The value of personalised consumer product design facilitated through additive manufacturing technology

2018-08-21T09:10:49Z (GMT) by Syahibudil I. Abdul Kudus
This research attempted to discover how Additive Manufacturing (AM) can best be used to increase the value of personalised consumer products and how designers can be assisted in finding an effective way to facilitate value addition within personalisable product designs. AM has become an enabler for end-users to become directly involved in product personalisation through the manipulation of three-dimensional (3D) designs of the product using easy-to-use design toolkits. In this way, end-users are able to fabricate their own personalised designs using various types of AM systems. Personalisation activity can contribute to an increment in the value of a product because it delivers a closer fit to user preferences. The research began with a literature review that covered the areas of product personalisation, additive manufacturing, and consumer value in product design. The literature review revealed that the lack of methods and tools to enable designers to exploit AM has become a fundamental challenge in fully realising the advantages of the technology. Consequently, the question remained as to whether industrial designers are able to identify the design characteristics that can potentially add value to a product, particularly when the product is being personalised by end-users using AM-enabled design tools and systems. A new value taxonomy was developed to capture the relevant value attributes of personalised AM products. The value taxonomy comprised two first-level value types: product value and experiential value. It was further expanded into six second-level value components: functional value, personal-expressive value, sensory value, unique value, co-design value, and hedonic value. The research employed a survey to assess end-users value reflection on personalised features; measuring their willingness to pay (WTP) and their intention to purchase a product with personalised features. Thereafter, an experimental study was performed to measure end-users opinions on the value of 3D-printed personalised products based on the two value types: product value and experiential value. Based on the findings, a formal added value identification method was developed to act as a design aid tool to assist designers in preparing a personalisable product design that embodies value-adding personalisation features within the product. The design method was translated into a beta-test version paper-based design workbook known as the V+APP Design Method: Design Workbook. The design aid tool was validated by expert designers. In conclusion, this research has indicated that the added value identification method shows promise as a practical and effective method in aiding expert designers to identify the potential value-adding personalisation features within personalisable AM products, ensuring they are able to fully exploit the unique characteristics and value-adding design characteristics enabled by AM. Finally, the limitations of the research have been explained and recommendations made for future work in this area.