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Abstract 

Research has found that both flood magnitude and frequency in the U.K. may 

have increased over the last five decades. However, evaluating whether or not 

this is a systematic trend is difficult because of the lack of longer records.  Here 

we compile and consider an extreme flood record that extends back to 1770.  

Since 1770 there have been 137 recorded extreme floods.  However, over this 

period, there is not a unidirectional trend of rising extreme flood risk over time.  

Instead, there are clear flood-rich and flood-poor periods.  Three main flood rich 

periods were identified: 1873-1904; 1923-1933; and 1994-2007. To provide a 

first analysis of what is driving these periods, and given the paucity of more 

sophisticated datasets that extend back to the 18th Century, objective Lamb 

weather types were used.  Of the 27 objective Lamb weather types, only 11 

could be associated with the extreme floods during the gauged period, and only 

5 of these accounted for >80% of recorded extreme floods The importance of 

these five weather types over a longer timescale for flood risk in Carlisle was 

assessed, through calculating the proportion of each hydrological year classified 

as being associated with these flood generating weather types.  Two periods 

clearly had more than the average proportions of the year classified as one of 

the flood causing weather types; 1900-1940 and 1983-2007; and these two 



periods both contained flood rich hydrological records. Thus, the analysis 

suggests that systematic organisation of the North Atlantic climate system may 

be manifest as periods of elevated and reduced flood risk, an observation that 

has major implications for analyses that assume that climatic drivers of flood 

risk can be either statistically stationary or are following a simple trend. 
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Introduction 

Flood risk is becoming an increasingly important issue in North-West 

Europe in general and in the U.K. in particular. The aim of this paper is to 

assess the extent to which this is a systematic trend for a large river basin in 

North-West England and then to assess the extent to which the results obtained 

can be linked back to large-scale atmospheric forcing. 

Severe flood events have been reported for the U.K. in Spring 1998 (Central 

England) (Horner and Walsh, 2000), autumn 2000 (Sussex and Yorkshire; 

Marsh and Dale, 2002; Kelman, 2001), autumn 2004 (Boscastle; Golding et al., 

2005; Roseveare and Trapmore, 2008),  winter 2005 (Carlisle; Environment 

Agency, 2006), summer 2007 (Central and Northern England; Marsh and 

Hannaford, 2007; Marsh, 2008),  autumn 2008 (Northern England; Wilkinson et 

al., 2010) and autumn 2009 (North-West England; Eden and Burt., 2010).  It 

has been suggested that recent decades have seen more frequent and higher 

magnitude river flow extremes (Wheater, 2006) and that we are now in a flood 

rich period (Macdonald, 2006, Lane 2008).  



The apparent increase in flood events, however, needs to be evaluated to 

assess whether or not it represents a long-term trend or simply shorter-term 

variability.  Robson (2002) analysed both local and UK river flood series and 

found that there was an increasing trend over the past 30-50 years, 

emphasising that assumptions of stationarity in flood frequency analyses need 

to be questioned (Milly et al., 2008).  Furthermore, there seems to be a pattern 

and clustering of the worst flood events rather than a random occurrence 

(Wheater, 2006), perhaps related to shorter term climatic variability. Others 

have reached the same conclusion with respect to smaller regional datasets. 

For example, Scotland has seen an increased river flood frequency since 1988, 

with new maximum discharges recorded for many rivers, especially in the west 

(Black, 1995; Black and Burns, 2002; Werritty, 2002). 

In relation to Europe, Brazdil et al., (2006) notes the large number of flood 

events throughout Central Europe in the last two decades; Rhine/Meuse in 

December 1993 and January 1995; Biescas (Pyrenees) in August 1996; 

Morova/Oder in July 1997; and the Elbe in August 2002.  However, although 

many studies have investigated flood frequency (Kundzewicz and Robson, 

2004; Radziejewski and Kundzewicz, 2004; Lindstrom and Bergstrom, 2004; 

Kundzewicz et al., 2005; Svensson et al., 2005), finding statistically significant 

general trends has been more difficult.  This is likely to be a consequence of the 

low frequency of extreme events, meaning that long records are needed to have 

the required number of events to identify statistically significant trends. There 

are examples of historical flood records that suggest periods of greater flood 

occurrence than others.  Barriendos et al., (2003) investigated the stationarity 



assumption for flood records in France and Spain.  Mudelsee et al., (2006) 

constructed a 500 year flood record for the River Werra in Germany.  Mudelsee 

et al., (2004) found that Europe experienced increased flooding frequencies in 

the 18th Century, which has been hypothesised to have been caused by the 

Late Maunder Minimum period.  Macdonald (2006) found that this observation 

was not present in the UK.  A possible explanation for this is that this period 

was cold and dry and saw an increase in the number of snowmelt and ice dam 

break flood events, which are more common in Central Europe than the UK.   

These studies aside, there have been relatively few assessments of both the 

extent and timescales of flood clustering, and even fewer assessments of what 

might drive them. This paper explores the extent and timescales of flood 

clustering for a 2400 km2 river catchment in northwest England, the River Eden 

at Carlisle, combining the shorter term gauged record with longer term historical 

data to construct a flood record for the last 240 years. It then tests the first 

hypothesis that the flood record can be divided into relatively flood rich and 

relatively flood poor periods. 

The link between weather systems and hydrological flows, particularly extremes 

(floods and droughts) has been investigated by a few studies.  Higgs (1987) 

investigated the link between weather types and floods for the River Severn at 

Bewdley, using a 101 year record.  Zonal (Westerly) weather systems were 

found to be associated with the highest magnitude floods.  Rumsby and Macklin 

(1994) studied the flooding frequency and magnitude of the River Tyne, 

considering weather types as a controlling factor.  Major floods were found to be 

linked to meridional circulation (easterly weather types), while more moderate 



floods occurred in periods when zonal weather systems dominated (westerlies).  

A possible explanation for this was through the high amplitude waves 

associated with meridional circulations, which are linked to situations when high 

pressure cause blocking of depressions, leading to long duration, high intensity 

precipitation.  A further study by Rumsby and Macklin (1996) compared the 

western Severn catchment, with the eastern Tyne catchment.  The west of 

England is more susceptible to zonal precipitation (westerlies), while the north-

east of England is in the rain shadow of the Pennines, so receives more 

precipitation from meridional (easterly) weather systems which absorb moisture 

over the North Sea.  Grew (1996) used daily weather system classifications, 

unlike the previous studies which used monthly or annual categories, for 130 

peak over threshold (POT) series in Scotland.  Cyclonic, Westerly and South-

Westerly weather systems were found to trigger flood events in Scotland.  A 

similar approach was taken by Longfield and Macklin (1999) for the River Ouse 

in Yorkshire.  Westerly, Cyclonic, Cyclonic Westerly and South-Westerly 

weather systems were found to have caused 79.7% of the floods in the flood 

record since 1875.   

Expanding the spatial scale to include the weather types that cause floods in 

Central Europe has found that similar weather types are also important 

regionally.  However, a different weather type classification is used in Europe, 

the Grosswetterlagen (Baur 1944), which has 30 classes under three main 

headings of zonal (westerly), mixed and meridional (easterly).  Kastner (1997) 

found that only 5 of the 30 circulation types caused floods in Bavaria, while 

Petrow et al., (2007) found that 19 of the 30 caused floods in the Mulde 



catchment, Germany, in the 92 year period (1911-2002).  Both these studies 

highlighted the importance of Westerly weather types (25% of Mulde floods), 

and identified the Vb circulation pattern as the most susceptible to causing 

floods in Europe (Mudelsee et al., 2004; Brazdil et al., 2005; Petrow et al., 

2007).  The Vb (van Bebber) weather type is a slow moving low pressure 

system, which moves northwards from the Gulf of Genoa, and therefore is 

characterised by a warm and moist air mass, which leads to high precipitation in 

the Alps.  A continental scale study of 488 catchments in Europe by 

Prudhomme and Genevier (2010) found that the cyclonic westerly weather type 

occurred more frequently before and during a flood event than the annual 

average. 

At a larger scale, the link between weather types and atmospheric processes 

and circulations has been investigated.  For the UK, one of the most significant 

large scale atmospheric circulation indices is thought to be the North Atlantic 

Oscillation Index (Kingston et al., 2006).  This is a measure of the pressure 

gradient between the Icelandic Low and the Azores High (Hurrell and van Loon, 

1997).  It is often used as a measure of westerly weather systems over the UK 

and it has been found that Lamb weather types correlate well with the NAO, 

especially Anti-Cyclonic and Westerly weather types (Jones et al., 1997).  Wilby 

et al. (1997) identified four main phases of the NAO from pre-20th century to the 

mid-1990s: (1) pre-20th century when the NAO was near zero; (2) 1900-1930 

when the NAO had a strong positive phase; (3) 1930-1960s when the NAO had 

a low positive index; and (4) 1960s to the mid-1990s when the NAO had a 

strong positive index (Wilby et al., 1997).  Since the mid-1990s, the strength of 



the positive NAO has been decreasing and the winter of 2010/2011 had the 

most negative NAO index in the 190 year record (Osborn, 2011). Hurrell (1995) 

found links between shifts in the NAO and changes in UK temperatures and 

precipitation totals. Bendix (1997) highlighted the importance of Westerly 

weather types and an enhanced North Atlantic Oscillation in causing floods 

throughout Central Europe.  Fowler and Kilsby (2002) found a positive 

correlation between the NAO and the precipitation quantities in the west of the 

UK and a negative correlation in the east.  However, the relationship does not 

seem to be that simple, with Wedgbrow (2002) finding a lag between the 

changing NAO index and the change in UK weather.  This was hypothesised to 

be caused by either climatological memory effects, such as seasonal patterns, 

or hydrological memory effects, for example groundwater levels or antecedent 

moisture levels.  Along with the weather type classifications, this index also has 

limitations for its use, as it represents complex multivariate interrelationships 

very simply (Kingston et al., 2006). Thus, in this paper we focus upon weather 

types, not least because of the historical duration for which they are available. 

We use these to test a second hypothesis that the flood rich and flood poor 

periods identified in the historical record can be linked back as a first 

approximation to atmospheric forcing. 

Methodology 

The Eden Catchment and Flooding in the city of Carlisle 

The Eden catchment comprises 6 major sub-catchments (Figure 1).  The spatial 

annual average precipitation of the Eden catchment is 1,183 mm (SAAR 1961-



1990) (Environment Agency, 2008).  The Eamont sub-catchment receives the 

highest rainfall per year with a spatial annual average value of 1,768 mm and 

local annual averages in excess of 2,800 mm in areas of high topography.   The 

Petteril experiences the lowest rainfall totals with 942 mm per year, while the 

Lower Eden in the city of Carlisle receives approximately 800 mm every year.    

The spatial differences in average annual rainfall can be explained by the 

significant topographical variations within the catchment, with a total relief of 

approximately 950m. Although urbanisation has occurred in the Eden over the 

last three centuries (for instance, the population of the largest City, Carlisle, 

rose from 4,000 in 1750 to 71,773 in 2001), urban areas still only account for 

less than 1% of the catchment, implying that urbanisation is unlikely to be a 

major contribution to changing flood frequency at the catchment-scale. The vast 

majority of the catchment is rural and it remains an unresolved issue as to 

whether or not rural land management, as well as river and floodplain 

management, have contributed to changing flood frequency. Recent work 

(Beven et al., 2008) has shown that such effects are likely to be very difficult to 

detect in historical records, not least because of natural climatic variability. 

Thus, whilst it remains a possible hypothesis for changing flood frequency, and 

may have contributed to those changes, it is likely that the primary driver of 

changing flood frequency is a climatic one. 

Short Term Gauged Record  

It was possible to obtain a recent gauged record of river flows for the 

Sheepmount gauging station in Carlisle (Figure 1) which opened in January 

1967. Digital records begin in 1976 and the station is still operating.  Here, 



event frequency and magnitude trends are analysed using peak over threshold 

(POT) and annual maxima (Amax) series respectively for two scales of high 

flow event.  The number of events per hydrological year that exceeded the Q1 

value (347 m3s-1), which was calculated from the digitised record for 1976-2007 

was determined.  This threshold was chosen to represent the full range of high 

flow events in the Eden, rather than restricting the analysis to just the overbank 

flood events.  Analysis of the full event record will be referred to as >Q1 events.  

Events were identified that were independent of each other by requiring the time 

interval between floods to be three times the duration of the typical rising limb 

(Bayliss and Jones, 1993), calculated from an average of five flood events.  

This required events to be separated by a minimum of 4 days.   

To provide information on a second scale of event, the Q1 events were also 

separated into high flows (347m3s-1 < Q < 500m3s-1) and extreme flood events 

(Q > 500 m3s-1).  The extreme flood threshold was determined using a previous 

study by Smith and Tobin (1979) of long term flooding in Carlisle.  Smith and 

Tobin (1979) calculated the return period of floods in the 1800-1970 period.  

The return period of the 1968 flood was found to be 42.75 years using the 

historical record, which is comparable to the 38.5 years calculated by the North-

West Water Authority (Smith and Tobin, 1979).  The discharge of events 

recorded in the British Chronology of Hydrological Events database and Smith 

and Tobin were found at Warwick Bridge (since 1959) and Sheepmount (since 

1975) gauging stations (Black and Law, 2004). This allowed the short term 

gauged record to be comparable with the longer term record which was 



reported by Smith and Tobin (1979) and which was used in compiling the long-

term historical extreme flood record. 

Annual maxima series record the largest instantaneous flood peak in each 

hydrological year (Svensson et al., 2005).  The major advantage of this 

approach is that data are easy to extract, but insignificant flows can be included 

in the record, if a year was particularly flood poor.  Thus, the peak discharge of 

each POT event was also considered.  Records were extended back to 1967 

using the POT Hiflows database (www.environment-agency.gov.uk/hiflows). 

Creating a longer term extreme high flow record 

Past research has shown the risks of concluding the presence or absence of 

trends in short term gauged records. There have been several 

recommendations (Table 1) as to the minimum required record length, ranging 

from 10 to 50 years reflecting the problem that what can appear to be a trend in 

a short duration record may actually be shown to be fluctuation in a longer data 

record (Robson, 2002; Kundzewicz and Robson, 2004; Dixon et al., 2006) and 

be associated with spurious trends (e.g. Konrad and Booth, 2002). For instance, 

Hisdal et al. (2001), for a single station, found significant positive and negative 

trends in annual flood maxima as a 30 year moving window was applied to the 

record. Robson (2002) shows that shorter record lengths are more susceptible 

to edge effects, when periods that have several floods or few floods at the 

beginning and/or end of the record influence the strength of the trend.  

Hannaford and Marsh’s (2007) benchmark dataset for UK records had an 



average length of 33.7 years reflecting the fact that much of the UK gauging 

station network was commissioned in the 1960s and 1970s (Lees, 1987).   

Given the possibility that the 40 year record (1967-2007) is too short to reliably 

detect trends in the dataset, a longer timescale extreme flood record was 

constructed for the River Eden at Carlisle, using multiple sources of information. 

First, the British Chronology of Hydrological Events (Black and Law, 2004) was 

used. As of October 7th 2010, it listed 126 (some repeated) extreme flood 

records for the River Eden. For copyright reasons, records generally cover the 

period before 1931, although for the Eden, a record exists for the 1968 flood.   

Second, newspaper reports from the Carlisle Patriot, Carlisle Journal, 

Cumberland News, Evening News and Star, and the Carlisle Directory were 

used to identify extreme flood occurrence.  Some of the records give specific 

details, such as a quotation, while others just list the event and source. Third, 

extreme flood levels recorded on Eden Bridge in Carlisle by indentations with 

associated years indicate the peak flood water stage.  Markings are present for 

the 1822, 1856, 1868, 1925, 1952 and 1968 floods.  The level of the January 

2005 extreme flood event was one metre higher than the highest previous mark.  

Such marks need to be assessed for their originality, by checking the age of the 

structure on which they are preserved (Brazdil et al., 2006).  Eden Bridge was 

built in 1815 and consists of five long arches.  Therefore all the epigraphic 

markings are thought to be legitimate.  However, a limitation of using the flood 

levels is that the bridge width was doubled in 1932.  This will have changed the 

conveyance of water downstream.  Water levels are controlled by both 

discharge and conveyance, meaning that epigraphic markings are generally 



good at indicating a flood, but are less good at indicating the magnitude of the 

event. 

Finally, Smith and Tobin (1979) ranked 49 major known extreme floods at 

Carlisle between 1800 and 1968 according to the approximate extent of 

flooding.   This was an important source of information as it allowed the 

threshold for extreme floods to be standardised between the different sources 

and timescales of the floods.  The British Chronology of Hydrological Events 

only recorded floods up until 1931, while gauged data starts in 1959 at Warwick 

Bridge and 1967 at Sheepmount (Figure 1).  Smith and Tobin (1979) was used 

to fill the gap between 1931 and 1959.  The threshold of 500 m3s-1 was used at 

Sheepmount to make the short term gauged record comparable with the 

historical extreme floods recorded by Smith and Tobin (1979). The gauged 

record from Warwick Bridge was used to determine extreme floods between 

1959 and 1976.  The comparable flow at Warwick Bridge was calculated to be 

460 m3s-1.  Using these multiple sources of information allowed a robust record 

to be compiled, whereby multiple sources recorded the same event, along with 

single records allowing time periods to be filled.  The extreme flood record was 

developed extending back to 1770.  See appendix for a complete record of the 

extreme floods in Carlisle showing the source of the information.  The reliability 

of the flood record increases with time due to better gauging and recording of 

events.  However, it is believed that the record post-1800 includes most of the 

actual events.  This is because multiple sources of information have been used 

to derive the record. 

Atmospheric drivers of flood events 



The UK’s weather is determined by the position, origin and storm tracks of air 

masses.  Atmospheric circulation systems can be classified (El Kadi and 

Smithson, 1992) and these have been used (e.g. Hess and Brezowsky, 1977; 

Yarnal, 1993; and Petrow et al., 2007) to investigate the links between large 

scale atmospheric processes and regional weather and hydrology.  In the UK, 

Lamb (1950; 1972) developed a weather type classification for 1861 to 1971.  

This is a classification based upon both synoptic pressure and direction of flow 

and so Lamb weather types describe the prevailing atmospheric pressure 

characteristics and hence indicate the presence and tracks of storms over a 

catchment. Lamb’s original analysis resulted in seven classes (Westerly, North-

Westerly, North-Easterly, Easterly, Southerly and Anti-cyclonic and Cyclonic) 

which were representative of weather systems over the whole of the UK.  This 

subjective classification which relied on an expert basing a decision on a 

synoptic chart was developed by Jenkinson and Collinson (1977) to make the 

classification more objective.  It has now been applied from 1881 to the present 

day.  It is based upon the daily mean sea level pressure, which is used to 

indicate wind flow direction, shear vorticity and flow strength (Jones et al., 

1993).  The Objective Jenkinson classification has 27 classes, sub-divided by 

direction (N, NE, E. SE, S, SW, W, NW), non-direction (Cyclonic, Anticyclonic), 

combined complex hybrid types (CN, CNE, CE. CSE, CS, CSW, CW, CNW, 

AN, ANE, AE. ASE, AS, ASW, AW, ANW) and unclassifiable (U).  Jones et al., 

(1993) found a strong correlation between the Lamb classification and the 

Objective classification.   



There are several advantages to using a weather type classification to 

investigate multivariate climatological factors: (1) the classes are simple and 

easy to use; (2) the length of the record allows for long term trends to be 

investigated; and (3) they are based on physical linkages between the climate 

(large scale processes) and weather patterns (local scale).  However there are 

several limitations in the use of these classifications (O’Hare and Sweeney, 

1993).  First, there is an issue regarding the balance between number of 

classes and ease of use.  The seven Lamb weather types were thought to be 

too simplistic, so Jenkinson and Collinson (1977) added another 20 classes.  

This allowed the UK weather to be better represented but made the system 

more complex and harder to use.  Second, some days experience multiple 

weather types, making them difficult to classify.  The Objective Jenkinson 

system has an unclassified category, but this provides no information on the 

specific weather types experienced.  Third, the UK also experiences different 

weather types in different regions.  Questions have been raised over how 

representative of UK weather types these classifications are of the UK as a 

whole.  Fourth, the Lamb weather type classification is subjective, although the 

changes made by Jenkinson and Collinson (1977) have made it more objective.  

However, Yarnal and White (1987) suggest that there are still problems in the 

use of objective classifications.  Fifth, there are problems associated with 

assigning a daily weather type when climatological variables do not operate on 

daily timescales.  Sixth, the relationship between weather type and rainfall totals 

is not always reliable and it has changed over the timescale of the record.  

Seventh, the classifications indicate direction of origin but not the specific 



region, which may differ considerable in their characteristics, including tropical, 

maritime, continental air masses.  Also air masses from the same origin have 

different characteristics at different times of the year.  Eighth, weather type 

classifications indicate large scale synoptic atmospheric processes and lack 

detail on meso-scale frontal and orographic systems, which cause a lot of the 

UK precipitation.  Finally, the weather system classification scheme is inherently 

autocorrelated, as when one weather type becomes more frequent, others have 

to decrease in their occurrence. Despite the inherent limitations of the objective 

lamb weather type classification, it still allows the link between local catchment 

scale flooding to be linked to large scale atmospheric forcings over the historical 

period.  The benefits of this relatively simple classification scheme is that it 

provides a daily summary of weather characteristics over a long time period, 

while more detailed datasets are constrained in record length. 

The methodology used aims to identify links between the objective Lamb 

weather types and events of different magnitude (>Q1 events (high flows) and 

extreme floods) for the gauged period and consisted of the following steps.  

First, the objective Lamb Weather Type dataset was sourced 

(www.cru.uea.ac.uk/cru/data/lwt), which starts in 1880 and continues to the 

present day.  The weather type on the day of each >Q1 event was extracted 

from the dataset, along with the weather classification on the previous two days. 

As the Eden is quite a large catchment (2400 km2), the number of days of 

precipitation that result in a high flow or extreme flood events downstream may 

be more than just the day of the event.  Grew (1996) stated that the number of 

days of precipitation is dependent upon the specific catchment characteristics, 



including area and gradient.  The relative time between the peak flow in the 

Upper Eden (Kirkby Stephen) and the Lower Eden (Sheepmount), has a 

maximum lag of 34.5 hours, and a mean lag time of 12 hours.  The delay 

between precipitation and a peak flow occurring, will increase this response 

time further.  Longfield and Macklin (1999) devised a method using daily rainfall 

records to assess the number of days responsible for flood generation.  The 

previous four days were included and each day given a weighting dependent 

upon the amount of rainfall.  The objective Lamb weather type on the day with 

the most rainfall was taken as the dominant synoptic system that caused each 

event.  However, we focus on the sequencing of weather types.  In this study, 

the weather types on the previous two days as well the day of the event are 

assessed.  First, each day is looked at separately; and second, the sequence of 

days is investigated. 

 Event generating weather types were then identified from this dataset, as the 

weather types that occur most frequently on days, and this was undertaken for 

both >Q1 and extreme flood events .  The weather types that occur on >Q1 

events were compared with those associated with extreme flood events.  

Trends in the extreme flood generating weather types are then investigated 

over the historical timescale by calculating the percentage of each hydrological 

year for the extreme flood generating weather types both individually and 

combined.  The average of the 1880-2007 period was calculated, then the 

average was subtracted from each hydrological year.  This means that positive 

values represented years which had a greater than the average proportion of 

the year with these extreme flood generating weather types, while negative 



values had less than the average.  The cumulative was then calculated for the 

deviations from the average and can be plotted against time. This plot is a 

means of visualising the sequencing of flood-generating weather types. A 

period when the deviation is trending from negative to positive suggests a 

greater number of flood-generating weather types. The longer the period of this 

trend, the greater the length of the period when more flood-generating weather 

types have been present than average. If we imagine a flood-generating 

weather type as one that may, but that does not necessarily, produce a flood, 

then the longer a positive trend, the more likely it might be expected to identify a 

flood in the flood series. 

Results 

Gauged records 

Figure 2a shows that the late 1960s and 1970s were relatively poor in terms of 

>Q1 flow events, with fewer than the average number of events per year every 

hydrological year except 1967-1968 and 1974-1975, which were the years with 

the most events in the whole of the record.  Events  >Q1 occurred in every year 

except 1995-1996, a year of hydrological drought.  The Pearson’s product 

moment correlation coefficient of the number of >Q1 events over time for 

Sheepmount is only 0.07, which is not statistically significant (p=0.42).  Of the 

138 >Q1 events since 1967, 31% were classified as extreme flood events.  The 

largest number of extreme flood events in a hydrological year is four, and 

occurred in 1967-1968, 1981-1982 and 2003-2004.  There are also no 



statistically significant trends in either non-extreme >Q1 (r=0.01 p =0.93) or 

extreme flood (r=0.19 p=0.22) events over the gauged period at Sheepmount.  

Figure 2b shows the annual maximum flood for the River Eden at Carlisle 

(Sheepmount) and indicates a wider range in the magnitude of the annual 

maximum flood. The most extreme flood was in January 2005 with a magnitude 

of 1516 m3s-1, with other notable extreme floods in 1968, 1981, 1985 and 1995.  

Annual maximum flows which are below the extreme flood threshold we are 

using (500 m3s-1) are highlighted in grey (34% of hydrological years). The 

lowest AMax magnitude for Carlisle (Sheepmount) was 291 m3s-1 in 1995-1996, 

although years without extreme floods seem to have occurred in the 1970s 

more than at present.  A second, more robust approach used to assess the 

frequency and magnitude of extreme floods considers the magnitude of the 

events that exceed the >500 m3s-1 extreme flood threshold (Figure 2c).  

However, there are also no statistically significant trends in this record.  In 

conclusion, the short term records do not exhibit any statistically significant 

trends in either high flow or extreme flood frequency or magnitude for the River 

Eden at Carlisle.   However, as Kundzewicz and Robson (2004) notes that a 

failure to identify significant trend does not necessarily mean that there is not 

one, especially given the relatively short duration of the record used here. 

Historical Flood Record for Carlisle 

Figure 3 shows the cumulative number of extreme floods (>500 m3s-1) since 

1770. The periods on Figure 3 where the gradient of the line is steep indicate 

flood rich periods.  Times when the line is flatter are flood poor.  It appears that 



there are three flood rich periods over the past 240 years: (1) 1873-1904; (2) 

1923-1933; and (3) 1994 onwards, each separated by periods which were 

relatively flood poor, which have been classified visually. The years with the 

most extreme floods are 1877 and 1891, with five recorded in these years.  The 

period before 1850 has very few extreme floods, which may be due to the lack 

of evidence for them occurring, rather than a lack of existence.  However, it is 

assumed that the largest events have been recorded.  The magnitude of the 

largest events have been estimated by the Environment Agency (2006).  

Bankfull discharge at the Sheepmount station is 1434 m3s-1, and only the 2005 

event exceeded this threshold.  However, floodplain inundation occurred in all 

the events recorded in the British Chronology of Hydrological Events database, 

which has an approximate threshold of 500 m3s-1. 

Weather types for instrumented period floods 

Using the Objective Lamb Weather Types, it was found that 11 of the 25 

weather types have caused extreme flood events in the gauged period (1976-

2007 at Sheepmount), of which 5 (Cyclonic =27.3%, Westerly =15.9%, South 

Westerly =15.9%, Cyclonic South Westerly =6.8%, Cyclonic Westerly =15.9%) 

accounted for 81.8% of the extreme flood events (Figure 4).  These results are 

similar to the findings of Longfield and Macklin (1999) for the Yorkshire Ouse 

Catchment, where four circulation types (W, C, CW and SW) accounted for 

79.7% of all events (and the same 5 weather types caused 82.6% of flood 

events in the Ouse record).  These particular weather types highlight the 

importance of both cyclonic weather types and weather systems from a westerly 

and south-westerly direction to both high flows and extreme floods occurring in 



Carlisle.  Cyclonic weather systems are likely to cover a greater spatial area 

and lead to a more coherent catchment response.  Furthermore, as they are not 

prescribed a direction, this means that they are often blocked by other air 

masses, meaning they are stationary, resulting in a prolonged rainfall event. 

Several studies have found that these weather systems are of notable 

importance in accounting for precipitation in this region (Malby et al., 2007) and 

the UK in general (Sweeney and O’Hare, 1992). Figure 4 shows that the other 

objective Lamb weather types are not important in causing >Q1 events, with 

only 14 >Q1 events being caused by the other 20 weather types, 8 of which are 

extreme flood events. 

Figure 5a indicates that the common weather types on the two preceding days 

are the same as the ones on the day of the event itself, for extreme events.  

However, the order of importance of the five dominant weather types is different 

for the preceding days than the day of the extreme flood itself.  While cyclonic 

weather systems are the most common on the day of the event, weather 

systems from a south-westerly (38% on previous day, 25% on two days before) 

and westerly (20.4% on previous day, 25% on two days before) direction are 

the most common on the two preceding days.  Cyclonic weather systems are 

less common on the days previous to an event occurring (15.9% on previous 

day, 9.1% on two days before).  Furthermore, cyclonic weather systems from a 

westerly and south-westerly direction are also less common on the days prior to 

an event.   

The sequencing of the weather types may also be important in causing extreme 

floods, as they control the antecedent conditions of the catchment.  This has 



been assessed in terms of whether or not the previous two days and the day of 

the event were classified as an event generating weather type (C, W, SW, CW, 

and CSW).  Table 2 shows that 47.7% of extreme floods have had event 

generating weather types on both the day of the event and the previous two 

days, while a further 27.3% of extreme flood events occurred on days with both 

the day of the event and the day before classified as an event generating 

weather type.  Only one extreme flood since 1976 occurred when none of the 

three days were classified as one of the extreme flood generating weather 

types.  No extreme floods occur in sequences where just the day of the event is 

an event generating weather type (1 0 0).   

None of these analyses take account of the proportion of the year associated 

with each weather type.  Therefore, Figure 6 shows the percentage of the 1976-

2007 period classified as each weather type.  Anti-cyclonic and cyclonic 

weather systems dominate, accounting for 20.7% and 13.8% respectively for 

the whole period and 21.1% and 13.0% respectively of the last 40 years.  

Weather systems from a south-westerly and westerly direction also have a high 

frequency individually, as well as for anti-cyclones and cyclones. 

The likelihood of a particular weather system causing an event can be 

determined by dividing the number of events occurring on days of a particular 

weather type by the total number of days of the same weather type over the 

same period.  Figure 7 shows that the most likely weather type to cause an 

extreme flood in Carlisle is the Cyclonic Westerly, with a 2.6% chance of an 

event occurring on a day with this weather system over the UK.  This is 

because it is the least common of the event generating weather types over the 



40 year period in terms of occurrence, but has still caused 7 events.  Cyclonic 

synoptic events have a 0.7% chance of leading to an extreme flood occurring, 

as although most events occur on cyclonic days, these weather systems occur 

most often.  . 

Comparison of high flow and extreme flood event generating weather types 

Figure 4 shows that ten of the objective Lamb weather types have occurred on 

days of high flows, and the same five weather types account for 93.6% of the 

days when high flows occur (Cyclonic =34.0%, Westerly =19.1%, South 

Westerly =17.0%, Cyclonic South Westerly =12.8, Cyclonic Westerly =10.6%)  

A Chi Squared Test showed that the weather types that cause extreme floods 

and smaller magnitude high flows are statistically similar (p=0.32).  The weather 

types on the preceding two days are also similar for both high flows and 

extreme flood events (Figure 5a and 5b).  This is significant because it means 

that weather types cannot be used to distinguish between the magnitude of the 

event that might occur: whether a high flow or an extreme flood.  Furthermore, 

the sequencing of weather types show no significant (Chi Squared Test p=0.99) 

difference for events of differing magnitude, with high flows and extreme floods 

showing similar percentages for each sequence. 

Weather types for the Historical Period 

The relationship between weather systems and extreme flood frequency will 

now be investigated over a longer timescale.  A few previous studies have 

looked into how weather type frequency has changed over approximately the 

last 100 years (Lamb, 1972; Jones and Kelly, 1982; Briffa, 1990; Sweeney and 



O’Hare, 1992; Fowler and Kilsby, 2002; Malby et al, 2007).  Many of these 

investigations reported a decrease in the number of westerly days since the 

1950s, while cyclonic and anti-cyclonic weather systems have become more 

common since the 1980s. The focus here is those weather types found to 

produce most of the extreme flood events in the recent gauged period. 

Figure 8 shows the cumulative number of extreme floods (>500 m3s-1) since 

1880, superimposed upon the cumulative deviation of flood-generating weather 

types. The periods on Figure 8 where the gradient of the line is steep indicate 

flood rich periods.  Times when the line is flatter are flood poor. In relation to 

flood-generating weather types, it is clear that there is a number of scales of 

variability. At the largest scale, there are two periods of generally positive trend, 

with the exception of short breaks in this trend: 1902-1938 and 1983-2007; 

before 1902 there was a dominant negative trend; and between 1938 and 1983 

there were shorter periods of negative and positive trend. Thus, Figure 8 shows 

that flood-generating weather types are not randomly located in time but 

clustered into periods when there are generally more than average and 

generally fewer than average. The association between these weather type 

patterns and the cumulative flood record is interesting. For both the period 

1902-1938 (until 1931) and 1983-2007, the cumulative flood records are weak 

positive exponentials suggesting that as the duration of generally positive 

deviations becomes longer, and the number of flood generating weather events 

in the positive sequence becomes greater, so there are more floods. This does 

not require a mechanism like land use change or groundwater recharge (which 

for the Eden is important but not that much so – the Base Flow Index is 0.498), 



but is a result of clustering of flood-generating weather types, which in turn 

increases the probability that one of these weather events becomes a flood, and 

so leads to an increase in the number of floods. Similar overall trends are 

shown in historical rainfall records (e.g. for Lockwood Reservoir; Fowler et al., 

2002). Of course, it is also possible that the objective Lamb weather type 

classification misses some climatic signals, such as precipitation intensity or 

quantity, as it is only a broad categorical system.  

Figure 9 shows the how the proportions of individual weather types per year 

change over time.  Firstly, the Cyclonic-Westerly (Figure 9a) weather system 

does not vary significantly from the average, with only a range of 4.9% (0.6% to 

5.5%).  Also periods with more Cyclonic-Westerly weather systems do not 

correlate well with the periods of increased extreme flood activity in the Eden.  

The Cyclonic South-Westerly (Figure 9b) weather type varies by 4.7% (0.6% to 

5.2%) and seems to match the flood rich and flood poor periods visually quite 

well.  Pre-1918, the proportion of the year classified as a Cyclonic South-

Westerly weather type decreased, while extreme flooding had a low frequency.  

Between 1919 and 1955, the proportion of the year categorised as Cyclonic 

South-Westerly increased, which occurred simultaneously with the 1923-1933 

flood rich period.  Since the mid-1950s to 2007, the proportion of Cyclonic 

South-Westerly types per year has stayed quite constant, although there has 

been a slight increase since the mid-1980s.  The Cyclonic (Figure 9c) weather 

system has varied by 17.8% (5.5% to 23.3%) in terms of the proportion of the 

year classified as this weather type over the last 140 years.  During the pre-

1923 flood poor period, this weather type was decreasing in terms of the 



proportion of the year classified as it.  It then increased during the 1923-1933 

flood rich period.  It has also increased since the mid-1970s, although specific 

years have had less than the average proportion of the year classified as 

cyclonic.  The Westerly (Figure 9d) weather system has varied by 9.6% (5.2% 

to 14.8%) throughout the whole period.  This weather system does not seem to 

match the flood rich periods well, with a decline in the proportion of the year of 

the westerly weather type since the mid-1990s, which coincides with the start of 

the flood rich period.  Finally, the South-Westerly (Figure 9e) weather system 

has varied by 11.5% (3.6% to 15.1%).  This weather type has the highest level 

of agreement with the extreme flood frequency, with the proportion of the year 

classified as south-westerly increasing from 1900-mid 1930s, falling significantly 

from 1960 to 1980 and then increasing again in the current flood rich period.  

Discussion 

If the latter part (post-1965, the start of the gauged record) of Figure 3 is 

analysed, then it could be concluded that there is a unidirectional trend of 

increasing extreme flood frequency in Carlisle, that starts with very few floods 

during the late 1960s, a rising number of floods until the early 1990s and a very 

rapid rise after that into the flood rich period from 1994-2007.  However, when 

put into the historical period context, it becomes clear that there is not a 

unidirectional trend and that the period since 1994 has been flood rich, but so 

have other periods.  Several other studies have identified flood rich and poor 

periods in historical flood records (Grew and Werritty, 1995; Werritty et al., 

2002; Macdonald, 2006; Macdonald et al., 2006; McEwen, 2006).  These 

examples, along with the River Eden, indicate that there are flood clusters 



throughout the historical period.  However, a conclusion from Macdonald (2006) 

was that these flood rich periods are not nationally synchronous, which 

indicates that regional climatic variability and catchment specific characteristics 

are important in controlling flooding frequency.  Possible reasons why flooding 

may not be recorded as regionally synchronous may be that; 1) there is an 

absence of extreme flood event recording in the documentary evidence; or 2) 

there are different causal mechanisms for extreme flood generation in different 

river catchments.  However, it has been found that high magnitude floods can 

transcend catchment boundaries, depending on the precise forcing 

mechanisms and antecedent conditions.  The 1771 floods occurred in both the 

Rivers Eden and Tyne (Macdonald (2006) and there were floods on both the 

River Severn and Trent in 1796.  Furthermore, along with the flood event on the 

River Eden in January 2005, the River Tyne also exhibited flooding (Archer et 

al., 2007a; 2007b).  The storm event which caused this flooding extended from 

the 6th to the 9th January 2005 and affected Northern England, Southern 

Scandinavia, Germany and the Baltic Region (Carpenter, 2005).   

The presence of flood rich and flood poor periods throughout the historical 

period has implications for the concept of stationarity.  This assumption states 

that natural systems fluctuate within an unchanging range of values.  However, 

as Milly et al (2008) stated it has been compromised by human disturbance, 

natural climate change and variability.  They go on to say that the assumption of 

stationarity is dead and cannot be revived.  Through analysing historical flood 

records, it could be concluded that stationarity in flood frequency has never 

existed, as floods have tended to cluster within certain periods separated by 



flood poor periods.  Therefore, the range of behaviour of the system depends 

on the timescale over which it is analysed.  If the post-1960 period is analysed 

without the context of the historical period then it could be concluded that the 

behaviour that we are seeing today is unprecedented.  However if the whole 

period is analysed then it can be concluded that today’s flood frequency is not 

out of the range of past flood occurrence, suggesting a more stationary 

behaviour.  However, the presence of flood clustering means that there is a 

variable chance of a flood occurring in every year of the record. This raises a 

problem for flood frequency studies, as using short records will not capture flood 

variability (Bardossy and Pakosch, 2005), while using longer time series does 

not reflect stationary conditions, invalidating the assumptions of standard 

frequency analysis (Khaliq et al., 2006). 

This study has highlighted the importance of cyclonic and westerly weather 

types, along with previous studies (Longfield and Macklin, 1999).  However, a 

recent study by Macdonald et al., (2010) for Wales found that the link between 

westerly (SW, W, NW) weather systems and flood occurrence only is 

statistically significant for Northern Wales.  However, there is no link between 

cyclonic weather types and flooding for Wales.  Therefore, for Wales, weather 

types seem to be a poor predictor of flood frequency.  This builds on the 

findings of Dixon et al., (2006) who found a strong east-west gradient in stream 

flow trends for western Britain. Possible explanations for why flood frequency 

and weather types can exhibit constrasting trends in different river systems may 

be the role of rain-shadows of orographic rainfall, the influence of oceans 

(distance) (Dixon et al., 2006) and catchment aspect.  Macdonald (2010) 



explained these weak associations by commenting on the dataset limitations, 

with the need for concentration and distribution of the days of each weather 

type to be considered instead of just the annual totals.  This has been 

addressed in this study by including the weather types occurring on extreme 

flood days and the preceding days and found that the sequencing of weather 

types is important in explaining extreme flood occurrence.  It has been found 

that the same five weather types that occur on extreme flood days are also 

more likely to have occurred on the previous two days compared to the other 

objective Lamb weather types.  However, it has been found that the likelihood of 

a certain sequence of weather types in causing an extreme flood is not 

significantly different to it causing a high river flow.  This indicates that while 

weather types can be used as an indicator of how likely a high flow/flood is, they 

can not be used to predict the likelihood of an extreme event occurring in 

advance. 

In addition, weather types and their link to flood risk has been investigated over 

longer timescales.  Brazdil et al., (2006) states that knowledge of synoptic 

patterns for recent flood events can help explain past flood event occurrence.  It 

is this assumption that this study has made, using the last 40 years to define 

extreme flood generating weather types and then looking at their frequency over 

the historical period.  This study has established a possible link between the 

proportion of the year defined as an extreme flood generating weather type and 

extreme flood frequency.  However, this analysis assumes that the weather 

types that cause extreme flooding has not changed over time.  The weather 

types that have caused floods during the last three decades (1978-1987; 1988-



1997; and 1998-2007) have been analysed to assess this assumption.  Figure 

10 shows that the weather types that result in extreme floods have changed 

from the first decade, when two forms of anticyclonic weather type caused 

extreme floods (A, AS) to CSE and CS in the last decade.  In terms of the high 

flow events, the importance of the cyclonic weather type has nearly doubled 

from the 1978-1987 to the 1998-2007 period.  However, the dominant weather 

types (5 extreme flood generating weather types) have not changed over the 30 

year gauged period.  Furthermore, it has been shown that the weather types 

that cause both high flows and extreme floods have not changed statistically 

over the decades (ANOVA p= 0.816).  Malby et al., (2007) found that for the 

Eden catchment, south-westerly and westerly weather systems contributed the 

most to the decadal precipitation totals. Furthermore, winter rainfall delivered by 

these weather systems has increased over the last 30 years. Specifically, the 

precipitation associated with each westerly weather system has increased 

between the 1970s and the 1990s for five rainfall gauging stations in the Eden 

catchment. The quantity of rainfall supplied by south-westerly weather systems 

was highest in the 1980s. Jacobeit et al., (2003) found that a broader range of 

circulation modes are important if studies are extended back into historical 

periods. 

The periods of a greater proportion of the year than average of the five extreme 

flood generating weather types correlate with the flood rich periods.  

Furthermore, they match the periods identified by Wilby et al., (1997) as periods 

when the NAO was in a strong positive phase.  Jones et al (1997) found a 

strong correlation between the NAO index and westerly weather systems, which 



is one of the extreme flood generating weather types.  Wedgbrow (2002) found 

a lag between the changing NAO index and the change in UK weather.  This 

was hypothesised to be caused by either climatological memory effects, such 

as seasonal patterns, or hydrological memory effects, for example groundwater 

levels or antecedent moisture levels.  This study has also found a lag between 

the increase in the proportion of the year classified as one of the five extreme 

flood generating weather types and the increase in flood frequency.  This would 

seem to be expected due to the “chain of causality” (Lawler et al., 2003) 

whereby the link between large scale atmospheric forcings, such as the NAO, 

are spatially scaled down to their catchment effects, through the weather types 

and the amount of precipitation which occur. 

Conclusion 

Various event frequency and magnitude indices have been used to investigate 

trends in both high flows and extreme floods.  First, the gauged record at 

Sheepmount, Carlisle (1967-2007) was used to define the threshold of a high 

flow event, which was taken to be the Q1 value of 347 m3s-1.  Extreme floods 

were defined by a threshold of 500 m3s-1, to allow compatibility with the longer-

term Smith and Tobin (1979) study.  The gauged record showed that, although 

the 1960s and 1970s seemed >Q1 event poor in comparison to more recent 

decades, there were no statistically significant trends over time.  This was also 

the case when the non-extreme > Q1 and extreme records were considered 

separately. The annual maximum series showed that two thirds of years 

experienced an extreme flood.  There were more annual maximum events 

which were less than 500 m3s-1 (high flows only) during the 1970s than at 



present, although again these trends were not statistically significant.  Multiple 

sources of documentary and epigraphic evidence were used to compile an 

extreme flood record from 1770 to 2007.  This showed that extreme flood 

events have clustered in time, and three flood rich periods were defined as 

1873-1904; 1923-1933 and 1994-2007.   

The Lamb weather types that occurred on the days of extreme flood days 

(1976-2007) were extracted, and it was found that 11 out of the 25 weather 

types have caused extreme floods in the gauged period.  Of these 5 have 

caused 81.8% of extreme floods.  These were Cyclonic, Westerly, South-

Westerly, Cyclonic-Westerly, and Cyclonc South-Westerly.  It was shown that 

there was no statistically significant difference in the weather types that occur 

on days with either high flows or extreme floods.  The same five weather types 

were more likely to occur on the previous two days before extreme flood events.  

The sequencing of weather types was also found to be important, with ~50% of 

extreme floods and high flows occurring after sequences of three days of the 

five event generating weather types.  However, the sequencing of days was not 

statistically significant in determining whether an extreme flood or high flow 

occurred. This means that weather types cannot be used to distinguish between 

the magnitude of the event which might occur: whether a high flow or an 

extreme flood. 

The proportion of each hydrological year of the five extreme flood generating 

weather types was calculated.  It was found that there are two periods when the 

proportion of the year is less than the average for a sustained period; 1902-

1938; and 1983-2007.  These were shown to correlate with the flood rich 



periods, although a lag existed between the increase in the extreme flood 

generating weather types and flood frequency increasing.  These periods also 

match with Wilby et al (1997) periods of a strong positive NAO index.  Thus, the 

analysis suggests that systematic organisation of the North Atlantic climate 

system, which drives the weather types experienced by the UK, may be 

manifest as periods of elevated and reduced flood risk, an observation that has 

major implications for analyses that assume that climatic drivers of flood risk 

can be either statistically stationary or are following a simple trend. 
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Figure 1 Map of the Eden Catchment 

 



 

Figure 2 Gauged records from the Eden at Sheepmount in Carlisle (a) 

POT; (b) AMax; (c) Magnitude of POT events. 

 

Figure 3 Cumulative number of extreme floods as a function of time 



 

Figure 4 Percentage of floods since 1978 which have occurred on 

days of particular Lamb weather types. 

 

 

Figure 5 Percentage of floods which have occurred on days and 

preceding days of particular Lamb weather types a) high flows; b) extreme 

flood events 



 

Figure 6 Percentage of the year classified as each Lamb weather type 

for the 1976-2007 period. 

 

Figure 7 Probability that a day with a particular Lamb weather type will 

also have an >Q1 event occurring. 



 

Figure 8 Plot showing how the proportion of the year classified as the 

five extreme flood   generating weather types and extreme flood frequency 

have changed over time. (dashed line represents the cumulative extreme 

flood record, solid line represents weather types.) 

 



 

 

Figure 9  Plot showing how individual extreme flood generating 

weather types have changed over time a) CW; b) CSW; c) C; d) W; and e) 

SW.  (dashed line represents the cumulative extreme flood record, solid 

line represents weather types.) 



 

 

Figure 10 Percentage of floods since 1978 which have occurred on 

days of particular Lamb weather types.  a) 1978-1987; b) 1988-1997; c) 

1998-2007 

Reference Record Length needed to identify 

trends 

Interagency Advisory Committee on 

Water Data 1982 

10 years 

Richter et al., 1997   20 years 

Lettenmaier et al., 1994; Lins and 

Slack, 1999; Douglas et al., 2000   

at least 30 years 

Gan et al., 1991; Huh et al., 2005 at least 40 year records 

Kundzewicz and Robson 2000; 2004 at least 50 years 

Table 1 Summary of record length requirements from literature for 

identifying trends in flood records 



Sequence % of Extreme 

Floods 

% of High Flows % of All Events 

1 1 1 47.7 53.2 51.4 

1 1 0 27.3 21.3 23.2 

1 0 0 0.0 8.5 5.8 

1 0 1 6.8 10.6 9.4 

0 1 1 4.5 3.2 3.6 

0 1 0 2.3 1.1 1.4 

0 0 1 9.1 0.0 2.9 

0 0 0 2.3 2.1 2.2 

Table 2 Percentage of events of each sequence (day of event, day 

before, 2 days before) of event generating weather types 

1 = event generating weather type (C, W, SW, CW, CSW) 

 0 = day with another weather type 

   BCHE  Newspapers  Epigraphic
Smith & 
Tobin 

Warwick 
Bridge  Sheepmount

1771  Y                

1773  Y                

1781  Y                

1783  Y                

1794  Y                

1794     Y             

1803  Y                

1804  Y                

1808  Y                

1809  Y  Y     Y       

1809  Y  Y     Y       

1815  Y  Y     Y       

1815  Y                

1818     Y             

1821     Y             

1822  Y  Y  Y  Y       

1851  Y  Y     Y       

1852  Y        Y       

1856  Y  Y  Y  Y       

1858     Y             



1868  Y     Y  Y       

1868  Y                

1870  Y                

1874  Y                

1874  Y                

1874  Y        Y       

1875  Y  Y             

1876  Y                

1876  Y                

1876  Y                

1877  Y                

1877  Y                

1877  Y                

1877  Y                

1877  Y                

1878  Y                

1878  Y                

1880  Y                

1881  Y                

1881  Y                

1881  Y                

1882  Y                

1882  Y                

1883  Y                

1883  Y                

1883  Y                

1885  Y                

1885  Y                

1890  Y                

1891  Y        Y       

1891  Y        Y       

1891  Y        Y       

1891  Y        Y       

1891  Y        Y       

1892  Y  Y     Y       

1894  Y                

1895  Y                

1896  Y        Y       

1898  Y        Y       

1899  Y        Y       

1899  Y                

1900  Y                

1903  Y        Y       



1903  Y  Y     Y       

1903  Y  Y             

1904  Y                

1907     Y             

1914  Y        Y       

1914  Y        Y       

1916  Y        Y       

1918  Y  Y     Y       

1921  Y        Y       

1924  Y        Y       

1924  Y        Y       

1925  Y  Y  Y  Y       

1926  Y  Y     Y       

1926  Y  Y     Y       

1927  Y                

1928  Y        Y       

1928  Y        Y       

1929  Y  Y     Y       

1929  Y        Y       

1930  Y        Y       

1931  Y        Y       

1931           Y       

1932           Y       

1933           Y       

1933           Y       

1938     Y             

1941     Y     Y       

1945     Y             

1947     Y     Y       

1947     Y             

1952        Y          

1954  Y        Y       

1954     Y     Y       

1954     Y     Y       

1954     Y     Y       

1956     Y             

1958     Y             

1962     Y        Y    

1964     Y     Y  Y    

1965              Y    

1966     Y        Y    

1967     Y        Y  Y 

1967     Y        Y  Y 



1968  Y  Y  Y  Y  Y  Y 

1972     Y        Y  Y 

1979              Y  Y 

1979              Y  Y 

1982     Y        Y  Y 

1985              Y  Y 

1987     Y        Y  Y 

1990     Y        Y  Y 

1991              Y  Y 

1991              Y  Y 

1995     Y        Y  Y 

1995              Y  Y 

1997     Y        Y  Y 

1997              Y  Y 

1998              Y  Y 

1999              Y  Y 

1999              Y  Y 

2000              Y  Y 

2000              Y  Y 

2000              Y  Y 

2002              Y  Y 

2002              Y  Y 

2003              Y  Y 

2004              Y  Y 

2004              Y  Y 

2004              Y  Y 

2005     Y        Y  Y 

2005     Y        Y  Y 

2006              Y  Y 

2006              Y  Y 

2006              Y  Y 

  


