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Abstract

Medical thermography has proved to be useful in various medical

applications including the detection of breast cancer where it is able to

identify the local temperature increase caused by the high metabolic

activity of cancer cells. It has been shown to be particularly well

suited for picking up tumors in their early stages or tumors in dense

tissue and outperforms other modalities such as mammography for

these cases. In this paper we perform breast cancer analysis based

on thermography, using a series of statistical features extracted from

the thermograms quantifying the bilateral differences between left and

right breast areas, coupled with a fuzzy rule-based classification system

for diagnosis. Experimental results on a large dataset of nearly 150

cases confirm the efficacy of our approach that provides a classification

accuracy of about 80%.
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1 Introduction

Advances in camera technologies and reduced equipment costs have lead

to an increased interest in the application of thermography in the medical

field [11]. Thermal medical imaging (or medical infrared imaging) uses a

camera with sensitivities in the infrared to provide a picture of the temper-

ature distribution of the human body or parts thereof. It is a non-invasive,

non-contact, passive, radiation-free technique that can also be used in combi-

nation with anatomical investigations based on x-rays and three-dimensional

scanning techniques such as CT and MRI and often reveals problems when

the anatomy is otherwise normal. It is well known that the radiance from

human skin is an exponential function of the surface temperature which

in turn is influenced by the level of blood perfusion in the skin. Thermal

imaging is hence well suited to pick up changes in blood perfusion which

might occur due to inflammation, angiogenesis or other causes. Asymmet-

rical temperature distributions as well as the presence of hot and cold spots

are known to be strong indicators of an underlying dysfunction [17].

Breast cancer is the most commonly diagnosed form of cancer in women

accounting for about 30% of all cases [1]. Despite earlier, less encouraging

studies, which were based on low-capability and poorly calibrated equip-

ment, infrared imaging has been shown to be well suited for the task of de-

tecting breast cancer, in particular when the tumor is in its early stages or in

dense tissue [2, 6]. Early detection is important as it provides significantly

higher chances of survival [3] and in this respect infrared imaging outper-

forms the standard method of mammography which can detect tumors only
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once they exceed a certain size. On the other hand, tumors that are small

in size can be identified using thermography1 due to the high metabolic ac-

tivity of cancer cells which leads to an increase in local temperature that

can be picked up in the infrared.

In this paper we perform breast cancer analysis based on thermography,

using a series of statistical features extracted from the thermograms coupled

with a fuzzy rule-based classification system for diagnosis. The features stem

from a comparison of left and right breast areas and quantify the bilateral

differences encountered. Following this asymmetry analysis the features are

fed to a fuzzy classification system. This classifier is used to extract fuzzy

if-then rules based on a training set of known cases. Experimental results on

a set of nearly 150 cases show the proposed system to work well accurately

classifying about 80% of cases, a performance that is comparable to other

imaging modalities such as mammography.

The rest of the paper is organised as follows: The following section covers

the features we extract from the breast thermograms. Section 3 introduces

the fuzzy rule-based classifier we employ while Section 4 presents experi-

mental results obtained. Section 5 concludes the paper.

2 Breast thermogram feature analysis

Thermograms for breast cancer diagnosis are usually taken based on a frontal

view and/or some lateral views. In our work we restrict out attention to

frontal view images. As has been shown earlier, an effective approach to

automatically detect cancer cases is to study the symmetry between the

left and right breast [14]. In the case of cancer presence the tumor will re-

1according to [12] the average tumor size undetected by mammography is 1.66cm com-
pared to only 1.28cm by thermography
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cruit blood vessels resulting in hot spots and a change in vascular pattern,

and hence an asymmetry between the temperature distributions of the two

breast. On the other hand, symmetry typically identifies healthy subjects.

We therefore follow this approach and segment the areas corresponding to

the left and right breast from the thermograms. While some advances have

been made in trying to automatically segment breast regions from thermo-

grams [13] we found that they are not robust enough yet to account for

the variety of cases present in our dataset. In our work, the regions corre-

sponding to the left and right breast were therefore manually segmented by

a medical expert. Once segmented, we convert the breast regions to a polar

co-ordinates representation as it simplifies the calculation of several of the

features that we employ. A series of statistical features is then calculated

to provide indications of symmetry between the regions of interest (i.e. the

two breasts). In the following sections we describe the features we employ.

2.1 Basic statistical features

Clearly the simplest feature to describe a temperature distribution such

as those encountered in thermograms is to calculate its statistical mean.

As we are interested in symmetry features we calculate the mean for both

breasts and use the absolute value of the difference of the two. Similarly we

calculate the standard temperature deviation and use the absolute difference

as a feature. Furthermore we employ the absolute differences of the median

temperature and the 90-percentile as further descriptors.
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2.2 Moments

Image moments are defined as

mpq =
M−1∑

y=0

N−1∑

x=0

xpyqg(x, y) (1)

where x and y define the pixel location and N and M the image size. We

utilise moments m01 and m10 which essentially describe the centre of gravity

of the breast regions, as well as the distance (both in x and y direction) of

the centre of gravity from the geometrical centre of the breast. For all four

features we calculate the absolute differences of the values between left and

right breast.

2.3 Histogram features

Histograms record the frequencies of certain temperature ranges of the ther-

mograms. In our work we construct normalised histograms for both regions

of interest (i.e. left and right breast) and use the cross-correlation between

the two histograms as a features. From the difference histogram (i.e. the

difference between the two histograms) we compute the absolute value of its

maximum, the number of bins exceeding a certain threshold (empirically set

to 0.01 in our experiments), the number of zero crossings, energy and the

difference of the positive and negative parts of the histogram.

2.4 Cross co-occurrence matrix

Co-occurrence matrices have been widely used in texture recognition tasks [5]

and can be defined as

γ
(k)
Ti,Tj

(I) = PRp1∈ITi
,p2∈I [p2 ∈ ITj

, |p1 − p2| = k] (2)
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with

|p1 − p2| = max |x1 − x2|, |y1 − y2| (3)

where Ti and Tj denote two temperature values and (xk, yk) denote pixel

locations. In other words, given any temperature Ti in the thermogram, γ

gives the probability that a pixel at distance k away is of temperature Tj .

In order to arrive at an indication of asymmetry between the two sides we

adopted this concept and derived what we call a cross co-occurrence matrix

defined as

γ
(k)
Ti,Tj

(I(1), I(2)) = PRp1∈I(1)Ti
,p2∈I(2)[p2 ∈ I(2)Tj

, |p1 − p2| = k] (4)

i.e. temperature values from one breast are related to temperatures of the

second side.

From this matrix we can extract several features [5]. the ones we are

using are

Homogeneity G =
∑

k

∑

l

γk,l

1 + |k − l|
(5)

Energy E =
∑

k

∑

l

γ2
k,l (6)

Contrast C =
∑

k

∑

l

|k − l|γk,l (7)

and

Symmetry S = 1 −
∑

k

∑

l

|γk,l − γl,k| (8)

We further calculate the first four moments m1 to m4 of the matrix

mp =
∑

k

∑

l

(k − l)pγk,l (9)
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2.5 Mutual information

The mutual information MI between two distributions can be calculated

from the joint entropy H of the distributions and is defined as

MI = HL + HR + H (10)

with

HL = −
∑

k

PL(k) log2 pL(k) (11)

HR = −
∑

l

PR(l) log2 pR(l)

H =
∑

k

∑

l

PLR(k, l) log2 pL,R(k, l)

and

pLR(k, l) = xk,l/
∑

k,l

x(k, l) (12)

pL(k) =
∑

l

pLR(k, l)

pR(k) =
∑

k

pLR(k, l)

and is employed as a further descriptor.

2.6 Fourier analysis

As last feature descriptors we calculate the Fourier spectrum and use the

difference of absolute values of the ROI spectra. The features we adopt are

the difference maximum and the distance of this maximum from the centre.

7



2.7 Summary

To summarise we characterise each breast thermogram using the following

set of features: 4 basic statisical features, 4 moment features, 8 histogram

features, 8 cross co-occurrence features, mutual information and 2 Fourier

descriptors. We further apply a Laplacian filter to enhance the contrast

and calculate another subset of features (the 8 cross co-oocurance features

together with mutual information and the 2 Fourier descriptors) from the

resulting images. In total we hence end up with 38 descriptors per breast

thermogram which describe the asymmetry between the two sides. We nor-

malise each feature to the interval [0;1] to arrive at comparable units between

descriptors.

3 Fuzzy rule-based classification

While in the past fuzzy rule-based systems have been applied mainly to

control problems [16], more recently they have also been applied to pattern

classification problems. Various methods have been proposed for the au-

tomatic generation of fuzzy if-then rules from numerical data for pattern

classification [4, 8, 7] and have been shown to work well on a variety of

problem domains.

Pattern classification typically is a supervised process where, based on

set of training samples that have been manually classified by experts, a

classifier is derived that automatically assigns unseen data sample to the

pre-defined classes. Let us assume that our pattern classification problem is

an n-dimensional problem with C classes (in clinical diagnosis such as the

detection of breast cancer C is typically 2) and m given training patterns

xp = (xp1, xp2, . . . , xpn), p = 1, 2, . . . , m. Without loss of generality, we

8



assume each attribute of the given training patterns to be normalised into

the unit interval [0, 1]; that is, the pattern space is an n-dimensional unit

hypercube [0, 1]n. In this study we use fuzzy if-then rules of the following

type as a base of our fuzzy rule-based classification systems:

Rule Rj : If x1 is Aj1 and . . . and xn is Ajn

then Class Cj with CFj , j = 1, 2, . . . , N,
(13)

where Rj is the label of the j-th fuzzy if-then rule, Aj1, . . . , Ajn are an-

tecedent fuzzy sets on the unit interval [0, 1], Cj is the consequent class (i.e.

one of the C given classes), and CFj is the grade of certainty of the fuzzy

if-then rule Rj . As antecedent fuzzy sets we use triangular fuzzy sets as in

Figure 1 where we show a partition of the unit interval into a number of

fuzzy sets.

Our fuzzy rule-based classification system consists of N fuzzy if-then

rules each of which has a form as in Equation (13). There are two steps in

the generation of fuzzy if-then rules: specification of antecedent part and

determination of consequent class Cj and the grade of certainty CFj . The

antecedent part of fuzzy if-then rules is specified manually. Then the conse-

quent part (i.e. consequent class and the grade of certainty) is determined

from the given training patterns [10]. In [9] it is shown that the use of the

grade of certainty in fuzzy if-then rules allows us to generate comprehensible

fuzzy rule-based classification systems with high classification performance.

3.1 Fuzzy Rule Generation

Let us assume that m training patterns xp = (xp1, . . . , xpn), p = 1, . . . , m,

are given for an n-dimensional C-class pattern classification problem. The

consequent class Cj and the grade of certainty CFj of the if-then rule are
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determined in the following two steps:

1. Calculate βClass h(j) for Class h as

βClass h(j) =
∑

xp∈Class h

µj(xp), (14)

where

µj(xp) = µj1(xp1) · . . . · µjn(xpn), (15)

and µjn(·) is the membership function of the fuzzy set Ajn. In this

chapter we use triangular fuzzy sets as in Figure 1.

2. Find Class ĥ that has the maximum value of βClass h(j):

βClass ĥ
(j) = max

1≤k≤C
{βClass k(j)}. (16)

If two or more classes take the maximum value, the consequent class Cj

of the rule Rj can not be determined uniquely. In this case, specify Cj as

Cj = φ. If a single class ĥ takes the maximum value, let Cj be Class ĥ. The

grade of certainty CFj is determined as

CFj =
βClass ĥ

(j) − β̄
∑

h βClass h(j)
(17)

with

β̄ =

∑
h 6=ĥ

βClass h(j)

C − 1
. (18)

3.2 Fuzzy Reasoning

Using the rule generation procedure outlined above we can generate N fuzzy

if-then rules as in Equation (13). After both the consequent class Cj and

10



the grade of certainty CFj are determined for all N rules, a new pattern

x = (x1, . . . , xn) can be classified by the following procedure:

1. Calculate αClass h(x) for Class h, j = 1, . . . , C, as

αClass h(x) = max{µj(x) · CFj |Cj = h}, (19)

2. Find Class h′ that has the maximum value of αClass h(x):

αClass h′(x) = max
1≤k≤C

{αClass k(x)}. (20)

If two or more classes take the maximum value, then the classification of

x is rejected (i.e. x is left as an unclassifiable pattern), otherwise we assign

x to Class h′.

3.3 Rule reduction

It is generally know that any type of rule-based system suffers from the

course of dimensionality. That is, the number of generated rules exponen-

tially increases with the number of attributes involved. Our fuzzy rule-based

classifier is no exception, in particular considering the variety of features we

are using as input. For example, based on the selection of the 38 features

we employ, the classifier would generate 238 = 2.75 ∗ 1011 rules even if we

only partition each axis into two which is clearly prohibitive both in terms

of storage requirements and computational complexity. In our approach we

employ a genetic algorithm that evolves to select a fixed, small, number

of rules (100 in our experiments) without sacrificing classification perfor-

mance [7]. We also apply a cost term in the classification rules to be able to

put more emphasis on correctly identifying maligant cases [15].
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4 Experimental results

For our experiment we utilised a dataset of 146 thermograms (29 malignant

and 117 benign cases). It should be noted that this dataset is significantly

larger than those used in previous studies (e.g. [14]). For all thermograms

we calculate a feature vector of length 38 as outlined in Section 2. We then

train the fuzzy classifier explained in the previous section using this data

to obtain a classifier that is capable of distinguishing cancer patients from

healthy individuals.

As a first test we wish to examine how well the classifier is able to sep-

arate the two classes. We therefore train the classification system on all

available data (i.e. on all 146 cases) and then test it on all samples. That is,

for this experiment the training and test data are identical. We experiment

with different number of fuzzy partitions per attribute. Preliminary experi-

ments showed that fuzzy classifiers with less than 10 divisions per attribute

were not sufficiently complex to handle the data at hand [15]. On the other

hand, as explained above, finer partitioning of the attribute data results in

a wider search space and hence a computational expensive derivation of the

classifier. We therefore restrict our attention to classifiers with between 10

and 15 partitions per attribute.

Table 1 shows the results in terms of classification rate (i.e. the per-

centage of correctly classified patterns), sensitivity (i.e. the probability that

a case identified as malignant is indeed malignant) and specificity (i.e. the

probability that a case identified as benign is indeed benign). Looking at re-

sults we can see that classification performance lies roughly between 92 and

98% with the best performance, a sensitivity of about 93% coupled with a

specificity of about 98% being achieved with 15 partitions. We notice that

even though the classifiers are tested on the same data that was used for
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training we do not achieve perfect classification. This suggests that we have

indeed a challenging data set to deal with as the two classes cannot even be

separated by the non-linear division our fuzzy classifier is capable of.

While results on training data provides us with some basic indication

of the classification performance, only validation on unseen test data will

provide real insights into the generalisation capabilities of a classifier as

normally classification accuracy on such unseen patterns is lower than that

achieved in previously encountered training samples. We therefore perform

standard 10-fold cross-validation on the dataset where the patterns are split

into 10 disjoint sets and the classification performance of one such set based

on training the classifier with the remaining 90% of samples evaluated in

turn for all 10 combinations. Again, we explore classifiers with between 10

and 15 partition per attribute.

The results are listed in Table 2. From there we can see that - as ex-

pected - classification rates are lower than the ones we achieved on training

data, with the best results just below 80% providing both a sensitivity and

specificity of almost 80%. That there is a fairly significant drop in terms of

classification performance once again confirms the difficulty of the dataset.

However it should be noted that a correct classification rate of 80% is com-

parable to that achieved by other techniques for breast cancer diagnosis with

mammography typically providing about 80%, ultrasonography about 70%,

MRI systems about 75% and DOBI (optical systems) reaching about 80%

diagnostic accuracy [18]. We can therefore conclude that our presented ap-

proach is indeed useful as an aid for diagnosis of breast cancer and should

prove even more powerful when coupled with another modality such as mam-

mography. We want to stress that it is indeed as part of such A combination

that we see the primary use of thermography in breast cancer analysis rather

13



than conducting cancer diagnosis based solely on thermal imaging as some

other researchers suggest.

5 Conclusions

In this paper we presented a computational approach to the diagnosis of

breast cancer based on medical infrared imaging. Asymmetry analysis of

breast thermograms is performed using a variety of statistical features.

These features are then fed into a fuzzy if-then rule based classification

system which outputs a diagnostic prediction of the investigated patient.

Experimental results on a large dataset of thermograms confirm the effi-

cacy of the approach providing a classification accuracy of about 80% which

is comparable to the performance achieved by other techniques including

mammography.
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# fuzzy partitions classification rate [%] sensitivity [%] specificity [%]

10 91.78 82.76 94.02

11 92.47 82.76 96.58

12 92.47 86.21 95.73

13 97.26 93.10 98.30

14 94.52 89.66 95.73

15 97.95 93.10 99.15

Table 1: Results of breast cancer thermogram classification on training data.
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# fuzzy partitions classification rate [%] sensitivity [%] specificity [%]

10 78.05 74.14 79.02

11 76.57 72.41 77.60

12 77.33 75.52 77.78

13 78.05 77.42 78.21

14 79.53 79.86 79.49

15 77.43 76.00 77.78

Table 2: Results of breast cancer thermogram classification on test data
based on 10-fold cross validation.
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