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Abstract 

 
 The Supergen wind research consortium is a group of research centres which 

undertake research primarily aimed at reducing the cost of offshore wind farming. 

Research is undertaken to apply the WRF mesoscale NWP model to the field of 

offshore wind resource assessment to assess its potential as an operational tool. 

WRF is run in a variety of configurations for a number of locations to determine and 

optimise a level of performance and assess how accessible that performance might 

be to an end user. Three studies set out to establish a level of performance at two 

different sites and improve performance through optimisation of model setup and 

post processing techniques. WRF was found to simulate wind speed to an 

appreciable level by reference to similar studies, though performance was found to 

vary throughout the course of the model runs and depending on the location. An 

average correlation coefficient of 0.9 was found for the Shell Flats resource 

assessment at 6-hourly resolution with an RMSE of 1.7ms-1. Performance at Scroby 

Sands was not at as high a level as that seen for Shell Flats with an average 

correlation coefficient for wind speed of 0.64 with an RMSE of 2ms-1. A range of 

variables were simulated by the model in the Shell Flats investigation to test the 

flexibility of the model output. Wind direction was produced to a moderate level of 

accuracy at 10-minute resolution while aggregated stability statistics showed the 

model had a good appreciation of the frequency of cases observed. Areas of 

uncertainty in model performance were addressed through model optimisation 

techniques including the generation of two ensembles and observational nudging. 

Both techniques were found to add value to the model output as well as improving 

performance. The difference between performance observed at Shell Flats and 

Scroby Sands shows that while the model clearly has inherent skill it is sensitive to 

the environment to which it is applied. In order to maximise performance, as large a 

computing resource as possible is recommended with a concerted effort to optimise 

model setup with the aim of allowing it to perform to its best ability. There is room for 

improvement in the application of mesoscale NWP to the field of offshore wind 

resource assessment but these results confirm an inherent skill in model 

performance. With the addition of further validation, improvements to model setup on 

a case by case basis and the application of optimisation techniques, it is anticipated 
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mesoscale NWP can perform to a level which would justify its adoption operationally 

by the industry. The flexibility which can be offered relating to spatial and temporal 

coverage as well as the range of variables which can be produced make it an 

attractive option to developers if performance of a consistently high level can be 

established.  
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1 Introduction 

1.1 Research context 

1.1.1 The changing climate 

Natural climate change has been happening on Earth throughout its history. A 

function of the energy received from the sun, long-term climate on the earth is 

dictated by the three axes upon which the earth rotates. In their seminal paper Hays, 

Imbrie and Shackleton (1976) presented to the world the three orbital (or 

Milankovitch) cycles of the Earth, which exist on timescales of 23,000, 42,000 and 

100,000 years. The orbital cycles manifest as long-term climate drivers as they 

correspond to variations in the amount of incident solar radiation received by the 

Earth. Earth’s global energy begins as incident radiation from the Sun which is then 

subject to a range of processes upon entering the Earth’s atmosphere. One such 

process, which acts to maintain the temperature of Earth’s climate, is the 

greenhouse effect, the product of a number of naturally occurring gases in the 

atmosphere. Greenhouse gases do not interact with the short wavelength energy 

received from the sun as it enters the atmosphere, but do act to insulate the planet 

by retaining longwave infrared energy as it radiates away from the surface (Figure 

1.1).  

 

Figure 1.1 Schematic of solar energy receipt highlighting the Greenhouse Effect (UCAR, Date Unknown)  

While Earth’s climate has experienced periodic natural change through its 

history, there is a growing sense of unease at the negative impact humans have had 
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and will continue to have, upon the natural balance of the Earth’s climate. In the UK 

for example, public perception is that the frequency of extreme weather events is 

increasing (for example Mckie 2013) while on a global scale, for example, annual 

sea ice reduction in the Arctic has rendered the North-West passage navigable to 

ocean vessels. A desire of national leaders to pool resources and undertake 

research into climate change, led to the formation of the IPCC (Intergovernmental 

Panel on Climate Change) in 1988. Since then the IPCC has been conducting 

research to gauge the extent of the human effect upon the climate of the planet and 

how it might change in the future. Since the Industrial Revolution, human society has 

evolved around advances in technology driven by energy extracted from fossil fuels. 

Combustion of fossil fuels releases carbon dioxide, which mixes into the air and 

augments the natural greenhouse effect. The concept of anthropogenically induced 

climate change is not new. While an awareness of the impact of greenhouse gas 

emission has led to a significant improvement in the efficiency of many of the 

methods which contribute to the changing climate, the increase in global population 

and contribution of large developing countries means that the human footprint 

continues to grow (WMO 2012 & Figure 1.2.).  

 

Figure 1.2 Annual emissions in PgC (Petagrams of carbon) from fossil fuel combustion and other 

industrial processes, the annual atmospheric increase, and the amount of carbon sequestered by sinks 

each year Ballantyne et al., 2012 and Levin, 2012.  

 Projections of future climate change from the IPCC were delivered in 2007 

covering a range of scenarios based on projected variations in socio-economic 

factors such as growth in population and wealth (Figure 1.3) described in Meehl et al 

(2007). Projections of global temperature rise range from 1 to 6°C depending on the 
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scenario, even if concentrations of CO2 were held at the level seen in the year 2000, 

temperature would continue to rise as CO2 makes its way into the atmosphere from 

surface stores. Ultimately, according to the IPCC, the planet is resigned to 

temperature rise, the degree of which can still be moderated by the actions of society 

now. 

 

Figure 1.3 IPCC Multi-Model Averages and Assessed Ranges for Surface Warming, model projections 

with error bars of future climate for a range of scenarios based on projections of global socio-economic 

change (Meehl et al, 2007). 

 

1.1.2 The response to increasing GHG emissions. 

Combined with the damage being done to the Earth’s climate, is an 

awareness in developed nations that dependence on fossil fuels needs to be 

reduced. For example prices are subject to those who own the resource, which will 

increase as supply becomes limited before eventually running out. As a result, times 

are changing for the means by which global energy is produced. Through the 

Climate Change Act of 2008, UK governmental policy has implemented a legally 

binding measure to mitigate greenhouse gas emissions, translating to a reduction in 

greenhouse gas emissions by 80% on 1991 levels by 2050 (Great Britain. Climate 

Change Act, 2008). One of the areas targeted to make the most significant steps 

toward achieving this target is the energy sector. The energy sector is a significant 

source of carbon dioxide (Figure 1.4) thus decarbonising the energy sector or at 
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least reducing the amount produced will have a significant impact upon national 

emissions.  

 

Figure 1.4 Carbon dioxide emissions by source, 1990-2012 (provisional), (Megatons) (DECC, 2013) 

1.1.3 Wind energy in the UK 

As part of the Electricity Act 1989, in a move to adopt sustainable energy 

generation methods, the British government offered the NFFO (Non fossil fuel 

obligation). The NFFO was an incentive scheme through which energy distributors 

bought energy from non-fossil fuel generators at a fixed price over long term 

contracts. The NFFO stimulated movement in the UK renewable energy market 

which resulted in the development of the UK’s first two offshore wind farms, Gunfleet 

sands and Blythe. The NFFO has since been replaced by the Renewables 

Obligation (RO) which defines a proportion of energy which suppliers must obtain 

from renewable sources. The amount of renewably-sourced energy increases each 

year from 3% in the first year (2002/2003) to 15.4% in 2015/2016. The move towards 

adopting offshore wind power on a large scale has been stimulated by the awarding 

of offshore wind farm sites by the UK Crown Estate. Three rounds have been 

undertaken thus far whereby interested parties submit tenders for the lease of 

particular areas of UK waters in which they can develop a wind farm. Rounds one 

and two have been completed with many of the round two farms close to- or fully 
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operational, with a peak awarded capacity of 8.5GW. In 2008 the UK Climate change 

act was introduced which committed the UK to reducing emissions of the six primary 

greenhouse gases identified in the Kyoto treaty by 80% of 1990 levels for the year 

2050. The significance of the act was felt throughout the UK, including the energy 

industry. In 2010, after another tendering process, awards of round three offshore 

wind farm sites were announced with a total capacity of approximately 25GW. 

Rounds one and two provided many lessons for the industry, particularly in the UK, 

from which to learn about developing an offshore wind farm. Many plans have now 

been consented, though due to the scale of the projects, round three sites are not 

expected to begin generation until around 2015 and construction is set to begin in 

2014 (RenewableUK, 2013). Offshore wind energy in the UK is a viable source of 

energy which could become a fundamental part of the energy supply in the future. A 

well-developed infrastructure and tendering process demonstrates the ability of the 

country to adopt and incorporate such technology, but several stumbling blocks lie in 

the way of the developer’s path to bringing an offshore wind power station online.  

A wind turbine is a rotating machine driven by the kinetic energy transferred to 

its rotors by an incident wind. The power a turbine may extract from the wind can be 

calculated using the following formula (Equation 1) after Manwell et al (2002), where 

P=power, Cp = specific heat at constant pressure, A = swept area, ρ=density and 

U=wind speed; 

 

 

  
 

 
           

 

Equation 1.1 

 

 

A wind turbine is limited from extracting 100% of the kinetic energy from the 

incoming wind, because essentially net flow would drop to zero after the turbine 

blocking the incoming flow. Instead a rule called Betz’s law calculates the maximum 

performance of a wind turbine, by reference to actuator disk theory, to be 59.3% 

(Betz, 1966). Practically, wind turbines rarely extract such a proportion of the energy 

more commonly achieving 75-80% of the Betz limit for the given wind speed (Burton 

et al, 2001). The technology exists to build multi gigawatt sized wind farms in the 

UK’s territorial waters, which combined with the experience of the British offshore 

wind industry and tendering process means the potential for wind farm penetration in 
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the UK energy market is high. Technology, opportunity and availability are thus not 

the inhibiting factors in wind farm installations, the limiting factor is cost. As a rule of 

thumb offshore turbines cost about £3million per megawatt, which puts the cost of a 

gigawatt farm into the billions, however the associated costs begin far sooner than 

the production and installation of the turbines with tens of millions of pounds spent by 

developers in the planning phase.  

1.2 Supergen Wind 

 Supergen Wind is a research consortium of seven UK research groups 

established by the EPSRC. The purpose of the Supergen Wind project is “To 

undertake research to achieve an integrated, cost-effective, reliable & available 

Offshore Wind Power Station.” (Supergen Wind, 2012). Supergen Wind is involved in 

extensive research throughout the planning, designing, installing and operating a 

wind farm. For the second phase of the Supergen Wind project, part of the renewal 

commitment was to dedicate time to a new field of research for Supergen Wind: wind 

resource assessment. A key challenge facing wind farm developers is securing the 

huge capital investment required to build a wind farm. Briefly, a wind resource 

assessment is required for any wind farm project to estimate energy generation and 

potential profits. Output from the wind resource assessment is of great importance to 

the developers when securing capital for the project as it directly relates to potential 

revenue for investors. A preliminary estimate of the wind resource is made to gain 

traction for a wind farm project, but as part of the planning phase a detailed site 

assessment must be made to satisfy investors, yield projections and designers. 

Costs of such a site assessment are typically on the order of millions of pounds, per 

mast, providing an area of research which the Supergen Wind consortium decided 

would be of significant interest to the industry if cost savings could be achieved or 

methods improved. Under the initial structure of the Supergen Wind research 

hierarchy, wind resource assessment was attached to ‘The Farm’ branch of 

research, under the direction of Professor Simon Watson at Loughborough 

University. 
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1.3 Wind Resource Assessment 

1.3.1 Introduction 

 A wind resource assessment is simply an appraisal of the wind conditions for 

a site of interest, with the intention of providing useful information relating to the 

amount and efficiency of power which can be extracted. The variables of most 

interest are wind speed and direction; wind speed is ultimately the most important 

because it solely determines the amount of energy which can be produced. Wind 

direction is important to understand because of implications of fetch and potential 

array losses due to wake effects. After wind speed and direction, a number of other 

variables are important to supplement the quality of a resource assessment as they 

relate to the efficiency with which the turbines can utilise the wind speed, for 

example variables such as turbulence, humidity, temperature and stability. Stability is 

a measure of the atmospheric buoyancy, which is of particular interest in large wind 

farm arrays due to the effect it has on wake propagation. Knowledge of the wind 

resource at a prospective wind farm site is critical to completing the design 

specifications for the machinery which needs to operate at the site. Given that 

offshore turbines are essentially marinised onshore turbines, it is of great importance 

to understand the tolerances which will have to be built into the machines to ensure 

they complete their intended operations. Wind resource assessments are usually 

utilised at three times during the lifetime of a wind farm; a preliminary assessment 

which acts as a feasibility study; a detailed wind resource assessment which 

provides figures for output projections; and design requirements and a short term 

look ahead forecast for predicting farm output. 

1.3.2 Preliminary site assessment 

A preliminary assessment of the average wind conditions is usually 

undertaken by reference to a statistical or modelled dataset as a ‘quality check’ of 

the intended site to give a basic impression of the potential yield. Assuming the 

preliminary resource assessment provides enough confidence to the developer, a 

more detailed site assessment is required to provide more specific information about 

the wind conditions, both for more specific yield projections and turbine design 

specifications. Finally once the farm is operational short term forecasts are 

continually required to provide the operator with the clearest information by which to 
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choose their farm and turbine optimisation strategy to extract the maximum amount 

of power from the facility. A preliminary assessment is usually part of a feasibility 

survey, at such an early stage in a wind farm project the outlay for such a project will 

be minimal so the data comprising the study will usually already be available. There 

are several options for producing an early stage assessment, depending on the 

resource and expertise of the developer. Many consultants produce a shaded map 

representative of the average wind speed over a given period (for example Figure 

1.5). Wind atlases are a popular option at the early stage as key information is easily 

accessible and immediately available. Wind atlases from different sources often 

contain some of the same data but gain value from privately owned datasets by the 

consultants.Mmore data can also be integrated if available such as point 

observations or satellite data, but would increase the monetary and workforce cost. 

A wind atlas can readily be compiled from existing free data such as reanalysis data 

sets. Many wind resource products are produced and validated at or just above 

ground level (Nunalee and Basu, 2012) where data is in more plentiful supply thanks 

to coverage by surface stations and buoys etc. but not necessarily directly applicable 

to turbines with a hub height of 90m. In addition to a wind atlas, average values of 

wind speed and direction at a point within an area of interest are the first step of a 

resource assessment. Average values give a good insight into the generic conditions 

received at a site, but understanding the variability is essential for accurate 

production estimates and design specifications for the machinery. Supplementary to 

the mean value, standard deviation can be readily calculated to give an impression 

of general variation in a series. 
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Figure 1.5 Atlas of UK Marine Renewable Energy Resources. 2008. ABPmer. Date of access (27 February 

2013) © Crown Copyrighthttp://www.renewables-atlas.info/. 

1.3.3 Detailed wind resource assessment 

Once a preliminary feasibility study has been undertaken, detailed site 

investigations are undertaken by the developer to establish the processes required 

to build and operate the desired wind farm. The second stage of the resource 

assessment has to be specific to the site of interest to provide more detailed 

information of wind farm productivity. Atmospheric features, such as a sea breeze 

circulation, an internal boundary layer, or a low level jet may exist in a region subject 

to a wind resource assessment. In such a case, the application of a low level based 

study such as a surface level wind atlas may not be applicable even if the wind 

statistics were scaled to be for turbine hub height because the relevant features are 

not accounted for (Nunalee and Basu, 2012). To be confident in the performance of 

a resource assessment tool, validation is required at turbine hub height.  The major, 

long-term wind resource assessment provides a far more detailed description of the 
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wind resource at a site of interest. Long term descriptive statistics focus on the 

variability of a number of variables at a site over a range of heights. Wind speed and 

wind direction are primarily measured from which turbulence and shear can be 

calculated. The duration of the campaign will afford an insight into the variability of 

the wind field over seasonal timescales. A long-term wind resource assessment 

should be undertaken over the course of at least a year (Bailey et al, 1997) to 

capture seasonal change, but preferably longer to establish a wider context for the 

period observed. Currently, a wind resource assessment for a prospective wind farm 

site must be carried out using cup anemometry according to IEC standard 61400-12-

1 (IEC, 2005), the anemometers themselves must be validated and calibrated 

according to standard 61400-12-1. The need for certification is to ensure safety and 

consistency regarding the design of turbines used for a particular site, based on the 

resource assessment. A cup anemometer is a rotational device which spins at a 

speed proportional to that of the incident wind. Cup anemometers are a popular 

instrument because they are cheap yet accurate (Pedersen, 2003) to around 1% of 

the observed wind speed (Kristensen, 1999). It is necessary to validate 

anemometers to the correct standard to ensure they perform as intended; properties 

such as inertia affect the response to a change in wind speed which must be 

accounted for. To confirm each anemometer complies with the initial validation they 

must also be calibrated before being operationally deployed. Accuracy of 1% is very 

high and provides the standard which new methods of offshore wind resource 

assessment must aspire to. In addition to wind speed and direction, modern met 

masts are typically equipped to measure other atmospheric properties for example 

sunlight, rainfall and humidity. Doing so expands the knowledge provided by the 

resource assessment which can allow the calculation of other variables important to 

the developer such as stability (which will be discussed shortly).  

Typically the detailed wind resource at a site is measured through an 

observational campaign, which for an offshore site costs on the order of millions of 

pounds per mast. The size of round three sites in the UK may require a developer to 

install multiple masts ramping the cost up further. More than one mast may be 

required because extrapolating for large distances from one point observation source 

is inappropriate, which is one of the limitations of in situ observations. One option 

available to a developer is to obtain additional information from other sources rather 
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than erecting multiple masts. Historical spatially extensive data can be obtained from 

reanalysis products (discussed in chapter 2) which contain a range of observational 

datasets. Similarly, satellite data can be acquired which provides surface wind speed 

over the ocean, but is not as temporally flexible as a reanalysis product nor does it 

offer a range of heights. In cases where a site is close to a shoreline and an 

observational series nearby is available, a measure correlate predict study (MCP) 

might be undertaken where data from the site of interest is correlated with the 

onshore site for an overlapping period and then historical output for the wind farm 

site is produced by extrapolating from the onshore site through the regression 

equation achieved in the correlation analysis. Atmospheric features which dominate 

long term studies are synoptic scale features such as pressure systems and weather 

fronts. Such large scale features are low frequency, passing on the order of days. 

1.3.4 Short term operational forecasts 

Once a wind farm is operational the need for wind resource assessments 

remains present, but over a different timescale. Predictions of impending conditions 

are required to forecast farm output and optimise the control strategy. Short term 

forecasts must capture small scale atmospheric features which will correspond to 

high frequency changes in wind speeds which occur at timescales on the order of 

hours and below. Such atmospheric features might be convective systems or be due 

to regional topography. 

1.3.5 Stability 

Stability is an atmospheric property which describes the future tendency of an 

air parcel once vertically perturbed. Stability is discussed more technically in chapter 

2. Stability is of interest to the wind farm operator because of the effect it has on 

energy production of a wind farm due to the effect it has on wind shear, turbulence 

and turbine wake dissipation. Because it is not an absolute quantity, stability is 

approximated potentially via a number of methods. As well as directly calculating 

stability, it can be of use to relate stability to other variables produced in the resource 

assessment to try and provide more information to the end user. For example 

stability could be linked to a particular wind direction, time of day or weather type, 

knowledge of which can then be used to interpret the wind resource assessment 

more intricately.  
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1.3.6 Summary  

Wind resource assessments are required throughout the process of 

developing and operating a wind farm and there is a need for alternative options by 

which to generate them to reduce the cost of offshore wind farming. The method 

must be able to perform in a long term low resolution historical context to capture 

large scale synoptic processes which dominate the seasonal variations. The method 

must also perform in the short term at a high resolution to forecast wind fields 

dominated by small scale, short term features. Ultimately a range of products exist 

which can augment an observational wind resource assessment campaign but none 

are acceptable methods by which to do so in isolation. Supergen Wind 2 is 

undertaking research into the cost reduction and optimisation of wind resource 

assessment to see if an alternative method can be applied more successfully to 

support an observational resource assessment campaign initially and looking farther 

ahead potentially replacing the need for an observational campaign and dramatically 

reducing development costs. 

1.4 High resolution numerical modelling 

Numerical weather prediction (NWP) is the process of simulating atmospheric 

evolution by solving a number of governing equations representing atmospheric 

processes. The dawn of NWP transformed meteorology from an observational 

science into a predictive science. As computers have improved and models have 

been refined, the performance of NWP models has improved comprehensively. 

Figure 1.6 shows that a weeklong forecast now is as accurate as a 5-day forecast 15 

years ago with a similar gain seen in the 5 day forecasts compared to the 3-day 

forecasts 15 years ago. Numerical modelling is very flexible in the range of outputs 

which can be produced from spatial fields to time series outputs and Hovmöller 

diagrams (time/latitude plots). NWP models can be run retrospectively to simulate for 

periods in the past and global NWP models can be run to forecast future conditions. 

NWP models exist in a range of guises which typically relates to the resolution at 

which they operate. Mesoscale models are NWP models which simulate at a 

resolution on the order of kilometres (Janjc et al, date unknown), in some cases 

down to a few hundred metres. Such flexibility allows the resolution of some small 

scale phenomena and local topographic features which are missed by coarser global 

models yet mesoscale models retain the ability to simulate the large scale 



13 
 

atmospheric features which drive the local circulations. Being able to perform at a 

high resolution is critical to the success of NWP in the field of wind resource 

assessment and is discussed in Chapter 2 with some practical examples. NWP 

models have to simulate extensive atmospheric variables to accurately represent 

reality which means they are available to output from the model at any point in the 

modelled domain. For example a spatial field of wind shear could be produced or a 

time series of stability for a range of locations. 

 

Figure 1.6 ECMWF ensemble forecasts for the 500 hPa geopotential height indicate that for the northern 

hemisphere extratropics there have been gains in predictability of between one and a half and two days 

per decade (e.g. the five-day forecast is now as skillful as the three-day forecast in the mid-1990s) 

(ECMWF 2012). 

 

1.5 Application of a mesoscale NWP model to wind resource assessment 

NWP models are relied upon daily by many industries across the world that 

base big decisions on model outputs, for example, energy trading. NWP models are 

capable of operating at a high resolution for any location on the globe. They are able 

to produce output at any vertical level for a wide range of variables that match and 

exceed what can be observed in situ. NWP models can be run on a range of 

computing systems depending on what is available to the end user. Accessing such 

technology is becoming easier with increasingly powerful computers and readily 

available models, while input data can also be obtained with ease from a range of 

sources. What remains is validation of mesoscale NWP models as operational wind 

resource assessment tools, which requires comparison against observational data. 
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Acquiring offshore met mast data is very difficult, firstly because it is very expensive 

to collect and thus not much data actually exists and secondly because typically the 

only possessors of such data are wind farm developers who are often reluctant to 

share it. There is a face value for such offshore data which combined with the desire 

of wind farm developers to restrict competitors from obtaining such data means very 

little is available to the research community.  

There are two areas within mesoscale NWP of particular relevance to wind 

resource assessment which need to be addressed as part of the validation process. 

Performance at high resolution, required for producing accurate simulations for a 

single point, is reliant on the accurate representation of small scale features which 

are approximated by parameterisation schemes within the model as functions of 

resolved variables. Such approximations are fundamental to the model process, 

providing input regarding sub-grid scale processes which feed back to the larger 

circulation. Many studies using the WRF mesoscale model review the performance 

of the PBL (planetary boundary layer) parameterisation schemes find that no single 

scheme performs best outright. Instead different schemes tend to favour particular 

conditions (eg Draxl et al, 2012), which has led to uncertainty in model performance 

when representing sub-grid processes. The second area for investigation concerns 

the provision of accurate atmospheric conditions to the model, both initially over the 

entire domain from which to begin the simulation and as boundary conditions to 

provide tendency terms over the duration of the run. Uncertainty in initial and 

boundary conditions is present through all forms of NWP. The more accurate the 

input data is the better chance the model has of correctly simulating the atmospheric 

evolution, where any inaccuracies lead to a divergence in solutions between what is 

simulated and observed. Challenges exist within mesoscale NWP modelling which 

require investigation but there is significant potential to employ such technology as a 

wind resource assessment tool. One of the strengths of NWP models is their 

adaptability to different applications as a function of model setup. Extensive setup 

options, from physics to dynamics and domain setup, can improve model 

performance and a number of techniques also exist for the same purpose, a number 

of which are summarised next. 
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1.6 Optimising model performance 

Traditional weather models have been applied to many different situations but 

remain dedicated weather forecasting models. There are many components to a 

weather model which can be tuned to optimise performance for particular 

application, in this instance offshore wind resource assessment.  

1.6.1 Model setup 

A diverse range of setup options exist for the user to tailor the model run, 

aspects such as domain setup, physics modules or dynamical options can be 

modified or selected where appropriate. Domain selection plays an important role in 

determining the level of accuracy to which the NWP is able to simulate atmospheric 

features, the domain must be large enough to allow the model to resolve the 

synoptic scale drivers (e.g. pressure systems), yet also exist at a resolution which 

accounts for local features such as topography or land/water interfaces etc. 

Dynamical options such as vertical damping or time integration options are available 

to adjust some of the model runtime properties which may help optimise the 

numerical stability or efficiency of the run. For example in mountainous terrain 

engaging vertical damping can help maintain numerical stability which could be 

breached by the associated large vertical gradients. Physics options which serve to 

account for particular processes can be changed, often by using different modules 

such as parameterisation schemes, to modify performance for given conditions If a 

particular set of conditions is known to prevail at a location then the most appropriate 

scheme could be selected to optimise performance for that location. 

1.6.2 Ensembles/uncertainty 

 In meteorology an ensemble is a collection of model runs, or ensemble 

members, which simulate the same concurrent period. Each ensemble member is 

different by virtue of some form of perturbation, for example a different set of initial 

conditions, modified physics equations or an offset initialisation time. Viewed as a 

whole, the ensemble is a collection of individual time series which vary through time, 

an example of which is shown in Figure 1.7. Ensembles are generated to account for 

uncertainty in the modelling process. Already mentioned was the uncertainty 

regarding performance at sub-grid scales, which for the purposes of offshore wind 

resource assessment specifically relates to the PBL scheme. Also mentioned was 
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the fact that there are numerous methods in existence which account for processes 

in the PBL, selection of which appears dependent on the prevailing conditions and 

location. Such a scenario provides the ideal opportunity to employ an ensemble 

system which can account for a variety of conditions by employing different PBL 

schemes simultaneously. A similar approach can be used to employ an ensemble to 

reduce uncertainty in the provision of initial conditions to the model. Specific 

variables could be modified to generate the members, or different input sources 

used, or runs could be initialised at different times. 

 

Figure 1.7 Ensemble members for a run beginning on the 6th of November 1996. 

1.6.3 Nudging 

Nudging is a modelling technique whereby observational data is incorporated 

into the model run through an assimilation process which provides a reference for 

the model solution to tend towards over the course of the simulation. Observational 

data for nudging can be point data from one or many locations or gridded data for 

the whole domain. Where nudging data is present in the modelled domain a 

relaxation zone exists around the nudged point with the influence of the nudging 
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value decreasing with distance. Nudging is a valuable technique to NW as the 

incorporation of even a single series might help the model maintain an accurate 

impression of the correct atmospheric features. In reality, there might be 

observational series available to those undertaking a wind resource assessment, 

both retrospectively for a site assessment and predicatively for those providing 

operational forecasts so it is important to validate the use of nudging as an 

optimisation technique. 

1.6.4 Summary 

The offshore wind farming industry has the potential to provide a considerable 

amount of the UK’s electricity requirement, which would help the country achieve its 

renewable energy generation targets, reduce carbon emissions and reduce energy 

dependency on external sources. Currently the process of offshore wind farming is 

very expensive, prohibitively so in some cases, and thus only available to a handful 

of organisations. Even well-funded organisations require external investment which, 

combined with the significant engineering feat associated with developing and 

operating a wind farm, translates to a slow growth in the industry. In order to 

accelerate the development process of offshore wind farms, costs must be reduced. 

Several avenues are being investigated in Supergen Wind 2, including the field of 

offshore wind resource assessment. To comply with the IEC wind turbine certification 

standard 61400-12-1, wind resource assessments, upon which turbines are 

designed to, must be undertaken using calibrated anemometry. Offshore, the cost of 

a meteorological mast is in the region of  millions of pounds. This research intends to 

identify the potential of NWP as a wind resource assessment tool, which in the future 

might be accepted independently within certification standards or as an 

augmentation to physical instrumentation, to reduce the cost in the planning phase of 

a wind farm. Performance of NWP as a wind resource assessment tool also extends 

to the operational phase of a wind farm where detailed knowledge of the impending 

short-term wind conditions for a site will help optimise operation, increasing 

productivity and profit. Ultimately there are questions regarding specific aspects of 

mesoscale NWP which need investigating as part of the validation process, but there 

is significant potential for the application of mesoscale NWP models to the field of 

offshore wind resource assessment. 
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1.7 Aims and objectives 

1.7.1 Primary aim 

Scientific research ultimately exists to answer questions. Central to this 

research is the question “How well can a mesoscale NWP model perform as a wind 

resource assessment tool?”.  Primarily, this research aims to test  the hypothesis 

that a mesoscale NWP model can be applied successfully as a wind resource 

assessment tool. More specifically, the NWP model will be subjected to validation 

against 2 UK offshore observational series, considering the implications for both long 

and short term assessments. Model setup will then be optimised for performance as 

a wind resource assessment tool based upon results of the initial validation work. 

Performance will be reviewed in absolute terms against the observational series but 

also in the context of other resource assessment techniques. Success of the project 

will be determined by the contribution of knowledge to the field of NWP in offshore 

wind resource assessment. Ultimately the goal is inform whether NWP models can 

perform suitably as resource assessment tools, after which the model would be 

introduced and applied industrially by developers, reducing costs and achieving the 

aim of the Supergen Wind consortium. Details of the contributory objectives which 

will need to be fulfilled in order to achieve the project aim are discussed below. 

1.7.2 Contributory Objectives 

 The objectives of this research are listed and then discussed in further detail 

below; 

1. To select and implement an appropriate NWP model 

2. To develop a methodology by which to quantitatively assess model 

performance. 

3. To run the model and simulate the wind resource along with associated 

variables at sites where observed data is available for comparison 

4. To consider model performance as a function of computing resource and 

identify related operational limits of model performance 

5. To innovatively optimise model setup for offshore wind resource assessment 

6. To consider the practicality of the modelling approach used 
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1.7.2.1 To select and implement an appropriate NWP model 

Selection of an NWP model will depend on its ability to fulfil the main 

requirements of this study. In order to be of use to parties interested in undertaking a 

wind resource assessment, the model should be readily available and accessible on 

a range of computing systems. Undertaking a wind resource assessment requires 

the model to capture synoptic features which drive the local circulation, as well as 

simulate at a high resolution to account for local features and produce an output from 

which a time series for a site of interest can be extracted. Thus the chosen model 

should be academically proven as a valid high resolution atmospheric model and 

ideally be used operationally to confirm confidence in its performance by national 

weather centres. A description and review of the chosen model will form a key part of 

the literature review for this project. Acquisition and implementation of the model will 

be discussed in the methods section alongside details of the modelling process 

including data preparation and post processing. 

 

1.7.2.2 To develop a methodology by which to quantitatively assess model 

performance. 

Once a model is selected and observational data is available for validation, a 

domain setup must be designed to produce an output of desired variable for 

comparison against observations. Domain setup relates to the area which will be 

simulated by the model and the resolution of the grid upon which the simulation will 

be performed. Selecting a domain setup is a compromise between running the 

model at the highest resolution possible but within practical time and resource 

constraints. The aim being to maximise the available computing power but doing so 

without making model runs last too long and take up too much disk space. Domain 

setups vary due to the constraints provided by the different computing systems and 

the application. Setup is described for each computing system in the relevant 

methods section for each investigation. Once the model has been run and output 

produced, quantitative statistics are required to validate model performance. There 

will usually be an element of qualitative assessment in any analysis, which often 

adds vital information, but to be comparable to other studies and provide a universal 

metric by which useful results can be disseminated to interested parties, 
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quantification is necessary. The techniques used to assess model performance are 

discussed in the methods section. 

 

1.7.2.3 To run the model and simulate the wind resource along with associated 

variables at sites where observed data is available for comparison 

Mentioned earlier were the two critical temporal periods over which wind 

resource assessments are undertaken. Short term forecast windows are of interest 

in the operational phase of a wind farm and long term studies of climatic variability is 

most important in the planning phase. Because the use of a mesoscale NWP model 

is feasible for both applications, it is important to assess model performance at the 

two timescales. As such the investigation will be conducted at a temporal resolution 

which is representative of the assessment requiring the shortest timestep, data from 

which can then be analysed directly at the higher temporal resolution and modified to 

investigate performance for the lower temporal resolution. One continuous yearlong 

resource assessment will be undertaken, comprised of shorter runs of 4 days at 10 

minute resolution to look at performance through the seasonal cycle. Additionally 2 

sets of several 90 hour runs equating to over 100 days each will be undertaken to 

focus on the performance of the model in isolated windows at a temporal scale 

equivalent to that at which the mesoscale model should have most success. The 

grouped runs are intended for benchmarking and optimisation exercises which can 

be considered as individual case studies. Focus of the research will be oriented 

towards comparison of observed and modelled wind speed as the variable which 

ultimately determines wind farm output. Wind direction is of great importance in farm 

design, determining factors such as the orientation of turbine rows. Furthermore wind 

direction offers another variable by which to evaluate model performance. While 

producing a wind resource assessment foremostly requires the production of wind 

speed and direction for a site, it might also include variables which contribute to the 

efficiency of wind turbines. Since the Supergen Wind 2 project is concerned with 

offshore wind, turbine installations are likely to be of a significant size to maximise 

space and resource. In large turbine arrays, wake losses can account for a 

significant amount of power deficit (Hansen et al, 2012). Turbine wake persistence is 

known to be dependent upon atmospheric stability, thus an impression of stability 

conditions are of great value to a potential operator. Stability can be estimated from 
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calculations of temperature and windspeed at two heights; the inclusion of humidity 

would add value as virtual potential temperature could be calculated giving more 

information on atmospheric energy. Since stability can thus be approximated from 

observations, it will also be approximated from model output of the same variables.  

 

1.7.2.4 To consider model performance as a function of computing resource and 

identify related operational limits of model performance 

Being able to run the selected numerical model on a range of computers is 

important so that the technology is available as widely as possible. High availability 

affords the best chance of getting the technology noticed and accepted by those in 

the industry, the feedback from which might in turn help develop the model. While it 

is of benefit to be able to run the model on different machines it is important to 

understand how the specifications and thus capability of the computer might affect 

the model run, for example through enforced setup choices. The model will be run on 

a number of computing facilities to test the dependence of performance of available 

computing resource and identify any associated operational boundaries. Considering 

the computing resource is an important practical consideration for potential end 

users of the technology who will not all have the same computing resources 

available and need to know what performance they can expect and should account 

for. Operational limits of the model will be considered given a particular computing 

resource, for example the maximum spatial resolution may be dependent upon the 

computing resource which will limit the size of the spatial features the model is able 

to resolve. Such a consideration is of utmost importance when considering a 

resource assessment setup for a particular application. For example if resolution is 

low, the model may only be able to resolve large features, which might give an 

indication of wind speed trend but won’t be able to capture smaller features. 

1.7.2.5 To innovatively optimise model setup for offshore wind resource 

assessment 

Benchmarking model performance is important to gain an understanding of 

baseline performance, however, mesoscale models are primarily weather forecasting 

tools, not specifically set up as wind resource assessment tools. From the 

benchmarking exercise, methods will be developed with the intention of improving 
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model performance by optimising setup for wind resource assessment. 

Consideration will be placed not only on improving the skill of the model output to 

more accurately represent the observed variables, but also understanding model 

performance and accounting for it. For example, the dynamic nature of the 

atmosphere means that there will be times when the model performs well and times 

when it performs poorly, if some method can be adopted which is able to identify 

periods when model performance is likely to be better or worse, the end user has 

more information about how to use the output. Practicality is a key consideration in 

this research, given that deterministic models are some way off a perfect forecast, 

the goal is about providing as much information as possible to the end user to help 

inform their decision. Optimisation will consider the dynamical, physical and domain 

setups of the model process. Techniques will include observational nudging, the 

generation of ensembles and the comparison of boundary layer schemes. All the 

techniques will be investigated in the literature review and applied to the modelling 

process with the results presented in a separate section detailing the difference in 

performance due to the optimisation techniques. 

1.7.2.6 To consider the practicality of the modelling approach used 

The priority of the research is to design and execute an investigation which will 

determine the application of an NWP model to wind resource assessment. However, 

for the findings to be of practical use to the industry, the following question must also 

be considered a priority: “How accessible is this technology?”. One stream of 

research is concerned with the model performance on various computing facilities 

and this is one example of the dedication to fully answer the research question. 

Throughout the research, consideration will be made of the process and a key part of 

the discussion will focus on the practical implications associated with actually 

applying this technology operationally. 

1.8 Investigation structure 

In order to address all of the objectives, three studies will be undertaken. Once 

the outcomes of each research thread have been established and discussed, the 

work will be brought together in the final discussion chapter where the overall 

performance of the NWP model as a resource assessment tool will be discussed. 

The final discussion chapter will focus on the feasibility of the application of NWP to 
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wind resource assessment. Model performance will be a key factor but so will the 

process of undertaking the analysis, it is of key interest to the industry to know not 

only how good the technology is but how accessible it is. The three studies are 

presented below.  

1.8.1 Performance benchmarking at Scroby Sands 

Firstly a benchmarking exercise will be performed at the Scroby Sands site to 

gain an initial impression of model performance over the course of a year. Wind 

speed will be the focus of the benchmarking investigation because it is solely the 

most important variable in a wind resource assessment and thus the variable to 

which model setup will be optimised. Wind speed will be simulated by the model 

without any observational nudging on two computing systems. Model setup will be 

selected appropriately for the corresponding computing resource. Aggregated 

statistics will give a description of the general state of model performance while 

analysis of the individual runs will highlight more specific traits of model performance 

which might relate to dependencies and areas for optimisation. Undertaking the runs 

on two computing systems, with setup optimised for the different systems used, will 

address the question of model performance and limitations arising from and related 

to, the available computing resource. Runs comprising this section of the 

investigation will be undertaken over short periods from 1-4 days at 10 minute 

temporal resolution which will provide information of model performance at short and 

longer temporal resolutions. Investigating both temporal resolutions is important to 

address the suitability of mesoscale model performance as a resource assessment 

tool both operationally and in the planning phase when the requirements are slightly 

different. Furthermore, series will be temporally filtered to investigate the 

performance of the model through different temporal scales, from high resolution at 

which small scale features are parameterised to longer lower resolution where 

atmospheric features are directly resolved by the model. 

1.8.2 Long-term resource assessment  

Long-term performance of the chosen NWP model will be tested by conducting 

a resource assessment for the second mast at Shell Flats for a period of a year and 

a half. For the long term resource assessment investigation, wind direction and 

temperature will be included as further means by which to compare model 

performance to observations. While wind speed remains the priority, wind direction is 
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a variable of importance in a wind resource assessment for planning farm layout, 

and turbine optimisation. Temperature allows the calculation of a stability parameter 

which is of operational use in calculating farm output as it pertains to the persistence 

of turbine wakes. Model input will be augmented by the integration of observational 

data at hourly intervals obtained from Mast 1 at Shell Flats as an investigation into 

improving performance in the short term. Two months will be simulated without 

nudging in addition to the resource assessment to provide an insight into the impact 

of the technique. As a deliverable to the Supergen wind projects an exemplar wind 

farm was developed at Loughborough University as a forum upon which various 

streams of research could be applied. The fictional Supergen Exemplar farm was 

located near to the Dogger Bank round three tender site shown in Figure 1.8. In total 

256 turbines comprise the farm in a diamond array shown in Figure 1.9, the turbines 

are the Supergen Exemplar 5MW turbines giving the farm a nameplate capacity of 

1.28GW. 

 

Figure 1.8 Location of the Supergen Exemplar wind farm Google, 2013. 

A year long resource assessment will be produced for the centrepoint of the 

Supergen Exemplar site. The full assessment will be performed for the central point 

of the farm with a further 3 months run for the four extreme points at the edge of the 
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farm to gain an impression of the variability across the farm. Wind speed, wind 

direction and temperature at multiple heights will be produced to detail the resource 

as well as the stability. One key aspect to communicate is an evaluation of the 

methodology by which the model could be used.  The continuous resource 

assessment will be produced through the concatenation of shorter runs both for the 

Shell Flats and exemplar resource assessments. 

 

Figure 1.9 Initial layout of the turbines in the Supergen Exemplar wind farm (Watson, 2012) 

1.8.3 Optimisation of model performance 

To address the remaining objectives, the last investigation is composed of a 

number of optimisation techniques aimed at improving model performance as well as 

accounting for model dependencies throughout the runs. At the time of conception, 

the optimisation techniques used in this work were novel for the field of wind 

resource assessment. Since the work has been undertaken, a couple of studies (eg 

Deppe et al, 2013; Draxl et al, 2012) have employed similar techniques using an 

ensemble, to investigate the performance of the WRF model as a resource 

assessment tool. It is encouraging that others had similar ideas for the development 

of the model into an operational resource assessment tool. Due to the timing, while 
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simply applying the technique is no longer an exclusive property of this work, the 

location and setup used in this work is. Observational nudging will be employed to 

use the local skill of a nearby mast assuming wind conditions to be broadly similar 

over the given distance. An ensemble will be developed to account for two prominent 

sources of error in NWP simulation of relatively high resolution wind fields, namely 

the performance of the model in the boundary layer and uncertainty in the accuracy 

of the initial conditions. Two ensembles will initially be created before being 

combined to produce one ensemble mean and spread. One will use different 

boundary layer schemes available to investigate performance in the boundary layer 

of each scheme but also attempt to account for deficiencies within each yet 

combining several. Uncertainty in initial conditions will be addressed by employing a 

time offset ensemble system (TOES). The same as a lagged ensemble, TOES is 

comprised of members physically similar only initialised at different times and 

combined over the period for which they are concurrent. The benefit of a lagged 

ensemble is that initial conditions are represented more than once, but also that by 

combining runs, the model has information from after the initialisation to help steer it 

more towards observations, while retaining the large scale skill.  

1.9 Thesis structure 

Chapter 2 provides a review of literature concerned with the application of an NWP 

model to the field of offshore wind resource assessment. The theory of NWP is 

discussed in chapter 3. Chapter 4 presents the methods by which the application of 

an NWP model as a wind resource assessment tool is investigated. Chapter 5 is a 

presentation of the results from the benchmarking investigation undertaken to 

address objectives 2 & 3. Chapter 6 provides results from the production of a wind 

resource assessment which addresses objective 3. Chapter 7 contains results of the 

investigation into optimisation of the model setup for wind resource assessment 

(objective 5). Results from the three research themes are then discussed in Chapter 

8 which addresses objectives 4 & 6  discusses the results in the context of wind 

resource assessment to address the overriding aim. Conclusions are drawn in 

chapter 9 and suggestions for future work are detailed in chapter 10.
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2 Literature review 

2.1 Introduction 

This review of literature will begin with an overview of the process of wind 

resource assessment, describing a number of methods which can be and are used. 

Inadequacies of observational campaigns were identified in the introductory chapter 

and provide the impetus for this research, a review of potential NWP (Numerical 

Weather Prediction) based solutions are presented, with the focus on mesoscale 

models. A selection of research articles, relating to the performance of WRF in a 

wind resource assessment context is presented.  

2.2 Wind resource assessment 

Traditionally, meteorology was an observational science where phenomena 

were recorded through some physical manifestation, for example wind direction was 

measured by reference to the orientation of a wind vane. The move to simulation and 

prediction of the weather revolutionised meteorology and is now a fundamental part 

of everyday life. However, traditional methods are still an integral part of modern 

meteorology, particularly regarding offshore wind resource assessment. Mentioned 

in the introduction was the fact that wind resource assessments, used to specify 

design requirements for wind turbines, must be undertaken using cup anemometers 

(IEC, 2005). The reasons are simple and relate to the well-tested and trusted record 

of the cup anemometer which can be easily validated and calibrated on a site 

specific basis. In the UK, weather stations in some form have been around for 

approximately a hundred years, with their growth most rapidly increasing in the last 

50 years or so. Observational coverage is relatively dense compared with most 

countries, however for wind farm developers, not extensive enough. The 

overwhelming majority of meteorological stations are land-based, though some exist 

near the coast. Ultimately, a wind farm developer has to install a meteorological mast 

themselves to meet the criteria of IEC standard 61400-12-1, but as much information 

about the site of interest is beneficial. One technique which has been employed to 

extend the scope of a wind resource assessment, particularly for sites which are 

closer to the coast, is MCP (measure correlate predict). MCP involves the correlation 

of two series over an overlapping period to then infer the behaviour of one based on 

the variation of the other for an unobserved period. For example a wind farm 
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developer would install a meteorological mast at a site of interest and collect a year’s 

worth of data, however, they ideally would like a longer time series to establish the 

context of that year more generally. Then, if a nearby meteorological station existed 

with a longer recording history, the two series could be correlated. Conditions at the 

offshore site for the duration of the onshore series could be predicted from the 

onshore site using the information from the correlation analysis. Another option 

which exists for wind farm developers to gain a better understanding of conditions at 

a site of interest, is the use of satellite-derived data such as SAR (Synthetic Aperture 

Radar). SAR employs an active microwave sensor which images the amount of 

backscattered signal for a unit area (Badger et al 2010). Typically, the SAR sensors 

track the relative motion of surface roughness elements over the sea, generated by 

surface wind stress (Badger et al 2010). Postprocessing the results provides a 10m 

wind speed at resolutions up to 1km x 1km (e.g. Horstmann et al, 2004). Results 

from SAR can be very impressive, for example Hasager et al (2011) obtained a 

correlation coefficient, between a range of observation stations and their SAR output, 

of 0.78 alongside an RMSE of 1.17ms-1. However, a number of limitations exist with 

SAR data alone, for example the post-processing relies on the assumption of a 

logarithmic wind speed profile. SAR is also affected by the presence of objects in the 

scan region, for example features like algal blooms can affect the signal backscatter, 

producing a false wind speed reading when processed. Finally, satellite-derived 

observations are constrained temporally by the periodicity of the satellite’s pass over 

a site of interest and can only infer values for wind speed, so ultimate output could 

be considered constrained by comparison to other techniques. However, products 

exist which contain satellite data as well as observational data from multiple other 

sources which is all homogenised onto a standard grid. These are known as 

reanalysis products. Reanalysis products are not typically used independently in 

wind resource assessments because the resolution at which variables are available, 

both temporally and spatially, is too coarse for the requirements of developers. 

However, they are a useful source of data from which dynamical downscaling and 

NWP tools can be run. Two reanalysis products are discussed in the theory chapter, 

providing more information regarding the general background of reanalysis data and 

individual properties of the two products used in this research. 
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2.3 The potential of mesoscale NWP in wind resource assessment 

Identification of NWP as a viable option by which offshore wind resource 

assessments could be undertaken, arises from the potential of the technology 

alongside strengths which address inadequacies in alternative methods. Mesoscale 

NWP models offer the ability to dynamically simulate variables at relatively high 

resolution compared to reanalysis products while also capturing the large scale 

synoptic processes which drive the local circulation. The mesoscale relates to a 

specific spatial domain, ranging from metres to thousands of kilometres (Janjic et al., 

date unknown). Alternative methods do exist but many come with drawbacks. For 

example, direct observations offshore are very expensive as well as being temporally 

and spatially restricted (e.g. Hasager et al, 2008). Statistical methods of 

approximating meteorological variables can offer some potential to wind resource 

assessment, particularly in the very short term, where persistence forecasting 

outperforms most dynamical models out to around three hours. However, statistical 

methods mostly employ linear assumptions which are inappropriate for atmospheric 

science because the atmosphere is a nonlinear system. Reanalysis products 

demonstrate flexibility as potential offshore wind resource assessment tools, by 

providing global coverage for extensive time periods. However, a number of 

questions remain about the validity of their use. A reanalysis product is essentially a 

low resolution global model run, albeit comprehensively nudged using observations. 

For a wind resource assessment, developers want output at a relatively high 

resolution compared to that available in reanalysis products, as local effects (Garcia-

Diez et al, 2012) on the wind flow are important to consider in terms of turbine/farm 

performance. Mesoscale models are intended to operate at grid resolutions on the 

order of kilometres, allowing the resolution of local and regional circulations (Santos-

Alamillos et al 2013). The temporal and spatial availability of reanalysis data is well 

suited to historic resource assessment campaigns and when used to initialise a 

mesoscale NWP model, would produce a high resolution output of a suite of 

variables which could be used to produce a wind resource assessment for any global 

location. The ability of mesoscale models to dynamically downscale input also 

means that global forecast data could be used to initialise such a model in order to 

predict impending wind fields at higher resolution for shorter timescales, for example 

in operational forecasting. Such abilities give mesoscale NWP certain advantages 

over other resource assessment techniques. 
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2.4 WRF 

2.4.1 Selection 

The NWP model to be used in this research is the WRF (Weather Research 

and Forecasting) model (Skamarock et al, 2008; Janjic, 2003). WRF was selected 

for a number of reasons. Firstly, it is a highly flexible model with extensive tunable 

parameters available to an end user. Secondly it is readily available from the 

developers (NCEP/NCAR/UCAR/NOAA) and very well-maintained, along with a 

range of essential and utility programs. Thirdly, WRF is very widely utilised in the 

research field, applied to a full spectrum of atmospheric investigations which 

includes high resolution simulations (for example Litta and Mohanty 2008), which are 

relevant in the application to wind resource assessment. Finally, a number of US 

governmental organisations are satisfied with the level performance of WRF such 

that it is used in a number of operational forecasting systems including the hurricane 

forecasting system, HWRF. 

2.4.2 Applicability of WRF to offshore wind resource assessment 

A selection of studies which utilise WRF is presented to justify the models 

application to the field of wind resource assessment. An end-user must be confident 

that WRF is able to perform well at high resolution simulations and add value to the 

input data. Tastula et al (2012) undertook an investigation into the performance of 

WRF as compared against the ERA-Interim reanalysis product which was also used 

as initialisation and boundary data for the model run. They studied the performance 

of the model in the boundary layer which is of particular relevance to this study. 

Findings showed the model to offer a higher level of performance than the ERA-

interim reanalysis product for the vast majority of variables studied apart from 

surface pressure. However this was attributed to the provision of buoy data which 

was incorporated into the ERA-Interim product but not the WRF model run. The US 

army are investigating the operational use of WRF, at very high resolution for a 

mesoscale model, at 0.3-3km for the purposes of very short term forecasting and 

nowcasting applications (Dumais et al, 2009). For some locations, the use of WRF to 

create a wind resource assessment product has already been undertaken, with Peña 

et al (2011) producing a wind atlas for the South Baltic region. Such an application 

was essential because of the complete lack of observational data to the south of the 

region, while output was validated at locations in the domain where observational 
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series were available from Danish and German masts. WRF has the potential to 

perform well as a wind resource assessment tool and has already been applied in 

the production of a wind atlas, which makes the next step validating performance for 

use as a site assessment tool, both in a historical long-term context and short-term 

operational context. Zhao et al (2012) review a system which is operational in China 

whereby GFS forecast data is downscaled by WRF and passed through a Kalman 

filter for the purpose of day ahead forecasting. They found the system to perform 

with an acceptable level of error (16.47% normalised RMSE) and that it was a 

profitable undertaking which increased wind energy penetration in China.  

Some traits of the model itself and setup options have been identified which 

should be considered when undertaking such a study. The limit to the potential 

performance of the model is somewhat constrained by computing resource. In order 

to optimise a model run, outright resolution is often compromised to achieve a 

quicker model runtime and reduced computational requirements. In theory, the 

higher the simulated resolution, the better model performance would be as more 

processes are able to be directly resolved. However, Gibbs et al (2011) found that 

increasing resolution around the 4km range yielded diminishing returns with respect 

to the subsequent extra requirement in computing resource and instead suggested 

utilising larger spatial domains and vertical resolution to try and improve resolution of 

the larger scale features. Operationally, WRF has been shown to possess a high 

surface wind speed bias (for example Mass and Ovens 2011; Jiminez and Dudhia 

2012), Knowledge of such a bias is beneficial, because it can be accounted for. Such 

a bias, however, might cause problems in model simulations which involve a coastal 

interface. 

2.4.3 Stability 

The potential for using WRF as a tool to simulate stability has not been 

examined significantly to date. The successful application would be of great interest 

to developers. The majority of studies have only really considered the performance 

of WRF as a wind speed prediction tool. Some studies have examined the 

performance of WRF under different stability conditions. For example Munoz-

Esparza et al (2011) look at the performance, as predictors of wind speed, of a range 

of PBL schemes at FINO 1 under different stability classes, but there is much scope 

to expand the research into the representation of stability by WRF. For example 
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Munoz-Esparza et al, (2012) look at the performance of a number of PBL schemes 

within WRF as predictors of Obukhov length compared to observations at FINO 1. 

They found that, generally, the schemes provide a good representation of the 

stability class but impart a slight bias, where the magnitude of stable conditions 

tended to be under-predicted while the magnitude of unstable and neutral conditions 

tended to be enhanced compared to observations. Calculation of stability is subject 

to input from the model parameterisation schemes, which means at short timescales 

and high resolution, just like the wind variables, there is less confidence in the 

accuracy of the model output. If the model can be shown to provide a decent 

representation of atmospheric stability, it would be of great benefit to wind farm 

developers in refining potential farm output forecasts. 

2.5 PBL parameterisation 

2.5.1 Introduction 

Numerous parameterisation schemes are required to run a numerical model, 

for example convection/ cumulus schemes, land surface models (LSM) and 

planetary boundary layer (PBL) schemes. In the context of wind resource 

assessment research, the parameterisation scheme of most interest is the PBL 

scheme because it solves for the region in which turbines operate and is thus an 

integral contributor to model performance. PBL schemes are described by the order 

of the equations they solve and the locality of the data points which they use. The 

theory behind PBL parameterisation is discussed in the subsequent theory chapter 

which covers properties of schemes such as order, level and locality. 

2.5.2 Review of individual schemes 

Two PBL schemes are most commonly used with WRF: the local Mellor-

Yamada-Janjic (herein MYJ) level 2.5 scheme (Mellor and Yamada, 1982; Janjic, 

2001), and the Yonsei University (herein YSU) non-local first order closure scheme. 

Three further PBL schemes available with WRF are discussed in further detail: the 

MYNN (Mellor Yamada Nakanishi Niino) 2.5, the QNSE (Quasi Normal Scale 

Elimination) and the ACM2 (Asymetric Convective Model) , alongside the 

aforementioned MYJ and YSU schemes. 
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2.5.2.1 First order closure schemes 

2.5.2.1.1 YSU 

In the nonlocal YSU (Hong et al., 2006) scheme, TKE (Turbulent kinetic 

energy) is explicitly resolved rather than approximated (Misenis and Zhang, 2010). 

Turbulent fluxes due to non-local gradients are represented by counter gradient 

terms, which under stable conditions are generally small and thus neglected 

(Holtslag and Boville, 1993). The entrainment layer at the top of the boundary layer 

is explicitly treated (Challa et al. 2009).  

2.5.2.1.2 ACM2 

The nonlocal ACM2 (Pleim, 2007) PBL scheme closes the same turbulence 

equations as the YSU scheme but approaches mixing through the boundary layer in 

a different way. Local diffusion is combined with non-local mixing under convective 

conditions, where the non-local mixing is explicitly simulated. Such a combination 

allows mass and momentum transport through the depth of the PBL between remote 

layers as well as local transport between adjacent layers. Under neutral and stable 

conditions the ACM2 scheme is able to switch off the non-local transport component 

to only account for local diffusion (Pleim, 2007). 

2.5.2.2 1.5 order closure schemes  

2.5.2.2.1 MYJ level 2.5 

A development of the Mellor Yamaha (1982) model by Janjic (2001), the MYJ 

level 2.5 is a 1.5 order closure scheme. A prognostic equation is included for 

calculating TKE (Turbulent Kinetic Energy), however, the remaining 2nd order terms, 

such as the velocity-temperature covariance, remain simplified by equations (Suselj 

and Sood, 2010). Vertical turbulent mixing is represented by eddy diffusivity which is 

a function of TKE, a master length scale and a term dependent on TKE, buoyancy, 

and shear (Hanna et al., 2010). The master length mixing scale in the MYJ 2.5 is a 

function of height and is used in the vertical redistribution term and the dissipation 

term (Olson and Brown, 2009). MYJ 2.5 was intended for application to stability 

conditions from stable to slightly unstable (Mellor and Yamada, 1982), with 

performance deteriorating in increasingly unstable conditions. 
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2.5.2.2.2 MYNN level 2.5 

The MYNN level 2.5 (Nakanishi and Niino, 2004) PBL scheme is a local 1.5 

order closure scheme based on the Mellor Yamaha model (Mellor and Yamaha 

1982), like the MYJ scheme. As in the MYJ scheme, the additional prognostic 

equation is of TKE, however the crucial difference between MYJ and MYNN is the 

master length scale derivation which goes into calculating the local eddy diffusivity. 

The master mixing length for the MYNN PBL schemes is a function of three 

independent length scales concerning the surface layer length, the buoyancy length 

and the turbulent layer length (Olson and Brown 2009; Nakanishi and Niino 2009). 

2.5.2.2.3 QNSE level 2.5 

The QNSE (Sukoriansky et al. 2005) PBL scheme is a 1.5 order closure 

model which, like the MYJ and MYNN schemes, includes a prognostic term for 

calculating TKE. Unlike any of the other schemes, spectral theory is applied to 

simulate diffusivity, in particular, under stable conditions. Due to its tailoring to stable 

conditions, the QNSE scheme is not particularly widely used in general WRF studies. 

2.5.3 Performance 

Generally, the consensus from the literature is that no single PBL scheme is a 

readily identifiable single best performer. A selection of examples will follow which 

identify particular schemes to be favourable, but in the vast majority of cases, 

performance is dependent upon the occurrence of particular conditions (for example 

Draxl et al 2013; Munoz-Esparza et al, 2012).  

2.5.3.1 Performance of individual schemes 

Mentioned in the description of each scheme was the different calculation of 

mixing length in the MYJ and MYNN schemes, used in determining the PBL depth. 

Olsen and Brown (2009) compared the MYJ and MYNN level 2.5 schemes in a low-

level jet study. They found that the MYNN scheme developed larger TKE and a 

deeper, more realistic, mixing depth than the MYJ scheme which generally under 

predicted depth. The MYNN scheme was found to produce accurate levels of TKE in 

general but, on occasion, to an unrealistic level. They also noted that while the 

MYNN scheme performed best by comparison to a number of variables, the MYJ 

scheme simulated wind speed most accurately. It is important to accurately 

represent the boundary layer depth so that contributory processes to turbulence 

within the layer can be accounted for and passed to the main model solver, for the 
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impact upon the general circulation to be established. The studies presented so far 

give an interesting insight into the variability of performance exhibited by the PBL 

schemes depending on conditions, however, most of the studies are conducted 

onshore. In a study which produced a wind atlas for the south Baltic, Peña et al 

(2011) found a clear difference between performances of the PBL schemes when 

used over sea compared to land, but as with the majority of other studies, found no 

particular scheme to be a preferable option. Draxl et al (2012) found that 

performance of the PBL schemes at the coastal site of Høvsøre was highly 

dependent upon stability. For unstable conditions, the YSU scheme was found to 

perform best. Under near stable and neutral conditions, the ACM2 scheme was 

found to be the best performer, while under stable conditions the MYJ scheme was 

preferable. A study by Santos-Alimillos et al (2013) reviewed the performance of 

WRF as a function of physical setup, which included looking at the performance of 

the YSU and MYNN PBL schemes at four sites over southern Spain with the focus 

on wind power prediction. They found the YSU scheme to outperform the MYNN 

scheme. In an offshore study using the FINO 1 mast data, Munoz-Esparza et al 

(2012) found the MYNN scheme to be the most versatile high performer through 

different stability classes. The studies presented cover a range of topics and 

locations describing some of the observed qualities and tendencies of the PBL 

schemes of interest. However, the main findings of most are the variability in 

performance of the schemes and a dependence upon prevailing conditions, both 

atmospheric and physical. Since conditions invariably differ between sites, 

extrapolation of results from any of the above mentioned studies to the locations of 

this research is unwise. The results from these studies is used as a guide and has 

helped select a methodology by which it is hoped results can generate greater 

knowledge to be contributed to the field.  

2.6 Mesoscale modelling offshore wind 

The application of WRF to topics related to wind resource assessment has 

been previously discussed in section (2.4) which reviewed the suitability of WRF for 

this research. A number of studies have investigated the application of WRF in a 

wind energy context (e.g. Shimada and Ohsawa, 2011; Storm et al, 2009; Chin et al, 

2010). The lack of available offshore data for validation translates to a relative 

paucity of directly relevant studies which makes defining a level of performance 
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difficult. Peña et al (2011) produced a comprehensive wind resource assessment for 

the south Baltic as a commissioned wind atlas. A four-year period from January 2007 

to December 2011 was simulated using a two domain WRF setup. The south Baltic 

Sea was the area for which the wind atlas was produced and model performance 

was validated by extracting point data from the model runs for the offshore FINO 

research platforms, Horns Rev II and the onshore coastal site at Høvsøre from which 

observational data were obtained. Model output was also compared to quikSCAT 

and SAR satellite data to validate model performance spatially. Performance as 

validated against the observational data showed an RMSE of around 2ms-1 and no 

state dependence relating to location, height level or number of samples. Good 

agreement was found between the 5km model output and the 25km quikSCAT wind 

field, while a greater discrepancy was found by comparison to the high resolution 

(1km) SAR data. Kwun et al (2009) looked at the surface wind representation of 

WRF offshore over three days. They found correlations between observed and 

modelled hourly wind speed to be 0.6304 and 0.6483 for the YSU and MYJ PBL 

schemes respectively. RMSE for the daily values was 1.1360 and 1.1680 ms-1 for 

the YSU and MYJ PBL schemes respectively. Shimada and Ohsawa (2011) looked 

at the performance of WRF as a wind resource assessment tool at an offshore site in 

Japan. A complex model setup, including FDDA (four dimensional data assimilation), 

was employed at ten minute resolution. They found the model to perform well at 

replicating observed wind speed variability displaying a correlation coefficient of 0.8, 

however an RMSE of 46% of the mean annual wind speed was calculated. RMSE as 

a percentage of the annual mean wind speed is a strange metric to use and is 

provided in the paper by reference to a plot which suggests a value of around 5-6ms-

1 which would translate to an RMSE of around 2.75ms-1. The three studies discussed 

above, provide the most relevant statistics for comparison to the work undertaken in 

this study which will use correlation and RMSE as measures by which to assess 

model performance. Table 2.1 summarises the performance achieved by each of the 

studies and also includes statistics from three other studies, conducted over land, to 

serve as a measure by which to judge the results achieved in this research. It is clear 

from the values that model performance is highly location dependent, with average 

correlations ranging from 0.48 to 0.94 and average RMSE from 1.1ms-1 to 2.8ms-1
. 

For the offshore environment, the average correlation coefficient is 0.72 and average 

RMSE is approximately 1.95ms-1. It is important to consider the parameters of each 
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investigation upon review as these may also affect the performance figures obtained. 

For example, the high correlation achieved by Raubenheimer et al (2012) was 

obtained for a study undertaken at diurnal temporal resolution. Sampling every 12 

hours would remove changes in wind speed below 12 hours, which is suited to the 

effective resolution of a mesoscale model. In contrast, the 10-minute temporal 

resolution of the Shimada and Ohsawa (2011) study would test the high resolution 

performance of WRF by including shorter changes in wind speed caused by smaller 

scale atmospheric features which are more difficult for the model to resolve related 

to the effective resolution of the model grid.   

 

Table 2.1 Collection of statistics describing accuracy of WRF as a predictor of wind speed 

Study 

Notable 

setup 

options 

Resolution 
Correlation 

coefficient 
RMSE 

Shimada and 

Ohsawa 

ARW, FDDA, 

MYJ, SST 
10 minute 0.8 

46% mean 

~2.75ms-1 

Kwun et al 2009 ARW, MYJ 
Correlation – hourly 

RMSE - daily 
0.64 1.1 ms-1 

Pena et al, 2011 ARW Hourly - 2 ms-1 

Raubenheimer 

et al, 2012 
ARW Diurnal 0.94 >1 ms-1 

Nawri et al, 

2012 
ARW Monthly 0.57 - 

Liu et al, 2012 ARW Hourly 0.483 2.8 ms-1 

 

2.7 Summary 

This review of literature has sought to present the foundations for the research 

undertaken in the project and the current understanding. The application of 

mesoscale NWP models to offshore wind resource assessment is entirely justified 

based upon the successful operational use of such technology in other fields. For the 

adoption of such techniques by the industry, more studies must be undertaken to 

evaluate the broader potential of such models. Many examples of WRF as a wind 

resource tool have been sourced, but still the available literature does not exist on a 
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large enough scale and with enough consistency between the studies to justify 

confidence in the model for operational use. Far fewer studies using WRF as an 

offshore wind simulation tool exist because of data restrictions for comparison. 

Furthermore, very few studies at all exist which consider the model’s performance in 

a more complete context as an offshore wind resource assessment tool by using it to 

predict a suite of variables, for example stability, of interest to wind farm developers. 

Thus the conclusions of this review of literature are that; 

1. More studies need to be undertaken using consistent performance metrics (such 

as correlation and RMSE) by which to assess model performance in as diverse 

locations and temporal periods as possible. 

2. More thorough investigations of the potential uses of NWP models as offshore 

wind resource assessment tools should be undertaken to more wholly establish the 

potential benefits to the industry. For example, NWP models are able to simulate a 

wide range of variables which could be used by developers. 

3. The identification, or lack thereof, of an optimal setup (specifically PBL scheme) 

suggests an area of uncertainty which requires comprehensive investigation for 

industrial application. If one ideal setup does not exist, the definition of a range of 

setups given particular conditions should be provided or at least established. Such a 

set of conditions will most likely change depending on location. 
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3 Theory  

3.1 Introduction 

An introduction to numerical modelling is provided and the WRF modelling 

system is described. The components of the modelling system most relevant to 

offshore wind resource assessment are introduced and described. A number of 

techniques, which can be applied to NWP are presented with a view to incorporation 

into the main study as a means of improving/augmenting model performance, are 

then discussed.  

3.2 Introduction to numerical modelling 

Weather forecast models are a form of numerical weather prediction (NWP), 

which is a means of predicting future atmospheric development by solving a series of 

physically derived equations. Numerical models are an approximation of reality, 

limited by computational resources because the complexity of the atmosphere is 

simply too great to represent in its entirety. In the modelled system, the most 

important processes are fully resolved while other process which cannot be explicitly 

calculated due to computational restrictions, are approximated by parameterisations 

based on values of other variables, represented in Figure 3.10. NWP models exist in 

a variety of guises generally classified by physical and temporal constraints on the 

operational boundaries of the model. Mesoscale models are examples of limited 

area models where only part of the globe is simulated. Limited area models were 

designed to provide a more high resolution output than GCM’s both temporally and 

spatially. This flexibility has particular appeal in resource assessment research 

because the model can incorporate large scale atmospheric features such as 

pressure systems and produce relatively high resolution output.  Mesoscale models 

possess the full suite of physical equations as in GCM’s but by running for a reduced 

spatial domain they are less computationally demanding.  

3.2.1 Underlying Principles 

There are a number of fundamental principles which underpin numerical 

weather prediction. The most important are the primitive equations which perform the 

calculations which simulate the atmosphere as required by the investigator. Other 

important concepts which are implicit in NWP, particularly for the WRF-NMM model, 

are atmospheric chaos and the hydrostatic assumption. 
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Figure 3.10 Sketches of (a) a real system, in which an infinite number of processes Pi (open circles) is 

present, and upon which an infinite number of external forces (arrows) act; (b) a modelled system, in 

which only a limited number of processes (open circles) and their interactions are represented, and in 

which the number of external forces is also limited (arrow). Parameterisations are indicated by solid lines 

crossing the dashed-line border of the model (von Storch, 2001). 

 

3.2.1.1 Primitive Equations 

NWP models operate by adhering to fundamental dynamic and 

thermodynamic principles. These principles account for the evolution of the 

atmosphere by ensuring the conservation of momentum (eq. 3.1), mass (eq. 3.2), 

state (eq. 3.3), energy (eq. 3.4) and moisture (eq. 3.5) in all phases through solving 

the primitive equations where v = horizontal wind vector, F = Friction, Ω = Coriolis 

parameter, T = temperature, t = time, ρ = density, p = pressure,   = geopotential, α = 

specific volume, Cp = specific heat at constant pressure, E = evaporation, C = 
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condensation, Q = energy applied, q = specific humidity, R = the gas constant 

(Kalnay, 2003).  

 

Momentum   

  
                    

Equation 3.2 

 

Mass   

  
            

    Equation 3.3 

 

State 
      

    Equation 3.4 

 

Energy 
     

  

  
   

  

  
 

    Equation 3.5 

 

Moisture    

  
                   

    Equation 3.6 

 

 

The primitive equations are applied to individual parcels of air and account for 

the evolution of the meteorological parameters in accordance with the values of the 

previous time-step. Newton’s second law relates to the conservation of momentum 

which asserts that in an inertial frame, a body will react to an applied force and 

maintain momentum in the same direction at constant velocity until another force is 

applied. To apply the principle to the Earth, apparent forces have to be included 

which arise because the Earth is a rotating body and the atmosphere is a fluid. On 

Earth the apparent forces in order of magnitude are the Coriolis and Centrifugal 

forces (Kalnay, 2003). Accounting for all the forces acting upon particles in the 

atmosphere forms the basis of NWP, from which weather forecasts can eventually 

be produced. The three forces of most importance to atmospheric motion are the 

Pressure Gradient force, the Coriolis force and the Friction force and comprise the 

conservation of momentum equation (eq 3.1). The Pressure Gradient force arises 

from gradients in temperature and density of air and causes large scale motion as air 

moves from areas of high concentration (pressure) to low. Friction acts in the 

opposite direction to the pressure gradient force and arises from energy dissipation 

resulting from contact with other molecules which can be either stationary solid 
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objects or due to viscous forces present in the fluid. The Coriolis force is an apparent 

force which accounts for the motion of air parcels relative to that of the Earth as it 

rotates ‘underneath’. The faster the rotation of the earth, the stronger the Coriolis 

force and thus it is strongest at the poles (Barry and Chorley, 2003). The strength of 

Coriolis force is also proportional to the velocity of the particle upon which it acts. 

There is a wide range of NWP products available including several mesoscale 

models. The variation between the models arises from the methods by which the 

primitive equations are solved. Processes such as time integration procedures and 

parameterisation schemes vary depending on the model developers. Variation in the 

output of different models is a product of the differing solving processes from one 

another and leads to differing performance under particular conditions, for example 

one model may produce more accurate outputs under stable conditions because 

certain parts of the model approximate the stable conditions more accurately. 

3.2.1.2 Atmospheric Chaos 

Mentioned earlier was that atmospheric modelling is an approximation of 

reality not a direct representation, i.e. the fact that not all processes are fully 

represented induces a certain error in the model output, but one which is known and 

can be accounted for. One of the most important factors which affect the accuracy of 

weather prediction is the inherent chaos of the atmospheric system. Atmospheric 

chaos is the theory, originally proposed by Edward Lorenz in 1963, which relates to 

the sensitivity of the atmospheric system to perturbations. The atmosphere is a 

dynamic deterministic system which means there are no random inputs, the system 

simply evolves from the initial conditions but, the sensitivity to the initial conditions is 

very high and divergence from similar starting states can happen very quickly which 

is why long term weather prediction is near impossible (Kellert, 1993).Chaos can be 

induced simply by not setting the NWP model up correctly as well as 

misrepresentation of initial conditions to the model. All NWP models solve their 

primitive equations at incremental time steps. If the increments are too large, for 

example longer than the shortest wave resolved by the system, the numerical 

system may become unstable and induce chaotic behaviour (Lorenz, 1989). 

Numerical stability can be improved by reducing the time step increment but this is at 

the expense of computational efficiency as more processes are calculated for the 

same temporal domain. Accounting for atmospheric chaos is not a direct priority for 
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the model developers because there is little that can be done at the modelling stage. 

One solution is the ensemble approach which takes multiple output forecasts run for 

the same temporal and spatial domain but which vary in either initial conditions or 

model setup. Ensemble outputs provide a spread of results which can be 

manipulated as desired by the researcher, for example by producing a weighted 

average.  

3.2.1.3 Effective grid resolution 

One of the conceptual properties of numerical modelling relates to the grid 

resolution of the model run being undertaken. Since calculations for the resolved 

variables are undertaken on a discrete grid, any features/motions/entities existing at 

a scale below the distance between two points cannot be directly resolved. However, 

even if the feature is larger than one grid point spacing, the number of grid points it 

covers will determine how successfully the model is able to simulate it and this 

principle is the effective resolution of the model. What size is the smallest feature the 

model can resolve? The answer is related to the grid resolution and clearly will be 

above 1Δ (where Δ is the grid spacing). Effective grid resolution is found to be 

roughly 4-7 Δ (Bryan et al. 2003; Skamarock 2004). For example, to resolve features 

on the order of a few hundred kilometres, a grid spacing on the order of tens of 

kilometres would be required (Kang, 2009). Mesoscale NWP models are most 

appropriate for application to wind resource assessment because they can cover 

large spatial areas yet operate at a relatively high resolution to capture some 

regional features. When selecting the resolution of the innermost domain, a user 

must decide where the compromise between resolution and efficiency lies for their 

study. Some papers report that increasing grid resolution beyond a certain level does 

not justify the increased requirement in computing resource (Gibbs et al, 2011). The 

manifestation of effective grid resolution, in the context of wind resource 

assessment, translates to the frequency of wind speed change which the model can 

resolve. Short-term high frequency changes in wind speed are caused by small scale 

atmospheric features such as turbulent structures, while long-term low frequency 

change is caused by large scale features such as fronts or pressure systems, 

represented in the Van der Hoven (1957) spectrum in Figure 3.11. The Van der 

Hoven spectrum shows two significant peaks in the spectral density of wind speed, 

one at around four days and one at around one minute. The significance of these 
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peaks respective to mesoscale modelling is that the 4 day peak represents long-term 

changes in wind speed caused by synoptic scale features which would be resolved 

by a mesoscale model running at 2km grid resolution. The one minute peak 

however, represents short term changes in wind speed caused by turbulent 

structures that would not be resolved by the model but approximated by 

parameterisation schemes. 

 

Figure 3.11 Van der Hoven (1957) spectrum for wind speed adapted by Munteanu et al, (2008). 

3.3 WRF 

3.3.1 Description 

Developed as a replacement for the MM5 mesoscale model, WRF is a fully 

compressible non-hydrostatic mesoscale model and is available with two dynamical 

cores. The NMM (Nonhydrostatic mesoscale model) core (Janjic 2003) is used 

operationally in a number of systems by its developer NCEP (the National Centre for 

Environmental Prediction). The other core, ARW (advanced research WRF, 

Skamarock et al, 2008), was developed by NCAR (the National Centre for 

Atmospheric Research) for the research community. ARW is regarded as the more 

advanced core but requires more specific care regarding setup. The NMM core is 

more robust and in one study which compared the two dynamical cores by 

simulating the same period, using the same setup and resources as far as possible, 

the models performed similarly though the NMM core displayed a lower systematic 

bias (Jorba et al, 2008). Selection of which core to use is typically determined by the 
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application, operational applications of WRF, such as the hurricane forecasting 

system HWRF, tend to employ the NMM core. Research applications benefit from 

the greater physical flexibility available with ARW core. While developed 

independently the cores share many similarities, for example the vertical coordinate 

system, mass conservation and terrain following coordinate system (Skamarock, 

2005). Where the cores primarily differ is in their model grid staggering, the selection 

of equations, variables and conservation properties and finally their time integration 

methods (Skamarock, 2005). Ultimately, performance differences between the cores 

exist, but they are attributed more to the differences in the physics employed, rather 

than the dynamical solver (Skamarock, 2005). One of the main practical 

manifestations of the differences between the cores relates to the computational 

efficiency. NMM is the more numerically efficient core, running faster and less 

intensively than ARW. Unless run in a global setup (which is computationally 

expensive and restricts resolution), WRF is unable to account for processes external 

to the modelled domain and therefore requires boundary conditions for the duration 

of every run to satisfy conservation equations.  

3.4 PBL parameterisation 

3.4.1 Introduction 

PBL schemes approximate atmospheric fluxes of heat, momentum and 

moisture in the boundary layer (Deppe et al, 2013) as functions of variables resolved 

by the model (Suselj and Sood, 2010). The parameterized fluxes cannot be resolved 

explicitly by the model, either because it is too computationally demanding to do so, 

or because the processes operate at a higher resolution than the model (Teixeira et 

al, 2008). The estimation of heat and moisture fluxes is a part of the PBL scheme 

which involves assumptions about how the variables combine to represent the 

relevant friction velocities and exchange coefficients through the layer (Borge et al. 

2008). 

3.4.2 Fundamental principles 

Approximating turbulence within the boundary layer is the key task of the PBL 

parameterisation. Closure of the nonlinear terms which contribute to turbulence is 

one of the major challenges faced by the PBL schemes. The order of closure of the 

parameterisation scheme describes the turbulent anisotropy (direction dependant) 

terms approximated, which are sets of variables calculated by the scheme either 
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explicitly or implicitly. The set of variables described by a first order closure scheme 

are the state variables (u, v, w, T and q), which are the three dimensional wind 

vectors (E/W, N/S and vertical), temperature and specific humidity respectively 

(Stensrud, 2007), which vary independently in first order schemes. The first set of 

variables provide a basic description of the boundary layer, though in reality the 

turbulent fluxes are far more complex and not independent. Higher order schemes 

account for this increasing complexity by incorporating more variables and 

introducing interactions between variables. In order to fully close the first order 

turbulence equations, the involvement of at least one second order term is required. 

Likewise, closure of the second order terms involves at least one third order term, 

which is a triple correlation term. Essentially the closure problem is infinite and 

currently broken by including an assumption, that terms of a certain order are 

functions of the preceding lower order terms. For example, a first order closure 

scheme assumes that all second order terms are a function of the first order terms, 

where a second order closure assumes third order turbulence is a function of first 

and second order terms. The second anisotropic variable set (second order closure) 

includes covariance terms and in third order closure schemes a triple correlation 

term is present. Intervening order schemes, include a (some) calculation(s) implicit in 

the next order of turbulent anisotropy (e.g. Mellor and Yamada 1982) but not the full 

suite, thus the scheme is of an intermediate order. The other major defining property 

of PBL schemes is locality, which describes the number of known data points used 

when calculating an unknown variable. Local PBL schemes relate the unknown 

fluxes to known values at the same grid point (Stensrud, 2007). Non-local PBL 

schemes have the freedom to utilise any number of data points in the vertical, to 

approximate the unknown turbulent fluxes, potentially the full depth of the boundary 

layer (Stensrud, 2007). The two approaches both have advantages, for example a 

non-local scheme is beneficial in an unstable convective layer where the deep 

mixing motion is translated to the variable fluxes through the layer (Bright and 

Mullen, 2002). The advantage of a local scheme is computational efficiency and 

when coupled to a high order closure scheme, more complex calculations are 

intended to provide a detailed appraisal of fluxes through the layer, such that using 

information from the full depth is unnecessary (Stensrud, 2007).  
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3.4.3 Local versus non-local closure 

First order closure schemes are considered simpler than higher order 

schemes (e.g. Challa et al, 2009) because of reduced complexity of the equations 

solved and quantities calculated. However first order schemes tend to be non-local 

which utilise information from, potentially, the full depth of the boundary layer. The 

manifestation of the individual qualities of local and non-local techniques was 

identified by Shin and Hong (2011) who found non-local schemes to perform 

favourably compared to local schemes under unstable conditions for a range of 

variables during an observational field campaign. Under stable conditions, the higher 

order local schemes offered better performance, despite the fact that neither non-

local nor local schemes performed particularly well. Similarly, Challa et al (2009) 

looked at coastal mesoscale circulations using the MYJ and YSU schemes and 

found the non-local YSU scheme to perform better than the local MYJ for a range of 

predicted mean variables. In a study of PBL depth, Xie et al (2012) compared the 

performance of local versus non-local schemes and found that the local PBL 

schemes (MYJ and Boulac) produced a much shallower PBL than was simulated by 

the non-local schemes (YSU and ACM2). By reference to observations, they found 

the  deeper solutions of the non-local solutions to be more representative of reality.  

3.5 Importance of Input Data 

The modelling process has to be considered with respect to the input data by 

which the model run is initialised, not simply the model itself in isolation. A famous 

acronym in the modelling community pertaining to this consideration is GIGO 

(garbage in garbage out). A description of two well-used reanalysis products is 

provided shortly, with both being used in research to initialise NWP models. While 

different reanalysis datasets utilise much of the same data as one other, there are 

inherent differences between the individual products which can have an impact upon 

the success of the modelling campaign depending on them as input data. For the 

purposes of an offshore wind resource assessment by a mesoscale NWP model, 

large scale features are required to be well defined in the reanalysis output in order 

to allow the model the best chance of accurately simulating the resultant processes 

through the domain. Ultimately, the reanalysis datasets might provide different 

perspectives of the atmosphere for a given time because of the observations of 

which they are comprised, the data assimilation method and the NWP model run to 
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produce the output. For example, one reanalysis dataset may have a more dense 

observation network in a particular region, which is not shared internationally, to the 

detriment of alternative reanalysis products. Such an occurrence should improve the 

accuracy of that product in that particular area which should in theory provide more 

accurate initial conditions to an NWP model providing the best opportunity for good 

performance.  

3.6 Reanalysis products 

A meteorological reanalysis product is a global dataset of reanalysed variables, 

the output of an assimilation system which synthesises NWP (numerical weather 

prediction) model output and observational data (Kalnay et al., 1996). The concept 

was developed in the 1980’s when data assimilation was a technique used to 

produce operational datasets combining observations from multiple sources (e.g. 

Bengtsson et al. 1982), such as satellites surface stations and ocean buoys. Many 

users found the assimilated data to be of insufficient quality which prompted the 

movement (Bengtsson and Shukla, 1988 and Trenberth and Olson, 1988) to 

reanalyse the observations into a standardised format. The assimilation process 

creates a global state of the atmosphere (Uppala et al., 2005) for a given time-step. 

The NWP model simulates the atmospheric evolution and is augmented during the 

course of the model run by observations, where they exist from the multiple data 

sources, within the model domain. Essentially, the simulation is nudged by tendency 

terms towards observations of reality. The objective of a reanalysis product is to 

present all possible variables in a single gridded dataset for the globe. Reanalysis 

products are an important source of homogenised global atmospheric data that are 

readily accessible to those who cannot produce such datasets independently and, as 

a result, many research projects have been conducted solely using reanalysis data, 

for example Heikkila et al., (2010), Zhao and Fu (2009) and Brodeau et al., (2010). 

The accuracy of reanalysis products depends on the amount of observational data 

which can be assimilated to help nudge the simulation towards observations. Most 

recently the biggest advancement has been in remote sensing by satellite (see table 

3.2) which has significantly increased the spatial coverage and resolution of 

observations.  
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Table 3.2 Average daily counts of various types of observation supplied to the ERA-40 data assimilation 

process over five selected periods, (Uppala et al, 2005) 

Observation Type 1958-66 1967-72 1973-78 1979-90 1991-2001 

SYNOP/SHIP 15313 26615 28187 33902 37049 

Radiosondes 1821 2605 3341 2274 1456 

Pilot Balloons 679 164 1721 606 676 

Aircraft 58 79 1544 4085 26341 

Buoys 0 1 69 1462 3991 

Satellite radiances 0 6 35069 131209 181214 

Satellite winds 0 0 61 6598 45671 

Scatterometer 0 0 0 0 7575 

 

One of the major achievements of global reanalyses is the international collaboration 

which has arisen from the need for data. Meteorological agencies across the world 

have united and donated data, all converted to the same WMO BUFR format 

(Uppala et al. 2005), which is available to all the partner institutions for use in their 

reanalysis products. The data sharing endeavour is a platform from which continual 

development of reanalysis products will develop. With the majority of data being 

available to all agencies, the main differences between reanalysis products of very 

recent times and in the future will be down to the analysis model and the data 

assimilation technique. Two of the more extensively used reanalysis products are 

discussed in the theory chapter with a view to incorporation into this investigation of 

the offshore wind resource. 

3.6.1 ERA-40 

The ERA-40 (ECMWF 40-year Reanalysis) dataset is a reanalysis product 

from the European Centre for Medium range Weather Forecasts (ECMWF). Based in 

Reading, UK, the ECMWF is an independent organisation comprised of 18 member 

and 15 co-operating European states that all contribute to the project and utilise the 

variety of outputs from the facility. Numerical simulation for the process was 

undertaken using the ECMWF IFS (Integrated Forecast system) model. 

Observations were assimilated into each model run using a 3D-Var (3-dimenional 

variational analysis) method, whereby observations in all three physical domains are 

included at a given time-step. ERA-40 is available from 1957-2002 at 1.0° resolution, 

variables are available on 60 vertical levels. The IFS model was able to run at a 

higher resolution and employ a 4D-Var assimilation process, where data from 
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alternative time-steps are also available. However, neither of the techniques were 

employed in favour of computational efficiency (Uppala et al, 2005). ERA-40 has 

been used in numerous studies, in addition to providing input to dynamical NWP 

models. One area of particular strength for reanalysis products is their spatial 

coverage. The relative motion of the atmosphere around the globe is difficult to 

represent with point measurements because of uncertainty in the intervening space. 

This is the benefit of a homogenised dataset, such as a reanalysis product, where all 

quantities are conserved on a global scale. Crooks and Grey (2005) performed a 

statistical analysis of the influence of the 11-year solar cycle upon atmospheric 

temperature and zonal winds as well as a number of large scale atmospheric proxies 

such as the Quasi-Biennial Oscillation (QBO), El-Niño Southern Oscillation (ENSO), 

North Atlantic Oscillation (NAO) and volcanic signatures. All of the atmospheric 

variables investigated were extracted from the ERA-40 product. The influence of the 

11-year solar cycle was confirmed as having a direct influence on terrestrial 

variables as relationships to equatorial temperature and zonal wind (seen as a 

seasonal response) were identified. Another key use of reanalysis products is in the 

historical collection of global variables they possess. Such capacity is useful in two 

ways. Firstly it allows an investigation a good historical length over which the study 

can be conducted. Secondly, it is ideal input to regional scale NWP models which 

cannot conserve variables globally and need input at the model domain boundaries 

for the duration of their runs. Dynamical downscaling processes coarse resolution 

input data through an NWP model to simulate conditions at a higher resolution than 

the original input data. Essentially, the model simulates the evolution of the 

atmosphere dynamically, considering regional features which do not exist at the 

resolution of the original product. Heikkila et al (2010) downscaled ERA-40 data at 

two resolutions: 30 km and 10 km, approximately 0.3 and 0.1 times the resolution of 

the ERA-40 output. The results of the downscaling were compared to high resolution 

observational data obtained from a network of stations situated in complex terrain 

within Norway. The results indicate the downscaled model output is able to 

significantly improve the quality of the output afforded by ERA-40. It is important to 

consider the benefits of ERA-40 along with its constraints. It is readily available from 

the BADC (British Atmospheric Data Centre) with an academic licence and provides 

a good appraisal of the global atmosphere for the period it covers according to many 

studies which have used it. While 1.0 degree resolution is not particularly high 
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compared to current reanalysis products, it does make the file sizes smaller for a 

given area which, for example, speeds up the download process and is less 

intensive on computing resources. However it is 7 years old now and the main 

shortcomings which relate to the products now available are the assimilation 

methods and data availability at the time of production. The dataset described next is 

a more recent product and is available at a higher resolution. 

3.6.2 CFSR 

A number of American governmental centres have produced reanalysis 

products beginning, in the mid 1990’s, with the NCEP/NCAR (National Centre for 

Environmental Prediction) (National Centre for Atmospheric Research) reanalysis. 

One of the most recent products is the CFSR (Climate Forecast Systems 

Reanalysis) (Saha et al, 2010) product which was released in 2010. The CFSR 

product covers the period from 1979 to 2012 and is available at 0.5° resolution, 

where variables are available on 64 model levels. The CFS (Climate Forecast 

System) model system which assimilates observations is comprised of three parts. 

The atmospheric model used in producing the CFSR is the widely used GFS (Global 

Forecast System) model and forms one part of the CFS. Next is the MOM (Molecular 

Ocean Model) which is used to drive the atmospheric model as opposed to using the 

observed SST (Sea Surface Temperature) field as in most other reanalysis products. 

The final part of the CFS is the coupling between the oceanic and atmospheric 

model components. Data assimilation in the CFSR is 3D-Var, like ERA-40, but 

modified from its older sibling the NCEP/NCAR reanalysis. SSU (Stratospheric 

Sounding Unit) satellite data was incorporated into the CFSR for its duration which 

provided observations of CO2. Liléo and Petrik (2011) found the CFSR to correlate 

well with observed wind speeds when looking at the wind resource over a number of 

sites in Sweden. The study looked at the performance of other reanalysis products, 

which were the original NCEP/NCAR reanalysis and the MERRA (Modern-Era 

Retrospective analysis for Research and Application) reanalysis. The MERRA 

product was released at a similar time to the CFSR and thus is available with more 

recent data and technology. Ultimately, Liléo and Petrik (2011) found the MERRA 

and CFSR reanalysis products outperformed the NCEP/NCAR product with the 

MERRA coming out slightly ahead, but suggested caution when applying their 

results to other locations. When applied as model input data, Carvalho et al (2012) 
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found the CFSR product to perform well, providing accurate initial conditions to the 

WRF model to a similar standard as the 4D-Var ERA-Interim product. 

3.7 Techniques used to improve model performance 

Performance of WRF has been discussed for a range of applications including 

wind resource assessment. The effect upon performance that model setup can have, 

both physically and dynamically, has been presented. After model setup, a number 

of further options exist to improve model performance, which is discussed in the 

following section.  

3.7.1 Nudging 

Nudging a model run involves the incorporation of observational data into a 

model run over its duration at every boundary update. There are two types of 

nudging available with WRF: objective analysis and observational nudging. In 

observational nudging observational time series‘ close to points of interest can be 

integrated into the model run to provide more accurate local information. Objective 

analysis operates across the entire model grid as opposed to single points within the 

domain as is the case when using observational nudging. Nudging relaxes the model 

solution towards the nudged sources to preserve the ‘known’ atmospheric structures 

provided by the nudging series (Deng and Stauffer 2005; Otte 2007). In WRF, 

observational nudging is achieved through a four dimensional data assimilation 

(FDDA) process, where the difference between the nudging series and the model 

simulation at each time step is calculated and imposed upon the model run as an 

artificial forcing term (Otte, 2007). The number of variables which can be nudged is 

extensive, and thus depends on the priorities of the researcher as to what extra 

variables might be of benefit to the model performance. Objective analysis involves 

incorporating the observations into the model input data to give the best first guess 

of the atmosphere at the initialisation of the run, to provide the best opportunity of 

correctly representing the initial conditions. Gryning et al (2013) found that 

observational nudging of wind, temperature and humidity improved the simulation of 

wind speed in absolute terms as quantified by RMSE. Shimada and Ohsawa (2011) 

included analysis FDDA in their study to nudge the model run towards the analysis 

for the duration of the model run, which yielded a high correlation coefficient to 

observed wind speed of 0.8.  
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3.7.2 Ensembles 

3.7.2.1 Introduction 

Ensembles were introduced in chapter 1 as a technique by which to augment 

the scope of an NWP simulation by running the same case multiple times with some 

features of the model system perturbed to generate different solutions. Classically, 

the individual perturbations which generate the ensemble members reflect sources 

of uncertainty within the model system. A perfect ensemble would account for every 

source of uncertainty through the modelling process to produce members which 

exactly follow observations (Anderson, 1996, Hamill, 2001). One of the benefits of 

running an ensemble is the information which can be obtained from analysis of the 

members’ behaviour relative to one another, particularly if the differences between 

the members are known and might explain the observed discrepancy. Ultimately, an 

ensemble is a single product comprised of its members. One of the great strengths 

of ensemble generation is the potential to produce a probabilistic output, providing a 

distribution suggesting the likely location of the correct value. Alternatively, ensemble 

members are often combined to produce a mean value, which is more often used 

when a limited number of members are available. It is generally accepted that an 

ensemble mean will have a lower error than any individual member (Whitaker and 

Loughe, 1998; Leith 1974; Murphy 1988). An extension of the ensemble mean 

method involves weighting the members to accentuate confidence or uncertainty 

accordingly (for example Lu et al, 2007). However, such a technique requires 

justification based on previous experience. National forecasting centres which 

employ operational ensemble forecast systems undertake statistical post-processing 

of the ensemble to produce calibrated probability forecasts (Grimit and Mass, 2007). 

Calibration of the ensemble is desirable but also computationally expensive and time 

consuming. Uncalibrated ensemble systems have been investigated against their 

calibrated counterparts and were shown to be skilful tools (eg Arribas et al., 2005, 

Buizza et al., 2005), albeit lacking the confidence associated with a calibrated 

product. 

3.7.2.2 Application to the field of offshore wind resource assessment 

Clearly the main focus of an ensemble is the difference between its members, 

i.e. the method of perturbation, which is related to a particular area of uncertainty. 

Depending upon the application of the simulation, different areas of uncertainty might 
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be more highly prioritised. Two areas of uncertainty were identified as being 

particularly relevant to the field of offshore wind resource assessment. The first 

relates to the initial conditions provided to the model, which is a source of uncertainty 

in every NWP simulation, and the second is more specific to this research which is 

the representation of physical processes in the planetary boundary layer.  

Initial conditions are the values of required variables provided to the model at the 

start of a run by the input data.  The accuracy of the input data is clearly limited by its 

grid resolution with each mass point representing a portion of the surrounding area. 

Accuracy of the initial conditions is imperative to the success of the model run. The 

further departed the input data is from reality, the less chance the model has of 

correctly simulating the evolution of the atmosphere as it will effectively be doing it 

from a different state. The closer a set of initial conditions is to reality, the less 

quickly a model solution is likely to diverge from reality. An ensemble approach is 

thus a very useful technique to apply to the uncertainty associated with initial 

conditions as multiple runs can be undertaken. Perturbation of the initial conditions 

relates to the study in question, for example different data sources might be available 

or specific variables might have a bias associated with them which could be 

accounted for using an ensemble. Another option by which to perturb the initial 

conditions is to initialise members at different times and generate an ensemble for 

the overlapping period. This time offset ensemble system (TOES), also known as a 

lagged ensemble (Hoffman and Kalnay 1983), preserves the same model setup for 

the duration of a run and is consisted of members initialised at different times. 

Originally, lagged ensembles were applied to medium range simulations on the order 

of 6-10 days (Dalcher et al. 1988, van den Dool and Rukhovets 1994), before shorter 

timescales were considered and the performance benefit of generating a lagged 

ensemble was evident (e.g. Hou et al. 2001, Lu et al 2007 and Walser et al. 2004). A 

lagged ensemble is a flexible method by which to account for some uncertainty in 

initial conditions, but another benefit is the reinitialisation effect achieved by 

staggering initialisation times to generate an ensemble mean. Lo et al (2008) 

compared the solutions of a continuous year-long run with a run for the same period 

but which was reinitialised every 29 days. The model setups were otherwise identical 

and they found that the reinitialised run performed better than the continuous run due 

to the regular update of large scale atmospheric structures provided by the input 
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data. While the runs for this work will be much shorter, the principle still stands and 

by generating an ensemble mean of the staggered runs, the effect of reinitialisation 

will be incorporated into the run.  

Uncertainty in the planetary boundary layer is associated with the techniques 

applied in mesoscale NWP models to represent the processes which occur 

throughout the layer and are implicit in modifying the larger scale circulation resolved 

by the model. Parameterisation schemes, discussed earlier in section 2.7, are 

functions of resolved variables which provide an approximation of the fluxes which 

occur through the PBL. Since the processes are sub-grid and thus not directly 

resolved, a degree of uncertainty is attributed to the accuracy with which the layer is 

represented and thus the feedback effect translated to the larger scale circulation 

resolved by the mode. As previously mentioned, a number of PBL schemes exist for 

WRF and no one scheme proves an obvious first choice with different schemes 

excelling depending upon conditions. Creating an ensemble by running the same 

simulation using different PBL schemes is one way to ensure the best performing 

scheme always has an influence. Generating a PBL ensemble is a novel approach to 

addressing the uncertainty of model performance in the boundary layer. Only 

recently have other studies employed a similar approach, for example Deppe and 

Gallus (2013) who were motivated by results in studies by Harrison et al. (1999) and 

Stensrud et al. (2000) which showed the potential of perturbing WRF model physics 

to be an efficient way of generating a forecast ensemble. In the context of wind 

resource assessment, Nunalee and Basu (2013) conclude the use of multi-physics 

ensembles to be of benefit in producing more accurate predictions. 

3.7.2.3 Ensemble spread 

Ensemble spread is simply the distribution of ensemble members for a given 

point in time. Spread of the ensemble members is considered a measure of 

uncertainty, with larger (smaller) spread of ensemble members corresponding to 

larger (smaller) model uncertainty (Grimit and Mass, 2007). Practical investigations 

of the linear correlation between ensemble spread and model error have highlighted 

a lack of any strong relationship between the two series (e.g., Buizza 1997, Stensrud 

et al, 1999, Hamill and Colucci, 1998), though correlation has been shown to 

improve using forecast bias correction (Stensrud and Yussouf, 2003). The strongest 

linear link between ensemble spread and model error appears to occur when 
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ensemble spread is anomalously high or low (Whitaker and Loughe, 1998, Grimit 

and Mass, 2002). Such behaviour is associated with the state dependence of the 

metrics (Grimit and Mass 2007), which some studies (Toth 1992; Ziehmann 2001) 

suggest should be viewed in a climatological rather than instantaneous context. For 

example, the inference is that the magnitude of a forecast error is more likely to be 

greater (reduced) when a variable is close to its climatological extreme (mean) value 

(Grimit and Mass, 2007; Whitaker and Loughe, 1998). 

 

3.8 The modelling environment 

Two concepts which pertain to the application of NWP as a wind resource 

assessment tool are presented below. Discussed first is the concept of stability, its 

impact on wind resource assessment and farm output and how it can be accounted 

for as part of an NWP derived wind resource assessment. Secondly, the concept of 

weather typing is presented. Weather typing has no direct influence on the wind 

resource assessment, but as will be argued, is a useful tool to consider alongside an 

NWP output. 

3.8.1 Stability 

Stability is an atmospheric property which describes the tendency of an air 

parcel after a perturbation in the vertical direction. In a stable atmosphere, upon 

perturbation, an air parcel will return to its original level. In a neutral atmosphere, an 

air parcel will remain at the level it was perturbed to, while in an unstable 

atmosphere an air parcel will continue travelling in the direction of the perturbation. 

The implication of atmospheric stability in extracting energy from the wind mostly 

translates to the effect it has upon mixing between horizontally orientated 

atmospheric layers, which affects both the vertical wind profile and the wake 

dissipation after a turbine. Manifestation of varying stability on the vertical wind 

profile tends to be considered, for wind energy applications, in terms of variations in 

shear (e.g. Rareshide et al 2009, Wagner et al 2009) and turbulence intensity (e.g. 

Tindal et al 2008). Ultimately, the inter-layer mixing which is affected by stability will 

determine the degree of energy redistribution between layers. For the incident 

turbines, the ones which receive the wind first, this will affect the amount of lift each 

blade will generate across its diameter and for downwind turbines there is also the 
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wake effect to consider. In an unstable atmosphere, enhanced mixing promotes 

energy transfer between adjacent atmospheric layers which has the effect of 

dissipating turbine wakes faster than under neutral conditions. In a stable 

atmosphere, turbine wakes persist further than under neutral conditions because 

there is no additional source of momentum from neighbouring layers. As a result, 

stable conditions typically lead to a greater power deficit for downwind turbines 

(Barthelmie and Jensen, 2010; Türk and Emeis, 2010; Hansen et al, 2012). While 

ultimately determined by the relative thermodynamic state of the atmosphere, 

stability can vary as a function of other atmospheric variables. For example at high 

velocities laminar flow tends to dominate inhibiting turbulent structures. Figure 3.12 

shows an example of this where the highest wind speeds tend to be dominated by 

neutral conditions and lower wind speeds corresponding to more unstable 

conditions. 

 

Figure 3.12 Stability as a function of wind speed at Vindeby (Motta and Barthelmie, 2005) 

Different metrics exist for representing atmospheric stability and are generally related 

to the type of research application. The Obukhov length (L) is a scaling parameter 

used specifically within the surface layer (Stull 1998; Joffre 1984) and is a function of 

heat and momentum fluxes (Wharton and Lunquist, 2012b; Mahrt et al, 1998). The 

Obukhov length is one of the key dimensional scales used in Monin-Obukhov 

similarity theory (MOST) which describes turbulence and non-dimensionalised mean 

flow in the atmospheric surface layer (roughly the lowest 10% of the PBL).  In this 
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work, the Obukhov length is derived from the Richardson number. There are two 

methods for calculating the Richardson number depending upon the variables 

available. The gradient Richardson number requires temperatures and wind speeds 

at two heights, calculated in Equation 3.7 with the conversion criteria to Obukhov 

length described in Equation 3.8 after Stull (1988) and used in Zoumakis and 

Kelessis, (1991). The bulk Richardson number (Equation 3.9) requires temperature 

at two heights but wind speed at one. Conversion to Obukhov length is shown in 

Equation 3.10 after Grachev and Fairall (1997) used in Hansen et al (2012). In these 

calculations, temperature at the lower height is subtracted from temperature at the 

higher level, which is why the gravity constant does not have a negative sign 

because the force is acting in the same direction as the temperature gradient as 

calculated.  
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Where z’ relates to the approximate height (m), dz relates to the change in 

height, g is gravitational acceleration (9.81ms-2),    is virtual potential temperature 

(°K), Cp is the specific heat of dry air at constant pressure (1004 J K-1 kg-1),    is the 

temperature (°C) and u is wind speed (ms-1). Richardson number has been shown to 

be dependent upon the length scale over which it is calculated (Reiter and Lester 

1968), which means if any comparisons are made is important to be consistent 

regarding the levels over which the Richardson values are calculated to try and 

reduce any sources of discrepancy. Once the Richardson number has been 

calculated and mapped to provide the Obukhov length, the stability can be classified. 

A range of classification schemes exist developed for varying applications, provided 

in Table 3.3 is the scheme used in this research.  

Table 3.3 Stability classes in relation to Obukhov Length (L) van Wijk et al (1990) 

Obukhov length (m) Atmospheric stability class 

-200 < L < 0 Very Unstable (VU) 

-1000 < L ≤ -200 Unstable (U) 

|L| > 1000 Neutral (N) 

200 ≤ L < 1000 Stable (S) 

0 ≤ L < 200 Very Stable (VS) 

 

3.8.2 Weather typing 

Weather typing is a classification system which describes the synoptic state of 

the atmosphere for a given area, in this case the British Isles. Originally a subjective 

classification devised by Lamb (1972), a synoptic chart is classified firstly by the 

dominant pressure system (where present) and then by the wind direction. 

Jenkinson and Collison (1977) then developed the objective Lamb weather typing 

system (Table 3.4) by quantifying the atmospheric setting from daily gridded sea 

level pressure. Knowledge of the dominant air source and air mass properties 

affords the ability to infer general information about atmospheric conditions. For 

example, if the weather type was a cyclonic westerly (26 CW), the wind would be 

coming from a westerly direction with cyclonic tendency. The source of the airmass 

is to the North-West of the UK so it is likely to be relatively cold and the flow brings 

the air over the Atlantic which means the air is likely to contain a lot of water vapour. 

Because the scale of weather typing is synoptic, only large scale features are of 
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interest which tend to move slowly. As a result, weather typing is typically carried out 

on a daily basis assuming persistence of the synoptic features for that day.  

Table 3.4 Numerical designation of the lamb weather type categories 

Lamb Weather Type (LWT) 

codes 

-1  U -9  non-existent 

0  AC  20  C 

1  ANE 11  NE 21  CNE 

2  AE 12  E 22  CE 

3  ASE 13  SE 23  CSE 

4  AS 14  S 24  CS 

5  ASW 15  SW 25  CSW 

6  AW 16  W 26  CW 

7  ANW 17  NW 27  CNW 

8  AN 18  N 28  CN 

 

A number of basic principles are required for making use of weather type 

analysis, most importantly is remembering that any inferences made are relative, 

much like discussing pressure systems. For example, a Northerly flow is likely to 

bring cooler air than is currently affecting the UK while a Southerly flow might bring 

warmer air, so that weather types do not offer absolute values for variables. This 

touches on one of the important principles of weather typing, namely the relative 

temperature of an airmass based on its origin. Very basically, due to the differential 

heating of the Earth, if an air mass originated South of the UK, it is likely to bring 

warmer air while from the North the air is likely to be cooler. Some instances do exist 

where this might not be the case. For example, if a Northerly air mass passes over 

the Atlantic to the West of the UK before reaching the country, the air will be 

modified through heating from the Atlantic Ocean due to the northerly transport of 

warmer water by the Gulf Stream. The ambient conditions affecting the UK at the 

time of interest are also an important consideration when performing a weather 

typing analysis. In the winter, the landmass is likely to be cold, at times colder than 

the surrounding water bodies, so a North-Westerly flow may well bring relatively 

warm air. Consideration of the modifications which may have been imparted to an 
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airmass is also important. For example, an air mass may have originated North of 

the UK, travelled South past the UK then circulated back around to influence the 

country. The journey South is likely to have warmed the airmass, equally if it has 

travelled over water it is likely to be holding more water than if it had come from a 

pure northerly flow as warm air holds more water. The dominant pressure systems 

will allow a tracing of the track of an airmass, and also provide some information 

about the atmospheric conditions. Anticyclonic conditions are associated with calm 

weather, low wind speeds and temperature extremes. For example, in the summer a 

high pressure circulation can lead to very high temperatures due to cloudless skies, 

whereas the same conditions in winter could lead to very cold temperatures. 

Cyclonic pressure is associated with more unsettled weather such as: higher wind 

speeds, clouds and precipitation. These principles can be established very quickly 

either by visual analysis or for an experienced user using simple knowledge of the 

weather types. Once the weather type is established, suggestions can be made of 

likely conditions and this is where the potential value lies to the field of wind resource 

assessment. As large scale pressure fields tend to be well simulated by NWP 

models, subsequent weather typing analysis would provide another perspective on 

likely conditions. For example, Figure 3.13 shows a South-Westerly weather type. 

The airmass originates in the Arctic but circulates round a low pressure system north 

of the UK and moves eastwards across the Atlantic. On its journey south, the 

airmass will be warming and becoming more saturated as it travels over the Atlantic. 

By contrast to NWP forecasts, weather typing offers no direct quantification of 

variables but an insight into the likely properties of the atmosphere and some 

impression of its likely evolution. 
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Figure 3.13 Example of South-Westerly weather type. Red points mark the locations at which pressure is 

sampled for the objective classification (Horseman, 2013). 

 

The time of year will help determine the impact of the airmass coming into 

contact with the UK land mass. In winter, the land is likely to be colder than the air 

flowing over it from a South-Westerly flow which would chill the overlying air, forcing 

water to condense leading to cloud formation. In the summer when the airmass 

might still possess some coldness from its origins, the underlying land would warm 

the air above generating convective clouds most likely producing rain as the air is 

forced to rise. Weather typing is a simple technique which can provide a metric to be 

used alongside the output of an NWP model. By identifying the behaviour of 

variables under particular weather types, the reverse process could be used 

operationally by referring to the forecasted weather type and extrapolating the 

behaviour of the variables. The synoptic scale of weather typing fits well with 

mesoscale NWP simulations which resolve synoptic scale features wind confidence, 

upon which a weather typing analysis could be performed. 
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4 Method 

4.1 Introduction 

This chapter describes the process by which the potential of WRF as a wind 

resource assessment model is assessed. Facets of the project upon which 

progression is entirely dependent are discussed first, before setting up the model 

and analysing the output for the three investigation threads is described. As a 

relatively inductive study, there is little existing research to inform the process by 

which to undertake the research to achieve the aims, so the methodology of this 

work itself is one of the major achievements. From the development of the 

investigation and designing of the studies, to the careful selection of model output 

and analysis techniques, the methods applied to two novel locations are presented in 

the following chapter. 

4.2 Dependencies of the research 

This work is dependent upon observational data against which to validate 

model performance and the availability of computing systems on which to run the 

model. It is critical to validate model output against observations, not only to quantify 

performance as a resource assessment tool, but also as a means to investigate 

model shortcomings. Offshore observational data is often proprietary and since 

making observations offshore is prohibitively expensive, companies who own these 

data are reluctant to share them without significant compensation. Even if data are 

available, there are requirements to which it must adhere in order to be of use to the 

study, for example regarding data quality, resolution and format, which form a 

considerable part of the selection process. It is also critical to acquire the use of 

computing resources on which to run the model. The computationally intensive 

nature of mesoscale modelling requires significant processing resource, combined 

with significant storage capacity for both model input and output. Given the wide 

audience of potential users to which this research might be relevant, undertaking 

runs on computing facilities with varying levels of performance was important to 

provide some context into the capability of machines with different specifications. 

The observational data obtained for this research and the computing resources 

acquired are discussed below in turn. 
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4.2.1 Observational data 

Two observational data series’ were sourced for this work through 

connections within the Supergen Wind consortium, one from Scroby Sands, the 

other from Shell Flats (Figure 3.14). Temporal resolution of the data from both sites 

is 10 minutes, which for wind speed is an average of the anemometer data sampled 

at 1Hz. Scroby Sands meteorological mast is located at 52.67° lat, 1.79° lon, 

recording: temperature, wind speed and wind direction at 33 and 51 metres, from 

1995 to 2000. Missing data was a significant challenge and selection of runs was 

heavily influenced by data availability. Two masts were erected at Shell Flats, Mast 1 

is located at 53.86° lat, -3.29° lon, recording wind speed, wind direction, 

temperature, relative humidity, pressure, rainfall and solar radiation with instruments 

sited at 12, 20, 30, 50, 70, 80 and 82m above HAT (highest astronomical tide). The 

second mast at Shell Flats is located at 53.88° lat, -3.20° lon, some 9km from Mast 

1. Observations at Mast 2 were made at 12, 20, 30, 40 and 52m above HAT, 

recording the same variables as Mast 1. Not all instruments were installed at every 

height and the investigation is set up to use the required data available from both 

masts at comparable heights.  

4.2.2 Computing resources 

4.2.2.1 CREST03 

 To begin with, the only computing resource available for the project was the 

departmental server CREST03, a Dell PowerEdge™ 2930 server with dual quad 

core Intel® Xeon® X5355 processors, 32GB FBD RAM and 2TB hard-drive storage, 

running Linux x84_64 GNU/Linux. The GCC (GNU Compiler Collection) compiler 

suite is available on CREST03. As a shared resource, without a batch queuing 

system, runs on CREST03 were undertaken in serial mode on one processor so as 

to not monopolise the facility. Given the relatively restricted amount of computing 

power available, it was decided WRF-NMM be run on CREST03 due to its superior 

computational efficiency. Despite the performance gain afforded by running WRF-

NMM, considerations had to be made regarding the physical setup of the model for 

the desired runs, detailed in chapter 5.1.2.  

 



65 
 

 

Figure 4.14 Selection of Offshore met. masts and nearby onshore stations (McQueen and Watson, 2006) 

 

4.2.2.2 HECToR 

 Obtaining computing time on a high performance computing cluster was 

always an aim of the project in order to maximise model performance as far as 

possible. With this in mind an application was made for a class 2a computing 

account on HECToR (High-End Computing Terascale Resource), the UK’s national 

supercomputing facility. HECToR has 2816 compute nodes, each with two 16-core 

AMD Opteron 2.3GHz Interlagos processors and 32Gb of memory. Aside from 

significant processor power, HECToR possesses advanced data communication 

hardware such that each 16-core socket is coupled with a Cray Gemini routing and 

communications chip which translates to data latency between two nodes of around 

1-1.5μs. HECToR runs Linux and is available with many selectable modules and 
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compilers for example gfortran, PGI, Intel and Cray. A class 2a account (grant 

Q198891) initially provided 300kAu’s (thousand allocation units) of computing time 

on HECToR and 150GB of hard disk storage. With little knowledge of how intensive 

the early runs would be they were simply undertaken and monitored. It was obvious 

early on that more hard disk space was required and while 150GB was initially 

allocated, a request for more space saw an expansion to 500GB which allowed 

multiple runs to be undertaken simultaneously. The budget was completely used and 

again after a request the project was generously awarded more resource, this time in 

the form of an extra 100kAu’s. Furthermore an additional 6 months were provided to 

extend the project. A second computing account on HECToR was applied for to 

undertake the set of runs comprising the performance optimisation investigation. 

Lessons learned from the first account identified the need for more computing time 

and hard disk storage. A class 1b account was applied for in the November 2012 

RAP (resource allocation panel) which was assessed by review and awarded to the 

same research grant as the earlier class 2 account (grant Q198891). The awarded 

account provided 1,500kAu’s and 1.5TB of hard disk storage as requested. Such a 

resource allowed the simultaneous undertaking of 6 runs which facilitated a much 

faster run turnaround period than was possible with the previous account.  

4.2.2.3 Hydra 

 One of the aims of the research was to undertake yearlong resource 

assessments for the Supergen exemplar site and Shell Flats, which required a lot of 

model runs. Since applying for a HECToR computing account can only be done 

during particular periods through the year, an application was made for time on the 

Loughborough University HPC (high performance computing) cluster Hydra, to allow 

a more flexible work program. Hydra is comprised of 161 compute nodes, each 

having two six-core Intel Westmere Xeon X5650 CPUs and 24GB of memory. Hydra 

runs Linux and offers PGI, Intel, gfortran and Bull compilers. A computing account on 

Hydra was awarded which provided 354816 core hours of computing time and 1Tb 

of hard disk storage. 

4.2.2.4 Compilation of model and ancillaries 

 WRF is well supported and highly versatile in that it is provided with multiple 

configuration options for a range computing systems and compilers. Access to WRF 

requires an account from the model website, after which the model and ancillaries 
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can be downloaded. For this research WRF version 3.3 was used throughout the 

investigations to provide a level of consistency. Four processes comprise the 

modelling flow (pre-processing, observation integration (where applicable), model 

running and postprocessing) are compiled individually. WRF and the pre-processor 

WPS, require the following libraries; a Fortran 90/95 compiler, a C compiler, Perl and 

netCDF. In order to pre-process GRIB 2 data, for example when using CFSR data, 

the following libraries are also required for compilation; JasPer, PNG and zlib. 

Observations were integrated into the model run for nudging using Obsgrid.exe, a 

WRF utility program which requires the presence of the netCDF library. Post 

processing on CREST03 was undertaken using WPP (WRF Post Processor, now 

UPP) and NCL (Ncar command language) scripts, these programs require the NCL 

libraries and the NCAR graphics package. Post processing on Hydra and HECToR 

was undertaken using RIP4, which requires netCDF and the NCAR graphics 

package. The NCAR graphics package is also required to build some of the WPS 

utility programs which can help the setting up of model runs. 

4.2.2.5 Modelling process 

Once the model components are successfully compiled, runs can be 

undertaken. To begin, input for the model run must be prepared which is done using 

the WRF Pre-processing System (WPS) executables. All three WPS executables are 

controlled by information in the namelis.wps file which specifies temporal and spatial 

domains. The namelist file is a text file and can either be populated manually or 

generated by a utility program such as WRF domain wizard. WRF domain wizard is 

a GUI tool which is very helpful in selecting model domains and can be used to 

generate the namelist.wps file. Initially in the pre-processing stage, input data is 

sourced and transferred onto a model grid by the ungrib program. Land surface data 

is provided with the WPS and the geogrid program extracts data for the domains of 

interest at a requested resolution. Metgrid.exe is the final WPS program to be run 

which combines the atmospheric and surface input data together which can then be 

used to run the model. If nudging forms part of the model input, this is the point 

where Obsgrid is run to integrate an observational series into the model input. Input 

files are then copied to the model run directory where another namelist file controls 

the parameters of the model run. Physical and temporal parameters are the same as 

set in the pre-processing namelist, while the model namelist includes dynamics 
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options for the run. Two executables form the model solver process, first a 

preliminary program generates the WRF input and boundary files interrogated by the 

model over the course of the run, then the solver itself executes the simulation. WRF 

output files are spatial grids containing a wide array of variables produced at time 

intervals set in the namelist. Most postprocessors comprise a ‘translation’ step to 

manipulate the raw output from the models Arakawa grid onto a more standard 

format such as a lat-lon grid, from which variables can be extracted. This work is 

concerned with extracting variables from a single point to compare against 

observations. WRF outputs variables on a discrete grid, which means the space 

between the gridpoints is vacant. Post processing tools offer the option to interpolate 

variables for sites of interest which lie between grid points. In this work model 

domains were all designed to have a mass grid point at the centre of the domain, co-

located with the site of interest so post processed output from the model would be 

‘true’ rather than interpolated by software accounting for the point being located 

between two model grid points. Two post processing techniques were used in this 

work and are described below. 

4.2.2.6 Post processing 

4.2.2.6.1 RIP4 

RIP4 (Read Interpolate Plot version 4) was used for the majority of the model 

post-processing in this research, specifically for the runs undertaken with WRF-

ARW. ARW solves on a different model grid to NMM, which requires a different post 

processing technique by which to extract the variables. RIP4 has two stages, where 

firstly a data preparation executable extracted a range of state variables from the 

model grid and maps them onto an intermediate RIP format for selected time 

periods. Secondly the RIP4 postprocessor processes the intermediate data to extract 

and display variables as requested in the RIP4 namelist. RIP4 is able to produce 

time series’ or plots for variables by a range of temporal and spatial media. It is also 

able to spatially interpolate to provide values for variables between model points. 

RIP4 is controlled by the specification of values through a namelist file for both post-

processing stages with critical features such as location, time step and vertical level 

all explicitly stated for each run. 
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4.2.2.6.2 WPP and NCL 

The WRF Post Processor (WPP) is a utility provided by the model developers 

which extracts selected variables, controlled by a namelist, from output of the WRF-

NMM. Much like the data preparation stage of RIP4, model output is translated from 

the model grid to a standard grid. NCL (NCAR Command Language) scripts were 

then used to select wind speed and direction from the WPP output for a specific grid 

point which coincided with the location of Scroby Sands. Outputted variables were 

stored in a comma delimited format using a command in the NCL script. 

4.2.2.7 Analysis 

After post-processing, model output is stored as a text file for each day’s worth 

of running. A FORTRAN script was written to concatenate the multiple daily text files 

which comprised a whole run. Once the model runs were completed and post 

processed, output was copied back to a desktop PC where analysis of the output 

was undertaken. Model output was processed, manipulated and compared to 

observations using Matlab © software maintained by the university’s IT services.  
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5 Benchmarking model performance at Scroby Sands 

5.1 Introduction 

As identified in the literature review, little previous research has been 

undertaken investigating the performance of WRF as a wind resource assessment 

tool and none at all has been published regarding the locations used in this study. As 

a result, this research is novel and effectively inductive because there is no level of 

performance to directly compare against. It is therefore necessary to undertake an 

investigation to define a level of baseline performance. As well as establishing a 

baseline performance, early model runs will help identify tendencies in performance 

and inform the direction of further investigations. 

5.2 Method 

An investigation which compared simulated to observed wind speed was 

required to establish a benchmark for model performance. The investigation was 

conducted for a site at Scroby Sands from which mast data were available. Two 

configurations of WRF were developed to investigate the impact of computing 

resource upon model performance. The two configurations would be run for the 

same cases so a direct performance comparison could be made. Temporal filters 

were developed and applied to focus on model performance at different temporal 

resolutions. Wind speed was simulated for Scroby Sands at 10 minute temporal 

resolution and 50m height. 

5.2.1 Computing setup 

The class 2a HECToR account was obtained to run a comprehensive setup of 

WRF-ARW for the same run period as those simulated using the WRF-NMM on 

CREST03. NMM runs were undertaken on the departmental server, CREST03 which 

was limited in physical storage space. ARW runs were undertaken on HECToR 

which, despite being able to undertake more demanding runs, was also constrained 

by hard disk space restriction. Around three runs could be undertaken 

simultaneously on HECToR due to the restriction of the 500GB hard disk space, as 

each model run including post-processing was around 100-150GB. 256 cores (8 

nodes, 256GB of memory) were used for each benchmarking run undertaken on 

HECToR.  
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5.2.2 Selection of run duration 

As was mentioned in the literature review, it is well known in numerical 

weather prediction (NWP) that the time frame of a simulation will help determine the 

method to be used. For example, a high quality short-term forecast, on the order of 

minutes to an hour, can be obtained by assuming persistence. An alternative to 

persistence with a greater degree of complexity and sensitivity, also favoured in the 

short term, is an ARIMA (Auto Regressive Integrated Moving Average) model. When 

the timescales lengthen, dynamical solutions become more necessary as accuracy 

improves and overtakes statistical and persistence models. A simple persistence 

investigation was undertaken using data from the Scroby Sands mast to identify the 

error associated with the technique and inform the selection of model run lengths. 

Figure 5.15 shows the absolute error of the persistence forecast with increasing lead 

time. Accuracy of the persistence forecast drops significantly to begin with, before 

appearing to smooth out with increasing forecast horizon after around 180 minutes, 

which suggests that model simulations should be at least three hours in length.  

 

Figure 5.15 RMSE for the prediction of wind speed at Scroby Sands data assuming persistence as a 

function of timestep into the future 

5.2.3 Selection of run periods 

Case studies for the benchmarking runs were undertaken during the year of 

1996, since relatively complete data from Scroby Sands were available for that year. 

Data from Scroby Sands were available at 33m and 51m and ten minute averaged 

temporal resolution. To include a variety of synoptic and seasonal conditions, three 
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cases from the beginning (3rd), middle (10th) and end (26th) of each month, were 

arbitrarily chosen to comprise the study. In two cases (early August and late 

November), runs could not be undertaken due to missing data. Three cases were 

undertaken from a different start date, again due to data availability. These were- 

early June (started on the 4th), early September (4th) and mid August (20th). Several 

initial feasibility runs had been undertaken to gain knowledge of the model, but as a 

novel study and with little experience, a variety of run lengths were operated to 

provide insight into the optimal run length. Runs undertaken at the beginning of the 

month were 24 hours long, late month runs were 36 hours long and the mid-month 

runs were 90 hours long, apart from the January and March cases which were 24 

hours long. In total 80 days were simulated in the 34 benchmarking runs, accounting 

for around 22% of the year. A meteorological mast is located at Hemsby (figure 4.14) 

which is around 6km north west of Scroby Sands. Hourly wind speed data at 10m 

height were obtained from Hemsby to provide a context by which to judge model 

performance by using both series as predictors of wind speed observed at Scroby 

Sands. In the postprocessing stage the first six hours of each run were discarded to 

allow for model spin-up when calculating statistics but were retained in most plots to 

provide a little more overlap between model and observations. 

5.2.3.1 Model setup 

It is important to state from the outset that this investigation is not a 

comparison of the two WRF dynamical cores. While both NMM and ARW are used in 

the two configurations which are compared against one another, the dynamical cores 

are simply a setup selection, based upon a compromise of computational efficiency 

and outright performance. Results cannot be used as a direct means of comparison 

of the two model cores because the conditions are not the same. 

5.2.3.2 Physical setup 

5.2.3.2.1 Configuration 1, NMM-Setup 

Model runs were undertaken on CREST03 to illustrate the potential of WRF 

given a relatively available yet not particularly powerful computing resource. In order 

to provide a compromise between performance and computing resource, the more 

numerically efficient WRF-NMM solver was used. To maintain the requirement of 

large spatial coverage in combination with high resolution centred over the site of 
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interest at Scroby Sands, a five domain setup was used for the NMM-setup runs 

described in Table 5.5. Four sequentially nested domains at increasingly high 

resolution were located over Scroby Sands within the parent domain shown in Figure 

5.16. The NMM-setup runs were initialised from the 1.0° ERA-40 reanalysis product 

which provides variables on a spatial resolution of around 110km at the latitude of 

the UK. 65 vertical levels on which the gridpoints were located were used in each of 

the domains, with a concentration in the lower part of the atmosphere to give greater 

resolution in the PBL. Sixteen levels exist below 500m at heights very similar to 

those described for the ARW setup in the next section. 

Table 5.5 Domain description of NMM-setup runs 

Domain Resolution (km) Grid configuration 

1 (Parent) ~84km 18 x 18 

2 ~28km 22 x 22 

3 ~9km 28 x 28 

4 ~3km 22 x 22 

5 (Innermost) ~1km 19 x 22 

 

 

Figure 5.16 Model domains used for the NMM-setup runs 
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5.2.3.2.2 Configuration 2, ARW-setup 

For the ARW-setup runs a larger computing resource was available which 

was utilised by running the model for much larger domains. A larger domain gives 

more space to simulate synoptic scale features and track their movement over the 

course of the run which is pivotal to contributing to the wind observed at the site of 

interest. The parent domain covered a much larger area at a far higher effective 

resolution than the parent domain of the NMM-setup. By using a higher resolution 

outer domain, fewer nests were required to reach the high resolution desired for the 

innermost domain. Having an outer resolution of 18km allows a higher resolution 

input to be used, which provides more information from which the model can 

simulate. Two further domains were nested within the parent domain providing an 

inner resolution of 2km shown in Figure 17 and described in Table 5.6. Nests were 

offset for the ARW-setup runs to give more space for the model to simulate features 

originating over the Atlantic, where many weather systems which influence the UK 

originate. For the ARW-setup runs the 0.5° CFSR reanalysis product was used to 

initialise the model, which equated to a grid spacing of around 55km. During the 

testing phase, breaches of the CFL (Courant Friedrichs Levy) criterion in the vertical 

plane were causing the model run to stop. The number of vertical levels was reduced 

to 50 vertical model levels which resolved the issue of numerical stability. Vertical 

levels were fairly evenly distributed apart from close to the surface where again more 

levels were concentrated to improve resolution in the PBL. 15 levels were located 

below 500m at 0, 20, 40, 65, 90, 110, 130, 150, 170, 190, 230, 270, 330, 405, and 

490m. 

 

Table 5.6 Model domains used for the ARW-setup runs 

Domain Resolution (km) Grid configuration 

1 (Parent) 18 178 x 130 

2 6 208 x 169 

3 (Innermost) 2 241 x 169 
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Figure 5.17  Location and coverage of domains for the ARW-setup runs. 

 

5.2.3.3 Dynamical setup 

As the first set of runs in the investigation, little was known about performance 

relative to dynamical setup, particularly for the sites used here, which is why it was 

important to undertake the benchmarking runs. Dynamically the model options were 

very similar between the ARW- and NMM-setup runs. The MYJ PBL scheme was 

selected because of its adoption by many other studies and because it was shown to 

perform better in the offshore environment (Kwun et al, 2009) than the other PBL 

scheme widely used with WRF, the YSU. In both setups, to account for boundary 

layer processes, feedback was switched on allowing two-way information flow 

between the domains. Cumulus parameterisation was switched off in the innermost 

domain of the ARW setup and the innermost two domains of the NMM setup to allow 

resolution of convective structures which becomes appropriate at around 5km. A full 

list of the dynamical options used is presented in Table 5.7. 
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Table 5.7 Dynamical options used in both ARW- and NMM-setups for the benchmarking runs. 

Model Parameter Setup 

Vertical model levels 65/50 (NMM/ARW) 

Nesting Feedback On 

PBL Scheme Mellor-Yamada-Janjic (MYJ) 

Cumulus scheme Betts-Miller-Janjic 

Radiation scheme - Long wave GFDL 

Radiation scheme - Short wave GFDL 

Microphysics option Ferrier (new Eta) microphysics 

Surface layer physics Monin-Obukhov (Janjic) 

Land surface option Unified Noah land-surface model 

 

 

5.2.4 Model output 

Once the runs were undertaken model output had to be compared to 

observations. 50 metre wind speed at ten minute resolution for Scroby Sands was 

extracted from model output using the WPP method for the NMM-setup runs and the 

RIP4 method for the ARW-setup runs.  Descriptive statistics were produced by 

calculating the mean and standard deviation values for each modelled and observed 

run. It was important to quantify absolute error of model performance as well as the 

accuracy with which variability was reproduced to provide results of use for the 

investigation. Absolute error was represented in this work by the RMSE (Root Mean 

Squared Error) statistic, which effectively reports the average absolute model error 

over the course of a run using Equation 5.11.   

 

        
           

   

 
 

Equation 5.11 

 

 

 

Where Ot is the observed windspeed at timestep t, Ft is the forecast or 

modelled windspeed at the corresponding timestep and n is the number of 
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timesteps. Pearson’s product moment correlation coefficient (Equation 12) was 

selected as the method by which to quantify model accuracy in reproducing 

observed variability. In equation 5.12 n is the number of samples, i is the 

instantaneous observation, Xt is the observed value, Y is the modelled value and the 

bar signifies the mean value of the corresponding series. Pearson’s correlation 

coefficient describes the covariance between two variables divided by their standard 

deviation which quantifies the strength of a relationship on a scale from -1 to 1. 

Perfect relationships where a unit change in one variable corresponds to the same 

degree of change in the other variable will have a correlation of 1 or -1 depending on 

the direction of the relationship. In a positive correlation both variables change in the 

same direction, whereas in a negative relationship, one goes up as the other goes 

down. A correlation coefficient of zero indicates no relationship exists between the 

two variables. A strong correlation implies the model is able to simulate the 

magnitude, timing and direction of wind speed change closely reflecting that 

observed. Timing of change is constrained by the temporal resolution at which the 

correlation analysis is performed. Of course some consideration must be paid to the 

fact that at 10 minute resolution, the highest resolution used in this work , wind 

speed may have changed dramatically. 

 

 

 

Equation 5.12 

 

 

 

5.2.5 Temporal filtering 

 Initial analyses were performed at 10 minute temporal resolution to match that 

of the observations. Such a temporal resolution is able to capture features below the 

resolved physical scale of the model. As a result the small, sub-grid scale features 

giving rise to short term changes in wind speed, which would be represented at 10 

minute resolution, are approximated by the parameterisation schemes within WRF. 

Temporal filters were applied as a means of reducing the higher frequency variation 

to give priority to larger scale features operating over longer timescales which are 

resolved by the model. A simple moving average filter was initially applied as a 

feasibility study on the benchmarking performance investigation. The filter was 
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applied to both model and observational series at intervals of 3, 9 and 17 timesteps 

covering periods of 30, 90 and 170 minutes after Equation 5.13. In the equation x is 

the input wind speed, U is the filtered wind speed, n is the length of the timeseries, j 

is the timestep of the filtered windspeed and M is the order of the moving average 

filter. In order to preserve validity and compare like with like, the Scroby Sands 

observations were also filtered in the same way. 

 

 
      

 

 
        

       

          

 

 

Equation 5.13 

 

 

Initially, the moving average filter was applied as a feasibility study to see if the 

filtering process worked as intended. Once proven, it was decided to proceed with 

the moving average filter but also test a different filter to address some problems 

with the application of the moving average filter. A more subtle filter was ultimately 

desired which would have a lesser effect upon the filtered series and preserve some 

of the key features to a greater extent than the moving average filter. Furthermore, 

the application of a moving average filter meant sacrificing a number of observations 

at each end of the runs to have enough observations to calculate the moving 

average, where ideally a filter would preserve the full length of the series. A review of 

temporal filters identified the Butterworth filter as a potential candidate with which to 

proceed. A Butterworth filter is designed to be reliable and consistent for permitted 

frequencies in the passband. A Butterworth filter also allows a degree of flexibility 

after the cut-off frequency, depending on the order of the filter which determines the 

strength of the frequency roll-off. Ultimately a lower order Butterworth filter retains 

more features present in the original series than a higher order scheme would. A first 

order, lowpass Butterworth filter was developed using the FDESIGN.LOWPASS tool 

in Matlab ©. Sampling frequency of the observations was set at 0.0017Hz (10 

minutes). Three versions of the Butterworth filter were a implemented at timescales 

of 60, 180 and 360 minutes which corresponded to cut-off frequencies of 2.8x10-4 

Hz, 9.2x10-5 Hz and 4.6 x10-5 Hz, respectively. The Matlab © developed Butterworth 

filter was able to operate over the entire time series preserving all the features 

allowing a longer comparison than the moving average filter.  
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5.3 Establishing a baseline performance 

5.3.1 Baseline statistics 

Thirty four test cases from 1996 were undertaken for the site at Scroby Sands 

using the two different modelling configurations of WRF defined in the methods 

chapter. For ease of comparison, distinction between the configurations will be made 

evident by referring to the runs by their dynamical core of WRF. It is again stressed 

this is not a comparison of the two dynamical cores but an investigation of the 

restrictions associated with a particular level of computing resource. Results from 

configuration 1, optimised for a more restricted computing setup using the NMM 

dynamical core, will be presented under the name NMM-setup. Results from the 

second configuration, optimised for a high performance computing resource using 

the ARW dynamical core, are named ARW-setup. Descriptive statistics pertaining to 

the predicted, for both model setups, and observed wind speed can be found in 

Table 5.8 for the 34 cases run during 1996. Average wind speed observed at Scroby 

sands was 7.92ms-1. For the same period the ARW-setup runs simulated an average 

windspeed of 8.62 ms-1 which was an overestimation by 0.7 ms-1, while the NMM-

setup runs produced an average of 7.07 ms-1, an underestimation of around 0.9ms-1. 

Average standard deviation is a measure of spread which, in this work, is used as an 

indicator of the variation present in a series. Average standard deviation was 

observed to be 2.5 ms-1, while it was simulated by the ARW- and NMM-setup to be 

2.6 and 2 ms-1 respectively. It can be seen that there is little difference in standard 

deviation across the three series, indicating that the variation in wind speed is 

captured reasonably well by the models, especially for the ARW-setup. Correlation 

analysis provides more information about the variability within the modelled series’ 

relative to the variable of interest, i.e. the observations. An average correlation of 

0.35 for the NMM-setup runs shows a weak relationship between model and 

observations but is at least positive indicating the direction of change is correct. 

Correlation is far better for the ARW-setup runs at a reasonable value of 0.65, which 

implies a moderate relationship between the two series’, but is lower than the hourly 

correlation between observations at Scroby Sands and the onshore station at 

Hemsby of 0.75. Absolute error between modelled and observed wind speed is 

quantified in terms of root mean squared error (RMSE). RMSE for the NMM-setup 
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runs is 3.5ms-1, but for the ARW-setup runs, is lower at 2.2 ms-1. Referring back to 

the persistence statistics calculated for the Scroby Sands data provides an 

opportunity to compare model performance against a simple forecasting technique. 

WRF initially performs poorly compared to persistence on 10 minute intervals but 

becomes a preferable option to persistence after 180 minutes or 3 hours. The 

correlation between observed wind speed at Scroby Sands and Hemsby showed the 

highest correlation coefficient in 25 of the 34 test cases run, whereas the ARW-setup 

runs performed best in 7 cases and NMM-setup runs in the remaining 2 runs. In the 

two cases where the NMM-setup achieved the highest correlation, the ARW-setup 

once outperformed Hemsby. In the remaining cases where the wind speed at 

Hemsby showed the strongest correlation, the NMM-setup series outperformed the 

ARW-setup series on three occasions. In 8 of the 24 runs when the ARW-setup runs 

were outperformed by the Hemsby wind speed time series, the ARW-setup 

correlation was within 0.05 of the value achieved by the Hemsby wind speed time 

series. Apart from two situations, all the runs in which the model (in either setup) 

outperformed the Hemsby wind speed time series, displayed a correlation coefficient 

less than 0.7. Runs with the highest correlations were all achieved using the Hemsby 

wind speed time series, though the ARW-setup did produce 4 runs with a correlation 

over 0.9. 

 

Table 5.8 Statistics based on 10 minute 50m wind speed for 34 runs at Scroby Sands throughout 1996 for 

the ARW-setup and NMM-setup runs and hourly 10m wind speed for the Hemsby met station.  

 NMM-

setup 

ARW-

setup 

Observations Hemsby 

RMSE (ms-1) 3.47 2.19 N/A N/A 

Correlation Coefficient (CC) 0.35 0.64 N/A 0.75 

Average (ms-1) 7.07 8.62 7.92 5.26 

Standard deviation (ms-1) 1.97 2.58 2.50 1.87 
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5.3.2 Analysis of baseline performance 

To help analyse the modelled and observed wind speed, an arbitrary measure of 

wind speed variability in time, referred to by frequency was established as follows; 

- High frequency variation – rapid changes on the order of 1-3 timesteps (10 – 

30 mins). 

- Medium frequency variation – changes sustained on the order of 6-18 

timesteps (1 – 3 hours). 

- Low frequency variation – Trends in the timeseries on the order of 36+ 

timesteps (6 + hours). 

Preliminary results indicate that both configurations of the model exhibit skill, though 

to varying degrees. Standard deviation values suggest that ARW-setup runs give 

levels of variation similar to that observed, while NMM-setup runs have a lower 

standard deviation indicating a more suppressed range in comparison. Correlation 

results suggest that ARW-setup runs do not fully replicate the timing and magnitude 

of observed wind speed variability, though there is a clear relationship while the 

NMM-setup runs exhibit little likeness to observations. By comparison, observations 

from the nearby onshore station at Hemsby do reflect the change in the Scroby 

series very well despite the difference in temporal resolution. In most instances of 

sustained wind speed change, as opposed to a high frequency returning event, 

features in the Scroby series tend to be present in the Hemsby series, supporting the 

presence of a strong correlation between the two series. Instances where significant 

high frequency variation is exhibited at Scroby Sands but little in the way of medium 

or low frequency features is observed, sees performance of the Hemsby series as a 

predictor of the Scroby series fall quite far below the average correlation. An 

example in which the dominant mode of variability is high frequency is evident in the 

04/09/1996 case (Figure 5.20). This is most likely due to the different sampling 

frequencies of the Hemsby (hourly) and Scroby (ten-minute) data. The case of 

26/10/1996 is an interesting case because the Hemsby data and ARW output appear 

very similar, in that both predictors expected the same pattern to be seen at Scroby 

Sands. As it transpires, agreement between the predictors did not translate to be the 

observed sequence of events observed at Scroby Sands for the case beginning on 

26/10/1996 shown in Figure 5.21. Results from the 26/10/1996 case are of 
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importance because they clearly show that change in wind speed seen at Hemsby 

does not always reflect the change seen at Scroby Sands despite the close proximity 

 

Figure 5.18 Wind speed for the 04/09/1996 case as simulated using both model configurations and 

observed at Hemsby and Scroby Sands. 

 

Figure 5.19 Wind speed for the 26/10/1996 case as simulated using both model configurations and 

observed at Hemsby and Scroby Sands. 

3 

4 

5 

6 

7 

8 

9 

10 

11 

9/4/1996 0:00 9/4/1996 6:00 9/4/1996 12:00 9/4/1996 18:00 9/5/1996 0:00 

W
in

d
 s

p
e

e
d

 (
m

/s
) 

Date 

ARW 

data 

NMM 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

10/26/1996 0:00 10/26/1996 12:00 10/27/1996 0:00 10/27/1996 12:00 

W
in

d
 s

p
e

e
d

 (
m

/s
) 

Date 

ARW 

data 

NMM 



83 
 

To put these benchmark results into context a comparison can be made to 

similar research. Shimada and Ohsawa (2011) (herein SAO) conducted a yearlong 

resource assessment for the Shirahama observatory in Japan. WRF-ARW was 

initialised from 1.0° FNL (NCEP Final Analysis) data, incorporated FDDA (four 

dimensional data assimilation) and was updated from high resolution SST input. The 

correlation coefficient between model and observations was found to be 0.81 and the 

RMSE was 46% of the annual mean. In terms of correlation coefficient, the SAO 

study shows significantly higher values than either of the configurations used in this 

research. When RMSE is converted to percentage of annual mean, the NMM-setup 

runs achieve a value of 49%, while the ARW-setup runs achieve 25%, far lower than 

the value found by SAO. Techniques such as high resolution SST update and FDDA 

were used by SAO to improve model performance. High resolution SST data is an 

attempt to provide more information to the model regarding the thermal properties of 

the air over the sea, which can lead to a more successful simulation of small scale 

features such as convection which in turn can have an impact on local high 

frequency wind speed change. Data assimilation is a process which incorporates 

data into the WRF boundary files over the course of the run. The value of such 

techniques is evident in the high correlation coefficient achieved, however absolute 

error remains large compared to the results found in this benchmarking exercise, 

suggesting a potential area for improvement and an element of location dependence. 

In another study by Kwun et al (2009) which looked at representation of wind speed 

for three days from a range of sites around the Korean peninsula, eastern Asia. They 

found a correlation coefficient between observed and modelled hourly wind speed to 

be 0.6304 and 0.6483 for the YSU and MYJ PBL schemes respectively. While daily 

RMSE values were found to be 1.1360 and 1.1680 ms-1 for the YSU and MYJ 

schemes respectively. Comparison against the results from Shimada and Ohsawa 

(2011) suggests the mode is capable of performing to a higher standard in terms of 

capturing wind speed variability, but results from Kwun et al (2009), show that model 

performance can vary with location. RMSE shows absolute error achieved in this 

work was lower than was seen by Shimada and Ohsawa (2011), however it remains 

large compared to results obtained by Kwun et al (2009) albeit for mean daily values 

and large in the context of wind resource assessment.  
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5.4 Analysis of individual runs 

Average results give an initial impression of performance, but to fully 

understand model performance and identify areas for improvement, analysis of the 

individual runs is required. A selection of individual runs is presented to illustrate 

more closely particular features, model traits and capabilities of each setup. Figure 

5.22 shows the 10/10/1996 case, in which the observed wind speed displays a 

significant degree of variability in the high frequency range as well as some medium 

and low frequency variability. Such a complex case, in which wind speed varies to a 

moderate extent in all three frequency ranges, presents a good test of a model’s 

ability to accurately simulate the controlling dynamic features resulting in such wind 

speed variability. Change in medium frequency variability is well reproduced by the 

ARW-setup, with timing, magnitude and direction of change generally reflecting 

observations. High frequency change is less well reproduced in the ARW-setup as 

the modelled and observed series’ diverge from one another on occasion. 

10/10/1996 is an example of a statistically high quality run using the ARW setup, the 

correlation coefficient is high at 0.89 and the RMSE of 2.0 ms-1 is below the ARW-

setup average of 2.1 ms-1. Output for the 10/10/1996 test case produced using the 

NMM setup did not perform as well as the ARW-setup, but did manage to account 

for some of the medium frequency features, such as the slow rise in the middle of 

the run and the drop then rise at the end. Data from Hemsby show that similar trends 

in wind speed are seen at Scroby sands, but the Hemsby data do not offer a precise 

reflection of medium-high frequency events at Scroby Sands. 10/10/1996 is one of 

the runs where the model statistically outperforms the Hemsby data. An interesting 

feature exists at the very beginning of this run, where wind speed in neither model is 

correct, implying an inaccuracy, for Scroby Sands at least, is present in the input 

data. This serves as a reminder of the challenge facing NWP that any model is 

reliant on the quality and accuracy of the input data it is initialised from. Any initial 

inaccuracy indicates a misrepresentation of initial conditions, from which the model is 

less likely to be able to correctly simulate atmospheric evolution. 
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Figure 5.20 Wind speed at 50m and 10 minute resolution, simulated by the ARW-setup, NMM-setup and 

observations for a 90 hour run beginning 10/10/1996. Stats for ARW, NMM and Hemsby, Correlation 

coefficient (0.885, 0.479, 0.883) RMSE (2.03, 3.11, N/A ms
-1

). 

Another good example of the variability in model performance is provided by the 

26/12/1996 test case. It is one of the very few instances where an NMM-setup series 

statistically outperforms the ARW-setup series (Figure 5.23). Observations of the 

wind speed display predominantly high frequency variation superimposed on a low 

frequency decline then rise. In the middle of the run there is a medium frequency 

ramp up and recovery (1) which is pivotal to the performance of the ARW-setup 

series. The ramp up in speed is well timed in the ARW-setup series but its 

magnitude is overestimated and the recovery down completely missed (2). From 

here (2) the ARW-setup series reproduces many observed features but with a large 

positive bias, seen as a positive vertical offset from the observations. Performance of 

the ARW-setup series is very good initially, with the divergence in the middle of the 

run akin to a practical demonstration of chaotic divergence represented by the 

Lorenz attractor, where two paths begin close together but some features are not 

quite captured accurately by the model and at point (2) the series diverge. It is 
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unknown as to the reason for this particular divergence seen at (2), which could be a 

chaotic feature or an inaccuracy in the model physics. The NMM-setup run is a good 

example of the lack of high and medium frequency variation when running using this 

setup. Observations are characterised by a soft sloped V-shaped trend through (3). 

A similar trend is displayed by the NMM-setup (4), however no sign of high 

frequency variation is seen neither is the small ramp event in the middle of the run at 

(1). Despite the lack of variability, replication of the general trend by the NMM-setup 

is relatively good with a correlation coefficient of 0.69 and a RMSE of 1.45 ms-1 

which is far below the average value for all the runs (3.47 ms-1). Hemsby data 

display an expected negative bias due to the lower height at which wind speed are 

recorded. As with the majority of the test cases, wind speed at Hemsby provides a 

good representation of wind speed at Scroby Sands. In this particular case of 

26/12/1996, most of the important features present in the Scroby Sands series are 

visible in Hemsby, evidenced by the high correlation value. 

  

Figure 5.21 10 minute 50m wind speed as simulated by WRF-ARW, WRF-NMM along with observations 

for a 36 hour run beginning 26/12/1996.  Stats for ARW, NMM & Hemsby, CC (0.450, 0.694, 0.868), RMSE 

(2.07, 1.64 ms
-1

). 
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 For all 34 individual runs, correlations for both model configurations were 

considered by reference to average wind speed (modelled and observed), standard 

deviation, and the coefficient of variation. No significant relationship was identified 

between correlation and the type of wind experienced in terms of speed, with the 

model seeming to show equal aptitude for low and high wind speeds (Figure 5.24). 

However the model does perform slightly better when standard deviation is higher, 

shown in Figure 5.25. These limited results show that the model performs with 

consistency and has no bias towards particular wind speed conditions, but is able to 

better simulate wind speed in a series where variation is relatively high compared to 

the mean wind speed. A lack of model bias is a positive sign for the application of 

NWP to the field of offshore wind resource assessment. The preference shown for 

higher levels of variability indicates the potential for some form of classification 

scheme which might help add value to model output and offer an insight into the 

potential level of model performance. 

 

 

Figure 5.22 Scatterplot and correlation coefficient pertaining to the relationship between observed and 

simulated (ARW-setup) wind speed, by reference to observed wind speed. 
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Figure 5.23 Scatterplot and correlation coefficient pertaining to the relationship between observed and 

simulated (ARW-setup) wind speed, by reference to observed standard deviation. 

5.5 Model performance as a function of computing resource 

 Use of the two WRF cores in this research is not a comparison of one against 

the other, but a setup choice designed to deliver maximum efficiency given a 

particular computing resource. It is evident from the results in Table 13 that by 

restricting the computing resource, the NMM-setup runs performed much less 

accurately than the ARW-setup runs. RMSE was higher for the NMM-setup than the 

ARW-setup and particularly high as a potential wind resource assessment tool. 

Variability was poorly captured as indicated by the low correlation coefficient and 

was not of a level comparable to either the ARW-setup or the Hemsby series. An 

example of the typically observed behaviour of both models is shown in Figure 5.26, 

where the NMM-setup run shows no appreciable high frequency variation but 

captures the general trend of change in wind speed to some extent. High frequency 

change is present in the ARW-setup run and is at times reflective of the 

observations, apart from, most notably, the ramp down and recovery which is 

observed (1) to be less abrupt than was simulated (2). Most of the observed major 

low frequency features are present in the ARW-setup run. At the beginning of the run 
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in Figure 5.26 it is clear to see the two model configurations do not start from the 

same point, identifying a discrepancy between the two input data sources, ERA-40 

and CFSR. As a result the wind speed in the NMM-setup run starts with a negative 

bias, while in contrast the ARW-setup run starts with a positive bias, compared to 

observations. The model runs are updated with boundary conditions from the input 

data every six hours, so performance of the different configurations will be influenced 

by the input data as well as the physical setup. The ARW setup run is able to 

converge to the observed pattern of wind speed change for the majority of the run, 

while the NMM-setup is not. This is a good example of the sensitivity of a model run 

to initial conditions, in some cases the model is able to recover but in others it 

cannot. 

 

 

Figure 5.24 Single case study from February 1996 showing observed wind speed at Hemsby (10m) and 

Scroby Sands (50m) alongside 50m model output from ARW- and NMM –setup runs. 

The restriction placed on model setup by the available computing resource, 

dictates at what level of accuracy the model can perform. Restricted computing 

resource affects model performance in two major ways. Firstly model setup has to be 
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optimised for the available computing power which requires a compromise between 

performance and time. In order to simulate wind speed for a single point, a relatively 

high resolution domain is required but it must be accompanied by a large spatial 

domain to capture large scale synoptic processes. To achieve both, a relatively large 

number of nested domains is required and to maximise computational efficiency the 

domains tend to be as small as possible. To function optimally, domains need to be 

as large as possible to allow complete resolution of the atmospheric features, with 

spatially restricted domains there is a risk features will not be completely captured. 

The second restriction upon model performance imposed by a limited computing 

resource is the resolution of input data. Because more nests are required the 

resolution of the large scale outer domain is very low, for WRF, input data is 

manipulated onto a model grid from which the model is initialised, so there is little 

point obtaining input data which exists at a higher resolution than the outer domain 

because the data will simply be lost when mapped to the input grid. As a result lower 

resolution data is used which gives less information to the model from which it can 

simulate. All told the effect of limited computing resource upon model accuracy is 

potentially significant because of the restrictions placed on the model equations. 

Ultimately the success of a modelling system is determined by absolute error, in this 

case represented by RMSE. While it is a good measure of modelling success, there 

is a lot more information pertaining to the performance of the model which is of great 

relevance to an end user. It was for this reason that both correlation and RMSE were 

always considered through this research as the measures by which to judge 

performance to appreciate the magnitude of difference between model performance 

and observations but also how well variability is captured. Hughes and Watson 

(2012) highlighted the importance of seeking to improve model performance by 

focussing on how well variability is resolved rather than simply aiming to reduce 

RMSE. By thoroughly identifying the reasons behind observed performance there is 

a better chance it can be improved. Comparing the results from both model 

configurations showed how restricting the computing resource effectively reduced 

the level of detail which the model could resolve to really only produce successful 

variation in the low frequency range. Given RMSE could be minimised using a 

reasonably accurate low frequency output and post processing, it might be possible 

to implement an operational resource assessment tool using a computationally 

restricted configuration, but to maximise the potential of the mesoscale model, 
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Hughes and Watson (2012) suggest focussing on improving correlation, which will 

either result in a direct improvement in RMSE or a greater ability to account for it 

through bias correction. Options which exist to aid performance such as nudging, 

data assimilation or ensemble generation, are all computationally intensive and thus 

inapplicable to a user with limited computing power. From the results of this work it is 

clear to see that more computing power translates to better model performance. 

More input data is fed to the model over a larger area at higher resolution, because 

more processors are available to deal with the extra work. As a result features within 

the model are better represented and defined in space and time, which feeds more 

information throughout the model systems down to the parameterisation schemes. 

Ultimately by giving the model a better representation of the atmosphere it is more 

likely to simulate evolution with a greater degree of accuracy. 

5.6 Considering model performance in the temporal domain 

Part of the benchmarking investigation was to identify aspects of the study 

which were factors in determining model performance. Inspection of individual runs 

identified a lack of ability in the NMM-setup to reproduce high frequency variation, 

yet retain some elements of the observed low frequency change. An increased 

computing resource allowed for larger, higher resolution model input data, larger 

grids and increased spatial coverage, which were key factors in enabling the ARW-

setup runs to offer a significant improvement in performance. Despite producing 

levels of variation comparable to observations, it is in the high frequency range 

where ARW-setup runs struggle to capture observed variability. Performance 

problems at short temporal scales were also present in the work by Nunalee and 

Basu (2012), where variation in model output appeared damped in comparison to 

observations. With the innermost model domain resolution being 2 km, the smallest 

features which can be expected to be well resolved are around 14km in size. Below 

14 km the model is able to account for atmospheric features to an extent, but does 

so through parameterisation schemes, specifically the planetary boundary layer 

scheme. Given that the temporal resolution of the runs is 10 minutely, it is unlikely 

that model performance will be best at simulating high frequency change. 

Atmospheric features responsible for change in wind speed on a 10 minute 

timescale are likely to be small scale for example turbulent fluctuations, such a scale 

is below that directly resolved by the model. In order to investigate model 
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performance on longer timescales at which atmospheric features are directly 

resolved, temporal filtering was performed on ARW-setup model runs and concurrent 

observations. Initially the unweighted moving average filter, was applied to the10 

minute model output and Scroby Sands observations at intervals of 3, 9 and 17 time 

steps which corresponded to 30, 90 and 170 minute periods. Subsequently a low-

pass Butterworth filter was also developed to filter out frequencies below 60, 180 and 

360 minutes. Table 5.9 summarises the average results from all 34 runs. A clear 

improvement is evident from both of the filtering processes. While filtering will 

intuitively reduce the variation in a series, the model output must still exhibit similar 

characteristics to the observations in order for the correlation to improve. Results are 

improved for the 3 hour time increment by a greater margin using the moving 

average filter than by the Butterworth filter. Furthermore the performance gap 

between the model output and observations from the Hemsby series is reduced. 

 

Table 5.9 Average statistics for the 34 ARW-setup cases run after temporal filtering of model output and 

observations using an unweighted moving average (MA) filter and a lowpass butterworth filter. 

 Hemsby 

Raw 

Hemsby 

MA 

NMM 

Raw 

ARW 

Raw 

ARW 

MA 

ARW Butterworth 

Filtered 

Effective 

temporal 

resolution 

(Minutes) 

60 180 10 10 170 60 180 360 

Correlation 0.746 0.785 0.350 0.639 0.720 0.662 0.698 0.733 

RMSE 
  

3.471 2.196 1.876 2.107 1.957 1.798 

 

  

Correlation coefficients improve by between 0.06 and 0.08, depending on the 

filter used, when the considered temporal resolution is extended from 10 minutely to 

3 hourly. For the same filtering process RMSE dropped by around 0.2ms-1, or 

roughly 10%, to 1.9 ms-1. Some runs are better improved by filtering than others, for 

example on the 03/05/1996 run the initial 10 minute correlation coefficient is 0.58. 

After filtering the correlation coefficient at 30 minutes is 0.81, at 90 minutes is 0.93 
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and at 170 minutes is 0.97. Improvement in accuracy is possible by filtering the 

series if the underlying performance if the model is accurate at the filtered 

timescales, on a run by run basis this is unknown until the filtering is undertaken, but 

the general improvement seen across the runs suggests an inherent skill is present. 

The fact that not every run displays a marked improvement is evidence that the 

process of filtering will not necessarily improve performance. The 180-minute 

Butterworth filter was applied to hourly data from Hemsby to see the effect of filtering 

the observed data. Average correlation between observations from Hemsby and 

Scroby Sands improved to 0.79, with ARW-setup correlation improving to around 

0.7. At hourly resolution, ARW-setup runs outperformed the Hemsby data in 7 of the 

34 cases, with a further 8 cases possessing a correlation coefficient only 0.05 less 

than the Hemsby correlation coefficient. Filtered to a 3-hourly resolution, ARW-setup 

output outperformed Hemsby in 13 cases and came within a correlation coefficient of 

0.05 in a further 4 runs. These results confirm the value of using the model when 

applied to simulate features of appropriate scale. When done so, model output is as 

good as a nearby met station yet significantly cheaper and more versatile both in 

terms of temporal capacity and the variables which can be produced. Temporal 

averaging affords the ability to compare the model output with observations at an 

optimal temporal resolution for the 2km model setup. Low and medium frequency 

features are retained while small, high frequency change are removed. 

5.7 Filter performance 

As the average statistics suggest, the unweighted moving average and low-pass 

Butterworth filters are generally close in performance, evident throughout the 

individual runs. It is important to consider the impact of the filtering process upon the 

series to which it is being applied. Manipulation of the filtered series is the ultimate 

purpose of a filter, however the intention of a filtering process is solely to preserve 

traits of the unfiltered series at a different temporal resolution, with minimal 

modification of the original features. While the moving average filter provides 

marginally better results, it is a less discriminating process which has a notable 

smoothing influence. The Butterworth, filter on the other hand, operates less 

intrusively and preserves more of the original features in a series which is evident in 

the run beginning on the 10th of May shown in Figure 5.27.  



94 
 

 

 

Figure 5.25 Raw 10 minute observations alongside a 17 timestep filtered moving average and 180 minute 

Butterworth filtered wind speed for the 10
th

 May 1996 case at Scroby Sands. 

5.8 Summary 

The benchmarking exercise provided baseline statistics relating to model 

performance as a wind resource assessment tool. Initial results suggested some skill 

but limited performance which compared unfavourably against local observed data. 

Model configuration was considered and found to be a factor in determining 

performance, where performance improved with greater computing resource and a 

more setup options. Closer inspection of model performance identified high 

frequency variability range as the area for improvement, which was addressed 

through the application of temporal filters. Filtering model output and observations to 

longer timescales showed model performance to be better when temporal resolution 

was lower. Temporal resolution of wind speed change is directly related to the size of 

the atmospheric features which cause that change. Numerical models are 

constrained by their inner grid resolution to be able to directly resolve features below 

a certain size. The filtering process effectively moved the focus of the simulation 
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from high frequency features to lower frequency features which the model was able 

to more accurately simulate because such features were directly resolved and not 

approximated. When filtered to 3-hourly resolution, the model performed as well as 

the nearby observational series. Ultimately, the results show that the model is a good 

resource assessment tool when applied to the correct spatial scale, whereby it 

simulates large and medium temporal scale features well, which are responsible for 

the significant changes of interest in a long-term study. Performance is less 

successful at small scales, which dominate short term resource assessments such 

as operational forecasting. 
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6 A long-term study of the wind resource at Shell flats and the 

Supergen exemplar site 

6.1 Method 

A long term modelling study was required to validate the performance of WRF 

as an operational wind resource assessment tool, which would have to provide a 

resource assessment covering a period of at least a year. This study also afforded 

the opportunity to test the location dependence of model performance by simulating 

for a different location, namely Shell Flats. The resource assessment investigation 

was chosen to provide a look at the model’s capacity to simulate other variables 

critical to wind farm operators, including wind direction and atmospheric stability. 

Undertaking a study of such length provided the opportunity to characterise model 

performance and trends in variables through time and by reference to synoptic 

settings represented by weather type. A year-long resource assessment was 

produced for the Supergen exemplar site to showcase the potential of WRF as a 

resource assessment tool and provide a dataset for use by other members of the 

consortium. 

6.1.1 Computing setup 

With the initial class 2a computing account on HECToR used for the 

benchmarking investigation and a waiting period until the RAP allocation of 

resources for the second HECToR account, computing time on the Loughborough 

University HPC cluster Hydra was obtained for the resource assessment runs. Hydra 

was a less powerful computing cluster than HECToR but still offered a 

comprehensive resource. Model setup was adjusted accordingly to utilise the 

computing resource efficiently, allowing multiple simultaneous runs to ensure 

completion on time. Each run was undertaken on 144 cores of Hydra and up to 8 

jobs were submitted simultaneously. Given the large number of runs to be 

undertaken, computational efficiency was key. While some features of the more 

successful ARW-setup from the benchmarking runs were preserved such as the 

dynamical core, nesting setup and large spatial coverage, some features changed. 

For example the YSU PBL scheme was used as a simpler and quicker option for 

approximating boundary layer processes, rather than the higher order MYJ scheme. 
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The same computing setup was used for the Supergen exemplar resource 

assessment using 144 cores for each run on Hydra. Post processing was 

undertaken in situ in the hydra HPC in serial mode which produced the time series 

output of desired variables for Shell Flats and the exemplar site. The output was then 

transferred to the desktop computer for analysis using Matlab ©.  

6.1.2 Selection of run periods 

6.1.2.1 Shell flats 

 Data for Shell Flats were available from the two masts, which are around 6km 

apart, from June 2002 until December 2003. A number of discontinuities were 

present throughout both the observational series which, as a result, meant the study 

was split into five parts detailed in Table 6.10. Runs comprising four day periods 

were undertaken and concatenated to comprise the entire duration of the five 

periods. Output from the model was produced for Mast 2 to be compared to that 

observed data series because it provided more consistent continuous data than Mast 

1. 

 

Table 6.10 Run period description for the Shell Flats resource assessment 

Run Period Start (00:00) End (Time stated) No. of days 

1 17/06/2002 03/02/03 (2250) 231 

2 09/02/2003 23/03/03 (0420) 43 

3 12/04/2003 22/05/03 (0330) 41 

4 10/06/2003 19/09/03 (2350) 102 

5 22/09/2003 04/12/03 (2350) 72 

Total 17/06/2002 04/12/03 489 

 

 As a result of the close proximity of the Shell Flats masts, data from Mast 1 

would serve a dual purpose. Firstly, it would be used as a yardstick by which to 

judge model performance as a predictor of Mast 2 by comparing both series against 

observations from Mast 2. Secondly, data from Mast 1 was incorporated into the 

model input, using the Obsgrid program, to nudge the simulations towards 

observations. The nudging process is described in more detail in section 4.4.3. 

During Period 1, data from Mast 2 were available throughout, while data from Mast 1 
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were intermittent and available in three parts. As a result, comparisons involving 

Mast 1 data could only be made during these periods while statistics for the full 

duration were available between the model and Mast 2. In the fifth period of the 

assessment, data from Mast 1 were again intermittently available. Nudging could 

only take place with suitable data, but this also means that comparisons between 

model performance and inter-mast performance cannot be performed for the final 

period. To provide another frame of reference by which to assess model 

performance, output was also validated against an observational series from a land-

based station at Squires Gate. Squires Gate is located around 13.5km South-East of 

Mast 2 at Shell Flats and 19.5km in the same direction from Mast 1. Data from 

Squires Gate series were missing between 25/5/03 and 01/06/03, which meant that 

Period 3 could not be compared to data from Squires Gate but the other time frames 

could. At the end of the resource assessment, the final five days could not be 

compared to Squires Gate because of a lack of data from the site. Therefore the final 

period compared to Squires Gate, terminates on the 30th November 2003. Data from 

Squires Gate comprised hourly wind speed and direction at 10m height. WRF was 

initialised from the 0.5° 6-hourly CFSR reanalysis product. 

6.1.2.2 Supergen exemplar farm 

Raw input data for the latter half of 2003, used for the Shell Flats resource 

assessment, were available on the pre-processing server, CREST03. As a result a 

wind resource assessment for the Supergen exemplar farm was undertaken from 

June 2003 – June 2004. The 0.5° CFSR reanalysis product was used as input at six 

hourly intervals. 

6.1.3 Model setup 

6.1.3.1 Physical setup 

6.1.3.1.1 Shell flats 

The nested model domains used are shown in Figure 6.26. Three domains 

were used in total: a parent domain set at 18km grid resolution; an intermediate 

domain at 6 km; and an innermost domain from which the outputted variables would 

be extracted at 2km resolution.  The outer domain is comprised of 107 x 90 grid 

points, the middle domain of 112 x 94 grid points and the innermost domain of 97 x 

82 grid points. 40 model levels were used, with a concentration at the surface to 
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allow a higher level of processing in the PBL. Nine levels were located below 500m 

at heights of roughly 0, 50, 90, 140, 180, 230, 280, 330, 390 and 460m. 

 

Figure 6.26 Domain locations and positions for the Shell Flats resource assessment. 

 

6.1.3.1.2 Supergen exemplar farm 

Domain setup for the Supergen exemplar site followed the same priorities as 

the Shell Flats site whereby a large spatial coverage at relatively high resolution was 

adopted to utilise the computing resource and reduce the number of nests used. The 

nesting setup is shown in Figure 6.27 with the focus of the domains all shifted slightly 

eastward to reflect the location of the Supergen exemplar site. Resolution is slightly 

coarser for the Supergen exemplar resource assessment than the Shell Flats runs 

because a large inner domain was desired to capture the full wind farm extent and 

surrounding area. An efficiency compromise was achieved by lowering the resolution 

slightly with the increase in inner domain size to ensure the extra spatial coverage 

did not increase computing resource excessively. The parent domain for the run was 

at 27km resolution and comprised 107 x 90 grid points, the middle domain at 9km 

resolution comprised 112 x 94 grid points and the innermost domain at 3km 
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resolution comprised 121 x 103 grid points. The vertical grid spacing was the same 

as that used in the Shell Flats runs. 

 

Figure 6.27 Domain setup for the Supergen exemplar site. 

 

6.1.3.2 Dynamical setup 

Dynamically, setup for both sets of runs at Shell Flats and the Supergen 

exemplar site was very similar to the runs undertaken at Scroby Sands with an 

example of the model namelist is provided in appendix I and a summary of the 

options in Table 6.11. Convective parameterisation was switched off for the inner 

domain. The YSU PBL scheme was used and with it being non-local it provided 

explicit treatment of the boundary layer depth. Additionally it is a numerically efficient 

scheme. Nesting feedback was switched on to allow two-way information flow 

between the domains.  
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Table 6.11 List of dynamical options used in the Shell Flats resource assessment runs. 

Model Parameter Setup 

Vertical model levels 40 

Nesting Feedback On 

PBL Scheme Yonsei University (YSU) 

Cumulus scheme Betts-Miller-Janjic 

Radiation scheme - Long wave GFDL 

Radiation scheme - Short wave GFDL 

Microphysics option Ferrier (new Eta) microphysics 

Surface layer physics MM5 Monin-Obukhov scheme 

Land surface option Unified Noah land-surface model 

6.1.4  

6.1.5 Model output 

6.1.5.1 Shell Flats 

Wind speed and direction were produced at 10 minute intervals and 40m 

height for Mast 2 at Shell Flats. For the stability investigation, temperature was 

produced at 10 minute temporal resolution and 10m and 50m height which was used 

in conjunction with the 40m wind speed to calculate the bulk Richardson number. 

Wind direction is a potentially troublesome variable to investigate because of the 

circular scale on which it is measured. In other research different techniques have 

been employed to investigate wind direction, for example Jiminez et al (2010) look at 

the meridional and zonal wind component in daily averages computed from hourly 

averages, whereas Honrubia et al., (2011) perform RMSE analysis on the raw 

direction data in degree form. This research followed the method used by Honirubia 

et al., (2011), which was sufficient to produce comparable results upon which 

analysis and conclusions could be performed. Wind speed distribution plots are 

produced in 25 bins so as to provide a standard format for easy comparison between 

the multiple series and thus the Weibull parameters. 
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6.1.5.2 Supergen exemplar site 

All variables produced from the model were available at ten minute temporal 

resolution. Wind speed was produced at 10, 30, 40, 50, 90 and 160m height for the 

Supergen exemplar site. Wind direction was produced at 40m. Temperature was 

produced at 10 and 50m height which combined with the 50m wind speed data was 

used to calculate the bulk Richardson number for the site. 

6.1.6 Nudging 

Observational nudging involves assimilating observational data into the model 

simulation over the duration of the run, described in Section 3.7.1. While large scale 

model input data are convenient due to global coverage, homogeneous levels and a 

wide range of variables, coarse resolution might not be exactly representative of 

conditions at, or near, a site of interest. Nudging the model input is intended to 

improve the first guess of particular variables at, or close to, a particular site. Given 

that WRF is updated for the duration of a model run by input and boundary files, 

observational nudging is performed throughout the whole run. Nudging was 

employed only for the Shell Flats resource assessment and not the exemplar farm 

resource assessment. Observations from Mast 1 at Shell Flats were integrated into 

the runs using the WRF utility program Obsgrid. Obsgrid synthesises observations 

into the model input to provide the objective analysis and creases a separate file, 

wrfsfdda_d01, which contains the nudging terms at the surface for the duration of the 

run. Obsgrid requires observations be processed into a specific format called little-r 

for ingestion, which was achieved using a custom FORTRAN script. The radius of 

influence of the observations and the magnitude to which the simulation is nudged, 

are both options which can be controlled by the user, but were left as default settings 

in this research. For example a user could afford more weight to an observational 

series which would increase the shift in the model solution towards the observations. 

Hourly wind speed at 80m from Mast 1 at Shell Flats was used to nudge the outer 

domain only, whereby influence of the observations is passed to the inner domains 

through the nesting process. Wind speed was used in isolation, despite the 

availability of other variables, to investigate the impact of the procedure and because 

the simulated variable of most interest is wind speed. This research marks the first 

step in the nudging investigation to which other variables can be added in further 

research. To investigate the benefit of observational nudging, the months of July and 
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October 2003 were run without observational nudging and the results compared to 

those achieved using nudging. 

6.1.7 Stability 

 Stability at Shell Flats was estimated by classifying the Obukhov length (Table 

10) after van Wijk et al (1990). The Obukhov length is an approximation of thermally 

driven buoyancy within the surface boundary layer which can be estimated from the 

Richardson number. Two derivations of the Richardson number (gradient and bulk) 

are used in this investigation, depending upon the variables available. Virtual 

potential temperature was calculated from observations at Shell Flats using pressure 

and moisture data at 12m and 82m from Mast 1, which was used to calculate the 

gradient Richardson number at Mast 1. To have a stability metric comparable 

between observations and the model, the bulk Richardson number was calculated 

for both the model and observations at Mast 1 using the same formula. Absolute 

temperature was used to calculate the bulk Richardson number instead of virtual 

potential temperature due to a lack of pressure and humidity data from the model. 

For the model data, temperature at 10m and 50m was used in combination with wind 

speed at 40m. For the observations, temperature at 12m and 82m was used along 

with wind speed at 82m. Since absolute rather than potential temperature was used 

to calculate the Richardson number, a lapse rate term was included to account for 

the reduction in temperature with height. The modelled near-surface Richardson 

number (termed rib in the RIP4 user guide) was also provided by the RIP4 

postprocessor which calculated the value in units of seconds squared. No formula for 

the calculation performed by RIP4 could be found but the output is retained for 

comparison to the other metrics to serve as information for a potential end user. 

RIP4 is able to produce a dimensionless version of the Richardson number, which 

was requested in postprocessing, however on several occasions a null value was 

produced which disrupted the postprocessing so the variable was discarded. Model 

output of stability is produced for Mast 2 which is important because the 

observational data used to calculate stability at Shell Flats was from Mast 1 some 

6km away from the site simulated by the model. Stability was calculated for the 

Supergen exemplar site using the bulk Richardson number as calculated from the 

10m and 50m temperature values as well as the 50m wind speed in. As with stability 

at Shell Flats, the bulk Richardson number was then mapped to Obukhov length 
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before being classified after van Wijk et al (1990) using the values for Obukhov 

length in Table 6.12. 

 

Table 6.12 Stability classes in relation to Obukhov Length (L) van Wijk et al (1990) 

Obukhov length (m) Atmospheric stability class 

-200 < L < 0 Very Unstable (VU) 

-1000 < L ≤ -200 Unstable (U) 

|L| > 1000 Neutral (N) 

200 ≤ L < 1000 Stable (S) 

0 ≤ L < 200 Very Stable (VS) 

 

6.1.7.1 Stability by reference to other variables 

As a property of the atmosphere, stability is dependent upon a few variables. 

Part of the stability investigation is to try and reproduce those variables and thus 

stability as well as possible, but it is also of interest to see how stability relates to 

other variables which either operate at a larger scale or are already well accounted 

for. Ultimately just less than 30,000 data points comprised the investigation which 

ran from June 17th 2002 to February 3rd 2003, with the same discontinuities as the 

rest of the stability analysis due to data intermittency. Stability variation was looked 

at as a function of time and state, although time could be considered a state function 

as it corresponds to variations in temperature. Classification of stability by the 

different variables was performed through Matlab© scripts which queried one large 

dataset to aggregate stability statistics as required. In the temporal domain stability 

was classified by hour and by month, in order to evaluate stability throughout the 

diurnal and seasonal cycles. In terms of state dependence stability was classified by 

wind speed, wind direction and weather type. Wind speed was classified into six bins 

with smaller increments employed lower in the wind speed range where more data 

were concentrated. Wind direction was binned into eight 22.5 ° sectors with the 

standard compass points at the centre of each sector, for example the East direction 

bin included wind directions from 67.5° to 112.5°. 
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6.1.7.2 Wind shear and stability 

Wind shear is known to be dependent upon stability (for example Wharton and 

Lundquist, 2012a) where in unstable conditions shear is minimal due to high levels of 

turbulent mixing with the opposite true in stable conditions. Thus a means of quality 

checking a measure of stability is to assess the observed wind shear as a function of 

stability. Three methods are used in this study to produce the Richardson number 

either in bulk or gradient form, which is then converted to Obukhov length and finally 

sorted into a stability class. Using multiple methods to determine stability provides 

potential for uncertainty if they are not in agreement, which was the case in the 

analysis at Shell Flats. Ultimately an analysis was necessary to identify the accuracy 

of both approximations of stability and identify the more appropriate metric. 

Observational data from Period 1 (17 June 2002 – 16 November 2002) was used to 

compare the bulk and gradient methods, with the findings generalised to the model 

output because the same method was used to calculate the bulk Richardson 

number. Wind shear was represented by the shear exponent (α) calculated in (6.14), 

where u represents wind speed and z represents height. 

   
          

         
 

Equation 6.14 

 

 

Richardson number was binned in hundredths for the gradient method and 

thousands in the bulk method (to produce a representative number of bins), then a 

scatter plot was produced with binned Richardson number as the x value and 

average shear exponent for the given Richardson bin as the y value. In addition, the 

binned Richardson scatter plots were also binned by wind speed to identify any 

relationship between speed, shear and stability. 

6.1.8 Weather typing 

Weather typing is used in the Shell Flats resource assessment to provide a 

means of classification by which to assess the prevailing atmospheric conditions 

alongside the model output. The classification is presented in Table 6.13, where 

weather type is defined by the dominant pressure circulation (when present) and 

wind direction. Variables are analysed and compared against themselves as they 

exist under different weather types. For example, wind speed was qualitatively 

assessed to see how the frequency of variation and amount of variability differ for 
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different weather types. Model performance will be investigated to see if a particular 

weather type corresponds to a particular level of performance. Stability will be 

classified by weather type to identify any trends which can be used to infer stability 

based on a synoptic analysis and also to see the comparison between modelled and 

observed stability when broken down by weather type. Weather type data was 

obtained from the University of East Anglia’s Climate research unit 

(http://www.cru.uea.ac.uk/cru/data/lwt/) after Jones et al, (2012). 

 

Table 6.13 Numerical designation of the lamb weather type categories 

Lamb Weather Type (LWT) 

codes 

-1  U -9  non-existent 

0  AC  20  C 

1  ANE 11  NE 21  CNE 

2  AE 12  E 22  CE 

3  ASE 13  SE 23  CSE 

4  AS 14  S 24  CS 

5  ASW 15  SW 25  CSW 

6  AW 16  W 26  CW 

7  ANW 17  NW 27  CNW 

8  AN 18  N 28  CN 

 

 

6.1.9 Temporal filtering 

Temporal filtering was employed to investigate model performance at different 

temporal resolutions. The simplicity of a moving average filter makes it an attractive 

prospect if refined to an acceptable level whereby the smoothing effect is reduced. 

An exponential moving average filter was applied at the same intervals as the 

unweighted moving average filter in the Benchmarking investigation at Scroby 

Sands, to see if a compromise between the moving average and Butterworth filtering 

techniques could be reached. Exponential weighting affords most weight to the 

http://www.cru.uea.ac.uk/cru/data/lwt/
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values in direct proximity to the calculated value (t+0), with weighting decreasing with 

time from t+0, shown in Equation 6.15. 

                      

 

   

 
Equation 6.15 

 

  

Exponential weighting improved the performance of the moving average filter 

over its unweighted counterpart. To see if the exponential moving average filter 

performed better than the Butterworth filter the two filters were applied to the 33408 

data points comprising Period 1 of the Shell Flats investigation. Correlation analysis 

was then performed between the raw data and both filtered series. The Butterworth 

filtered series showed a higher correlation coefficient(r=0.9924) to the original 

unfiltered series than the exponential moving average filter (r=0.9680). As a result, 

temporal filtering of the Shell Flats resource assessment data was undertaken using 

the same Butterworth filter described in 4.3.6. Three versions of the filter were again 

applied to look at model performance at temporal resolutions greater than 60, 180 

and 360 minutes by setting the cut-off frequency appropriately.  

6.1.10 Analysis 

As in the benchmarking runs, correlation and RMSE were used to quantify the 

success of the model at capturing observed variability and absolute error. Standard 

descriptive statistics of mean and standard deviation were also produced to describe 

variation in the series for observations at Masts 1, 2 and Squires Gate as well as the 

model output. In addition, a wind rose and two-parameter Weibull distribution (e.g. 

Lackner et al 2007) were produced from both modelled variables and those 

observed at Shell Flats Masts 1 and 2. Wind rose and Weibull distribution are 

commonly used in communicating results from a wind resource assessment. The 

wind rose was generated using a Matlab© script to bin wind direction and map it to a 

circular coordinate, colouring the bars depending on the proportion of represented 

wind speed. The two-parameter Weibull distribution was generated using a number 

of Matlab© functions. Firstly, a Weibull curve was fitted to the wind speed distribution 

using the wblfit function, from which the scale and shape parameters were 

generated. Then the wblpdf function was used to generate the Weibull probability 
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density function which was plotted against wind speed for both model and 

observations. 

 

6.2 General appraisal of the wind resource at Shell Flats 

6.2.1 Average wind speed  

From June 2002 to December 2003 data were obtained from the two offshore 

meteorological masts at Shell Flats. The same period was also simulated using the 

WRF setup described in 4.4.3. It is important to reiterate that problems with data 

intermittency meant that the series was not continuous from June 2002 to December 

2003 and the values in Table 8 are representative of the periods where data were 

available, translating to around 489 days. Data from Mast 2 at Shell Flats are the 

predictands in this investigation for which the WRF model output, data from Mast 1 

at Shell Flats and data from Squires Gate are predictors. In order to characterise the 

general traits of the two main series of interest, i.e. WRF-ARW model output and 

observations from Mast 2, descriptive statistics are presented in Table 6.14. Average 

wind speed is very similar between the series at around 8.3 ms-1, whereas standard 

deviation in the modelled time series is slightly lower than that observed, indicating a 

reduced amount of variability is simulated compared to that observed.  

 

Table 6.14 Observed and modelled average wind speed and direction at Shell flats. 

  Mast 2 (40m) WRF-ARW (40m) 

Direction (°) Mean 179.07 193.96 

 Standard  

Deviation 
92.62 89.34 

Speed (ms-1) Mean 8.37 8.25 

 Standard  

Deviation 
4.27 4.04 

 

The distribution of wind speed, as represented by the two- parameter Weibull 

distribution, provides another important form by which to assess the accuracy of the 

model as a resource assessment tool. The Weibull distributions for observed and 
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modelled wind speed are very similar to each other which is summarised in Table 

6.15 where the values for the two parameters relating to the Weibull distributions are 

quantified. Wind speed distribution for the modelled series has slightly larger scale 

parameter value which relates to the average wind speed which implies a greater 

proportion of wind speeds in a slightly higher range. The shape parameter of the 

modelled wind speed is also slightly higher which means the data are slightly more 

normally distributed than the observed data. 

 

Table 6.15 Description of the two parameter Weibull distribution for Shell Flats as simualted and 

observed in ms
-1

. 

 Observed Simulated 

Scale parameter (C) 9.24 9.42 

Shape parameter (k) 2.02 2.17 

 

6.2.2 Wind direction 

 Wind direction provides a valuable metric of comparison between the series. 

Model output presents a slightly more westerly orientated average than is observed 

at Mast 2 while standard deviation values indicate that spread is similar between the 

series. Figure 28 shows the wind roses generally agreeing in that the prevailing wind 

is South-Westerly, which shows the value of producing such plots which confirm the 

aptitude present in the model which might not be evident from the statistics in Table 

6.15. Comparison of the wind roses identifies a more significant North-Easterly 

component is observed at Mast 2 that is not reproduced by the model. Model output 

displays a stronger presence of West and North-Westerlies than are observed at 

Mast 2, while the model also sees more frequent wind coming from the South-East. 

Further analysis of the model’s simulation of wind direction is provided by comparing 

the wind roses to those observed after classification by month of the year to see if 

any consistent patterns or significant outliers emerge (Figures 6.29 & 6.30). Visual 

impressions from the original plot (Figure 6.28) suggest a slight clockwise offset of 

modelled wind direction compared to that observed which would corroborate with the 

slightly more westerly tendency and average value. 
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Figure 6.28 Wind roses for Shell Flats as observed at Mast 2 and simulated by WRF from June 2002 to 

December 2003. 

Comparison of individual months generally shows a very good agreement 

between the model and observations. In some months the distribution of wind 

direction is unimodal, where a prevailing wind from a single defined sector, for 

example February, November and December. Unimodal wind regimes imply 

consistent circulation patterns, which should prove less difficult to simulate. The 

modelled wind roses for these months tend to reflect observations closely, with the 

November plot looking to show the best agreement. The February plots show a slight 

degree of turning between the two series which would agree with a slight westerly 

bias identified earlier. The December model output has a greater spread of winds in 

the prevailing direction compared with observations, but in general the series agree 

well. Bimodal wind regimes possess two distinct prevailing wind directions, such as 

observed in March, July and October, present more of a challenge to the model 

because of changing synoptic scale atmospheric influence. Model output again is 

broadly reflective of the patterns observed. Certainly in the March and July cases the 

bimodal structure is captured if not quite in the same proportion. The October cases 

provide an interesting comparison where the two prevailing direction lobes are 

opposed. Again the structure of the modelled rose is very much like that observed, 

but simulating a narrower spread in each direction compared to the wider spread 

observed. Complex wind direction cases are where a wide distribution of prominent 

prevailing directions is evident. Examples of complex wind distributions are the 

Mast 2 Model 
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January and September cases. The model output broadly reflects that observed, 

apart from missing a North-easterly component in the September plot, implying a 

high performance standard is achieved by the model regardless of the type of wind 

distribution seen.
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Figure 6.29  Wind direction by month as simulated and observed for Mast 2 at Shell Flats over the 18 month resource assessment for January to June. 
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Figure 6.30 Wind direction by month as simulated and observed for Mast 2 at Shell Flats over the 18 month resource assessment for July to December. 



114 
 

6.2.3 Time series analysis  

 Correlation and RMSE statistics quantify model performance in terms of 

variability and absolute error. As with the benchmarking comparison at Scroby 

Sands both series were initially compared at ten minute temporal resolution then 

filtered, using the lowpass Butterworth filter, at a range of longer temporal 

resolutions. Correlation values between model output and observations at Mast 2 for 

the raw and filtered series are presented in Table 6.16. An average correlation 

coefficient of 0.86 for the ten minute data implies that the model is able to simulate 

the features which cause change in wind speed at the site very well. Certainly the 

correlation results at the Shell Flats site are significantly better than those seen in the 

benchmarking exercise at Scroby Sands. When the series are filtered through 

increasingly long intervals, the correlation coefficient continually improves to over 0.9 

at a temporal resolution of 360 minutes. A similar story is found when analysing the 

RMSE statistics which are presented in Table 6.17. An RMSE, similar to that 

established in the benchmarking study, of 2.1 ms-1 is achieved at raw temporal 

resolution of ten minutes, which improves with decreasing temporal resolution by 0.3 

ms-1 to 1.7 ms-1 at 360 minutes. The average correlation coefficient for wind direction 

at ten minute resolution is 0.6 while RMSE is 78°. Statistically, wind direction is 

simulated to a similar level as wind speed in the benchmarking investigation at 

Scroby Sands. Parallels between model performance in both cases is evident, skill 

and accuracy is present in both but accompanied by notable error. One must bear in 

mind the comparison being made here, where the observed values are ten minute 

averages while the simulated values are instantaneous. The importance of this effect 

is unknown but should be considered when comparing the two series. 

Table 16 Correlation coefficient between model simulated wind speed and observations from Mast 2 at 

Shell Flats in five periods from Jun 2002 to December 2003. 

Temporal 

resolution (min) 
Period 1 Period 2 Period 3 Period 4 Period 5 Average 

10 0.8827 0.8852 0.8200 0.8176 0.8726 0.8556 

60 0.8899 0.8933 0.8315 0.8251 0.8871 0.8654 

180 0.9035 0.9094 0.8536 0.8463 0.9037 0.8833 

360 0.9170 0.9251 0.8762 0.8685 0.9194 0.9012 
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Table 6.17 RMSE in ms
-1

 between model simulated wind speed and observations from mast 2 at Shell 

Flats in 5 periods from Jun 2002 to December 2003. 

Temporal 

resolution (min) 

Period 1 Period 2 Period 3 Period 4 Period 5 Average 

10 2.1269 2.1100 2.2022 2.0667 2.1005 2.1213 

60 2.0496 2.0238 2.1142 2.0035 1.9965 2.0375 

180 1.9001 1.8439 1.9386 1.8640 1.8356 1.8764 

360 1.7370 1.6531 1.7435 1.7034 1.6670 1.7008 

 

Considering correlation and RMSE as a function of time affords an insight into 

how variable the model performance was over the course of the resource 

assessment. Such an analysis can then be used to identify particular episodes of 

performance and examine the prevailing atmospheric conditions for example by 

synoptic weather type, to investigate the presence of state dependence in model 

performance. For example in Figure 6.31, the month of October in 2002 seems to 

correspond to a moderately high and consistent correlation coefficient between the 

model and observations, also reflected by lower values in the RMSE plot (Figure 

6.32). Aside from during October 2002, performance as a predictor of wind speed is 

shown to be highly variable over the duration of the wind resource assessment as 

the model performs to varying standards depending upon the prevailing conditions. 

Anticyclonic conditions are slow moving and through atmospheric subsidence, tend 

to promote a stable atmosphere with low turbulence. Such conditions invariably 

translate to a reduction in the amount of high frequency change in wind speed for 

periods on the order of days, compared to cyclonic conditions. Results from Scroby 

Sands imply that the model is more successful at simulating slow moving, low 

frequency features. In contrast, cyclonic conditions are faster moving and promote 

more unsettled conditions. Weather typing is one form of classification, of which 

there are several, known to be an effective measure by which to analyse model 

performance. Weather typing was employed in this run experimentally to assess its 

feasibility in a wind resource assessment context, and forms a key part of the model 

optimisation investigation. 
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Figure 6.31 Correlation between simulated an observed 50m 10 minute wind speed for the Shell Flats 

resource assessment. 

 

Figure 6.32 RMSE between simulated and observed 50m 10 minute wind speed for the resource 

assessment at Shell Flats. 
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6.2.4 Analysis of observational nudging  

 For two months during the Shell Flats resource assessment investigation, 

extra model runs were undertaken without observational nudging to establish the 

effect upon performance of including observations. Only wind speed was nudged to 

keep the process simple while offering a potential improvement to the most important 

variable in terms of resource assessment. Collated statistics for both months can be 

found in Table 6.18, where the performance achieved by observations from Mast 1 is 

presented for reference. July 2003 provided the first case study, where the 

correlation coefficient between observed and modelled wind speed was improved by 

the nudging process. RMSE of the nudged wind speed time series was also found to 

be lower than the non-nudged series. As a result of nudging wind speed, the 

correlation coefficient between observed and simulated direction also improved, 

albeit marginally.  Similarly, RMSE for wind direction was slightly improved by 

nudging wind speed compared against the non-nudged run. October 2003 provided 

the second case study, in which the correlation coefficient for wind speed was 

marginally higher for the non-nudged run compared to the nudged run. Similarly, 

RMSE was marginally higher for the nudged run compared to the non-nudged run, 

indicating nudging inhibited the models simulation of wind speed in this case study. 

By contrast, a slight improvement in representation of wind direction was observed, 

with a higher correlation coefficient and a lower RMSE for the nudged run.  
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Table 6.18 Statistics for the July and October 2003 case studies comparing performance of observations 

from Mast 1, a non-nudged model run and a model run nudged by observations from Mast 1 as 

predictors of 40m wind speed at Mast 2. 

  
July October 

  

Shell 

Flats 

Mast 1 

Nudged 

model 

(Model + 

Mast 1) 

Non-

nudged 

Model 

Shell 

Flats 

Mast 1 

Nudged 

model 

(Model + 

Mast 1) 

Non-

nudged 

Model 

Speed 
Correlation 

coefficient 
0.9340 0.8097 0.7389 0.9194 0.8877 0.8887 

 

RMSE  

(ms
-1

) 
1.2133 2.1335 2.5847 1.7869 1.9418 1.9289 

Direction 
Correlation 

coefficient 
0.8863 0.7995 0.7904 0.6442 0.6499 0.6221 

 

RMSE 

(ms
-1

) 
31.5093 44.3640 46.8879 50.6065 53.6024 56.0912 

 

Observational nudging can be beneficial for the modelling process which has 

been reflected in model performance statistics. However, even incorporation of an 

observational series near the site of interest does not raise model performance to the 

same level as the observations used to nudge the model as a predictor for the site of 

interest. Model performance when simulating a non-nudged variable (wind direction) 

was shown to be improved, while improvement in performance for wind speed in the 

first case study outweighed the reduction in model performance seen for wind speed 

in the second case study. When deciding whether to employ nudging, consideration 

of the relationship between data from the nudging location and the location to be 

simulated for, must be made. If a weak relationship exists between the two 

observational series, nudging will negatively affect the performance of the model. 

Local roughness can help inform such a decision for example in an offshore context, 

where both series are derived from offshore masts, whereby less modification of the 

flow is likely to occur due to the low surface roughness over the sea. Thus one might 

have more confidence that given the distance is not too far, the observed wind field 

is likely to be fairly consistent between the two locations. By contrast if the nudging 

series is an onshore mast, and a modest distance from the site of interest, not only 

will the onshore mast be subject to local roughness elements, but the larger distance 
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may also mean the two sites are influenced by different wind fields. Ultimately the 

application of this work is almost an extension of the use of met masts. It is inevitable 

that wind farm sites will require a met mast for a long time yet, because of the 

current state of alternative technologies and the requirements of end users. 

However, these results show the benefit of incorporating observations from a local 

site into a model run, potentially expanding the spatial area for which the mast data 

can be effectively used and saving a developer installing an extra met mast where 

one will suffice. Such findings are of particular relevance given the large 

geographical extent of today’s offshore farms which may require multiple masts to 

deliver confident resource assessments across the proposed farm site. 

6.3 Evaluation of model performance in the context of local observations 

Model performance as a proxy for wind observations at Shell Flats has thus 

far been considered by comparing model output to observations. To add another 

dimension to the analysis, model performance will be considered by comparison to 

two observational series, ten minutely data from Shell Flats Mast 1 (used to nudge 

the model run) and hourly data from an onshore site at Squires Gate.  

6.3.1 Comparison against observations from Mast 1 at Shell Flats 

There is little difference between the observed and simulated wind speed 

statistics at Shell Flats (shown in Table 6.19 and Figure 6.33), suggesting the model 

is performing to a high standard for this location. Somewhat surprisingly, average 

wind speed, as both observed and simulated, at 40m level for Mast 2 is greater than 

the 80m wind speed observed at Mast 1. Without performing a comprehensive site 

review, the cause of the difference between the sites is unknown, but there could 

well be an element of local variation, for example resulting from the slightly different 

prevailing wind direction. Such an investigation should include comparison of values 

from the same height levels, for example statistics and wind roses for Mast 1 at 40m 

as well as variation in speed and direction with height. The highest observations 

were used from each mast in this study to represent the closest level to turbine hub 

height and provide a practical demonstration of a scenario with observations at 

different heights. Wind direction at Mast 1 is observed to have a slightly more 

westerly component than is observed at Mast 2 but displays a similar degree of 

variation as represented by standard deviation. Difference in wind direction might be 
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partially resulting from the height difference between the observations as a reduction 

in height corresponds to reduced friction higher velocity and a stronger Coriolis 

influence. However the Ekman spiral alone is unlikely to be the sole reason for such 

a difference. Wind roses for the three series are presented in Figure 33, giving a little 

more information about the distribution of wind direction. Interestingly the modelled 

wind rose appears more similar to that observed at Mast 1 than Mast 2. Modelled 

(for Mast 2) and observed (at Mast 1) wind roses both exhibit a stronger presence of 

Westerly and South-Easterly flow, while showing little in the way of North-Easterly 

flow in contrast to observations from Mast 2. The point must be made that wind 

direction is not nudged in this research, just wind speed in isolation. The similarity 

between the wind direction simulated for Mast 2 and that recorded at Mast 1 is 

therefore not a product of a nudging process. Deeper analysis of the three series is 

required to identify if and where discrepancies exist, as from these results it would 

seem the observations from Mast 2 contradict the values from the other two series. 

Table 19 Observed and modelled 40m average wind speed and direction at Shell flats Mast 2 and 

observed 80m wind speed and direction at shell flats Mast 1. 

  Mast 1 (80m) Mast 2 (40m) Model (40m) 

Direction (°) Mean 189.97 179.07 193.96 

 Standard  

Deviation 
91.54 92.62 89.34 

Speed (ms-1) Mean 8.34 8.37 8.25 

 Standard  

Deviation 
4.27 4.27 4.04 
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Figure 6.33 Average wind roses (°) for 80m observed at Mast 1 and 40m observed and simulated at Mast 

2. 

When the relationship between the observed series’ is investigated, the 

benefit of the nearby met mast is apparent. A correlation coefficient of 0.94 is 

achieved between the two masts at ten minute resolution compared to a value of 

0.86 achieved by the model. These statistics imply that variation in the wind 

observed at Mast 1 is reflective of that seen at Mast 2 which may be due to the low 

surface roughness, lack of topographical features and close proximity of the masts. 

However as a predictor of wind speed at Mast 2, observations from Mast 1 display a 

large RMSE at 1.4 ms-1 given the strength of the correlation, which compares to 

2.1ms-1 achieved by the model.  

6.3.2 Comparison against observations from Squires Gate  

 Hourly values from observations at Shell Flats and the model output were 

required to undertake the comparison to the observational series at Squires Gate. 

Due to data availability at Squires Gate, the dates over which the series are 

compared is different to the five periods for which simulations were undertaken at 

Shell Flats. By reference to the five simulated periods described in the methods 

section, period 3 is missing completely, while period 5 is reduced in extent. At hourly 

resolution, the average correlation coefficient between the 10m Squires Gate series 

and the 40m observations from Mast two at Shell Flats is 0.59 with an RMSE of 5.09 

ms-1, which compares with a correlation of 0.87 and RMSE of 2.12 ms-1 when 

simulated by the model for the same period. Average 10m wind speed at Squires 

Gate is 4.78 ms-1 with a standard deviation of 2.99 ms-1, while average observed and 
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modelled wind speed is 8.17 and 7.99 ms-1, with a standard deviation of 4.33 and 

4.12 ms-1 respectively. The RMSE value of Squires Gate as a predictor for Shell 

Flats is likely to be inflated because of the bias between the two series arising from 

the height discrepancy, with average wind speed showing the contrast between the 

two sites. In contrast to the strong relationship seen between Hemsby and Scroby 

Sands, Squires Gate does not offer potential as a predictor station for the Shell Flats 

site. Model performance is significantly better in every statistical respect and offers a 

greater diversity of output in terms of variables, spatial coverage and temporal 

resolution. 

6.4 Investigation of stability  

The atmospheric stability at Shell Flats was investigated, both from the onsite 

measurements and variables extracted from WRF. Stability is an important 

parameter to understand as it has an impact on turbine wake dissipation and wind 

shear. Firstly, stability is evaluated from site data using a number of methods. 

Finally, occurrence of stability is classified using several variables to see if it can be 

inferred based on predictions of these classification variables. 

6.4.1 Evaluation of measures of stability 

 Scatter plots of average shear exponent by Richardson number (Ri) bin were 

produced to analyse the relationship between wind shear with stability. Theory 

dictates (e.g. Wharton and Lundquist, 2012) that shear will be relatively reduced 

under unstable conditions (when Ri < 0), due to increased mixing between layers 

promoted by the higher levels of convective turbulence. It is then expected that shear 

increases as conditions become neutral, moving into stable, as layers develop in the 

flow and mixing is reduced. Figure 6.34 shows the average wind shear for binned 

bulk and gradient Richardson numbers during period 1.1 of the Shell Flats resource 

assessment. Binning was undertaken to provide a clearer view of the stability 

distribution. Both bulk and gradient Richardson, measures agree with theory that 

shear is lower under unstable conditions and increases at the point where conditions 

become neutral. Both methods also show a significant divergence after flow 

becomes stable, suggesting that while shear is likely to be higher in stable conditions 

there is a large degree of variability. Bulk Richardson number values show a degree 

of spread in very unstable conditions, where gradient Richardson values do not. 
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Gradient Richardson number values show a more gentle transition from low shear in 

unstable conditions to increased shear in neutral and stable conditions compared to 

the bulk Richardson number values which imply a more pronounced difference 

between mild cases of both types of stability (stable/unstable). The Richardson 

number at which the Obukhov length is 80m (the height of the upper observation in 

the calculations) was calculated by rearranging the Obukhov length mapping 

equation using the known Obukhov length. The Richardson number at Obukhov 

length of 80m is 0.0024, which is close to the point on both the scatter plots where 

dispersion in the shear value starts to occur. It is suggested that the application of 

the equation is not valid when the Obukhov length is lower than the uppermost 

measurement because the equation is specifically for use in the surface layer (e.g. 

Grachev and Fairall 1997). Thus shear values for Richardson numbers above 0.0024 

will not necessarily correspond with Monin-Obukhov length similarity theory scaling.

  

 

 

Figure 6.34 Comparison of shear exponent as a function of observed Bulk (top) and Gradient (bottom) 

Richardson number during period 1.1 at Shell Flats. 
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 Figure 6.35 shows the same scatter plot of bulk Richardson number versus 

shear exponent, this time using the simulated bulk Richardson number as generated 

from wind speed and temperature. What this plot shows is the ability of the model to 

capture the trend in wind shear with stability to a similar extent shown by the bulk 

Richardson number method performed using observed variables. The modelled 

shows a greater spread than the observed bulk Richardson plot. There are fewer 

data points which comprise the modelled plot which could imply a refinement in the 

methodology used to generate the Richardson number is required. Ultimately the 

shape of both bulk Richardson plots is very similar. A generally limited spread in the 

unstable region increases with shear at the point of neutral conditions after which a 

considerable divergent spread is observed. Use of the bulk Richardson number 

method as an approximation of stability is thus a justified means of comparison 

between model and observations.  

 

Figure 6.35 Average 70-20m shear as a function of binned bulk Richardson number calculated from 

modelled variables. 

Figure 6.36 shows a scatter plot of Richardson number and wind shear 

classified by windspeed. Of interest is the grouping of higher wind speeds close to 

neutral conditions, with the highest speeds appearing to be in neutral conditions. 

Figure 6.37 shows the model representation of the same variables. The distribution 

of different wind speed bins is slightly shifted towards the unstable side of neutral 

conditions in the modelled plot compared to the observed plot. However the two 
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plots agree that high windspeed events tend to lower levels of shear and near 

neutral conditions.  

 

Figure 6.36 Average 70-20m shear as a function of observed bulk Richardson number, classified by wind 

speed bin.

 

Figure 6.37 Average 70-20m shear as a function of modelled bulk Richardson number, classified by wind 

speed bin. 
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6.4.2 Stability at Shell Flats 

To begin this section, the frequency of each stability class produced by the 

four approximation methods is presented and discussed. Stability as grouped by 

wind speed, wind direction, weather type, seasonal and diurnal cycles are then 

presented. Most attention will be paid to the bulk Richardson number approximations 

calculated from model and observations as this provides the comparison between 

the two sources by which model performance will be judged. Results from the wind 

speed and direction investigation highlighted some shortcomings in model 

performance, in particular high frequency variability. While the model may not be 

able to precisely simulate high frequency changes in wind speed, if it simulates 

features which can be related to stability while providing a good estimate of wind 

speed, the value of the model as a resource assessment tool becomes greater. 

Simulation of stability, both directly and approximately by reference to other 

variables, will give the wind farm operator more information about the likely 

conditions which will affect the wind farm. For example, weather type might 

correspond to the incidence of particular stability class. Given the simulation of a 

particular weather type the likely stability conditions, and transition from the current 

state can be inferred. Knowledge of the changing stability would allow a modification 

to the degree of wake losses currently accounted for. The adoption of such a 

process operationally would provide a deeper understanding of likely turbine 

performance and farm output which could be used to alter the wind farm 

management strategy.  

 

6.4.2.1 General appraisal  

The main focus for comparison between model and observations will be using 

the bulk Richardson number values calculated from observations and variables 

outputted from the model. Because both gradient and bulk Richardson number 

methods provide similar approximations of stability with respect to wind shear, some 

confidence can be afforded to their use as measures of stability. Furthermore it is 

deemed appropriate to use the bulk Richardson number as the main metric of 

comparison between model and observations. The gradient Richardson number 

derived stability class produced from observations (OGR), is included to provide 

another means of comparison. RIP4 (model postprocessor) generated bulk 
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Richardson number (BRR), is also present in the analysis for validation against bulk 

Richardson number as calculated from the other modelled variables  to serve as a 

reference for any potential end users of the feature in RIP4. Once the various 

methods have been used to calculate a bulk Richardson number, the value is then 

converted to Obukhov length and classified into stability classes as described in 

chapter 3. Classification of stability by frequency as simulated and observed is 

presented in Figure 6.38. Observed stability approximated by gradient Richardson 

(OGR) number, shows a dominance of very unstable conditions at Shell Flats, with 

little presence of any kind of stable conditions and minimal occurrence of neutral 

conditions. Observed bulk Richardson (OBR) values indicate a considerable 

presence of stable and neutral conditions in contrast to the gradient Richardson 

values but also show a strong presence of unstable conditions. Distribution of 

stability as produced from observed and modelled bulk Richardson (MBR) numbers 

agree on a number of levels. Both show a reasonably even distribution of cases 

either side of the neutral class, though with more extreme cases observed than 

simulated. There is a greater occurrence of neutral conditions observed than are 

simulated and the model produces more stable conditions compared to the slightly 

more unstable tendency observed. The BRR series agrees to a small extent, in that 

the dominant conditions are evenly distributed between stable and unstable cases, 

though a greater proportion of an extreme tendency (very unstable or very stable 

compared to unstable or stable) is simulated than is observed. OBR stability sees a 

considerably larger proportion of neutral conditions than is seen in the modelled bulk 

Richardson (MBR) series and the OGR series. To put these results in a practical 

context, both simulated measures of stability produced more stable cases than are 

observed. In reality a farm operator using this model output would expect more 

stable conditions than actually occur. While this is good because wake recovery 

promoted by unstable conditions would be greater than expected reducing power 

loss, it might also result in the imparting of more fatigue to the machines than 

expected. 
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Figure 38 Frequency of stability at Shell Flats Mast 2 from approximations of the bulk and gradient 

Richardson number as modelled and observed. 

6.4.2.2 Stability variation by time 

Temporal variability in stability exists on diurnal and seasonal cycles, relative 

to the incident solar radiation. For with the diurnal variation, Figure 6.39 shows 

agreement in the general trend of all the metrics for stability throughout the day. A 

tendency for increasingly stable conditions during the evening and more unstable 

conditions during the daytime is present in both the modelled and observed time 

series. Where the different measures disagree is in the proportion of each stability 

class. To be expected is a dominance of very unstable conditions in the OGR series 

and to a lesser extent the OBR values. Comparing the calculated OBR and MBR 

values identifies a less pronounced diurnal change in the modelled values which also 

display a greater proportion of stable conditions. Stability as represented by BRR 

shows a trend more akin to the OBR series than the MBR series with a slightly 

greater proportion of very unstable conditions and a slightly more pronounced 

variation throughout the series compared to the MBR series. 
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Figure 6.39 Observed and modelled approximations of stability as a function of time at Shell Flats Mast 2. 

 Stability variation classified by month is presented in Figure 6.40. In general 

the incidence of stable conditions is highest during the winter and spring months, 

with the most unstable conditions seen in the summer. As with stability change by 

hour of day, the plots show that the model seems to capture the observed seasonal 

trend quite well, aside from the obvious difference in proportions. As with the diurnal 

variation investigation, MBR shows quite different proportions of each stability class 

compared to the OBR series. MRR stability shows extensive similarities to the MBR 

derived stability with a slightly greater incidence of very unstable conditions. 

December shows a discernible presence of unstable conditions in all the series apart 

from the BRR, in a similar manner to the June case. Perhaps a better means of 

comparison between the OBR and MBR series relates to assessing the magnitude of 

conditions when the atmosphere is less unstable. For example in January and 

February, again ignoring a degree of discrepancy in proportions, the OBR and MBR 

series agree that the atmosphere is predominantly not unstable, however where they 

disagree is in the occurrence of neutral or stable conditions, with the modelled series 
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favouring a greater proportion of neutral conditions. April and May provide examples 

of where the model does not capture observed stability well, vastly over predicting 

the proportion of stable conditions. Further work needs to be done to fully identify the 

reasons behind these differences but ultimately a discernible level of coherence is 

evident between the modelled and observed stability as derived from bulk 

Richardson values. 

 

Figure 6.40 Observed and simulated approximations of stability at Shell Flats Mast 2, classified by 

month. 

6.4.2.3 Stability variation by wind speed 

 Analysis of the trend in stability with wind speed (Figure 41) shows a 

decrease in unstable conditions in general apart from the highest wind speed bin in 

the OGR series. The OBR, MBR and BRR series all show an increase in neutral 

conditions with increasing wind speeds which reaches a majority at high wind 

speeds which is in agreement with the findings of Motta and Barthelmie (2005). 

Stability as approximated by OGR shows decreasing levels of the very unstable 

class as wind speed increases while the three bulk Richardson values show an 

increase in the number of stable conditions in the mid-speed range before neutral 
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conditions dominate at high wind speeds. Concentrating on the representations of 

stability from observations, the contrast between the bulk and gradient methods is 

especially evident. Increased mixing, promoted by high wind speeds, tends to act to 

negate thermal stratification required for modes of stability other than neutral. The 

profile shown by the OBR approximation is more likely representative of reality than 

that of the OGR series in which a highly unstable atmosphere persists at wind 

speeds of 20ms-1. Indeed Motta and Barthelmie (2005) found that “high wind speeds 

are related to near-neutral conditions, while the two extreme stratifications dominate 

at speeds lower than 10ms-1”. The relationship between wind speed and stability as 

it is calculated here arises from the calculation of the Obukhov length which has a 

cubic relationship with friction velocity, itself a function of wind speed (Motta and 

Barthelmie, 2005). It is important to note the number of values comprising each 

speed bin is not equal, so while for example very unstable conditions do not appear 

dominant in the MBR plot, there are a greater number of observations in the lower 

wind speed range. 

 

Figure 6.41 Observed and modelled approximations of stability at Shell Flats Mast 2 as a function of wind 

speed. 
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6.4.2.4 Stability variation by wind direction 

Figure 6.42 shows the general patterns in stability relative to wind direction, 

where trends are consistent between the model and observation derived values. All 

measures agree that the greatest proportion of unstable conditions occur when a 

Northerly or Westerly component is present in the wind direction, the major 

difference being the proportion of each class. The observed bulk and gradient 

methods of approximation of Richardson number, show trends akin to one another 

with an expected difference in proportion of stability class. Increased stable and 

reduced very unstable conditions are seen in the Southerly direction sectors with 

more unstable conditions prevailing in Northerly direction sectors. While not always 

the case, air masses coming from the South are generally warmer than the sea over 

which they flow, promoting stable conditions, where, by contrast, air masses from the 

North can be colder than the sea over which they flow giving rise to unstable 

conditions. Stability during Westerly and Southerly conditions is similarly distributed 

across the OBR and MBR series, but Easterly and pure Northerly flow is simulated to 

correspond to a greater proportion of stable conditions than are observed. Such a 

scenario might point to flow modification by the land sea effect as the air mass 

passes over the British coastline, which is either missed by the model or erroneously 

included. The OBR and MBR series agree that more very unstable conditions are 

likely from winds with an Easterly component compared to those with a southerly 

component which, to an extent, is supported by the OGR series which shows a 

slightly greater proportion of very unstable cases in Easterly flow. Contrast is evident 

between the BRR and both the MBR and OBR series in the Easterly direction bins. 

The BRR series shows a much greater incidence of very stable cases than is seen in 

the MBR and OBR series.  

Comparisons in this section cannot be definitive for two reasons. Firstly, the 

wind direction bins for modelled and observed derivations of stability are identified 

from modelled and observed data respectively, which at times may not reflect one 

another. Secondly, the number of cases which populate each direction bin are not 

equal which will affect the proportion of each class when comparing different 

measures. These plots are thus best used as guides of tendency rather than 

absolute measures of comparison. 
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Figure 6.42 Observed and modelled approximations of stability at Shell Flats Mast 2 as a function of wind 

direction. 

 

6.4.2.5 Stability variation by weather type 

Stability, represented by the four measures, as classified by weather type 

(summarised in Table 6.20) is presented in Figure 6.43. Due to the added 

information available from a weather typing analysis, more can be learnt from 

analysis of these plots, but to do so requires greater consideration. Some 

consistency should be evident between the middle group of weather types (11-18) 

and the stability by direction plots, because they represent the same entity being 

wind direction. Some differences will exist between the weather type derived 

direction and the direction plots in the previous section because of the different 

sources of information determining the wind direction and the classification method 

for binning the data. However there are notable consistencies, for example the least 

unstable conditions include a southerly component, with a similar trend occurring 

under westerly flow, while easterly flow tends to bring a greater proportion of 

unstable conditions. The major similarities between the MBR and OBR values are 

evident under Easterly flow (classes 11, 12, 13, 21, 22, 23). While both MBR and 
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OBR measures imply conditions are predominantly very unstable, the model 

simulates a greater incidence of unstable cases than are observed. The highest 

incidence by far of stable conditions seen in the OGR series occurs during 

anticyclonic southerly conditions, which is reflected in the OBR and MBR series. The 

same three measures also see an above average level of stable and neutral 

conditions in the corresponding cyclonic Southerly type, which implies the source of 

the air mass does not affect stability when the flow is Southerly. By contrast stability 

under South-Easterly flow is affected by the airmass source and dominant pressure 

system, with stable conditions under cyclonic South-Easterly flow, while unstable 

conditions are seen under anticyclonic South-Easterly flow in the OBR and MBR 

series. Classification of stability by weather type adds an extra degree of information 

to the wind direction results by allowing the inference of airmass properties. Results 

indicate that the meridional component of the wind seems particularly relevant to the 

stability conditions witnessed at the site as classified by weather type, though only in 

relative terms compared across the different derivations of Richardson number. 

What the results also show is a degree of variability in the stability class in every 

weather type, so while stability can be inferred probabilistically, it appears not to be 

exclusively related to the weather type. 

   

Table 20 Numerical designation of the Lamb weather type categories. 

Lamb Weather Type (LWT) codes 

-1  U -9  Non-existent 

0  AC  20  C 

1  ANE 11  NE 21  CNE 

2  AE 12  E 22  CE 

3  ASE 13  SE 23  CSE 

4  AS 14  S 24  CS 

5  ASW 15  SW 25  CSW 

6  AW 16  W 26  CW 

7  ANW 17  NW 27  CNW 

8  AN 18  N 28  CN 
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Figure 6.43 Observed and simulated stability at Shell Flats Mast 2 as a function of Lamb weather type. 

6.4.3 Interaction between the different classifications of stability 

Five variables were used to classify the occurrence of stability to see if and 

how the modelled values differed from those observed. While presented 

independently, it is important to remember these different classifications are entirely 

related. For example, considering the wind direction and time of year classifications, 

further investigation combining the two might confirm a number of related 

occurrences in particular stability classes. Take for example, the identification in the 

stability by wind direction analysis that Southerly flow tended to be less unstable 

than flow from the North. If this was then broken down further, by time of year, one 

might see a clearer distribution of stable and unstable conditions depending on time 

as a result of the thermal contrast through the seasons. 

6.4.4 Assessment of the stability investigation at Shell Flats  

6.4.4.1 Methods of approximating stability 

Initially, there appeared little difference between the bulk and gradient 

Richardson number methods as approximations of stability when compared by 
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reference to observed wind shear. In the practical investigation where stability is 

calculated and classified by a number of variables for the Shell Flats resource 

assessment, there is stark contrast between the two Richardson measures in the 

proportion of stability classes observed. Not only is the proportion of stability classes 

different, but the variation in stability depending upon the variable by which stability 

is classified, can be different too. For example when classified by wind speed bin, 

the bulk Richardson number profiles appear similar to that seen in previous studies 

(e.g. Motta and Barthelmie, 2005), showing a rise in the proportion of neutral 

conditions with wind-speed, however the gradient Richardson number values 

maintain a strongly unstable dominance. Increased wind speeds tend to correspond 

to a more stratified flow which translates to a more stable or neutrally stratified 

atmosphere. As a result, based solely on these findings, the better approximation for 

stability in this work appears to be the bulk Richardson number method calculated 

using one measurement of wind speed at one height. What these results ultimately 

imply is that caution should be used when undertaking such investigations. It is not 

unlikely that differences between the two methods are artefacts arising from 

differences in the calculated layers and assumptions implicit in the Richardson 

number calculation and mapping to Obukhov length. It may be that the two 

measures are accurately reporting the atmospheric stability as intended and a small 

detail, perhaps a layer of air or a temperature inversion is translated into a big 

difference that separates the two measures. As a result one suggestion from this 

work is the standardisation of means of comparison. Approximations produced from 

different height levels are less valid than those made at the same levels because the 

factors influencing both may well be different and cannot be accounted for. In 

contrast, when using consistent height measurements, the influences should be the 

same. Furthermore, these measures of stability are only undertaken and 

representative for a particular location in the boundary layer, where local effects may 

be influencing approximations, which are not representative of the whole atmosphere 

either vertically or horizontally. 

6.4.4.2 Model performance as a tool for simulating stability 

Considering the performance of the model as a means to approximate 

stability, results here indicate definite potential. Comparing the bulk Richardson 

derived stability, from variables outputted by the model and observed at Shell Flats, 
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both series’ showed a balance of stable and unstable conditions, though the 

modelled results favoured less neutral values than were observed. The OBR series 

displayed a stronger tendency towards unstable conditions while the MBR series 

showed a greater proportion of stable conditions. When OBR and MBR derived 

stability were compared using different variables to classify the incidence of stability, 

patterns which were observed were to a large extent replicated by the simulated 

stability, albeit with a slight tendency towards more stable conditions in the modelled 

data. In the practical context of wind farm operation, output projections based on the 

model simulation would likely be on the conservative side. Wake losses would 

probably not be as significant as originally thought because of the increased 

turbulent mixing arising from greater incidence of unstable conditions, which 

however, would also mean increased fatigue imparted to the turbines due to the 

higher level of turbulence. Ultimately the model simulates variation in stability to a an 

appreciable degree by reference to observations. A tendency towards more stable 

conditions was identified and with further work to establish and quantify the 

magnitude, could be accounted for by a systematic correction. Given the accuracy 

with which modelled stability reflects that observed throughout the classifications, it 

could be a successful addition to a wind resource assessment campaign. Clearly 

these results are applicable to a long term resource assessment where aggregated 

statistics are used for planning. While the results show the model has skill, further 

work would need to be undertaken to investigate the performance of the model on 

short timescales for use in an operational capacity such as short term forecasting. 

6.5 Resource assessment for the Supergen Wind exemplar farm 

6.5.1 The wind resource 

To provide an example of the potential of NWP as a resource assessment 

tool, a resource assessment was performed for the Supergen Wind exemplar site. 

Wind speed, wind direction and temperature were produced to quantify the wind field 

of the site as well as the stability conditions. The variables were produced from June 

2003-June 2004. Wind speed was produced at five heights to provide a vertical 

profile, stretching from the surface layer at 10m to 160m, around the height at which 

one would expect the rotating blade tips of a modern turbine to reach in operation. A 

vertical wind speed profile is of great use to operators as it will give an indication of 
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the shear expected at the site and an impression of how it changes through the year 

under different conditions. Average wind speed from June 2003 to June 2004 at hub 

height (90m) for the Exemplar farm is found to be 9.04 ms-1 with a standard deviation 

of 4.48 ms-1. The two-parameter Weibull distribution statistics for the series are a 

scale (C) value of 10.22 ms-1 and a shape (k) value of 2.13 ms-1, providing a more 

comprehensive impression of the wind speed distribution at the site.  

Wind direction distribution is shown in Figure 6.44 with the prevailing wind 

direction simulated to be south westerly, with a strong north-westerly component 

also present. Easterly flow comprises relatively little of the general wind direction 

observations for the exemplar site. The average vertical windspeed profile is shown 

in Figure 6.45 which could be compared against similar profiles under different 

conditions for analysis. For example, much like with stability, it might be of benefit to 

the operator to classify vertical wind speed profile by weather type or wind direction 

to help inform a farm optimisation strategy for given synoptic conditions which relates 

to array performance. 

 

Figure 6.44 Wind rose at 40m for the Supergen Wind Exemplar site. 
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Figure 6.45 Average vertical wind speed profile at the Supergen Exemplar site from June 2003 to June 

2004. 

 

6.5.2 Stability at the Supergen Exemplar site 

 Stability as simulated at the Exemplar site is predominantly neutral (Figure 

6.46) in contrast to the Shell Flats site, the difference could be related to the contrast 

in fetch between the two sites as the Shell Flats fetch includes a land-sea interface. 

With such a neutral atmosphere, wakes would not dissipate as quickly as if they 

conditions were more unstable, however turbulence levels would be lower and there 

would potentially be less fatiguing present. When considered in the context of the 

results from the Shell Flats resource assessment, model tendency was towards a 

more stable atmosphere than was observed, so if the same bias is present in this 

model run, actual conditions at the site may well be unstable. Figure 6.47 provides 

an insight into the variability of stability at the Exemplar site on diurnal and seasonal 

cycles as well as for different wind speed and direction values. Overwhelmingly the 

stability is neutral, as Figure 6.46 would suggest, but the variation of stability by 

reference to the other variables seems to follow a similar pattern to that observed at 

Shell Flats. For example more unstable conditions are observed at lower wind 

speeds as well as during the summer months. 

1 

2 

4 

8 

16 

32 

64 

128 

256 

8.2000 8.4000 8.6000 8.8000 9.0000 9.2000 9.4000 9.6000 

H
e

ig
h

t 
(m

) 

Wind speed (ms-1) 



140 
 

 

Figure 6.46 Simulated stability at the Supergen exemplar wind farm site for the duration of the resource 

assessment. 

6.5.3 Variation across the farm site 

Model output for the wind resource assessment of the Supergen exemplar 

site was produced for the centre point of the farm to be as representative as possible 

for the whole farm. Three months of simulations were performed to gain an 

impression of the deviation in conditions seen across the farm. Due to the size of the 

Exemplar farm, designed to be representative of a round three site, it is entirely 

possible that turbines at opposite extremities of the farm might be subject to different 

weather systems at the same time. A resource assessment for the farms centre point 

could thus be inapplicable for other parts of the wind farm. Such a scenario 

highlights the weakness of having one observational series representing a whole 

wind farm and supports the case for application of NWP models which, through 

observational nudging and data assimilation, can dynamically expand the scope of a 

single point observational series. Figure 6.48 is an example of one occasion in 

January 2004 where wind direction was variable over the extent of the wind farm 

area. What the schematic diagram shows is instantaneously sampled wind direction 

across the farm, which in this case could identify the presence of a high pressure 

system moving in. 
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Figure 6.47 Simulated stability at the Supergen Exemplar site by reference to (clockwise from the bottom 

left) wind speed, wind direction, diurnal and seasonal timescales. 

Table 6.22 provides an insight into the variation in the simulated variables across 

the exemplar site, something which could not be achieved using one observational 

series. Wind direction is 9 degrees different at the centre of the farm compared to the 

extremities, the reason for which is unknown. The wind has a slightly more Westerly 

component in the North and West stations compared to the South and East stations. 

Average wind speed is higher at the centre of the farm also, compared with the 

extremities, while the North and West stations see slightly higher speeds than the 

South and East stations which could be related to the slight difference in direction. 

The centre point of the farm also appears to be experience temperatures slightly low 

the rest of the farm. Stability, inferred by the bulk Richardson number appears 
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slightly nearer to neutral for the Centre, North and West points, while the Southern 

point appears to experience slightly more unstable conditions. 

 

 

Figure 6.48 Schematic representation of wind direction variation across the Supergen exemplar farm on 

the 13th January 2004 

Table 6.21 Average values of variables across the Supergen exemplar farm from the 3 months simulated. 

  
Centre North South West East 

Bulk Richardson number Average 0.0852 0.0857 0.5053 0.0846 0.1264 

 
Standard deviation 1.2199 1.1644 17.4306 0.9312 2.9106 

10m Temperature (°K) Average 281.0589 281.1292 281.1324 281.1526 281.1074 

 
Standard deviation 1.4943 1.4880 1.4900 1.4862 1.4905 

50m temperature (°K) Average 280.7523 280.8192 280.8364 280.8504 280.8031 

 
Standard deviation 1.5715 1.5649 1.5548 1.5656 1.5555 

Wind Speed (m/s) Average 8.6843 8.6233 8.6036 8.6099 8.6121 

 
Standard deviation 3.5772 3.6365 3.6605 3.6364 3.6547 

Wind Direction (°) Average 229.2715 221.1449 220.8757 220.7979 221.3610 

 
Standard deviation 89.0979 90.5928 91.0276 91.6048 93.3602 
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6.6 Summary of long term resource assessment analysis 

The aim of this investigation was to provide a practical demonstration of the 

capability of WRF as a long term resource assessment tool. Initial comparison of 

model and observations showed excellent potential, particularly after the filtering 

process to focus on features corresponding to the resolved scale of the model. Not 

only was wind speed variability well accounted for, but wind speed distribution 

between the model output and observations was very similar which is of great 

importance to potential end users. The average correlation coefficient for wind 

direction was reasonably good, but showed a large RMSE which combined with the 

good accuracy of the wind speed results implies that the weather systems controlling 

the wind field are being accurately simulated in general apart from perhaps 

positioning of pressure systems might be the reason for the wind direction results. 

When model performance is considered relative to nearby observational series the 

results are, in general, encouraging. While the best series at representing 

observations at Shell Flats Mast 2 is observational data from Shell Flats Mast 1, the 

model performs to a high level within a reasonable margin of that achieved by 

observations from Mast 1, particularly when filtered to 6-hourly resolution, which 

given the constraints it operates within (6 hourly input and 2km spatial resolution), 

signifies great potential. Even with a short distance over water the RMSE of Mast 1 

as a predictor of Mast 2 is 1.4, which is not much smaller than the model value. 

Model output comprehensively outperformed the nearest onshore met station, which 

historically might have been used for an MCP study during the planning stage, 

further justifying the application of an NWP model to providing a resource 

assessment for Shell Flats.  

  



144 
 

7 Optimising model performance 

Information from the modelled runs undertaken previously was considered, 

alongside extensive reviewing of the literature, to develop an investigation which 

would aim to optimise model setup for the application to wind resource assessment. 

Ideally model performance should improve quantifiably by the same measures 

already used in the benchmarking exercise. In addition, the aim was to provide more 

information about the model performance, to be used in strengthening assertions 

made from analysis of the model output. For example if model performance can be 

shown to be particularly strong in one area/ scenario/ set of conditions, more 

confidence can be assigned to the output when those conditions recur. Conversely if 

model performance is found to be lacking, more uncertainty can be conveyed 

alongside the output to give the end user as much information as possible about the 

strength of the data on which they are basing key decisions. SST input was included 

and observational nudging of wind speed was employed. Two ensembles were 

created, one by offsetting the initialisation time of a run and combining the members 

for the overlapping period and the other by using different physical setups for the 

PBL. Twenty individual cases were chosen based on the prevailing weather type 

over the course of the run, for which five different boundary layer schemes were 

used and from three initialisation times, corresponding to a total of 300 runs.  

 

7.1 Method 

Results from the previous investigations had identified areas for improvement 

in model performance. The model optimisation investigation is intended to focus on 

those areas of uncertainty and try to improve model performance. As the most 

important variable to a wind resource assessment, wind speed is the variable model 

performance will be optimised for. Atmospheric features which cause changes in the 

wind field at low and medium frequencies exist at the medium to large scale which 

the model is able to directly resolve. Smaller sub-grid scale features are 

approximated by parameterisation schemes, which is one of the areas identified for 

improvement. Different PBL parameterisation schemes are available for WRF and a 

range were tested to see which performed best in the offshore environment. An 

ensemble of the different PBL schemes was generated to provide an insight into the 
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uncertainty associated with the PBL and see if an ensemble was a preferable option 

to an individual scheme. Another area of uncertainty related to the initial conditions 

provided to the model. While the CFSR reanalysis product is useful resource, a 

variety of factors (e.g. temporal and spatial resolution, interpolation method) mean 

that precisely representative values are unlikely to be provided. A time offset 

ensemble was created comprising members initialised at staggered intervals and 

combined for the period of overlap. This effectively provided three sets of initial 

conditions for each run which were updated throughout the run, which was intended 

to reduce divergence between model and observations. The investigation was 

undertaken for the Scroby Sands site, which provided a means of comparison by 

which to judge any improvement.  

7.1.1 Computing setup 

Model optimisation runs were undertaken on the HECToR facility using the 

second high performance computing account awarded to this research in the 

November 2012 resource allocation panel which required a peer reviewed 

application. Pre-processing of the input data and nudging steps were undertaken on 

CREST03 before the input files were compressed and sent to HECToR where the 

model solver was run for each case. Each case was run on 288 cores of HECToR 

which in combination with the resource allocation allowed around six runs to be 

undertaken simultaneously with another 6 in preparation or postprocessing 

depending upon the stage of the run. Post processing was also undertaken on 

HECToR after which the output files were transferred back to the working desktop for 

analysis in Matlab©. 

7.1.2 Selection of run periods 

Run periods were selected based upon the prevailing Lamb weather type as 

classified by Jones et al (2013) from the NCEP reanalysis product (Kalnay et al, 

1996). Weather typing is a useful concept in synoptic meteorology whereby a 

classification of the atmosphere is performed by describing the type and location of 

the dominant pressure system affecting the UK. From this knowledge of the airmass 

can be inferred and assumptions made of the likely conditions. Choosing simulation 

periods dominated by consistent weather types tests if model performance is related 

to particular synoptic conditions, but also allows the classification of the wind 

observed at the site for given weather types. The benefit of relating wind conditions 
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to synoptic states is that models are better at simulating large scale circulation 

features. Therefore while longer term simulations will degrade in accuracy with look 

ahead time, if the correct synoptic features can be simulated then some properties of 

the wind might be inferred from large scale features simulated by the model. The 

investigation was undertaken for the year of 1996 to be able to compare results 

against those obtained in the benchmarking investigation. Daily weather types for the 

whole year were reviewed. Periods of consistent weather type were selected but it 

was important to get a balance of different weather types. Table 7.22 shows the 

cases eventually selected comprising cases dominated by both single and mixed 

weather types. The selection of cases dominated by a single weather type were 

made intentionally to identify pure weather type cases to allow the best chance of 

identifying related behaviours in stability. A number of different weather types which 

comprised mixed runs were undertaken for comparison, with the next step of 

research suggested to consider the sequence of weather types upon variations in 

stability. The number of cases selected was limited because of the number of 

ensemble member runs which needed to be undertaken to fulfil the aims. Five 

boundary layer options and three initialisations for 20 cases required 300 model 

runs. As identified in the early part of this research, optimal model run length is 

around 3-4 days. Model runs for this investigation were three days and 18 hours long 

with the first six hours discarded as spin-up. For the time offset ensemble runs one 

set of PBL members was initialised at the start of the run assigned the tag T00, one 

set of members was initialised 24 hours into the run assigned T24 and the final set of 

members were initialised 48 hours after the start of the run and were assigned T48. 
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Table 7.22 Twenty simulation periods selected for the optimisation runs with corresponding weather 

type. 

Run dates  

From To Weather type 

31/12/1995 00:00 03/01/1996 18:00 SE, SE, A, S 

07/01/1996 00:00 10/01/1996 18:00 S 

20/01/1996 00:00 23/01/1996 18:00 E 

27/01/1996 00:00 30/01/1996 18:00 E 

06/02/1996 00:00 09/02/1996 18:00 C, C, C, S 

01/03/1996 00:00 04/03/1996 18:00 AN, AN, N, N 

13/03/1996 00:00 16/03/1996 18:00 SE ,SE, SE, C 

02/04/1996 00:00 05/04/1996 18:00 A 

01/05/1996 00:00 04/05/1996 18:00 NE 

22/05/1996 00:00 25/05/1996 18:00 CS, C, CW, CW 

15/06/1996 00:00 18/06/1996 18:00 A 

08/07/1996 00:00 11/07/1996 18:00 W 

12/07/1996 00:00 15/07/1996 18:00 W, W, A, A 

31/07/1996 00:00 03/08/1996 18:00 CW, CW, AW, A 

23/08/1996 00:00 26/08/1996 18:00 C 

04/09/1996 00:00 07/09/1996 18:00 AE 

09/09/1996 00:00 12/09/1996 18:00 N, N, N, NW 

17/10/1996 00:00 20/10/1996 18:00 SW 

22/10/1996 00:00 25/10/1996 18:00 S, S, AS, CS 

06/11/1996 00:00 09/11/1996 18:00 CW, CNW, W, CW 

 

7.1.3 Model setup 

7.1.3.1 Physical setup 

The same domain setup was used for the optimisation runs as was used in 

the benchmarking runs which employed three domains at 18, 6 and 2 km resolution 

shown in Figure 5.17 and described in Table 5.6. Input data were sourced again 

from the 0.5° 6-hourly CFSR product. SST data was obtained from the CFSR archive 

to augment the standard skin temperature (TSK) field which is provided in the WRF-

specific dataset. Updating the SST field was found to improve the performance of 

WRF and reduce bias in a wind resource assessment investigation by Shimada and 

Ohsawa (2011).  
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7.1.3.2 Dynamical setup 

To preserve consistency between the runs, dynamical setup was the same as 

used in the benchmarking runs with the exception of some variations to the selection 

of PBL scheme used for the ensemble member runs. The MYJ scheme was used 

throughout the runs again for the purposes of consistency between the 

investigations, but also because it is a widely used and validated boundary layer 

scheme. The PBL schemes used for the PBL ensemble research have been 

described in the literature review and theory chapters. It was important to use a 

range of PBL schemes with different approaches to modelling the boundary layer to 

see which performed best but also utilise the skill present from each method in the 

ensemble. Local schemes tend to accompany higher turbulence closure models 

which provide a more complete simulation which is of benefit to this research. Non-

local schemes however provide a more complete representation of fluxes through 

the depth of the boundary layer which is of most importance under unstable 

conditions. The MYJ scheme is a local 1.5 order closure scheme with a prognostic 

term for calculating TKE. MYJ was chosen because it is a widely used scheme and 

has been shown to perform well from stable to slightly unstable conditions. The first 

order nonlocal ACM2 scheme was used because of its novel treatment of fluxes 

through the boundary layer, which should offer good performance under unstable 

conditions. The MYNN 2.5 is a local 1.5 order closure scheme which simulates 

diffusion through the boundary layer in a slightly different manner to the MYJ 

scheme, but shares many other commonalities. The QNSE scheme operates locally 

and employs a 1.5 order spectral closure model, developed for stable conditions. 

The four schemes provide a diversity of approaches by which to approximate 

turbulent fluxes in the boundary layer under a range of stability conditions. Each PBL 

scheme is provided with input from a surface layer parameterisation scheme within 

WRF. There are a range of surface layer schemes which are generally developed to 

complement a particular PBL scheme. For this research, the surface layer scheme 

recommended in the WRF user’s manual for the corresponding PBL scheme was 

used. The fifth and final ensemble member uses the MYJ PBL scheme but is not 

nudged. For the first two test cases (beginning 31/12/19950 and 07/01/1996), the 

YSU PBL scheme was tested while the QNSE scheme was not used. The 

investigation was undertaken with the QNSE scheme because it had not been 
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investigated in this work while the YSU scheme was exclusively used in the Shell 

Flats runs. 

7.1.4 Model output 

This investigation focussed solely on wind speed which was produced for the 

site of the Scroby Sands mast at 10 minute temporal resolution and 50m height. 

Each ensemble member is an individual model run with a different setup 

configuration or initialisation time. The process by which the members combine to 

become an ensemble is described in the next section. 

7.1.5 Nudging 

Nudging was employed to assimilate hourly 10m wind speed from Hemsby 

into the model input files for the cases comprising the optimisation runs. Nudging 

offered another method by which to account for some uncertainty associated with the 

initial conditions by providing information from a nearby site at a higher temporal 

resolution than the input data. Observations were, as with the Shell Flats resource 

assessment runs, integrated using the Obsgrid program once the data had been 

prepared into little-R format. All of the different setups were run with nudging and to 

test the benefit of the technique an extra MYJ PBL setup was run without 

observational nudging to test its performance, which, as a result provided another 

ensemble member. 

7.1.6 Ensembles 

Conceptually, the purpose of an ensemble is to evaluate the prediction of 

uncertainty. Model performance in the PBL is one of the areas, identified in this work, 

as requiring improvement, where sub-grid scale processes contribute to changes in 

wind speed which the model is unable to replicate. The other main source of 

uncertainty in NWP modelling is the accuracy of initial conditions, from which the 

model solves equations to simulate atmospheric evolution. The chaotic nature of the 

atmosphere makes accurate initial conditions very important so as to minimise 

divergence between the model solution and observations. The ensembles in this 

investigation are presented in the upcoming sections. The method by which they are 

generated and applied is discussed firstly for the PBL ensemble, secondly for the 

time offset ensemble and finally for the unified time offset ensemble system (TOES) 

which consists of members from both ensembles. Similar work has been published 
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by Deppe et al (2013), whereby an ensemble consisting of different PBL schemes is 

developed, as is a lagged initialisation ensemble.  

7.1.6.1 PBL ensemble 

A PBL ensemble addresses the uncertainty surrounding the representation of 

boundary layer processes by the model. PBL schemes have been reviewed and 

were shown to be variable in performance, depending upon the prevailing conditions 

(for example Deppe et al, 2013; Nolan et al, 2009). By producing an ensemble, 

multiple treatments of boundary layer processes are adopted. Either one PBL 

scheme will be identified as the best performer, or an ensemble mean with a diverse 

skill range will be produced from the combined skill of the individual members. The 

ensemble mean in this work is unweighted. As a pioneering study for the sites used, 

there are no other results upon which to base a weighting scheme, though results 

from the work will help inform future considerations for weighting the schemes 

accordingly. The unweighted ensemble mean will be the product of an average of 

each wind speed value from the five PBL options for each time step. 

7.1.6.2 Time offset ensemble 

The uncertainty associated with initial conditions is addressed by this work 

through the creation of the time offset ensemble. Rather than perturbing initial 

conditions from the start of the run, successively offset members are integrated into 

the ensemble as they are initialised later on through the run, which also effectively 

updates the earlier initialised run. The time offsets were at T+00, T+24 and T+48 

hours for each case and each PBL option was run for each initialisation time. Where 

the time offset ensemble differs from the PBL ensemble is in the weighting of the 

members. Intuitively more weight should be afforded to the most recently initialised 

members because they have the latest information and have had the least amount of 

time to diverge from observations. This study investigates the different weighting 

strategies available to the user of a time offset ensemble by creating an unweighted 

scheme as well as two weighted schemes affording preference to the more recently 

initialised member(s), a technique applied by Lu et al (2007). The weighted schemes 

were generated by averaging the members of the previous lag to be equal to one 

member of the most recent time offset series. For the T48 ensemble this was 

achievable in two ways, firstly by providing equal weight to T24 and T48 members 

but averaging all the T00 members to account for the weight of one T24 and T48 
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member. Then, secondly, by affording more weight to T48 by averaging all the T00 

and T24 members to be equal to one T48 ensemble member. Staggering the 

initialisation time of the ensemble members is a variant of a reinitialisation run, 

whereby a model run is comprised of a series of shorter runs, rather than 

undertaking one long model run for the duration. Lo et al (2008) found reinitialisation 

to provide better results than a traditional full length run, however the extra 

computing cost is a considerable addition. 

7.1.6.3 Time offset ensemble system (TOES) 

The time offset ensemble system (TOES) is a collection of all the ensemble 

members from both PBL and time offset ensembles. In essence the TOES is very 

similar to the time offset ensemble but considers the contribution of the PBL 

members more explicitly than simply averaging them for the purpose of creating a 

mean value for a given initialisation time. In addition the three weighting techniques 

detailed in the previous section are available with or without the inclusion of the 

nudged MYJ run to add another source of uncertainty into the ensemble system 

which in total provides eight variants of the TOES, though not all for the same time 

interval. Combining all the members from both ensembles provided a great range of 

skill throughout the run, but also a good opportunity to investigate the use of the 

spread error relationship used to identify model uncertainty during a run. While the 

ensemble spread-error relationship has been shown to offer value to NWP output, it 

is highly sensitive to the conditions in which it is used. Mentioned earlier in the 

literature review was the assertion that linear spread-error relationships are only of 

interest when spread is extreme and when compared to the climatological mean 

(Whitaker and Loughe 1998). This work will calculate the linear spread-error 

relationship for all the cases using every available ensemble member to maximise 

the potential for spread. The spread error relationship is defined by the correlation 

which exists between model mean absolute error and the ensemble spread. 

Ensemble spread is represented by the standard deviation of the ensemble 

members for a given time step, however the mean value used can be changed. This 

work will present results from the instantaneous mean value, which is calculated for 

every time step, as well as the climatological mean value, which is calculated from all 

available members for the duration of the run. To help identify when ensemble 

spread is anomalously high or low, plots for each run are produced which display an 
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indicator variable which show a nonzero value if the ensemble spread is greater than 

two standard deviations of the mean. Two standard deviations of the mean were 

selected to indicate anomalous values simply as a rough guide. In a Gaussian 

distribution 95% of data points are found within two standard deviations of the mean. 

While the wind speed distribution is not Gaussian, the indicator as a rough guide 

works well. 

 

7.2 Model performance 

7.2.1 General comments 

To begin with, a general impression of the ensemble model performance is 

described, against which results from the optimisation strategies will have a frame of 

reference to which they can be compared. Average statistics for the nudged MYJ 

PBL scheme runs at TOES t+0 are presented as a rough indicator of baseline 

performance for this set of runs and to provide some initial comparisons against 

other model runs. As the MYJ scheme was used in the benchmarking investigation, 

it is logical to use the same PBL scheme for comparison. Average correlation 

coefficient across the 20 cases is 0.6, which is lower than the results from the 

benchmarking study (0.64). While a RMSE of 2.57 ms-1 is higher than the average 

result from the Scroby Sands benchmark runs (2.19 ms-1). Initial performance for the 

optimised setup, including SST update and observational nudging of wind speed, is 

thus worse than results from the benchmarking performance study discussed in 

Chapter 5. A median correlation of 0.69 suggests it is likely the average performance 

of the optimised runs was affected by a few anomalously poor runs, such as the 

case of July the 31st where correlation was 0.08. It is vital to the successful 

understanding and development of the model, as a wind resource assessment tool, 

that such cases are identified and reviewed. 

7.2.2 Wind speed variability 

Results from the benchmarking and Shell Flats investigations imply that the 

degree of wind speed variability present in a run is related to the scale of the 

dominant atmospheric processes at the time. For example, small scale atmospheric 

processes such as convective cells are more likely to relate to large amounts of high 

frequency variation but lower overall variation through the run. In contrast a high 
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pressure system is likely to see suppressed high frequency variability but perhaps 

more pronounced medium or low frequency change which translates to larger 

variation over the course of the run. Standard deviation is used as a measure of 

variability because, as Figure 7.49 shows, runs with a higher standard deviation 

show a greater degree of change over the course of the run. However what standard 

deviation cannot represent is the type of variation seen, which relates to the 

frequency at which the change occurs. Synoptic weather typing allows an observer 

to infer characteristics of an airmass based on knowledge of its origin and path of 

travel. With information regarding the pressure tendency, assertions can be made 

about some likely properties of the dominant weather, such as wind speed variability. 

It is important to reiterate from the outset that any inferences made based on 

weather type are relative to one another, much like discussing pressure systems. For 

example a northerly flow is likely to bring a cooler, drier airmass than a south-

westerly flow would. Due to the large number of ensemble runs needed to complete 

the investigation, the number of overall cases had to be limited. While efforts were 

made to provide a balance of diversity and consistency in weather types, there is a 

restriction on the assertions which can be made based on this limited sample. 

Analysis of the individual runs provides insight into the variability of windspeed 

resulting from different synoptic conditions and the ability of the model to recreate 

such variability. Both anticyclonic and Easterly weather types correspond to reduced 

variability while Northerly and cyclonic weather types tend to coincide with increased 

variability as represented by standard deviation. The runs which comprise Figure 49 

were selected to illustrate the points made about variability relative to weather type 

and also show the degree of variation seen across the cases relative to standard 

deviation. Both of the simulations undertaken in May are examples of runs with 

larger variation, May the 1st is dominated by North-Easterly flow while May the 22nd 

is dominated by cyclonic conditions with varying directional components. The 

remaining two runs are examples of runs with a relatively low degree of variability, 

Jan the 20th is an example of an easterly dominated case while April the 2nd 

consistently experiences anticyclonic conditions.  
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Figure 7.49 Observed wind speed from four cases illustrating the difference in variability through the run 

related to weather type. Standard Deviations for May 01 & 22, Jan 20 and Apr 02 are 3.9, 3.3, 1.7 and 2.0 

ms
-1 

respectively. 

7.2.3 Model performance by reference to weather type 

The range of runs described in the methods section are undertaken for 

Scroby Sands, using a range of initialisation times and PBL schemes including a 

non-nudged run to simulate wind speed at Scroby Sands. The cases in Figure 7.49 

were selected to illustrate the difference in observed variability through the runs with 

respect to weather type.  For this part of the analysis, average statistics are 

comprised of all the available T+0 PBL schemes, including the non-nudged run, for 

the case in question. Despite the marked difference in variability through the runs 

and the contrast in dominant synoptic conditions, on the basis of these four runs 

there is little indication of state dependence in model performance.  While the 

January the 20th run shows relatively little variation and is consistently under easterly 

flow conditions, model performance shows a moderate correlation of 0.52 and a 

reasonably high RMSE of 3.2 ms-1. For the other case with low variability, April the 

2nd, the model performs well showing a correlation of 0.77 and the lowest average 
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model RMSE of 1.5 ms-1. A similar contrast in performance is evident in the runs with 

more variability. Model performance is poor for the May the 1st case showing a 

correlation with observations of 0.38 and a significant RMSE of 3.7 ms-1. However 

the model performs very well in the May 22nd case, achieving a correlation of 0.8 and 

a RMSE of 2.09 ms-1. Mentioned earlier in the chapter was that the poorest run in 

terms of model performance was the case of July the 31st. Figure 7.50 shows three 

TOES members which are the PBL ensemble mean runs. This is to show the best 

effort the model was able to make at simulating wind speed for the July 31st case, 

using all the PBL information and from the three different initialisation times. 

Statistics for the T+00 PBL ensemble mean exhibited a correlation of 0.01 and an 

RMSE of 2.89 ms-1. The case is characterised by a change in dominant pressure 

system after 2 days with a transition from cyclonic to anticyclonic. The first two days 

show high frequency variation of significant magnitude dominating the mode of 

variation which the model struggles to simulate. In the latter half of the run, wind 

speed variability visibly smooth out as anticyclonic conditions dominate, but a couple 

of ramp events are observed which are not captured by the model. The TOES runs 

struggle to capture the observed change in the run, despite the T+48 run coinciding 

with the change to anticyclonic conditions. Model performance is variable across all 

the runs undertaken, while it appears to have greater ski under more calm stable 

conditions, there is little consistency. For example, model performance may be good 

under a few anticyclonic cases but then poor in another, which means the factors 

that influence model performance are not exclusively related to the conditions being 

simulated. This initial set of comparisons indicates that while model performance is 

variable across different weather types, it has skill when simulating wind speed 

throughout the range of synoptic conditions. Furthermore, inadequacies in model 

performance appear to be more subtle than a simple case of state dependence (a 

discernible level of performance related to particular conditions) because the model 

does not consistently perform at a specific level for a specific synoptic setting. 
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Figure 7.50 Observed and simulated 50m wind speed at Scroby Sands for the 31st of July case. 

Simulated wind speed is represented by the three time offset PBL ensemble means for the run. 

 

7.2.4 Comprehensive analysis of model performance 

When the full suite of runs is considered, more information regarding model 

performance becomes apparent. Table 7.23 shows the average statistics for the PBL 

averaged T+0 runs. The different statistical methods used to quantify model 

performance also act as a sorting method by which to conduct a detailed comparison 

between the model and observations. 

 

7.2.4.1 Performance classified by correlation 

Ordering the results by correlation from lowest to highest does not show any 

particular relationship to average wind speed, suggesting the model has skill 

throughout the wind speed range and no dependence on a particular level of wind 

speed. When standard deviation is classified by correlation, a slight inverse 
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relationship is identifiable, suggesting the model performs better when wind speed 

shows a large departure from the mean over the course of the run. An inverse 

relationship between correlation and standard deviation could be linked to the 

resolved scale of the model whereby larger scale features are more accurately 

simulated and likely to be responsible for more significant changes in wind speed, 

which is represented in these statistics by a larger standard deviation. 

Table 7.23 Average statistics for the T+0 average PBL runs 

Case 

Name 

RMSE  

(ms-1) 

Weather type Average wind 

speed (observed 

ms
-1

) 

Observed 

standard 

deviation (ms
-1

) 

Correlation 

Dec-31 2.7244 A,A,A,S 5.7175 2.9808 0.8082 

Jan-07 2.1273 S 10.5320 3.1802 0.8006 

Jan-20 3.2441 E 11.4647 1.7222 0.5237 

Jan-27 2.6986 E 11.4263 2.7196 0.7038 

Feb-06 3.5159 C 8.1918 4.3978 0.8164 

Mar-01 3.6464 AN,AN,N,N 7.4081 3.4870 0.5423 

Mar-13 2.5000 SE,SE,SE,C 10.4754 1.9929 0.3068 

Apr-02 1.4666 A 6.8805 2.0370 0.7703 

May-01 3.6572 NE 9.4972 3.8527 0.3818 

May-22 2.0980 CS,C,CW,CW 9.2398 3.2580 0.7903 

Jun-15 2.2220 A 4.2919 2.3819 0.7062 

Jul-08 2.2289 W 5.8254 2.1820 0.4967 

Jul-12 2.7865 W,W,A,A 4.7124 2.3041 0.2269 

Jul-31 3.0614 CW,CW,AW,A 6.2967 2.0057 -0.0019 

Aug-23 3.0575 C 8.5632 2.5156 0.4767 

Sep-04 1.5974 AE 6.1865 2.0967 0.6879 

Sep-09 2.2859 N,N,N,NW 10.3121 3.0418 0.7953 

Oct-17 2.2627 SW 7.4809 3.4998 0.8086 

Oct-22 1.9010 SS,AS,CS 8.4232 2.1194 0.5897 

Nov-06 2.5765 CW,CNW,W,CW 10.1638 4.2148 0.8377 

 

Correlation coefficients show some degree of dependence on weather type. In 

cases with a dominant anticyclonic tendency, strong correlations are often present 

which also coincides with low RMSE. When the weather type has a strong westerly 

disposition, correlation also appears high though with an RMSE closer to average 

(2.57ms-1), while runs with a dominant easterly weather type tend to display a low 
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correlation. Model performance is more variable when considering runs with a 

cyclonic component. While cyclonic runs tend to correspond to more unstable 

conditions with high frequency variability, the top two runs in terms of correlation are 

cyclonically influenced.  Assertions made thus far are by reference to dominant 

weather types persisting throughout a run. Analysis of cases which are dominated by 

mixed weather types, reveals that model performance is indifferent to changing 

weather type with mixed cases existing across the performance spectrum.  When the 

runs are classified by correlation some assertions can be made, such as the likely 

low magnitude variation coinciding with a good correlation to model output under 

anticyclonic conditions. However what the results ultimately show is a fairly even 

distribution of performance across the range of weather types.  

7.2.4.2 Performance classified by RMSE 

Touched upon in the correlation classification was the tendency of model 

performance to exhibit a low RMSE under anticyclonic dominated conditions. 

Similarly, low RMSE values are observed under Southerly flow. Pure cyclonic runs 

tend to have large RMSE’s, as do runs with a Northerly, Easterly or Westerly 

component. There is not a discernible relationship between RMSE and average 

windspeed or standard deviation, again implying model performance is not 

dependent upon a particular level of windspeed. RMSE is the first indicator of model 

performance which shows a possible element of state dependence, where model 

performance seems to be particularly related to certain weather types.  

7.2.4.3 Performance classified by wind speed 

Lowest average wind speeds tend to be seen under anticyclonic conditions, an 

observation which concurs with general weather conditions seen under the influence 

of a high pressure circulation. The highest wind speeds tend to occur under easterly 

conditions, with cyclonic tendency also figuring in many of the above average wind 

speed cases. Average wind speed does not appear to be strongly related to 

standard deviation, with a possible connection whereby cases with the highest 

average speeds possess lower than average standard deviation values. Model 

performance is unrelated to wind speed showing skill throughout the whole range. 

Some weather types tend to correspond to particular levels of wind speed but model 

performance does not seem affected. 
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7.3 Analysis of observational nudging 

Section 7.2 looked at the general performance of the model using the nudged 

MYJ PBL setup and showed that performance was slightly worse than the 

benchmark established in Chapter 5. Observational nudging is employed as a model 

optimisation technique, with the intention of improving model performance by 

‘steering’ the model towards an observational series near the site of interest. The 

major assumption in such work is that conditions at the two sites are uniform, where 

the wind observed at one is reflective of that observed at the other. Investigating the 

benefit of observational nudging is an important study in itself but also tests the 

extent of the assumption of uniformity. For the full length (t+0) of the individual case 

runs, the overall impression is that use of observational nudging is a beneficial 

endeavour. However there were a few cases (March the 1st, May the 1st and October 

the 17th) where nudging negatively affects the model run. Figure 7.51 shows 

observed and simulated wind speed beginning on October the 17th. Statistics for the 

run back up the visual impression that the non-nudged run performs best with a 

correlation and RMSE of 0.86 and 1.88 ms-1 versus 0.79 and 2.31 ms-1 for the 

nudged run. Nudging does not comprehensively influence the state of the run, but 

clear differences are visible in Figure 7.51. For example, the downward ramp event 

at around time step 220 is very well captured by the non-nudged model run, but by 

integrating the Hemsby data the ramp down is delayed and not as pronounced as 

observed or originally simulated. When the cases in which nudging negatively affects 

model performance are compared, the commonality is that they are dominated by 

consistent, directional weather types but different weather types for each of the 

cases mentioned. Considering that there must be a difference in conditions between 

Hemsby and Scroby Sands for the nudging process to be a negative influence, the 

presence of a consistent directional weather type has to mean the difference arises 

from local modification of the incoming air mass. For example, a situation may exist 

where stability conditions contrast between land and sea. Suppose the May 1st case 

is a warm, clear day, the land may heat up quickly and become warmer than the 

overlying air, causing an unstable atmosphere. The North Sea meanwhile has a 

greater heat capacity and sees little change in SST over the same time period, 

maintaining stable conditions as it cools the overlying air. Such a scenario is simply 

conjecture, but in order for a difference to occur over such a short distance with a 
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consistent air mass must require local modification, in which stability could be a key 

factor. The influence of nudging as a factor in model performance was also 

considered by reference to the simulation length. Analysis of nudging was extended 

by comparing the different TOES members comprising the same case. As simulation 

length decreases, it was found that the number of cases in which not nudging 

provided an advantage in terms of correlation increases, though only marginally. It 

would seem that the longer the run, the greater the benefit which might be gained 

from nudging. In shorter runs, however, the model has had less time to diverge from 

the initial conditions provided by the model and thus did not require extra ‘steering’. 

 

Figure 7.51 Observed and simulated (Nudged and non-nudged MYJ PBL) 10 minute wind speed at 50m 

for the 90 hour period beginning 17
th

 October 1996. 

 

7.4 Performance of the ensemble members 

Before either of the two ensembles is considered as a whole, or combined to 

form the full PBL/TOES ensemble, the individual members are compared and 

contrasted. Firstly, investigation of performance in the PBL is addressed through 
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comparison of different PBL parameterisation setups, before the TOES members are 

considered as a means of accounting for uncertainty in initial conditions. It is 

important to review the performance of individual ensemble members. Firstly, a 

benchmark is established for the ensemble to be compared against, secondly to see 

how particular schemes perform in comparison with each other and finally to inform 

of future ensemble construction in terms of potential member weighting. 

7.4.1 Individual PBL schemes 

A number of PBL schemes exist for the WRF model because the PBL is such 

a complex and important part of the atmosphere, dominated by small scale 

processes which have to be approximated rather than resolved. Different schemes 

exist because of the complexity and philosophy by which they account for boundary 

layer processes. Accurate representation of the boundary layer is of importance to 

this research for two reasons. Firstly it has been identified that small scale features 

which give rise to short term, high frequency fluctuations in wind speed, are 

responsible for the greatest mode of inaccuracy in the model output. Secondly, with 

the focus of the research being wind resource assessment, the boundary layer is the 

region in which turbines mostly operate thus accurate representation of the 

processes are of the utmost importance. By utilising a range of PBL schemes which 

employ different methods to different levels of complexity, it is hoped firstly that 

identifying those which perform best might inform the priorities for future success in 

resolving the PBL and secondly that the strengths of each scheme will combine and 

contribute to the successful performance of the ensemble as a whole.  

In general across the runs undertaken, statistical performance of the schemes 

is very similar. Performance of the individual schemes is summarised in Table 7.24 

by average statistics and a count of the number of cases in which each scheme is 

the top performer. While the PBL ensemble performance will be discussed in an 

upcoming section, it is provided here as a means of comparison by which to judge 

the performance of individual schemes. The best performer, on average, is the PBL 

only ensemble showing the highest correlation and lowest RMSE. Individually, the 

PBL schemes show a good level of performance similar to the ensemble mean, 

however the MYNN and ACM2 schemes perform to the highest level compared to 

the remaining schemes.  
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Table 7.24 Average performance statistics over all 20 cases and for the three initialisation times for the 

different boundary layer setup options run. No_obs is a non-nudged MYJ run and PBL_only_ens is an 

unweighted ensemble mean of just the nudged PBL schemes. 

Boundary 

layer setup 

Number of cases as top 

performer 

Average 

 Correlation RMSE (ms
-1

) Correlation RMSE (ms
-1

) 

MYJ 8 8 0.5767 2.4312 

MYNN 12 8 0.6015 2.4128 

ACM2 11 12 0.5993 2.4287 

QNSE 3 5 0.5508 2.5068 

No_obs 16 12 0.5577 2.5400 

PBL_only_ens 10 15 0.6074 2.3803 

 

The MYNN and ACM2 schemes display the best average statistics, very close 

to those of the ensemble mean, and perform the best in the highest number of cases 

for the nudged PBL schemes. Both actually perform best, in terms of correlation, in a 

higher number of cases than the ensemble mean. However because the MYNN and 

ACM2 members do not outperform the mean comprehensively, the ensemble mean 

represents the best option because it still includes their individual input, as well as 

the other PBL ensemble members when they represent the best individual option. 

Looking more closely at the high performing members, the ACM2 scheme is first 

order and non-local which approximates turbulence as a bidirectional cascade 

throughout the boundary layer upon numerous defined layers. Results from the Shell 

Flats resource assessment suggest a relatively balanced distribution of stability 

conditions offshore, which if applicable to Scroby Sands, implies the ACM2 scheme 

performs well in a variety of stability conditions. Formulation of the ACM2 PBL 

scheme suggests it should be a capable performer under unstable conditions, which 

might account for its level of relatively high performance compared to the other 

schemes. No dependence upon prevailing weather type is discernible from the 

results, confirming the value of the ACM2 scheme in the context of this research.  

The MYNN scheme is a local, 1.5 order closure scheme which relies on more 

complex equations than first order schemes, to simulate turbulent fluxes through the 

boundary layer. While local schemes utilise less information points through the 

boundary layer, performance of the MYNN scheme is shown to be skilful, suggesting 

accurate flux levels are generated through a range of conditions. While there did not 
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appear to be a state dependence in the performance of the ACM2 scheme, the 

MYNN scheme performs well in easterly and southerly conditions, which as 

previously mentioned, tends to promote increased variability in wind speed. The 

remaining schemes, MYJ and QNSE, are not anomalously poor performers, rather 

the MYNN and ACM schemes are able to operate more skilfully, with more 

consistency. The technical difference between the MYJ and MYNN schemes is in the 

formulation of the master mixing length scale, which might be the reason for the 

observed difference in performance in this study. In the MYJ scheme, the mixing 

length is a function of height, where in the MYNN scheme, turbulence, buoyancy and 

surface length scales are all used to form the mixing length scale, which all provide 

more detailed information regarding the turbulence present contributing to fluxes 

through the boundary layer. The QNSE scheme displaying the lowest performance 

statistics is not too surprising, because it is specifically tuned for stable conditions 

which are unlikely to continuously prevail offshore. The fact that it is not the best 

performer suggests that stability conditions offshore at Scroby Sands are mixed and 

not predominantly stable. Inclusion of the QNSE scheme was a positive undertaking 

because it did offer the highest performance in some instances, which justifies its 

inclusion in the ensemble. Further work is required to identify the specific nature of 

the test cases, for example identifying if they were stably stratified, which would feed 

into the development of the ensemble mean and potential weighting techniques. The 

results obtained here are reflective of those obtained by other researchers, in that 

there is no conclusive ‘best option’. All of the schemes perform well at times, some 

more consistently than others, but perform poorly in some cases too. Certain 

conditions are favourable for particular schemes where investigated at Scroby 

Sands, but the setting might well favour one scheme over another. For example, the 

ACM2 scheme has been shown to perform reasonably well in other studies, but it is 

the joint top performer here. Atmospheric circulation at Scroby Sands is subject to 

influence by the nearby coastal interface. Floors et al, (2013) found that depending 

upon wind direction, the atmospheric modification resulting from the coastal 

roughness change can affect the model simulation of wind speed as well as stability. 

While they found little difference in performance between the non-local YSU and 

local MYNN PBL schemes, it may well transpire that at Scroby Sands the non-local 

scheme ACM2 is able to perform to a higher level for such topography because of 

the transport mechanism employed through the PBL depth. 
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7.4.2 Nudging 

 Nudging has been discussed earlier but it is interesting to consider the 

performance of the non-nudged run in the context of the other schemes, which 

appear to be fairly ‘hit and miss’ given the statistics from Table 7.24. While the non-

nudged setup shows the best correlation to observations in the largest number of 

cases, it has the lowest average correlation, with a similar story occurring by 

reference to the RMSE, which is above average. The results imply that on occasion, 

nudging inhibits the model run to the significant detriment of performance. However, 

results indicate the opposite is also true, where nudging can provide a clear 

performance advantage. Judging by the average values it appears a better choice to 

employ nudging for a higher average than not. Ultimately, results from analysing the 

individual ensemble members in Table 7.24 imply that it is beneficial to generate an 

ensemble over any individual option, however, inclusion of the non-nudged setup as 

one member is discussed later. Gryning et al, (2013) found the use of analysis 

nudging to be a beneficial process, reducing RMSE in wind speed simulations by 

0.6ms-1. 

 

7.4.3 Analysis of individual TOES member runs 

Combining overlapping model runs with offset initialisation times allows the 

potential to address uncertainty in initial conditions provided to the model. Model 

output, after the point where the next time offset member is introduced, effectively 

has more recent information about the state of the atmosphere which should help 

keep it on track with observations. The process is a measure intended to account, to 

some extent, for divergence between model and observations due to the chaotic 

nature of the atmosphere. Table 7.25 shows that, generally, the T+48 members 

marginally provide the best level of performance relative to those initialised at 

different times because, while the correlations are very close, the RMSE is slightly 

better than the T+00 run. Performance of the T+48 runs is most likely aided by 

having the most recent information available and simulating the shortest run period. 

The number of cases in which the T+48 members perform best is the same as the 

T+00 members, with the T+24 a bit behind. Standard deviation is largest for the 

T+24 runs, and similar on average for the T+00 and T+48 runs. Average correlation 
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is better for the T+00 runs than the T+24 runs but standard deviation is higher, 

similar to RMSE, indicating the T+24 runs to be more variable over the duration.  

 

Table 7.25 Average statistics for the members of the time offset ensemble system (TOES) by intialisation 

time. 

 
Correlation RMSE (ms

-1
) 

T+00 0.5981 2.6057 

T+24 0.5591 2.6114 

T+48 0.5862 2.3528 

 

Figure 7.52 shows the case of February the 6th which is an ideal example of the 

practical application of the TOES concept. It is clear to see on the 7th of February 

that wind speeds simulated in the T+24 set of runs are considerably closer to the 

observations than is simulated by the members from the T+00 run. If the two series 

were combined, the output would be closer to observations than the T+00 mean 

would be, reducing the divergence of the original T+00 series. Correlations for the 

T+00 runs are just over 0.8 on average and RMSE is quite high at around 3.5 ms-1, 

where performance of the T+24 members show correlations around 0.9 with RMSE 

around 2 ms-1. Time offset ensemble members, like the full model runs, rely on the 

accuracy of the input data used to initialise the model. Input data have been of high 

enough quality to enable the model to perform to a high standard over the majority of 

runs undertaken in this research, but on occasion input data have been found to be 

contrasting to observations at Scroby Sands. Furthermore, different initial conditions 

can change the context of a model run, to the extent that the same period simulated 

by a model initialised from alternative initial conditions may lead to a very different 

outcome. While different initial conditions may contribute to alternative predictions 

from the TOES members, that is exactly the reason for undertaking them, to gain 

knowledge of potential outcomes which will aid the use of the model output. Either 

the different members will agree, in which case a degree of confidence can be 

assigned to the model output. Or the members will disagree, at which point more 

uncertainty can be assigned to the output and knowledge obtained regarding 

characteristics of model performance. 
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Figure 7.52 50m 10 minute wind speed as observed and simulated buy every TOES and PBL ensemble 

member for the February the 6th case. 

 Figure 7.53 shows the 7th of January case. Initially the T+00 members perform 

well with a correlation around 0.8 and an RMSE just over 2 ms-1. Addition of the 

T+24 members augments performance for the duration of the T+24 run with statistics 

similar to the T+00 run. Addition of the T+48 members would be including members 

performing some way below the level of those already available for the TOES mean 

showing an average correlation just below 0.7 and an RMSE around 2.4ms-1. 

Inspection of the final day of the 7th of January case reveals a conflict between 

ensemble members relating to wind speed variability, which at some points are 

completely out of phase. Such contrast between ensemble members shows 

uncertainty in the model output and would ultimately correspond to poor performance 

of the ensemble mean as variation from conflicting members effectively cancels out. 

In some cases, the application of time offset initialisation is a negative process in 

terms of model performance. However, it does provide more information about 
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model representation of the atmosphere under given conditions and model 

uncertainty given a particular set of starting conditions, which is all useful information 

that can be used to learn about model performance.  

 

Figure 7.53 50m 10 minute Wind speed as observed and simulated buy every TOES and PBL ensemble 

member for the January 7
th

 case. 

Skill is present throughout the time offset members, apparently regardless of 

initialisation time, which is why it is beneficial to undertake such a run scheme 

because skill across the runs comes from varying members. The reason for the 

variability in performance may well be a result of coincidental setup optimisation for 

particular circumstances. Essentially, by running so many variants of the same run, 

some setups will naturally tend to be more appropriate. For example, meteorological 

features such as weather type or wind speed variability, which have been shown to 

affect model performance, may manifest themselves in a slightly different way over 

the course of the run across the individual members because of the contrast in initial 

conditions and model setup. Ultimately each member exists to provide individual 

input towards the ensemble as a whole.  
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7.5 Performance of the PBL ensemble and the TOES 

7.5.1 Performance of the PBL ensemble 

Mentioned in section 7.4.1 was the fact that, statistically, the best performing 

boundary layer simulation option was the PBL only ensemble. By combining the 

different schemes equally, the best performing option is always represented and 

augmented by the skill of the other schemes. It is interesting that despite having the 

highest average values, the PBL ensemble is not the leading performer in the 

highest number of cases. An ensemble mean can only perform within certain limits of 

its members by definition. While each scheme is different and generally produces a 

different solution, overall divergence between the schemes does not tend to be 

significant. As a result, performance of the ensemble mean will inevitably be of a 

similar level to its members. The two main reasons for producing an ensemble are, 

to account for uncertainty and to attain the level of skill of the individual members. In 

some instances, the ensemble mean outperforms the best individual scheme, clearly 

improved by the addition of the other schemes. Conversely, there are also instances 

where some of the schemes perform poorly compared to the best scheme holding 

back the performance of the ensemble. In the case of May the 22nd, shown in Figure 

7.54, the PBL ensemble mean is the best performer with respect to correlation (0.85) 

and RMSE (1.79 ms-1) while the ACM2 is the best performing individual scheme with 

respect to correlation (0.82) and RMSE (1.91 ms-1). Between time steps 50 and 150 

is a good example of where the ensemble mean outperforms the ACM2 scheme 

thanks to the input from the other members, despite the fact that over the course of 

the run the other members offer a worse prediction of observations than the ACM2 

scheme.  
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Figure 7.54 Wind speed at 50m observed and simulated by the different PBL members and ensemble 

mean. Observations, ACM2 and ensemble mean are solid lines to aid comparison between the series. 

While the ensemble mean appears to be the best option when producing a 

model estimate of wind speed, the downside is that variability in the individual 

schemes is damped by the averaging effect. In one way this is beneficial because 

the high frequency range is where the model struggles, so damping may contribute 

to an improved performance by removing erroneous variation, but ultimately it is an 

artificial effect of combining the different members. Furthermore, the members are 

included because of their specific skills under different conditions and variability is a 

key parameter which would ideally be retained. Ideally, an ensemble mean would 

preferentially weight the most accurate member for a given time step to achieve the 

best result. Such a scheme is unlikely to be developed because of the difficulty 

involved, but the concept is not totally out of the question. Weighting an ensemble is 

one way of retaining more information from a particular source/selection of sources. 

For example, by attributing more weight to a member of choice, more variability from 

that member will be present in the ensemble mean. Results from the analysis of the 

individual members shows the best schemes were the MYNN and ACM2, with the 
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MYJ not far behind. For future work it would be of interest to investigate the 

weighting strategy whether it be a full analysis of runs and then a set weighting is 

assigned to each member reflecting the level of performance. Or potentially a 

dynamic ensemble where weighting is changed based on values of particular 

variables, such as weather type. The downsides of the ensemble mean presented 

here are the increased computing resource required to generate the ensemble 

members and the effect of the averaging used to produce the ensemble mean. 

Ultimately however, the ensemble mean is the best performing PBL option. By 

containing information from all the members it exhibits their accuracy and at times 

mediation against erroneous values and as a result displays the most consistent 

skill. 

7.5.2 Performance of the time offset ensemble 

Much of the information which pertains to the performance of the time offset 

ensemble mean is present in the analysis of the performance of the members. In 

general, the highest performing option is the latest initialised (T+48) run, which is 

likely the result of the run length. However, when the frequency of cases is reviewed, 

the T+00 runs perform best in the same number of cases as the T+48 runs. Much 

like the PBL ensemble, the critical issue is consistency, because no run stands 

significantly above the others in terms of performance. It is usually of benefit to 

combine the members where possible to utilise the inherent skill from the available 

sources where possible. Because of the way the runs were designed, performance 

of the time offset ensemble mean can be reviewed at two points. Firstly after the 

T+00 and T+24 runs were combined and secondly after the combination of all three 

runs again over the overlapping period beginning at T+48. Performance of the 

ensemble is compared against an average of the PBL options for the corresponding 

run initialised at the same time. For example, an ensemble of the T+00 and T+24 

runs - are compared against the performance of the T+24 run. Comparison of the 

correlation and RMSE stats in Table 7.26 shows that the ensemble mean is the best 

performer.  
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Table 7.26 Raw versus ensemble average performance for the TOES ensemble. 

  
Correlation RMSE 

T+24 Raw 0.5591 2.6114 

 
Ensemble 0.6003 2.4282 

T+48 Raw 0.5862 2.3528 

 
Ensemble 0.6374 2.2127 

 

Given that analysis of the individual members implies performance is fairly 

evenly distributed across the different initialisation times, no one scheme is a clearly 

preferable option. Rather, the ensemble benefits from the periods of high 

performance from each member alongside the other members which provide 

mediation to the run. Equally when one member performs poorly, overall 

performance is not immediately sacrificed as the other members exist to provide an 

alternative solution. For example, Figure 7.55 shows the case of September the 4th 

where the three time offset PBL ensemble means are presented. Mentioned earlier 

was the high performance of the T+00 run, which is good in the early stage s of this 

run, but diverges from observations around September the 5th. Introduction of the 

T+24 series gives a better account of observations than the T+00 run in this case 

which helps to keep the ensemble mean on track. As with the PBL ensemble, the 

downside is the damping effect of averaging but these are preliminary results which 

can be built upon. Ultimately, the addition of extra information which has skill in its 

own right proves to be a valid addition to the modelling process as a tangible 

improvement in performance is evident. The next section talks about different 

approaches to weighting and the unified ensemble consisting of both PBL and time 

offset members. 
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Figure 7.55 Wind speed at Scroby Sands for the September the 4th case simulated by the three time 

offset pbl ensembles 

 

7.6 Performance of the TOES 

7.6.1 Assessment of the ensemble mean 

Multiple versions of the unified ensemble were produced. The first option was 

inclusion of the non-nudged model runs and the second was concerned with the 

weighting of the TOES members. Three weighting methods for generating the 

ensemble mean were employed and each were available with and without the non-

nudged MYJ runs. Firstly an equal weighting scheme, which was created to provide 

equal importance to all members regardless of initialisation time, was applied to the 

overlapping periods from T+24 and T+48 shown in Equation 16. Then to provide 

more influence to the most recent members they were weighted more heavily by 

averaging the members of the previous lag to be equal to one member of the most 

recent time offset series. For the T+48 ensemble this was achievable in two ways, 
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firstly by providing equal weight to T+24 and T+48 members but averaging t0 to 

account for one member (Equation 7.17), then secondly by affording more weight to 

the T+48 members by averaging the T+00 and T+24 members to equate to one 

ensemble member each (Equation 7.18). The subscript n represents the number of 

ensemble members present for each initialisation time, for example [T+00]n 

represents the 4 ensembles (MYJ, MYNN, ACM, QNSE) thus n=4. A summary of the 

ensemble generation methods is provided in Table 7.27, which shows that the two 

ensemble methods in which ever member was equally weighted were ensemble 1 & 

2. For ensemble methods 5a & 6a T+00 was equalled to one member while T+24 

members were equally weighted (eq.7.17). Then in ensemble 5b and 6b equation 

7.18 was used.  

 

      
                           

  
 

Equation 7.16 

 

 

      

       
 

                    

    
 

Equation 7.17 

 

 
 
 

      

       
 

  
       

 
           

   
 

Equation 7.18 

 

 

Table 7.27 Description of ensemble method and relevant weightings 

 
Nudged Non-nudged 

Equally weighted 2 1 

T+00 members combined to equal one 

member 
6  5  

T+00 and T+24 members combined to equal 

one member each 
6a 6b 5a 5b 

 

Results show that it is favourable to include the non-nudged run as part of the 

ensemble because the best performing ensembles were those which included the 

non-nudged runs. When analysed individually in section 7.3 at times the non-nudged 

runs were shown to be the best performing members, so it is not surprising that their 

inclusion improves ensemble performance. By including the non-nudged series in 

the ensemble uncertainty in the nudging process is accounted for to a small extent. 

Analysis of the different methods of ensemble generation is undertaken by reference 
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to the average statistics for each ensemble, presented in Table 7.28. The immediate 

observation is that very little difference in performance exists between the 

ensembles despite the alternative weighting methods. Considering the T+24 runs, 

ensemble method 2 provides the best average statistics and performs best in the 

highest number of cases when considering RMSE, but ensemble 6 performs best in 

the highest number of cases regarding correlation. For the T+48 runs, the method 

which performed highest, for both correlation and RMSE, in the most number of 

cases was shown to be ensemble 6b, the ensemble in which T+00 and T+24 

members were averaged and given the same weight as each T+48 member. 

Ensemble 6b also provide the lowest RMSE value of the methods but was 

outperformed in terms of correlation by ensemble 2 which is the equally weighted, 

nudged ensemble. Essentially, the results imply the strongest performing option 

prioritises the most recent mode runs, but, performance of the members offset at 

different times is shown to be very close which is translated into the narrow 

difference between the ensembles’ performance.  

The most significant improvement to performance comes from creating the 

two ensembles: the time offset ensemble and PBL ensemble. Observational nudging 

does offer an improvement to model performance as well as another metric by which 

to address model uncertainty, but the biggest performance benefit of the optimisation 

work comes from combining the different ensemble members to form an ensemble 

mean. By doing this, skill from every member is always present in the output and 

results unequivocally prove that the ensemble as a whole has the potential to 

outperform any of the individual parts. No individual member is able to offer 

consistent performance close to the ensemble mean because of the variability in 

performance for given conditions. However, by combining all the members together, 

skill is always present. Different methods of generating the ensemble mean have 

been tested but are shown to provide minimal impact upon performance, with the 

main focus of performance coming from the skill of the individual members. Thus 

suggestions for future work are to optimise the boundary layer schemes and 

understand the levels of performance available more completely, which will allow for 

a careful selection of ensemble members to more fully address areas of model 

uncertainty. One issue which will require future work is the concern about variability 

damping as a result of averaging multiple ensemble members. Whilst it inadvertently 
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serves to eliminate much of the noisy error present in the model and focus on the 

lower frequency variation features at which the model has more skill, ultimately in the 

future, it should be able to fully resolve short term variation which would include high 

frequency variability. 

 

Table 28 Performance of different ensemble generation methods 

Comparison period 

beginning 

Ensemble 

method 

Correlation 

Coefficient 

RMSE 

(ms
-1

) 

T+24 Ensemble 1 0.6023 2.4256 

 
Ensemble 2 0.6067 2.3877 

 
Ensemble 5 0.5932 2.4705 

 
Ensemble 6 0.5989 2.4290 

    
T+48 Ensemble 1 0.6373 2.2245 

 
Ensemble 2 0.6425 2.2067 

 
Ensemble 5a 0.6353 2.2235 

 
Ensemble 5b 0.6333 2.2151 

 
Ensemble 6a 0.6395 2.2062 

 
Ensemble 6b 0.6367 2.2004 

 

7.6.2 Assessment of the ensemble spread 

Part of the reason for producing an ensemble was to investigate the 

relationship between ensemble spread and model error to see if ensemble spread 

was able to act as a potential indicator of uncertainty. As suggested in the literature 

review, a link between ensemble spread and model error is conceivable, with 

instances of extreme ensemble spread more likely to correspond to a readily 

identifiable spread-error relationship. Ensemble spread is represented by the 

standard deviation of the ensemble measures for a given time step. Two methods of 

calculating ensemble spread were employed based on the review of literature which 

related to the mean value used to calculate the standard deviation. The first method 

calculated an instantaneous mean at each time step, whereas the second method 

calculated the climatological mean (in this case for each individual run). Correlation 

between both calculations of ensemble spread and absolute model error was 

calculated for each run and a plot of both ensemble spreads was produced 
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alongside model error to provide a visual component to the analysis. Indicators of 

extreme values were also integrated in to the plots to identify periods when a visible 

spread error relationship might be evident. In the context of this research extreme 

values were defined as being greater than two standard deviations from the mean, 

which in a Gaussian distribution would account for around 5% of data. Results from 

the correlation analysis indicate there is no discernible linear error spread 

relationship. On average the instantaneous spread mean achieves a correlation 

coefficient of 0.08 which is strongest in 12 of the 20 cases while the climatological 

spread mean achieves a correlation of 0.04 outperforming its counterpart in the 

remaining eight cases, which indicates the complete lack of a relationship between 

spread and error. The best individual correlation achieved is 0.5 which is for the 

instantaneous method, while the climatological method achieves a value of 0.4. The 

average correlation values are particularly low because for both measures of spread 

there are a number of cases where the correlation is negative. Negative correlations, 

however, only serve to support the argument that there is little to no relationship 

between ensemble spread and model error from the results in this study. Visual 

analysis of the model runs does, on occasion, identify some periods of runs where a 

spread-error relationship seems apparent. For example, Figure 7.56 shows the case 

of March the 1st in which the instantaneous ensemble spread achieves its highest 

correlation of 0.5 while the climatological spread shows a correlation of 0.01. There 

are definite periods over the course of the run where the instantaneous spread does 

reflect the behaviour of the error. However, even over the course of this run, which is 

the best performing instance, a relationship is difficult to identify. Despite the 

correlation and that some features are represented in both series, there is little 

consistency in the magnitude of change between spread and error and what little 

directional similarity is present is not consistent throughout the run. Instances of a 

spread-error relationship are present in most of the runs, but for very limited periods. 

There is usually little consistent timing change and the magnitude of change is hardly 

ever captured. When identified, extreme ensemble spread was not an indicator of 

periods when the spread-error relationship was identifiable. Ultimately in this work 

the ensemble spread as an indication of error was not of use, minimal spread of 

members did not correspond to a low model error and likewise large ensemble 

spread did not translate to a large error. Perhaps because many of the members 

were initialised from the same data, not enough uncertainty sources were introduced 
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to generate sufficiently large spread to make use of instances of extreme spread. 

Further work might be done into looking at nonlinear correlations, calibrating the 

output and perturbing initial conditions to generate more ensemble members and 

increase the potential for sources of error and thus spread. 

 

Figure 7.56 Ensemble spread and model error relating to wind speed calculated using the instantaneous 

and climatoilogical meanvalues for the case beginning 1
st

 March 1996. 

  



178 
 

8 Conclusions 

8.1 Introduction 

Conclusions from the results are drawn in the following chapter. A 

consideration of the methodology is presented first, before a summary of each of the 

investigations. How the results addressed the research questions/objectives stated 

in the introduction chapter is then discussed before a few thoughts are presented on 

the overall application of mesoscale NWP to the field of offshore wind resource 

assessment. Finally suggestions for directions of future work are mooted. 

8.2 Methodology development 

As a relatively inductive investigation, one of the significant achievements of 

this research was developing the methodology by which the research aim was 

addressed. Flexibility, in terms of portability and setup, alongside a proven level of 

performance were the main reasons for selecting WRF, which offered a wide scope 

to many aspects of the investigation. Once the model was selected, three separate 

investigations were designed to explore the potential of WRF in a variety of 

applications relevant to the wind energy industry. Model performance in different 

locations was considered, as was the performance at different temporal resolutions 

over different timescales. Computing resource as a factor influencing performance 

was investigated and different variables such as stability were produced for 

investigation. Efforts were made to address the major sources of uncertainty in the 

modelling process used and throughout the investigations variables were 

characterised by a wealth of metrics, for example weather type. The focus of the 

research was to validate WRF as an offshore wind resource assessment tool, but the 

methodology also provided an investigation into the variability of the parameters 

which were simulated. Unique and novel techniques, such as ensemble generation 

and simulation of atmospheric stability, were applied to the investigations and 

provided a set of results from which performance could be analysed and conclusions 

drawn. Investigating so many facets of the modelling process was an ambitious aim, 

made possible through the careful and unique methodology developed.  
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8.3 Benchmarking model performance 

8.3.1 Model performance 

A level of performance was defined for two setups of the WRF mesoscale 

model as a predictor of 50m 10 minute wind speed. Average and standard deviation 

statistics provided a basic comparison between the predictors and observations, 

while the correlation coefficient and RMSE were calculated to quantify the 

relationship and absolute error of the predictors. For the more computationally 

restricted model setup, performance was relatively poor showing a correlation of 

0.35 and an RMSE of 3.5 ms-1. Elements of observed low frequency, long term, wind 

speed change were present in the model runs but no high frequency change was 

produced. By contrast, the model setup which adopted an unrestricted computing 

resource was able to produce levels of high frequency variation similar to those 

observed. Low and medium frequency change was generally well captured, however 

variability of high frequency change was less well represented. Access to a larger 

computing resource led to setup changes which resulted in improved model 

performance, the correlation coefficient rose to 0.65 and RMSE dropped to 2.2ms-1. 

By expanding the computing resource available to the model, a more comprehensive 

setup could be used which not only provided more information to the model as input, 

but also allowed a larger area over which to simulate the controlling atmospheric 

features. The inner resolution of the unrestricted setup was 2km which according to 

the principle of effective grid resolution meant, in that domain, the smallest fully 

resolved features would be on the order of 10-15km. Features smaller than 10km 

correspond to changes in wind speed in the high frequency range where accuracy 

reduces. While they are not explicitly resolved, WRF does account for small scale 

atmospheric features. Such features are approximated by parameterisation 

schemes, themselves functions of resolved variables of a larger scale. The 

benchmarking exercise had initially provided results as required from which an initial 

indicator of model performance from two different setups was obtained. Analysis of 

the individual runs helped identify that high frequency changes in windspeed were 

the features which the model struggled to simulate.  

8.3.2 Filtering 

Model output and observations were temporally filtered to investigate the 

strength of the relationship at different timescales, where atmospheric features are 
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fully resolved by the model rather than approximated by the parameterisation 

schemes. Initially an unweighted moving average filter was applied before a low-

pass Butterworth filter was developed. The application of both filters saw an 

improvement in model performance, with correlation coefficient improving to 0.73 for 

the six hour Butterworth filtered resolution with RMSE dropping to 1.8ms-1. 

Comparison of the filters showed the unweighted moving average filter offered a 

marginally better level of performance but at the expense of sensitivity and a number 

of observations used to calculate the moving average. The Butterworth filter provided 

a more sensitive, flexible method by which to filter the series and was able to retain 

some of the key features in the wind speed profile to a greater extent than the 

moving average filter. The improvement of performance achieved through filtering 

the time series is evidence that the model has genuine skill as a predictor of single 

point wind speed when applied at resolved scales. Low and medium frequency 

features are well captured while high frequency features are not particularly well 

represented because they are approximated as functions of resolved variables by 

the parameterisation schemes rather than directly resolved. ‘Out of the box’ model 

performance was not quite able to match the accuracy of the local observational data 

from Hemsby as a predictor of wind speed, but performs to a similar level when 

filtered to a temporal resolution of three hours. When model RMSE is compared 

against that of a persistence forecast, the model becomes the favourable option after 

a three hour lead time, as RMSE for persistence exceeds 2ms-1. The main outcome 

of the benchmarking exercise is the recommendation to optimise model setup as 

best possible. Resolution is shown to be the limiting factor of the runs undertaken 

here, with performance shown to drop when the model is applied to simulate sub grid 

scale features.  

8.4 The Shell Flats resource assessment 

8.4.1 General performance  

The Shell Flats resource assessment was an investigation designed to test the 

suitability of WRF as a long term offshore resource assessment tool. Multiple 

variables were simulated to provide a comprehensive atmospheric analysis upon 

which to calculate wind farm yield predictions. Simulations covered 489 days at Shell 

Flats from June 2002 to December 2003 and were compared against corresponding 

observations to validate the model performance. WRF performed to a very high 
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standard when simulating fifty metre, ten minute wind speed at Shell Flats. 

Descriptive statistics were very similar between model and observations, with the 2 

parameter Weibull distributions closely reflecting one another. Absolute error as 

quantified by RMSE was 2.1ms-1 while a strong relationship between model output 

and observations was signified by a correlation coefficient of 0.86. The model 

comprehensively outperformed 10m hourly observational data from the onshore 

station at Squires Gate (~14km away), but fell short of the performance achieved by 

data from Mast 1 as a predictor of wind speed at Shell Flats Mast 2. Wind direction 

was not simulated to the same high level of accuracy as wind speed. Descriptive 

statistics however did show agreement between the two directional series, with the 

modelled wind rose showing a considerable likeness to the observed wind rose. 

8.4.2 Stability 

 Atmospheric stability at Shell Flats was investigated by calculating variants of 

the Richardson number from observed and simulated variables. The bulk Richardson 

number was found to produce a reasonably good impression of observed stability by 

comparison to the calculated gradient Richardson number. The bulk Richardson 

number was also calculated from model outputted variables and then compared to 

the bulk Richardson derived stability calculated from the observations. The absolute 

balance of stability, in terms of whether the atmosphere was either stable, neutral or 

unstable, was fairly similar between observed and simulated variables, however the 

model tended towards more stable conditions while, in reality, more neutral 

conditions were observed. When classified by other variables, observed variations in 

stability were broadly reflected in the model output, in some cases with bias present 

and thus modification to tuning clearly required.  

8.4.3 Performance classification 

Atmospheric classification schemes offer an extra dimension of information 

when analysing performance. Model performance is shown to be better when 

changes in wind speed are associated with large scale atmospheric features. Given 

that some variables show dependence upon the prevailing weather type, a weather 

type analysis of model output would serve to add value to the model output, for 

example as historic distributions of the variable under that weather type could be 

queried to provide a probabilistic output. Results from the descriptive statistics and 

the time series analysis imply that the model is able to simulate the dominant modes 
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of atmospheric variability in the long term for Shell Flats. Large scale atmospheric 

features dominate variability in the long-term, which exist within the resolved spatial 

domain of the model. Large scale features contribute to low and medium frequency 

change in the modelled variables which the model is able to reproduce to a high 

degree of accuracy, corroborating the findings from the Scroby Sands benchmarking 

exercise. 

8.4.4 Temporal filtering  

To isolate change in the low and medium frequency range, the modelled and 

observed wind speed series were temporally filtered using a first order low-pass 

Butterworth filter. Temporally filtering the model output and observations to a six-

hourly temporal resolution saw an improvement in performance to a correlation 

coefficient of 0.92 and an RMSE of 1.7ms-1. Such performance figures bring the 

model much closer to the level achieved by the observations from Mast 1 as a 

predictor of Mast 2, albeit at a lower temporal resolution. Results of the temporal 

filtering process show that the model is unable to simulate variability in the high 

frequency domain as well as in the low and medium frequency domain. Variability on 

such timescales is reliant upon information from the model’s parameterisation 

schemes because the controlling processes exist at sub-grid scales and cannot be 

directly resolved by the model.  

8.4.5 Nudging 

Observational nudging by data from Mast 1 was employed for the Shell Flats 

runs. On occasion the model output was detrimentally affected by nudging but on 

balance it was found to be a positive influence, improving model performance more 

than it inhibited it. WRF has shown itself to be a viable wind resource assessment 

tool for Shell Flats. Wind speed, the most important variable in a wind resource 

assessment, is simulated to a very high level, particularly when considered at the 

resolved scale of the model. Additional variables, such as wind direction, are 

simulated to a good level providing more information for a potential end user by 

which to predict a potential wind farm output. The resource assessment produced for 

the Supergen exemplar farm shows the capacity of WRF to be able to produce a full 

range of outputs over a wide spatial area both horizontally and vertically, displaying a 

great degree of flexibility, particularly in comparison with established techniques. 
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8.5 Optimising model performance 

A new set of runs at Scroby Sands was undertaken to test optimisation 

techniques. Average model performance of the runs comprising the optimisation 

investigation was below the level achieved in the benchmarking runs prior to the 

application of optimisation techniques. Such an occurrence identifies the variance in 

model performance across the runs undertaken at Scroby Sands. The cases 

selected for the optimisation runs were chosen based on prevailing weather type 

over the duration of the run. Optimisation techniques employed included; 

observational nudging, SST update, analysis by reference to weather type and the 

creation of PBL and time offset initialisation ensembles to address physical and 

dynamical uncertainty in the modelling process. Optimisation techniques were shown 

to improve performance and offer insight into dependencies of the model 

performance. Weather typing was used to classify model performance providing an 

extra dimension of information to augment NWP forecasts, for example, by providing 

probabilities of tendency or likely change in a variable under a particular weather 

type. Nudging was shown to be a positive process to incorporate in to the model 

runs. In the majority of instances a nudged run outperformed its non-nudged equal, 

however it proved beneficial to include both as members in an ensemble to account 

for the runs in which the nudged series underperformed and inhibited model 

performance.  

8.5.1 Ensemble runs 

Two different ensembles were created to address uncertainty in the accuracy of 

initial conditions provided to the model and uncertainty regarding model performance 

in the boundary layer. Creation of the PBL ensemble afforded the opportunity to 

directly compare the performance of individual schemes. The findings reflected very 

much those of the general literature which, on balance, was to identify no single 

scheme as the best performer, rather, that different individual schemes performed 

best at different times. Higher levels of performance at Scroby Sands were seen for 

by the ACM2 and MYNN schemes, however these findings may not be applicable in 

another environment. Because the PBL ensemble is comprised of members with 

different skill levels, it excels in many conditions rather than being restricted as a 

single scheme would be. Even in the worst cases, the performance of the ensemble 

mean was not far below the best individual scheme because it possessed the same 
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information, but, was misguided by other schemes poor performance. Further 

research will allow the identification of appropriate weighting strategies for the 

ensemble which, ideally, will optimise performance where the best schemes are 

selected and weighted with a higher importance. The time offset ensemble also 

provided an array of benefits on top of the ensemble mean. Staggering the 

initialisation time identified a dependence upon initial conditions, the accuracy of 

which was shown to vary as in a number of runs the very first point showed a 

discrepancy between the model and observations. Given that the runs initialised at 

different times performed, on average, to a similar level, in some individual cases 

performance between the staggered members often differed to a notable extent. 

Thus, the undertaking of staggered initialisation proved beneficial as more 

successful inputs were combined to improve the performance of less accurately 

initialised runs. Staggered initialisation improved performance, not only by providing 

different initial conditions, but also by effectively reinitialising the process. Of course, 

retrospectively it can be said that combining two members of varying performance is 

to reduce the performance of one, but when the solution is as yet unknown, more 

confidence can be applied to an ensemble approach than selection of an individual 

member a priori. Ensemble spread was investigated as a potential indicator of model 

error, however no discernible relationship between ensemble spread and model 

error was found for any of the runs. It may be an avenue worth investigating in the 

future if ensembles can be designed which produce a greater degree of spread, but 

served little purpose in this research. 

8.6 Ease of model use and application 

To answer the question “How accessible is this technology?” the whole 

modelling process must be considered. This comprises obtaining the source code 

then compiling the model and its ancillaries, developing the methodology relating to 

setup, then running the model and finally post processing the output. It took around a 

year and a half before running the model was a trivial process by which results for 

analysis were being generated routinely. A big consideration is familiarisation with 

the Linux computing systems on which the model is to be run, once this is achieved 

the priority becomes devising a run strategy. For example addressing questions such 

as; “where will each stage of the model run be processed?” and “at what point will 

data be transferred?” etc. Support for WRF is superb and once some computing 
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skills are learned, acquisition and compilation of the model is a relatively simple 

process. Developing model setups for operational use by which to generate results 

requires a period of trial and error whereby domain setups are devised and tested to 

optimise the balance between the computing resource used and the model runtime. 

Once the run procedure on all three computing facilities was adopted the model runs 

themselves were relatively simple to undertake and the process was simply about 

repetition to generate the results required for the investigations.  It was found to be of 

benefit to post process the model output in the same location as the model run is 

undertaken simply because of the size of the model output files, which if transferring 

across multiple computers would be a considerable undertaking. The requirement for 

a high performance computing resource is discussed shortly, but ultimately relates to 

the accessibility of this mesoscale NWP technology. While a modest desktop PC is 

capable of running WRF, access to the model’s full potential will only be available 

with a significantly more powerful computing facility which must be a consideration to 

potential end users. 

8.7 Implications of computing resource 

One outcome of the benchmarking performance study at Scroby Sands was the 

identification that model performance is dependent upon the available computing 

resource. In the benchmarking exercise at Scroby Sands, simulations were 

undertaken for the same periods using model configurations optimised for two 

different computing systems. Results implied a considerable difference in 

performance was present due to the available computing resource. The need to use 

the maximum available computing resource for the remaining investigations was 

overtly apparent. From a practical perspective it meant running the model on multiple 

computing facilities, which despite a few teething problems with compilation on both 

HPC facilities used, was not a significant problem. Because WRF is well-supported 

and can be readily compiled on facilities with a diversity of compilation options, the 

technology is highly accessible. While a restricted computing resource has been 

shown to perform to an inferior level, it still offers some potential regarding longer 

term lower frequency features to a potential end user. With a large computing 

resource available for the Shell Flats investigation, a high level of performance was 

observed. A large domain was practical to use and afforded the model sufficient 

capacity to perform well. The simulations could be run simultaneously (assuming 
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availability on the computing facility) with approximately five undertaken at a time, 

which from start to finish took around three days. These results were achieved using 

the HPC facility at Loughborough University to give some impression of the 

operators of such a computing facility. Similarly, with the optimisation runs 

comprising the third investigation, a large computing resource was used, namely the 

UK’s national HPC facility HECToR. Like the long term resource assessment 

investigation, the awarded computing resource was ample for the requirements of 

the study, with absolute performance compromised for the benefit of runtime. 

Multiple runs were undertaken simultaneously, which was vital to achieving the aims 

of the research within the allotted time. Ultimately, while the available computing 

resource is shown to dictate the level to which an NWP model can perform, it is also 

related to the duration of a study. Efficient use of the available computing resource is 

related to the number and duration of runs which can be undertaken simultaneously, 

not exclusively the outright computing capacity the model can utilise. A number of 

recommendations can be made with these considerations in mind for potential end 

users applying NWP to the field of offshore wind resource assessment. Where 

available, it is recommended that setup of the model domain should aim to provide 

an optimal compromise of spatial coverage and inner resolution. All the optimisation 

techniques used in this research are also recommended to not only improve 

performance, but also increase understanding about model performance over the 

run. When computing resource is restricted, results obtained in this research show 

that the biggest gain in model performance arises from affording the model as much 

resource as possible through an efficient setup compared to the relatively small 

improvements available from the optimisation techniques. Thus it is recommended 

that the resolution of the inner domain be around 4-10 km with the priority of the 

domain setup being spatial coverage of the outermost domain 

8.8 Optimal grid resolution 

Analysis of the results obtained from the three investigations enables some 

recommendations to be made pertaining to optimal grid resolution given a large 

computing resource. It is first important to establish the definition of optimal in this 

context and the considerations which inform that definition. In this research, an 

optimal setup will give the highest grid resolution whilst minimising computing time. 

In the literature review a study by Gibbs et al (2011) suggested mesoscale model 
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resolutions higher than ~2 - 4km were of limited benefit as the increase in computing 

resource outweighed the observed improvement in performance which became 

increasingly small. Results from this study cannot confirm or refute that assertion, 

but they can provide additional information. The comparison of two model setups in 

the benchmarking exercise showed that despite the higher inner resolution of the 

NMM-setup, the ARW-setup was the better performer. The major physical 

differences between the two model setups were the resolution of the input data and 

the spatial coverage of the domains. By providing the ARW-setup with more 

information, the model was able to perform to a higher standard, again despite the 

higher resolution of the inner domain used in the NMM-setup. Effectively, these 

results agree with one assertion from Gibbs et al (2011), that when using mesoscale 

models at high resolution (~1-4km), inner grid resolution should be prioritised below 

computing resource, which should be allocated to a larger spatial coverage with 

higher resolution input data.  

Temporal filtering of the benchmarking and long-term resource assessment 

investigations allowed an analysis of the practical implications of effective grid 

resolution. Filtering increased the temporal period of the comparison, which because 

the size of an atmospheric feature is related to time period over which it exists. The 

resultant effect was to shift the focus to larger atmospheric features responsible for 

lower frequency changes in wind speed. With an inner grid resolution of 2km 

(standard for the ARW runs) the effective grid resolution was around 14km, meaning 

the model is expected to fully resolve features of that size, which typically occur on 

the order of an hour or so. By reference to the Van der Hoven (1957) spectrum 

(Figure 3.11), comparison at ten minute resolution includes changes in wind speed 

caused by turbulent structures far below the effective resolution of the model. 

Temporally filtering the simulated and observed wind speed to one, three and six 

hours shifted the focus of the runs to the left of the Van der Hoven spectrum where 

low frequency features dominate wind speed variability. In both the benchmarking 

and long-term resource assessment investigations, filtering the modelled and 

observed series resulted in an improved level of performance achieved by the 

model. These results confirm the importance of effective resolution when designing 

an NWP investigation. Furthermore they are of particular relevance when justifying 

the application of mesoscale NWP models to long term wind resource assessments, 



188 
 

where wind speed variability is dominated by large scale features which are more 

successfully resolved by the model. Temporal analysis of model performance in this 

research identified high frequency variability as being the area corresponding to 

most model uncertainty, which relates to the approximation of the causal small scale 

features by parameterisation schemes. Until representative grid resolutions can be 

achieved where turbulent structures are resolved, mesoscale NWP models are 

unlikely to be able to perform to a high enough standard in short term situations 

where high frequency change dominates. It has been shown, in both the 

benchmarking exercise and the long term resource assessment exercise, that WRF 

is capable of high levels of accuracy regarding lower frequency wind speed change. 

At longer timescales, lower frequency features are the dominant mode of change in 

wind speed, so the application of a mesoscale model to long term resource 

assessments is appropriate. Therefore for future work regarding mesoscale NWP in 

wind resource assessment, it is suggested the comparison between model and 

observations be at a lower temporal resolution than 10 minutes for example around 

1-3 hours. Clearly, developers and operators want to know about wind speed change 

at shorter timescales but since the model parameterisation schemes are unable to 

account for turbulent features to a satisfactory degree, model performance should be 

evaluated at timescales at which it is designed to perform. These findings suggest 

that increasing resolution might improve performance in the high frequency temporal 

domain, but as Gibbs et al (2011) suggest, such an undertaking will likely not have 

the desired ‘silver bullet’ effect and alternative solutions must also be investigated. 

With a significantly greater computing resource, increasing model resolution and 

spatial domains in tandem may provide the ideal conditions to address performance 

in the high frequency domain, but requires further investigation.  

8.9 Temporal filtering 

As an addendum to the previous discussion, which was enabled due to the 

application of temporal filtering, it is argued that filtering a high resolution series 

provides more information of model performance than simply simulating and 

comparing at a temporal resolution of interest. Extra information, pertaining to 

tendency in the series between the compared points, is provided by filtering a series 

at higher temporal resolution. For example, at an hourly resolution a straight line 

would join two data points an hour apart, where filtering a ten minute series to hourly 
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resolution will give a shape between the intervening time steps to indicate any 

tendency in the time series. Observations used in this research were ten minute 

averaged values while the model produced an instantaneous value for the 

corresponding ten minute interval. Thus, comparing an average value with an 

instantaneous value does not represent a like with like comparison. There was no 

other option for the comparison at ten minute intervals because that was the format 

of the available data. However, filtering offered an option to by which to make the 

comparison between model output and observations more appropriate, by filtering 

the data to longer periods the model output was effectively averaged for the given 

time step. 

8.10 Variability in model performance with location 

A considerable difference in model performance is evident with location, the 

simulation of the ten minute wind speed is much more accurate at Shell Flats than 

both investigations at Scroby Sands. Application of the Butterworth temporal filter to 

both Scroby Sands and Shell Flats yielded improvements in both locations but to a 

greater extent at Scroby Sands compared to Shell Flats. The fact that the 

improvement was greater at Scroby Sands is interesting but does not provide an 

explanation as to why. The simple fact that performance was worse meant that there 

was greater potential for improvement at Scroby Sands, however that by no means 

translates to a greater improvement by applying the filter. What the application of the 

filter to the Scroby Sands data did, was identify that the filtered series were far more 

similar than the unfiltered series, inferring that the model struggled with high 

frequency change at Scroby Sands to a greater extent than at Shell Flats. No 

comparison was made between the sites to offer a reason as to why this might be 

the case, however, a discussion comprising a number of suggestions will follow.  

Before addressing potentially viable sources for the performance discrepancy, 

one option can be ruled out. Computing resource is unlikely to be the source of the 

performance difference because the Shell Flats runs had a slightly lower allocation of 

resources compared to the Scroby Sands runs. An element of the discrepancy in 

performance might arise from procedural differences between the two investigations. 

There is a greater amount of data comprising the Shell Flats run than the Scroby 

Sands runs which might have a slight bearing on performance, but the magnitude of 

the difference suggests there is a more fundamental underlying reason for the 
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performance gap between the two sites. Alternatively the input data provided to the 

model might differ in quality for the two sites which would have a significant bearing 

on the success of the model. For example, more observations may be available for 

use in the CFSR product to make the accuracy over the Irish Sea more accurate 

than the North Sea.  

After examining the method by which the simulations were undertaken, the 

fundamental differences between the two sites must be considered. In terms of 

differences between the sites which might cause rise to a performance discrepancy, 

the potential candidates can be grouped into physical differences and climatic 

differences. Physical differences refer to the physical domain of the site, while 

climatological differences relate to the prevailing atmospheric conditions seen at the 

site. Beginning with the physical properties, Shell Flats is farther offshore than 

Scroby Sands, so while a coastal interface is present in the inner domain it is farther 

away from the point of interest. Scroby Sands however is located close to the shore 

which means the model output at the point of interest is heavily influenced by model 

performance in a coastal zone. Mentioned in the literature review was that WRF 

exhibited a positive wind speed bias over land, which could well affect the model 

solution at a coastal interface, particularly given small scale perturbations such as 

turbulence giving rise to short term fluctuations in wind speed. In contrast, the extra 

distance to the coastal interface in the Shell Flats domain provides something of a 

relaxation zone where the effect of the coastal interface has more time to be damped 

in the model solution so as not to be too influential at the point of interest. A coastal 

interface presents a significant challenge to a numerical model, representing 

changing values in roughness, heat capacity and height which all have a bearing on 

the incident wind flow. Climatic differences between the sites relate to the type of 

weather seen at the sites, specifically the degree of variability and the prevailing 

conditions. The model may physically simulate both sites to the same degree but if 

one site experiences particular synoptic or driving conditions more often which the 

model struggles with then performance may suffer. For example there may simply be 

a lesser degree of high frequency wind speed variability observed at the Shell Flats 

site than Scroby Sands, so the model is able to perform to a higher standard. Equally 

there may be a set of atmospheric features that affect one site but not the other for 

example a sea breeze circulation affecting the Scroby Sands site or the presence of 
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a low level jet. With the prevailing south westerly wind the British Isles experiences, 

the fetch (physical landscape over which the incident wind flows) also impacts the 

physical differences between the sites despite being a climatological parameter. At 

Scroby Sands, a South-Westerly flow would involve a land to sea wind flowing over 

the coastal interface, while the Shell Flats site has a much longer ocean fetch with 

minimal roughness. Ultimately the variations between the sites, both physically and 

climatologically could translate to differences in model performance simply because 

one site is more complex than the other or because of the way the sites are 

represented by the model. Further work is required to elucidate these differences 

more comprehensively from which a more complete understanding of the models 

performance can be obtained. 

8.11 Model performance as a wind resource assessment tool 

Table 2, provided in the literature review, summarised the level of performance 

achieved by WRF when simulating wind speed in a number of other studies. It is 

presented below (Table 8.29), with the addition of results obtained in the three 

investigations comprising this research. Direct comparison between the studies is 

not applicable because results from this study show how variable one model setup 

can be in the same location, let alone in different configurations for different 

locations. As a result, the different studies are presented as a reference point by 

which to consider the results obtained in this research and provided with some 

information pertaining to key differences between the studies. The results obtained in 

this work are broadly comparable to the results obtained by others shown in Table 

8.29. The NMM-setup performs to a lower standard than the other studies presented, 

but was conducted on a more computationally restricted setup than all of them. The 

ARW-setup varies in performance with location but is well within the range provided 

by the other studies. The temporal resolution of the other studies is also important 

because most studies tend to examine wind speed at lower temporal resolution 

which, according to the results of the filtering process undertaken in this research, 

would improve performance. Variability in wind speed, as represented by correlation 

coefficient, is captured to varying degrees of success across the different studies 

ranging from around 0.6 to 0.9. Absolute error seems to be consistent with studies 

finding an RMSE of around 2 ms-1. Optimisation techniques applied in the third 

investigation of this research were not used in any of the other studies implying an 
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extra level of performance is achievable using such techniques. Furthermore, the 

process of temporally filtering some of the higher resolution runs would likely 

improve the performance of some of the runs, in accordance with the results from 

the benchmarking and long term resource assessment investigations. Ultimately, 

these results show that WRF can capture variability in offshore wind for a range of 

locations over a range of timescales and using a diverse range of model setup 

strategies. RMSE statistics imply a consistent absolute error which is comparable to 

the error associated with MCP studies. Optimisation strategies and temporal filtering 

offer means by which to improve upon the results presented which make the 

operational application of the technique viable. 

 

Table 8.29 Collection of statistics describing accuracy of WRF as a predictor of wind speed including the 

results achieved in this research (Hughes, 2013*). 

Study 

Notable 

setup 

options 

Resolution 
Correlation 

coefficient 
RMSE 

Shimada and 

Ohsawa 

ARW, FDDA, 

MYJ, SST 
10 minute 0.8 

46% mean 

~2.8ms-1 

Kwun et al 2009 ARW, MYJ 
Correlation – hourly 

RMSE – daily 
0.64 1.1 ms-1 

Pena et al, 2011 ARW Hourly - 2 ms-1 

Raubenheimer 

et al, 2012 
ARW Diurnal 0.94 1.8-2.1 ms-1 

Nawri et al, 

2012 
ARW Monthly 0.57 - 

Liu et al, 2012 ARW Hourly 0.48 2.8 ms-1 

Hughes, 2013* NMM, MYJ 10-minute 0.35 3.5 ms-1 

Hughes, 2013* 
ARW (Shell 

Flats) 
10-minute 0.86 2.1 ms-1 

Hughes, 2013* 
ARW (Shell 

Flats) 
6-hourly 0.9 1.7 ms-1 

Hughes, 2013* ARW (Scroby) 10-minute 0.64 2.2 ms-1 

Hughes, 2013* 
ARW (Scroby 

Optimised) 
10-minute 0.64 2.2 ms-1 
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Hughes, 2013* ARW (Scroby) 3-hourly 0.72 1.9 ms-1 

 

What the investigations have achieved is a definition of performance for two 

locations with different priorities, with short individual runs comprising the benchmark 

exercise and short runs concatenated to form a continuous run comprising the long 

term resource assessment. The optimisation investigation then required another set 

of short runs for Scroby Sands by which to test the optimisation techniques. 

Performance improved, seeing an increase in correlation coefficient of 0.05 and a 

reduction on RMSE of 0.2 ms-1 or roughly 10% in each case. To understand how 

applicable it would be to assume the same level of improvement for different sites, 

the impact of temporal filtering performed upon the shell flats and Scroby Sands 

benchmarking studies is compared. At Shell Flats, the correlation coefficient 

between the model and observations was reasonably high at 0.856, when filtered to 

three hourly resolution (three hourly values are used to compare against a likewise 

resolution at Scroby Sands) it improved to 0.883, a margin of 0.027 or by around 3% 

of the original value. For RMSE at Shell Flats, the raw ten minute value was 2.12 ms-

1 while the three hour filtered value was 1.88 ms-1, a difference of 0.24 ms-1 or around 

11%. By comparison, the Scroby Sands benchmarking results showed an initial 

correlation coefficient at ten minute resolution of 0.64, which when filtered to a three 

hourly resolution, improved to 0.72 a difference of 0.08 or 11% of the original value. 

RMSE in the benchmarking runs at Scroby Sands improved from 2.2 to 1.9 ms-1 a 

change of 0.3 ms-1 or 13.6%. The improvements were of a greater magnitude at 

Scroby Sands than Shell Flats, the reasons for this are unknown and could simply 

relate to the fact that there was more room for improvement at Scroby Sands. 

At this point no factor can be applied to infer the likely benefit of the 

optimisation techniques for different locations. It could be asserted with some 

confidence, that the application of the optimisation techniques to the benchmarking 

runs at Scroby Sands may well yield a 10% improvement. However at Shell Flats, 

because of the difference in performance seen, resulting from the temporal filtering 

process, no quantification regarding improvement can be made. What can be said is 

that because temporal filtering improved performance improved at Scroby Sands as 

well as Shell Flats, the optimisation techniques are likely to improve performance at 

Shell Flats and thus other locations, however the degree to which is unknown. Thus 
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far, wind speed has been the focus of this section, however WRF is shown to 

simulate a wide range of variables and has displayed its potential by producing a 

number of those variables critical to offshore wind resource assessments. Wind 

direction has been simulated and while time series analysis suggests direct 

variability is not well captured, aggregated statistics show a discernible level of skill 

in the model output. Stability is a variable of growing importance to the wind industry 

as farms increase in size and parameters which influence wake propagation play a 

big part in farm production. As with wind direction, the instantaneous representation 

of stability was found to be lacking but the general distribution was found to 

represent that observed. Stability was classified by outright proportion but also by 

wind speed bin, wind direction, weather type and time (hour and month) in which 

distinct likenesses between the modelled and observed distributions were evident. 

All of these factors combined with the potential of the model to simulate for any 

location globally make it an extremely capable option by which to produce a wind 

resource assessment. One example of the flexibility of NWP as a resource 

assessment tool was provided by the Supergen exemplar farm assessment. Where 

a met mast can only represent one location, the model output was used to provide a 

spatial field to identify change in the wind field through the farm. While wind direction 

results from the Shell Flats resource assessment may not invoke confidence, the 

model could be used to provide a more simple output relating to tendency rather 

than trying to account for precise changes. NWP provides a readily accessible 

source of such information which considering the size of the round 3 wind farms 

would be of huge use to the operators. It is anticipated that with research and 

development in the application of NWP to wind resource assessment, its use will be 

commonplace in the future. Indications are that absolute error will be difficult to 

reduce to the level achieved by in situ observations, but it is entirely feasible that with 

development and the use of a single mast, the addition of an NWP campaign will 

extend the assessment to provide what is required by the developers. Results from 

Shell Flats show that WRF is not far off the accuracy of an inter-mast interpolation 

procedure, which with development is an accuracy which could very well be 

achieved by the model negating the need for multiple masts at a site of interest. 
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8.12 Application of WRF to the field of offshore wind resource assessment 

The benchmarking performance runs showed that WRF has a reasonable level 

of skill as an offshore wind resource assessment tool when used ‘out of the box’, 

provided a comprehensive computing resource is available. Low frequency wind 

speed change is generally captured by the computationally restricted NMM-setup 

runs, suggesting that large scale features can be simulated to an appreciable degree 

of accuracy. Beyond that however, with the NMM-setup, model performance is 

limited. Production of wind speed change in the medium frequency range is minimal 

and no high frequency variability is present in the runs. In terms of practical 

application, the restricted computing setup might be of use in a preliminary site 

assessment, undertaken over a very long period to review the long-term trend at a 

site. The computationally ‘unrestricted’ ARW-setup runs showed a much higher level 

of skill ‘out of the box’ compared to the restricted NMM setup runs. Wind speed 

change in the low and medium frequencies was well captured, however high 

frequency change proved harder to simulate for the model. Levels of high frequency 

wind speed change simulated by the model reflected those observed, but the timing 

and direction of change was less accurately simulated. ‘Out of the box’ skill is implies 

that the model in both configurations would be suitable for use in a preliminary site 

assessment and with a larger computing resource a long-term resource assessment, 

due to their ability to simulate wind speed well in the low and medium frequency 

range. As an operational resource assessment tool, where forecast horizons are 

short and simulation of high frequency features is critical, the model offers some 

potential, but to a lesser extent than for longer term simulations due to uncertainty in 

production of short term changes in wind speed. High frequency change dominates 

short term forecasting, which has been shown to be a weakness throughout these 

investigations.  

The Shell Flats long term resource assessment enabled a review of the models 

performance with a large computing resource, to simulate for a continuous period as 

a direct example of what would be required by the industry. Performance regarding 

the simulation of wind speed was much improved over that seen at Scroby Sands. 

Given the consistency of the model setup between Shell Flats and Scroby Sands, 

the difference in model performance at the two sites was attributed to physical 

contrasts between the sites which, with further research, should be accounted for to 
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some extent through model setup. The level of performance seen in the Shell Flats 

investigation confirms the potential of WRF as an offshore wind resource 

assessment tool for both long and short term studies. In both the Scroby Sands and 

Shell Flats studies, temporal filtering was applied to the observed and predicted 

series to shift the focus of the simulations to larger scale synoptic features at the 

effective resolution of the model grid. Performance improved by a significant margin, 

which served to confirm the performance of the model for longer term studies and its 

uncertainty regarding short term wind speed variation. Optimisation techniques were 

developed and applied to modelling runs throughout the investigation with a view to 

improving accuracy and understanding of model performance.  

Observational nudging was employed for the Shell Flats resource assessment 

and in the optimisation runs at Scroby Sands. On balance, nudging proved to be a 

beneficial technique which helped improve model performance at the site of interest. 

Interestingly, inclusion of a non-nudged series in the PBL ensemble also proved a 

beneficial undertaking, to account for occasions when nudging the model run 

inhibited performance.  

When examining the effect of different PBL parameterisation schemes, model 

performance was found to vary depending upon the PBL scheme used. No individual 

scheme was found to be consistently preferable confirming the findings of other 

studies which imply performance to be dependent upon the atmospheric conditions. 

An ensemble of model solutions, perturbed by virtue of using different PBL schemes, 

was created to mitigate such an effect and was found, on average, to perform to a 

higher standard than any individual scheme. The main benefits arising from applying 

the PBL ensemble resulted in; increased accuracy of the mean compared to any 

individual member, greater understanding of model performance based on ensemble 

member distribution and a reduced level of uncertainty regarding the model output. 

Generation of the time offset ensemble not only provided multiple sets of initial 

conditions for a model run but did so at different times to effectively reinitialise the 

runs, to an extent. Like the PBL ensemble, one of the main benefits of this technique 

is a reduction in the uncertainty of the model output in line with that associated with 

the initial conditions. Specifically, this technique offered potential to model 

performance in short term applications such as the forecasting resource assessment 

field. The reinitialisation process inherent in a time offset ensemble, updated the 
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initial conditions by incorporating new members into the run at later intervals in the 

simulation, which has the effect of reducing the inevitable divergence between the 

modelled and observed series. WRF has been shown to perform to a high standard 

when simulating wind speed, but not to the level of accuracy achieved by in situ 

observations. 

The flexibility of an NWP platform was demonstrated in the Shell Flats 

investigation where a range of variables critical to the wind resource assessment 

process were produced. Wind direction and stability were simulated and aggregated 

statistics comparing the simulated values with those observed for the same time 

period, showed the skill present in the model. The flexibility of WRF was extended 

further in the Supergen Exemplar site where a demonstration of the spatial coverage 

of the model domain showed wind direction variation across the farm. Such 

information could not be obtained from a single mast and adds great value to the 

case for using NWP in some form during a resource assessment. A number of 

considerable handicaps are imparted onto the numerical simulation process, such as 

the fact that input conditions were provided at 50km resolution and boundary 

conditions were updated at 6 hourly intervals. Despite these limitations, WRF does 

provide a viable option by which to generate a wind resource assessment. 

Performance is not at a level to consider suggesting NWP as a replacement for in 

situ observational campaigns, but at this stage certainly consideration should be 

given to using NWP as an augmentation to them. Use of NWP model output 

alongside in situ data might aid the improvement of the model and setup techniques 

to develop NWP into a genuine standalone resource assessment tool, but as yet 

performance is not to a high enough standard. 

8.13 Closing remarks 

Practicality was a key consideration of this research which strived to assess the 

potential of NWP to offshore wind resource assessments for a range of potential end 

users. Undertaking the ensemble runs required a considerable investment in time 

and computing resource, reducing the practicality of the approach, but the benefits 

are evident. The number of runs required to complete the ensembles was high and 

constituted a considerable undertaking in terms of time as well as computing 

resource. For end users with a well-staffed team and a high end computing resource, 

such an undertaking would be feasible for most applications, such as forecasting and 



198 
 

historic site assessments. However, for an individual researcher, such a technique is 

unlikely to be able to produce forecasts at the required rate given the number of 

ensemble runs required. For a long term assessment, the time available to 

undertake the runs is greater than for a forecasting application which makes the 

ensemble technique more appropriate, again depending on the availability of a large 

computing resource and well-structured run procedure. The ensemble technique 

offers a lot of benefits to a forecasting application and is recommended where 

possible. In this work the process could have been streamlined by selecting fewer 

members, for example only using the ACM and MYNN PBL schemes, but it is 

suggested that the TOES technique be employed as extensively as possible to 

account for initialisation errors and afford the reinitialisation process. For users with a 

limited resource it is suggested that computing resource be allocated to maximising 

the model run for one output, rather than employing the supplementary techniques 

such as ensembles which would requires a vast addition of computing time and 

restrict the base model setup in the first place. Instead it is recommended that the 

NMM core be used with an inner resolution of around 4-10 km with the priority being 

spatial coverage of the outermost domain.  

When compared to alternative resource assessment methods, NWP was able 

to match and outperform land based data used in MCP studies and come close to 

the level of performance achieved by one offshore mast as a predictor of another at 

Shell Flats. A lack of data for validation has hindered the development of this 

technology in this field, but results presented in this study underline the potential of 

NWP in the field of wind resource assessment. Without question, NWP has a lot to 

offer the field of wind resource assessment. With appropriate progress in developing 

the technology and specifically the process by which NWP is applied to the field, 

strides will be taken in improving performance to a level which makes it acceptable 

for operational use. The legacy of this work is twofold, firstly the results have 

provided a level of performance for a range of scenarios by which other studies can 

be compared. It is hoped the second legacy of the work is the stimulation of future 

research. Many questions arose over the course of the three investigations and are 

posed to be addressed by future research, suggestions for which are summarised in 

the following section. With the application of research in the relevant areas the 

potential of mesoscale NWP modelling in the field of offshore wind resource 
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assessment can be realised. The planning phase of an offshore wind farm will 

reduce in cost, achieving the aim of Supergen Wind and increasing the penetration 

of offshore wind in the U.K.’s energy future to achieve renewable energy and carbon 

emissions targets. 

8.14 Future work 

8.14.1 Areas for improvement 

8.14.1.1 Location dependence 

Ultimately WRF is capable of performing to a very high standard, shown by 

results for the long term resource assessment work at Shell Flats. However for some 

as yet unknown reasons, the model was not able to perform to the same level at 

Scroby Sands. Given that dynamically, model setup was almost identical for the two 

sites, it is logical to suggest the gap in performance is due to a fundamental 

difference between how the model physically treats the two sites. Either Scroby 

Sands isn’t as well represented by input data as Shell Flats, which would set the 

model run off with inaccurate initial conditions and tendencies and certainly affect 

performance. Or, the model doesn't represent the physical domain well, which given 

that Scroby Sands is very close to a coastal interface, is a legitimate theory. It is 

suggested a comparative study of the Shell Flats and Scroby Sands sites be 

undertaken to elucidate the differences between the sites and try to understand why 

model performance was so varied. The study needs to be extensive in order to 

identify differences between the sites themselves and how they might be treated 

differently by WRF. Analysis of how both sites are physically represented by WRF is 

an important place to start. Observational data from both sites should be compared, 

as should data from the CFSR product used to initialise WRF. CFSR data should 

also be compared against observations at both sites to identify any discrepancies 

translating to inaccurate initial and boundary conditions being provided to the model. 

Once the reasons for model performance are known, steps can be taken to address 

the performance gap and either improve model performance at Scroby Sands to the 

level of Shell Flats or fundamentally improve model performance in general, seen at 

both locations.  
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8.14.1.2 The PBL  

A review of literature presented in chapter 2 identified the PBL as a source of 

uncertainty in the process of wind resource assessment. Results from this research 

agreed and showed that while it’s possible to improve performance in the boundary 

layer by combining the schemes outputs in an ensemble, no individual scheme is 

able to comprehensively offer a preferable option. It is strongly suggested that 

research into performance in the PBL be pursued, as extra information from different 

investigations will only help develop understanding. One option is the application of 

more complex schemes such as the MYNN 3.0, which wasn't used in this research 

because it didn't run with the setup used. Alternatively, further development of an 

ensemble combining the skill of different schemes, perhaps more carefully weighted 

given particular conditions might prove beneficial and are discussed shortly. Time 

restrictions meant stability was not investigated in the optimisation runs at Scroby 

Sands, but it would be of great interest to see how the PBL schemes vary in 

performance by stability class. The results of which could help in selecting a dynamic 

weighting scheme for generating an ensemble mean based on a weather type 

analysis, perhaps of an aggregate number of previous time steps for a long term 

resource assessment and an initial low resolution pilot run in a short term forecasting 

assessment again to establish the weather type. 

8.14.1.3 PBL scheme modification 

A number of studies have been presented which highlight the inherent 

variability in performance not only between different schemes, but for the same 

scheme in different conditions/ locations. Some research has been undertaken to 

more directly address the issue of inconsistent performance offshore, by modifying 

the existing scheme. The MYJ scheme was found to underperform when 

representing the vertical diffusion of turbulence (Cheng et al 2002; Trini Castelli et al, 

2006), particularly under stable conditions (Hanna et al, 2010), where under unstable 

and near-neutral conditions, performance improved. Two schools of thought exist as 

to the potential source of error, one attributes uncertainty to the model closure 

constants (Foreman and Emeis, 2010), the other to the master length scale (Suselj 

and Sood, 2010) which controls the properties of the vertical diffusivity constant. It is 

thought (Foreman and Emeis, 2010) that one of the processes contributing to 

turbulent kinetic energy (TKE) in the surface layer had been overlooked. The MYJ 

scheme was developed for horizontally homogeneous terrain (Pahlow et al, 2001) 
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yet the ocean surface is dynamic and wavy which contributes to the forces imparted 

upon the air, the added contribution of stress enhances TKE in the surface layer 

(Shaikh and Siddiqui, 2010). Two solutions have been suggested which involve 

modifications to either the closure constants (Foreman and Emeis 2010) or the 

master length scale (Tambke et al, 2005; Suselj and Sood, 2010) of the 

parameterisation scheme. Both methods showed improvements in the accuracy of 

the schemes, Foreman and Emeis (2010) improved the accuracy of the MYJ scheme 

by altering the model closure constants (Figure 8.57). Suselj and Sood (2010) found 

that modifications to the master length scale produce similarly accurate results in 

unstable and near-neutral conditions but also significantly improved performance 

under stable conditions. Nolan et al (2009) found the impact if the surface layer 

scheme to be of great importance regarding model performance in the PBL, 

suggesting a more comprehensive review of performance through the model 

treatment of the surface rather than exclusively focussing on the PBL scheme. 

 

Figure 8.57 Turbulent kinetic energy at 80 m above sea level during a storm in Jan. 1- 10, 2005. Dots: 

FINO1 observations, triangles: simulation with onshore MYJ scheme, bars: WRF simulation with 

modified offshore MYJ scheme (Foreman and Emeis, 2010). 

 

8.14.2 Techniques 

A range of techniques are presented which might aid the future investigations 

to be undertaken using NWP to improve performance as an offshore wind resource 

assessment tool. The suggestions are simply that, by no means are they intended to 

instruct future research and be taken verbatim, merely as a guide. 
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8.14.2.1 Nudging 

Overall, nudging was shown to be a positive process in enhancing the 

performance of WRF, however not exclusively. This study only nudged wind speed 

from local observations in the outer domain. It would be of great interest to expand 

the investigation into nudging which could have a significant effect on model 

performance if optimised correctly. Nudging could be performed for multiple 

locations, at multiple vertical levels. The radius of influence could be tuned for 

particular investigations, for example changing with different applications of the same 

simulation. Furthermore, only wind speed was ingested in this research for the sake 

of simplicity, however WRF is able to integrate multiple variables which may help the 

model more comprehensively simulate the atmospheric state and improve 

performance more completely. For example nudging temperature might provide 

more accurate information about local energy distribution improving the resolution of 

local gradients which have an impact upon the local circulation. Results from this 

research showed the positive effect nudging wind speed had regarding the accuracy 

of simulating of wind direction which gives reason to undertake such an 

investigation. 

8.14.2.2 Weather typing 

Weather typing is a powerful technique which could provide an extra level of 

information for any wind resource assessment. Weather type analysis was 

introduced and used in this research as a means of quantifying the atmospheric 

setting to infer likely properties. The depth of a weather typing analysis could be 

more detailed however by undertaking a more comprehensive analysis of each case. 

Careful consideration of the implications associated with a prevailing weather type, 

compared to the atmospheric properties as they are observed might allow a deeper 

understanding of how weather type affects model performance and also what 

conditions can be expected from particular weather types when they are simulated 

by the model. For example, it has been asserted in this research that under 

anticyclonic conditions the atmosphere is more stable, less turbulent and wind 

speeds are lower. However, there is more information that could be inferred from an 

anticyclonic weather type such as humidity, temperature profile and vorticity which all 

affect the wind field. The importance of using weather typing alongside NWP relates 

to the scale dependent performance of WRF observed in this study. Given that WRF 

was found to simulate large scale features well, one might afford more confidence to 
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their simulation into the future. Consultation of a weather type analysis for the future 

simulation might add an extra level of information to the analysis, for example 

tendencies of variables such as pressure or temperature and likely stability 

conditions. 

8.14.2.3 Ensemble analysis 

An ensemble can provide a wealth of information for an end user. Given that 

end users will invariably use the data differently from one another, there are some 

features some users will utilise which other will not. One example is the ensemble 

spread, which in this research was found to have no relationship to model error, but 

remains a technique employed in other studies. Comprehensive analysis of the 

ensemble system will provide a wealth of information that users may have not 

considered previously. It is suggested that an exhaustive investigation into the 

information which can be obtained from an ensemble is performed. For example 

features such as member clustering, where a group of members tends towards 

similar values either at particular times through the run or over the course of the run 

might help identify periods of increased model confidence. Such identification might 

help the end user for example associate less risk with that given value and it might 

help the model user identify particular periods of strength in the model performance. 

Another area of potential regarding the output of an ensemble system is the 

production of a probabilistic output, where a time series is provided with a distribution 

of values for a given time step, perhaps shaded to give the likelihood, according to 

the ensemble member distribution, of the actual value at any time. 

8.14.2.4 Ensemble weighting 

Detailed analysis of ensemble members, for example by employing a 

classification method, could lead to the development of a tool which apportions 

weight to each member preferentially under particular conditions. This research has 

presented a simple method by which to deliver an ensemble output which was via a 

mean value, however in the optimisation runs weighting towards the more recently 

initialised run was investigated. The purpose of such an undertaking is to account for 

the variability in model performance seen throughout the model runs undertaken in 

this research. There is huge potential for investigating the performance of each 

member and having a more customised ensembling process, classified for example 

by; location,  time of day, time of year, wind speed bin, wind direction bin or weather 
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type. To take the concept one step further a dynamic ensemble might be developed 

which would analysis on an ad-hoc basis to generate the most appropriate member 

weighting scheme. 

8.14.2.5 Ensemble spread 

No spread error correlation was found in the model optimisation investigation, 

such that small member spread did not necessarily relate to low error and large 

spread to high error. This could be for a number of reasons, firstly this work was 

uncalibrated, which according to the literature wouldn't make much of a difference 

but might have some effect. Secondly, the cases for which the model was run were 

selected based upon periods of consistent weather type, more research would have 

to be undertaken but it’s possible the synoptic consistency was a factor in producing 

a minimal level of member spread. Finally, there were not particularly many incidents 

of extreme ensemble spread to relate to model error, therefore it might be of interest 

to produce a wider range of ensemble members for a wider array or uncertainties to 

try and maximise spread for the benefit of identifying periods of uncertainty. 

8.14.3 Short term forecasting 

Performance at small scales which contribute to short term, high frequency 

change in wind speed will only truly be solved dynamically by running the model at 

the correct effective resolution. That is to say until a model is able to be run where 

desired scales are directly simulated for rather than approximated. Some options 

exist, but are very computationally heavy, and would require input from larger scale 

models as initialisation data. The larger scale models would also need running to 

provide input to the smaller high resolution domains, again increasing compute time. 

Given results of the persistence forecasting, a practical solution might consist of a 

statistical approach, perhaps using an ARIMA model. A stage further might make 

use of an artificial neural network which could be fed with some key larger scale 

indicators from a dynamical model. Such undertakings would require significant 

preparation times to learn prior occurrences but might offer a performance 

improvement once operational to augment model output. 

8.14.4 Spatial coverage 

One of the great strengths of NWP is its flexibility, it can be applied to any 

global location for any size domain, which in a practical context simulating for a large 

wind farm may require multiple met masts to satisfy a developers requirements. With 
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the size of offshore installations continuing to increase, such flexibility could save 

developers millions in the planning phase as NWP is used to provide an insight into 

conditions across the farm working alongside output from a reduced number of met 

masts. It would be of interest to conduct a study whereby a model run is undertaken 

for a site which contains multiple masts, then the output of the model could be 

assessed as a predictor for masts throughout the domain and compared against 

data from the other masts. It would seem from the Shell Flats investigation that 6km 

is a short enough distance to allow a reasonable replication from one mast to 

another so it would be interesting to test the limits of such extrapolations. 

8.14.5 Model resolution 

The main area for improvement in model performance has been identified as 

small scale short term features. Many alternatives and mitigations have been 

presented, employed and discussed apart from a frank consideration of simply 

increasing model resolution. It is a lot to ask that a PBL scheme accounts for 

turbulent structures giving rise to changes in wind speed, based solely upon values 

of larger resolved variables, but at the moment that is how the PBL is treated in 

WRF. Improvements will continue to be made regarding the PBL schemes but 

ultimately confidence will come when the boundary layer is actually resolved, at least 

to some extent. The literature review mentioned how small improvements seen by 

increasing resolution were compared to the increase in computing resource, but 

another factor to consider is the validity of mesoscale model equations at small 

scales. WRF is capable of running in LES (Large eddy simulation) mode which 

provides a more appropriate representation of smaller scale atmospheric features. 

Such a domain could be used to simulate at high resolutions on the order of metres, 

though are very computationally expensive and difficult to implement. Alternatively 

combining WRF output with a CFD (computational fluid dynamics) code might yield 

interesting results but again is likely to be computationally expensive and require a 

great investment setting up. 

8.14.6 Stability 

Originally intended as an additional variable by which to assess model 

performance, stability proved to be an interesting subject of investigation which 

stimulated many questions requiring future work. What the results from this research 

did was establish a set of scenarios, for example stability variation as classified by 
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weather type, and compared the performance of the model to observation under 

those classifications. However it would be of great use to know the reasons for the 

variation in stability as a function of those other variables as observed and to then 

qualify that by reference to the model results to see if the reasons for variations in 

stability are consistent. Using the example of weather type, a number of inferences 

can be made regarding the atmospheric conditions which might contribute to a 

certain stability class, for example, the thermodynamic characteristics of an airmass. 

But, without further investigation of those properties, by reference to the model and 

observations, identification of the mechanism causing the relationship between 

weather type and stability cannot be confirmed. Such an investigation requires a 

detailed knowledge of stability to be able to carefully plan an appropriate 

methodology, stability is a complex parameter which could stimulate multiple 

tangential investigations away from the original aim. The benefit of such a study 

would help qualify the skill present in the mesoscale model because if it were found 

that the reasons the model output followed that observed were though correct 

appreciation of the controlling mechanisms, more confidence could be afforded to 

the model output. 

8.14.7 Model bias 

WRF has shown a capacity to simulate observed wind speed, correlation 

statistics imply the model has great skill but is dependent upon location. Once model 

performance is improved to a level where correlation is consistently high, it will be 

worth investigating the presence of bias in model output. While RMSE quantifies the 

absolute error in a series, it is also important to know the degree of bias associated 

with a predictor. Bias is a measure of systematic error in a model, for example 

variability may be well resolved by a model but with a consistent offset in magnitude 

whereby the model under- or over-predicts reality. Bias is represented by averaging 

the residuals, produced by subtracting the concurrent modelled value from that 

observed. A positive value indicates an under prediction by the model and a negative 

value signifies an over prediction. The magnitude of the bias relative to the absolute 

error, in this case as represented by RMSE, gives an indication of the systematic 

error present in the model. A bias similar to RMSE implies that the systematic error 

can be accounted for by applying a correction. Bias is an important factor to account 

for in model performance, but will be more evident if and when the correlation 
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coefficient between model and observations is at a consistently high level. A good 

place to start such an investigation might be on the Shell Flats resource assessment 

work. With a reasonably high correlation between the model and observations, it 

should be possible to undertake a reliable trend analysis which might identify any 

model bias which could then be corrected. 
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9 Appendix I 
Example Namelists for the pre-processing (namelist.wps) and Model run 

(namelist.input) stages for the Scroby Sands simulations using WRF-NMM. 

Namelist.wps 

&share 

 wrf_core = 'NMM', 

 max_dom = 5, 

 start_date = '1996-05-10_00:00:00', '1996-05-10_00:00:00', 

'1996-05-10_00:00:00', '1996-05-10_00:00:00', '1996-05-

10_00:00:00',  

 end_date   = '1996-05-14_18:00:00','1996-05-

14_18:00:00','1996-05-14_18:00:00','1996-05-

14_18:00:00','1996-05-14_18:00:00', 

 interval_seconds = 21600 

 io_form_geogrid = 2, 

/ 

 

&geogrid 

 parent_id         =   1,   1, 2, 3, 4, 

 parent_grid_ratio =   1,   3, 3, 3, 3, 

 i_parent_start    =   1,   6, 7, 11, 8, 

 j_parent_start    =   1,   6, 7, 10, 8, 

 e_we              =  18,   22, 28, 22, 19, 

 e_sn              =  18,   22, 28, 22, 22, 

 geog_data_res     = '10m',  '5m', '2m', '30s', '30s', 

 dx = 0.842, 

 dy = 0.837, 

 map_proj = 'rotated_ll', 

 ref_lat   = 53.032, 

 ref_lon   = 1.112, 

 geog_data_path = '/usr/local/WRF-NMM/geog' 

 opt_geogrid_tbl_path = '/usr/local/WRF-NMM/WRF/WPS/geogrid' 

/ 

 

&ungrib 

 out_format = 'WPS', 

 prefix = 'FILE', 

/ 

 

&metgrid 

 

 fg_name = 'FILE' 

 io_form_metgrid = 2,  

 opt_metgrid_tbl_path = '/usr/local/WRF-NMM/WRF/WPS/metgrid' 

/ 
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Namelist.input 

&time_control 

 run_days                            = 3, 

 run_hours                           = 18,    

 run_minutes                         = 0, 

 run_seconds                         = 0, 

 start_year                          = 1996,     1996, 1996,  

1996, 1996, 

 start_month                         = 07,       07,       07,       

07,       07,        

 start_day                           = 10,       10,       10,       

10,       10,        

 start_hour                          = 00,       00, 00,

 00, 00, 

 start_minute                        = 00,       00, 00,

 00, 00, 

 start_second                        = 00,       00, 00,

 00, 00, 

 tstart                              = 00,        

 end_year                            = 1996,     1996, 1996,

 1996, 1996, 

 end_month                           = 07,       07,       07,       

07,       07,        

 end_day                             = 13,       13,       13,       

13,       13,        

 end_hour                            = 18,       18,       18,       

18,       18,        

 end_minute                          = 00,       00, 00,

 00, 00, 

 end_second                          = 00,       00, 00,

 00, 00, 

 interval_seconds                    = 21600, 

 input_from_file = T,F,F,F,F, 

 history_interval                    = 360,       360, 60,

 10, 10  

 auxinput1_inname = "met_nmm.d<domain>.<date>", 

 frames_per_outfile                  = 1,        1, 1, 1,

 1, 

 restart                             = .false., 

 restart_interval                    = 5760, 

 reset_simulation_start              = F, 

 io_form_input                       = 2 

 io_form_history                     = 2 

 io_form_restart                     = 2 
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 io_form_boundary                    = 2 

 io_form_auxinput1                   = 2 

 debug_level                         = 0  

 / 

 

 &domains 

 time_step                           = 150, 

 time_step_fract_num                 = 0, 

 time_step_fract_den                 = 10, 

 max_dom                             = 5, 

 e_we                                = 18,      22, 28,

 22, 19,  

 e_sn                                = 18,      22, 28,

 22, 22, 

 e_vert                              = 65,      65, 65,

 65, 65, 

 num_metgrid_levels                  = 24, 

 dx                                  = .8420,  .2810,  0.0940, 

0.0310,  0.0100    

 dy                                  = .8370,  .2790,  0.0930, 

0.0310,  0.0100 

 p_top_requested                     = 5000.  

 ptsgm                               = 42000., 

 grid_id                             = 1,       2, 3, 4,

 5, 

 parent_id                           = 0,       1,     2, 3,

 4, 

 i_parent_start                      = 1,       6, 6, 6,

 6, 

 j_parent_start                      = 1,       6, 6, 6,

 6, 

 parent_grid_ratio                   = 1,       3,  3, 3,

 3, 

 parent_time_step_ratio              = 1,       3,  3, 3,

 3, 

 eta_levels      = 1.000, 0.997, 0.995, 0.993, 

0.991,  

                0.988, 0.9851, 0.9802, 0.9753, 0.9703,  

                0.965, 0.9595, 0.9537, 0.9476, 0.9412,  

                0.9344, 0.9272, 0.9195, 0.9113, 0.9024,  

                0.8826, 0.8716, 0.8596, 0.8467, 0.8327,  

                0.8014, 0.7839, 0.7652, 0.7451, 0.7238,  

                0.6772, 0.6521, 0.6259, 0.5988, 0.5708,  

                0.5421, 0.5129, 0.4835, 0.4539, 0.4244,  

                0.3953, 0.3665, 0.3384, 0.3111, 0.2847,  

                0.2594, 0.2351, 0.212, 0.19, 0.167,  

                0.1478, 0.1301, 0.1138, 0.0988, 0.0851,  

                0.0726, 0.0611, 0.0507, 0.0412, 0.0326,  

                0.0247, 0.0176, 0.0112, 0.0053, 0.000, 

 feedback = 1, 

 / 
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 &physics 

 mp_physics                          = 5,        5, 5, 5,

 5, 

 ra_lw_physics                       = 99,       99, 99,

 99, 99,  

 ra_sw_physics                       = 99,       99, 99,

 99, 99, 

 nrads                               = 12,      36, 108,

 324, 972, 

 nradl                               = 12,      36, 108,

 324, 972, 

 co2tf                               = 1, 

 sf_sfclay_physics                   = 2,        2, 2, 2,

 2, 

 sf_surface_physics                  = 2,        2,  2, 2,

 2, 

 bl_pbl_physics                      = 2,        2, 2, 2,

 2, 

 nphs                                = 2,  6, 18,

 54, 162, 

 cu_physics                          = 2,  2, 2, 0,

 0, 

 ncnvc                               = 2,  6, 18,

 54, 162, 

 tprec                               = 3,  3, 3, 3,

 3, 

 theat                               = 6,  6, 6, 6,

 6, 

 tclod                               = 6,  6, 6, 6,

 6, 

 trdsw                               = 6,  6, 6, 6,

 6, 

 trdlw                               = 6,  6, 6, 6,

 6,  

 tsrfc                               = 6,  6, 6, 6,

 6, 

 pcpflg                              = .false., .false., 

.false., .false., .false., 

 isfflx                              = 0, 

 ifsnow                              = 0, 

 icloud                              = 0, 

 num_soil_layers                     = 4, 

 mp_zero_out                         = 0 

 gwd_opt                             = 0 

 / 

 

 &dynamics 

 / 

 

 &bdy_control 
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 spec_bdy_width                      = 1, 

 specified                           = .true., .false., 

.false., .false., .false., 

 nested                              = .false., .true., 

.true., .true., .true., 

 / 

 

 &fdda 

 / 

 

 &grib2 

 / 

 

 &namelist_quilt 

 nio_tasks_per_group = 0, 

 nio_groups = 1 

 / 
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Example Namelists for the pre-processing (namelist.wps) and Model run 

(namelist.input) stages for the Scroby Sands simulations using WRF-ARW. 

Namelist.wps 

&share 

 wrf_core = 'ARW', 

 max_dom = 3, 

 start_date = '1996-04-02_00:00:00','1996-04-02_00:00:00', 

'1996-04-02_00:00:00','1996-03-13_00:00:00', 

 end_date   = '1996-04-05_18:00:00','1996-04-05_18:00:00', 

'1996-04-05_18:00:00','1996-03-15_00:00:00', 

 interval_seconds = 21600 

 io_form_geogrid = 2, 

/ 

 

&geogrid 

 parent_id         = 1,1,2, 

 parent_grid_ratio = 1,3,3, 

 i_parent_start    = 1,81,97, 

 j_parent_start    = 1,34,57, 

 e_we          = 178,208,241, 

 e_sn          = 130,169,169, 

 geog_data_res = '10m','5m','30s', 

 dx = 18000, 

 dy = 18000, 

 map_proj =  'lambert', 

 ref_lat   = 53.559, 

 ref_lon   = -7.395, 

 truelat1  = 53.559, 

 truelat2  = 53.559, 

 stand_lon = -7.395,  

 geog_data_path = '/usr/local/WRF-NMM/geog',   

 opt_geogrid_tbl_path = '/home/eljh3/runs/WPS/geogrid' 

 ref_x = 89.0, 

 ref_y = 65.0, 

/ 

 

&ungrib 

 out_format = 'WPS',   

 prefix = 'FILE',   

/ 

 

&metgrid 

 fg_name = 'FILE', 'SST' 

 io_form_metgrid = 2,   

 opt_metgrid_tbl_path = '/home/eljh3/runs/WPS/metgrid' 

/ 
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Namelist.input 

&time_control 

 run_days                            = 1, 

 run_hours                           = 18, 

 run_minutes                         = 0, 

 run_seconds                         = 0, 

 start_year                          = 1996, 1996, 1996, 1996, 

 start_month                         = 04,   04,   04,    11,    

 start_day                           = 04,   04,   04,   00,    

 start_hour                          = 00,   00,   00,   00,    

 start_minute                        = 00,   00,   00,   00,    

 start_second                        = 00,   00,   00,   00,    

 end_year                            = 1996, 1996, 1996, 1996 

 end_month                           = 04,   04,   04,  11,  

 end_day                             = 05,   05, 05,   13, 

 end_hour                            = 18,   18,   18,   18,    

 end_minute                          = 00,   00,   00,  00, 

 end_second                          = 00,   00,   00,  00, 

 interval_seconds                    = 21600 

 input_from_file                     = .true., .true., .true., 

.true.,  

 history_interval                    = 180,  60,   10, 10, 

 frames_per_outfile                  = 1, 1, 1, 1, 

 restart                             = .false., 

 restart_interval                    = 50000, 

 io_form_history          = 2, 

 io_form_restart          = 2, 

 io_form_input            = 2, 

 io_form_boundary         = 2, 

 debug_level              = 0, 

 io_form_auxinput4 = 2, 

 auxinput4_inname = "wrflowinp_d01", 

 auxinput4_interval = 360, 

  

 

/ 

 

 &domains 

 eta_levels               = 1.000, 0.9974, 0.9947, 0.9921, 

0.9895, 

                0.9869, 0.9843, 0.9817, 0.9791, 0.9765,  

                0.9725, 0.9671, 0.9602, 0.9516, 0.9412,  

                0.9291, 0.9151, 0.8992, 0.8814, 0.8616,  

                0.8398, 0.816, 0.7904, 0.7629, 0.7338,  

                0.703, 0.6709, 0.6375, 0.603, 0.5677,  

                0.5318, 0.4955, 0.4592, 0.4229, 0.387,  

                0.3517, 0.3172, 0.2837, 0.2513, 0.2203,  

                0.1906, 0.1625, 0.1335, 0.1087, 0.086,  

                0.0652, 0.0463, 0.0292, 0.0138, 0.000, 

 time_step                = 90, 
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 time_step_fract_num      = 0, 

 time_step_fract_den      = 1, 

 max_dom                  = 3, 

 e_we                     = 168,      208,      241, 

 e_sn                     = 120,      169,      169, 

 e_vert                   = 50,       50,       50, 

 p_top_requested          = 5000, 

 num_metgrid_levels       = 38, 

 num_metgrid_soil_levels  = 4, 

 dx                       = 18000,     6000,     2000, 

 dy                       = 18000,     6000,     2000, 

 grid_id                  = 1,        2,        3, 

 parent_id                = 1,        1,        2, 

 i_parent_start           = 1,       81,       97, 

 j_parent_start           = 1,       34,       57, 

 parent_grid_ratio        = 1,        3,        3, 

 parent_time_step_ratio   = 1,        3,        3, 

 feedback                 = 1, 

 smooth_option            = 0, 

 / 

 

 &physics 

 mp_physics                          = 2,     2, 2,     2,  

 ra_lw_physics                       = 99,     99, 99,     99, 

 ra_sw_physics                       = 99,     99,     99,     

99, 

 radt                                = 30,    30,    30, 30, 

 sf_sfclay_physics                   = 2,     2,     2, 2, 

 sf_surface_physics                  = 2,     2,     2, 2, 

 bl_pbl_physics                      = 2,     2,     2, 2, 

 bldt                                = 0,     0,     0, 0, 

 cu_physics                          = 2,     2,     0, 0, 

 cudt                                = 5,     5,     5, 5, 

 isfflx                              = 1, 

 ifsnow                              = 0, 

 icloud                              = 1, 

 surface_input_source                = 1, 

 num_soil_layers                     = 4, 

 sf_urban_physics                    = 0,     0,     0, 0, 

 sst_update = 1 

 / 

 

 &fdda 

   grid_fdda = 1, 0,  

   gfdda_inname = "wrffdda_d<domain>", 

   gfdda_end_h = 90, 24, 

   gfdda_interval_m = 360, 360,  

   fgdt = 0, 0, 

   if_no_pbl_nudging_uv = 0, 0,  

   if_no_pbl_nudging_t = 1, 1,  

   if_no_pbl_nudging_q = 1, 1,  
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   if_zfac_uv = 0, 0,  

   k_zfac_uv = 10, 10,  

   if_zfac_t = 0, 0, 

   k_zfac_t = 10, 10,  

   if_zfac_q = 0, 0,  

   k_zfac_q = 10, 10,  

   guv = 0.0003, 0.0003,  

   gt = 0.0003, 0.0003,  

   gq = 0.0003, 0.0003,  

   if_ramping = 1, 

   dtramp_min = 60.0, 

   io_form_gfdda = 2, 

 

  grid_sfdda = 1, 0, 0, 

  sgfdda_inname = "wrfsfdda_d<domain>", 

  sgfdda_end_h = 90, 24,  

  sgfdda_interval_m = 60, 360,  

  io_form_sgfdda = 2, 

  guv_sfc = 0.0003, 0.0003,  

  gt_sfc = 0.0003, 0.0003,  

  gq_sfc = 0.0003, 0.0003, 

  rinblw = 250., 

 / 

 

 &dynamics 

 w_damping                           = 0, 

 diff_opt                            = 1, 

 km_opt                              = 4, 

 diff_6th_opt                        = 0,      0,      0, 0, 

 diff_6th_factor                     = 0.12,   0.12,   0.12, 

0.12, 

 base_temp                           = 290. 

 damp_opt                            = 0, 

 zdamp                               = 5000.,  5000.,  5000., 

5000., 

 dampcoef                            = 0.2,    0.2,    0.2, 

0.2, 

 khdif                               = 0,      0,      0, 0, 

 kvdif                               = 0,      0,      0, 0, 

 non_hydrostatic                     = .true., .true., .true., 

.true., 

 moist_adv_opt                       = 1,      1,      1, 1, 

 scalar_adv_opt                      = 1,      1,      1, 1, 

  / 

 &bdy_control 

 spec_bdy_width                      = 5, 

 spec_zone                           = 1, 

 relax_zone                          = 4, 

 specified                           = .true., 

.false.,.false., .false., 
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 nested                              = .false., .true., 

.true., .true., 

  / 

 

 &grib2 

 / 

 

 &namelist_quilt 

 nio_tasks_per_group = 0, 

 nio_groups = 1, 

 / 
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Example Namelists for the pre-processing (namelist.wps) and Model run 

(namelist.input) stages for the Shell Flats simulations. 

Namelist.wps 

&share 

 wrf_core = 'ARW', 

 max_dom = 3, 

 start_date = '2003-06-10_00:00:00','2003-06-

10_00:00:00','2003-06-10_00:00:00', 

 end_date   = '2003-12-06_00:00:00','2003-12-

06_00:00:00','2003-12-06_00:00:00', 

 interval_seconds = 21600 

 io_form_geogrid = 2, 

/ 

 

&geogrid 

 parent_id         = 1,1,2, 

 parent_grid_ratio = 1,3,3, 

 i_parent_start    = 1,48,47, 

 j_parent_start    = 1,36,36, 

 e_we          = 107,112,97, 

 e_sn          = 90,94,82, 

 geog_data_res = '10m','2m','30s', 

 dx = 27000, 

 dy = 27000, 

 map_proj =  'lambert', 

 ref_lat   = 52.048, 

 ref_lon   = -9.439, 

 truelat1  = 52.048, 

 truelat2  = 52.048, 

 stand_lon = -9.439, 

 geog_data_path = '/usr/local/WRF-NMM/geog',   

 opt_geogrid_tbl_path = '/home/eljh3/runs/WPS/geogrid'  

 ref_x = 53.5, 

 ref_y = 45.0, 

/ 

&ungrib 

 out_format = 'WPS',   

 prefix = 'FILE',   

/ 

 

&metgrid 

 fg_name = 'FILE', 

 io_form_metgrid = 2,   

 opt_metgrid_tbl_path = '/home/eljh3/runs/WPS/metgrid' 

/ 
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Namelist.input 

&time_control             

run_days                 = 4, 

run_hours                = 0, 

run_minutes              = 0, 

run_seconds              = 0, 

start_year               = 2003,     2003,     2003, 

start_month              = 10,       10,       10, 

start_day                = 20,       20,       20,   

start_hour               = 00,       00,       00, 

start_minute             = 00,       00,       00, 

start_second             = 00,       00,       00, 

end_year                 = 2003,     2003,     2003, 

end_month                = 10,       10,       10, 

end_day                  = 24,       24,       24,        

end_hour                 = 00,       00,       00, 

end_minute               = 00,       00,       00, 

end_second               = 00,       00,       00, 

interval_seconds         = 21600, 

input_from_file          = .true.,   .true.,   .true., 

history_interval         = 180,       60,       10, 

frames_per_outfile       = 1000,     1000,     1000, 

restart                  = .false., 

restart_interval         = 5000, 

io_form_history          = 2, 

io_form_restart          = 2, 

io_form_input            = 2, 

io_form_boundary         = 2, 

debug_level              = 0, 

/ 

 

&domains                  

eta_levels               = 1.000, 0.9943, 0.9886, 0.983, 

0.9774, 

                0.9718, 0.9658, 0.9592, 0.952, 0.944,  

                0.935, 0.9248, 0.913, 0.8995, 0.8838,  

                0.8656, 0.8446, 0.8205, 0.7929, 0.7619,  

                0.7273, 0.6895, 0.6487, 0.6054, 0.5603,  

                0.514, 0.4673, 0.4208, 0.3751, 0.3307,  

                0.288, 0.2472, 0.2085, 0.1722, 0.1381,  

                0.1064, 0.077, 0.0471, 0.0223, 0.000, 

time_step                = 90, 

time_step_fract_num      = 0, 

time_step_fract_den      = 1, 

max_dom                  = 3, 

e_we                     = 107,      112,       97, 

e_sn                     = 90,       94,       82, 

e_vert                   = 40,       40,       40, 

p_top_requested          = 16992.0, 

num_metgrid_levels       = 38, 
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num_metgrid_soil_levels  = 4, 

dx                       = 27000,     9000,     3000, 

dy                       = 27000,     9000,     3000, 

grid_id                  = 1,        2,        3, 

parent_id                = 1,        1,        2, 

i_parent_start           = 1,       48,       47, 

j_parent_start           = 1,       36,       36, 

parent_grid_ratio        = 1,        3,        3, 

parent_time_step_ratio   = 1,        3,        3, 

feedback                 = 1, 

smooth_option            = 0, 

/ 

 

&physics                  

mp_physics               = 3,        3,        3, 

ra_lw_physics            = 1,        1,        1, 

ra_sw_physics            = 1,        1,        1, 

radt                     = 30,       30,       30, 

sf_sfclay_physics        = 1,        1,        1, 

sf_surface_physics       = 2,        2,        2, 

bl_pbl_physics           = 1,        1,        1, 

bldt                     = 0,        0,        0, 

cu_physics               = 1,        1,        0, 

cudt                     = 5,        5,        5, 

isfflx                   = 1, 

ifsnow                   = 0, 

icloud                   = 1, 

surface_input_source     = 1, 

num_soil_layers          = 4, 

sf_urban_physics         = 0,        0,        0, 

maxiens                  = 1, 

maxens                   = 3, 

maxens2                  = 3, 

maxens3                  = 16, 

ensdim                   = 144, 

/ 

 

&fdda 

   grid_fdda = 1, 0, 0, 

   gfdda_inname = "wrffdda_d<domain>", 

   gfdda_end_h = 96, 24, 

   gfdda_interval_m = 360, 360,  

   fgdt = 0, 0, 

   if_no_pbl_nudging_uv = 0, 0,  

   if_no_pbl_nudging_t = 1, 1,  

   if_no_pbl_nudging_q = 1, 1,  

   if_zfac_uv = 0, 0,  

   k_zfac_uv = 10, 10,  

   if_zfac_t = 0, 0, 

   k_zfac_t = 10, 10,  

   if_zfac_q = 0, 0,  
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   k_zfac_q = 10, 10,  

   guv = 0.0003, 0.0003,  

   gt = 0.0003, 0.0003,  

   gq = 0.0003, 0.0003,  

   if_ramping = 1, 

   dtramp_min = 60.0, 

   io_form_gfdda = 2, 

 

  grid_sfdda = 1, 0, 0, 

  sgfdda_inname = "wrfsfdda_d<domain>", 

  sgfdda_end_h = 96, 24,  

  sgfdda_interval_m = 60, 360,  

  io_form_sgfdda = 2, 

  guv_sfc = 0.0003, 0.0003,  

  gt_sfc = 0.0003, 0.0003,  

  gq_sfc = 0.0003, 0.0003, 

  rinblw = 250., 

/ 

 

&dynamics                 

w_damping                = 0, 

diff_opt                 = 1, 

km_opt                   = 4, 

diff_6th_opt             = 0,        0,        0, 

diff_6th_factor          = 0.12,     0.12,     0.12, 

base_temp                = 290., 

damp_opt                 = 0, 

zdamp                    = 5000.,    5000.,    5000., 

dampcoef                 = 0.2,      0.2,      0.2, 

khdif                    = 0,        0,        0, 

kvdif                    = 0,        0,        0, 

non_hydrostatic          = .true.,   .true.,   .true., 

moist_adv_opt            = 1,        1,        1, 

scalar_adv_opt           = 1,        1,        1, 

/ 

 

&bdy_control              

spec_bdy_width           = 5, 

spec_zone                = 1, 

relax_zone               = 4, 

specified                = .true.,  .false.,  .false., 

nested                   = .false.,   .true.,   .true., 

/ 

 

&grib2                    

/ 

 

&namelist_quilt           

nio_tasks_per_group      = 0, 

nio_groups               = 1, 

/ 
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Example Namelists for the pre-processing (namelist.wps) and Model run 

(namelist.input) stages for the Supergen exemplar simulations. 

Namelist.wps 

&share 

 wrf_core = 'ARW', 

 max_dom = 3, 

 start_date = '2003-12-01_00:00:00','2003-12-

01_00:00:00','2003-12-01_00:00:00', 

 end_date   = '2004-06-10_00:00:00','2004-06-

10_00:00:00','2004-06-10_00:00:00', 

 interval_seconds = 21600 

 io_form_geogrid = 2, 

/ 

 

&geogrid 

 parent_id         = 1,1,2, 

 parent_grid_ratio = 1,3,3, 

 i_parent_start    = 1,42,38, 

 j_parent_start    = 1,32,40, 

 e_we          = 107,112,121, 

 e_sn          = 90,94,103, 

 geog_data_res = '10m','2m','30s', 

 dx = 27000, 

 dy = 27000, 

 map_proj =  'lambert', 

 ref_lat   = 53.637, 

 ref_lon   = -1.038, 

 truelat1  = 52.048, 

 truelat2  = 52.048, 

 stand_lon = -9.439, 

 geog_data_path = '/usr/local/WRF-NMM/geog',   

 opt_geogrid_tbl_path = '/home/eljh3/runs/WPS/geogrid'  

 ref_x = 53.5, 

 ref_y = 45.0, 

/ 

&ungrib 

 out_format = 'WPS',   

 prefix = 'FILE',   

/ 

 

&metgrid 

 fg_name = 'FILE', 

 io_form_metgrid = 2,   

 opt_metgrid_tbl_path = '/home/eljh3/runs/WPS/metgrid' 

/ 
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Namelist.input 

&time_control             

run_days                 = 4, 

run_hours                = 0, 

run_minutes              = 0, 

run_seconds              = 0, 

start_year               = 2004,     2004,     2004, 

start_month              = 04,       04,       04, 

start_day                = 25,       25,       25,   

start_hour               = 00,       00,       00, 

start_minute             = 00,       00,       00, 

start_second             = 00,       00,       00, 

end_year                 = 2004,     2004,     2004, 

end_month                = 04,       04,       04, 

end_day                  = 29,       29,       29,        

end_hour                 = 00,       00,       00, 

end_minute               = 00,       00,       00, 

end_second               = 00,       00,       00, 

interval_seconds         = 21600, 

input_from_file          = .true.,   .true.,   .true., 

history_interval         = 180,       60,       10, 

frames_per_outfile       = 1000,     1000,     1000, 

restart                  = .false., 

restart_interval         = 4000, 

io_form_history          = 2, 

io_form_restart          = 2, 

io_form_input            = 2, 

io_form_boundary         = 2, 

debug_level              = 0, 

/ 

 

&domains                  

eta_levels               = 1.000, 0.9943, 0.9886, 0.983, 

0.9774, 

                0.9718, 0.9658, 0.9592, 0.952, 0.944,  

                0.935, 0.9248, 0.913, 0.8995, 0.8838,  

                0.8656, 0.8446, 0.8205, 0.7929, 0.7619,  

                0.7273, 0.6895, 0.6487, 0.6054, 0.5603,  

                0.514, 0.4673, 0.4208, 0.3751, 0.3307,  

                0.288, 0.2472, 0.2085, 0.1722, 0.1381,  

                0.1064, 0.077, 0.0471, 0.0223, 0.000, 

time_step                = 90, 

time_step_fract_num      = 0, 

time_step_fract_den      = 1, 

max_dom                  = 3, 

e_we                     = 107,      112,      121, 

e_sn                     = 90,       94,      103, 

e_vert                   = 40,       40,       40, 
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p_top_requested          = 5000, 

num_metgrid_levels       = 38, 

num_metgrid_soil_levels  = 4, 

dx                       = 27000,     9000,     3000, 

dy                       = 27000,     9000,     3000, 

grid_id                  = 1,        2,        3, 

parent_id                = 1,        1,        2, 

i_parent_start           = 1,       42,       38, 

j_parent_start           = 1,       32,       40, 

parent_grid_ratio        = 1,        3,        3, 

parent_time_step_ratio   = 1,        3,        3, 

feedback                 = 1, 

smooth_option            = 0, 

/ 

 

&physics                  

mp_physics               = 3,        3,        3, 

ra_lw_physics            = 1,        1,        1, 

ra_sw_physics            = 1,        1,        1, 

radt                     = 30,       30,       30, 

sf_sfclay_physics        = 1,        1,        1, 

sf_surface_physics       = 2,        2,        2, 

bl_pbl_physics           = 1,        1,        1, 

bldt                     = 0,        0,        0, 

cu_physics               = 1,        1,        0, 

cudt                     = 5,        5,        5, 

isfflx                   = 1, 

ifsnow                   = 0, 

icloud                   = 1, 

surface_input_source     = 1, 

num_soil_layers          = 4, 

sf_urban_physics         = 0,        0,        0, 

maxiens                  = 1, 

maxens                   = 3, 

maxens2                  = 3, 

maxens3                  = 16, 

ensdim                   = 144, 

/ 

 

&dynamics                 

w_damping                = 0, 

diff_opt                 = 1, 

km_opt                   = 4, 

diff_6th_opt             = 0,        0,        0, 

diff_6th_factor          = 0.12,     0.12,     0.12, 

base_temp                = 290., 

damp_opt                 = 0, 

zdamp                    = 5000.,    5000.,    5000., 

dampcoef                 = 0.2,      0.2,      0.2, 

khdif                    = 0,        0,        0, 

kvdif                    = 0,        0,        0, 
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non_hydrostatic          = .true.,   .true.,   .true., 

moist_adv_opt            = 1,        1,        1, 

scalar_adv_opt           = 1,        1,        1, 

/ 

 

&bdy_control              

spec_bdy_width           = 5, 

spec_zone                = 1, 

relax_zone               = 4, 

specified                = .true.,  .false.,  .false., 

nested                   = .false.,   .true.,   .true., 

/ 

 

&grib2                    

/ 

 

&namelist_quilt           

nio_tasks_per_group      = 0, 

nio_groups               = 1, 

/ 

                                                                                                                                                       

 

 

 

 


