise. 

It has been found that as the proportion of physical work performed by the upper body 

increases, as a fraction of whole body work, there is a concomitant increase in 

cardiovascular strain (Toner et al. 1983; Sawka 1986; Secher et al. 1974). In other words, 

as the contribution of the upper body increases a greater cardiovascular effort is needed to 

overcome the same workload, resulting in more severe physiological and metabolic strain. 

This evidence suggests that an increased involvement of the lower body may be 

advantageous in grinding. 

Therefore, the aim of this study was to examine the influence of restricted knee joint 

motion on the cardiovascular stress of standing arm-cranking (grinding) in elite 

professional America's Cup grinders. We hypothesized that there would be greater 

physiological stress during grinding with restricted lower limb activity compared with 

free/dynamic knee joint movement. 

6.2 Methodology 

6.2.1 Participants 

Eight elite professional male America's Cup grinders (mean ± SD: age, 37 ± 7; height, 

189.5 ± 4.0 cm; body mass, 102.9 ± 3.4 kg; and % body fat, 12.7 ± 5.7%) were recruited 

for the study. Their collective sailing experience included 19 previous America's Cup 

campaigns. All the athletes had at least eight years experience as an America's Cup 

grinder. At the time of the study, all the athletes were out of competition and each were 

following a low to moderate off-season strength and conditioning programme. The athletes 

were fully acquainted with the nature of the study before they gave written informed 

consent to participate. The experimental protocol was approved by the Loughborough 

University Ethical Advisory Committee. 
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6.2.2 Experimental Protocol 

The athletes visited the laboratory on two consecutive days. On the initial visit the athletes 

completed a health questionnaire, which was followed by anthropometric assessments. 

Nude body mass was measured to the nearest 0.1 kg using a calibrated digital scale (Metier 

Toledo KcC 150, Leicester, UK) and height was measured to the nearest 0.001 m using a 

stadiometer (Seca 222, Hamburg, Germany). Skinfold thicknesses were measured in 

duplicate at seven sites (triceps, biceps, subscapular, abdominal, supraspinale, thigh and 

medial calf) using calibrated skinfold callipers (Harpenden, Baty International, West 

Sussex, UK). Percentage body fat was calculated from the sum of seven skinfolds (Siri 

1961; Jackson and Pollock 1978). The athletes then returned to the laboratory the 

following afternoon to complete the exercise testing. 

After a 3 min warm-up at 160 W, the athletes performed two exercise trials in a cross-over 

design, each comprising two 5 min stages separated by a 3 min recovery interval, with a 45 

min rest period between trials. The 5 min stages were either normal grinding, where the 

legs were able to move freely, or splinted grinding, where the legs where restricted from 

movement (Figure 6.1). For each athlete the same work rate was used for all four bouts of 

grinding and ranged from 213 to 257 W. The work rate was selected to be at an intensity of 

-4 mmol"L-I, or -75% of peak oxygen uptake based on our previous work with this cohort 

and knowledge of each athlete's current fitness status. The athletes were required to 

maintain a crank velocity of -85 rpm during all stages. The legs were restricted from 

movement by locking the knee joint at full extension with a 20 mm thick wood brace 

positioned along the posterior of the leg (spanning from the heel to the gluteal fold) and 

held in place using a neoprene knee brace and taped to the leg at the mid-thigh, knee and 

ankle joints (Figure 6.1). 

6.2.3 Arm-crank Ergometer 

Exercise testing was performed using a standing arm-crank ergometer (Technogym Top 

Excite, Gambettolla, Italy), which was secured to the ground (Figure 6.1). The crank length 

was set to 250 mm, which is similar to that commonly used on International America's 

Cup Class version 5 yachts (Pearson et aI., 2007). Each athlete selected their preferred 

crank-axle height, which ranged from 1040 to 1150 mm. The crank handles were 520 mm 

apart (medio-lateral displacement). An SRM power crank (Science Powermeter V, 
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Schoberer RadMesstechnik, Jiilich, Germany) was fitted to the centre axle of the cranks. 

Power was calculated by the system software, based on the equation: power (W) = torque 

(Nm) x angular velocity (radians's-l) and recorded every 0.5 s. The SRM system was 

zeroed prior to each test stage and calibrated according to the manufacturer's guidelines 

prior to the start of each athlete's protocol. 

6.2.4 Physiological Measurements 

An online breath-by-breath gas analysis system (Breeze Suite CPX Ultima, Medical 

Graphics Corp., Minnesota, USA) was used to monitor oxygen uptake (V02), carbon 

dioxide production (VC02), respiratory exchange ratio (RER), and minute ventilation (VE) 

during each exercise stage. The athletes wore a telemetric heart rate (HR) monitor (Polar 

Electro, Finland). Before each test, the gas analyzers were calibrated with known gases 

(12% O2 and 5% CO2) and the flowmeter was calibrated with a 3.0-L air syringe at Iow, 

medium, and high flow rates. The athletes breathed through a mouthpiece held in place by 

a tightly fitted neoprene mask to ensure that all expired air was sampled. Baseline resting 

data was obtained for one minute prior to the start of each trial. Average values of all the 

respiratory variables were calculated for the final two minutes of each stage. Earlobe blood 

samples (5 flM) were analyzed in duplicate for blood lactate concentration using an 

automated lactate analyser (Analox P GM7, Analox Instruments Ltd., Hammersmith, UK) 

at rest, one minute post-warm up, and one minute after each exercise stage. The blood 

lactate analyzer was calibrated before each trial using a lactate standard of 8 mmol'L-1
• 

6.2.5 Vertical Ground Reaction Force 

The arm-crank ergometer was positioned centrally over two adjacent force plates (Kistler 

Instrument AG, 9253A2 [right] and 928lCA [left], Winterthur, Switzerland) which were 

used to measure vertical ground reaction force (VGRF) for each foot independently (Figure 

6.1). The force platforms were calibrated according to the manufacturer's guidelines and 

zeroed prior to each stage. Data was collected for 5 s during the final minute of each stage 

at a sampling rate of 200 Hz. The data was analysed to determine the total VGRF 

(VGRFtotal, i.e. the sum of both plates) averaged over the 5 s period, and average 

unilateral amplitude of the VGRF (VGRFamplitude, i.e. average of each plate) for both 

conditions. During each crank rotation there is a shift in weight from one foot to the other 

109 



Chapter 6: Grinding Technique 

producing a sinusoidal force trace. The amplitude of the sinusoidal force trace of each 

platform was measured as the average difference between the peaks and troughs. 

6.2.6 Video Analysis 

Reflective markers were attached to the right side of each athlete on the; greater trochanter 

and lateral epicondyle of the femur and the lateral malleolus of the fibula. A video camera 

(Panasonic NV-DS99EG mini DV, Japan) was positioned perpendicular to the sagittal 

plane of the athlete, 7 m away at a height of 1.0 m. Video data was collected for 30 s 

during the final minute of each stage at a sampling rate of 25 Hz. The determination of 

joint angles was performed using a digital software program (Silicon COACH PRO, 

Dunedin, New Zealand). The range of motion of the knee joint was determined as the 

difference between maximal extension and flexion of the right knee joint during one full 

crank rotation. 

6.2.7 Statistical Analysis 

Physiological data was calculated over the last two minutes of each five minute stage and 

averaged for each condition. Power output, cardiorespiratory variables, blood lactate, the 

change in knee angle, and VGRFtotal and VGRFamplitude data were compared between 

the two conditions using a standard t-test for paired samples. Data was analysed using 

SPSS version 15.0 for Windows (SPSS Inc., Chicago, USA) and all data were checked for 

normality and presented as mean ± SD. Statistical significance was set at P:S 0.05. 

6.3 Results 

The splinting intervention had a clear effect on the range of motion of the knee joint 

(normal, 17.8 ± 5.3° vs. splinted, 3.5 ± 3.2°, P<O.OOI). There was no difference in 

VGRFtotal between the two grinding conditions (P=0.07) (Table 6.1), however, normal 
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grinding elicited a greater VGRFarnplitude compared with splinted grinding (P=O.OI) 

(Figure 6.2). 

Table 6.1 Total vertical ground reaction force 
(VGRF total) and unilateral amplitude (VGRF 
amplitude) during normal grinding and 
grinding with legs splinted 

"":VGRFtoti.I':: '" VGRFamplitlJde'i, 
, :J:!:;'iid:i(Nj:..: '... . (N) 

Nonnal 957 ±46 776 ± 186" 

Splinted 967 ±47 565 ± 180 

" Significantly greater than Splinted (P=O. 01) 
Mean ± SD, n=8 

Figure 6.1 Normal grinding (A) and Splinted grinding (8) showing the change in 
knee jOint angle when splinted. (© Vernon Neville 2008) 
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The work rate was identical for the two grinding conditions (246 ± 14 vs. 246 ± 13 W; 

P=O.7), The cardiorespiratory and metabolic responses to grinding are presented in Table 

6.2. There was no significant difference in V02 between the two conditions (P=0.2, Figure 

6.3), however, there were increases in Ve02 (8%, P=O.OOI, Figure 6.4), RER (11%, 

P<O.OOl), VE (17%, P<O.OOI) and HR (7 ± 3 beats'min-! higher, P<O.OOI) during splinted 

compared with normal grinding. Due to an experimental error blood lactate values were 

only available on four athletes, however, the rise in the blood lactate concentration above 

post-warm up values was greater after splinted than normal grinding (4.8 ± 0.8 vs. 3.7 ± 

1.0 mmol'L'!, P=0.04). 

Table 6.2 Cardiorespiratory and metabolic responses of America's Cup grinders during 
normal grinding and grinding with legs splinted. 

:",';" WorkRate<:': VO,' .. , .... ve(),":': RER' , L,i,:",VEi;',!r>'V'rHR;, 
. ~<'::ili(t;';i~';) "(L~i~!l)C' . . (l.min·'l> (beatsmih·;j', 

Normal 246 ± 14 4.1±0.2 4.1 ±0.3 1.0HO.06 129±lB 165 ± 13 

Splinted 246 ± 13 4.0 ± 0.2 4.5±O.3* 1.12±0.10* 151 ±18* 172 ± 12* 

* Significantly greater than Nonna' (P<O.OOI), Mean ± SD, n=8 
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4.8 

4.6 

4.4 

4.2 

4.0 

3.8 

3.6 

3.4 

3.2 

Figure 6.2 Vertical ground reaction force (VGRF) from the right leg of 
an athlete (102 kg) during Normal grinding (broken line) and Splinted 
grinding (solid line) 

._-...... -. 

Normal Splinted 

Figure 6.3 Mean V02 for the group (bar graph) and individual changes 
during normal and splinted grinding (n=8) 
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* 
4.8 

4.6 

4.4 

4.2 

4.0 

3.8 

3.6 

3.4 

3.2 

Normal Splinted 

Figure 6.4 Mean VC02 for the group (bar graph) and individual 
changes during normal and splinted grinding (n=8) .• Significantly 
greater than normal (P=O.001) 

6.4 Discussion 

This study examined the influence of restricted knee joint motion on the physiological 

responses to grinding in elite professional America's Cup sailors. The main findings were 

that splinted grinding elicited a higher CO2 production, minute ventilation, heart rate and 

blood lactate concentration than normal grinding. These data suggest that the lower limbs 

play an integral role in grinding, and that restricting knee joint movement markedly affects 

the cardiovascular and metabolic responses to this activity. To our knowledge, this is the 

first study to characterize the involvement of the lower extremities during standing arm­

cranking (grinding). Given these findings, use of the lower limbs seems certain to enhance 

grinding performance. 
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The difference in knee joint range of motion between the two conditions clearly 

demonstrates that the splinting intervention was effective at reducing lower limb 

movement. Similar splinting techniques have been employed previously in an effort to 

assess the contribution of joint mobilisation to sports performance (Holmberg et al. 2006; 

Girard et al. 2007). In the present study vertical ground reaction force was measured from 

both the left and right legs during normal and splinted grinding. The VGRFamplitude was 

greater during normal grinding, which highlights a distinct shift in body mass from the left 

to right leg during grinding (Figure 6.2). This emphasizes the active involvement of the 

lower extremities during grinding and indicates that, consistent with the study design, the 

influence of the lower limbs was effectively reduced by the use of splinting. The similar 

VGRFtotal values during the two conditions, confirmed that the athlete's weight 

distribution between their feet and the ergometer was unaffected by the splinting 

intervention. 

The work rate was selected to be at the approximate intensity of the 4 mmolr1 lactate 

threshold (OBLA), in order that any differences in physiological stress would reveal clear 

changes in cardiovascular and metabolic responses. The two conditions involved the same 

power output (246 W, P=0.7), yet carbon dioxide production, minute ventilation, heart rate 

and blood lactate concentration were all significantly higher during splinted grinding, with 

no change in oxygen uptake. Therefore restricted lower limb movement resulted in a 

marked increase in physiological stress, and a shift towards anaerobic metabolism. Similar 

results have been reported during cross-country skiing, where significant increases in HR, 

V E and BLa occurred as a result of double poling with restricted knee and ankle joints 

(Holmberg et al. 2006). 

There are several interconnected explanations for the changes that occurred during lower 

limb splinting. Firstly, during splinted grinding there is an increase in the proportion of 

work done by the upper limbs, increasing the demand of these muscles for energy. As the 

exercise intensity is already at - anaerobic threshold during normal grinding, the additional 

demand for energy will be met by largely anaerobic metabolism and earlier recruitment of 

the more glycolytic type II muscle fibres (Schneider et al. 2002; Holmberg et al. 2006). 

The shift in the proportion of work done by the upper body musculature, that appears to be 

less efficient at oxygen extraction and to have a lower muscle capillary oxygen 

conductance than leg muscles (Calbet et al. 2005), may contribute to the increase in 

anaerobic metabolism. Secondly, during dynamic exercise, a decrease in active muscle 
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mass, for the same work load, leads to a reduction in venous return and lower central blood 

volume (Toner et al. 1983). This has been shown to attenuate central venous pressure, 

resulting in a greater heart rate response (Ray 1999). The reduced ability for oxygen 

extraction by the upper body musculature may also require a greater cardiovascular effort 

in order to complete the same work. Thirdly, the blood lactate concentration is well known 

to be a balance of production and removal (Hermansen and Stensvold 1972). The upper 

limbs have a higher tendency to produce lactate and a lower ability to utilize lactate, than 

the lower limbs during moderate to high activity (Van Hall et al. 2003). The use of lactate 

by skeletal muscle appears to be higher when light exercise is performed compared with at 

rest (Hermansen and Stensvold 1972). Therefore, lower limb activity during grinding may 

also be important for lactate clearance. This indicates that even a small activation of the 

lower limb muscles (i.e. an active contribution by the legs during grinding) may also be 

important for lactate clearance (Toner et al. 1990). 

A further consideration is the involvement of the kinetic chain in generating force. It is 

clear from the change in knee joint angle as well as the VGRFamplitude that during normal 

grinding there is substantial knee extension and flexion. On more detailed kinematic 

investigation it is clear that knee extension and hip elevation and posterior rotation (in the 

horizontal plane) of one leg precedes the main power generating push phase of the 

contralateral arm. In other words the right leg straightens first, in order to shift the centre of 

mass to the left side and provide momentum for the left arm push. Indicating that during 

normal grinding the force is initiated proximally and transferred through a coordinated 

movement of muscle activation along the kinetic chain. Therefore, by restricting the knee 

motion, VGRFamplitude and the medio-lateral body mass shift, it is likely that the normal 

pattem of force generation is disrupted, increasing the reliance on the distal upper limbs for 

force generation. It is possible that greater lower limb activity than was typical in the 

normal grinding we have observed could be beneficial to grinding performance, however 

further investigation is needed to better understand the relationship between lower 

extremity function and grinding performance. 

Given the results of this study, it is reasonable to suggest that incorporating appropriate 

lower limb conditioning and technique exercises into the athletes training programmes may 

benefit grinding performance by enhancing leg muscle activation and developing lower 

limb motor contro!' For example, exercises that invoke specific patters of neuromuscular 

recruitment and activation along the kinetic chain, such as explosive whole body exercises, 
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and dynamic exercises that activate the trunk muscles in transferring power from proximal 

to distal are recommended. 

An interesting observation of this study was that the self-selected height of the grinding 

crank-axle (range, 1040 to 1150 mm) was substantially higher (>25%) than that typically 

used on America's Cup class yachts (- 830 mm) (Bernardi et al. 2007b; Pearson et al. 

2007). This suggests that the standard grinding pedestal height may not be the most 

comfortable for grinding performance, as well as being a potential risk factor for lower 

back injury (Alien 2005; Neville et al. 2006). 

The results of this study may also have important clinical implications for cardiovascular 

rehabilitation where patients often use arm-cranking as an alternative form of rehabilitative 

exercise (Sawka et al. 1983a; Leon 2000; Westhoff et al. 2008). The incorporation of lower 

limb activity during arm-cranking, would facilitate completion of an equivalent work rate 

and therefore energy expenditure, oxygen uptake and presumably training response for a 

lower physiological strain (Vokac et al. 1975). 

6.4.1 Conclusions 

The present study demonstrates that restricted leg movement during standing arm-cranking 

increases the physiological strain of this activity. Therefore, a purely stabilising role of the 

lower limbs is discouraged and it is recommended that grinders make dynamic use of the 

legs to maximise lower limb involvement and decrease cardiovascular and metabolic 

responses to exercise. Furthermore, the involvement of the lower limbs in grinding 

reinforces the importance of lower limb conditioning for grinders. Future research on 

grinding performance should consider evaluating the sequential pattern of muscle 

activation, and how body segments in the upper and lower-body interact during the 

different phases of arm-cranking. 
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CHAPTER 7 

THERMOREGULATORY DEMANDS OF RACING 
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7.1 Introduction 

Competitive in-shore yacht racing predominantly takes place during the summer months 

when athletes may be exposed to hot and humid environmental conditions for prolonged 

periods. The America's Cup is the most prestigious professional yacht racing event and is 

regarded as tbe "Formula 1" of sailing. The 25 m long, 24,000 kg, version 5 International 

America's Cup Class high performance racing yachts are sailed by a crew of 17 skilled 

atbletes in a "match race" format between two boats around a specific race course (Figure 

2.1). In Chapter 3 race duration was found to be 82 ± 9 min (range, 64 to 105 min), which 

occurs between significant periods of pre- and post-race sailing, in addition there can be 

two races per day during the early competition rounds (Neville 2008). The physiological 

and technical demands are specific to the role of the atblete and largely dependent on the 

wind strength and race tactics (Neville et al. 2006). The crew can be divided into five 

groups, each involving similar activities, with bowmen (including tbe mid-bowman), 

grinders (including the mastman) and utilities (including the pitman, strategist and runner­

trimmer) all in high physically demanding roles and tbe afterguard (including helmsman, 

navigator and tactician) and trimmers in moderately demanding roles (Whiting 2007). The 

activities on board are intermittent and varied, with work bouts during racing ranging from 

5 to 90 s. Bowmen and grinders are regarded as the most physically intense roles (Bauer 

1986), witb bowmen having high arm crank V02max values (range: 52 to 61 ml'kg-I'min-I) 

(Bauer 1986; Bernardi et al. 2007b) and grinders reported to be working at ~90% of 

V02peak (Bernardi et al. 2007b) during strenuous racing. 

The environmental conditions of the 32nd America's Cup were documented in Chapter 3 

and found, on average, to be moderate (temperature, 27°C; relative humidity, 60%; mean 

TWS, 5.1 ms-I). However, the range of conditions achieved highs of 38°C in ambient 

temperature and 82% relative humidity, which is recognised as 'extremely high risk' of 

heat illness. The high energy expenditures of tbese sailors, combined with prolonged 

exposure to hot environmental conditions will result in elevated body temperatures and 

substantial sweat losses during racing. In fact, clinically diagnosed heat illness and 

dehydration have been previously documented in America's Cup sailing (NeviJJe et al. 

2006). 
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Various phases ofracing also involve differing environmental stresses. For example, large 

differences in the apparent wind speed (A WS), and thus expected evaporative cooling, 

exist between upwind and downwind sailing. Upwind sailing also typically results in 

sailing against the prevailing waves with increased exposure to sea spray, hence athletes 

typically wear waterproof clothing to prevent saturation. Athletes are unable to change 

garments in response to these differing conditions, which may result in high rates of heat 

storage and restricted evaporative heat loss during downwind sailing. Over prolonged 

periods this could result in hyperthermia and dehydration to an extent that may negatively 

influence cognitive and physical performance (Howe and Boden 2007). Despite these 

issues there is currently a dearth of knowledge regarding thermoregulatory responses 

during sailing, including the crew roles and phases ofracing that involve the greatest heat 

stress. 

The thermoregulatory responses to exercise in controlled laboratory conditions have been 

well documented (Nielsen et al. 1993; Gonzalez-Alonso et al. 1999; Morris et al. 2005). 

However the impracticalities associated with accurately measuring core and skin 

temperatures of athletes during competition and in field settings has until recently limited 

our understanding of the thermoregulatory responses to these conditions. The recent 

validation of telemetric intestinal temperature sensors (Gant et al. 2006; Byme and Lim 

2007; Casa et al. 2007) has provided an accurate means of determining core temperature in 

field studies. Intestinal temperatures have recently been reported during training and 

competition of athletes (Godek et al. 2005b; Edwards and Clark 2006; Godek et al. 2006). 

To date body temperature changes during sailing have not been reported, despite reports of 

heat illness (Allen 2003; Allen and De long 2006; Neville et al. 2006), and evidence that 

dehydration may be a common problem for competitive sailors (Mackie and Legg 1999). 

For example, 88% of elite New Zealand Olympic class sailors reporting symptoms of 

dehydration during one season (although the details and severity were not specified). 

Recreational Dinghy sailors have been reported to lose sweat at a modest rate of - 0.4 L·h" 

l(Slater and Tan 2007), which is much less than in intermittent team sports (e.g. soccer -

I. 7 L'h"l) (Maughan et al. 2007b) and therefore also big-boat sailing. In addition to water, 

important electrolytes are lost in sweat, most notably sodium, chloride, potassium and 

magnesium (Maughan 1991), that could compromise endogenous electrolyte 

concentrations during competition. 
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The aim of this study was to assess the thermoregulatory responses to big-boat yacht racing 

and how these were influenced by crew position and the phase of racing (upwind or 

downwind). Moreover, given the prolonged environmental exposure and physical and 

mental stress of competitive America's Cup sailing, we aimed to document the 

thermoregulatory strain of sailors in order to appreciate its' affect on their performance and 

health. To our knowledge this is the first study to accurately measure core and skin 

temperatures, fluid and electrolyte losses in elite professional intermittent team sport 

athletes during competition. Quantifying the thermoregulatory demands of this sport may 

enhance our understanding of performance limitations as well as the risks of heat injury. 

7.2 Methodology 

Body temperature, fluid balance and sweat composition data were collected from a 

professional America's Cup yacht racing crew, 12 months prior to the 32nd America's Cup 

in Valencia, Spain. The study took place in the mid-afternoon during the month of July 

(European summer) with environmental temperature, humidity, wind speed and sea state 

taken from a Meteorological Data Service buoy close to the race course at 6 m above sea 

level. Data was captured at 30 min intervals and averaged for the duration of the study. The 

apparent wind speed (A WS), which is the actual wind speed on the boat, was calculated 

using the formula: 

AWS =.y(TWS+VS-2 x TWSx VSx cos(TWA)) 

Where TWS is true wind speed, VS is boat speed, and TW A is true wind angle in radians. 

All data were collected before, during and after two short-course races between two similar 

America's Cup racing yachts. Pre- and post-sailing data were collected at the team's 

dockside training facility and on-board investigators logged all the data during sailing, 

including race information (duration and the number of tacks and gybes). The total 

duration between pre- and post-sailing data collection was 150 min which included 100 

min of racing. 
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7.2.1 Participants 

Thirty two elite, professional, male America's Cup yacht racing athletes participated in the 

study (Table 7.1). The participants all sailed for a team regarded as a favourite to win the 

32nd America's Cup, with their collective experience including more than 100 America's 

Cup campaigns. The athletes were all well acclimatised to the environmental conditions, 

with all athletes having lived and trained at the location for - 2 yrs prior to the study. The 

study was conducted within the team's normal training schedule and overseen by the 

team's sports science and medical support staff. The data collection procedure was 

described in detail to all athletes before informed consent was obtained. The study was 

approved by the local Ethical Advisory Committee. 

7.2.2 Experimental Design 

All athletes reported to the team's training facility at their normal training time (0800 h) 

and the 23 who volunteered to have core temperature measured were encouraged to empty 

their bowels prior to ingesting 500 ml of water with a telemetric core temperature (Tcore) 

capsule (VitaISense®, Mini Mitter Co., Inc., Oregon, USA). The temperature sensor 

capsules were ingested 6 h prior to sailing to ensure capsules had progressed sufficiently 

along the gastrointestinal tract (Lee et al. 2000). Fluid and food intake was standardised 

and monitored for all participants in the 6 h period prior to sailing. Athletes refrained from 

caffeine ingestion and avoided any nutrient intake in the 2 h prior to the study. The athletes 

returned to the team's medical laboratory 1 h prior to sailing for instrumentation and pre 

sailing blood and urine sample collection. Participants were instructed to empty their 

bladders prior to measurement of nude body mass (Tanita digital scale WB-II0 P MA, 

Tokyo, Japan; calibrated to 0.1 kg), after which heart rate monitors (Polar® Heart Rate 

Team System, Finland) were fitted and checked. 

Absorbent sweat collection patches (Tegaderm absorbent dressing 5 x 7 cm, 3M, 

Loughborough, UK) were attached to all athletes on four skin sites (chest, scapular, 

forearm and thigh) (Patterson et al. 2000) on the left side of the body. The skin surface was 

initially prepared by cleaning the area with an alcohol swab, shaving with a disposable 

razor, rinsing with deionised water then drying with a sterilised absorbent gauze swab. 

Skin temperatures were measured on 12 athletes by adhesive wireless surface temperature 

sensors (VitaISense®, Mini Mitter Co., Inc., Oregon, USA), fitted to four standardised sites 
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(Ramanathan 1964); chest (Tchest), thigh (Tthigh), anterior calf (Ttibia) and foreann (Tarm) on 

the right side of the body and secured with a porous adhesive dressing. Mean skin 

temperature (Tskin) was calculated as an area weighted average (Ramanathan 1964). 

Intestinal and skin temperature sensors were individually verified to be accurate with a 

mercury thermometer in a water bath prior to instrumentation. Intestinal temperature was 

monitored 30 min prior to sailing whilst cold fluid was ingested, to ensure that sensors had 

advanced far enough along the gastrointestinal tract. The on-board investigators, familiar 

with using the portable data logger, collected temperature data at regular intervals (-10 

min). 

All athletes wore the team's standard racing clothing, which was logged, and consisted of 

either shorts or tights and shorts, and one to three layers of racing tops which typically 

were a T-shirt, a long sleeve top and a Gore-Tex® jacket. Fluid (water and/or sports drink) 

and food (sandwiches) intake during sailing was ad libitum and measured by having each 

athlete only drink and/or eat from their individually labelled, pre-weighed containers. The 

volume of urine excreted by each athlete during the sailing was recorded with a graduated 

measuring cylinder and logged by an investigator on-board each yacht. 

Immediately post-sailing the athletes returned to the dock-side laboratory where the outer 

surface of sweat patches was irrigated with deionised water and dried. Patches were 

removed and stored in sealed containers for later analysis. Skin temperature sensors were 

removed and athletes were towel dried before nude body mass was recorded. Post-sailing 

blood and urine samples were then collected. Each athlete retrospectively rated subjective 

race intensity on a simple l-to-5 scale (1 = very light; 5 = extremely tough). 

Venous blood samples (7.5 ml) and urine samples were collected pre- and post-sailing and 

stored for later analysis. Serum was analysed in duplicate for sodium, potassium and 

chloride concentrations by indirect potentiometry (Modular Analytics SW A analyzer, 

Roche Diagnostics, Switzerland) and reported as mean values. Serum and urine osmolality 

were determined using freezing point depression osmometry (Osmostat OM-6020, 

Menarini Diagnostics, Italy), and urine specific gravity was quantified (Urisys 2400 

analyzer, Roche Diagnostics, Switzerland). 

Sweat patches were analysed in duplicate for sodium, potassium and chloride 

concentrations by indirect potentiometry (Modular Analytics SW A analyzer, Roche 

Diagnostics, Switzerland) and reported as mean values. Magnesium concentration was 
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determined by the colorimetric endpoint method (Modular Analytics SW A analyzer, 

Roche Diagnostics, Switzerland). Sweat electrolyte concentration was expressed as the 

arithmetic mean concentration of the four sites. 

Sweat loss was calculated as the change in body mass after correcting for fluid/solid intake 

and urine volume. Respiratory and substrate losses were not accounted for as these were 

considered minimal and difficult to accurately determine. Dehydration was expressed as 

total fluid loss, as a percentage of pre-exercise body mass. Hyperthermia was defined as a 

state of high body temperature causing potentially negative performance or health 

outcomes, which are usually observed after - 2°C rise above base core temperature. 

7.2.3 Statistical Analysis 

The physiological responses (heart rate, Teore, sweat loss, fluid intake, sweat electrolyte 

concentration and total sweat electrolyte loss) of the different crew positions were 

compared by ANOVA, and significant interactions were explored using the Holm­

Bonferroni step-wise method. Regional skin temperatures were analysed with ANOV A to 

examine any difference in temperature between the measurement sites. Mean 

thermoregulatory responses to upwind and downwind legs from both races were calculated 

for each athlete, and the responses to these two wind conditions compared with a paired (­

test. Paired samples (-tests were also used to assess for any differences in serum and urine 

composition between pre- and post-sailing. Pearson's product moment correlations were 

used to determine the strength of bivariate relationships. The level of significance was set 

at P =" 0.05 and data are reported as mean ± SD. 

7.3 Results 

The environmental conditions were: air temperature, 32 ± 1°C; relative humidity, 52 ± 5%; 

humidex 41 ± 4°C; average true wind speed, 5.0 ± 0.2 ms·1 (AWS upwind, 9.2 ms·l
; AWS 

downwind, 2.4 ms· I
); sea state, 0.5 m swell. Racing consisted of a 65 min short-course 
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(2.8 km per leg) two-lap race, followed by a 35 min short-course (2.8 km per leg) one-lap 

race, with a 23 min active recovery interval between races. The period before and after 

racing was 27 min, during which time the yachts are towed out and back to the harbour. 

The subjective race intensity of both boats was similar and described as "moderate", with 

an overall mean subjective rating of2.7 ± 0.2 out of 5 (race 1: 65 min, 11 tacks & 9 gybes; 

race 2: 35 min, 12 tacks & 3 gybes). The mean heart rate for the whole crew was 116 ± 18 

beats.min· l (Table 7.2), which was - 10% lower than that observed for a higher intensity 

race (unpublished observations, Table 7.1). Mean and peak heart rate were both influenced 

by crew position (ANOVA, P<O.OI), with the bowmen having higher heart rates than the 

afterguard. 

Table 7.1 Physical characteristics of America's Cup sailors, including laboratory tested maximum heart rate 
(HR) and unpublished HR data recorded during strenuous raCing 

.. ·.'ii',;,;.i ••. ,.:.· .• ·.' .•. ·.· ...• ' ..• ,;['inA .•. '-~,L3.L2 ..• ) .. " .. i ... • ..•...••. •.· ...•. i.[Ra~ge) .... i •• '.,.' ..•.. • ..•.• ,., .•. I/i.· .. ' .... : .. ,. Bowmen ,., .. G.~inders ••• ,. Utilities ,.Tri",,,,ers. Aft~r~~a~d" 
i In"'6]Y' [0"'8]. [n=6J . ,1[n"'6) [n=6J 'iJ 

Age Iy) 

Body mass [k9J 

Height [mJ 

Body fat [%) 

Body surface area [m') 

Maximum HR (beats·min-1j 

Mean HR during strenuous race 

(4/5 intensity scale) [beats·min·'J 

36.7 

92.3' 11.9 

1.84.0.06 

13.2 ±3.6 

2.1.7.0.17 

2.36± 0.12 

187.6 

130 ± 19 

[25-47J 36.5 

[73.5-119.5J 83.2.5.5 

[1.66 -1.95 J 1.80.0.02 

[7.6-20.2J 11.1.3.5 

[1.84- 2.54 J 2.04 ±0.07 

[2.13- 2.58 J 2.46 ± 0.08 

[177-197J 191>6 

[97-170) 148 ± 12 

36.7 36.6 35.8 

107.3' 7.9 91.0.10.7 87.6.11.2 

1.88.0.05 1.79.0.08 1.84.0.05 

14.4 ± 4.3 13.7±2.9 12.6.4.2 

2.37±0.11 2.13±0.16 2.11±0.16 

2.21 .0.07 2.35 '0.10 2.42.0.11 

186.6 165.7 187 ± 7 

135.16 128.24 130 ± 12 

The bowmen recorded greater peak Tcore (39.2 ± 0.2°C; range, 39.0 to 39SC) than all other 

crew positions (Bonferroni, P<O.OI), but mean TcoTe was not influenced by position (whole 

crew: 38.1 ± O.3°C; ANOVA for position P=0.16; Table 7.2). Several athletes lost skin 

temperature sensors, particularly from the leg (T"bia) as a result of contact with boat­

hardware or sails. From the seven athletes with complete data, regional skin temperatures 
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were lower for the tibia (33.3 ± 1.2"C) than the forearm (35.0 ± ~SC; P=O.OI vs. tibia) 

and the scapula (35.0 ± OSC; P=0.05 vs. tibia), but similar to the chest (34.4 ± ~SC). 

Overall mean Tskin was 34.4 ± ~SC. 

Table 7.2 Heart rate and intestinal temperatures during America's Cup yacht racing. 

HearlRate 

Mean [beats·min·1
] 

Peak [beats·min·'] 

Intestinal Temperature 

Mean ["C] 

Peak ["C] 

116±18 

160 ± 18 

38.1 ± 0.3 

38.4 ± 0.4 

140 ± 8' 

184±10' 

38.4 ± 0.2 

39.1 ± 0.2' 

117±20 

161 ± 19 

38.0 ± 0.2 

38.3 ± 0.3 

121 ± 12 

163 ± 11 

108 ± 11 

155 ± 17 

97 ± 12 

142 ± 12 

38.1 ± 0.4 38.0 ± 0.3 37.9 ± 0.2 

38.3 ± 0.3 38.2 ± 0.3 38.2 ± 0.1 

Significant differences between positions: • Bowmen greater than trimmers and afterguard (P<0.05); b Bowmen higher than afterguard (P<0.01); 
C Bowmen higher than all other positions (P<O.01) 

When comparing the mean response to both upwind and downwind legs of the race, the 

whole crew had higher heart rates and Teofe during downwind sailing (Paired t-test, both 

P<O.OOI, Table 7.3). This effect was most marked for the bowmen with heart rate 22 

beats·min-1 and Teofe 0.4"C higher downwind (Paired t-test, both P<0.05; Figure 7.1). In 

addition, the maj ority of athletes, with the exception of bowmen, reported being "hot and 

uncomfortable" when sailing downwind and "wet and cold" upwind. 
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Table 7.3 Mean intestinal temperature and heart rate during upwind and downwind 
legs of America's Cu p yacht racing 

Intestinal T"ml'eratlii,,['C] 

..•. Upwind .' . Downwind· 

Bowmen [n=5] 38,3 ±0,2 38,6 ± 0,2 • 

Grinders [n=7] 38,0 ±0.2 38.1 ± 0.3-

Utilities [n=6] 38.1 ± 0.2 38.2 ± 0.3 

Trimmers [n=6] 38.0 ± 0.3 38.0 ± 0.3' 

Afterguard [n=5] 37.8 ±0.2 38.0 ± 0.1 

All [n=29] 38.0± 0.3 38.2 ±0.3-

Significantlygreafer than upwind (* P<O.05; - P<O.001) 

Heart. Ra!e[b"afs:rnin-1]::"j: 

Upwind'" Downwind .• L·.· 

128±11 

116±20 

121 ± 14 

105 ± 9 

96 ± 11 

113±17 

150±17' 

122±21' 

124 ± 14 

113±16 

96 ± 16 

121 ± 23' 

127 



Chapter 7: Thcnnoregulation 

39.5 

(3' 
39.0 2-

e 
::J -co 
~ 38.5 
" c. 
E , 
" I- :! 
iO 38.0 

v1 c: 'i ., 
:1 Ul 

" -.5 37.5 

37.0 

37 

36 

(3' 
2-

e 35 
::J -co 
~ 

" 34 c. 
E 
" I- 33 c: 
:;;: 
If) 

32 
--'-CtJest 

~ .. ~ 
-..- Fctearm 

31 --0- Tibialis 

180 

160 

'i: 
E 
.l!i 

140 

'" Q) 

B. 120 

" -.. a:: 
1:: 100 .. 
'" J: 

80 

60 Pre·Race Start Upwind 1 Downwind 1 Upwind 2 Downwind 2 

-8 18 29 43 55 

Time [min[ 

Figure 7_1 Mean intestinal temperature, skin temperature and heart rate for bowmen 
during an America's Cup yacht race (n=4) 
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For all athletes mean sweat loss during sailing (150 min) was 2.24 ± 0.89 L (range: 0.74 to 

3.95 L), equivalent to a sweat rate of 0.96 ± 0.38 L·h- I (range: 0.32 to 1.69 L·h- I
). 

Assuming that no sweat was lost during the periods before and after competition, sweat 

rate during racing (100 min) was 1.34 ± 0.58 L'h- I (range: 0.44 to 2.40 L·h- I
). Crew 

position influenced absolute (ANOVA, P<O.OOl; Table 7.4) and relative sweat loss 

(ANOVA, P<O.OOl). Specifically, the afterguard (1.03 ± 0.25 L) lost significantly less 

sweat than the bowmen (3.01 ± 0.52 L), grinders (2.78 ± 0.83 L) and utilities (2.11 ± 0.55 

L). Relative to body mass the bowmen (3.7 ± 0.9%) lost more sweat than the after guard 

(1.2 ± 0.3), trimmers (2.4 ± 0.8) and utilities (2.3 ± 0.6) (Table 7.4). A modest correlation 

was found between peak Teor• and fluid loss (r=0.48, P=O.02), but surprisingly no 

significant association was found with fluid intake. 

Table 7.4 Sweat loss, fluid intake and major sweat electrolyte concentrations during America's Cup yacht racin 

Sweat loss [1I 

Sweat loss [% of BMJ 

Fluid intake [LJ 

Sweat loss replaced [%J 

Grinders >;,:' ,,':' UtiUiies ::,', 
[n=8] .... •• [n=6J 

Trimm'ers " :-:A.fterg~'~~ 
[n=6],.)··· . [n=6F' 

2.24 ± 0.89 [0.74-3.95J 3.01 ±0.52 2.78±0.83 2.11 ±0.55 2.07±O.58 1.03±0.25 

2A± 1.0 [0.8-5.2J 3.7±0.9' 2.6±0.7 2.3±0.6 2.4±0.8 1.2±0.3' 

1.60 ± 0.77 

72±41 

[0 - 2.58J 

[0 -192J 

1.88 ± 0.64 2.00 ± 0.69" 1.53 ± OA6 1.65 ± 0.60 0.77 ± 0.90 

62±17 71±13 79±32 77±23 73±89 
--------------------.. ---.---- --------------

Dehydration [%) 0.7 ± 0.8 [-1.3 to 2.5] 1.5±0.9' 0.6 ± 0.4 0.7±0.7 0.5.0.3 0.1 ± 1.0 
_._----------_. __ ._--------------_. __ ._----•. _---_._--------.----
Mean sweat electrolyte concentration 

Sodium [mmal-L"J 27.2± 9.2 [12.0 - 43.5 J 34.0 ± 9.7 26.0 ± lOA 28.8 ± 5.1 24.4 ± 6.4 23.3 ± 10.£ 

Chloride [mmol·L"J 19.0±6.1 [8.3-31.5J 23.7 ± 5.8 18.9 ± 7.0 20.8 ± 1.3 15.8±4.1 15.7 ± 7.2 

Potassium [mmal-L"J 4.3 ± 0.8 [1.6 - 5.6] 4.3 ± 0.4 4.6 ± 0.3 4.3 ± 0.8 4.7 ± 0.6 3.4±1.1 

Magnesium [mmal'L"] 0.35 ± 0.07 [ 0.23 - 0.51 J 0.39 ± 0.08 0.35 ± 0.07 0.36 ± 0.08 0.33 ± 0.07 0.33 ± o.oe 

Sweat loss was calculated from the change in body mass after correcting for fluid and solid intake and urine volume. Dehydration is expressed as the percentage 
change in body mass due to fluid loss, 

Differences between crew positions: • Afterguard lower than bowmen, grinders and utilities; b Bowmen higher than utilities, trimmers and afterguard; C Afterguard 
lower than bowmen, grinders and trimmers; d Afterguard lower than bowmen, grinders and utilities; • Grinders higher than afterguard; r Bowmen higher than 
afterguard. All comparisons P<:O.05, 
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Fluid intake was influenced by crew position (ANOV A, P<0.05), with the grinders 

consuming more fluid than the afterguard (2.00 ± 0.69 vs. 0.77 ± 0.90 L; Bonferroni, 

P<0.05), and fluid intake was also highly correlated to sweat loss (r=0.74, P<O.OOI). The 

proportion of sweat loss replaced by the whole crew was 72 ± 41% (ranging from 0 to 

192%) and was similar for all crew positions (ANOVA, P=0.96). Dehydration of the crew 

ranged from -1.3 to 2.5% and was affected by sailing position (ANOV A, P<0.05), with the 

bowmen dehydrating significantly more than the afterguard (1.49 ± 0.89 vs. 0.04 ± 1.02%; 

Bonferroni, P<0.05). 

Ten athletes had a pre-race urine osmolality greater than 900 mOsmol'kg'\ (and specific 

gravity greater than 1.025; Table 7.5), and the majority of grinders (7/8) were> 890 

mOsmol·kg,l. Urine specific gravity significantly increased post-race (1.019 ± 6 to 1.022 ± 

8; Paired !-test, P=0.03), however, no change was observed in serum osmolality. Serum 

sodium and chloride concentrations were unaffected by racing, however the serum 

potassium concentration was significantly lower after sailing (P<O.OOl). 

For the whole crew the sodium concentration of sweat was 27.2 ± 9.2 mmol'L'\ (range: 

12.0 to 43.5 mmol'L'\), the rate of sodium loss was 0.6 ± 0.4 g'h'\ (range: 0.\ to 1.7 g'h'\) 

and the total NaClloss during sailing was 3.8 ± 2.4 g (range: 0.7 to 10.0 g). There was a 

significant main effect for potassium concentration between positions (P=0.02), 

specifically the afterguard were less than trimmers and grinders (P<0.03). Moreover, the 

absolute loss of sweat electrolytes was related to crew position (ANOVA, P<O.OI for 

sodium, potassium, chloride and magnesium), with the afterguard losing significantly less 

sweat electrolytes than other positions, specifically less than the bowmen for all 

electrolytes (P<0.05; Table 7.4). Across the whole crew, the rate of sweat loss was strongly 

related to mean sweat sodium and chloride concentrations (P<O.OOI), but no relationship 

was found for magnesium or potassium. 

There was no relationship between body surface area and mean Tcore (P=O.92) or sweat rate 

(P=0.38). Peak heart rate was significantly related to both peak Tcor• (r=0.S3, P=O.OI) and 

fluid loss (r=0.61, P<O.OOI). 

BO 



Table 7.5 Serum electrolytes and osmolality, and urine specific 
gravity and osmolality pre and post America's Cup yacht racing 
[n=32] 

Serum Electrolytes 

Sodium [mmol'L"1 

Chloride [mmol'L"1 

Serum osmolality [mmol'L'1] 

Urine osmolality [mOsmol'kg-1
] 

Urine specific gravity 

142 ± 2 

4.3 ± 0.3 

102 ± 1 

286±3 

772 ± 224 

1019 ± 6 

Significantly different to pre-race i P<O.05; - P<O.001) 

7.4 Discussion 

142 ± 2 

4.1 ± 0.3 ** 

102 ± 2 

286 ± 3 

807 ± 285 

1022±S' 

Charter 7: Thermoregulation 

This is one of the first field studies to report body temperature responses, concurrent with 

fluid and electrolyte balance in elite professional athletes. The main fmdings suggest that 

America's Cup sailors may at times be at risk of heat related illness and experience 

considerable fluid and electrolyte losses during racing, similar to the magnitude reported 

during other high-intensity intermittent team sports. The effects are specific to the role of 

the athlete, with bowmen at greatest degree of both hyperthermia and dehydration. In 

addition, downwind sailing involves significantly greater thermal strain than upwind 

sailing, which may have implications for clothing selection and race management 

strategies. 

While sailing in hot environmental conditions, such as the 32°C in this study, thermal 

radiation can be increased by the reflective surfaces of the water and sails, as well as via 

the heat gain from the boat deck which is usually black or dark in color (Nielsen 1990). 
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Hence, overall heat gain from the enviromnent may be high, which increases the 

thermoregulatory strain when combined with the prolonged exercise such as during 

America's Cup yacht racing. The duration of the races in the current study were less than 

that of official America's Cup yacht races (11.2 and 5.6 vs. 22.4 km). Despite a moderate 

subjective rating of race intensity (2.715.0) and a relatively low number of race manoeuvres 

(tacks and gybes, 24 vs. - 80 during strenuous racing), the mean heart rate for all athletes 

was still relatively high (62% ofHRmax). The TeOfe for all athletes at the end of racing (3S.4 

± O.4°C; n=23) was similar to that previously reported in field studies involving other 

prolonged intermittent sports (Bergeron et al. 2006; Edwards and Clark 2006; Godek et al. 

2006). The Teoreofprofessional American football players (NFL) reached 3S.7°C (n=8) at 

the end of a 2 h high intensity preseason training session (Godek et al. 2006), while a semi­

professional soccer team had Teore of 3S.7°C (n=7) at the end of a 90 min competitive 

match (Edwards and Clark 2006). In this study grinders had the highest body mass and 

lowest BSA-to-mass ratio, and with the high work demands of grinding (Bemardi et al. 

2007b; Neville 200S) they may have been expected to have the greatest rise in TeOfe (Godek 

et al. 2006). However, the athletes with the lowest body mass and greatest BSA-to-mass 

ratio, bowmen, reported the greatest peak Teore (39.2°C; range: 39.0 to 39.5°C). It has been 

well established that T core in excess of 39°C can negatively impact on sport specific skill 

(Dawson et al. 1985; Sunderland and Nevill 2005) and exercise capacity (Nybo 200S). 

Therefore, it is possible that the performance of the bowmen could have been compromised 

in this study, and this crew position may be at risk of hyperthermia-related heat illness in 

more demanding race conditions. It is interesting to note that even the least physically 

demanding positions, the afterguard, experience elevated peak Teore (-3S.2°C) which may 

be attributed to the enviromnental conditions as well as the athlete's selection of clothing. 

The fact that several athletes lost skin temperature sensors as a result of contact with boat­

hardware and sails, underscores the difficulties of field studies. The low Ttibia compared to 

the other regional skin temperatures may reflect clothing selection, as most athletes wore 

long sleeve tops and shorts, allowing greater evaporative cooling of the lower limb, or the 

intensive upper body work involved in big-boat sailing. 

The higher Teore and heart rate observed during the downwind legs of the race are likely to 

be due to the different environmental conditions and work demands between upwind and 

the downwind sailing. Two important differences are the A WS, which is the actual wind 

speed on the boat resulting from a combination of the true wind speed and the speed of the 
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boat (Whiting 2007), and the direction of the waves (which typically run with the wind 

and/or sea current). In this study the A WS was almost 4-times greater upwind than 

downwind, and sailing upwind into the waves produced a continuous spray of water over 

the boat. Both these factors promote evaporative and convective cooling and the athletes' 

(those on deck) sensation of being "cold and wet" when sailing upwind. In contrast, the 

reduced A WS downwind combined with a high humidity after becoming wet during the 

upwind legs resulted in the athletes feeling "hot and uncomfortable" when sailing 

downwind. The greater physical work required to gybe the larger downwind sails 

(Bemardi et al. 2007b) may also be a contributing factor to the increased thermal strain as 

evident by the marked increase in heart rate and T core of the bowmen (the position primarily 

responsible for gybing the downwind sails). 

There are little data available on fluid loss during sailing, with no reports in the published 

literature on big-boat sailing. The mean rate of sweat loss in the current study (-0.9 L·h- I
) 

was higher than that reported during amateur Dinghy sailing (0.4 L·h- I
) (Slater and Tan 

2007), largely due to the extended data collection period (5 h vs. 2 h of competition). Due 

to the nature of sailing, accurate measurements are only possible when the athletes are on 

the dock (land based); hence the data collection period during the current study (150 min) 

was considerably longer than the competition period (100 min). If one was to assume that 

the majority of the fluid loss occurred during racing, then the rate of sweat loss may have 

been substantially greater (-1.3 L·h- I
). Few studies have accurately measured fluid loss in 

elite athletes during training or competition. In intermittent team sports, soccer has 

received the greatest attention, with reports indicating mean sweat losses of -1.1 L·h- I 

during competition (Broad et al. 1996; Maughan et al. 2007b), which is similar to that of 

the current study. Sweat loss was highly variable between athletes with some having lost as 

much as 4.0 1. The America's Cup class rule allows for rehydration fluids to be stored on 

the yacht independent of the technical weight restrictions, hence the opportunities for fluid 

intake during racing are greater than for many field sports where ad libitum hydration is 

limited to stoppages in play. Therefore fluid consumption is restricted only by storage 

space on the deck and opportunities to drink between work bouts during racing. It is not 

surprising that fluid intake was highly correlated to sweat loss. 

Grinders consumed the most fluid while racing, possibly because they are relatively 

stationary compared to the bowmen and utilities, and therefore have better access to fluids 

throughout the race. Fluid intake on average replaced 72% of sweat loss, with bowmen 
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replacing the least fluid (62%). This may be a contributing factor to their elevated Teore as 

greater fluid replacement may assist in attenuating the rise in Teore (Maughan 1999; Howe 

and Boden 2007), although this was not confirmed in this study. The level of dehydration 

was highly variable between individuals (range: -1.3 to 2.5%) and between positions, with 

bowmen displaying the greatest dehydration (1.5%). It has been shown that dehydration of 

1.5% can reduce intermittent exercise performance (Maxwell et al. 1999), sport specific 

skill performance (Edwards et al. 2007) and cognitive function (Gopinathan et al. 1988). 

Bowmen often find it difficult to drink during specific periods of the race due to the 

continuous nature of their activities and their opportunities for fluid replacement may be 

dependent on race intensity. Although there was a change in urine indices of hydration 

status post-exercise, there was no significant change in serum osmolality between pre- and 

post-sailing. Similar observations have been reported previously during prolonged exercise 

(Francesconi et al. 1987), and may be a result of acclimatization, as well as the duration 

between measurements allowing for the adjustment of plasma volume. The determination 

of fluid balance during exercise assesses only the change in hydration status of an 

individual. Clearly any pre-exercise fluid deficit could exacerbate the body water deficit 

that occurs during exercise. Therefore, the "actual" fluid deficit of the ten athletes which 

were considered dehydrated before sailing (urine osmolality> 900 mOsmol·kg·1
) (Shirreffs 

and Maughan 1998) may have been more severe than indicated by the change in fluid 

balance during racing (Maughan et al. 2007b). The consequence of pre-exercise fluid 

deficit as seen in the majority of grinders can be a substantial reduction in performance; 

Armstrong et al (Armstrong et al. 1985) found a 2% pre-exercise reduction in body mass 

caused a 5% decrement in 1500 m track running times. Both fluid intake and fluid loss 

were not related to pre-sailing measures of hydration status, suggesting that pre-exercise 

hydration status is not the primary factor affecting fluid intake and loss during sailing, but 

other factors such as opportunities to drink are likely also important. Although data from 

the present study relates specifically to big-boat match-racing, the results have important 

implications to sailors competing in other in-shore classes such as Olympic class and 

Dinghy sailing, where the athletes are often at risk of hypohydration as a result of 

underestimating fluid requirements (Mackie and Legg 1999). 

The loss. of electrolytes was considerable and similar to other sports (Stofan et al. 2002; 

Maughan et al. 2007b), with some individuals losing as much as 10 g of NaCl. The 

concentration of sweat electrolytes was highly variable between individuals, but with no 
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consistent pattern between crew positions. Both the mean sodium and chloride 

concentrations were lower than that reported in American football (Stofan et al. 2002) and 

soccer (Maughan et al. 2007b), and may be an indication of the athletes being well 

acclimatized to the hot Mediterranean conditions (Buono et al. 2007). In addition, mean 

concentrations of sweat sodium and chloride were strongly related to the rate of sweat loss, 

indicating reduced electrolyte re-absorption at high rates of sweat loss (Morgan et al. 

2004). Serum potassium concentration was significantly reduced post-sailing; similar 

results have been found in competitive Dinghy sailors (Stieglitz 1993). The loss of serum 

potassium post-exercise reflects the intensity of the activity (Sjogaard 1996) and occurs as 

a consequence of numerous factors including, losses in sweat and urine (Schamadan and 

Snively 1967) and rapid post-exercise re-absorption by skeletal and cardiac muscle 

(Lindinger and Sjogaard 1991). 

It is important to note that the work intensity and duration of sailing are likely to be greater 

during official races, which would increase the physiological and thennoregulatory stress. 

Higher environmental temperatures would also increase the thennoregulatory demands on 

the sailors during racing. Finally, as the work intensity of sailing is probably largely 

dependent on the wind speed (Neville 2008), it might be assumed that in windier 

conditions the work intensity, thennoregulatory stress, and magnitude of hyperthennia and 

dehydration would be more pronounced than we have documented. However, the increased 

evaporative cooling from higher wind speeds during upwind sailing may help to dissipate 

the greater metabolic heat produced by the sailors in these conditions. When comparing 

positions, bowmen experienced the greatest physiological and thennoregulatory strain 

during racing (Figure 7.1). Not only did bowmen have the highest heart rate and Tcore, but 

despite being the smallest athletes they recorded the greatest absolute sweat and sweat 

electrolyte losses as well as the lowest relative sweat loss replaced. This can be attributed 

to their high work rate downwind as well as the high thennal stress below deck. Bowmen 

can spend up to a third of the race below deck, packing, moving and connecting sails, 

where the temperature and humidity are considerably greater than on deck and 

compounded by minimal air flow. Bowmen are usually below deck during most of the 

second upwind leg (due to having to repack the downwind sails after the initial downwind 

leg) with less exposure to the greater A WS and evaporative cooling of upwind sailing that 

may explain their rise in heart rate and greater Tcore (Figure 7.1). These results have 

implications for clothing choice, as the majority of bowmen in the current study wore 
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Gore-Tex® spray tops over their standard race shirts to prevent getting wet on the bow of 

the boat. However, of noteworthy consideration is that attempting to stay dry may be less 

important than staying cool in order to prevent attenuations in performance or the risk of 

heat illness. Strategies aimed at attenuating the rise in TcoTe, such as the use of 'ice jackets' 

could be employed before races and between races on two-race days (Webster et al. 2005). 

7.4.1 Conclusions 

This is the first study to quantify the thermoregulatory response of elite professional 

sailing. The America's Cup is widely considered the pinnacle of yacht racing and the 

sailors, particularly bowmen, are of greater risk of greater risk of hyperthermia as well as 

high rates of fluid and electrolyte losses during racing which may impair performance and 

lead to heat illness. These findings have important implications for medical support, which 

should be encouraged to monitor early signs of heat illness (Howe and Boden 2007) 

particularly during two-race days, where preventative measures such as 'ice jackets' could 

be employed between races as an effective means of reducing TcoTe• Downwind sailing 

results in significantly greater cardiovascular and thermal strain compared with upwind, 

and the cold and wet conditions of upwind sailing may be important in attenuating the rise 

in TcoTe• Hence, sailors should avoid 'overdressing' while sailing upwind. Fluid and 

electrolyte losses can be high and are specific to the individual. Sailors should be 

encouraged to drink regularly and would benefit from individualized hydration and 

electrolyte replacement strategies before, during and immediately after racing. These 

results may also have implications for fabric and garment selection (light weight and 

highly breathable), race management (in reducing the time that bowmen spend below deck 

packing spinnakers), and boat design (which should aim to reduce below deck temperature 

and increase ventilation), however further investigation is required. 

136 



8: Immune Function 

CHAPTER 8 

THE DEMANDS OF TRAINING: 

IMMUNE STATUS, FATIGUE AND ILLNESS 
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8.1 Introduction 

Upper respiratory infections (URI) are the most common medical complaint of athletes 

(Robinson and MiIne 2002; Neville et al. 2006) and can negatively affect training and 

performance (Pyne and Gleeson 1998). For example, during a two year training period 

prior to the 31 SI America's Cup, 40% of all illnesses were URI and accounted for 60% of 

illness related days absent from sailing (Neville et al. 2006). In addition, elite athletes seem 

to be more susceptible to URI than recreationally active or sedentary individuals (Spence 

et al. 2007), with the risk of illness increasing during periods of heavy training and 

competition (Peters and Bateman 1983; Novas et al. 2003; Libicz et al. 2006). This 

increased susceptibility to URI is thought to be largely due to a depression of immune 

system function as a result of multifactorial stress including physiological, psychological, 

environmental and behavioral (Dawes 1972; Tomasi et al. 1982; Cohen et al. 1999; Calder 

and Jackson 2000) (see Gleeson (2007) for review). 

Approximately 95% of all infections are initiated at the mucosal surfaces (Bosch et al. 

2002), which are protected by antimicrobial proteins of which secretory immunoglobulin A 

(IgA) is the most abundant (Brandtzaeg 2003). Secretory IgA provides an immunological 

barrier by neutralizing and preventing viral pathogens from penetrating the body through 

the mucosal surfaces (Mazanec et al. 1993; Lamm 1997). In the buccal cavity, the 

synthesis and secretion of salivary IgA (s-IgA) responds almost instantaneously to stress 

(Bosch et al. 2002), resulting in transitory fluctuations in concentration and secretion rate 

(Stone et al. I 987b). 

Elite athletes are frequently exposed to exercise stress, and the effects of both acute and 

chronic exercise on s-IgA have been well documented (Tomasi et al. 1982; Mackinnon et 

al. 1993b; GIeeson et al. 2000b; Novas et al. 2003; Libicz et al. 2006) and appear to 

depend on the fitness level of the individual as well as the training load. In elite athletes, s­

IgA concentration and secretion rate decrease after a bout of strenuous exercise, of either 

high volume (Nieman et al. 2002) or maximal intensity (Fahlman et al. 2001), or during 

prolonged periods involving repeated bouts of strenuous training (Libicz et al. 2006). 

Much of the immunology research in athletes has concentrated on post-exercise salivary 

immunity when athletes seem to experience a transitory decrease in s-IgA for up to 24 h 

post-strenuous training or competition. lt is during this "open window" period of immune 
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depression (Pedersen et al. 1994) when athletes are thought to be at greatest risk of URI. 

However, there are few longitudinal studies that have examined the relationship between , 
immune depression and the incidence of URI (Mackinnon et al. 1993a; Gleeson et al. 

1999b; Novas et al. 2003; Fahlman and Engels 2005) and these typically have had a low 

number of subjects or low sample collection frequency. Nevertheless, an absolute s-IgA 

concentration of less than 40 mg'L-1 (Gleeson et al. 1999b) and an absolute s-IgA secretion 

rate of less than 40 Ilg'min-1 (Fahlman and Engels 2005) have been reported to be 

associated with increased incidence of URI in athletes. 

Large within and between subject variations in s-IgA concentration have been reported in 

elite rowers and swimmers, recreationally active and sedentary individuals (Nehlsen­

Cannarella et al. 2000; Francis et al. 2005). This variation implies that the secretion of s­

IgA may be specific to the individual and their recent environmental exposure. Therefore 

regular monitoring should be carried out to obtain well controlled basal values to 

determine individual reference data. These variations in values also call into question the 

validity of studies that report only a limited number of measured samples (Gleeson et al. 

I 999a). Furthermore, consensus regarding the control of factors known to affect basal s­

IgA has yet to be determined, such as: the residual effects of exercise, nutrition status 

(fasted vs non fasted), circadian rhythms and caffeine ingestion (see (Gleeson et al. 2004b) 

for review). These inconsistencies in methodology have led to inconsistancies in the 

literature and make it difficult to compare studies (Shephard 2000). Furthermore, in 

determining UR!, the majority of studies have used self-reported illness diaries and so it 

has been difficult to confirm the reported incidence of URI (Spence et al. 2007), and may 

be prone to inconsistency and over-reporting (Gleeson et al. 2004b). Few studies have used 

clinical diagnosis to confirm the presence of URI. 

The overall aim of this study was to examine the relationship between s-IgA and URI in a 

relatively large cohort of athletes over a prolonged period of time (weekly samples for 50 

weeks). The specific objectives were: to document the within and between athlete 

variability in resting s-IgA; examine the relationship between s-IgA and URI, and whether 

s-IgA values indicated the presence or imminent onset of URI; and to investigate the 

relationships of subjective fatigue rating and physical stress (sailing and training load) with 

s-IgA. 
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8.2 Methodology 

8.2.1 Participants 

Thirty eight elite America's Cup Yacht Racing athletes (mean ± SD: age 36 ± 7 years, 

body mass 92 ± 12 kg, body fat 14 ± 4 % and arm ergometer V02max 50 ± 5 ml'min-1'kg" 

1) were studied over 50 weeks of sailing and training. The subjects were all professional 

athletes contracted to one of the top four America's Cup teams, with their collective 

experience and success including: 20 Olympic Games representations, 8 Olympic medals, 

90 World Championship titles and more than 100 America's Cup campaigns. 

8.2.2 Experimental Design 

A prospective longitudinal study design was used to collect saliva samples, illness reports, 

training load and fatigue ratings over an I8-month sailing and training preparation period 

prior to the 32nd America's Cup held in Valencia, Spain in 2007. Informed consent was 

obtained from all athletes and the study was conducted within the team's normal training 

and competition schedule and overseen by the team's sports science and medical support 

staff. The study was approved by the Loughborough University Ethical Advisory 

Committee. 

8.2.3 Athletes' Work Load 

The athletes' week typically consisted of 6 training days and one day of rest. Their 

working day was typically between 8 and 14 h in duration, beginning at 08:00 h with 

approximately 1 h of land-based strength and conditioning exercise ('training') followed 

by meetings and preparing the boats for sailing. The volume of sailing varied between 3 to 

7 h per day whereafter, 1 to 3 h of boat maintenance was carried out. This was followed by 

further meetings and on some occasions an additional short bout of strength and 

conditioning exercise. 
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8.2.4 Sailing and Training Data 

In order to calculate an index of overall sailing and training load, the product of volume 

and intensity was ranked on a scale of 1 to 5 (1 = very Iow load; 5 = very high load) for 

sailing and training separately. These were combined for the cohort with a weighting of 2/3 

for sailing and 113 for training to provide an index of combined sailing and training load. 

8.2.5 Saliva Collection 

Saliva samples were collected weekly at 07:45 h in a fasted state, the day after a rest or no 

training day ensuring a minimum of 38 h rest after the previous training session. Whole. 

mixed saliva samples were collected prior to training and breakfast or coffee (Bishop et al. 

2006) 5 min after consuming 250 ml of water. Athletes sat quietly with their head tilted 

forward and passively dribbled (with minimal orofacial movement) approximately 1 ml of 

unstimulated saliva into a pre-marked specimen container. Samples were placed in a pre­

cooled insulated container and taken directly to the laboratory for analysis. 

8.2.6 Saliva Analysis 

Saliva samples were analysed for s-IgA concentration within 2 h of collection. Salivary 

IgA concentration was determined by means of immunonephelometry using a BN ProSpec 

analyser (Dade-Behring Marburg GmbH, Marburg, Germany). In summary, IgA in human 

saliva forms immune complexes in an immunochemical reaction with specific antibodies. 

These complexes scatter a beam of light passed through the sample. The intensity of the 

scattered light is proportional to the concentration of IgA in the sample. The result is 

evaluated by comparison with a standard of known concentration. The reagents used were 

N Antiserum to Human IgA (Dade Behring Marburg GmbH, Marburg, Germany), 

produced by immunization of rabbits with highly purified human immunoglobulin A with 

Sodium azide « 1 g.L- I
) added as a preservative and N Diluent (Dade Behring Marburg 

GmbH, Marburg, Germany), which contains Phosphate buffered saline and sodium azide 

« 1 g.L-I
) as a preservative. Samples were assayed in duplicate after being brought to 

room temperature and spun at 14,000 rpm for 6 minutes. Supernatant was recovered and 

transferred to a sample cup. After a 1:5 dilution with N-Diluent, sample and antiserum 

were incubated for 6 minutes prior to immunocomplexes measurement using a 380 urn 
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light beam. The within-run coefficients of variation (CV) for each assay were on average 

1.6% and .the mean between-run CV was 3.7% with a total CV of 4%. The limit of 

sensitivity was 14 mg·Lot
• Contaminated samples or those containing sputum were 

excluded from analysis. 

8.2.7 Illness Reports 

Respiratory illness and infections were recorded by the team's Physician, who was present 

during all data collection and team training sessions. An URI was only recorded if the 

athlete required medication (either systemic or antibiotic) and missed at least one sailing or 

training session as a result of the illness (Neville et al. 2006). Medical consultations, 

allergies and the prescription of vitamin supplementation or prophylactic treatment were 

not considered an URI episode. A recurring illness was defined as "any URI occurring 

within one week of a previously recorded episode" and excluded from analysis. 

8.2.8 Fatigue Rating 

A simple three scale subjective fatigue rating questionnaire was completed at the same 

time as saliva collection during the last 30 weeks of the study period. The questionnaire 

asked: "How rested do you feel?" to which there were three answers: "worse than normal", 

"normal" or "better than normal". 

8.2.9 Statistical Analysis 

Data are expressed as mean ± SEM, and the level of significance was set at P < 0.05. The 

reliability of s-IgA was calculated within and between subjects with the coefficient of 

variation (CV). Independent samples t test was used to identify differences between 

athletes in high and moderate physically demanding roles. Pearson' s product moment 

correlations were used to determine the strength of relationships. 

The mean s-IgA concentration for each individual was calculated as the mean of all No 

URI values (i.e. s-IgA values were excluded from the mean when a URI episode was 

present), and individual relative s-IgA was calculated as percentage of this mean value. 

Paired samples t test was used to assess any differences between s-IgA during URI and No 
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URI. Relative s-IgA concentrations before, during and after URI were compared with 

repeated measures ANOVA and a Bonferroni post-hoc test to analyse where any 

differences lay. These procedures were also used to compare s-IgA for different ratings of 

fatigue. Analyses were performed using SPSS version 14.0 for Windows. 

The incidence of low s-IgA values « 40% and < 70% of an individual's mean) was 

calculated in the weeks before, during and after URI. The probability oflow s-IgA leading 

to URI within 3 weeks (Predictability of URI), when URI was not present or recent (i.e. 

excluding during URI or I-week post-URI) was calculated as the number of samples 

during pre-URI as a percentage of pre- and No URI. 

8.3 Results 

Over the 50-week study period 1,424 saliva samples were analysed, with a mean s-IgA 

concentration of 136 ± 3 mg·L- l
. Salivary IgA concentration was highly variable within­

subjects, with a mean coefficient of variation (CV) of 48%. The difference in the mean 

value between the lowest and the highest individual was almost 10 fold (35 ± 4 mg-L- l vs. 

314 ± 27 mgr l
; Figure 8.1A) and the between-subjects CV was 71%. The s-IgA 

concentration of athletes with sailing roles of moderate and high physical demands were 

similar (moderate: 149 ± 20 mg'L- l
; high: 127 ± 12 mg-L- l ). 

A total of 102 incidents of URI were recorded, resulting in 129 weeks of infection with 

symptoms ranging from 1 to 3 weeks in duration. The incidence of URI was on average 2.7 

± 0.3 infections per athlete over the 50-week period (Figure 8.1B), and was similar for 

athletes in roles with moderate (2.9 ± 0.5) and high (2.5 ± 0.4) physical demands. 
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Figure 8.1 Saliva IgA concentration (A, mean ± range) and the number of Upper 
Respiratory Infections (8) for each athlete over the 50 weeks 
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There was no relationship between an athlete's mean s-IgA and his number of URI (r = 

0.11). When s-IgA values were normalised to each individual's mean, relative s-IgA 

concentration was 28% lower during URI than when there was no URI (P < 0.005; Figure 

8.2). For the cohort, the number of URI in each week was inversely related to the mean 

weekly relative s-IgA concentration (Figure 8.3). The four lowest weekly mean relative s­

IgA values « 70%) were recorded during the pre-season training period (March and April) 

and three of these weeks were coincident with the highest incidence of URI. Relative s-IgA 

declined progressively during the 3 weeks prior to URI, being significantly lower during 

URI in comparison to 4 weeks prior, before returning to above baseline by 2 weeks 

following URI (Figure 8.4). 
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Figure 8.2 Saliva IgA concentration during URI (72 ± 5 
%) and No URI (100 ± 0 %). Data are mean ± SEM of 
31 athletes that reported an infection, with each 
individual's relative s-lgA values averaged for URI or 
not. • P < 0.005 
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Figure 8_3 Scatter plot of the weekly number of URI within the subject cohort and 
salivary IgA (mean of relative values for each individual) (r=0.54, ;=0.29, n=50, 
P<0.005). 
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Figure 8_4 Salivary IgA concentration for each week pre, during and post all infections 
(n=102). Data are mean ± SEM of individual relative s-lgA (percentage of No URI mean 
values) .• URI significantly different to -4weeks, +1week, +2weeks, P<0.005; •• -1week 
significantly different to +2weeks, P<0.005. 
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The frequency of low s-IgA values « 40% of an individual's mean healthy value) was 

higher in the weeks prior to, during and immediately after URI, than when no URI was 

present or imminent, being almost 6-fold greater in the week before infection (Table 8.1). 

When an individual did not have an URI or was not recovering from an UR!, a low relative 

s-IgA value « 40%) suggested a 48% chance (23/48) of contracting an URI within 3 

weeks, compared with a 28% chance (74/263) ofURI for relative s-IgA values of less than 

70%. However, during the 3 weeks prior to URI, 89% and 65% of s-IgA values were 

greater than 40% and 70% of relative s-IgA, respectively. 

Table 8.1 Number and incidence of low relative salivary IgA values «70% and <40% of 
an individual's healthy average) before, during and after URI. 

<';: 'To~f'~u'~ber"of': :;':'N~~'b'~'d%' i'ncid~ric~)" '';i~'~b~'r, ('%),ncidence) 

·• •. ;i.:;j·S.lg ... s~mpl~s ••.. ••· 'OfS'I~A·<illo)'L ·;"f~:19A<40'lo 

NoURI 1020 189 (18.5) 25 (2.5) 

3weeks pre-URI 56 12 (21.4) 3 (5.4) 

2weeks pre-URI 71 25 (35.2) 8(11.3) 

1week pre-URI 83 37 (44.6) 12 (14.5) 

----------
During URI 109 52 (47.7) 15(13.8) 

lweek post-URI 85 21 (24.7) 10(11.8) 

·The Predictability of URI was calculated as the percentage of values below each threshold that led to URI 
within 3 weeks, when URI was not present or recent (i.e.: excluding during URI and 1 week post-URI). 

The mean total sailing and training exposure for each athlete over the 50 weeks was 986 h, 

(749 h sailing; 237 h training) and the mean weekly combined sailing and training load 

ranged from 2.0 to 4.4. No relationship was found between weekly combined sailing and 

training load and URI (r = 0.002). However, a significant correlation was found between 
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the weekly sailing and training load and the weekly percentage of relative mean s-IgA 

concentration (r = 0.41, Figure 8.5). 

There was a difference between the athletes' relative s-IgA concentration according to their 

fatigue rating, with s-IgA being significantly different for each of the fatigue ratings: 

"better than normal" 131 ± 8%; "normal" 103 ± 4%; "worse than normal" 69 ± 5% (P < 

0.005, Figure 8.6). 
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Figure 8.5 Scatter plot of the weekly salivary IgA, mean relative values, and the 
combined sailing and training load (r=0.41, 1=0.17, n=50, P<0.005). 
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Figure 8.6 Salivary IgA concentration for different fatigue ratings. 
Data are mean ± SEM of 38 athletes, with each individual's relative 
s-lgA values averaged for each rating. • s-lgA for each rating 
significantly different to the other two (n=38, P<O.005). 

8.4 Discussion 

Chapter 8; .Immune Function 

This is the largest salivary immunology study on elite athletes to date. The main findings 

suggest that the relative s-IgA concentration is associated with, and can help to predict URI 

in elite athletes. For the cohort, relative s-IgA determined a substantial proportion of the 

variability of URI incidence. The typical decline in an individual's relative s-IgA over the 

3 weeks before URI appears to pre-empt and contribute to URI risk, with the level of risk 

related to the extent of the decline in s-IgA, independent of the absolute concentration. In 

addition, the s-IgA of elite athletes is highly variable, both within and between subjects, 

and is related to the athlete's perception of underlying fatigue. These results suggest that 
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regular monitoring of resting s-IgA may benefit athletes and coaches in determining the 

risk of URI and fatigue in elite athletes. 

The mean s-IgA concentration in the current study is similar to that reported by several 

previous studies in exercise immunology (Tharp 1991; Halson et al. 2003; Sari-Sarraf et al. 

2006). However, the differences between studies are extensive, with some studies having a 

l5-fold greater (Nieman et al. 2006) mean s-IgA concentration than others (Mackinnon et 

al. 1993b). These differences could be attributed to variations in methodology, assay 

assessment techniques, control for basal resting values, different cohorts of subjects and 

large between-subject variability. It is therefore difficult to make comparisons between 

studies (Shephard 2000), particularly with respect to absolute values of s-IgA. 

The volume of sailing per week was greater (almost 30%) than that reported during the 31 sI 

America's Cup (Neville et al. 2006), as was the ratio of sailing to training volume (Neville 

et al. 2006). This was possibly due to the more favourable sailing conditions at the venue 

of the 32nd America's Cup. The correlation between the combined sailing and training 

load and the athletes' weekly s-IgA was in accordance with previous reports (Tomasi et al. 

1982; Nieman et al. 2002; Novas et al. 2003; Fahlman and Engels 2005; Libicz et al. 2006; 

Nieman et al. 2006). 

The incidence of URI (2.7 episodes per 1,000 h sailing and training) was similar to that 

previously reported in America's Cup yacht racing (Neville et al. 2006), with a similar 

incidence for athletes in sailing roles with high and moderate physical demands. 

The large within-subject variation in the current study (CV: 48%) concurs with results 

found in elite level rowing (Nehlsen-Cannarella et al. 2000) and swimming (Francis et al. 

2005). Elite athletes have been reported to have greater within-subject variability than 

recreationally active or sedentary individuals (Francis et al. 2005), which may be due to the 

many stressors encountered as a result of high training loads and competition. These 

variations may be characteristic of the individual and their response to recent 

circumstances, and may indicate that some athletes are more susceptible (or adaptable) to 

stress than others. This variation was despite carefully controlling for a range of factors 

known to influence s-IgA. In fact, the methodological care with which samples were 

collected in standardised conditions (after a rest day, at a consistent time of day, in a fasted 

state and without caffeine ingestion) was one of the strengths of the current study. Many 

studies have not controlled for factors known to influence the concentration of s-IgA such 
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as the residual effects of exercise (Francis et al. 2005), large data collection windows 

(Francis et al. 2005; Sari-Sarraf et al. 2007a) and caffeine ingestion (Gleeson et al. 1999b; 

Novas et al. 2003). Other factors known to influence s-IgA which have not been controlled 

for in previous studies include, time of day and circadian rhythm effects (Dawes 1972) and 

nutritional status (Gleeson and Bishop 2000). Whilst many of these inconsistencies may 

explain some of the discrepancies found in the literature, even when well controlled for in 

this study, there was still a large within-subject variability, which highlights the complex 

nature of the mucosal immune system. Saliva samples were collected 38 h post-exercise to 

ensure that the athletes were well rested and exclude any residual effects of exercise; 

hence, these results are related to the resting status of the individual and should not be 

compared with the effects of acute stress or temporal changes in s-IgA. 

Another factor affecting baseline values is sample size (Hopkins 2000). The current study 

collected up to 50 samples for each athlete, which is considerably more than the range of 2 

to 13 samples in most previous longitudinal studies (Tharp 1991; Mackinnon et al. 1993a; 

Mackinnon et al. 1993b; Gleeson et al. 1999a; Gleeson et al. 1999b; Gleeson et al. 2000b; 

Pyne et al. 2000; Klentrou et al. 2002; Fahlman and Engels 2005; Francis et al. 2005; 

Libicz et al. 2006). With s-IgA being highly variable, the smaller the number of samples, 

the less likelihood of detecting a real change (Hopkins 2000), which could account for 

some of the inconsistencies in the literature. In addition, a low number of samples may 

result in values having a large influence on the correlation coefficient, thereby increasing 

the risk or chance effect of a significant correlation. 

The large between-subjects variability in s-IgA concentration found in this study (CV: 

71 %) concurs with previous reports (Nehlsen-Cannarella et al. 2000; Francis et al. 2005) 

and strongly indicates that resting values of s-IgA are specific to the individual. Hence, it is 

the aetiology of this variability which may provide important answers to athletes' 

susceptibility to illness. 

No association was found between the absolute mean s-IgA concentration of each athlete 

and the incidence of URI, indicating that athletes with low s-IgA concentration were no 

more at risk of URI than athletes with high values. This is contrary to previous reports, 

which have suggested that an absolute concentration of < 40 mg·L-1 (Gleeson et al. 1999b) 

or an absolute rate of secretion of < 40 Ilg·min-1 (Fahlman and Engels 2005) may increase 

the risk of URI. Based on these previous reports, the athlete with the lowest mean s-IgA 
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concentration (35 ± 4 mgL-1
) in the current study would be at chronic risk of infection, 

when in fact this athlete reported no incidence of illness during the study, and coincidently, 

the athlete with the highest mean value (314 ± 27 mg'L-1
) reported the greatest number of 

URI (8). Based on these data, relative values are the preferable methods of expressing 

resting s-IgA and provided sufficient resting samples are measured, will provide a valid 

baseline for each individual. 

A main finding of this study was the association between s-IgA and URI, where the weekly 

mean relative s-IgA concentration was negatively related to the incidence of URI (r ; -

0.54, P < 0.005). This indicates that on a group basis the weekly mean s-IgA determines a 

substantial proportion (29%) of the variation in URI incidence. Hence, monitoring group s­

IgA may assist coaching staff in identifying periods of high risk in order to apply 

appropriate intervention (see (Pyne et al. 2000) for a review of intervention strategies). 

Previously, the relationship between s-IgA and URI in athletes has been less than 

convincing, with only a few studies having suggested an association (Mackinnon et al. 

1993a; Gleeson et al. 1999a; Gleeson et al. 1999b; Fahlman and Engels 2005). These 

results are therefore important in confirming that s-IgA plays an important role in the 

incidence of URI and that the changes in s-IgA within an individual may be either directly 

responsible for URI risk, or may be a surrogate measure for some other immune system 

function. Interestingly, the lowest weekly s-IgA values for the group occurred during the 

first 6 weeks of training after a 2-month winter off-season period, and coincided with the 

highest weekly incidence of URI. This is likely to be a combined result of changes in 

environment, increased sailing and training load, changes in diet, psychological stress 

associated with returning to the competitive team environment and exposure to pathogens 

during public travel on return to the team venue (Pyne et al. 2000). 

On an individual basis there was also a difference in s-IgA concentration (-30%) between 

when an athlete had URI and when no URI was present. When the time course of s-IgA 

was examined in the weeks before, during and after an URI episode, it showed that there 

was a progressive decline in s-IgA during the 3-weeks prior to URI and a subsequent 

return to baseline within 2-weeks following URI. The cause and effect relationship as 

inferred by Mackinnon et al. (Mackinnon et al. 1993a), where the decrease in s-IgA prior 

to infection could be the result of the incubation period prior to expression of URI 

symptoms, is unlikely to apply to the findings of the present study, as the incubation period 

ofURI is usually only I to 3 days (Department of Health 2005). Therefore, it is postulated 
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that the reduction in s-IgA in the weeks prior to URI is a contributing factor .to the 

subsequent incidence of URI. It seems that, on average, a 30% reduction in relative s-IgA 

from healthy values may increase the risk of URI, which is further supported by the 

increased frequency (2.5-fold) of s-IgA values less than 70% of an individual's mean 

healthy value during the week prior to URI when compared with times when no infection 

was present. The results further suggest that the greater the drop below an individual's 

mean healthy s-IgA concentration, the greater the risk of URI. 

An important finding of this study was that for individual athletes low relative s-IgA 

concentrations were associated with an increased risk of URI. For example: when an 

athlete was healthy (did not have URI or was not recovering from URI), a low s-IgA value 

« 40% of an individual's mean healthy value) suggested a 48% chance of contracting an 

URI within 3 weeks, compared with a 28% chance when values were below 70% of an 

individual's healthy mean s-IgA concentration. Therefore, the lower the s-IgA value below 

baseline, the greater the probability of contracting an URI. However, it should be noted 

that 38% of URI were not preceded by values below baseline and only II % of URI were 

preceded by values < 40%. Hence, the absence of low s-IgA values was no guarantee of 

remaining healthy, indicating the multifactorial nature of immunity, and that factors other 

than reduced s-IgA alone contribute to the risk of infection. 

No significant relationship was found between sailing and training load and the incidence 

of URI, which is contrary to previous reports in a number of different sports, induding: 

elite level swimming (Spence et aL 2007), elite tennis (Novas et aL 2003) and endurance 

running (Peters and Bateman 1983; Nieman 2000). This may be due to the difficulty in 

accurately determining the total work load that each individual is exposed to, as athletes 

are often required to perform large volumes of work over and above the physical 

requirements of sailing and training, including: boat maintenance, sail packing, boat 

sanding, as well as the psychological stress of design and performance meetings. 

As fatigue is common in athletes during periods of heavy training and competition, the 

relationship between salivary immunity and recovery is of great interest. To our 

knowledge, this is the first report of SUbjective fatigue being associated with relative s-IgA 

concentration. The results suggest that a simple fatigue rating reflects immune status to 

some extent, and appears to validate the use of a simple subjective questionnaire in 

monitoring underlying fatigue and recovery of athletes. These findings also imply that an 
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athlete's underlying fatigue or psychological state may have a major influence on s-IgA in 

addition to the combined sailing and training load. 

8.4.1 Conclusions 

The results of this study confirm the role ofs-IgA in the incidence ofURI in elite athletes. 

The weekly mean relative s-IgA concentration for the cohort was negatively related to the 

incidence of URI, indicating that on a group basis the weekly mean s-IgA determines a 

substantial proportion of the variation in URI incidence. No association was found between 

the absolute mean s-IgA concentration of each athlete and the incidence of URI, indicating 

that athletes with low mean s-IgA concentration were at no greater risk of infection. 

Consequently, relative values are the preferred means of expressing basal s-IgA 

concentration. The large within and between subjects variability strongly indicates that 

basal values of s-IgA are specific to the individual and a relatively large number of 

samples are required to determine baseline values. Elucidating the aetiology of this 

variability would enhance our understanding of athletes' susceptibility to illness. The 

reduction in s-IgA in the weeks prior to URI appears to be a contributing factor to the 

subsequent incidence of URI, with the magnitude of the decrease related to the risk of URI. 

Furthermore, a simple fatigue rating appears to reflect changes in salivary immunity. The 

results presented in this study point to the need for frequent monitoring of well controlled 

resting s-IgA in elite athletes. If the results are rapidly available, they may assist athletes 

and their support staff in identifying periods of high URI risk so that appropriate 

preventative strategies can be applied. Furthermore, the use of a simple fatigue 

questionnaire can provide coaches with valuable information on the underlying fatigue 

status of the athlete. 
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GENERAL DISCUSSION 

155 



Chapter 9: Discussion 

9.1 General Discussion and Recommendations 

This thesis comprises the most comprehensive series of studies on a specific class of 

sailing to date. The broad spectrum of studies presented herein addresses fundamental 

questions on the competition and performance analysis, physiology, biomechanics, 

thermoregulation, immunology, and health of elite professional sailors, and highlights the 

unique nature of this sport. The results of each of the six studies are novel and contribute to 

the applied and clinical sports science literature. 

It is evident that the physiological demands of America's Cup yacht racing are high and 

the athletes are well adapted (or selected) for the unique demands of this sport. The race 

analysis described in Chapter 3 has substantially improved our knowledge of America's 

Cup sailing. For example quantifying the activity pattern of grinders with work bouts 

lasting on average 5.5 ± 5.4 s and work:rest ratio typically 1:6 was essential in 

understanding the physiological requirements of this role. The observation that a higher 

standard crew were grinding for less time, and thus completing manoeuvres more quickly 

than a lower ranked team, seemed to highlight the importance of effective grinding to the 

speed of manoeuvres, and likely overall race performance. However, other technical 

factors such as the rate of turn or the trimmer's 'cast-off', could also explain the quicker 

manoeuvres of highly ranked teams. It WOUld, therefore, be interesting to measure the 

actual power output of grinders during racing, and more carefully examine how this relates 

to the speed of manoeuvres. This would involve on-board power measurement, a technical 

challenge that has not yet been achieved within America's Cup sailing. It would also be 

interesting to determine more precisely, the activity profiles of other positions during 

racing, such as the bowmen. 

The differences in strength and strength endurance between teams of different standard 

reported in Chapter 3, highlights the importance of athlete fitness and training in America's 

Cup yacht racing. Specifically, the high strength and body mass of grinders. is not 

surprising, considering the absolute power requirements of this position. Although grinding 

is predominantly an anaerobic activity, the frequency of bouts indicates a high provision 

for aerobic energy is also involved. This is evident from the remarkably high levels of peak 

power, substantially above any previously recorded, and the concomitant high aerobic 
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power documented in Chapter 4. This also poses a challenge for their conditioning, where 

both maximal power and endurance are required. 

As identified in the race analysis, the activity pattern of grinding during racing is varied. 

This variability includes the load, crank velocity, duration and direction of grinding. 

Therefore part of the objective of the research herein has been to identify factors which 

may contribute to improved grinding performance. For example, the determination of the 

linear torque-crank velocity and parabolic power-crank velocity relationships during 

maximal standing arm-cranking are important in understanding the optimal velocity for 

grinding performance (Chapter 4). The influence of crank velocity on peak power implies 

that power production during on-board grinding could be optimised through the use of 

appropriate gear-ratios and the development of efficient gear change mechanisms. For 

example, it would be highly beneficial if it were mechanically possible to maintain 

optimum crank velocity (125 rpm) in the forward direction without stopping to change 

gear, such as the use of a 'crash-box' gear change system. The issue of grinding direction 

was not considered in the current work, but is clearly another important variable with 

respect to optimising grinding performance. Whilst it would be useful for future work to 

consider the physical and technical optimisation of grinding backwards, given the 

documented superiority of grinding in the forward direction, the development of on-board 

winch technology to facilitate purely forwards grinding may supersede the utility of this 

research avenue. 

In addition, the influence of crank length and crank-axle height on performance is clear 

and it is suggested that America's Cup teams consider these results in the design of 

grinding pedestals. Optimal crank-axle height was between 50 and 60% of stature (950-

1150 mm for the cohort in Chapter 5), while a crank-axle height of <50% of stature, which 

is typically used on America's Cup yachts, resulted in substantially reduced performance 

(>7%). Hence it may be highly beneficial for America's Cup teams to reconsider the 

grinding pedestal ergonomics. The optimal crank length for maximal power was 12.3% of 

arm-span (241 mm for the athletes studied in Chapter 5), which is similar to the 250 mm 

crank lengths used in the America's Cup. However, these findings suggest that standard 

cycling crank lengths (170-175 mm), commonly used in arm-crank ergometry, are 

inappropriate for maximal arm-cranking performance, and casts doubt on the validity of 

previous maximal arm-crank studies. 
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Chapter 9: Discussion 

Grinding technique also plays an important role in optimising performance. Restricted leg 

movement during standing arm-cranking increased the physiological strain of this activity. 

Therefore, a purely stabilising role of the lower limbs is discouraged and it is 

recommended that grinders make dynamic use of the legs to decrease cardiovascular and 

metabolic responses to this exercise. It is possible that greater lower limb activity than was 

typical in the normal grinding, reported in Chapter 6, could be beneficial to grinding 

performance, however further investigation is needed to better understand the relationship 

between lower extremity function and grinding performance. Furthermore, the contribution 

of the lower limb is only one aspect of grinding technique and other issues of interest 

include the sequential pattern of muscle activation and recruitment, and how body 

segments in the upper and lower-body interact during the different phases of the 

movement. In addition, determining lower back load in relation to grinding technique 

and/or arm-crank configuration could elucidate the aetiology of lumbar spine injuries. 

The contribution of the lower limbs to grinding underscores the importance of lower limb 

conditioning for grinders. With the majority of positions characterised by specific activities 

or skills, it is logical that each sailors' training and conditioning reflect the requirements of 

their role. As clearly identified in this study, grinders require considerable whole body 

strength and power training in order to develop muscle mass. They also require a 

substantial volume of high intensity arm-crank training, and multi-joint explosive training 

to develop force generation from the proximal kinetic chain. Quantifying the influence of 

specific training interventions on upper body power and endurance may be useful in 

understanding the adaptations of these elite athletes. In addition, the identification of 

grinding activity cycles during racing in Chapter 3 may benefit the prescription of specific 

training intervals. 

A principle finding in Chapter 7 was the substantial thermoregulatory strain during racing. 

This is the first study to comprehensively report the unique environmental extremes of in­

shore yacht racing. Downwind sailing resulted in significantly greater cardiovascular and 

thermal strain compared with upwind, and the cooler and wet conditions of upwind sailing . 

may in fact be an important part of racing in attenuating the rise in body temperature. 

Bowmen in particular are at greater risk of hyperthermia and high fluid and electrolyte 

losses during racing,which may impair their performance and even lead to heat illness. It 

seems that dressing in an attempt to stay dry may be less important than staying cool 

during upwind sailing in order to prevent attenuations in performance or the risk of heat 
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illness. These results may also have implications for fabric and garment selection, where 

light weight, highly breathable and waterproof garments could be beneficial. Race 

management (reducing the time that bowmen spend below deck), and .boat design 

(reducing below deck temperature and increasing ventilation) may also assist in attenuating 

the thermal strain. Medical support should be encouraged to monitor early signs of heat 

illness particularly on days with two races, where preventative measures such as 'ice jacket 

cooling' could be employed before and after races as an effective means of reducing core 

temperature. Furthermore, the results suggest that sailors (particularly bowmen) should be 

encouraged to drink regularly and would benefit from individualized hydration and 

electrolyte replacement strategies. 

It is evident that fatigue is common to America's Cup athletes, even in well resourced 

teams (Neville et al. 2008) as a result of the high volume of work and sailing involved. 

This may be further exacerbated in less well resourced teams, where athletes are typically 

required to take on multiple roles within the team due to the limited number of support 

staff. Consequently, the athletes' ability to prioritise on their athletic performance may be 

compromised. As fatigue and illness are common in athletes during periods of heavy 

training and competition, the relationship between salivary immunity and fatigue and 

illness was of great interest. The findings of this study suggest that a simple fatigue rating 

correlates with immune status to some extent, and appears to validate the use of a simple 

subjective questionnaire in monitoring underlying fatigue and recovery of athletes. These 

findings also imply that an athlete's underlying fatigue may have a major influence on s­

IgA in addition to the combined sailing and training load. Coaches and support staff may 

benefit from such a simple measurement tool in identifying underlying fatigue in athletes. 

Furthermore, the relationship between the weekly mean relative s-IgA concentration and 

the incidence of URI is an important finding, indicating that on a group basis the weekly 

mean s-IgA determines a substantial proportion of the variation in URI incidence. The fact 

that the reduction in s-IgA in the weeks prior to URI appears to indicate the subsequent 

incidence of URI, makes this a useful tool. If the results are rapidly available, s-IgA could 

assist athletes and their support staff in identifying periods of high URI risk so that 

appropriate preventative strategies can be implemented. These findings advocate frequent 

monitoring of well controlled resting s-IgA in elite athletes and may have important 

implications for clinical health as well. 

159 



,'I,",wL,. 9: Discussion 

It is clear that the high work loads are part of the nature of this sport and largely 

unavoidable, underscoring the importance of prudent athlete management The number of 

full-time sports science/medical support staff typically employed by teams (usually one 

full-time staff for up to 30 athletes) is clearly inadequate and detrimental to the 

performance, health and competitive longevity of the athletes, not to mention the 

effectiveness of the support, Ideally teams should employ one sports science/medical 

support staff for every 5-7 athletes, and include expertise in areas such as, medical support, 

physiotherapy and rehabilitation, exercise science, strength and conditioning, nutrition and 

hydration and psychology, 

9.2 Further Research 

A number of areas of suggested future research have been identified: 

1. Measure the actual power output of grinders during racing, and more carefully 
examine how this relates to the speed of manoeuvres 

2. Determine the activity profiles of different positions during racing by means of 
kinematic analysis and energetic/metabolic measures 

3, Evaluate the sequential pattern of muscle activation/recruitment during arm­
cranking/grinding, and how body segments in the upper and lower-body interact 
during the different phases of the movement 

4. Assess if greater lower limb activity than was typical in the normal grinding is 
beneficial to grinding performance 

5, Investigate the physical and technique differences between grinding forwards and 
backwards 

6, QuantifY the influence of specific training interventions on upper body power and 
endurance of grinders 

7. Specifically determine the aetiology of lower back injuries in relation to grinding 
technique and or arm-crank configurations 
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8. Determine the influence of fabric/garment choice on thermoregulatory strain and 
comfort during sailing 

161 



Releronces 

REFERENCES 

1. Adams WC, Fox RH, Fry AJ, MacDonald IC (1975) Thermoregulation during 
marathon running in cool, moderate, and hot environments. Journal of applied 
physiology 38:1030-1037. 

2. Adams WC, Mack GW, Langhans GW, Nadel ER (1992) Effects of varied air velocity 
on sweating and evaporative rates during exercise. Journal of applied physiology 
73:2668-2674. 

3. Ahlborg G, Jensen-Urstad M (1991) Metabolism in exercising arm vs. leg muscle. 
Clinical physiology (Oxford, England) 11 :459-468. 

4. Allan JR, Wilson CG (1971) Influence of acclimatization on sweat sodium 
cOncentration. Journal of applied physiology 30:708-712. 

5. Allen A (2005) Sports Medicine Injuries in the America's Cup 2000. New Zealand 
journal of sports medicine 33:43-47. 

6. Allen JB (1999) Sports medicine and sailing. Physical medicine and rehabilitation 
clinics of North America 10:49-65. 

7. Allen JB. (2003). Prevention of Heat Illness in Sailors. In Scuttlebutt Newsletter. 

8. Allen JB, De Jong MR (2006) Sailing and sports medicine: a literature review. British 
journal of sports medicine 40:587-593. 

9. AminoffT, Smolander J, Korhonen 0, Louhevaara V (1998) Prediction of acceptable 
physical work loads based on responses to prolonged arm and leg exercise. 
Ergonomics 41:109-120. 

10. Armstrong LE (2005) Hydration assessment techniques. Nutrition reviews 63:S40-54. 

11. Armstrong LE, Costill DL, Fink WJ (1985) Influence of diuretic-induced dehydration 
on competitive running performance. Medicine and science in sports and exercise 
17:456-461. 

12. Armstrong LE, Maresh CM (1991) The induction and decay of heat acclimatisation in 
trained athletes. Sports medicine 12:302-312. 

13. Armstrong LE, Soto JA, Hacker FT, Jr., Casa DJ, Kavouras SA, Maresh CM (1998) 
Urinary indices during dehydration, exercise, and rehydration. International journal 
of sport nutrition 8:345-355. 

162 



References 

14. Aschenbach W, Oce! J, Craft L, Ward C, Spangenburg E, WiIliams J (2000) Effect of 
oral sodium loading on high-intensity arm ergometry in college wrestlers. Medicine 
and science in sports and exercise 32:669-675. 

15. Aziz AR, Lee HC, Teh KC (2002) Physiological characteristics of Singapore national 
water polo team players. The Journal of sports medicine and physical fitness 42:315-
319. 

16. Bauer S (1986) Coming about: can a bunch of guys with names like Rambo, Darling 
and Adam-12 bring back the America's Cup? They're working on it. Ultrasport 3:44-
51. 

17. Below PR, Mora-Rodriguez R, Gonzalez-Alonso J, Coyle EF (1995) Fluid and 
carbohydrate ingestion independently improve performance during 1 h of intense 
exercise. Medicine and science in sports and exercise 27:200-210. 

18. Ben-Aryeh H, Miron D, Szarge! R, Gutman D (1984) Whole-saliva secretion rates in 
old and young healthy subjects. Journal of dental research 63:1147-1148. 

19. Benzinger TH (1969) Heat regulation: homeostasis of central temperature in man. 
Physiological reviews 49:671-759. 

20. Bergeron MF, Wailer JL, Marinik EL (2006) Voluntary fluid intake and core 
temperature responses in adolescent tennis players: sports beverage versus water. 
Britishjournal of sports medicine 40:406-410. , 

21. Bergh U, Kanstrup IL, Ekblom B (1976) Maximal oxygen uptake during exercise with 
various combinations of arm and leg work. Journal of applied physiology 41 :191-196. 

22. Bernardi E, Delussu SA, Quattrini FM, Rodio A, Bernardi M (2007a) Energy balance 
and dietary habits of America's Cup sailors. Journal of sports sciences 25: 1153-1160. 

23. Bernardi M, Quattrini FM, Rodio A, Fontana G, Madaffari A, Brugnoli M, Marchetti 
M (2007b) Physiological Characteristics of America's Cup Sailors. Journal of sports 
sciences 25:1141-1152. 

24. Bertrand J, Robinson P. (1985). Born to win: a lifelong struggle to capture the 
America's Cup. WiIliam Morrow, New York; United States. 

25. Bessinger T (2002) Men at work: Sailing World pays homage to the Cup's common 
man, the troopers who grind, gather, flake, sand, jump halyards, and live in the 
shadow of the afterguard. Sailing World magazine 41:94-98;100-102;104;106. 

26. Bevegard S, Freyschuss U, Strandell T (1966) Circulatory adaptation to arm and leg 
exercise in supine and sitting position. Journal of applied physiology 21 :37-46. 

27. Bigland B, Lippold OC (1954) Motor unit activity in the voluntary contraction of 
human muscle. The Journal of physiology 125:322-335. 

163 



- - -- - - --------------------------------

I\CI-crences 

28. Bishop NC, Blannin AK, Armstrong E, Rickman M, Gleeson M (2000) Carbohydrate 
and fluid intake affect the saliva flow rate and IgA response to cycling. Medicine and 
science in sports and exercise 32:2046-2051. 

29. Bishop NC, Walker GJ, Scanlon GA, Richards S, Rogers E (2006) Salivary IgA 
responses to prolonged intensive exercise following caffeine ingestion. Medicine and 
science in sports and exercise 38:513-519. 

30. Blannin AK, Robson PJ, Walsh NP, Clark AM, Glennon L, G1eeson M (1998) The 
effect of exercising to exhaustion at different intensifies on saliva immunoglobulin A, 
protein and electrolyte secretion. International journal of sports medicine 19:547-552. 

31. Blondelle P, Simonnet J (1984) [A physical therapist atthe America's Cup in 1983]. 
L'union medicale du Canada 113:637-639. 

32. Bohannon RW (1986) Adapting a bicycle ergometer for arm crank ergometry. 
Suggestion from the field. Physical therapy 66:362-363. 

33. Bono CM (2004) Low-back pain in athletes. The Journal of bone and joint surgery 86-
A:382-396. 

34. Bosch JA, Ring C, de Oeus EJ, Veerman EC, Amerongen AV (2002) Stress and 
secretory immunity. International review of neurobiology 52:213-253. 

35. Bouhle! E, Chelly MS, Tabka Z, Shephard R (2007) Relationships between maximal 
anaerobic power of the arms and legs andjavelin performance. The Journal of sports 
medicine and physical fitness 47: 141-146. 

36. Brandtzaeg P (2003) Role of secretory antibodies in the defence against infections. 
International journal of Medicine and Microbiology 293:3-15. 

37. Broad EM, Burke LM, Cox OR, Heeley P, Riley M (1996) Body weight changes and 
voluntary fluid intakes during training and competition sessions in team sports. 
International journal of sport nutrition 6:307-320. 

38. Brotherhood JR (2008) Heat stress and strain in exercise and sport. Journal of science 
and medicine in sport I Sports Medicine Australia 11 :6-19. 

39. Buono MJ, Ball KD, Kolkhorst FW (2007) Sodjum ion concentration vs. sweat rate 
relationship in humans. Journal of applied physiology 103:990-994. 

40. Byrne C, Lim CL (2007) The ingestible telemetric body core temperature sensor: a 
review of validity and exercise applications. British journal of sports medicine 41: 126-
133. 

41. Calbet JA, Holmberg He, Rosdahl H, van Hall G, Jensen-Urstad M, Saltin B (2005) 
Why do arms extract less oxygen than legs during exercise? American journal of 
physiology 289:RI448-1458. 

164 



- - - - --~~~~~~~~~~~~~~-----------------

References 

42. Calder PC, Jackson AA (2000) Undernutrition, Infection and Immune Function. 
Nutrition Research Reviews 13:3-29. 

43. Carson WG, Jr. (1989) Rehabilitation of the throwing shoulder. Clinics in sports 
medicine 8:657-689. 

44. Carter J, Jeukendrup AE, Mundel T, Jones DA (2003) Carbohydrate supplementation 
improves moderate and high-intensity exercise in the heat. Pflugers Arch 446:211-
219. 

45. Casa DJ, Armstrong LE, HiIlman SK, Montain SJ, Reiff RV, Rich BS, Roberts WO, 
Stone JA (2000) National Athletic Trainers' Association Position Statement: Fluid 
Replacement for Athletes. Journal of athletic training 35:212-224. 

46. Casa DJ, Becker SM, Ganio MS, Brown CM, Yeargin SW, Roti MW, Siegler J, 
Blowers JA, Glaviano NR, Huggins RA, Armstrong LE, Maresh CM (2007) Validity 
of devices that assess· body temperature during outdoor exercise in the heat. Journal of 
athletic training 42:333-342. 

47. Chasiotis D (1988) Role of cyclic AMP and inorganic phosphate in the regulation of 
muscle glycogenolysis during exercise. Medicine and science in sports and exercise 
20:545-550. 

48. Cheung SS (2007) Hyperthermia and voluntary exhaustion: integrating models and 
future challenges. Applied physiology, nutrition, and metabolism = Physiologie 
appliquee, nutrition et metabolisme 32:808-817. 

49. Cheung SS, McLellan TM (1998) Heat acclimation, aerobic fitness, and hydration 
effects on tolerance during uncompensable heat stress. Journal of applied physiology 
84:1731-1739. 

50. Cheuvront SN, Carter R, 3rd, Haymes EM, Sawka MN (2006) No effect of moderate 
hypohydration or hyperthermia on anaerobic exercise performance. Medicine and 
science in sports and exercise 38:1093-1097. 

51. Cheuvront SN, Haymes EM (2001) Thermoregulation and marathon running: 
biological and environmental influences. Sports medicine 31:743-762. 

52. Chicharro JL, Lucia A, Perez M, Vaquero AF, Urena R (1998) Saliva composition 
and exercise. Sports medicine 26: 17-27. 

53. Chisnell M. (2008). Booted not Suited. In Seahorse International Sailing magazine, 
pp. 42-43. 

54. CNN. (2007). America's Cup 'worth $8B' to Spain. CNN, 
http://edition.cnn.coml2007 /SPO R T / sailing/03/2 7 / cup.economy /index.htrnl. 

55. Cohen S, Doyle WJ, Skoner DP (1999) Psychological stress, cytokine production, and 
severity of upper respiratory illness. Psychosomatic medicine 61: 175-180. 

165 



References 

56. Cohen S, Frank E, Doyle WJ, Skoner DP, Rabin BS, Gwaltney JM, Jr. (1998) Types 
of stressors that increase susceptibility to the common cold in healthy adults. Health 
PsychoI17:214-223. 

57. Costa F, CalIoway DH, Margen S (1969) Regional and total body sweat composition 
of men fed controlled diets. The Americanjournal of clinical nutrition 22:52-58. 

58. Cotter JD, Patterson MJ, Taylor NA (1995) The topography of eccrine sweating in 
humans during exercise. European journal of applied physiology and occupational 
physiology 71 :549-554. 

59. Cox GR, Broad EM, Riley MD, Burke LM (2002) Body mass changes and voluntary 
fluid intakes of elite level water polo players and swimmers. Journal of science and 
medicine in sport / Sports Medicine Australia 5:183-193. 

60. Crawford JM, Taubman MA, Smith DJ (1975) Minor salivary glands as a major 
source of secretory immunoglobin A in the human oral cavity. Science (New York, 
NY 190:1206-1209. 

61. Dawes C (1972) Circadian rhythms in human salivary flow rate and composition. The 
Journal of physiology 220:529-545. 

62. Dawson B, EIIiott B, Pyke F, Rogers R (1985) Physiological and performance 
responses to playing tennis in a cool environment and similar intervalized treadmill 
running in a hot climate. Journal ofHurnan Movement Studies 11 :21-34. 

63. Department of Health CDCB. (2005). You've got what? : prevention and control of 
notifiable and other infectious diseases in children and adults, pp. 48. Government of 
South Australia, South Australia. 

64. Dorel S, Hautier CA, Rambaud 0, Rouffet D, Van Praagh E, Lacour JR, Bourdin M 
(2005) Torque and power-velocity relationships in cycling: relevance to track sprint 
performance in world-class cyclists. International journal of sports medicine 26:739-
746. 

65. DriscoII TR, Cripps R, Brotherhood JR (2008) Heat-related injuries resulting in 
hospitalisation in Australian sport. Journal of science and medicine in sport / Sports 
Medicine Australia 11:40-47. 

66. Driss T, VandewalIe H, Monad H (1998) Maximal power and force-velocify 
relationships during cycling and cranking exercises in volleyball players. Correlation 
with the vertical jump test. The Journal of sports medicine and physical fitness 
38:286-293. 

67. Drust B, Rasmussen P, Mohr M, Nielsen B, Nybo L (2005) Elevations in core and 
muscle temperature impairs repeated sprint performance. Acta physiologica 
Scandinavica 183:181-190. 

166 



R_efcrctlces 

68. Drust B, Reilly T, Cable NT (2000) Physiological responses to laboratory-based 
soccer-specific intermittent and continuous exercise. Journal of sports sciences 
18:885-892. 

69. Edwards AM, Clark NA (2006) Thermoregulatory observations in soccer match play: 
professional and recreational level applications using an intestinal pill system to 
measure core temperature. Britishjournal of sports medicine 40: 133-138. 

70. Edwards AM, Mann ME, Marfell-Jones MJ, Rankin DM, Noakes ID, Shillington DP 
(2007) Influence of moderate dehydration on soccer performance: physiological 
responses to 45 min of outdoor match-play and the immediate subsequent 
performance of sport-specific and mental concentration tests. British journal of sports 
medicine 41 :385-391. 

71. Fahlman MM, Engels HJ (2005) Mucosal IgA and URTI in American college football 
players: a year longitudinal study. Medicine and science in sports and exercise 
37:374-380. 

72. Fahlman MM, Engels HJ, Morgan AL, Kolokouri I (2001) Mucosal IgA response to 
repeated wingate tests infemales. International journal of sports medicine 22: 127-131. 

73. Febbraio MA, Snow RJ, Stathis CG, Hargreaves M, Carey MF (1994) Effect of heat 
stress on muscle energy metabolism during exercise. Journal of applied physiology 
77:2827-2831. 

74. Finnegan W. (2008). Kranking it. In The New Yorker. New York. 

75. Forbes SC, Chilibeck PD (2007) Comparison of a kayaking ergometer protocol with 
an arm crank protocol for evaluating peak oxygen consumption. Journal of strength 
and conditioning research / National Strength & Conditioning Association 21:1282-
1285. 

76. Francesconi RP, Hubbard RW, Szlyk PC, Schnakenberg D, Carlson D, Leva N, Sils I, 
Hubbard L, Pease V, Young J, et al. (1987) Urinary and hematologic indexes of 
hypohydration. J Appl PhysioI62:1271-1276. 

77. Francis JL, Gleeson M, Pyne DB, Callister R, Clancy RL (2005) Variation of salivary 
immunoglobulins in exercising and sedentary populations. Medicine and science in 
sports and exercise 37:571-578. 

78. Gabriel H, Kindermann W (1997) The acute immune response to exercise: what does 
it mean? International journal of sports medicine 18 Suppl 1 :S28-45. 

79. Gaitanos GC, Williams C, Boobis LH, Brooks S (1993) Human muscle metabolism 
during intermittent maximal exercise. Journal of applied physiology 75: 712-719. 

80. Galloway SD, Maughan RJ (2000) The effects of substrate and fluid provision on 
thermoregulatory and metabolic responses to prolonged exercise in a hot 
environment. Journal of sports sciences 18:339-351. 

167 



References 

81. Gant N, Atkinson G, Williams C (2006) The validity and reliability of intestinal 
temperature during intermittent running. Medicine and science in sports and exercise 
38:1926-1931. 

82. Gardner AS, Martin DT, Barras M, Jenkins DG, Hahn AG (2005) Power output 
demands of elite track sprint cycling. International Journal of Performance Analysis in 
Sport 5:149-154. 

83. Gardner AS, Martin JC, Martin DT, Barras M, Jenkins DG (2007) Maximal torque­
and power-pedaling rate relationships for elite sprint cyclists in laboratory and jield 
tests. Europeanjournal of applied physiology 101 :287-292. 

84. Girard 0, Micallef JP, Millet GP (2007) Injiuence of restricted knee motion during the 
flat jirst serve in tennis. Journal of strength and conditioning research / National 
Strength & Conditioning Association 21 :950-957. 

85. Gleeson M (2000) Mucosal immunity and respiratory illness in elite athletes. 
International journal of sports medicine 21 Suppl 1 :S33-43. 

86. Gleeson M (2002) Biochemical and immunological markers of overtraining. Journal 
of sports science and medicine 1:31-41. 

87. Gleeson M (2006) Immune system adaptation in elite athletes. Current opinion in 
clinical nutrition and metabolic care 9:659-665. 

88. Gleeson M (2007) Immune function in sport and exercise. Journal of applied 
physiology 103 :693-699. 

89. Gleeson M, Bishop NC (2000) Elite athlete immunology: importance of nutrition. 
International journal of sports medicine 21 Suppl 1 :S44-50. . 

90. Gleeson M, Blannin AK, Walsh NP, Bishop NC, Clark AM (1998) Effect of low- and 
high-carbohydrate diets on the plasma glutamine and circulating leukocyte responses 
to exercise. International journal of sport nutrition 8:49-59. 

91. Gleeson M, Ginn E, Francis JL (2000a) Salivary immunoglobulin monitoring in an 
elite kayaker. Clinical journal of sports medicine 10:206-208. 

92. Gleeson M, Hall ST, McDonald WA, Flanagan AJ, Clancy RL (1999a) Salivary IgA 
subclasses and infection risk in elite swimmers. Immunology and cell biology 77:351-
355. 

93. Gleeson M, McDonald W A, Pyne DB, Clancy RL, Cripps A W, Francis JL, Fricker 
PA (2000b) Immune status and respiratory illness for elite swimmers during a 12-
week training cycle. International journal of sports medicine 21 :302-307. 

94. Gleeson M, McDonald WA, Pyne DB, Cripps AW, Francis JL, Fricker PA, Clancy 
RL (1999b) Salivary IgA levels and infection risk in elite swimmers. Medicine and 
science in sports and exercise 31 :67-73. 

168 



Rel'erences 

95. Gleeson M, Nieman DC, Pedersen BK (2004a) Exercise, nutrition and immune 
function. Journal of sports sciences 22:115-125. 

96. Gleeson M, Pyne DB, Callister R (2004b) The missing links in exercise effects on 
mucosal immunity. Exercise immunology review 10:107-128. 

97. Godek SF, Bartolozzi AR, Burkholder R, Sugarman E, Dorshimer G (2006) Core 
temperature and percentage of dehydration in professional footballlinemen and backs 
during preseason practices. Journal of athletic training 41 :8-14; discussion 14-17. 

98. Godek SF, Bartolozzi AR, Godek JJ (2005a) Sweat rate and fluid turnover in 
American football players compared with runners in a hot and humid environment. 
Britishjournal of sports medicine 39:205-211; discussion 205-211. 

99. Godek SF, Godek JJ, Bartolozzi AR (2005b) Hydration status in college football 
players during consecutive days of twice-a-day preseason practices. The American 
journal of sports medicine 33:843-851. 

100.Gonzalez-Alonso J (1998) Separate and combined influences of dehydration and 
hyperthermia on .cardiovascular responses to exercise. International journal of sports 
medicine 19 SuppI2:SIII-114. 

101. Gonzalez-Alonso J, Mora-Rodriguez R, Below PR, Coyle EF (1995) Dehydration 
reduces cardiac output and increases systemic and cutaneous vascular resistance 
during exercise. Journal of applied physiology 79: 1487-1496. 

102. Gonzalez-Alonso J, Teller C, Andersen SL, Jensen FB, Hyldig T, Nielsen B (1999) 
Influence of body temperature on the development of fatigue during prolonged 
exercise in the heat. Journal of applied physiology 86: 1 032-1 039. 

103. Goosey-Tolfrey V, Castle P, Webborn N, Abel T (2006) Aerobic capacity and peak 
power output of elite quadriplegic games players. British journal of sports medicine 
40 :684-687. 

104. Goosey-Tolfrey VL, Alfano H, Fowler N (2008) The influence of crank length and 
cadence on mechanical efficiency in hand cycling. European journal of applied 
physiology 102: 189-194. 

105. Goosey-Tolfrey VL, Tolfrey K (2004) The oxygen uptake-heart rate relationship in 
trainedfemale wheelchair athletes. Journal of rehabilitation research and development 
41 :415-420. 

106. Gopinathan PM, Pichan G, Sharma VM (1988) Role of dehydration in heat stress­
induced variations in mental performance. Archives of environmental health 43:15-
17. 

107.Halson SL, Lancaster GI, Jeukendrup AE, Gleeson M (2003) Immunological 
responses to overreaching in cyclists. Medicine and science in sports and exercise 
35:854-861. 

169 



Reterences 

108. Hamley EJ, Thomas V (1967) Physiological and postural factors in the calibration of 
the bicycle ergometer. The Journal of physiology 191:55P-56P. 

109.Hardy JD, Stolwijk JA, Hammel HT, Murgatroyd D (1965) Skin temperature and 
cutaneous pain during warm water immersion. Journal of applied physiology 
20: 10 14-1021. 

110. Hargreaves M (2008) Physiological limits to exercise performance in the heat. Journal 
of science and medicine in sport / Sports Medicine Australia 11 :66-71. 

111.Heath GW, Macera CA, Nieman DC (1992) Exercise and upper respiratory tract 
irif€ctions. Is there a relationship? Sports medicine 14:353-365. 

1 12. Heck H, Mader A, Hess G, Mucke S, Muller R, Hollmann W (1985) Justification of 
the 4-mmollllactate threshold. International journal of sports medicine 6: 117-130. 

113. Henkin SD, Silveira M, Folmmer B, Ribeirto J, Meyer F (2007) Sweat Electrolyte 
concentration of swimmers, runners and non-athletes. Medicine and science in sports 
and exercise 39:S277. 

I 14. Hermansen L, Stensvold I (1972) Production and removal of lactate during exercise 
in man. Acta physiologica Scandinavica 86:191-201. 

115. Hickner RC, Horswill CA, Welker JM, Scott J, Roemmich IN, Costill DL (1991) Test 
development for the study of physical peiformance in wrestlers following weight loss. 
International journal of sports medicine 12:557-562. 

116.Hicks AL, Martin KA, Ditor DS, Latimer AE, Craven C, Bugaresti J, McCartney N 
(2003) Long-term exercise training in persons with spinal cord injury: efficts on 
strength, arm ergometry performance and psychological well-being. Spinal Cord 
41:34-43. 

117. Holmberg HC, Lindinger S, Stoggl T, Bjorklund G, Muller E (2006) Contribution of 
the legs to double-poling performance in elite cross-country skiers. Medicine and 
science in sports and exercise 38:1853-1860. 

118. Hootman JM, Dick R, Agel J (2007) Epidemiology of collegiate injuries for 15 sports: 
summary and recommendations for injury prevention initiatives. Journal of athletic 
training 42:311-319. 

119. Hopkins WG (2000) Measures of reliability in sports medicine and science. Sports 
medicine 30:1-/5. 

120.Horswill CA, Miller JE, Scott JR, Smith CM, Welk G, Van Handel P (1992) 
Anaerobic and aerobic power in arms and legs of elite senior wrestlers. International 
journal of sports medicine 13:558-561. 

121. Howe AS, Boden BP (2007) Heat-related illness in athletes. The American journal of 
sports medicine 35:1384-1395. 

170 



Reterences 

122.Hoy MG, Zajac FE, Gordon ME (1990) A musculoskeletal model of the human lower 
extremity: the effect of muscle, tendon, and moment arm on the moment-angle 
relationship of musculotendon actuators at the hip, knee, and ankle. Journal of 
biomechanics 23:157-169. 

123.Hubner-Wozniak E, Kosmol A, Lutoslawska G, Bem EZ (2004) Anaerobic 
performance of arms and legs in male and female free style wrestlers. Journal of 
science and medicine in sport f Sports Medicine Australia 7:473-480. 

124. Jackson AS, Pollock ML (1978) Generalized equations for predicting body density of 
men. The British journal of nutrition 40:497-504. 

125.Jemni M, Sands WA, Friemel F, Stone MH, Cooke CB (2006) Any effect of 
gymnastics training on upper-body and lower-body aerobic and power components in 
national and international male gymnasts? Journal of strength and conditioning 
research f National Strength & Conditioning Association 20:899-907. 

l26.Jirak Z, Jokl M, Stverak J, Pechlat R, Coufalov H (1975) Correction factors in skin 
temperature measurement. Journal of applied physiology 38:752-756. 

127.Johnson JM, Niederberger M, Rowell LB, Eisman MM, Brengelmann GL (1973a) 
Competition between cutaneous vasodilator and vasoconstrictor reflexes in" man. 
Journal of applied physiology 35:798-803. 

128. Johnson MA, Polgar J, Weightman 0, .Appleton 0 (1973b) Data on the distribution of 
fibre types in thirty-six human muscles. An autopsy study. Journal of the neurological 
sciences 18:111-129. 

129.Judelson DA, Maresh CM, Anderson JM, Armstrong LE, Casa DJ, Kraemer WJ, 
Volek JS (2007a) Hydration and muscular performance: does fluid balance affect 
strength, power and high-intensity endurance? Sports medicine 37 :907-921. 

130. Judelson DA, Maresh CM, Farrell MJ, Yamamoto LM, Armstrong LE, Kraemer WJ, 
Volek JS, Spiering BA, Casa DJ, Anderson JM (2007b) Effect of hydration state on 
strength, power, and resistance exercise performance. Medicine and science in sports 
and exercise 39:1817-1824. 

131.Kang J, Chaloupka EC, Mastrangelo MA, Angelucci J (1999) Physiological responses 
to upper body exercise on an arm and a modified leg ergometer. Medicine and science 
in sports and exercise 31 :1453·1459. 

132. Kang J, Robertson RJ, Goss FL, Dasilva SG, Suminski RR, Utter AC, Zoeller RF, 
Metz KF (1997) Metabolic efficiency during arm and leg exercise at the same relative 
intensities. Medicine and science in sports and exercise 29:377-382. 

133. Kenny GP, Niedre PC (2002) The effect of exercise intenSity on the post·exercise 
esophageal temperature response. European journal of applied physiology 86:342-
346. 

171 



References 

134. Kenny GP, Reardon FD, Thoden JS, Giesbrecht GG (1999) Changes in exercise and 
post-exercise core temperature under different clothing conditions. International 
journal ofbiometeorology 43:8-13. 

135. Kibler WB (1998) The role of the scapula in athletic shoulder function. The American 
journal of sports medicine 26:325-337. 

136. Klentrou P, Cieslak T, MacNeil M, Vintinner A, Plyley M (2002) Effect of moderate 
exercise on salivary immunoglobulin A and injection risk in humans. European journal 
of applied physiology 87:153-158. 

137.Kwon A, Kato M, Kawamura H, Yanai Y, Tokura H (1998) Physiological 
significance of hydrophilic and hydrophobic textile materials during intermittent 
exercise in humans under the influence of warm ambient temperature with and 
without wind. European journal of applied physiology and occupational physiology 
78:487-493. 

138. Lakier Smith L (2003) Overtraining, excessive exercise, and altered immunity: is this 
aT helper-I versus T helper-2 lymphocyte response? Sports medicine 33:347-364. 

139. Lambert Y, Lelguen C (2001) Medical control during America's Cup 2000. Science & 
Sports 16:95-99. 

140.Lamm ME (1997) Interaction of antigens and antibodies at mucosal surfaces. Annual 
review of microbiology 51 :311-340. 

141.Lazarus B, Cullinane E, Thompson PD (1981) Comparison of the results and 
reproducibility of arm and leg exercise tests in men with angina pectoris. American 
journal of cardiology 47: 1075-1079. 

142. Lee SM, WilIiams WJ, Fortney Schneider SM (2000) Core temperature measurement 
during supine exercise: esophageal, rectal, and intestinal temperatures. Aviation, 
space, and environmental medicine 71 :939~945. 

143.Legg SJ, Mackie HW, Slyfield DA (1999) Changes in physical characteristics and 
performance of elite sailors following introduction of a sport science programme 
prior to the 1996 olympic games. Applied human science 18:211-217. 

144.Legg SJ, Miller AB, Slyfield 0, Smith P, Gilberd C, Wilcox H, Tate C (1997) 
Physical performance of elite New Zealand Olympic class sailors. The Journal of 
sports medicine and physical fitness 37:41-49. 

145.Leicht AS, Sinclair WH, Spinks WL (2008) Effect of exercise mode on heart rate 
variability during steady state exercise. European journal of applied physiology 
102:195-204. 

146. Lemon PW, Yarasheski KE, Dolny DG (1986) Validity/reliability of sweat analysis by 
whole-body washdown vs. regional collections. Journal of applied physiology 
61:1967-1971. 

172 



References 

147. Leon AS (2000) Exercise following myocardial infarction. Current recommendations. 
Sports medicine 29: 3 0 1-311. 

148. Libicz S, Mercier B, Bigou N, Le Gallais D, Castex F (2006) Salivary IgA response of 
triathletes participating in the French Iron Tour. International journal of sports 
medicine 27:389-394. 

149. Lim CL, Byrne C, Lee JK (2008) Human thermoregulation and measurement of body 
temperature in exercise and clinical settings. Annals of the Academy of Medicine, 
Singapore 37:347-347. 

150. Lindinger MI, Sjogaard G (1991) Potassium regulation during exercise and recovery. 
Sports medicine 11 :382-401. 

151. Logan P, Fornasiero D, Abernethy P, Katrina 1. (2000). Protocolsfor the Assessment 
of Isoinertial Strength. In Physiological Tests for Elite Athletes / Australian Sports 
Commission, ed. Gore CJ, pp. 200 - 221. Hurnan Kinetics. 

152.Mackie HW, Legg SJ (1999) Development of knowledge and reported use of sport 
science by elite New Zealand Olympic class sailors. Applied human science 18:125-
133. 

153. Mackinnon L, Ginn E, Seymour GJ (1993a) Temporal relationship between decreased 
Salivary IgA and upper respiratory tract infection in elite athletes. Australian Journal 
of Science and Medicine in Sport 25:94-99. 

154. Mackinnon LT (1997) Immunity in athletes. International journal of sports medicine 
18 Suppl 1 :S62-68. 

155.Mackinnon LT. (1999). Advances in Exercise Immunology. Champaign, Illinois: 
Human Kinetics. 

156.MacKinnon LT (2000) Special feature for the Olympics: effects of exercise on the 
immune system: overtraining effects on immunity and performance in athletes. 
Immnnology and cell biology 78:502-509. 

157.Mackinnon LT, Chick TW, van As A, Tomasi TB (1987) The effect of exercise on 
secretory and natural immunity. Advances in experimental medicine and biology 
216A:869-876. 

158. Mackinnon LT, Ginn E, Seymour GJ (1993b) Decreased salivary immunoglobulin A 
secretion rate after intense interval exercise in elite kayakers. European journal of 
applied physiology and occupational physiology 67: 180-184. 

159.Mackinnon LT, Hooper S (1994) Mucosal (secretory) immune system responses to 
exercise of varying intensity and during overtraining. International journal of sports 
medicine 15 SuppI3:S179-183. 

173 



ReteretlceS 

160.MacKinnon LT, Jenkins DO (1993) Decreased salivary immunoglobulins after 
intense interval exercise before and after training. Medicine and science in sports and 
exercise 25:678-683. 

16I.Malm C (2006) Susceptibility to infections in elite athletes: the S-curve. Scandinavian 
journal of medicine & science in sports 16:4-6. 

162. MaIm C, Ekblom 0, Ekblom B (2004) Immune system alteration in response to two 
consecutive soccer games. Acta physiologica Scandinavica 180:143-155. 

163. Marfell-Jones M, Olds T, Stewart A, Carter L. (2006). International Standards for 
Anthropometric Assessment, vo!. 1. Potchefstroom, South Africa. 

164.Marino FE (2004) Anticipatory regulation and avoidance of catastrophe during 
exercise-induced hyperthermia. Comp Biochem Physiol B Biochem Mol BioI 
139:561-569. 

165. Martin JC, Spirduso WW (2001) Determinants of maximal cycling power: crank 
length, pedaling rate and pedal speed. European journal of applied physiology 
84:413-418. 

166. Martin JC, Wagner BM, Coyle EF (1997) Inertial-load method determines maximal 
cycling power in a single exercise bout. Medicine and science in sports and exercise 
29:1505-1512. 

167.Martin TW, Zeballos RJ, Weisman IM (1991) Gas exchange during maximal upper 
extremity exercise. Chest 99:420-425. 

168.Matthews CE, Ockene IS, Freedson PS, Rosal MC, Merriam PA, Hebert JR (2002) 
Moderate to vigorous physical activity and risk of upper-respiratory tract inftction. 
Medicine and science in sports and exercise 34:1242-1248. 

169. Maughan R, Shirreffs S (2004) Exercise in the heat: challenges and opportunities. 
Journal of sports sciences 22:917-927 .. 

170. Maughan RJ (1991) Fluid and electrolyte loss and replacement in exercise. Journal of 
sports sciences 9 Spec No:117-142. 

171. Maughan RJ (1999) Exercise in the heat: limitations to performance and the impact of 
fluid replacement strategies. Introduction to the symposium. Canadian journal of 
applied physiology = Revue canadienne de physiologie appliquee 24:149-151. 

172. Maughan RJ, Leiper lB, Shirreffs SM (1996) Restoration of fluid balance after 
exercise-induced dehydration: effects of food and fluid intake. European Journal of 
Applied Physiology & Occupational Physiology 73:317-325. 

173. Maughan RJ, Merson SJ, Broad NP, Shirreffs SM (2004) Fluid and electrolyte intake 
and loss in elite soccer players during training. International journal of sport nutrition 
and exercise metabolism 14:333-346. 

174 



----------~~~---~~---------------------------

Referent;es 

174.Maughan RJ, Owen JH, Shirreffs SM, Leiper JB (1994) Post-exercise rehydration in 
man: effects of electrolyte addition to ingested fluids. European Journal of Applied 
Physiology & Occupational Physiology 69:209-215. 

175. Maughan RJ, Shirreffs SM, Leiper JB (2007a) Errors in the estimation of hydration 
status from changes in body mass. Journal of sports sciences 25:797-804. 

176. Maughan RJ, Shirreffs SM, Merson SJ, Horswill CA (2005) Fluid and electrolyte 
balance in elite male football (soccer) players training in a cool environment. Journal 
of sports sciences 23:73-79. 

177. Maughan RJ, Watson P, Evans GH, Broad N, Shirreffs SM (2007b) Water balance 
and salt losses in competitive football. International journal of sport nutrition and 
exercise metabolism 17:583-594. 

178. Maxwell NS, Gardner F, Nimmo MA (1999) Intermittent running: muscle metabolism 
in the heat and effect of hypo hydration. Medicine and science in sports and exercise 
31:675-683. 

179. Mazanec MB, Nedrud JG, Kaetzel CS, Lamm ME (1993) A three-tiered view of the 
role of IgA in mucosal defense. Immunology today 14:430-435. 

180. McDowell SL, Hughes RA, Hughes RJ, Housh DJ, Housh TJ, Johnson GO (1992) 
The effect of exhaustive exercise on salivary immunoglobulin A. The Journal of sports 
medicine and physical fitness 32:412-415. 

181.McGregor SJ, Nicholas CW, Lakomy HK, Williams C (1999) The influence of 
intermittent high-intensity shuttle running and fluid ingestion on the performance of a 
soccer skill. Journal of sports sciences 17:895-903. 

182. Mercier B, Granier P, Mercier J, Trouquet J, Prefaut C (1993) Anaerobic and aerobic 
components during arm-crank exercise in sprint and middle-distance swimmers . 

. Europeanjournal of applied physiology and occupational physiology 66:461-466. 

183.Miller C (1987) Treating the Americas Cup sailors. I Suivi des equipages de I ' 
Americas Cup. Physician & Sportsmedicine 15:172-176;178. 

184.Molloy J, Neville VJ, Wood I, Speedy D (2005) Posterior Interosseous Nerve 
Entrapment. New Zealand journal of sports medicine 33:48-51. 

185. Montain SJ, Coyle EF (1992) Influence of graded dehydration on hyperthermia and 
cardiovascular drift during exercise. Journal of applied physiology 73: 1340-1350. 

186. Montain SJ, Maughan RJ, Sawka MN (1996) Heat acclimatization strategies for the 
1996 Summer Olympics. Athletic Therapy Today 1:42-46. 

187. Mooren Fe, Golf SW, Lechtermann A, Volker K (2005) Alterations of ionized Mg2+ 
in human blood after exercise. Life sciences 77:1211-1225. 

175 



,----------------------------------------------------------------------------------
References 

188. Morgan RM, Patterson MJ, Nimmo MA (2004) Acute effects of dehydration on sweat 
composition in men during prolonged exercise in the heat. Acta physiologica 
Scandinavica 182:37-43. 

189.Morris JG, Nevill ME, Boobis LH, Macdonald lA, Williams C (2005) Muscle 
metabolism, temperature, and function during prolonged, intermittent, high-intensity 
running in air temperatures of 33 degrees and 17 degrees C. International journal of 
sports medicine 26:805-814. 

190. Morris JG, Nevill ME, Lakomy HKA, Nicholas C, WilIiams C (1998) Effect of a hot 
environment on performance of prolonged, intermittent, high-intensity shuttle 
running. / Effet d ' un environnement chaud sur la performance a la course en navette 
prolongee, intermittente et de forte intensite. Journal of sports sciences 16:677-686. 

191.Mosteller RD (1987) Simplified calculation of body-surface area. The New England 
journal of medicine 317: I 098. 

192. Mujika I, PadiI\a S (2001) Physiological and performance characteristics of male 
professional road cyclists. Sports medicine 31 :479-487. 

193.Nagata H (1978) Evaporative heat loss and clothing. Journal of human ergology 
7:169-175. 

194.Nakamura C, Akimoto T, Suzuki S, Kono I (2006) Daily changes of salivary 
secretory immunoglobulin A and appearance of upper respiratory symptoms during 
physical training. The Journal of sports medicine and physical fitness 46:152-157. 

195.Navazesh M, Christensen CM (1982) A comparison of whole mouth resting and 
stimulated salivary measurement procedures. Journal of dental research 61:1158-
1162. 

196.Navazesh M, Mulligan RA, Kipnis V, Denny PA, Denny PC (1992) Comparison of 
whole saliva flow rates and mucin concentrations in healthy Caucasian young and 
aged adults. Journal of dental research 71:1275-1278. 

197.Nehlsen-Cannarella SL, Nieman DC, Fagoaga OR, Kelln WJ, Henson DA, Shannon 
M, Davis JM (2000) Saliva immunoglobulins in elite women rowers. European journal 
of applied physiology 81 :222-228. 

198.Neville V (2008) America's Cup Yacht Racing is Not Just About the Boat. The Sport 
and Exercise Scientist March:26-27. 

199.Neville V, Gleeson M, Folland JP (2008) Salivary 19A as a Risk Factor for Upper 
Respiratory Infection in Elite Professional Athletes. Medicine and science in sports 
and exercise 40: 1228-1236. 

200.Neville V, Molloy J, Wood I, Speedy D. (2003). The pain of PiN. (Abstract). In 
Human performance in sailing conference proceedings: incorporating the 4th 
European Conference on Sailing Sports Science and Sports Medicine and the 3rd 

176 



Relerences 

Australian Sailing Science Conference, 9-10 January 2003, ed. Legg SJ, pp. 65. 
Massey University, Auckland, New Zealand. 

20l.Neville VJ, Molloy J, Brooks JH, Speedy DB, Atkinson G (2006) Epidemiology of 
injuries and illnesses in America's Cup yacht racing. British journal of sports 
medicine 40:304-311; discussion 311-302. 

202. Nielsen B (1990) Solar heat load: heat balance during exercise in clothed subjects. 
Europeanjournal of applied physiology and occupational physiology 60:452-456. 

203.Nielsen B, Hales JR, Strange S, Christensen NJ, Warberg J, Saltin B (1993) Human 
circulatory and thermoregulatory adaptations with heat acclimation and exercise in a 
hot, dry environment. The Journal of physiology 460:467-485. 

204.Nielsen B, Kassow K, Aschengreen FE (1988) Heat balance during exercise in the 
sun. European journal of applied physiology and occupational physiology 58: 189-196. 

205.Nieman DC (1994) Exercise, upper respiratory tract infection, and the immune 
system. Medicine and science in sports and exercise 26:128-139. 

206. Nieman DC (1998) Exercise immunology: integration and regulation. International 
journal of sports medicine 19 Supp13:S171. 

207, Nieman DC (2000) Is infection risk linked to exercise workload? Medicine and 
science in sports and exercise 32:S406-41I. 

208. Nieman DC (2007) Marathon training and immune function. Sports medicine 37:412-
415. 

209.Nieman DC, Henson DA, Dumke CL, Lind RH, Shooter LR, Gross SJ (2006) 
Relationship between salivary IgA secretion and upper respiratory tract infection 
following a J60-km race. The Journal of sports medicine and physical fitness 46:158-
162. 

210.Nieman DC, Henson DA, Fagoaga OR, Utter AC, Vinci DM, Davis JM, Nehlsen­
Carmarella SL (2002) Change in salivary IgAfollowing a competitive marathon race. 
International journal of sports medicine 23 :69-75. 

21l.Nieman DC, Johanssen LM, Lee JW, Arabatzis K (1990) Infectious episodes in 
runners before and after the Los Angeles Marathon. The Journal of sports medicine 
and physical fitness 30:316-328. 

212. Noakes TD (2007a) The central governor model of exercise regulation applied to the 
marathon. Sports medicine 37:374-377. 

213.Noakes TD (2007b) Study findings challenge core components of a current model of 
exercise thermoregulation. Medicine and science in sports and exercise 39:742-743; 
author reply 744. 

177 



Reter~nccs 

214.Noakes ID, PeItonen JE, Rusko HK (2001) Evidence that a central governor 
regulates exercise performance during acute hypoxia and hyperoxia. Ihe Journal of 
experimental biology 204:3225-3234. 

215. Noakes ID, St Clair Gibson A, Lambert EV (2004) From catastrophe to complexity: 
a novel model of integrative central neural regulation of effort and fatigue during 
exercise in humans. British journal of sports medicine 38:511-514. 

216. Noakes ID, St Clair Gibson A, Lambert EV (2005) From catastrophe to complexity: 
a novel model of integrative central neural regulation of effort and fatigue during 
exercise in humans: summary and conclusions. British journal of sports medicine 
39:120-124. 

217.Northoff H, Berg A, Weinstock C (1998) Similarities and differences of the immune 
response to exercise and trauma: the IFN-gamma concept. Canadian journal of 
physiology and pharmacology 76:497-504. 

218.Nose H, Mack GW, Shi XR, Nade1 ER (1988) Shift in body fluid compartments after 
dehydration in humans. Journal of applied physiology 65:318-324. 

219.Novas AM, Rowbottom DG, Jenkins DG (2003) Tennis, incidence of URTI and 
salivary IgA. International journal of sports medicine 24:223-229. 

220. Nybo L (2008) Hyperthermia andfatigue. Journal of applied physiology 104:871-878. 

221.Nybo L, Nielsen B (200Ia) Hyperthermia and central fatigue during prolonged 
exercise in humans. Journal of applied physiology 91:1055-1060. 

222.Nybo L, Nielsen B (200Ib) Perceived exertion is associated with an altered brain 
activity during exercise with progressive hyperthermia. Journal of applied physiology 
91:2017-2023. 

223.0'Brien C, Hoyt RW, Buller MJ, Castellani JW, Young AJ (1998) Telemetry pill 
measurement of core temperature in humans during active heating and cooling. 
Medicine and science in sports and exercise 30:468-472. 

224.0'Kane J, W. (2002) Upper Respiratory Infection. The Physician and Sportsmedicine 
30. 

225.01iver SJ, Laing SJ, Wilson S, Bilzon JL, Walsh N (2007a) Endurance running 
performance after 48 h of restricted fluid and/or energy intake. Medicine and science 
in sports and exercise 39:316-322. 

226.01iver SJ, Laing SJ, WiIson S, Bilzon JL, Waiters R, Walsh NP (2007b) Salivary 
immunoglobulin A response at rest and after exercise following a 48 h period of fluid 
and/or energy restriction. The British journal of nutrition 97:1109-1116. 

227. Oppliger RA, Bartok C (2002) Hydration testing of athletes. Sports medicine 32:959-
971. 

178 



_. _. --------------------------------

References 

228. Pandolf KB (1998) Time course of heat acclimation and its decay. International 
journal of sports medicine 19 SuppI2:SIS7-160. 

229. Pandolf KB, Billings DS, Drolet LL, Pimental NA, Sawka MN (1984) Differential 
ratings of perceived exertion and various physiological responses during prolonged 
upper and lower body exercise. European journal of applied physiology and 
occupational physiology 53:5-11. 

230. Pascoe DD, Bellingar TA, McCluskey BS (1994a) Clothing and exercise. IL Influence 
of clothing during exercise/work in environmental extremes. Sports medicine 
(Auckland, NZ 18:94-108. 

231.Pascoe DD, Shanley LA, Smith EW (1994b) Clothing and exercise. I: Biophysics of 
heat transfer between the individual, clothing and environment. Sports medicine 
(Auckland, NZ 18:38-54. 

232. Pate RR, Burgess ML, Woods JA, Ross JG, Baumgartner T (1993) Validity offield 
tests of upper body muscular strength. Research quarterly for exercise and sport 
64:17-24. 

233.Patterson MJ, Galloway SD, Nimmo MA (2000) Variations in regional sweat 
composition in normal human males. Experimental physiology 85:869-875. 

234. Patterson MJ, Stocks JM, Taylor NA (2004) Sustained and generalized extracellular 
jluid expansionfollowing heat acclimation. The Journal of physiology 559:327-334. 

235.Patterson MJ, Warlters D, Taylor NA (1994) Attenuation of the cutaneous bloodjlow 
response during combined exercise and heat stress. European journal of applied 
physiology and occupational physiology 69:367-369. 

236. Pearson S. (2003). Power output of America's Cup grinders can be improved with a 
biomechanical technique intervention. In Faculty of Health Studies, pp. 141. 
Auckland University of Technology, Auckland. 

237. Pearson S, Hume P, Mellow P, Slyfield D (2005) Anthropometric dimensions of Team 
New Zealand America's Cup sailors. New Zealand journal of sports medicine 33 :52-
57. 

238. Pearson S, Hume P, Slyfield D, Cronin J (2007) External work and peak power are 
reliable measures of ergometer grinding performance when tested under load, deck 
heel, and grinding direction conditions. Sports biomechanics / International Society of 
Biomechanics in Sports 6:71-80. 

239.Pedersen BK, Bruunsgaard H (1995) How physical exercise influences the 
establishment of infections. Sports medicine 19:393-400. 

240. Pedersen BK, Bruunsgaard H, Klokker M, Kappel M, MacLean DA, Nielsen HB, 
Rohde T, Ullum H, Zacho M (1997) Exercise-induced immunomodulation--possible . 
roles of neuroendocrine and metabolic factors. International journal of sports 
medicine 18 Suppll:S2-7. 

179 



References 

241.Pedersen BK, Kappel M, Klokker M, Nielsen HB, Secher NH (1994) The immune 
system during exposure to extreme physiologic conditions. International journal of 
sports medicine 15 SuppI3:S1l6-121. 

242. Pedersen BK, Toft AD (2000) Effects of exercise on lymphocytes and cytokines. 
Britishjournal of sports medicine 34:246-251. 

243.Peters EM (1997) Exercise, immunology and upper respiratory tract infections. 
International journal of sports medicine 18 Suppll:S69-77. 

244. Peters EM, Bateman ED (1983) Ultramarathon running and upper respiratory tract 
infections. An epidemiological survey. South African medical journal = Suid­
Afrikaanse tydskrifvir geneeskunde 64:582-584. 

245.Phillips AC, Carroll D, Evans P, Bosch JA, Clow A, Hucklebridge F, Der G (2006) 
Stressful life events are associated with low secretion rates of immunoglobulin A in 
saliva in the middle aged and elderly. Brain, behavior, and immunity 20:191-197. 

246.Pugh LG, Corbett JL, Johnson RH (1967) Rectal temperatures, weight losses, and 
sweat rates in marathon running. Journal of applied physiology 23:347-352. 

247. Pyne DB, Gleeson M (1998) Effects of intensive exercise training on immunity in 
athletes. International journal of sports medicine 19 Suppl 3:S183-191; discussion 
SI91-184. 

248.Pyne DB, Gleeson M, McDonald WA, Clancy RL, Perry C, Jr., Fricker PA (2000) 
Training strategies to maintain immunocompetence in athletes. International journal 
of sports medicine 21 Suppll:S51-60. 

249.Pyne DB, McDonald WA, Gleeson M, Flanagan A, Clancy RL, Fricker PA (2001) 
Mucosal immunity, respiratory illness, and competitive performance in elite 
swimmers. Medicine and science in sports and exercise 33:348-353. 

250.Radomski MW, Hart LE, Goodman JM, Plyley MJ (1992) Aerobic fitness and 
hormonal responses to prolonged sleep deprivation and sustained mental work. 
Aviation, space, and environmental medicine 63: 1 0 1-1 06. 

251. Ramanathan NL (1964) A New Weighting System for Mean Surface Temperature of 
the Human Body. Journal of applied physiology 19:531-533. 

252.Ray CA (1999) Sympathetic adaptations to one-legged training. Journal of applied 
physiology 86:1583-1587. 

253. Regan JM, Macfarlane DJ, Taylor NA (1996) An evaluation of the role of skin 
temperature during heat adaptation. Acta physiologica Scandinavica 158:365-375. 

254.Reid MR, Dmmmond PD, Mackinnon LT (2001) The effect of moderate aerobic 
exercise and relaxation on secretory immunoglobulin A. International journal of sports 
medicine 22:132-137. 

180 



--- - ----------------------------------------------------

I\,cferences 

255. Robinson D, Milne C (2002) Medicine at the 2000 Sydney Olympic Games: the New 
Zealand health team. British journal of sports medicine 36:229. 

256. Roffe C, Sills S, Crome P, Jones P (2002) Randomised, cross-over, placebo controlled 
trial of magnesium citrate in the treatment of chronic persistent leg cramps. Medical 
science monitor 8:CR326-330. 

257. Saltin B (1964) Circulatory Response to Submaximal and Maximal Exercise after 
Thermal Dehydration. Journal of applied physiology 19: 112S-1132. 

258. Sari-Sarraf V, Reilly T, Doran D, Atkinson G (2007a) Effects of Repeated Bouts of 
Soccer-Specific Intermittent Exercise on Salivary IgA. International journal of sports 
medicine. 

259. Sari-Sarraf V, Reilly T, Doran DA (2006) Salivary /gA response to intermittent and 
continuous exercise. International journal of sports medicine 27:849-855. 

260. Sari-Sarraf V, Reilly T, Doran DA, Atkinson G (2007b) The effects of single and 
repeated bouts of soccer-specific exercise on salivary IgA. Archives of oral biology 
52:526-532. 

261. Saunders AG, Dugas JP, Tucker R, Lambert MI, Noakes TD (200S) The effects of 
different air velocities on heat storage and body tempc.rature in humans cycling in a 
hot, humid environment. Acta physiologica Scandinavica 183:241-255. 

262. Savage MV, Brengelmann GL (1996) Control of skin blood flow in the neutral zone of 
human body temperature regulation. J Appl PhysioI80:1249-1257. 

263. Sawka MN (1986) Physiology of upper body exercise. Exercise and sport sciences 
reviews 14: 17S-211. 

264.Sawka MN (1992) Physiological consequences of hypohydration: exercise 
performance and thermoregulation. Medicine and science in sports and exercise 
24:657-670. 

265. Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfe1d NS (2007) 
American College of Sports Medicine position stand. Exercise and flUid replacement. 
Medicine and science in sports and exercise 39:377-390. 

266. Sawka MN, Foley ME, Pimental NA, Pandolf KB (1983a) Physiological factors 
affecting upper body aerobic exercise. Ergonomics 26:639-646. 

267. Sawka MN, Foley ME, Pimental NA, Toner MM, PandolfKB (1983b) Determination 
of maximal aerobic power during upper-body exercise. Journal of applied physiology 
54:113-117. 

268.Sawka MN, Gonzalez RR, Dralet LL, Pandolf KB (1984) Heat exchange during 
upper- and lower-body exercise. Journal of applied physiology 57: 1 050-1 OS4. 

181 



References 

269. Sawka MN, Latzka WA, Montain SJ, Cadarette BS, Kolka MA, Kraning KK, 2nd, 
Gonzalez RR (2001a) Physiologic tolerance to uncompensable heat: intermittent 
exercise,jieldvs laboratory. Medicine and science in sports and exercise 33:422-430. 

270. Sawka MN, Miles DS, Petrofsky JS, Wilde SW, Glaser RM (1982) Ventilation and 
acid-base equilibrium for upper body and lower body exercise . Aviation, space, and 
environmental medicine 53:354-359. 

271.Sawka MN, Montain SJ, Latzka WA (2001b) Hydration effects on thermoregulation 
and performance in the heat. Comparative biochemistry and physiology 128:679-690. 

272. Sawka MN , Young AJ, Francesconi RP, Muza SR, Pandolf KB (1985) 
Thermoregulatory and blood responses during exercise at graded hypohydration 
levels. Journal of applied physiology 59:1394-1401. 

273. Schamadan JL, Snively WD, Jr. (1967) The role of potassium in heat stress disease. 
Industrial medicine & surgery 36:785-788. . 

274. Schmid A, Huonker M, Aramendi JF, Kluppel E, Barturen JM, Grathwohl D, 
Schmidt-Trucksass A, Berg A, Keul J (1998) Heart rate deflection compared to 4 
mmol x 1(-1) lactate threshold during incremental exercise and to lactate during 
steady-state exercise on an arm-cranking ergometer in paraplegic athletes. European 
journal of applied physiology and occupational physiology 78: 177-182. 

275. Schneider DA, McLellan TM, Gass GC (2000) Plasma catecholamine and blood 
lactate responses to incremental arm and leg exercise. Medicine and science in sports 
and exercise 32:608-613. 

276. Schneider DA, Wing AN, Morris NR (2002) Oxygen uptake and heart rate kinetics 
during heavy exercise: a comparison between arm cranking and leg cycling. European 
journal of applied physiology 88: 1 00-1 06. 

277. Seals DR, Mullin JP (1982) V02 max in variable type exercise among well-trained 
upper body athletes. Research quarterly for exercise and sport 53:58-63. 

278. Secher NH, Ruberg-Larsen N, Binkhorst RA, Bonde-Petersen F (1974) Maximal 
oxygen uptake during arm cranking and combined arm plus leg exercise. Journal of 
applied physiology 36:515-518. 

279. Secher NH, Volianitis S (2006) Are the arms and legs in competition for cardiac 
output? Medicine and science in sports and exercise 38:1797-1803. 

280. Sharwood KA, Collins M, Goedecke JH, Wilson G, Noakes TD (2004) Weight 
changes, medical complications, and performance during an 1ronman triathlon. 
British journal of sports medicine 38:718-724. 

281. Sheahan M. (2007). America's Cup -A Numbers Game, 4 June 2007 edn. Yachting 
World online, 
http://www.ybw.com/auto/newsdeskl20070504150439ywamericascupO7 .htrnl. 

182 



References 

282. Shephard RJ (2000) Special feature for the Olympics: effects of exercise on the 
immune system: overview of the epidemiology of exercise immunology. Immunology 
and cell biology 78:485-495. 

283. Shephard RJ, Shek PN (1997) Interactions between sleep, other body rhythms, 
immune responses, and exercise. Canadian journal of applied physiology = Revue 
canadienne de physiologie appJiquee 22:95-116. 

284. Shirreffs SM (2000) Markers of hydration status. The Journal of sports medicine and 
physical fitness 40:80-84. 

285. Shirreffs SM, Aragon-Vargas LF, Chamorro M, Maughan RJ, Serratosa L, Zachwieja 
JJ (2005) The sweating response of elite professional soccer players to training in the 
heat. International journal of sports medicine 26:90-95. 

286. Shirreffs SM, Maughan RJ (1997) Whole body sweat collection in humans: an 
improved method with preliminary data on electrolyte content. Journal of applied 
physiology 82:336-341. 

287.Shirreffs SM, Maughan RJ (1998) Urine osmolality and conductivity as indices of 
hydration status in athletes in the heat. Medicine and science in sports and exercise 
30:1598-1602. 

288. Shirreffs SM, Sawka MN, Stone M (2006) Water and electrolyte needs for football 
training and match-play. Journal of sports sciences 24:699-707. 

289. Simasek M, Blandino DA (2007) Treatment of the common cold. American family 
physician 75:515-520. 

290. Siri WE. (1961). Body composition from fluid space and density. In Techniques for 
measuring body composition, ed. Brozek J, Hanschel A, pp. 223-244. National 
Academy of Science, Washington, DC. 

291. Sjodin B, Jacobs I (1981) Onset of blood lactate accumulation and marathon running 
performance. International journal of sports medicine 2:23-26. 

292. Sjogaard G (1996) Potassium and fatigue: the pros and cons. Acta physiologica 
Scandinavica 156:257-264. 

293. Slater G, Tan B (2007) Body mass changes and nutrient intake of dinghy sailors while 
racing. Journal of sports sciences 25:1129-1135. 

294. Smith PM, Doherty M, Drake D, Price MJ (2004) The irifluence of step and ramp type 
protocols on the attainment of peak physiological responses during arm crank 
ergometry. International journal of sports medicine 25 :616-621. 

295. Smith PM, Doherty M, Price MJ (2006) The effect of crank rate on physiological 
responses and exercise efficiency using a range of sub maximal workloads during arm 
crank ergometry. International journal of sports medicine 27: 199-204. 

183 



References 

296. Smith PM, Doherty M, Price MJ (2007) The effict of crank rate strategy on peak 
aerobic power and peak physiological responses during arm crank ergometry. Journal 
of sports sciences 25:711-718. 

297. Smith PM, Price MJ, Doherty M (2001) The influence of crank rate on peak oxygen 
consumption during arm crank ergometry. Journal of sports sciences 19:955-960. 

298. Spence L, Brown WJ, Pyne DB, Nissen MD, Sloots TP, McCormack JG, Locke AS, 
Fricker P A (2007) Incidence, etiology, and symptomatology of upper respiratory 
illness in elite athletes. Medicine and science in sports and exercise 39:577-586. 

299. Sprague RCt, Martin JC, Davidson CJ, Farrar RP (2007) Force-velocity and power­
velocity relationships during maximal. short-term rowing ergometry. Medicine and 
science in sports and exercise 39:358-364. 

300. Stahn A, Terblanche E, Strobel G (2007) Modeling upper and lower limb muscle 
volume by bioelectrical impedance analysis. Journal of applied physiology 103:1428-
1435. 

301. Stallknecht B, Vissing J, Galbo H (1998) Lactate production and clearance in. 
exercise. Effects of training. A mini-review. Scandinavian journal of medicine & 
science in sports 8:127-131. 

302. Steerenberg PA, van Asperen lA, van Nieuw Amerongen A, Biewenga A, Mol D, 
Medema GJ (1997) Salivary levels of immunoglobulin A in triathletes. European 
journal of oral sciences 105:305-309. 

303. Stenberg J, Astrand PO, Ekblom B, Royce J, Saltin B (1967) Hemodynamic response 
to work with different muscle groups, sitting and supine. Journal of applied physiology 
22:61-70. 

304. Stephenson LA, Vernieuw CR, Leammukda W, Kolka MA (2007) Skin temperature 
feedback optimizes microclimate cooling. Aviation, space, and environmental 
medicine 78:377-382. 

305. Stieglitz 0 (1993) Fatigue and serum potassium in high performance sailors. Medical 
science research 21:855-858. 

306. Stofan JR, Zachwiega JJ, Horswill CA (2002) Sweat and sodium losses during 
practice in professional football players: field studies. Medicine and science in sports 
and exercise 34:S113. 

307. Stone AA, Cox DS, Valdimarsdottir H, Jandorf L, Neale JM (1987a) Evidence that 
secretory IgA antibody is associated with daily mood. Journal of personality and 
social psychology 52:988-993. 

308. Stone AA, Cox DS, Valdimarsdottir H, Neale JM (1987b) Secretory IgA as a measure 
of immunocompetence. Journal of human stress 13:136-140. 

184 



References 

309. Sunderland C, Nevill ME (2005) High-intensity intermittent running andjield hockey 
skill performance in the heat. Journal of sports sciences 23:531-540. 

310. Suzuki K, Nakaji S, Yamada M, Totsuka M, Sato K, Sugawara K (2002) Systemic 
inflammatory response to exhaustive exercise. Cytokine kinetics. Exercise 
immunology review 8:6-48. 

311. Swaine 1L, Winter EM (1999) Comparison of cardiopulmonary responses to two types 
of dry-land upper-body exercise testing modes in competitive swimmers. European 
journal of applied physiology and occupational physiology 80:588-590. 

312. Teeuw W, Bosch JA, Veerman EC, Amerongen AV (2004) Neuroendocrine 
regulation of salivary IgA synthesis and secretion: implications for oral health. 
Biological chemistry 385:1137-1146. 

313. Tesch PA (1983) Physiological characteristics of elite kayak paddlers. Canadian 
journal of applied sport sciences 8:87-91. 

314. Tharp GD (1991) Basketball exercise and secretory immunoglobulin A. European 
journal of applied physiology and occupational physiology 63:312-314. 

315. Tiollier E, Gomez-Merino D, Burnat P, Jouanin JC, Bourrilhon C, Filaire E, 
Guezennec CV, Chennaoui M (2005) Intense training: mucosal immunity and 
incidence of respiratory infections. European journal of applied physiology 93:421-
428. 

316. Tomasi TB, Trudeau FB, Czerwinski D, Erredge S (1982) Immune parameters in 
athletes before and after strenuous exercise. Journal of clinical immunology 2: 173-
178. 

317. Toner MM, Glickman EL, McArdle WO (1990) Cardiovascular a4justments to 
exercise distributed between the upper and lower body. Medicine and science in 
sports and exercise 22:773-778. 

318. Toner MM, Sawka MN, Levine L, Pandolf KB (1983) Cardiorespiratory responses to 
exercise distributed between the upper and lower body. Journal of applied physiology 
54:1403-1407. 

319. Too D (1994) The effect of trunk angle on power production in cycling. Research 
quarterly for exercise and sport 65:308-315. 

320. Too D, Landwer GE (2000) The effect of pedal crank arm length on joint angle and 
power production in upright cycle ergometry. Journal of sports sciences 18: 153-161. 

321. Tucker R, Marle T, Lambert EV, Noakes TD (2006) The rate of heat storage mediates 
an anticipatory reduction in exercise intensity during cycling at a jixed rating of 
perceived exertion. The Journal of physiology 574:905-915. 

185 



Reterences 

322. Tucker R, Rauch L, Harley YX, Noakes TD (2004) Impaired exercise performance in 
the heat is associated with an anticipatory reduction in skeletal muscle recruitment. 
Pflugers Archives 448:422-430. 

323. Turner DL, Hoppeler H, Claassen H, Vock P, Kayser B, Schena F, Ferretti G (1997) 
Effects of endurance training on oxidative capacity and structural composition of 
human arm and leg muscles. Acta physiologica Scandinavica 161:459-464. 

324. Valencia-Sailing. (2006). Inside an Americas Cup team: Keeping Alinghi's crew fit. 
http://valenciasailing.blogspot.coml2006/1 O/inside-americas-cup-team-keeping.html, 
[Accessed 19/12/2008]. 

325. Valent LJ, Dallmeijer AJ, Houdijk H, Slootman HJ, Post MW, van der Woude LH 
(2008) Influence of hand cycling on physical capacity in the rehabilitation of persons 
with a spinal cord injury: a longitudinal cohort study. Archives of physical medicine 
and rehabilitation 89:1016-1022. 

326. Van Hall G, Jensen-Urstad M, Rosdahl H, Holmberg HC, Saltin B, Calbet JA (2003) 
Leg and arm lactate and substrate kinetics during exercise. American journal of 
physiology 284:EI93-205. 

327. van Someren KA, Oliver JE (2002) The efficacy of ergometry determined heart rates 
for flatwater kayak training. International journal of sports medicine 23:28-32. 

328. Vanderthommen M, Francaux M, Johnson D, Dewan M, Lewyckyj Y, Sturbois X 
(1997) Measurement of the power output during the acceleration phase of all-out arm 
cranking exercise. International journal of sports medicine 18:600-606. 

329. Vandewalle H, Peres G, Sourabie B, Stouvenel 0, Monod H (1989) Force-velocity 
relationship and maximal anaerobic power during cranking exercise in young 
swimmers. International journal of sports medicine 10:439-445. 

330. Vergauwen L, Brouns F, Hespel P (1998) Carbohydrate supplementation improves 
stroke performance in tennis. Medicine and science in sports and exercise 30:1289-
1295 .. 

331.Vokac Z, Bell H, Bautz-Holter E, Rodahl K (1975) Oxygen uptake/heart rate 
relationship in leg and arm exercise, sitting and standing. Journal of applied 
physiology 39:54-59. 

332. Volianitis S, Secher NH (2002) Arm blood flow and metabolism during arm and 
combined arm and leg exercise in humans. The Journal of physiology 544:977-984. 

333. Volianitis S, Yoshiga CC, Nissen P, Secher NH (2004) Effect of fitness on arm 
vascular and metabolic responses to upper body exercise. American journal of 
physiology 286:HI736-1741. 

334. Vrijens J, Hoekstra P, Bouckaert J, Van Uytvanck P (1975) Effects of training on 
maximal working capacity and haemodynamic response during arm and leg-exercise 

186 



--. --- .--------------------------------------------------------

References 

in a group of paddlers. European journal of applied physiology and occupational 
physiology 34:113-119. 

335. Walsh NP, Blannin AK, Clark AM, Cook L, Robson Pl, Gleeson M (1999) The effects 
of high-intensity intermittent exercise on saliva JgA, total protein and alpha-amylase. 
Journal of sports sciences 17:129-134. 

336. Walsh NP, Laing Sl, Oliver SJ, Montague JC, Waiters R, Bilzon JL (2004) Saliva 
parameters as potential indices of hydration status during acute dehydration. 
Medicine and science in sports and exercise 36:1535-1542. 

337. Walsh RM, Noakes TD, Hawley lA, Dennis SC (1994) Impaired high-intensity 
cycling performance time at low levels of dehydration. International journal of sports 
medicine 15:392-398. 

338. Washburn RA, Seals DR (1983) Comparison of Continuous and Discontinuous 
Protocols for the Determination of Peak Oxygen Uptake in Arm Cranking. European 
journal of applied physiology and occupational physiology 51:3-6. 

339. Webb P (1995) The physiology of heat regulation. The American journal of 
physiology 268:R838-850. 

340. Webster J, Holland EJ, Sleivert G, Laing RM, Niven BE (2005) A light-weight 
cooling vest enhances performance of athletes in the heat. Ergonomics 48:821-837. 

341. Weinberg AD, Minaker KL (1995) Dehydration. Evaluation and management in older 
adults. Council on Scientific Affairs, American Medical Association. Jama 274:1552-
1556. 

342. Welbergen E, Clijsen LP (1990) The influence of body position on maximal 
performance in cycling. European journal of applied physiology and occupational 
physiology 61:138-142. 

343. Wendt D, van Loon LJ, Lichtenbelt WD (2007) Thermoregulation during exercise in 
the heat: strategies for maintaining health and performance. Sports medicine 37:669-
682. 

344. Westhoff TH, Schmidt S, Gross V, Joppke M, Zidek W, van der Giet M, Dimeo F 
(2008) The cardiovascular effects of upper-limb aerobic exercise in hypertensive 
patients. Journal of hypertension 26:1336-1342. 

345. Whiting P. (2007). The 32nd America's Cup: A simple guide. Wiley, Chichester, 
England. 

346. Wilkie DR (1949) The relation between force and velocity in human muscle. The 
Journal of physiology 110:249-280. 

347. Woof JM, Kerr MA (2006) The fUnction of immunoglobulin A in immunity. The 
Journal of pathology 208:270-282. 

187 



References 

348. Zagatto AM, Papoti M, GobattoCA (2008) Anaerobic capacity may not be 
determined by critical power model in elite table tennis players. Journal of Sports 
Science & Medicine 7:54-59. 

349.Zetou E, Giatsis G, Mountaki F, Komninakidou A (2008) Body weight changes and 
voluntary fluid intakes of beach volleyball players during an official tournament. 
Journal of science and medicine in sport / Sports Medicine Australia 11: 139-145. 

188 



Appendix I 

Appendix 1. America's Cup Defenders and Challengers from 1851 to 2007, [name of 
boaVteam]. 

Year # Defender Result Challenger 

2009 33rd C] Switzerland lAlinghi] Currently under litigation 

2007 32nd !:] Switzerland [Alinghi[ 5·2 Ma New Zealand [Team New Zealand] 

2003 31st i¥J3 New Zealand [Team New Zealand] 0-5 C]) Switzerland [Alinghi] 

2000 30th m New Zealand [Team New Zealand) 5.0 D rlltalv rPrada ChalienQel 

1995 29th ~?'L_j United States [Young America1 0-5 Oi:i.a New Zealand [Black Magic) 

1992 28th A -- ~ United States [America3] 4·1 D !lltalv [11 Moro di Venezia] 

1988 27th "'-"~ United States [Stars & Stripes) 2.0 iiiim New Zealand [NZ Challenge) 

1987 26th om Australia [Kookaburra Ill) 0-4 !:" :;; United States [Stars & Stripes] 

1983 25th !., ~:~ United States [Liberty) 3-4 Iiil!ll Australia [Australia 11) 

1980 24th "'~~ United States [Freedom) 4-1 om Australia [Australia) 

1977 23rd !"'-=:i United States [Courageous] 4.0 M Australia [Australia) 

1974 22nd ?i -: United States [Courageous] 4.0 om Australia [Southern Cross] 

1970 21st iJi., United States [Intrepid] 4-1 22 Australia [Gretel 11] 

1967 20th "'L~ United States [Intrepid] 4.0 Itim Australia [Dame Pattie] 

1964 19th i,' , United States [Constellation] 4.0 + England [Sovereign] 

1962 18th to, , United States [Weatherly] 4-1 Itim Australia [Gretel] 

1958 17th IlFl United States [Columbia] 4.0 + England [Sceptre] 

1937 16th fe., United States [Ranger] 4.0 + England [Endeavour 11] 

1934 15th 0~,,-, United States [Rainbow] 4-2 + England [Endeavour] 

1930 14th 11' -, ;j United States [Enterprise] 4.0 -:- Northern Ireland [Shamrock V] 

1920 13th "" 'United States [Resolute] 3-2 X Ireland [Shamrock IV] 

1903 12th N. United States [Reliance] 3.0 X Ireland [Shamrock Ill] 

1901 11th '" 'United States [Columbia] 3.0 X Ireland [Shamrock 11] 

1899 10th .,.7., United States [Columbia] 3.0 X Ireland [Shamrock] 

1895 9th .... ~,~ United States [Defender] 3.0 + England [Valkyrie Ill] 

t893 8th .... ..1 United States [Vigilant] 3.0 + England [Valkyrie 11] 

t887 7th o 'United States [Volunteer] 2.0 ~ Scotland [Thistle] 

t886 6th N ",' United States [Mayfiower] 2.0 + England [Galatea] 

t885 5th !,j , United States [Puritan] 2.0 + England [Genesta] 

1881 4th t' , , United States [Mischief] 2.0 ~::I Canada [Atalanta] 

1876 3rd ~-:: United States [Madeleine] 2.0 V:!1 Canada [Countess of Dufferin] 

1871 2nd i.'~, United States [Columbia] 4-1 + England [Livonia] 

1870 1 st N',::;; United States [Magic] 1.0 + England [Cambria] 

1851 f:J. United States [America] 1.0 + England [Aurora) 






