Three-Dimensional Information Retrieval (3DIR): exploiting 3D geometry and model topology in information retrieval from BIM environments

In building modelling environments, more and more information is being crammed into 2D/3D building and product models. This is particularly true given the rise of Building Information Modelling (BIM, Eastman et al., 2011). The Three-Dimensional Information Retrieval (3DIR) project investigates information retrieval from these environments, where information or documents are linked to a 3D building model. In these situations, the 3D visualization or 3D geometry of the building can be exploited when formulating information retrieval queries, computing the relevance of information items to the query, or visualizing search results. Managing such building information repositories in this way would take advantage of human strengths in vision, spatial cognition and visual memory (Lansdale and Edmonds, 1992; Robertson et al., 1998). Information retrieval is associated with documents, and a critic might argue that documents are relics from the pre-BIM age that are no longer relevant in the era of BIM. However, the challenge of information retrieval is pertinent whether we are dealing with documents which are coarse grains of information or building object parameters/attributes as finer grains of information. Demian and Fruchter (2005) demonstrated that traditional retrieval computations can be applied with good results to 3D building models where textual or symbolic data are treated as very short documents. In this sense, it is almost a question of semantics whether the information being retrieved comes from object properties embedded in the BIM, or from external documents linked to the BIM. The challenge remains of retrieving non-geometric or textual information. This paper describes the findings of the 3DIR project whose aim was to improve information retrieval when retrieving information or documents linked to a 3D artefact, or non-geometric information embedded in the model of the artefact. The central objective was to develop an information retrieval toolset for documents/information linked to 3D building models which exploits 3D geometry and model visualisation. Such a toolset is essentially a search engine for retrieving information with a BIM platform. As a further objective, the toolset should leverage topological relationships in the 3D model to enhance information retrieval.