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To my parents




"The destiny of man 1lies in his unremitiing efforts to

constantly strive for improvement.™

~ Confucius (Book of Changes)




SYNOPSIS

The promise of digital hardware economies (due to recent advances in
VLSI technology), has focussed much attention on more complex and soph~
isticated speech coding algorithms which offer improved quality at re-

latively low bit rates.

This thesis describes the results (obtained from computer simulatioms)
of research into various efficient (time and frequency domain) speech

encoders operating at a transmission bit rate of 16 Kbps.

In the time domain, Adaptive Differential Pulse Code Modulation (ADPCM)
systems employing both forward and backward adaptive prediction were
examined, A number of algorithms were proposed and evaluated, including
several variants of the Stochastic Approximation Predictor (SAP). A
Backward Block Adaptive (BBA) predictor was also developed and found to
outperform the conventional stochastic methods, even though its complex—
ity in terms of signal processing requirements is lower, A simplified
Adaptive Predictive Coder (APC) employing a single tap pitch predictor
considered next provided a slight improvement in performance over ADPCM,

but with rather greater complexity.

The ultimate test of any speech coding system is the perceptual perform-
ance of the received speech, Recent research has indicated that this
may be enhanced by suitable contrel of the noise spectrum according to
the theory of auditory masking. Various noise shaping ADPCM
configurations were examined, and it was demonstrated that a proposed

pre—/post-filtering arrangement which exploits advantageously the

predictor—quantizer interaction, leads to  the  best subjective




performance in both forward and backward prediction systems,

Adaptive quantization is instrumental to the performance of ADPCM sys—
tems, Both the forward adaptive quantizer (AQF) and the backward one-
word memory adaptation (AQJ) were examined., In addition, a novel method
of decreasing quantization noise in ADPCM-AQJ coders, which involves the
application of correction to the decoded speech samples, provided
reduced output noise across the spectrum, with considerable high fre-

quency noise suppression,

More powerful (and inevitably more complex) frequency domain speech
coders such as the Adaptive Transform Coder (ATC) and the Sub-band Coder
(SBC) offer good quality speech at 16 Kbps. To reduce complexity and
coding delay, whilst retaining the advantage of sub-band coding, a novel
transform based split-band coder (TSBC) was developed and found to com-—

pare closely in performance with the SBC.

To prevent the heavy side information requirement associated with a
large number of bands in split-band coding schemes from impairing coding
accuracy, without forgoing the efficiency proﬁided by adaptive bit
allocation, a2 method employing AQJs to code the sub-band signals to-
gether with vector quantization of the bit allocation patterns was also

proposed,

Finally, 'pipeiine' methods of bit allocation and step size estimation
(using the Fast Fourier Transform (FFT) on the input signal) were exa-
mined, Such methods, although less accurate, are nevertheless useful in
liniting coding delay associated with SBC schemes employing Quadrature

Mirror Filters (QMF).




(1)

ACKNOWLEDGMENTS

It is my pleasure to express my utmost gratitude to Dr, Costas Xydeas,
whom I am privileged to have as my supervisor, for his continuous
guidance and inspiration throughout the course of this research. His
extensive knowledge and experiemce in the field Of.digital speech coding
have been invaluable to the development of the work, while his unceasing

enthusiasm and optimism were a tremendous encouragement,

I am also grateful to British Telecom Research Laboratories  for
providing the necessary financial support for the project, In
particular, I would like to express my thanks to Mr, Chris Wheddon for
initialising the research contract, Mr. Fred Westall, Dr. Roger Hanes,
Mr, Adrian Farrell and others in R18.,3.1, for their interest in the
work and their helpful comments and suggestions. I am thankful too, for
the assistance rendered by RI18,3.1 im carrying out the informal
listening tests and obtaining the spectrograms for the work presented in

chapter four of the thesis,

My thanks are also due to Professors I,R. Smith and J.W,R, Griffiths,
present and former heads of the the Department of Electronic and
Electrical Engineering, for providing the necessary research facilities.
I am grateful too for the kind assistance in various matters of members
of academic staff of this department, as well as the technicians and the
ladies of the general office. The staff of the University”s Computer
Centre deserves special mention for their willingness and readiness to
help with problems in computing - they are certainly a credit to the

university. Mr. Graham Gerrard and Mr. Geoff Harris have been




(ii)
especially helpful beyond the call of duty.

My many colleagues in the lab and department have contributed to a
cheerful and - conducive environment for research, Apart from the
numerous enlightening (and entertaining!) debates (ovef coffee) on
subjects as diverse as politics and car maintenance, I have also
benefitted immensely from the many fruitful discussions on technical
matters and the mutual exchange of ideas, Dr. T.C. Kok, Mr, S§.N.
Koh and Mr., W.K. Cham have been particularly helpful in their advice

and assistance,

I am greatly indebted to wmy beloved parents who have given so
sacrificially for my education all these years while I have been away
from home, and who have taught me many of life”s important lessons. My
brothers and sisters too, have been unfailing in their expression of
affection and support. My youngest sister Emily, in particular, has
been a source of much joy and comfort. I wish to thank also my
brother—in-law, Mr. Yeo Siew Khim for his excellent Chinese
calligraphy, I am deeply grateful to Miss Karol Tong for her moral

support and her assistance in many little ways.

My long stay in Loughborough and England has been a pleasant and
memorable experience, due largely to the many good friends I have made
over the years. My deepest appreciation goes to these wonderful friends
of mine, too numerous to mention, for their constant love, concern,
support and encourageﬁent, as well as to those friends far away who have
continued to write faithfully to me despite the barriers of time and

distance, God bless you alll



(iii)

List of Symbols

LIST OF PRIRCIPAL SYMBOLS

x(n),xn : input speech sample
;(n),;n ! recovered speech sample
x(t) : input speech waveform
;(t) : recovered speech waveform

{x,},{x(n)} : sequence of x(n) samples

-]

kth predictor coefficient
P : order of predictor

predicted speech sample

M
~~
=]
~—

optimum (mmse) predictor coefficients vector

opt

R : autocorrelation matrix in LPC analysis
¢ total number of bits for SBC/ATC

C : autocorrelation vector in LPC analysis

y{n) : locally decoded DPCM sample

e(n) : prediction residual sample

q{n) : quantization noise sample

A : quantizer step-size

p(i),R(1) : ith autocorrelation coefficient

Elx] : expectation of x

<. > : average value

Cpem : gain of DPCM over PCM

w(n) : data window sample

P : covariance matrix

Ky : mth reflection coefficient

&, : mth log area coefficient

A(n) : predictor coefficients vector

K(n) : gain vector for Kalman predictor




¢

i

{iv) ‘ _ ‘
List of Symbols

Va(n) : symmetrical matrix used in Kalman prediction
v, : scalar constant
v, : symmetrical matrix of noise terms
I : identity matrix
£, : mth forward residual of lattice predictor
by, : mth backward residual of lattice predictor
Cn : mth partial sum (numerator) used in lattice prediction
D, : mth partial sum (denominator) used in lattice prediction
g : constant used in sequentiai predictors
€ : small quantity
N : blocksize of prediction
: blocksize of cosine transform
c(p) : p-shift autocorrelation function
M : piteh period
: no, of samples between BBA predictor update
Gl’Gz + optimising constants
B : number of quantizer bits
xc(n) ¢ compressed speech sample
v : maximum amplitude of PCM quantizer
plx) : probability of x
g : standard deviation
o : scaling constant
: noise shaping factor
: multiplier value
M(.) : time invariant multiplier function
c : gain constant
B : scaling constant

..

quantizer leakage factor




(v) , :
List of Symbols

£ : sampling frequency
fe : signal bandwidth
T : sampling period
: number of FIR filter taps
by, : kth coefficient of noise feedback filter
W(E) : weighting function in frequency domain
fi(n) : quantizer cor;ection factor |
ﬁ(n) : corrected decoded sample
b : number of bands in sub-band coder
hl(n) : high-pass QMF used in sub-band coder
h2(n) : low-pass QMF used in sub-band coder
Ry : number of bits allocated to ith frequency component
R : average bit rate
a(i) : correlation coefficient for ith sub-band
Gie : gain of transform coder over PCM
X, (k) : cosine transform components
Xh : input signal vector
X : cosine transform of Xn
By : cosine transform basis matrix
BN ! NxN square matrix
A : blocksize of parameter update
u(t) : vocal tract impulse response
e(t) ! excitation waveform
c(t) : cepstrum
H(S) : source entropy
S(n,k) : short~time signal spectrum
R(n,k) : short-time residual spectrum

X(w) : Fourier transform of x(n)




(vi)

CONTENTS

CHAPTER

1.1
1.2
1.3
1.4

1.5

CHAPTER

2.1
2.2,

2.3

2.4

1 INTRODUCTION

COMMUNICATION BY SPEECH
DIGITAL SPEECH COMMUNICATION
ORGANISATION OF THESIS
SUMMARY OF MAIN RESULTS
BACKGROUND INFORMATION

1.5.1 Input Data

1.5.2 Computer Facilities

1.5.3 Assessment of Performance

2 DIGITAL CODING OF SPEECH

INTRODUCTION

A REVIEW

TRANSMISSION BIT RATES IN SPEECH CODING

VOCODERS

2.3.1 Speech Production Model
2.3.2 Principles of Vocoders
2,3 .3 Channel Vocoder

2.3 .4 Formant Vocoder

2.3.5 Pattern Matching Vocoder

2,3.6 Homomorphic Vocoder

2.3.7 Linear Predictive Coding (LPC) Vocoder

WAVEFORM CODING

Page

16
11
12
12

13

17
19
22
22
23
25
26
26
27
28

30




(vii)

Contents (cont.)

2.4.1 Time Domain Methods 31
2.4.1.1 PCM 31
(a) Non-uniform Quantization 32
{b) Adaptive Quantization 33
(i) Forward Adaptation 34
(ii) Backward Adaptation 35
(c) Mid-rise and Mid-tread Quantizer
Characteristics 36
2.4,1,2 DPCM 37
2.4.1.3 ADPCM 38
(a) Adaptive Quantization 39
(b) Adaptive Prediction 40
2.4.1.4 Pitch Predictive Coder 43
2.4.1.5 Delta Modulation 45
(a) Linear Delta Modulation (LDM) 46
(b) Adaptive Delta Modulation (ADM) 50
2.4.1.6 Other Differential Coder Configurations 53
(a) Noise Feedback Coder (NFC) 53
(b) Direct Feedback Coder (DFC) 55
(c) Predictive Error Coder (PEC/D*PCM) 55
(d) DPCM with Filtering 56
2.4.1.7 Entropy Coding 57
2.4.1.8 Multipath Search Coding (MSC) 60
2.4.2 Frequency Domain Techniques 63
2.4.2.1 Sub-band Coding (SBC) ' 64
2.4,2,2 Adaptive Transform Coding (ATC) 66
2.4,2.,3 Phase Vocoder 68
2.4.2.4 Polar Plane Coding 68
2,5 HYBRID CODING TECHNIQUES 68
2.5.1 Voice-excited Vocoding Techniques 69

2.5.1.1 Residual-excited Linear Predictive
(RELP) Coder 70

2.5.1.2 Voice~excited Linear Predictive
{VELP) Coder 71

2.5.1.3 Spectral Flattening 72




(viii)

Contents (cont,)

2.5.1.4 Baseband Coding 75
2.5.2 Harmonic Scaling Techniques 76
2.5.3 Harmonic Coding 79
2.6 TRANSMISSION ISSUES 80
2.6,1 Channel Errors 81
(a) Subdued Quantizer Adaptation 81
(b) Subdued Prediction 82
(c) Explicit Transmission of Coder

Parameters [Error Protection 82
2.6.2 Tandem Coding 84
2.6.3 Delay 85
2.6.4 Encryption 86
2,6,5 Variable Rate Coding 87
2.7 HARDWARE ISSUES 90
2.7.1 Custom Chips and Devices 91
2.7.2 High Speed Microprocessors and Programmable ICs 91
2.8 PERFORMANCE INDICATORS 94
2,8.1 Objective Assessment 95
2.8.2 Subjective Assessment 97
(a) Intelligibilty 97
(b) Talker Recognition 98
(¢) Listener Acceptance 98
2.9 CONCLUSICR 101
2.9.1 Coder Complexity 101
2.9.2 Speech Quality and Transmission Bit Rate 102

CHAPTER 3 ADAPTIVE PREDICTION IN DIFFERENTIAL CODING SYSTEMS
3.1 INTRODUCTION 104

3.2 FIXED PREDICTION 105




(ix)

Contents (cont.)

3.3 ADAPTIVE PREDICTION 109
3.3.] Forward Block Adaptive Prediction 110
3.3,2 Backward Sequential Adaptive Prediction 115
3.4 PROPOSED BACKWARD ADAPTIVE PREDICTION ALGORITHMS 123
3.4,1 Sequential Adaptatiomn 123
3.4.1.1 Modified SAP (SAPM) 123
3.4.1.2 Adaptive Gain SAP (SAPA) 126
3.4.1.3 Computer Simulation Results 129
3.4.,2 Block Adaptation A 133
3.4,2.]1 Backward Block Adaptive(BBA) Predictor 134
3.4.2.2 Computer Simulation Results 135
3.4.3 Assessment of Prediction Algorithms 138
3.4.3.1 Performance 139
3.4.3.2 Complexity - 140
3.4.,3.3 Stability and Robustness 143
3.5 DISCUSSION AND CONCLUSION 144
3.6 PITCH ADAPTIVE CODING SCHEMES 146
3.6.1 Adaptive Predictive Coding (APC) 146
3.6.2 Pitch Extraction Methods 147
3.6.2.1 AMDF Pitch Detector 148
3.,6.2.2 Autocorrelation Method of Pitch
Detection 149
3.6.2.3 Other Pitch Extraction Techniques 150
| 3.7 PROPOSED PITCH ADAPTIVE DIFFERENTIAL CODER 150
3.7.1 System Description 151
3.7.2 Pitch Synchronisation | 152

3.7.3 Computer Simulation Results 155




(%)

3 ' Contents (cont.)

3.7.4 Discussion 159 7
3.8 CONCLUSION ‘ 161
CHAPTER 4 ADAPTIVE NOISE SPECTRAYL SHAPING IN ADPCM SYSTEMS
4.1 INTRODUCTION 163
4.2 NOISE SPECTRAL SHAPING 164
4.,2.1 Quantization Noise Feedback 165
4,2.2 Adaptive Pre-filtering 170
4.2.3 Discussion 171
4.3 FORWARD ADAPTIVE NOISE SHAPING 172
4.3.1 Computer Simulation Results 173
4,3.2 Discussion of Simulation Results 175
4.3.3 Fixed Pre-filtering 177
4.3.4 Conclusion 179
4,3.5 Note on Publication 180
4.4 BACKWARD ADAPTIVE NOISE SHAPING 180
4,4.1 Description of Backward Noise Shaping Coder 180

4,4,1,1 Scheme 1 (Quantization Noise Feedback) 181

4,4,1,2 Scheme 2 (Adaptive Pref-filtering) 182

4,4.2 Subjective Listening Test 184

4,4.3 Note on Publications 186

&.5 CONCLUSION 186
CHAPTER 5 ADAPTIVE QUANTIZATION

5.1 INTRODUCTION 189

5.2 ADAPTIVE QUANTIZATION TECHNIQUES 190




(xi)

Contents {cont,)

5.2.1 Forward Adaptive Quantization (AQF) 192

5.2.2 Backward Adaptive Quantization (AQB) 195

3.2.2.1 Jayant”s Adaptive Quantizer (AQJ) 196

5.2.2.2 Variance Estimating Quantizers (VEQ) 199

5.2.2.3 Pitch Compensating Quantizers (PCQ) 201

5.2.3 Discussion 204

5.3 QUANTIZER CORRECTION 204

5.3.1 Correction Technique 205

5.3.2 Computer Simulation Results 210

5.3.3 Note on Publication 211

5.4 SUMMARY AND CONCLUSION 211
CHAPTER 6 FREQUENCY DOMAIN SPEECH CODING

6.1 INTRODUCTION 215

6.2 SUB-BAND CODING (SBC) 216

6.2.]1 Partitioning of Frequency Bands | 217

6.2.1.1 Integer Band Sampling 218

6.2.1.2 Quadrature Mirror Filter (QMF) Bank 219

6.2.2 Coding of Sub-band Signals 222

6.2.2.1 Fixed Bit Allocation 222

6.2.2.2 Adaptive Bit Allocation 223

6.2.3 Computer Simulation 225

6.2.3.1 General Procedure 225

6.2,3.2 Bit Allocation 227

6.2.3.3 Quantization 230

6.2.3.4 Subjective Quality 231

6.3 - ADAPTIVE TRANSFORM CODING (ATC) 232




6.5

6.6

6.7

CHAPTER

7.1

7.2

7.3

(xii)

6.3.]1 The Block Transformation
6.3.2 Quantization of the Transform Coefficients
6.3.3 Noise Shaping
6.3.4 Adaptation Strategy
6.3.4,1 Zelinski and Noll”s Scheme
6.3.4.2 Vocoder Driven ATC
6.3.5 Computer Simulation
DISCUSSION
A TRANSFORM APPRbACH TO SPLIT-BAND CODIRG
6.5.1 System Description
6.5.2 Computer Simulation Results
6.5.3 Discussion
6.5.3.1 Delay
6.5.3.2 Complexity
6.5.4 Note on Publications

FURTHER CONSIDERATION ON BIT ALLOCATION AND
QUANTIZATION

6.6.1 Forward and Backward Adaptation Variations
6.6.2 Parallel Bit Allocation
6.6.,3 Computer Simulation

SUMMARY AND CONCLUSION

7 RECAPITULATION AND CONCLUSION

RECAPITULATION

SUGGESTIONS FOR FURTHER RESEARCH

CLOSING REMARKS

Contents (cont,)

233
234
235
236
236
238
239
241
243
244
248
251
251
252

254

254
255
258
259

263

267
275

279



(xiii)

Contents (cont,)
APPENDICES
A Durbin”s Recursive Solution for the Autocorrelation Equation 28l
B Derivation of Update Equation for the Modified SAP Algorithm 282
C Computational Requirements of Adaptive Prediction Algorithms 284

D Computation of Autocorrelation Function for Backward Block
Adaptive Predictor 292

E Proof of Constraint on Quantization Noise Spectrum 253

F Aliasing Cancellation Property of Quadrature Mirror Filter
Bank 296

G Computational Requirements of the Tree-structured Quadrature
Mirror Filter Bank Sub-band Coder 299

H Computational Requirements of the Transform-based Split-band
Coder 300

REFERENCES | 302




Chapter 1 Page 1

L

CHAPTER OKRE INTRODUCTIOR

1.1 COMMUNICATION BY SPEECH

Communication is essentially a social affair. Man has evolved a host of
different systems which render his social life possible - social life
not in the sense of living in packs for hunting or for making war, but
in a sense unknown to the lower animals{l}. Most prominent among all
these systems of communication is of course human speech and language.
Indeed, man is unique among all life forms in this world, in his ability
to acquire and use speech. Human language is not to be equated with the
sign systems of animals, for man is not restricted merely to calling his
young, or suggesting mating, or shouting cries of danger; he can with
his remarkable facilities of speech give utterance to almost any
thought, Like animals, we too havé our inborm instinctive cries of
alarm, pain, etc,; we say “oh” or “ah”; we have smiles, groans and
tears; we blush, shiver, yawn and frown, but such reflexes d¢ not form
part of the true human language. A hen can set her chicks scurrying wup
to her by clucking - communication established by a release mechanism -
but human language 1s vastly more than a complicated system of

“clucking”.

Because man lives in an air atmosphere, it is not surprising that he
learned to communicate by producing longitudinal vibrations (acoustic
waves) in the air medium[2,3]. At the acoustic level, speech consists
of rapid and deterministic fluctuations in air pressure, These sound

pressures are generated and radiated by man”s vocal apparatus, they are
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detected by his ear and apprehended by his brain,

The specialised code of speech did not develope overnight. Passage of
untold time probably witnessed the gradual evolution of human speech
from the grunts and barks of man”s fellow creatures to the level of
sophistication we know today., The earliest forms of communication were
probably mainly tactile and visual[4]. At least one speculation holds
that man“s first means of communication were probably hand signals -
speech perhaps evolved when man discovered he could supplement his hand
signals by audible and distinctive gestures of his vocal tract, As Sir
Richard Paget puts it, "It was the continual wuse of man“s hands for
craftsmanship, the chase, and the beginnings of art and agriculture that
drove him to find other methods of expressing his ideas -~ namely, by a

specialised pantomime of tongue and lips."[5]

Speech and writing are by no means our only systems of communication.
Social intercourse is greatly strengthened by habits of gesture - little
movements of the hands and face, or the so-called “body language”., With
nods, smiles, frowns, handshakes, Kkisses, fist shakes and other
gestures, we can couvey fhe most subtle understanding[6]. However, life
in the modern world is coming to depend more and more upon “technical”
means of communication - telephone and telegraph, radio and printing.
Without such technical aids, the modern city-~state could not exist one
week, for it 1is only by means of them that trade and business can
proceed, transport systems run on schedule, that law and order are
maintained and education is possible, Communicatiom renders true social
life practicable, for communication means organisation, Communication

engineers have altered the size and shape of the world[l].
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From time immemorial, man has sought to communicate over distances by
various means - by the beat of drums, by beacons on hill-tops, by
carrier pigeons and by coded flag signals. For example, long and short
smoke signals were used by the Red Indians, high and low pitch drums by
African tribesmen{4]. History records that in the sixth century B.C.,
Cyrus the Great of Persia is supposed to have established lines of
signal towers on high hill-tops, radiating in several directions from
his capital. On these vantage points, he stationed “leather lunged” men
who shouted messages along, one to another, Similar 'yoice towers” were
reportedly used by Julius Caesar in Gaul[2], as well as by the ancient

Chinese, who used such “voice transmission systems” to herald the

arrival of the emperor.

Despite the desires and motivations to accomplish communication at long
distances, it was not until man learned to generate, control and convey
electrical current that ﬁelephbny could be brought into the realm of
reality, In 1876, the invention of the telephone by Bell[7] made
conversations at a distance far beyond the range of the human voice
possible for the first time., Its wuse spread rapidly, and over the
years, the laying of telephone cables across the continents and along
ocean floors has enabled conversations to be carried out between almost

any two parts of the earth,

Basically, the telephone converts an acoustical signal by means of
transducers into an electrical signal which can be transmitted over long
distances along wires at a very high speed (the speed of light). At the
destination {or receiver), this electrical signal is re-converted back
to acoustical energy to yield a close replica of the original waveform,

The communication engineer is primarily concerned with efficient
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communication i.e. the transmitting of messages (or information)
between two points over a chamnel as quickly as possible and with
minimum error {8]. Numerous communication systems have evolved over the
years since the advent of telephony, each new development usually being

an attempt to improve on the efficiency of its predecessor.

Until recently, most communication systems have been concerned with the
transmission of continuous or analogue signals which can take on an
infinite number of wvariations, In contrast, one can conceive of a
system which involves the tranmsmission of one of a finite number of
waveform elements or messages. A simple example of this is observed in
the transmission of an English text using the Morse code, Here, the
problem of transmission is reduced to one of tramsmitting a sequence of
messages, each of which is selected from a specified and finite set,

This type of communication is termed “digital communication”[8].

1.2 DIGITAL SPEECH COMMUNICATION

Digital communication systems therefore involve the transmission and
detection of one of a finite set of known waveforms (or digital data),
as opposed to analogue systems, where an infinitely large number of
messages exist and the corresponding waveforms are wunot at all known,
Pulse code modulation (PCM[9]) is an example of a digital communication
technique used to transmit continuous data. The transformation from
analogue to digital data is made possible by the process of quantization
which essentially approximates the continuous signals so that they
assume only qertain discrete amplitudes. This is the process of
digitising the data, which can now be transmitted by a finite number of

symbols {or levels), Digital methods of speech coding have been



Chapter 1 Page 5
proposed more than three decades ago, but only attracted serious
attention and interest during the era of the transistor., However, this
interest has since intemsified and accelerated virtually without bounds,
fueled by the advances in transistor technology, switching circuits, the
advent of the microprocessor and important breakthroughs in device
technology — VLSI (very large scale integration) and CCDs (charged
coupled devices). Presently, digital techniques are entering
telecommunication networks very quickly[l0] - massive investments have
been made in digital transmission systems around the world in recent
years. It .is envisaged that by the turn of the century, if not sooner,
most existing telecommunication networks would have gone  fully

“digital”.

The reasons for this overwhelming interest in digital speech

communication are numerous, A few of the more commoﬁly advanced

advantages associated with digitising speech ‘(and other types of
information) will be briefly considered[11].

(1) Digital encoding is able to provide for the transmission of informa-
tion over long distances and varying network topology with minimal
degradation to speech quality,since digital signals can be accurate-
ly regenerated by repeaters placed along the transmissiom path,

(2) Time division multiplexing (TDM) can be applied very simply and
cheaply to telephone transmission lines and switching devices, using
economic digital circuitry, thereby increasing channel capacity. In
contrast, frequency division multiplexing (FDM) techniques employed
in analogue transmission systems are considerably more expensive,
requiring the use of complex filters,

(3) Different types of signals can be encoded to a uniform digital for-



(4)

(5)

(6)
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mat and transmitted over the same communication system, Thus a digi-
tal system can handle a variety of signals, such as video, facsimile
data, computer data, news despatches, etc.

Digital speech and other data are in a convenient form for process-

—

ing using digital computers. Thus complex signal processing can be
easily applied, Also, the ease of encryption of digital data makes
it especially suitable for military communications where secrecy is
essential,

The lower power requirement of digital, compared to analogue trans-
mission provides higher reliability and thus better suitability for
satellite and computer—controlled communication. Moreover, high re-
dundancy can be introduced into the transmitted codes to improve de-
tection accuracy in noisy channels,

The rapid advance of device technology in terms of digital hardware
and VLSI has led to immense economies in the realisation of digital
circuits, In digital speech applications, numerous dedicated chips
and chip sets have been developed., Also, voice communication with
computers is a possibility made available by digital techniques,
Speech synthesis has generated considerable interest with the intro-
duction of the Texas Instrument”s “speak-and-spell” synthesiser
chip,which carries important implications in the realm of education.
Speech recognition is also a rapidly expanding field - effective
computer recognition of digitised speech commands could enable users
to interact with the computer easily via speech digitisation termi-
nals. This could have far-reaching consequences in terms of the ass~
imilation of computers and robots into the everyday routine of man

in the future.
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It is not surprising therefore, that a tremendous amount of investment
and research has gone into the area of digital speech coding. Indeed,
the term “digital” has itself become something of a  fashionable
'catch?word' in the seventies, and will doubtless be even more so, in

the eighties,

In the field of digital speech coding and transmission, as in any field,
one is concerned with efficiency, Specificaily; an efficient speech
digitiser should possess good data compression capability (so that
transmission bandwidth is,reduced without leading to degradation in the
quality of the digitised speech) and low implementation cost.
Obviously, these two requirements are often diametrically opposed to one
another and frequently some sort of compromise has to be sought, An
abundance of methods towards achieving this dual requirement has emerged
over the relatively brief history of digital speech coding[l12,13].
Traditional techniques have sought to preserve the signal waveform,
Such “waveform encoders” c¢an be designed in the time as well as the
frequency domain, and provides good quality speech at relatively high
transmission bit rates. A different approach seeks to transmit a
parametric represemntation of the speech signal,  Dbased. on  some
appropriate model of speech production, im an attempt to obtaip very
high transmission bandwidth economies. The synthesised speech which
derives from such crude representations are often of vastly inferior
quality, although intelligibility can be quite high. Another <class of
coders, the so-called “hybrid coders” covers the “middle ground” between

these two methods, seeking to combine the advantages of both,

The work to be described in this thesis is concerned with “waveform

encoding” at a transmission bit rate of about 16 Kbps. Various
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techniques in both time and frequency domain were investigated, These
include differential and predictive coding, noise spectral shaping and
adaptive quantization (in the time domain), and sub-band coding and
adaptive transform coding (in the frequency domain), In each area,
attention is focussed on new methods or modifications to existing
methods which can lead to an improvement in performance in terms of

quality enhancement, bit rate reduction or coder simplification,

1,3 ORGANISATION OF THESIS
The contents of the thesis will now be outlined,

Following this section, the main results obtained during the course of
the research will be highlighted, The experimental procedure, which
involves mostly computer simulation is then briefly described in the
next section, Details of the input speech data used, the methods of
assessment employed, the equipment required and the structure of

computer programs are presented.

Chapter two provides a survey of the field of digital speech coding,
covering the main areas of current interest, This is intended tc be
non-technical as much as possible to enable the non-specialised reader
to be acquainted with existing speech digitisation techniques, The
three broad areas of speech coding are included, namely,
analysis-synthesis vocoder systems, waveform coding (in the time and
frequency domain) and hybrid coding methods. Various other related
issues which have developed alongside the mainstream of speech coding
are also considered. The problems of transmission over noisy channels,

the effects of delays in the system, the use of variable rate coding are
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all important factors to be considered in the design of a communication
system or network. Implementation in hardware ig also fast becoming an
important area of development and follow-up to research, especially with
the apparently unceasing advance in device technology. The abundance of
systems with varying claims of good performance in the research arena
has led to efforts to introduce a more realistic and uniform means of
performance assessment, In the context of speech coding, the ultimate
measure is the perceptual quality of the output speech, A variety of
subjective tests have been designed for this purpose and some of these
are discussed, The chapter concludes with an overview of the entire
area of speech coding, with projections about future trends and

directions of research,

In chapters three through six, the research work conducted ig presented,
Chapter three considers the subject of adaptive predicﬁion in
differential coding systems (ADPCM and APC) with particular emphasis on
backward modes of predictor adaptation. Chapter four extends the work
on ADPCM further by incorporating the additional feature of noise
shaping into the coder, Adaptive quantization, probably the central
element in digital <coding systems is covered in chapter five. Chapter
six is concerned with frequency domain techniques of speech coding and
the principles and performance of sub-band coding and adaptive transform

coding schemes are examined in detail.

The final chapter, chapter seven provides a recapitulation of the work
described and the new ideas proposed. Suggestions are made for further
research along the directions already investigated and a final
conclusion is made. The appendices, which consist mainly of

mathematical derivations precede an exhaustive list of references,
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1.4 SUMMARY OF MAIN RESULTS

The main findings during the course of the research are cutlined in the

foilowing:

Chapter three examines various forms of backward predictor adaptation in
the context of ADPCM (adaptive differential pulse code modulatipn)
coding. Several modifications were made to the conventional sequential
gradient predictor algorithm in an attempt to improve its efficiency of
adaptation during signal transitions. Although some evidence of a
quicker transitional response was observed, overall performance did not
indicate any significant SNR gain. A backward block adaptive (BBA)
predictor was next proposed and evaluated, This was found to provide
better prediction efficiency with lower complexity. An attempt was also
made to veduce the complexity of the adaptive predictive coder (APC) to
an 'implementable' level. Unfortunately, the heavy dependance of the
coder on accurate pitch detection presented some difficulties in the

simplification process.

In chapter four, the concept of noise spectral shaping was examined in
relation to both forward and backward adaptive ADPCM systems employing
2-bit quantization, It was found, in the forward adaptive cases, that a
simple fixed pre-/post-filtering method of implementing noise shaping is
adequate for coarse quantization applications, providing equivalent
quality to that obtained with the more complicated noise-feedback coder.
Two backward adaptive noise shaping coders employing the BBA predictor
were also proposed and studied, These were found to provide significant
improvement over the decoded speech quality of conventional ADPCM, One

of them, using a backward pre-filtering method of noise shaping was able
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to yield a speech quality at 16 Kbps comparable to that obtained from

7-bit log PCM.

In chapter five, a new method was proposed to reduce quantization noise
in ADPCM systems by applying correction to the decoded signals at the
receiver, This led to an improvement 1in SNR as well as subjective

quality.

Chapter six examines the performance of two frequency domain coders,
namely the sub-band coder (SBC) and the adaptive transform coder (ATC).
In an effort to reduce the delay and complexity associated with these
two powerful techmiques without losing their advantages, a new
“transform-based” approach to split-band c¢oding was proposed, This
method provides comparable performance to the SBC but with substantially
reduced coder complexity and delay. Further efforts to reduce the delay
and complexity of split-band schemes were next investigated, The use of
a simple form of vector quantization technique to transmit the
adaptation information for split-band schemes results in a sizeable
reduction in side infofmation for coders with a large number of bands.
Finally, a proposed parallel method of bit allocation has been able to
reduce the overall coding delay of the sub-band coder, but this resulted

in some degradation in the speech quality,

1.5 BACKGROUND INFORMATION

Some background information is presented in this section. This includes
details of the input speech data used,the methods of assessment employed
for the systems tested and other relevant irnformation pertaining to the

research work,
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1.5,1 Input Data

The input speech material consists of three separate data files, which

will be referred to throughout the thesis as MALE, FEMALE and SISTER,

(1) MALE - This contains the utterance,
"There was an old man called Michael Finnegan,
He grew whiskers on his chinagen,"
spoken by a male speaker.
(2) FEMALE - This contains the same two sentences, spoken by a high-

pitched female speaker.

(3) SISTER ~ This consists of a collection of isolated words spoken by a
male speaker and selected for their high fricative or unvoiced
content, The words are,

"sister, father, §S. K. Harvey, shift, thick, £fist, talk, spent,

vote."

All three speech files are band-limited from 0 to 3400 Hz and sampled at
8000 samples per second. MALE and FEMALE are each of approximately five
seconds” duration and SISTER is a little more than six seconds
(including pauses). These were all obtained from analogue speech using

a twelve-bit analogue to digital (A/D) converter,

1.5.2 Computer Facilities

All the results presented have been obtained via simulation on the
interactive PRIME 400 mini-computerfl4~16] of the Loughborough
University”s Computer Centre. The programs are all written in the

FORTRAN66 language, with graphic facilities provided by the GINO
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software routines[17,18],.

Emphasis is placed on structured programming - to provide clarity of
organisation, ease of debugging and portability, Liberal use is made of
subroutines and function segments that form the basic building blocks
from which an entire system is comstructed, Thus the main routine of a
system need only consist of some necessary inputfoutput facilities and a

series of subroutine calls,

1,5.3 Assessment of Performance

In order to obtain a reliable assessment of the performance of the
various coders simulated, a number of performance criteria (both

subjective and objective) are used., These are:-
(1) Total SNR (TSNR) and average segmental SNR (SSNR)

The SNR is possibly the quickest means of determining how well a coder
performs in terms of waveform preservation[12,19,20). Total SNR is

given by,

nz %% {n)

TSNR = 10 log, —Z [A( - )12
n Xin)—xXin

(dB) (1.1}

where x(n) and ;(n) denote the nth input and decoded speech sample,
fespectively, and the summations are over the duration of the speech
file used, However, in the results presented in the thesis, all SNR
values quoted were obtained from a summation over about two seconds of
speech (60 blocks of 256 samples). This was found to be statistically

adequate and indeed, SNR results obtained for the entire utterance of
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five seconds are often very similar,

The average segmental SNR is given by,

K

SSNR = 1/K ) SNR(})

=1 (1.2)
where SNR(3j) is the SNR of the jth block and K = 60, In the computation
of the segmental SNR, blocks containing silence are not included in the
averaging process 8o as not to affect the accuracy of the measure,
Nevertheless, it 1is widely recognised that SNR values can be extremely
deceptive on occassions as an indicator of output speech quality and

thus, this measure must be supplemented by other methods of assessment

[12,19].
(2) Spectral plots of the long-term average output noise

This provides a means of observing the distribution of noise energy
across the frequency spectrum and can be a useful indicator of the
gpbjective quality of the output speech., The average level of the
spectrum indicates the quantity of the noise energy present in the
received speech while its shape can provide useful information about the
nature of the subjective distortion., For example, a concentration of
noise in the low frequency region could indicate “roughness” or “rumble”
while the same Jlevel at the high part of the spectrum will probably be
apparent as a background “hiss”, This measure is particularly relevant
for coders which seek to manipulate the shape of the output noise
spectrum to exploit masking properties which can be effective in

reducing the perception of noise.

The output noise signal 1s obtained as the difference between the input

and the received speech waveforms, In deriving the spectral
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-characteristics, 60 blocks of this noise signal are used, Frequency
analysis is provided by a 256-point FFT (available on the NAG computer
software library[2]1]) on Hamming windowed samples of the noise signal,
using an overlap of 50%. The logarithm (to base 10) of the Fourier
magnitude components are taken for each block and averaged. The final
noise spectrum consists of these averaged components, Because of the
limited number of blocks used {60), the averaged noise spectrum produced
tends to be characterised by jagged edges, Consequently, a simple
moving average smoothing process (over 3 adjacent components} is carried
out to round off these sharp edges, without altering the general shape

of the spectrum tco greatly,
(3) Informal subjective listening tests

The ultimate +test of any speech coder is the subjective quality of the
output speech produced, Coder assessment is therefore not complete
until some listening tests have been carried out. Exhaustive and long
drawn out formal listening tests are extremely expensive in terms of
both time and effort and are certainly not a necessity at this research

stage, Informal listening comparisons are often quite adequate.

To perform the listening test, the digital speech output produced by
each coder has to be converted to analogue form and recorded on tapes or
cassettes, This process involves the following stages:

(i) The output speech written on disk memory on the computer is trans-—
ferred onto magnetic tapes, using the MAGNET software package[l4]
available on the PRIME system.

(ii) This data is next reformatted by the Hewlett Packard HP7970E mag-

netic tape unit and computer[22] to a form compatible with real-
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time output,

(iii) The reformatted data is then ready to be transferred onto record-
ing tapes or cassettes via a twelve-bit D/A converter, An analogue
low-pass filter is uéed during the transfer to remove out-of-band
noise in the output speech,

For the purposes of listening tests, data files are processed in their

entirety, For each coding system or variation, at least two files are

used (usually the MALE and FEMALE data), giving a total of 4 sentences
on which assessment may be performed. Where relevant, comparisons are
also made with the quality of speech produced by well-known systems such
as log PCM, For 16 Kbps coding, 6 and 7 bit log PCM are probably of the
most interest, These listening tests are carried out using both

headphones and loudspeakers,

Sound spectrograms were also produced on one occassion {chapter 4) with
kind assistance from British Telecom Research Labs, However, these are
necessarily restricted owing to the difficulties involved in gaining

access to the equipment,
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CHAPTER TWO DIGITAL CODING OF SPEECH - A REVIEW

2,1 INTRODUCTION

The underlying goal of any speech coding system is to transmit speech,
with the highest possible quality, using the least channel capacity and
at the lowest cost. Obviously, these are all mutually éonflicting aims
since, for a given coding scheme, quality is generally proportional to
channel capacity and complexity (which is invariably correlated with
cost), In most situationg, therefore, the need inevitably arises for
obtaining a compromise solution, which is optimum for the particular

environment and application,

Current speech coding techniques have come a long way since the days of
direct quantization of digitized speech using pulse code modulation
(pcM){9]. Most present day algorithms seek to exploit, with varying
degrees of complexity, the intrinsic characteristics of speech signals
in order to achieve better signal compression and hence  higher
efficiency, Studies of complex (and potentially efficient) speeéh
coding algorithms have often been deterred by the spectre of high costs,
although this situation ié gradually changing as a result of recent
rapid advances in VLSI (very large scale integration) technology. At
the present time, digital speech coders of moderate complexity are
already implementable on a single chip, and thus, with further advances
in digital technology imminent, research into efficient high-complexity

algorithms are considered with rather more than mere academic interest.
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The complete design of any transmission system involves the optimal
selection of a number of factors, such as signal quality, transmission
bit rate, coding delay, complexity and cost. The choice of a particular
system would obviously be very much dependant wupon the transmission
environment (for  example, terrestial wire, glass fibre, radio,
satellite). Related issues such as the effects and types of
transmission errors, multiple (tandem) coding, etc,, would also

influence coder design,

Digital speech coding techniques may be broadly classified into three
main areas, according to the principles employed in their design{12,13].
The first of these is the c¢lass of wﬁveform coding methods. These
essentially strive for facsimile reproduction of the signal waveform and
hence could be used for coding non-speech signals equally well. More
efficient speech-specific techniques however, seek to exploit properties
of the speech waveform to achieve better signal compression., Waveform
coders are generally fairly robust for a wide range of talker

environment and are normally of low and moderate complexity.

A second class of speech coders derives from modelling the speech
production source., Such source coders, known as vocoders (VOice CODERS)
attempt to provide a parsimonious description of speech (using a given
model of the speech production mechanism), which could be parameterized
and transmitted with minimal charnel capacity. Consequently, vocoders
are able to achieve high economies in transmission bandwidth, However,
the somewhat simplistic model of speech generation employed imposes a
severe limit to the quality of the speech produced by these means, Vo~
coder speech tends to sound “synthetic” and “machine~like” =— talker

recognition is difficult, although high intelligibility is possible,
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The “middle ground” between waveform coders and vocoders is an area
receiving increasing recognition as a viable alternmative for producing
reasonable quality speech at low bit rates. Such hybrid methods offer
the attraction of combining some advantages of both waveform coders and

source coders,

2.2  TRANSMISSION BIT RATES IN SPEECH CODING

The key dissue in transmission systems 1is perhaps the efficient
utilisation of channel capacity. Transmission bit rate is thus a major
consideration im the design of speech c¢oders, VFigure 2.1 shows a
spectrum of speech coding transmission rates currently of interest, and
the quality of speech reproduction obtainable at a prescribed bit rate,
The quality of reproduced speech is broadly denoted in descending order

as, commentary, toll, communications and synthetic,

200 64 32 16 9.6 7.2 4.8 0.05
L 1 L L 1 S — J
Commentary Toll Communications Synthetic

(Broadcast)

Fig. 2.1 Speech Coding Tramsmission Bit Rates (Kbps) and Associated
Quality

Commentary, or broadcast quality speech is, as its name implies, high

quality speech which is suitable for some forms of broadcast material,

Its bandwidth is typically from O to 7 kHz (wide-band speech) which is

much wider than normal narrow-band telephome (300 - 3400 Hz). Toll

quality is used loosely to denote a quality of narrow-band speech which

is without perceptible distortion, Presently, this is achievable at bit
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rates of 16 Kbps and above. The next grade, communications quality,
represents a speech quality which possesses noticeable degradation with
perhaps lessened talker recognitiom, although intelligibilty is still
high, This 1is the quality associated with waveform or hybrid coders
operating in the range of 9.6 to 7.2 Kbps., Finally, at the very low bit
rate range ( < 4.8 Kbps), source coders are able to provide intelligible
synthetic quality speech with significant loss of “naturalness” and

substantially degraded talker recognition,

The complexity of speech coders tends to be a function of the
transmission bit rate, At the upper end of the scale ( > 32 Kbps),
r;I;tE;ely simple waveform coding techniques are adequate to provide an
accurate representation of the signal., As available bits are reduced,
more sophisticated implementations become increasingly necessary to
retain the same speech quality. Figure 2,2 illustrates the present
“state of art” in the field of speech coding, in terms of speech quality
as a function of bit rate{l2]., The vertical axis represents a
hypothetical quality rating, ranging from a value of 1 (which denotes a
quality essentially indistinguishable £from the original) to 0 (which
denotes extremely poor and umintelligible speech)., It is important to

realise however, that in reality, subjective quality is a much more

complex attribute than is implied by this simple scale.

It can be seen that, as the bit rate decreases from 64 Kbps, first the
static, and then the dynamic characteristics of speech signals are
exploited to improve coding efficiency. Indeed, as the bit rate is
reduced even more, the quasi-periodic nature of speech signals (due to
the pitch structure) is also used to effect further signal compression.

In addition, advantage may be taken of the perceptual characteristics of
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the human ear. It is known that the perception of noise 1in a given
frequency band may be diminished in the presence of high enmergy speech
components in the same band. This phenomenon of “auditory masking” is
the principle behind coders employing “noise shaping” methods to control
the distribution of the noise spectrum in the decoded speech, to provide
'a more palatable output, The broken line in figure 2.2 represents the
‘middle ground” region of speech quality obtainable with hybrid coding
techniques, which attempt to bridge the gap in quality between unnatural
vocoder speech {which cannot be improved whatever the bit rate after
about 2.4 Kbps) and the relatively high quality speech provided by

waveform coders{ > 16 Kbps).
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2.3 VOCODERS

2,3.1 Speech Production Model

The principle of vocoders is the parameterization of speech signals
according to a linear quasi-stationary model of speech production, which
is based on a crude simplification of the vocal tract. A schematic

diagram of the vocal tract is shown in figure 2,3{[2].

The vocal tract is a non-uniform acoustical tube, between 15 to 17 cm in
length, which extends from the lips to the glottis, and varies its shape
as a function of time., This time varying change is caused by movements
of the lips, jaws, tongue and velum which are known as the articulators.
The lungs, trachea, larynx, throat, nose and mouth all contribute to the
production of speech. Speech is produced when air is expelled from the
lungs into the trachea and forced beﬁween the vocal cords and then
through the 1length of the vocal tract to the oral and nasal outputs.
Speech sounds may be broadly classified as either voiced or unvoiced,
For voiced sounds, such as fi/ in eve, the expelled air causes the vocal
cords to vibrate as a relaxation oscillator (the frequenc& of vibration
determines the pitch), and the air stream is modulated into discrete
puffs or pulses. Unvoiced sounds are generated either by passing the
air stream through a constriction in the tract, or by making a complete
closure, building up pressure behind the closure, and abruptly releasing
it. The former gives rise to fricatives such as /f/ in fish, while the
latter results in transient stops or plosive sounds, such as /[p/ in

pickle,

The traditionmal model of speech production in vocoders is the source

system model shown in figure 2.4[12], Several assumptions are inherent
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in this model, The sound generating mechanism (the source) is assumed
to be linearly separable from the intelligence-modulating vocal tract
filter (the system)., Also, speech sounds are assumed to be either
voiced or unvoiced, and are generated either from quasi-periodic vocal

cord pulses or from random sound produced by turbulent air flow.

2.3.2 Principles of Vocoders

The vocoding procedure may be divided into an analysis and a synthesis
process(2,12,23,24], The analysis is performed at the transmitter,
where the vocal tract and excitation parameters are extracted from the
input speech and transmitted, At the receiver, these parameters are

used in the synthesis process to reproduce the original speech sounds,

Synthesis is carried out using a periodic pulse generator to represent
voiced sounds, and a random noise generator for unvoiced sounds. The
two sources are mutually exclusive, and a parametric signal from the
transmitter operates the switch between them. Intensity of sound
excitation is also represented parametrically by a gain value, and pitch
is specified by a parametric pitch signal, Voiced pitch 1is very much
talker dependent, typically spannipg a two—-octave range, from 50 te 200

Hz for men, and 100 to 400 Hz for women.,

Following the linear source-system model of figure 2.4, the sound output
of the vocal tract may be represented as a convolution in time of the
excitation waveform e(t) and the impulse response u{t) of the vocal
system, thus,

x(t) = ult)*e(t) (2.1)

where * denotes convolution, In the frequency domain, this conveolution
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is equivalent to a multiplication of the Fourier transforms of u(t) and
e(t):-

X(w) = Uw).E(w) (2.2)
Taking magnitudes gives,

X() | = |UCw) |- |ECw) | (2.3)

Thus the magnitude spectrum of speech consists of two components: a
smooth envelope given by U(w) (the frequency response of the vocal
tract), and a fine structure corresponding to the excitation térm E(w).
For voiced speech, E(w) is a fine line structure and the envelope U(w)
has several well-defined peaks (typically 3 or 4 for telephone speech),
whose centre frequencies are called formants., For unvoiced speech, E(yw)
is noise-like (as e(t) is the result of air turbulence in the vocal
tract), and U(w) usually have one or two formants above 3 kHz. Typical
magnitude spectra of voiced and unvoiced speech segments (for 8 kHz

sampled speech) are shown in figure 2.5,

Vocoders depend on a parametric description of the vocal tract transfer
function which can take on a variety of forms. These variations in
parameter extraction techniques give rise to numerous vocoder designs in
both time and frequency domains. In all of the designs however, the
dependance upon the signal model of figure 2.4 places a ceiling on the
quality of speech that is obtainable., Present research seeks to improve
the capabilities of 1low bit rate vocoders by progressing beyond the

simple source-system model,

A brief description of the better known vocoder designs will be given in

the following.
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2,3.3 Channel Vocoder

The earliest, and possibly the most well-known vocoder is the channel
vocoder[2,12,23-28] invented by Homer Dudley inm 1939[25]. The channel

vocoder takes into consideration two important features of speech

production and perception[26]:-

(1) that the vocal excitation of voiced speech is quasi-harmonic and
that of unvoiced speech is a random ﬁide-band signal,

(2) that the perception of speech depends largely upon the preservation

of the shape of the short-time amplitude spectrum,

A block diagram of the channel vocoder is given in figure 2.6, A bank
of band-pass filters separates the input signal at the transmitter
(analyser) into contiguous spectral bands, typically 10-20 bands, each
with a bandwidth of 300-150 Hz, The output of each band-pass filter,
after rectification and low-pass filtering, represents the time varying
signal amplitude of each frequency band. Alsoc included in the analyser
are a voiced/unvoiced detector and a pitch detector, which determines
the pitch during voiced speech, This information is multiplexed with

the spectrum defining channel signals and transmitted.

At the receiver (synthesiser), the speech spectrum is reconstructed from
the transmitted data. Excitation, either from a pitch modulated pulse
generator (voiced speech) or from a broad-band noise generator
(unvoiced) is applied to an identical set of band-pass filters, The
output from the filters are amplitude modulated by the spectrum defining
signals. The sum of the filter bank outputs yields the reconstructed
speech which possesses a short-term spectrum similar to the input.

Thus, by utilising and transmitting the short-term spectral content of
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speech signals, instead of directly coding the waveform, the channel
vocoder is able to effect substantial bandwidth reduction (typicaily by
a factor of 10 ), Holmes described in detail a 19-channel vocoder
developed for the U.K., Govermnment”s Joint Speech Research Unit (JSRU)

based on the above principles[27].

2.3.4 Formant Vocoder

An even more efficient description of the speech information may be
obtained by spebifying only the frequencies of peaks (or formants) in
the amplitude spectrum[2,26]}., This is the principle employed in the
formant vocoders, which are able to operate at bit rates as low as 1,2
Kbps. Figure 2.7 shows a block diagram of such a formant vocoder with
three formants[26]. The analyser divides the speech spectrum into
frequency bands and measures the average frequency f, and the amplitude
A of the formants, These parameters, together with the voiced/unvoiced
decision and pitch information are then coded and transmitted., At the
receiver, the parameters fl,f2 and f3 and the excitation (either f0 or
random noise) are applied to three variable resonators, whose resonant
frequencies are determined by the appropriate £ value, These signals
from the resonators are multiplied by the A signals, and summed to

provide the synthesised speech,

2.,3.5 Pattern Matching Vocoder

This vocoder achieves even further bit rate reduction and is able to
operate at 400 to 800  bps. In this scheme, the short-time speech
spectrum is compared with a set of stored spectra, each identifiable by

a binary code[2,29]. The code corresponding to the best match is
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transmitted, together with the usual pitch and voiced/unvoiced
information, The receiver uses the stored spectrum indicated by the
received code to synthesise the speech signal. This principle of
pattern matching is similar to the recently proposed vector quantization

techniques for speech coding (see sectiom 2.4.1.8).

2.3.6 Homomorphic Vocoder

The advent of fast Fourier transform (FFT) techniques in the latter half
of the 19608 made feasible the implementation of high resolution
spectral analysis of speech, This technical advance, together with
research into deconvolution methods, led to the éévelopment of the
homomorphic vocoder(2,23,24,26,30], The principle behind this vocoding
algorithm is the observation that the mouth output pressure is
approximately the linear convolution of the vocal excitation signal and
the impulse response of the vocal tract, as given by equations (2.1) to
(2.3). Taking logarithm of (2.3) yields,

log |X(w)| = log[U(w)| + log|E(w)] (2.4)
The convolution operation is reduced to an addition of two terms which
can now be separated by a filtering process. The inverse Fourier
transform of equation {2.4) gives the cepstrum C(t),

c(t) = IDFT(log|X(w)|) = IDFT(log|U(w)|) + IDFT(log|E(w)|) (2.5)
C(t) contains two components - a “low time” component containing vocal
tract information and a “high time” component due to the excitation,
This capability of the cepstrum to isolate the excitation component has
led to its widespread use as a pitch detector[31]. Figure 2.8 shows the
waveforms corresponding to each stage of signal processing performed

during the analysis stage of the homomorphic vocoder, Figure 2.9 is a
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block diagram of the analysis and synthesis operations involved. The
analyser performs the operations specified by equations (2.,1) to (2.5)
in extracting the cepstrum, which is then suitably truncated to obtain
the vocal tract information. The result is the signal c¢(t), which
together with the excitation information constitute the transmission

parameters,

Synthesis is accomplished using the signal c¢(t), which is Fourier
transformed, exponentiated, 1inverse Fourier transformed and finally
convolved with the excitation source. The homomorphic or cepstrum
vocoder yields good synthetic speech at about 7.8 Kbps, and its
implementation has been eased recently with the adveng of charged

coupled devices (CCD"s).

2.3.7 Linear Predictive Coding (LPC) Vocoder

In the linear predictive coding vocoder[2,12,23,24,26,32-36], modelling
of the speech waveform is carried out in the time, rather than the
frequency domain, thereby avoiding difficulties associated with
frequency domain techniques, such as the accurate location of formants,
The most commonly used model is the all-pole (or autoregressive) filter

given by,

(2.6)

where G is the amplitude of the input excitation, and the coefficients
ay specify a pth order all-pole approximation of the short-term speech

spectrum (p is typically > 8). The complex roots of equation (2,6)
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gives the location of the formants and their bandwidths,

For every speech sample x(n) at the input, a linear prediction x(n) is

formed from the previous p samples according to :

<(n) pX (n-k)
Xin = Xxin-
ot (2.7)

The filter coefficients a _ are determined by minimising the square of
- 2

the prediction error i.e, minimising (x{n)=~x(n)) over an analysis

interval that spaﬁs typically several pitch periods, The solution of

the minimisation process gives[2,12,33,37],
= R—.lc (2.8)

where R is the autocorrelation/covariance matrix, C is the
autocorrelation/covariance vector and Abpt represents the optimum (i.e,
minimum gquared error} filter coefficients (see also section 3.2). The
block diagram of a LPC rooder is given in figure 2,10. Analysis
consists of extracting the pitch information and the amplitude of
excitation G, performing a voiced/unvoiced decision and solving (2.8)
for the filter coefficients, Synthesis is accomplished by a recursive
filter (formed as the inverse of the linear predictor) fed with the
excitation, which are either pitch modulated pulses or random noise.
LPC vocoders provide good performance for bit rates in the 2.4 to 4 Kbps

range.

The bulk of linear prediction modelling has been on the all-pole model
given by equation (2.6), Recent research has suggested the use of a
pole-zero or auto-regressive moving-average (ARMA) model which is

particularly efficient for modelling unvoiced sounds[32,33,38,39]. The
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main difficulty with ARMA modelling is the greater complexity - the
optimisation of the filter coefficients leads to the solution of a set

of non-linear equatioms,

2.4 WAVEFORM CODING

Unlike vocoder techniques discussed in the preceding section, waveform
coding methods do not consider reproduction of speech in terms of
excitation descriptions, vocal tract resonances or articulatory
parameters, Instead, an attempt is made to perform a straight—forward
' reconstruction of the acoustic waveform, Such waveform approximating
methods are generally necessary to provide speech of a quality
sufficient for commercial telephony. Traditional waveform coding
techniques, such as pulse code modulation (PCM), differential pulse code
modulation (DPCM) and delta modulation (DM) have been relatively simple.
Present day waveform coders, however, are substantially more complex as
the search for improved efficiency is spurred by the promise of
implementabilty resulting ffom advances in device technology.

Waveform coder algorithms may be conveniently categorized into time
domai; and frequency domain classes, but it is important to realise that
coders in different classes can be equivalent in terms of the properties
of speech that they exploit, For example, adaptive predictive coding
(APC - which 1is a time domain algorithm) and adaptive transform coding
(ATC - which is a frequency domain technique) exploit the same
redundancy in the speech signal and are therefore considered

“equivalent” in this sense,
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2.4,1 Time Domain Methods

2.4,.1,1 Pulse Code Modulation {(PCM)

Perhaps the simplest form of waveform coding is that of 1linear pulse
code modulation (PCM)[9,12,37], in which an aralogue signal is uniformly
quantized in a rectangular grid in time and amplitude, This is an
approach widely used in methods of analogue-~to-digital conversions.
Since it does not seek to exploit any properties of speech, it is not
constrained to this class of signals and does not possess any inherent

data compression capability.

Historically, PCM is the first method used for digital transmission of
speech, It was proposed by Reeves in 1938[40] and analysed in detail by
Cattermole[9]). The opération of PCM may be summarised into the
following steps:

(1) The band-limited analogue signal is first sampled at or above the
Nyquist frequency i.e. a frequency twice the signal”s bandwidth,

(2) The amplitude of each signal sample is quantized into ZB levels,
where B is the number of bits allocated for the encoding of each
sample.

(3) The discrete amplitude levels are represented by distinct binary
words of length B, which are transmitted.

(4) The decoder converts the binary words back into amplitude levels and
the resulting amplitude-time pulse sequence is low-pass filtered to

yield the recovered analogue signal.

It is8 clear that the only source of noise in PCM is due to the
quantization error, which is proportional to the quantizer step-size,

assuming that the amplitude range of the input signal does not exceed
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that of the quantizer (i.e. no “overload” occurs), Thus high fidelity
reproduction of speech can be achieved by employing a large number of
closely spaced quantization levels, but this would involve excessive and
unacceptable bit rate requirements., Linear PCM is clearly a highly
inefficient means of quantizing speech signals as it does not take into
account the characteristics of the input. More effective methods

utilise either non-uniform quantization or adaptive quantization,

(a) Non-uniform Quantization

Non-uniform quantization[37,41-45] is characterised by fine quantizer
steps for the very frequently occurring low amplitudes of speech signals
and much coarser steps to take care of the occassional large amplitude
excursions, Such characteriséics are termed “companding” characteristics,
from the fact that the step-sizes are COMpressed for the low amplitudes,
and exPAND rapidly outwards to cover the range of the signal to be
quantized (see figure 2.11)., Two non-uniform quantizers widely used in
commercial telephony applications (denoted as A law and M law PCM)
utilise a logarithmic charateristic for the quantizer steps. These are

defined as follows[9,12,37,42] ( for x(m) > 0);

Vv 1n (1 + ux(n) /v )

p laws xc(n) = Tn (T + 1) ; O < x{n) ¢V {(2.9)
B ax(n) .
A law: xc(n) = I+ in & : 0 € x(n) g v/a
(n) = vl 1+ 1n (ax(n) V] ; V/A € x(n) §V (2.10)
X - 1 +1n A

where x(n) is the input and x (n), the compressed quantizer output. |
¢
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and A are parameters controlling the shape of the logarithmic
characteristic, and V is the maximum amplitude of the input signal. The
use of a logarithmic characteristic allows the quantizer to span the

large dynamic range encountered in typical speech communication,

Another approach to non-uniform quantization seeks to tailor the
quantizer characteristic to the probabilty density function of the input
signal. Max[43] proposed an iterative method for obtaining the optimum
(i,e. minimum mean squared error distortion) quantizer input/output
threshold levels for signals with a Gaussian density, Paez and Glisson
[45] extended this work to signals with Laplacian and gamma
distributions, both of which are fairly good models of long~term speech
amplitudes. These pdfs(with a standard deviation = o)} are defined as

follows:-

Gaussian p&f : p(x) 'x] (2.11)

1
av2r exP[J/Q

1 -lxl
EE-exp{ 2 }

ILaplacian pdf : pl(x)

with o = V28 (2.12)
vk
gamma pdf : pix) = Tacl exp(-k|x])
, v0.75 {2.13)
with o = X

and their characteristics are shown in figure 2.12,

(b) Adaptive Quantization
The dynamic range of speech signals in typical voice communication
systems can vary by as much as 40 dB. While logarithmic quantization is

able to capture this wide variation to some extent, better results can
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be obtained by employing a quantizer which is able to adapt its range
according to the non-stationary nature of speech signals., Adaptive
quantization utilises a quantizer characteristic (uniform or non-
uniform) that shrinks or expands in time like an accordion, to adapt to
low and high speech powers respectively[12,20,37]. Although speech
signals have a large dynamic range over a long period of time, input
power levels vary élowly enough to facilitate the design of simple
adaptation algorithms to track these power variations,. These
adaptations may proceed either on a “block” basis, as in forward block
quantization (AQF) or on a sample by sample basis, as in the well-known

one-word memory quantizer (AQJ) algorithm developed by Jayant,

(i) Forward Adaptation

In forward block adaptive quantization[19,20,46-48], the quantizer
step~size A is calculated for a block of N input samples {typically 4-16
ms duratiom) and transmitted to the receiver. This step-size 1is
normally obtained from the root-mean-square (rms) value of the block of

signal samples as,

N. 2
} x“(n-3) (2.14)
j=

o>
)]
R
Zi-

where o is an appropriate constant weighting factor which dependé on the
number 6f bits used in the quantizer, This optimum step-size is then
used to quantize the same block of the signal, Naturally, the use of
such “look ahead” features ensures that the quantizer step-size is
always matched to the power of the signal, and thus provide
substantially improved performance over time-invariant gquantizers, The

price to be paid for this advantage is the introduction of a time delay
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into the system (equal to the duration of update of the quantizer
step-size) and the need for additional “side information” to be
transmitted to the receiver. Optimum quantizers may be employed with
such forward block adaﬁtations to obtain minimum distortion., In this
case, the standard deviation of the block of samples isr used to
normalise the signal, before quantization by a unit variance optimum
quantizer, For relatively short duration blocks {(4~8 ms), the speech
amplitude distribution is approximately Gaussian., As the blocksize is
increased however, it tends toward Laplacian, and for the long-term, it

becomes very much gamma distributed.

{(ii) Backward Adaptation

Perhaps the best known adaptive quantizer[37,47,49] in recent years is
the one~word memory sequential adaptation algorithm developed by Jayant
[49]. This provides a means of matcﬁing the quantizer step-size to the
signal variance using quantizer memory. The principle is to modify the
step~size of the quantizer for every new input sample, by a factor
depending on the knowledge of which quantizer slot was occupied by the

previous sample, The step—size adaptation evolves according to,

An+l) = A(n).M(|H(R) ]) (2.15)

where A(n) is the step-size at the nth instant, and M(.) 1is a

time~invariant multiplier function that depends on the magnitude of the

transmitted codeword at time n, denoted by |H(n)|. The characteristics

for a 3 bit Jayant quantizer is shown in figure 2.13,

A quantization technique similar to Jayant”s algorithm is the variance
estimating quantizer studied by Stroh[4l], Noll[20] and Castelino[50],

where the input signal is normalised by the square root of a maximum
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likelihood estimate of its variance at every sampling instant, and the
result is quantized by a fixed quantizer (see figure 2,14). The
normalising value is made proportional to a moving estimate of the
decoded signal”s standard deviation in order to obtain a unit variance

signal which can then be optimally quantized,

Another companding technique along the same lines is the proposal of
Wilkinson[51]. 1In his scheme, the step-size A is adapted with a time
constant of about 5-10 ms rather than for every sample., Xydeas{11,52,
53] proposed a dynamic ratio quantizer (DRQ) which wutilises an
instantaneously adapﬁive non-linear element to mnormalise the input

signal prior to quantization,

Most of the adaptive quantization techniques proposed provide an SNR
advantage over logarithmic PCM of between 3 and 5 dB. Adaptive

quantization will be considered in greater detail in chapter 5.

(¢) Mid-rise and Mid-tread Quantizer Characteristics

Since speech signals are symmetrical about the time axis, quantizers are
likewise symmetrical, Depending on the input/output quantizer staircase
characteristics, two versions of the quantizer may be identified -~
namely the mid-rise and the mid-tread, shown in figure 2.15. The
mid-rise quantizer has its decision level at the origin, while the
mid-tread has a zero output level., Mid-riser characteristics are
preferred, mainly due to the fact that it uses an even number of levels,
which makes it compatible with binary representation, The mid-tread
quantizer however, has superior idle channel performance due to the
existence of a zero level output, The use of a switch that exploits

both mid-rise and mid-tread characteristics has been suggested by
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Crochiere [54].

2.4.1.2 Differential Pulse Code Modulation (DPCM)

Adjacent amplitudes in speech waveforms sampled at the Nyquist frequency
are often highly correlated., One consequence of this ‘correlation is
that the variance of the difference e(n) between speech samples x(n) and
x(n-1) is much smaller than the variance of =x(n). Since the
quantization error power is proportional to the quantizer input power
for a given fineness of quantization, it is advantageous to quantize and
transmit the difference between adjacent samples of speech instead of
the speech sample itself, The recomstruction of the original speech

sample can be performed by a simple process of integrationm,

This is the basic principle of differential pulse code modulation (DPCM)
[11,12,24,37,45,55-64], which is based on an invention by Cutler[6l].
If the variance of the quantizer input is reduced by a factor G, the
variance of the quantization error 1is also reduced by G and thus the
signal to noise ratio (SNR) will be similarly increased by G. If the
correlation between adjacent samples of the speech signal is ¢; (by
definition -1 < ¢, < 1), it can be shown that the value of G for the

1
first order differential coding scheme (i,e. one in which the
difference between adjacent samples is transmitted) 1is {2(1-c1)}# .
More generally, if the difference between x{n) and a weighted version of
x(n-1), say alx(nwl) is used as the quantizer input, the variance of
this éignal is minimum when a,=¢ . In this case, G 1is given
by (1*c12)'l, a gain which is greater than unity for all values of ¢ .

The quantity alx(n-l) can be considered as a first order prediction of

x(n)} and the corresponding differential coding scheme is a predictive
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coder. MacDonald[62] found that apart from superior SNR performance,
=c

the choice of a  for a first order predictor provides better

1

tolerance to channel errors,

Figure 2.16 shows a block diagram of a generalised DPCM coder and

decoder, where P represents a pth order fixed linear predictor

P
X
P(z) = ) az (2.16)
ke1” K

and é(n) denotes the quantized value of e(n)., From the figure, it can
be seen that the locally decoded speech sample at the nth instant is,
x(n) = e(n) + y(n) C2an
where y(n) denotes the prediction of x(n). Also,
e(n) = e(n) + q(n) (2.18)
where q(n) is the quantization error, As,

e(n)

x(n) = y(n) (2.19)
it follows from (2.17) to (2.19) that,

x(@) = x(n) + q(n) (2.20)
Therefore, the decoded sample ;(n), is the sum of the input sample x(n)
plus the quantization error q(n) arising from the quantization of the
difference sample e(n)., Note that this condition occurs because of the
feedback round the quantizer. y(n) is thus a prediction obtained from

the previous p decoded samples, and not the input samples,

The formal design of the DPCM predictor is given in chapter 3.

2.4.1.3 Adaptive Differential Pulse Code Modulation (ADPCM)

The term DPCM 1is normally used to denote the differential coder

configuration of figure 2,16 which employs a fixed (i.e time-invariant)
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quantizer and a fixed predictor, whose coefficients are optimised for
long-term speech characteristies. It 1is apparent hoﬁever, that
predictors or quantizers whose design are based on long-term statistics
cannot be optimum at all times because of the non-statiomary nature of
speech signals, and the quite significant talker variability encountered
in practical voice communication systems, Consequently, practical
versions of DPCM are likely to employ adaptive quantizers and/or
adaptive predictors - the former to follow changes in signal power and
the latter to respond to variations in the short-term speech spectrum,
Coders incorporating such adaptive features are known as adaptive
differential pulse code modulation (ADPCM)[37] coders, There has been a
vast amount of research on ADPCM speech encoding systems over the years
and most of these are concerned with various methods of adapting the

quantizer and the predictor,

(a) Adaptive Quantization

The same principles of adaptive quantization[12,20,37,64] as mentioned
in section 2,4.1.1(b)} with reference to PCM coding are applicable to
DPCM., The only difference is that, instead of the input speech signal,
it is now the difference sequence which has to be quantized, Quantizer
adaptation may again be either in a forward mod; or a backward mode, If
a forward block method is used, an estimation of the quantizer step-size
will have to be made using the input signal, since the feedback DPCM
configuration of figure 2,16 (with the quantizer inside tﬁe loop) does

not permit the accumulation of error samples for estimation purposes.

Backward adaptive quantization techniques in DPCM are basically similar
to those of PCM, and the wvarious adaptations discussed in section

2.4.1.1(p)(ii) are also directly applicable. The one~word memory
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quantizer of Jayant is widely wused in DPCM systems. Adaptation is
similar to the PCM case, but the multiplier values are different (see

section 5,2,2.1)[64].

Stroh”s method of backward variance estimation[4l] can easily be applied
to DPCM. The normalising value is still a moving estimate of the
quantizer input, which in this case, is the sequence of quantized

difference samples,

One inadequacy in most adaptive quantization algorithms is the inability
to adapt sufficiently quickly to the large amplitude excitation pulses,
which characterise the prediction residual signal, The consequent
“clipping” of the residual could lead to significant losses in SNR as
well as perceptible distortion in the form of “clicks” in the decoded
speech. To overcome this problem, Cohn and Melsa proposed a pitch
compensating quantizer (PCQ)[66] which uses two modes of operatiomn: an
envelope detector for the syllabic adaptation, and a Jayant (AQJ) loop
for pitch compensation. A five level quantizer is used, with the two
outermost levels placed further apart than usual, to capture the high
amplitude excitation pulses. Qureshi and Forney[67] suggested 2 rather
similar scheme which wuses two Jayant loops with different adaptation
characteristics -~ one for syllabic companding and the other for pitch

compensation.

Further discussion of adaptive quantization in DPCM systems will be

deferred until chapter 5.

{(b) Adaptive Prediction
While adaptive quantizers seek to follow the power level of the input

signal, adaptive predictors[12,19,65] offer the possibility of tracking
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the short-term input signal”s spectral characteristics, in order to
achieve greater variance reduction. Most forms of adaptive prediction
ADPCM provide 2 to 3 dB advantage in SNR, compared to fixed prediction,
under otherwise identical conditions. As in adaptive quantization,
predictor adaptation may proceed either on a forward block mode or a

backward sequential basis,

In forward block adaptive prediction[19,55], the optimum predictor
coefficients are calculated to minimise the forward prediction error
over a block of input samples, normally between 8 to 32 ms duration.
Since adaptation proceeds onm a block basis, a data buffer is required at
the trapsmitter to collect and store incoming input samples until the
minimisation can be performed. This introduces a delay to the system
which is equal to the time duration of the block, At the same time,
because the predictor coefficients are obtained from the input signal,
they are not available at the receiver and have to be transmitted as

side information[68].

The need for side information and delay may be avoided if predictor
adaptation is performed in a backward mode[19,55,68-75]. Such backward
adaptations usually proceed on a sequential or sample by sample basis.
The predictor coefficients are continually updated to minimise some
error criterion according to the general formula,

a3, (n+tl) = a(n) + ¢ s k=1,2,....p (2.21)

where € ig derived from information available at both tramsmitter and
receiver, This wusually includes previously decoded error and signal
samples. Most backward adaptive schemes employ some form of steepest

descent or gradient algorithm using minimum mean square error criteria.
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Gibson investigated the performance of the stochastic approximation
predictor[69] and the Kalman predictor[71] in speech coding applications
and found the latter to be slightly superior. Cummiskey[76] proposed a
similar backward adaptation technique based on the minimisation of the
absolute, instead of the squared prediction erxror, In genersl,
sequentially  adaptive predictbrs tend to be rather sensitive to
transmission errors, which can easily lead to filter instability -~ an
obviously unacceptable condition in practical applicatioms. This
drawback may be avoided to some extent if, instead of a transversal
predictor structure, a lattice configuration is employed. Indeed, much
interest has been focussed on the use of adaptive lattice predictors in
ADPCM in recent years[77-79]. The details of this and various other

adaptive schemes are covered in chapter 3.

The advantage of DPCM over direct PCM may be eroded if the signal to be
transmitted possesses statistically different cﬁaracteristics from
speech, For example, some telecommunication networks might be required
to carry data, as well as speech signals, In such cases, the need might
well arise for designing a predictor which is able to perform well for
both speech and data inputs, Predictors which are designed for more
than one type of signal are termed “compromise predictors” since such
predictors will inevitably be a sub—optimum compromise for the different
signals individually. 0“Neal and Stroh[59] studied several cases of
compromise prediction used in DPCM, and showed that these provide
superior performance over PCM, Not wunexpectedly, however, the SNR
obtained with such compromise predictors is always less than the case
where the DPCM coder is optimised and used for each type of signal

individually.
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2.4.1.4 Pitch Predictive Coder

While ADPCM systems are concerned only with exploiting the short-term
spectral envelope redundancy of speech signals, a more sophisticated
class of speech coders attempts to effect even further signal
compression by taking advantage of the longer—term pitch redundancy
present in voiced speech. Perhaps the most well-known research effort
in this direction is the adaptive predictive coding (APC) system
developed by Atal and Shroeder[12,19,37,80-82]. The APC coder (shown in
figure 2,17) can be considered as an “enhanced” version of ADPCM and
incorporates two adaptivé predictors; a short-term  vocal tract

predictor (similar to ADPCM) given by,

p _ : .
P,(z) = ) a,z k (2.22)
k=1
and a long-term pitch predictor, given by,

P (z) = gz M (2.23)

where pgis a gain parameter, M represents the pitch period in number of
samples and p 1is typically > 8. All adaptation proceed on a forward
block basis. The optimisation of the coder parameters is performed on
the input speech and transmitted to the receiver periodically. It was
found that if the pitch predictor is modified to span two pitch periods,

i.e.
P,(z) = Blz-M+Bzz“2M (2.24)

better prediction is achieved, Using this APC system, Atal and Shroeder
reported a synthesised speech quality at a transmission bit rate of

about 10 Kbps, better than 6 bit log PCM,.
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In later versions of the APC[81], the pitch predictor was again modified

to:

P2(2) = Blz_M-'-l + Bzth + Baz—M—l (2.25)

The three ampliqude coefficients provide a frequency dependent gain
factor which improves the prediction at higher frequencies, giving an
average 3 dB prediction gain over the first order case., At the same
time, Atal énd Shroeder also introduced the concept of noise shaping
(seé gsection 2.4.1.6{a)) to their APC system, to yield good subjective

quality speech at a bit rate below 16 Kbps,

Goldberg and Schafer{83] described a real-time mini-computer
_implementation of a simplified APC system operating at 6400 Kbps using a
4th order short-term predictor and a pitch predictor based on the
computationally efficient average magnitude difference function (AMDF)

[84,85] given by,

T
AMDF(3) = Y |x(n) - x(n-3) ] (2.26)
n=1

The AMDF(j) is calculated for all j of interest (i.e. within the block
of T samples) and the value of j which minimises the AMDF is the
estimated pitch period, The quality of the synthesised speech was

described as “reverberant” and contains perceptible granular noise.

Jayant investigated the performance of two pitch predictors in his pitch
adaptive DPCM coder[86] intended for operation at 16 Kbp - one uses the
AMDF and the other is based on the autocorrelation function, After
experimenting with wvarious combinations of 1long and short-term
predictors, he reported that the best results were obtained with a

prediction scheme using a fixed 3-tap short—term predictor for
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non-periodic speech segments, switching to a l-tap pitch predictor
(preferably based on the AMDF algorithm) upon detection of strong
periodicity. A block diagram of his system is shown in figure 2,18,
Xydeas[11,87,88] proposed a similar pitch synchronous DPCM scheme which
aligns adjacent pitch periods correctly before obtaining the difference
signal to be quantized. This ensures that the prediction residual is

always kept very small,

Unlike the short-term predictor, pitch predictors are not easily
amenable to backward adaptation, due to the long time lags involved,
Attempts to develope viable sequential backward gradient techniques have
met with little success, It appears that although differential coding
schemes employing pitch prediction offers much potential as an effective
means of signal compression, their one major drawback is the dependance
on accurate pitch extraction for efficient performance. Apart from the
substantial delay incurred (typically one to two pitch periods),
accurate pitch detection generally requires highly complex
implementations, Indeed, because of the computational complexity
involved, the otherwise powerful APC scheme of Atal and Shroeder have
not been suitable for use in most real-time applications with current

technology[37].

The adaptive predictive coder will be examined at greater length in
chapter 3.

2.4.1.5 Delta Modulation (DM)

DPCM coders exploit the high adjacent sample correlation found in

Nyquist-sampled speech to produce a difference signal that can be
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quantized using fewer levels than PCM, for the same SNR performance.
This suggests the possibility of reducing the number of quantization
levels even further if signal correlation can be correspondingly
increased, Consequently, one could consider a differential coder which
uses the minimum number of quantizer levels (2 levels, 1 bit) and a
simple predictor in a feedback loop, Delta modulation (DM) is precisely
such a one-bit version of DPCM which combines low complexity with good
waveform tracking properties[37,89-91]. A thorough and comprehensive
examination of delta modulation encoding techniques is given by Steele
{ge}. In its simplest form, the DM coder operates by approximating an
input time function by a series of linear segments of constant slope,
Such 2 coder is therefore referred to as a linear or non-adaptive delta
modulator (LDM). Not unexpectedly, as in PCM and DPCM, more efficient
vérsions of DM coders exist, where the slope of the approximating
function is variable ~ and these are referred to as ‘adaptive delta

modulation (ADM) systems.

(a) Linear Delta Modulation (LDM)
Figure 2,19 shows the ©block diagram of a linear delta modulator. The
input analogue signal x{t) is appropriately band-limited and sampled at
a frequency much higher than the Nyquist frequency, to give the highly
correlated sequence {x(n)}. A first order prediction based on the
previous locally decoded speech sample is subtracted from the input
sample to form the error signal,

e(n) = x(n) - ax(n~1) (2.27)
e(n) is then quantized by the two-level quantizer (essentially a sign
extractor) to yield b(n){either +1 or -1) which is coded and

transmitted. The receiver integrates the received b(n) to give a signal
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that is a staircase approximation of the original speech, i.e, |
x(n) = ax(n~l) + asgn(e(n)) _ (2.28) .
with a = 1 for perfect integration,
< 1 for leaky integratiom
where A is the DM step-size. Finally, a low-pass filter at the receiver
removes the out-of-band noise introduced by the sharp edges of the
staircase approximation, The filtered signal

yields the recovered speech.

The choice of the step-size A in equation (2.28) determines the type and
extent of noise present in the DM coder. As in DPCM, the noise in DM
coders are either granular noise or slope overload distortion. These

are illustrated in figure 2.20, Slope overload occurs when A is too

T + granular

noise

x{n)

slope overload

distortion

7.

)
—Akl /fs

Fig. 2.20 Illustration of quantization noise in Linear
Delta Modulation

small and the staircase waveform is unable to track the rapid amplitude
changes of the input signal effectively. The error in the decoded

signal is thus greater than the step-size. Slope overload may be
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avoided if the following condition is met,

dx{t)

A
at $ 7 (2.29)

max

where T = 1/fs is the sampling period, f5 is the sampling frequency and
dx/dt is the derivative of the input signal, For example, if the input
signal is a sine wave, x(t) = Vsinukf, then

dx (t)

= 2.30)
at Vmo ¢

max

and no slope overload occurs if
Vo, § Af (2.31)

Granular noise, on the other hand, arises when tracking is correctly
maintained but the step-size is too large relative to the local slope
characteristics of'the input, It 1is apparent therefore, that small
values of A accentuate slope overload, while large values increase
granularity. Given the input signal statistics, it would be possible to
obtain the optimum step—size %@t which would provide the minimum total
error power, Abate[91] suggested a simple rule for determining Aopt

using the equation,

%

= < x(n) - x(n=1) >° In(2F) {2.32)

Fo= fs/2fc (2.33)
where £ is the bandwidth of the input signal, and F is the
C
over—-sampling index, which 1is generally much greater than 1. De Jager

[90] derived an empirical expression for the quantization noise power,

Unz in LDM systems,
2 fc 2
o = K — A (2.34)
n f
s

where K is an empirical constant. From this expression, the SNR for a
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LDM coder may be obtained as,

2
Ux £ Ux

SNR = G- = 25 (2.35)
Un Kch

From {2.,31), the maximum amplitude Vmax of the sinusoid Vsinwot which

does not overload the codexr is given by,

Af
v = S (2.36)
max 2wt
o
. 2 ,
where 2nf, = w,. Hence, noting that o,=V _ /2, the peak SNR is
f3
P 8T K £ £
c o

Equation (2.37) shows the important result that the SNR in LDM is

proportional to the cube of the transmission bit rate,

Research on LDM quantization noise normally involves separate treatments
of granular noise (Van De Wag[92], Goodman[93]) and overload distortion
(Prontanotarios[94], Greenstein[95]). 07Neal[96] examined both types of
noise and estimated the total noise power from the sum of the individual
noise variances, Recently, Steele[97], using the expression for slope
overload derived by Greenstein, produced equations for the peak SNR of
LDM for Gaussian inputs, which are as simple as de Jager’s formula and

more accurate than Abate”s.

The performance of LDM may be improved using double integration[90] i.e.
two integrators in series, This allows the prediction samples x(n) to
respond faster to the amplitude changes in the input signal, so that a
smaller step~size can be used, thereby leading to a direct reduction of

granular noise without the penalty of increased overload distortion,
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The disadvantage of fast adaptation, however, is the pgreater risk of
instability[76,98]. This problem may be partially overcome using
delayed encoding techniques, where the encoder is allowed to “look
ahead” at the input signal and slow down the rate of response

accordingly[99,100].

Another LDM configuration is the delta sigma modulator (DSM){101] shown
in figure 2,21, where the integrator 1is placed in front of the
quantizer, and the receiver consists simply of a low-pass filter. With
such an arrangement, the error signal 1is integrated prior to

quantization, and slope overload is made independent of the signal

frequency.
input decoded
signal f j: signal
au - —— LPF e

Fig. 2.21 Delta Sigma Modulator (DSM)

(b) Adaptive Delta Modulation (ADM)

From the preceding discussion on slope overload and granularity in LDM
systems, it is clear that instead of attempting to obtain a fixed
step—-sgsize which 1s a compromise between the conflicting requirements
for minimising either distortion, a better solution would be to allow

the step-size to adapt optimally to the local signal characteristics.
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This is the principle employed in adaptive delta modulation (ADM)
systems, Various different ADM strategies have appeared in the
literature{37,91,102,103] although the underlying operation is the same
i.e. to decrease the step-size when the slope of the input signal is

small, but to allow it to expand rapidly upon detection of overload.

The first ADM system to appear in the literature is the high information
delta modulator (HIDM) proposed by Winkler[102], and shown in figure
2,22, An adaptation logic incorporated into the LDM structure allows
the step-size 4 to adapt according to observations of past quantizer
outputs, A sequence of identical bits at the quantizer output indicates
a possible overload condition while alternative polarity bits suggest
thaﬁ A is larger than necessary, Specifically, the step-size adaptation
is as follows:

(i) A is doubled if the current and previcus two binary outputs are of

the same polarity,
(ii) A is halved if the last two output bits are of opposite polarity,

(iii) A is unchanged in all other cases,

This simple adaptation strategy provides greatly improﬁed dynamic range
over LDM, Numerous other variants of this instantaneously companded
delta modulator (ICDM) followed, Perhaps the most notable of these is
the one-word memory ADM of Jayant[103]., 1In this scheme, successive bits
b(n) and b{n-1) are compared to detect probable slope overload (b(n) =
b{n-1)) or probable granularity (b(n) # b(n-1)). The step-size adapts

according to,

An) = A(nen) PP (-1

(2.38)

-
=
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i,e, A 1is either multiplied by M or 1/M at each instant, The rate of
step-size increase or decrease is governed by the single factor M, with
M=1 representing the case of non-adaptive LDM, Jayant, using a value of
M=1,5 reported a 10 dB advantage over LDM for simulations with
narrow-band speech sampled at 60 kHz. A block diagram of the system is
shown in figure 2.23. Kyaw and Steele[l04] extended this idea to
include the effects of the current plus the two most recent polarity
outputs. This gives rise to 8 possible binary patterns (3 bits), which
are paired appropriately to give 4 different multiplier values., For a
Gaussian input band-limited to 3.1 kHz, they reported a 4.5 dB advantage

over Jayant”s method at 40 Kbps,

A different class of ADM utilises syllabic companding techniques, where
the step-size changes much more slowly than the instantaneous
adaptations, and follows the variations of the signal envelope[l105-109].
Such systems are very robust to errors in transmission, An example 1is
the continuous variable slope delta (CVSD)[108] modulator shown in
figure 2,24, The DM step-size is determined by the output bit stream (3
or 4 bits) stored in a shift register. When all the bits in the shift
register are of the same polarity, a pulse H is generated, and activates
the syllabic filter (with a suitably adjusted time constant). A pulse
of height H (which is usually much smaller than H) is added to H to
ensure that the minimum step-size is not zero. The output of the
syllabic filter, with coefficient a, is multiplied with the transmitted
bit to give the step-size A(n) which is fed to the leaky integrator with

coefficient a = 0.99. The step-size adaptation is thus,

I

Aln) azﬁ(n—l) + (l-az)(H+Ho) for b{(n) = b(n-1) = h(n-2)

aZA(n—l) + (l—aZ)Ho otherwise (2.39)
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Other versions of syllabic companded ADM systems include the proposal of
Tomozawa and Kaneko[109], Brolin and Brown[105]}, and the contipuous
delta modulator (CDM) of Greefikes and De Jager[107], which incorporates
an extractor for the signal envelope used for the control of the

step-gize,

Finally, forward tramsmission of the DM step—size has also been proposed
with ADM{46]}. Such systems, denoted ADM-AQF operates on the same
principle as ADPCM-AQF - the optimum step-size is calculated from a
block of input samples and transmitted to the receiver. The explicit
transmission of the step—size provides better robustness to channel

errors.

2.4,1.6 Other Differential Coder Configurations

DPCM, APC, and DM are all particular cases of the broad class of
differential encoding systems, Indeed, it can be seen that the APC
structure of figure 2,17 collapses to the DPCM coder (figure 2.16) if
the pitch loop.is removed, Additionally, if the quantizer is reduced to
just two levels, and the predictor restricted to one tap, the delta
modulator of figure 2,19 results, A thorough survey of this class of
differential encoding system structures is provided by Gibson[19].
Apart from the more familiar coders discussed hitherto, several other

configurations are of interest,

(a) Noise Feedback Coder (NFC)
The noise feedback coder (NFC)[81,110-113], illustrated in figure 2,25,
operates on a different principle from DPCM or APC, Instead of using

feedback to predict the input signal, the goal of NFC is to shape the
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output noise spectrum to produce a perceptually more pleasant output.
To accomplish this, the quantization noise (i.e. the difference between
the quantizer input and output) is fed back through the appropriately
adjusFed filter F. Frequently also, NFC 1is used together with a
pre-filter H; in the transmitter and a corresponding post-filter 1/H, at
the receiver. H is thus also available for adjustment, although it is
normally pre-selected £rom redundancy removal considerations, NFC can
therefore be used in conjunction with redundancy removing schemes such
as APC and DPCM, and recent efforts in this area have proven quite
successful[Sl,llZ]. The use of noise spectral shaping in speech coders
arises from the theory of auditory masking, which suggests that noise in
the low frequency formant region is normally masked by the high energy
‘'speech components so that much of the perceived distortion in the
decoded speech comes from the high frequency region where the signal
level is low[81,115], The idea then, is to modify the shape of the
output noise spectrum (known to be relatively flat for APC/DPCM systems)
so that it follows the speech spectrum and remains below it at all
frequencies, Figure 2,26 shows the desired shape of the output noise
gspectrum, together with the speech spectrum and the unshaped typically
flat spectrum of APC or ADPCM. It has been shown, under the assumption
of white (uncorrelated) quantigation noise, that the shaded areas above
and below the flat noise level are equal (but note the logarithmic scale
of the vertical axis). Thus noise in one frequency region may be
reduced only at the expense of greatly increasing it in another region.
This however, allows sufficient control of the spectrum to reduce
perceptual distortions in the decoded speech, as has been demonstrated

by Atal and Shroeder for APC[81], and by Makhoul and Berouti for

ADPCM[112],
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An earlier approach to the concept of noise shaping employed the NFC to
obtain a reduction in quantization noise, This is achieved by proper
selection of the noise feedback filter F, such that the output noise is
pushed into the out—of-band frequency regionm (this assumes a sampling
frequency greater than Nyquist), where it could be filtered out[111]

.

(see figure 2,27),

The use of noise shaping features in differential coders will be

investigated in greater detail in chapter 4.

(b) Direct Feedback Coder (DFC)

Another differential coder structure is the direct feedback coder (DFC)
[116], shown in figure 2.28, in which a filter is placed in the forward
path, rather than the backward path of the quantizer, If the quantizer
uses only two levels, and G2 ig an integrator, the DFC becomes the delta

sigma modulator (DSM) of figure 2.21,

(c) Prediction Error Coder (PEC/D*PCM)

A differential coder that is more amemable to mathematical analysis than
the preceding configurations is the feed-forward predictive subtractive
coder[57], also known as a prediction error coder (PEC)[19], an adaptive
residuval coder (ARC)[73] or (as will be referred to here, using Noll“s
notation) as D*PCM[110]. Although attractive analytically, D*PCM has
not received much attention because of the effect of “noise
accumulation” at the decoder., This is due to the fact that while the
prediétora at both transmitter and receiver are the same, their inputs
are not. The transmitter predictor operates on the undegraded input

while the receiver predictor uses an input that 1is corrupted by
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quantization noise. It can be easily shown[110] that because of the
positive feedback at the receiver, any quantization noise present tends
to be emphasised, so that the noise variance of D*PCM is always greater
than that of DPCM. Bodycomb and Haddad[117] studied the performacne of
D*PCM for Gauss—Markov inputs with the predictor and quantizer
separately optimised from a mean square error criterion, They found
that D*PCH provided no improvement over direct quantization of the
input, because of the noise accumulation effect at the receiver. For
speech inputs however, this noise accumulation is offset by the
advantage of variance reduction brought about by exploiting the high
signal correlation, so that D¥PCM provides an overall superior
performance over PCM, In fact the effect of noise accumulation produces
a shaping of the output noise spectrum which follows closely the
frequency response of the receiver synthesis filter [112], D*PCM can
thus be used to provide noise spectral shaping. Indeed, the noise
shaping APC coder of Atal and Shroeder[81] employs precisely the basic
D¥PCM structure, together with a noise feedback filter to provide fine
control of the noise spectrum, This can be realised from the noise

feedback coder of figure 2.25 by setting Hy=1-P,

(d) DPCM with Filtering

Another approach to reduce quantization noise effects in DPCM is to use
2 filter in series with, and preceding the predictor at the transmitter,
and a similar filter in the forward path of the receiver, as shown in
figure 2,30, The object of this is to modify the input to the predictor
in some way 8o as to improve its performance. Melsa[ll8] used a Kalman
filter for this purpose in ADPCM, APC and CVSD coders and Gibson[70]

employed the same filter in his sequentially adaptive ADPCM system,
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2.4,1,7 Entropy Coding

It has been customary, in the design of quantizers, to adjust
quantization intervals 80 as to minimise the mean square error fof a
given number of quantizer levels L, The optimum quantizer input/putput
characteristics are thus determined by the probability distribution of
the signal to be quantized. Most optimum quantization schemes usually
assume that the quantized values are then binary coded for transmission
i,e, for L levels, log2 L bits are used to code each level, This is
equivalent to assuming that all levels are equally likely, which is
contrary to the .initial assumption of a specific distribution., If,
instead of assigning the same length code for every output of the
quantizer, a variable code length is wused, whereby highly probable
levels are assigned shorter codewords and vice versa, then the average
code-~length would be less than the case where uniform length codes are
used, thus leading to a reduction in average transmission bit rate.
Entropy coding is omne such variable source encoding technique which
utilises this principle of unequal code-lengths, When the symbols to be
transmitted (in this case the quantizer levels) are independent, it is
possible to generate codes with an average word-length approximating the
entropy of the symbols. The concept of entropy will now be formally

defined,

Suppose that a source S outputs statistically independent symbols Si’
i=1,2,...q, and the probability associated with Si are pi, i=1,2,..49.
The entropy of the source is defined as{119]:
q
H(S) = —i=§ p;1og p; (2.40)

Each §; symbol can be uniquely represented by a codeword B which is a
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sequence of j symbols, B = (bl’bz""'bj) and B is a member of a finite
set of codewords [Bl’Bz"'°'Bq] having length Li» The average length L

of this coding procedure is defined as:

_ q
L = 1 b2 (2.41)

i=p” EE
and the following important property of the entropy can be proved,

H(S) <. L (2.42)
Equation (2,42) shows that the entropy of the source is the lower bound
of the average codeword 1length, This means that the best coding
procedure, where codewords Bi are efficiently assigned to source symbols
Si could provide a minimum average codeword length Ihin equal to the
entropy of the source, The ratio H(S)/f, = E is defined as the

efficiency of the coding procedure, while (1-E) represents the

redundancy.

In waveform coding methods such as DPCM, where signal redundancy is
removed prior to coding, the use of entropy coding on the coder output
sequence can result in a further SNR improvement at a given transmission
rate[120,121]. 0O“Neal[l20) studied the performance of DPCM with entropy
coding on sigpals with a Laplacian distribution and found that when the
number of quantization levels is large, entropy coding could provide
about 5 dB improvement over normal DPCM, Cohn and Melsa[66], and
Qureshi and Forney[67] also employed entropy coding in their ADPCM
systems with backward adaptive prediction, and a pitch compensating
quantizer. In these schemes, a 5 level quantizer is used, with the 2
outermost levels set further apart than usual, to “capture” the high
amplitude excitation pulses of the residual signal. As these high

amplitudes occur very infrequently (typically only 1% of the time),
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variable rate coding has to be used to ensure a reasonable tramsmission
rate, Atal also uses entropy coding for his “APC system with improved

quantization®[122] for the same reason.

The use of entropy coding implies the need for a buffer at both the
transmitter and receiver, so that a signal coded into a variable length
code can be transmitted over a chamnel at a uniform rate. This also
means that a delay proportional to the buffer length will be incurred.
Long buffers are clearly undesirable because of the problems associated
with ekcessive delays, while short buffers are more susceptible to
overflow and loss of synchronization. Systems employing entropy coding
will thus have to incorporate appropriate buffer management measures
suitable for the particular environment, Synchronisation of the
variable length codes is also an important aspect of entropy coding, and
numerous self synchronising codes have been proposed. Possibly the best
known of these is the Huffman code, which has been used extensively over
the years. The procedure of generating such a code is given by
HBuffman{123] for the case of binary coding, Makhoul and Berouti
employed a simple variant of the Huffman code which is useful in the
case of chamnel errors[112). The set of codes has all ones in each
code, except for the last bit which is zero, as shown in table 2.1.

This enables the receiver to re-synchronise every time it receives a

zero,
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Code Length Code

0

10

110
1110
11110
111110

[=ANA VI SR VLA I ]

Table 2.1 Example of a Self-synchronising Code

2.4.1.8 Multipath Search Coding (MSC)

The performance of most conventional waveform coding schemes is
generally poor at low bit rates, when only 1 bit or less is allowed for
coding each signal sample, One class of waveform coders, directed at
improving the performancé at this range of bit rates, uses multipath
search strategies based on a delayed decision about binary data

representing speech signals[124~133,136-139],

Conventional waveform coders such as PCM and DPCM can be considered as
single path coders. They are based on instantaneous decision; the
encoder converts an input sample x(n) into a channel codeword c{(n),
which contains information about x(n) (as in PCM) or on x(n) and its
predecessors x{n-1),x(n~2),....{as in DPCM), The decoder converts the
received channel codeword ¢(n) into an output sample y(n). In contrast,
multipath search coding(MSC) schemes consider future values x{(n+l),
x(n+2).... as well, before a (delayed) decision is made about the
optimum c¢(n) to be released. Figure 2.31 shows the structure of MSC
schemes, Samples x(n) of the inﬁut signal are fed into the input buffer
of length N. The encoder compares the buffered samples X with a
collection of possible output sequences Yk,. k=1,2,...2N s where YE =

{ykl’ykz""'ykN}' The collection of these sequences which are either

stored or deterministically generated when needed, must be available at
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both transmitter and receiver, The optimum output sequence is the
nearest neighbour sequence i,e. the sequence with the minimum squared
error,

- - T -
E, (X -Y ) x -1 (2.43)

The decoder is informed about the chosen output sequence by a binary

channel sequence Ck.

MSC coding strategies may be classified into 3 main classes: (a)

Codebook coding (b) Tree Coding (c) Trellis Coding

In codebook coding schemes, also known as 1list coding or vector
quantization[125,126], the set of possible output sequences Yk’
k=1,2,...2N is arranged in a finite size codebook whose elements are not
restricted in any way. When the optimum ocutput sequence has been found,

the corresponding index of that sequence is transmitted as the channel

sequence in a bimary format using N bits (see figure 2.32(a)}).

In tree and trellis coding schemes[124,131-134,139], the output
sequences of length L are arranged in the form of a tree or trellis of
depth L (see figures 2.32(b) & (c)). Its branches are populated with
reconstruction values. Different sequences therefore have a number of
common elements. Each sequence forms a path through the tree or
trellis, The channel sequence, known as the path map, provides
information about how to trace through the tree or trellis, There is a
slight difference between the tree and the trellis, In tree coding, the
number of branches from each node is fixed (typically 2) and the tree
expands outwards, doubling the number of possible paths at each stage.
For the trellis coder, the number of paths is limited to 7 per sample,

where K is termed the intensity of the trellis, So the trellis starts
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as a tree, which then collapses to the specific structure of the trellis

when L 2 K.

The main problem in MSC is to fill the codebook or to “populate” the
branches of the tree or trellis with elements, in a way that “typical”
output sequences result, One method is to generate the elements
succegsively on a sample by sample basis using an algorithm known to
both coder and decoder. In such deterministic schemes, possible channel
digits not only define a path but they are also assigned amplitude
values, Another possibility is to have at the encoder and decoder,
stored codebooks or tree/trellis sequences which have been determined
beforehand, ' Such stbchastic schemes are much less restricted in

providing typical output sequences.

Codebook coding or vector quantization has been applied to the coding of
transmission parémeters such as the reflection coefficients of an LPC
system[134,135]. Buzo and Gray[126] reported equivalent performance in
an LPC system using 10 bits/frame vector quantization for coding the
transmission parameters as one using 35 bits/frame scalar quantization -
an advantage of 25 bits/frame! The criterion used in 1locating the
optimum output code is the minimisation of the widely used Itakura-Saito
[134] distortion measure, More recent work[136] suggested that in
addition to the reduction in bit rate afforded by vector quantization,
better quality synthesised speech, compared to scalar quantization, is

also obtained.,

Various algorithms for tree/trellis encoding of speech have been
investigated by Anderson[137], who reported impressive gains of up to 7

dB over DPCM, in addition to the advantages of better dynamic range and
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more resistance to channel errors, A particularly simple and effective
procedure is the M algorithm or the (M,L) algorithm[138]. In this
procedure, the search progresses through the tree one level at a time,
and a maximum of only M lowest distortion paths are retained at each
level. At the next level, the next 2M extensions of these paths are
compared and the worse M paths eliminated, This process is continued
until the level L is reached, at which point the accumulated error over
the past L samples is examined and the best path which minimises the
error is determined. This algorithm has been used by Atal for his APC
scheme[82] and by Jayant and Christemsen[138] in conjunction with
adaptive quantization. Fehn and Noll[124] obtained more modest SNR
gains of about 3 dB in their experiments, and observed that the
increases in SNR occurred mainly in voiced speech segments where the SNR
values were already rather high. As such, perceptual improvements were
smaller than suggested by the SNRs, Other notable contributioms in the
area of multipath search coding include the work of Matsuyama{127,128],

Linde[129], Berger[130], Viterbi[l31], Jelinik[132] and Wilson[133].

2.4.2 FREQUENCY DOMAIN TECHNIQUES

In time domain techniques of waveform coding, the input speech signal is
treated as a single full-band signal, Redundancy is removed using
various means of prediction prior to quantization and coding, and then
re-inserted at the decoder, The main differences.among the various time
domain coders lie in the degree of prediction or interpolation that is
attempted, and the differing algorithms for adapting the system

parameters,
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A more recent class of waveform coders seeks to exploit to a greater
extent, the models of speech production and perception, without making
the algorithms totally dependant on these models, as in vocoders. This
is the general category of frequency domain coders[12,140], in which the
approach is to divide the speech signal into a number of frequency
components and to encode each of these components separately. By this
means, different frequency bands can be preferentially encoded according
to perceptual or minimum mean square error criteria for each band, and
quantization noise can be contained within bands. Thus, encoding
accuracy is always placed where it is needed and indeed, bands with

little or no energy may not be encoded at all.

The variety of algorithms in frequency domain coding is perhaps 'mot as
diverse as in the more traditional time domain methods, The complexity
agsociated with techniques in the frequency domain may well be a
possible reason for this rather lesser interest in such schemes, but
advances in device technology are gradually changing the situation, Two
techniques in the class of frequency domain coders which have received
possibly the greatest amount of interest in recent years are sub-band
coding (SBC) and adaptive transform coding (ATC). These have been

reported to provide good quality speech at relatively low bit rates.

2.4.2.1 Sub-band Coding (SBC)

In the sub-band coder[12,141,142], the speech spectrum is partitioned
into typically 4 to 16 contiguous bands by means of a bank of band-pass
filters. Each band is then low-pass translated and downsampled to a
frequency twice its bandwidth and digitally encoded using adaptive

step-size PCM (APCM) with an accuracy determined by some appropriate
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criterion, subject to the number of bits available. At the receiver,
the reverse process is performed - the sub-band signals are upsampled,
translated back to their original frequency location and summed to give
a close replica of the original speech signal. A block diagram of the

sub-band coder is shown in figure 2.33.

Apart from the advantage of containing quantization noise within bands,
encoding in sub-bands also enébles the use of different adaptive
quantizer step-sizes in different bands, Thus bands with lower signal
energy will have smaller quantizer step-sizes and contribute less noise,
In practice, a large number of bits is usually allocated to the lower
frequency bands where pitch and formant structure must be accurately
preserved to retain speech fidelity. For the higher frequency bands
where fricatives occur, a much smaller number of bits is normally
adequate, At the same time, this process of bit allocation can also be
used to control the shape of the output noise spectrum to satisfy

perceptual consideration,

Early versions of the sub~band coder employ large finite impulse
response (FIR) band-pass filters[143] to partition the speech signal
into sub-bands, Each sub-band is then low-pass translated (by a
modulation process), sampled at its Nyquist rate and digitally encoded.
The large FIR filters are necessary to provide very sharp cut—-off
characteristics to minimise the effects of signal aliasing which occurs
during decimation (or down~sampling) of the sub-band signals[144].
Crochiere[141] proposed an integer band sampling method for performing
the low-pass to band-pass translations which eliminates the peed for
modulators, and is thus better suited to hardware realisation., A more

elegant approach to split-band coding however, is the use of quadrature
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mirror filters (QMF) for performing the band-splitting operation as
proposed by Esteban{145]., These filters have the highly desirable
property for canceling effects of aliasing and imaging in the sample
rate conversion processes and thus allow the use of much shorter filters
(32 taps or less). Indeed, the advantages offered by QMF’s have reduced
significantly the complexity of sub-band coders to the extent that a
complete two-band SBC is currently implementable in hardware using just
a single signal processing chip [146-148] (see section 2,7.2). Recently
also, British Telecom developed a 6 band sub-band coder which uses two
signal processing chips, one for the encoder and the other for the

decoder[149].

The sub-band coder has clearly been established as a viable technique in
speech coding (as evident from the huge amount of interest it has
received)[141,142,145-160], offering good quality speech at relatively
low bit rates and moderate complexity. The trend in recent research
efforts has been toward increasing the number of bands employed in the
SBC (to exploit further the advantages of split-band coding) - from the
original proposal of 3 or 4, to 8, 16 and even 32 bands[157]. Further

discussion on the sub-band coder will be given in chapter 6,

2.4.2,2 Adaptive Transform Coding (ATC)

The adaptive transform coder (ATC)[12,140,161,162] operates on the same
principles as the sub-band coder, in that fhe input speech is divided
into a number of bands, and each of these bands is preferentially
encoded according to some perceptual or minimum méan square error
criterion, The important differemces are that, the number of “bands”

involved in ATC is very much greater and that a block transformation,
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rather than a filter bank is used to achieve the “band-splitting”, For
this reason, the ATC and the SBC have been described as narrow-band and

wide-band analysis/synthesis coders respectively[l40].

A block diagram of the adaptive transform coder proposed by Zelinski and
Noll[161] is shown in figure 2.34. The tramsmitter transforms a block
of N normalised input samples into the frequency domain using a N-point
discrete cosine transform (DCT)}{12,164). These frequency components are
then quantized (with different number of bits, determined by an adaptive
bit allocation process) and transmitted, The step~sizes of the
quantizers are obtained from a coarse description of the short—time DCT
spectrum, At the receiver, inverse transformation on the received

frequency samples yields the recovered speech,

The ATC coder described above has.been reported to provide excellent
quality speech at 16 Kbps. Below this bit rate however, quality
deteriorates rapidly - a “low-pass” effect becomes increasingly evident
and a “burbly” distortion is manifested[162]., This is due to thé
severely inaccurate preservation of the frequency spectrum as the coder
becomes “starved” for bits, Tribolet proposed a more complex low bit
rate “speech specific” ATC coder which uses the pitch information to
provide a more detailed estimate of the short-time signal spectrum[165].
He reported good quality speech at a transmission rate of less than 9.6

Xbps using this technique {see figure 2.35).

Other discrete transforms besides the DCT may also be used in transform
coding schemes, However, the DCT has been shown to be superior in many
ways in its compaction ability for speech and video signals, and to

approximate closely the performance of the optimal (signal dependant)
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Karhunen-Loeve transform (KLT)[161,166]). Adaptive transform coding

techniques will be discussed in greater detail in chapter 6.

?2.4.2.3 Phase Vocoder

The phase vocoder, developed by Flanagen and Golden[167] is similar in
principle to the ATC and the SBC, Here, the short-time spectral
components of speech are converted to magnitude and phase derivative
components which are subsequently coded for transmission. Typically 30
frequency channels are used in the phase vocoder, giving it a frequency
resolution between that of the sub-band coder and the transform coder,
Techniques for adaptively quantiziné the channel signals of the phase
vocoder, similar to those of SBC and ATC can be used. Portnoff
descfibed an implementation of the digital phase vocoder using fast

Fourier transform (FFT) techniques[168].

2.4.2,4 Polar Plane Coding

Another related frequency domain technique is that of polar plane coding
investigated by Gethoffer[169]. In this scheme, the magnitude and phase
components of the input signal are computed and quantized separately
with differing accuracy. Good results were reported at bit rates below

16 Kbps using very large transform sizes {(up to 8192).

2.5 HYBRID CODING TECHNIQUES

A third general «class of speech coding methods utilises various
combinations of features associated with time and frequency domain

waveform coders as well as parametric and vocoding techniques[12,13].
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The voice-excited vocoder 1is one such hybrid method, where part of the
signal is coded using waveform coding methods (either time or frequency
domain) and the other part coded by means of parametric representation,
Another general class of hybrid techniques attempts direct bit rate
reduction by parametrically compressing the speech signal in bandwidth
and sampling rate prior to coding, using various harmonic scaling
algorithms., Such methods are able to provide high quality speech at

relatively low bit rates ( < 16 Kbps).

2.5.1 Voice—excited Vocoding Techniques

There has been considerable recent interest in hybrid wethods of speech
coding which covers the “middle ground” between waveform coders and
vocoders, operating inm the range between 4.8 to 9.6 Kbps. This-interest
arises from several directions[170]:

(1) the demand for a speech quality that is better than that currently
available from vocoders - proverbially, vocoders put “marbles in the
talker”s mouth”, eliminate a talker”s individuality so that all
talkers sound alike, and make speech sound inhuman and machine-like.

(2) the difficulty and complexity of accurate pitch prediction required
by most vocoders - in many practical instances, this sensitivity to
pitch errors preclude satisfactory performance.

(3) the unavailability of wide-band chamnels (data rates above 16 Kbps)
due to economical and other factors.

(4) the recent availabilty of modems that operate reliably in the data

range rates around 9.6 Kbps over regular telephone lines.

Bybrid methods of speech coding utilise the principles of both waveform
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coders and vocoders, in an attempt to provide acceptable and natural
sounding speech at a higher bit rate than that required by vocoders.
The design of most hybrid coders is very similar to the LPC vocoder (see
section 2,3,7), the main difference being that a portionm of the original
signal or residual waveform (normally a low-pass filtered version of the
full band signal) is transmitted in place of the pitch information, In
this way, the excitation information is contained in the transmitted
residual, and the complexity and difficulties associated with explicit
pitch extraction are avoided. At the receiver, some form of high
frequency generation 1is employed to produce a full band residual, which
is then applied to the LPC synthesis filter to yield the recovered

speech,

2.5.1.1 Residual-excited Linear Predictive (RELP} Coder

Un and Magill[171] described a residual~excited linear predictive (RELP)
coder suitable for operation at a transmission rate below 9.6 Kbps., A
block diagram of this is shown in figure 2,36, The LPC analysis is
performed on overlapping Hamming-windowed speech  samples. The
prediction residual from the LPC inverse filtering is band-limited to
800 Hz, down-sampled and tramnsmitted using adaptive delta
modulation (ADM) with hybrid (i.e. both syllabi¢ and instantaneous)
companding (see section 2,4,1.5(b}). At the decoder, the received
residual is interpolated to restore the original sampling rate, and then
spectrally flattened to generate high frequency harmonics, The spectral
flattening process is shown in figure 2,37, The baseband of the

residual is retained undistorted in the upper path, while in the lower

path, the high frequency harmonics of the residual are generated by
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full-wave rectification. The energy of these harmonics is further
enhanced by a double differencer, and then high-pass filtered to remove
signal components in the baseband frequency region. This high frequency
signal is then summed with the original baseband in the upper path (with
G, and G, controlling the optimum mix between them) to yield the
spectrally flattened residual, The input to the LPC synthesis consists
of this spectrally flattened residual plus a suitably controlled amount
of random noise, Un and Magill reported significant improvement in the
duality of the synthesised speech for this RELP coder, over conventional
vocoders, Furthermore, as nc pitch extraction is required, the coder is
robust in any operating enviromment, and provides a speech quality which
degrades very gradually as the bit rate is lowered from 9.6 Kbps to

about 4.8 Kbps.

The LPC anaiysis for such RELP coders 1is often performed using the
autocorrelation method[33]. The parameters for the synthesis filter
(which may be a transversal filter or a lattice configuration) are
‘normally transmitted as reflection (PARCOR)[134,135] coefficients or as
log area coefficients (see section 3.3.1)[34]. Frequently, the use of
pre—emphasis on the input speech 1is recommended before LPC analysis
[170-172)], This reduces the short-term spectral dynamic range of the
signal, enhances the high frequency components present and improves the

accuracy of LPC parameter quantization,

2.5.1.2 Voice—excited Linear Predictive (VELP) Coder

A very similar technique to the RELP coder is the voice-excited linear
predictive (VELP) coder where the transmitted excitation baseband is

obtained from the original speech signal instead of the LPC residual



Chapter 2 Page 72
(see figure 2,38). At the receiver, the decoded baseband speech is
added to the high-pass filtered output of the LPC synthesiser to form
the recomstructed output speech. Note however, that the term
“voice-excitation” has been used as a generic term to denote both
voice-excitation and residual excitation. Viswanathan[170] compared the
performance of RELP and VELP coders operating under identical conditions
and found that speech from the RELP coder is more “crisp”, less muffled

and generally less noisy than speech from the VELP coder.

2.5.1.3 Spectral Flattening

The quality and “naturalness” of hybrid coders such as the RELP and VELP
coders are very much dependant on the high frequency content of thé
synthesised speech, Since only the 1low frequency baseband signal is
normally transmitted, the process of spectral flattening or regenerating
high frequency components in the excitation signal is of considerable

significance,

Numerous methods of high frequency regeneration have appeared in the
literature[171-181]. It is well known that‘if the baseband of speech
contains either the fundamental pitch or at least two adjacent
harmonics, then a waveform containing 211 the harmonics can be generated
by feeding the baseband signal to an instantanecus, zero memory
non~-linear device. The spectral shape of the regenerated harmonic
structure may be quite arbitrary and must be flattened to provide a
suitable excitation. Figure 2.39 shows a generalised high frequency
regeneration system applicable to voice-excited LPC systems. High
frequencies are introduced by applying some form of non-linear

distortion to the baseband signal., To avoid “roughness” in the
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recovered speech due to spectral aliasing, it is recommended that the
baseband be upsampled to at least twice the original sampling rate
before applying the distortion énd spectral flattening[171,172]; It
will have to be subsequently decimated to the correct sampling frequency
before being fed to the LPC synthesiser, Frequently also, a noise
source is added to the distorted signal to compensate for the loss of
high frequencies in fricatives[171-173], but some proposals have

dispensed with its use [170].

Rectification is a commonly used non-linear distortion scheme[172-175].
In general, a rectifier operating on a signal x(t) has the £following
input foutput characteristics[173]:

y(e) = 1/2{(14a) |x(t) | + (1~)x(t)} ;0 S g L (2.44)

vhere |.| denotes absolute value, and o represents the extent of
rectification, with o =0 giving half-wave rectification and o =]
corresponding to full-wave rectification. Both wvalues, as well as a

value of a=0,5, have been used.

Another method of spectral flattening and high frequency generation
employs spectral duplication using the transmitted baseband spectrum.
Makhoul and Berouti presented two methods, spectral folding and spectral
translation, by which this may be done[173]. Figure 2.40 illustrates
the two spectral duplication methods, for a baseband with bandwidth B,
obtained from a signal with bandwidth W = 3B, Spectral folding 1is in
fact simply the process of upsampling by inserting zeroes between the
samples of the baseband. It is important, in performing spectral
folding, that the short~term dc value should be subtracted prior to the
operation, and added on afterwards, to eliminate a distortion at the

folding frequency introduced by the process, Spectral translation can



Chapter 2 Page 74
be done by applying two complementary band selection filters to the
gpectrally folded full band signal, Spectral duplication gives rise to
low level background tones in the synthesised gpeech, which although
different from the “roughness” characteristic of rectification methods
of high frequency regeneration techniques, is not necessarily preferable
perceptually, Makhoul and Berouti also suggested an alternative method
of spectral duplication which seeks to eliminate these background tones
by preserving the harmonic structure of the baseband, This is dohe by
adjusting the width of the baseband spectrum to be a multiple of the
short-term pitch fundamental frequency. Frequency domain coding would
obviously be easier in this case - and the use of ATC for coding the
baseband signal was proposed[173]. A related method of ensuring that
. spectral duplication is optimally aligned to the harmonic structure of
fhe input speech uses the short-term magnitude and phase components of
the speech segment. The magnitude spectrum is duplicated at higher
frequencies by shifting it through a pitch adaptive distance[l176]. This
optimal shift is determined at the transmitter by cross—correlating the
high frequency spectrum of the signal with the transmitted baseband and
“peak-picking” the result [175]. Note that this process may also be

performed using the c¢osine magnitude spectrum,

Un and Lee proposed a hybrid method of spectral flattening, in which the
high frequency signal is generated by a conventional non-linear
distortion device (such as a rectifier) using the baseband, and passed
through a band-pass filter[177]. The output of the band-pass filter is
added to its baseband and then spectrally folded to yield the full-band
excitation., This was reported to result in considerable reduction in

the tonal noise associated with straight-forward spectral duplication,
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A further proposal used a split-band coding method[172], to split the
baseband into two bands, leaving a spectral gap between them to conserve
transmission bandwidth., When the non-linear process is applied to these
split bands, harmonics are generated at frequencies of integer multiples
of the sums and differences of the frequency components in the
basebands., Since these frequency components spread more broadly, more

high frequencies can be expected,

Numerous other spectral flattening techniques for voice-excited LPC have
been proposed, with varying claims for their effectiveness, and these

may be found in references 178-180,

2.5.1.4 Baseband Encoding

The coding of the baseband in voice—exciﬁed LPC systems may be done as
in normal waveform coding using any suitable strategy, Differential
coding does not offer any particular advantage in this case, due to the
lack of correlation in the signal. ADM with hybrid companding has been
used [171,175] as well as log PCM [181]} and APCM[170,178]. Abzug{179]
utilises an adaptive method of quantizing the baseband, where the signal
. )
samples are coded with differing accuracy according to their energy.
Sub-band coding of the baseband has also been proposed — Esteban”s
voice—excited predictive coding {(VEPC) scheme employs a  bank of
quadrature mirror filters to split the baseband into eight equal bands
[172]. These are coded individually wusing a block companding PCM

technique, with the number of bits allocated to each band varied

adaptively on a block basis.
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If spectral flattening is performed in the frequency domain at the
receiver, it 1is wmore convenient to also code the baseband in the
frequency domain, ATC methods wusing both the cosine and- Fourier
transforms have been suggested for this purpose[173]. 1In the Fourier
domain, the magnitude and phase components of the baseband may be coded
with  different accuracy according to their contribution to the

perceptual quality of the synthesised speech[176].

2.5.2 Harmonic Scaling Techniques

Harmonic scaling, which has evolved from concepts of phase vocoding (see
section 2.4.2.4) is not in itself a speech coding method, It is rather,
a pre-processing technique which compresses the input speech by
typically a factor of two, prior to coding and transmission, leading to ‘
a direct bit rate reduction. At the decoder, the received signal is
appropriately expanded by a complementary process to yield the

reconstructed speech{146,159,182-186].

Methods of harmonic scaling have been realised in both the time and the
frequency domain, and they focus primarily on redundancies in speech due
to pitch structure and local stationmarity. Time domain harmonic scaling
(TDHS) has in particular, been demonstrated to be an effective means of
achieving bandwidth reduction whilst maintaining good clean speech
reproduction, The TDHS algorithm developed by Malah  [182-184],
compresses the bandwidth and sampling rate of the input signal by a
factor of two at the transwitter and expands it back at the receiver.
This is accomplished as a time domain realisation through pitch
synchronous: processing. Figure 2,41(a) illustrates the compression

process, The input speech x(n) is divided into blocks of 2P samples,
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where P is the measured pitch period., This is compressed to P samples
as follows: The first block of P samples is weighted by a window W{n)
which lirearly decreases from 1 to 0 across the block, The second block
is similarly weighted with a window 1-W(n) which linearly increases from
0 to 1. The sum of the two weighted blocks then produces one Block of P
samples of the compressed signal xc(n), which looks like the first block
of x(n) at its beginning and like the second block of x(n) at the end.
In this way, the concatenation of the blocks of xc(n) forms a continuous
waveform without block end discontinuities, The inverse process of TDHS
expansion is depicted in figure 2,41(b)}. 1In this case, 3P samples of
;c(n) (the received xc(n)) are used to compute 2P samples of ;(n) using
the 2P sample overlapped windows ghown by the solid lines, The windows
are then shifted by P samples and the next 2P samples of ;(n) are
computed in a similar process, Thus, for every P samples of the
compresged signal ;C(n), 2P samples of the expanded signal ;(n) are

produced, such that x{(n) is continuous across the boundaries of the

concatenated output blocks,

The frequency domain harmonic scaling (FDHS) technique[182,184,186],
based on the short-time complex Fourier spectrum, aims at scaling the
individual pitch harmonics of voiced speech signals, as in the phase
vocoder[167]. However unlike the latter, which uses only the phase
derivative, FDHS seeks to perform frequency scaling without discarding
the phase information. A qualitativg model for frequency division is

shown in figure 2.42,

Malah and Flanagan presented a unified description and assessment of
TDHS and ¥FDHS and investigated a hybrid scaling method in which

compression is performed by TDHS and expansion by FDHS[182]}. They
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Fig. 2.42 Qualitative Model for Frequency Division of Voiced Sounds

concluded that FDHS is more robust than the simpler TDHS because it 1is
not  explicitly dependant on pitch extraction. For clean (i.e.
uncorrupted) speech inputs, compression with TDHS results in better
reconstructed speech quality. On the other hand, for noisy inputs, in
addition to possible failure of the pitch detector at high noise levels,
the TDHS expansion process tends to structure the noise, producing a
perceptually annoying effect, They also reported that in applications
where pitch extraction is feasible but where pitch data transmission is
to be avoided, the hybrid TDHS~FDHS system provided better overall
speech quality than TDHS or FDHS alonme. The additional advantages of
the hybrid system, such as reduction of noise structuring and high
immunity to chamnel errors, compared to TDHS alone; and the lower
complexity and higher quality, as compared to FDHS alone, makes it the

best solution for a variety of applicatioms,

As mentioned above, harmonic scaling is wused in conjunction with

standard waveform coding techniques, and in this respect, TDHS has
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received proportionately greater attention than FDHS because of its
relative simplicity and the high quality recovered speech it provides.
Malah and Crochiere investigated the performance of TDHS with sub-band
coding and adaptive transform coding[159]. They found that bit rate
advantages of 7 and 4 Kbps were obtained over SBC and ATC when TDHS is

used, at a bit rate of 9.6 and 7.2 Kbps respectively. In addition, TDHS

algorithms appear to perform well on the speech of several simultaneous
speakers, More recently, Crochiere, Cox and Johmston were able to
perform real-time simulations of these combinations using a
multi-processor approach[l146]. TDHS has also been investigated by Melsa
in conjunction with backward adaptive ADPCM {which he termed an
“adaptive residual coder”) and variable Huffman coding[185]. He

reported good quality speech with a bit rate of 9.6 to 16 Kbps.

2.5.3 Harmonic Coding

Another attempt to close the performance gap between waveform coders and
vocoders is the harmonic coder proposed recently by Almeida and Tribolet
[187]. Figure 2,43 shows a generalised harmonic coder diagram. At the
transmitter, the data is pre-filtered, windowed and transformed to the
frequency domain to yield the short-time spectrum  S(n,k). This
short-time spectrum 1is then analysed into generalised harmonics,
according to the estimate of the pitch, The model parameters i.e, the
complex amplitudes of the generalised harmonics.are then quantized and
used to synthesise the modeled spectrum §(n,k), using a non-stationary
spectral model, The residual spectrum R(n,k) = S(n,k) - 5(n,k) is then
quantized and transmitted along with the pitch and model coefficients,

At the receiver, the residual data are decoded and added to the
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synthetic spectrum, and then fed to the short-time Fourier synthesiser
and post-filter. Almeida and Tribolet reported promising preliminary
results for high quality speech reproduction using the harmonic coder

for bit rates from 4.8 to 9,6 Kbps.

2.6 TRARSMISSION ISSUES

Much of the work on speech coder design largely ignores transmission
issues, but sometimes transmission factors are critical to the choice or
design of a coding strategy. This section will deal with some

transmission considerations[10,12,19].

2.6.1 Channel Errors

For most speech coding studies, the channel is assumed to be ideal, The
principal reason for this assumption is that it is necessary to
determine whether a speech coder will achieve the desired performance in
an ideal enviromment before complicating the problem with channel
effects. Once an attractive speech coder design is obtained however, it
is imperative that the effects of channel errors be examined[19]. An
investigation into the effects of channel errors on the SNR performance

of several speech encoding schemes is given by Noll[188].

Subject to some qualifications and exceptions, one can say that the
“tolerable” bit error rates in most speech coding procedures are in the
order of 1073[10]. One typically gains order of magnitude advantages
(1072 or more) by using so-called robust versions of coding algorithms
and by using explicit methods of bit protection (error correction/

coding) or by speech smoothing operations at the receiver, For
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applications in telecommunication networks, the International Telegraph
and Telephone Consultative Committee (CCITT) has defined certain
requirements with respect to the performance of speech coding algorithms
in the presence of transmission errors[10):

(1) Algorithms must remain stable at the decoding end when disturbed by
an error rate of 10-3.

(2) Coded speech must remain understandable up to this error rate,

{3) With a more common error rate of 10-6 or 10-7 , the quality must re-
main subjectively equivalent to (or better than) the PCM quality un-
der the same condition,

Some of the common measures employed to combat the effects of trans-

mission errors will be discussed in the following.

(a) Subdued Quantizer Adaptaticn

Quantizer adaptation strategies which rely on memory in their adaptation
(such as Jayant”s one-word memory algorithm) are naturally more
sensitive to errors in transmission, because of the effect of error
propagation., One method of checking this effect is to allow the error
to “leak” away within an acceptable time, at the expense of a slight
degradation in performance. For example, the one-word memory algorithm

(equation 2.15) can be replaced by a “leaky” adaptation logic{189,190],

An) = A1) .M(JE) ) (2.45)

where B (typically just smaller than 1, e.g. 63/64) is the leakage
factor which controls the speed of error dissipation. This
modification, proposed by Goodman, has been employed successfully in
time domain (ADPCM) as well as frequency domain (SBC) coding[l2]. A

»

similar robust version of ADM is the syllabic (as opposed to
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instantaneous) companding continuous variable slope delta (CVSD)[108]

modulator with an adaptation algorithm given by equation (2,39).

(b) Subdued Prediction

The same error propagation effect is true for speech coding systems
using backward adaptive prediction as noted by Moye[l91], Qureshi and
Forney[67], among others. The usual approach is again to fade the
memory of the adaptive algorithm in some fashion, although this can
substantially reduce the efficiency of prediction., One way to restrict
this reduction iﬁ performance is to fade the memory only when an error
occurs, but - this would entail added complexity (incurred by

incorporating error detectors) and possibly an increased data rate[19].

(c) Explicit Transmission of Coder Parameters/Error Protection

The problem of semsitivity to transmission errors which is inherent in
backward adaptive quantizer or predictor strategies may be avoided to
some extent by dedicating a fraction of the coder bit rate for explicit
transmission of adaptation information, This would obviously be better
suited for forward block adaptation strategies such as forward block
prediction (forward adaptive ADPCM, APC) and quantization (AQF, ATC).
Additionally, whea the channel error rates are very high, these
parameters can be coded in a special error-protected format, by allowing
a further increase in bit rate. Jayant[46] 1investigated the
effectiveness of error protection for mobile telephony employing DM and
DPCM and suggested two coders suitable for operation in that environment
- a DM-AQF coder with bit scrambling, and an error-protected 3-bit
DPCM~AQF. In the latter scheme, the most significant bit (MSB) is

transmitted 3 times, the next bit twice and the least significant
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bit (LSB) once. At the receiving end, the MSB is determined by a
majority vote over the 3 received versions; the magritude of the middle
bit is forced to its smaller magnitude if the two received versions do
not agree, and the LSB is accepted as correct., This provides good error
protection at the expense of a doubling of the bit rate, and would
perhaps only be justified in applications where error probability is
high (1072 or more), such as in the case of mobile telephony considered.
Steele proposed several error protection coding methods based on
statistical criteria for wuse with DPCM encoding schemes[192-193]. One
method transmits a PCM word representing the true amplitude of the
signal at the end of every block of DPCM samples. If the decoded DPCM
speech differs from the PCM sample, one or more errors exist in the
block, and a search based on a simple statistical criteria can he used
to locate and correct‘ the erroneous sample(s). Other information
derived from the input speech can also be used for error-protection
purposes, and another method transmits the maximum difference between
adjacent samples within a block, If the adjacent difference between
recovered speech samples at the receiver exceeds this transmitted value,

then an error is indicated and appropriate correction may be applied,

Crochiere performed an analysis on the performance of 4 and 5 band
sub-band coders in the presence of transmission errors[150]. Using the
robust quantizer (equation 2.45) and partial bit protection (protecting
the sign and the MSB) in the lower sub-bands, he found that
intelligibilty of the recovered speech is maintained for error rates as
high as 1071, Viswanathan[194) examined the noisy channel performance
of a 16 Kbps APC coder with entropy coding using the Hamming (7,4) code

(i.e. protect 4 data bits by adding 3 parity bits) to protect the
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important coder parameters, and reported slight degradation in the
speech quality for error rates up to 1002, In many cases, channel
errors may lead to instability in the feedback filter of ADPCM systems,
especially when the predictor is backward adaptive and of a high order.
One recent suggestion inverts the ADPCM predictor structure at both
ends, so that the receiver becomes an all-zero filter{195]. Another
method implements a 4th order filter using two stages of cascaded second
order predictors, where each section is optimised individually [196].
Lattice filters have also been used e#tensively, in place of tranversal
filters in ADPCM or LPC systems[78,79,197-201] - these have the
advantage of preventing instability in the decoder filter due to
transmission errors, if the filter coefficients are constrained to be in

the range +1! to -1 (see sectionm 3.3.2).

2,6.2 Tandem Coding

As present telecommunication networks are still mostly analogue, with
digital sections only in some parts, the need for more than one
coding~decoding process is not uncommon[10]. Indeed, as a worst case in
an international communication, CCITT does not exclude the possibility
of up to 14 coding-decoding processes in cascade. Such tandem codings
of speech may involve identical or non-identical stages, If the
encoding stages are separated by  intermediate operations of
digital-to-analogue conversions, the distortions introduced by different
coding stages tend to be statistically independent, and therefore
additive in some sense. Although there is a tendency for quality loss
to occur most during the first stage, each subsequent coding-decoding

operation will contribute not insignificantly to quality deterioration,



Chapter 2 Page 85
Crochiere[150] investigated the performance of the sub-band coder for up
to 4 tandem codings, and found a 3 dB drop in SNR per doubling of the
number of tandem coders. Quality degradation is perceptible after three
coding-decodings and becomes quite obvious with 4 tandem coders, Le
Guyader[200] also studied the effect of tandem coding in ADPCM and PCM
systems and found noticeable degradation in speech quality for all

systems after 8 coding-decoding processes.

2.6.3 Delay

Another constraint of telecommunication networks is a limitation on the
processing delay., Increasing the delay in a telecommunication 4~wire
link will make communjcation more gensitive to echoes, Disturbing
echoes can be eliminated by echo suppressors or echo cancellexrs, but
their use is not recommended, for economic reasons, In some
applications however, such as satellite communications, the propagation
delay is so large that there is no real constraint on processing delay,
since the latter typically constitutes only a small fraction of total
delay. For terrestial links, the use of echo suppressors can be avoided
for up to possibly 20 ms delay, although CCITT recommends values much

lower than that[10].

Apart from the very simple algorithms, most speech coding methods
utilise some form of “look-ahead” techniques in order to achieve better
signal compression and henmce bit rate reduction., Forward block adaptive
predictors or quantizers (AQF)[20,41,47] will obviously incur a delay
equal to the blocksize of adaptation; typically in the range of 8 to 32
ms, Other methods which employ similar block processing operations,

such as ATC, LPC, RELP are also subject to the same delay, For the
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sub-band coder, substantial delay is incurred by the filtering process
involved in the splitting of the signal spectrum, and this 1is
propoertional to the number of bands used., Although quadrature mirror
implementations have reduced considerably the length of the FIR filters
required, the delay is nonetheless not insignificant. If, in addition,
forward adaptive bit allocation and quantization is used, further delays

will be necessitated [201,202].

Processing delay is obviously a drawback in terms of the
implementability of any algorithm, and should be taken into account in

the assessment of a system,

2.6.4 Encryption

One of the attractions of digitised speech is the ease with which it can
be encrypted, Digital encryption can be accomplished either by masking
speech carrying bits with a psuedo-random binary noise sequence known at
the receiver, or by permuting their positions within a block of a
certain  length. In general, the residual intelligibility from
permutation is always higher than in masking, but it does decrease with
the length of the block used, Soméetimes, the encryption procedure
necessitates a delay, which for the block permutation methed, is equal
to the size of the block., For medium rate speech coding, such as 16 or
24 Kbps ADPCM, a blocklength of 16 (with a delay of 1 ms) would be
adequaté for providing casual privacy in applications like mobile radio

[12].

Although traditionally, encryption or scrambling is wused to offer

communication  privacy, recent research have applied scrambling
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techniques to embed data into speech or video signals with significant

success[203,204],

2.6.5 Variable Rate Coding

In the design of digital speech coders, it is often assumed that the
coder and channel operate at fixed bit rates, In reality however,
speech is an intermittent and non-stationary process, and in many
applications, user demand on a communication system is variable. In
practice, these intermittent properties can be utilised to improve the
design of a communication system, such as is done in TASI (Time
Assignment Speech Interpolation), or DSI (Digital Speech Interpolation)
systems, The other property — that of a variable demand on the system
has also been explored for use in packet transmission

systems[12,23,206].

In both the above systems, the important element is the variable rate
coder, In 1its simplest form, it may amount to a trivial transmit/no
transmit decision as was used in initial TASI systems. In such systems,
a group of N users share M channels (M < N) at any instant. Only active
parts of communications are transmitted, and during pauses between
sentences, words or even syllables, the channel is allocated to another
active user, Since in a typical conversation, less than 50% of the time
on average is spent on active talking, a concentration factor of at
least 2 is gpenerally considered possible when the number of channels N
is greater than 100. Even then, the probability (however remote) of
“freeze out” exists (i.e, when there are more than M simultaneous
speakers), When freeze out occurs, some active channels cannot be

transmitted and the effect is subjectively very disturbing, One way to
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avoid or at least limit this freeze out effect is to associate TASI with
variable length coding schemes - rather than cutting some active
channels completely in the event of freeze out, it is subjectively
preferable to smoothly decrease the quality of all (or part) of the

active channels by assigning fewer bits per sample to them,

Generally, variable rate coding may be characterised according to the
configuration shown in figure 2.44, where both the source activity and
the channel rate are assumed to be variable{12]. The buffer is used to
take up the “slack” between the source and the chamnel, and to smooth
out fluctuations. A block processing approach is often used, in which a
block of N samples is encoded with a total of B bits such that the
average transmission rate is B/N bits per sample, The allocation of
bits across the block can be made according to rate distortion

relations, and is given by the well-known equation[205]:

cz(n)

2

R(n) = & + 1/2 log2
d

(2.46)

where R(n) is the number of bits for coding the nth sample in the block,
6§ is a constant dependant on the characteristic of the quantiéer and the
probability distribution of the signal, Uz(n) is the variance of the
signal as a function of time and d? is the variance of the quantization
noise,

a2 = d%(n) = 1,2,.0...N (2.47)
Dubnowski[206)] analysed the theoretical SNR for quantizing the block of

N samples wusing variable rate coding and provided the following SNR

formula,
N-1 2
%— Y o (n)
B =
SNR = 20(3 - §)log 2 + 10 log sty (2.48)
var .

[n=o I’ (n)r
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The first term of (2.48) represents the SNR for a fixed rate coder and
the second term gives the improvement in block SNR that is possible
using variable rate coding., This gain is given by the ratioc of the
arithmetic and geometric means of the signal variance across the block,
If the speech is highly non-stationary across the block {i.e, the
signal variance fluctuates greatly), a large gain can be expected, For
a single speaker, speech is locally stationary over about 30-50 ms, and
the blocksize N would have to be much greater ( > 100 ms) in order to
obtain a significant advantage, For the case of multiple users however,
as in TASI, P speakers can share a single channel by assigning each user
a sub-block of N/P samples and concatenating the sub-blocks into one

large block,

An important aspect of variable rate coding is the problem of buffer
management, Long buffers can cause unacceptable delays in the system
while short buffers are subject to a greater risk of overflow which can
cause excessive distortion, Dynamic buffer control techniques have been
proposed, based on observations of either the output bit stream of the
coder or the input samples. Dubnowski used a method of buffer control
which is similar in many respects to the one-word memory algorithm of

Jayant [48]. This is given by,

a’(n) = a°(n-1).H(b(n-1)) (2.49)

where dz(n) denotes the distortion level in the quantizer at time n, and
H(b(n-1)) is a multiplier factor which is dependant on the number of
bits b{n-1) in the transmitter buffer at time n-1. H(b{(n-1)) is a
monotonically increasing function of b{n-1), being less than 1 when

b{n-1) is near zero and greater than 1 when b(n-1) is near B, the buffer
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length, When b(n-1) 1is small, d%(n) decreases (from 2.56), so that
greater quantizer  accuracy (i.e. more bits) is permissible,
Conversely, when b(n-1) is large, coarser quantization (less bits) will
have to be used to prevent buffer overflow and dz(n) is increased
appropriately. An ADPCM system using variable rate coding was also
demonstrated by Dubnowski. In this scheme, the ADPCM coder output is
framed into packets of 60 bits, with a 2-bit header preceding each
packet. Each packet is encoded with either 2,3,4 or 5 bits per samplé
corresponding to 30,20,15 or 12 signal samples per packet, respectively.
The choice of the number of bits to quantize each sample is computed at
the transmitter and transmitted as the 2 header bits for each packet,
This explicit transmission of the bit information provides more
robustness to transmission errors, which might otherwise 1lead to
synchronisation problems., Packet switching is often employed in a
network coneisting of a number of communication terminals, In such
cases, each packet must contain various other overhead informatiom, such
as the destination and source, the type of information contained

etc.[23]

2,7 HARDWARE ISSUES

Although the bulk of research into speech coding algorithms has been
carried out using computer simulations, the ultimate aim of these
efforts is to produce systems which can be physically built and used in
real-life applications. The 1last decade has seen a phenomenal advance
in device technology and in particular, the advent of high speed
micro-processors and programmable ICs., In the field of digital speech

coding, implementation of potential coders in hardware has become a
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major issue, and numerous special purpose ICs have been developed for
this purpose [12,146-148,209}. This section provides a brief survey on
the current state of VLSI technology with respect to speech coding

applications{207].

2.7.1 Custom Chips and Devices

A number of custom chips and chip sets have receytly been introduced
that are specifically intended for digital speech applications,.[12] In
the area of waveform coding, chips for complete M law A/D and D/A
conversions (including %nti-aliasing filtering) have recently been
developed and are of interest in applications of digital telephony.
Chips for ADM (adaptive delta modulation) have also been available, and
with growing interest in telephony at 32 Kbps, chips for ADPCM are

expected to follow,

In the vocoder area, synthesiser chips or chip sets which realise the

speech production model of figure 2.4% have also recently Dbecome
e

available, A mnotable example which has generated considerable interest

is the Texas Instrument”s “speak and spell” chip which has been used for

voice response in educational toys, A number of other devices for

applications in voice response and announcement systems have since

followed.

2.7.2 High Speed Microprocessors and Programmable ICs

Another area of VLSI technology that is currently having a strong impact
in digital speech applications is that of high speed microprocessors and

programmable integrated circuits, A notable example is the  Bell
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Laboratories” Digital Signal Processing (DSP) IC{146,147,207). The DSP

is a powerful single-chip programmable microprocessor that is especially

suited for performing digital signal processing operations. Figure 2,45

shows a block diagram of this processor, Its main elements are:

(1) a 1024 x 16 bit ROM memory for storage of the programs, tables and
various constants,

(2) a 128 x 20 bit RAM memory for storage of dynamic data and state va—
riables,

(3) a main Aritbhmetic Unit (AU) with provision for multiplications, full
product accumulation, rounding and overflow protection,

(4) An Address Arithmetic Unit (AAU) with address registers for control-
ling memory access and provision for updating these addresses,

(5) an I/0 unit to control serial data transmission in and out of the
circuit, and

(6) a control unit which provides instruction decoding and process syn-

chronisation,

The processor operates with a 800 ns machine c¢ycle time, which 1is

established by a 5 MHz clock,

Crochiere described the implementation of various speech  coder
algorithms using the DSP[146]. A low complexity design, such -as ADPCM
using a backward adaptive quantizer (AQJ) can be realised easily on a
single ¢hip, In fact, one such ADPCM encoder or decoder uses no more
than a quarter of the real-time capability of the DSP, 3 percent of RAM
and 15 percent of program memory. This suggests that 4 ADPCM encoders
or 4 decoders, or 2 encoder-decoders could be implemented on a single

DSP, A medium complexity technique such as the sub-band coder (2 and 4
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bands) using quadrature mirror filters requires omne chip for the
implementation of either encoder or decoder, using almost all the DSP
capability and memory., For algorithms which are too complex for a
single DSP but which can be broken down into smaller modules, a multiple
DSP approach was used. An example of such an algorithm is time domain
harmonic scaling cémbined with SBC., This is realised using 3 DSPs for

the encoder (which involves pitch detection and harmonic compression)

and 2 for the decoder (no pitch extraction needed).

Another signal processing chip gaining widespread acceptance in digital
speech applications is the NEC7720[148,209,210]. A block diagram of the
chip is shown in figure 2,46, It uses a “Harvard” architecture, in
which the instruction store is separated from data storage. There is
space for 512 instructions held in ROM, 23 bits wide. Instructions are
of 3 types:

(1) program control,including 32 conditional jumps and subroutine calls,
(2) immediate loading of 16 bit data,

(3) a general purpose format which can simultaneously control 6 differ-

ent functions,

Data storage is provided separately for fixed data in ROM (512 words)
and for variable data in RAM (128 words). The data ﬁordlength is 16
bits; with limited facilities for double length working, and with fixed
data held only to 13 bit precision. Arithmetic facilities are provided
by a 16 x 16 multiplier which 1is pipelined into a conventional
arithmetic unit, both operating simultapeously at the 4 MHz instruction
rate, Data transfer between memory units, arithmetic registers and

input—output takes place over a 16 bit internal data bus, The NEC7720

has been used to implement, amongst other things, the LPC vocoder, the
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channel vocoder and a two-band sub-band coder[148].

One major problem with the present signal procesdrs such as the Bell
Labs’ DSP and the NEC7j20 is the difficulty of implementing a divide
operation, so divisions are usually avoided by various means, For
example, in the iwmplementation of the widely used AQJ adaptation,
divigion is eschewed by storing the quantizer step~sizes and inverse

step~sizes in ROM[146,148].

It is clear that device integration technology has advanced to a stage
where many algorithms regarded as too complex a few years ago, are now
being seriously considered for implementation. It is envisaged, with
the ever increasing capability and decreasing cost of digital hardware,
that the time will soon come when algorithm complexity ceases to be such

a critical factor in the choice of a system,

2.8 PERFORMANCE INDICATORS

Although objective performance measures are highly desirable in the
assessment of speech coders, these are not sufficiently well established
and are genmerally only used as guideposts in coder design. Formal
judgments on coded speech quality must .almost inevitably depend on
subjective testing. Nevertheless, objective measures such as signal to
noise ratios have been useful as complements to the more reliable

listening tests, Several performance indicators will be discussed in

this section.
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2.8.1 Objective Assessment

The single most widely used indicator of speech coder performance is the

long-term SNR{9,12,19,20,37,211], defined by,

nZ xz(n)

(2.50)
16 log ~
10 n{ {x{n)-x(n) }°

SNR {(dB) =

where the summatioms are typically over the duration of a sentence
length utterance, Since waveform coders attempt to preserve the input
signal waveform; the SNR, which is the ratio of the signal variance to
the noise variance has the potential of characterising waveform coder
quality.. Indeed, the SNR would be a meaningless quantity in systems
which are not based on waveform preservation, The SNR measure as given
in (2.50) is however, strongly influenced by the high energy components
of the speech waveform, and does not reflect the performance for low
energy segments whose preservation is perceptually very important., An
improved measure which takes this into account computes the SNR averaged
over short-time segments of active speech (discarding silence). The

average segmental SNR over K blocks is defined as[19,20],

K
SSNR = 1/K ) SNR(j) (2.51)
j=1

where SNR(j) is the SNR of the jth block, or segment measured in dB.
The segmental SNR 1is a particularly useful performance indicator for

coders that adapt quantizers or predictors in a block fashion,

A related distortion measure used particularly for predictive coding
systems is the signal-to-noise improvement ratio {SNRI or SNI), also

known as the signal-to-residual ratio (SRR), given by[19],
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I 2

SNRI (dB) = 10 log, (2.52)

Z e2(n)
where e(n) is the residual signal or the prediction error. This is
useful for measuring the effectiveness of the predictor employed in a

DPCM or LPC configurationm,

Objective measures such as the SNR can also be formulated in the
frequeﬁcy domain, and these might be more relevant to frequency domain
coders, Such spectral SNRs reflect the accuracy of prese;vation of the
short—-time magnitude spectra of speech segments which are known to be
perceptually important., It is also known that the human ear makes a
crude Fourier analysis of signals and does not pay much attention to
phase - so that some loss of phase information is indeed permissible
[2,12,26]. More recent work has aimed to use the short~time spectral
envelope to develope perceptually meaningful objective spectral distance
measures that can be accumulated over the rumnning signal. The general
approach has been to evaluate the short-time amplitude spectrum on a
frequency-warped scale (corresponding to the equal articulation bands,
or to the c¢ritical bands), and a non-linear transformation of spectral
magnitudes to approximate the relatiounship between subjective loudness

and amplitude[81,110,140],

Sound spectrograms are also useful in determining how well the spectral
characteristics of the recovered signal are matched to the input, and
provide. an easy visual comparison between different coders. Figure
2;47 shows an example of contour spectrograms obtained from about 5
seconds of male and female speech for the utterance, "There was an old

man called Michael Fimnnegan, he grew whiskers on his chinagen,” The
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speech data is sampled at 8 kHz with a bandwidth from 0 to 3400 Hz. The
gignal waveform is also shown above the spectrogram, which is
essentially a plot of the frequency characteristics across time, The
amplitude of the frequency components is indicated by the intensity of
the plot., The dark bars in the low frequency region corresponding to
the high amplitude formants are clearly shown, Note that  the
spectrograms shown in the figure are incomplete, as frequency components
above 2.5 kHz had been left out to provide room for the input signal

waveform,

Finally, the distribution of output noise across the frequency spectrum
also provides an indication of the kind of distortion to be expected in
the recovered speech, In particular, the long-term average noise
spectrum has proved useful 1in applications where noise shgping is
applied to improve the perceptual quality of recovered speech{8l,

2.8.2 Subjective Assessment

Subjective assessment of a speech coder may be considered under the

following sections:

(a) Intelligibility

Speech intelligibility is usually not a problem in waveform coded speech
unless the bit rate is very low and there are demanding transmission
requirements, such as a high bit error rate or multiple tandem codings.
It is perhaps more relevant to .vocoder synthesised speech, which is
often dependant on the input speech - the sex and age of the speaker,

additive noise . and other distortions introduced in the system,
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Intelligibility is also heavily influenced by speech content - real life
speech is often characterised by considerable redundancies, so that a
listener may well understand what is being said without having to hear
every word, To minimise such effects, intelligibility tests may employ
“logatomes”, which are meaningless words with a structure consisting of
consonant~vowel-consonant e.g. bon, vin, although there is often an

element of unreality about them[199].

(b) Talker Recognition

Talker recognisability is important, not only in telephone conversations
among friends, but even more so0 in many business and government
transactions by voice[12]. Again this tends to be a minimal issue in
waveform coding. It is important however, in the assessment of
vocoders, since many vocoders have a tendency to make everybody sound

alike, and thus have poor speaker recognisability[26].

{c) Listener Acceptance

Listener acceptance is probably the most commonly encountered subjective
Festing procedure[199,216,217]. 1Its purpose is to produce a comparative
rating of several different coders, either as 2 means of comparing their
relative performance or to calibrate a particular coder in terms of
others whose degradation are better known (such as log PCM). Typically,
subjects are presented with pre-recorded speech material via
loudspeakers or headphones, and asked to indicate their responses
appropriately. Formal listening tests are often a long drawn out
process, and a number of pre-requisite conditions are recommended[183]:
~ the listening level must be comfortable,

- the subject matter must be varied, and the phrases used must be phone-

tically balanced,
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-~ the number of listeners must be sufficient (at least 20)
-~ reference conditions such as ambient noise, must be defined to ensure

repeatability of the experiments,

Many types of tests are available for evaluating the acceptability of a
signal of satisfactory intelligibility. In the isopreference method
{183], the subject is presented with first, the input signal degraded in
a measurable and reproducible manner and second, the input signal
delivered by the coder under test, These are presented randomly, in
pairs, and the subject is asked to make a forced decision on which he
prefers. The value of degradation at which listening acceptance is
comparable for the two signals is used to characterise the coder, The
most frequently wused degradation is multiplicative noise. A related
test is the relative preference method, where the coded signal is
compared directly with signals affected by a Lknown deg;ee of
degradation, such as 7 bit or 8 bit PCM, For communication
applications, 7 bit PCM coded speech is generally accepted as the lower
limit of quality permissible in the telephone network., A more elaborate
testing procedure is the method of  judgment bf categories of
degradation[199,216,217]. The subject is asked to classify, with
respect to the input signal, a series of different coder outputs, using
a scale containing 5 marking levels covering the whole range of
degradation., A commonly used scale is the CCIR scale drawn up by the
International Consultative Committee for Radiodiffussion, which consists
of the following 5 grades:
5 Imperceptible degradation
4 Perceptible but not annoying degradation

3 Slightly annoying dégradation
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2 Annoying degradation
1 Very anmoying degradation
This corresponds to the rating categories "excellent - good - fair -
poor — unsatisfactory" used by Bell Laboratories in Holmdel, New Jersey
f217]. The signals are presented randomly in repeated pairs A-B,A~B,
where A 1s the reference signal and B the coded signal. Frequently, a
training sequence of about 10 pairs of signals is first presented to the
subjects to give them a “feel” of the experiment. The results of the
classification are analysed by plotting the histograms of the votes
received for each category of rating of each coder tested. An example
of a typical histogram 1is shown. in figure 2.48, where the signal

evaluated is obviously of a high quality.

50% 4

1 2 3 4 5

Fig. 2.48 Illustrative Histogram for Subjective Testing Results

{Judgment by Categories of Degradation)

Although formal listening tests are probably the most reliable
indicators of performance with regards to speech coders, it 1is not
usually resorted to because of the complexities and difficulties

involved in carrying out the test. During the early design phases in
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particular, informal listening tests, supplemented by SNR values and

perhaps spectrograms are often quite adequate[l9],

2.9 CORCLUSTON

The choice and design of a particular speech coding system for a
specific application is often dictated by the requirements of the local
enviromment, and the constraints imposed, With the huge amounts of
research efforts  expended in the field of speech coding over the years,
a wealth of information is available to the designer to cover virtually
every conceivable area of interest, Frequently, and particularly when
local constraints are not overly rigid or severe, the task of the
designer becomes one of deciding among several viable alternatives,
This would ultimately involve.an exercise in evaluating each potentiél
system, and determining the optimal trade-off between such factors as
speech quality, complexity and bit rate, subject to the local
conditions, A knowledge of the performance of a wide spectrum of speech
coders, together with the operating details associated with each, would
thus be essential, This section considers briefly several issues
related to the assessment and comparison of a range of speech coding

algorithms.

2.9.1 Coder Complexity

Complexity is obviously an important issue in coder design, since it 1is
invariably tied up with implementability and cost. Flanagan, et al[l2]
provided an approximate ranking of a number of speech coders in terms of
complexity, by comparing each to the simple adaptive delta modulator

(ADM), which is assigned a complexity factor of unity,
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Relative Coder
Complexity
1 ADM : Adaptive Delta Modulation
1 ADPCM Adaptive Differential PCM
5 SBC Sub-band Coder {with CCD filters)
5 PP-ADPCHM Pitch Predictive ADPCM
50 APC Adaptive Predictive Coder
50 ATC Adaptive Transform Coder
50 oV Phase Vocoder
50 VEV Voice Excited Vocoder
100 . LPC Linear Predictive Coefficient Vocoder
100 Cv Channel Vocoder
200 ORTHOG LPC Vocoder with Orthogonalised
Coefficients
500 FORMANT Formant Vocoder

1000 ARTICULATORY Vocal-tract synthesiser; synthesis from
printed English text,

2.9.2 Speech Quality and Transmission Bit Rate

Good speech quality is the ultimate aim of any speech coding system, and
this is generally a function of the transmission bit rate, The quality
associated with known coders operating at or above a particular bit rate

is given below[12]:

Quality Coder Bit Rate (in Kbps)
Toll quality Log PCM 56
ADM 40
ADPCM 32
Sub~band 14
PP-ADPCM 24
APC,ATC, ¢V, VEV 16
Communications Log PCM 36
Quality ‘ ADM 24
ADPCM .16
Sub-band 9.6
APC,ATC, V,VEV 7.2
Synthetic quality CV,LPC 2.4
ORTHOG 1,2
FORMANT 0.5
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Toll quality digital transmission can be achieved with simple coders at
40 Kbps (ADM), 32 Kbps (ADPCM) and 24 Kbps (SBC). Mobile radio
telephone quality at 24 Kbps with the same relatively simple coders also
seems feasible, With increased complexity (APC,ATC), toll quality at 16

Ebps can be attained.

Future research in the ever expanding area of speech coding is envisaged
to continue with increased interest. With hardware technology advancing
in parallel, attention would be expected to be focussed on pushing the
lower bit rate 1limit for toll quality speech even further, using more
sophisticated techniques, At the same time, methods for elevating
speech quality at data-coding speeds (7.2 to 9.6 Kbps), and for
moderating the effects of transmission errors on conventional systems is
an area of substantial interest. Very often, there is a tendency. for
practical applications in any field to lag quite a way behind current
understanding of the subject. While this may be true also in the £ield
of speech coding, it is a healthy sign that international
telecommunications organisations such as CCITI are taking an active
interest in up-to-date algorithms and research efforts in this area,
Indeed, over the past few years, CCITT has embarked on an extensive
programme to evaluate potential speech coding algorithms in an attempt

to define new standards for future network requirements[10],
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CHAPTER THREE  ADAPTIVE PREDICTION IN DIFFERENTIAL CODING SYSTEMS.

3.1 INTRODUCTION

Speech that is sampled at the Nyquist rate exhibits significant
correlation between adjacent samples, This means that a particular
speech sample may be predicted to a good degree of accuracy from
knowledge of previous samples, This predictability, or redundancy
property is exploited by differential coding schemes in which a signal
obtained from the difference between the original signal sample and a
prediction of it based on previous samples is quantized and transmitted.
This de~correlating (or whitening) process results in a transmitted
signal of substantially reduced variance, compared to the original
speech, and thus leads to a direct bit rate reduction for the same SKNR

performance (see also section 2.4.1.2).

The generalised structure of a differemtial coder is shown in figure
2.16, and reproduced for convenience in figure 3,1, The blocks labelled
P and Q are the predictor and quantizer respectively, both of which may
be either fixed or adaptive. This will be referred to as the DPCM
configuration[37,41,45,46,55-64]. Note that the APC coder{80-82] of
figure 2.17 in which an additional long-term pitch predictor 1is
employed, also belongs to this general class of differential coders,
since it also utilises the predictability property of speech. The
function of the predictors in DPCM or APC coders is to produce as
accurate as possible a prediction sequence {y(n)} of the incoming speech

{x(n)}, based on previously decoded samples, such that the prediction
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error sequence {e(n)} is minimised., The simplest DPCM coder arises when
both the quantizer and the predictor are fixed, and P is a simple
one—tap delay, with a constant scaling factor which is either 1 (perfect
integratidn) or less than 1 (leaky integration), Generally however, for
more efficient performance, either or both P and Q are designed to adapt
to the input signal”s characteristics. Such systems, referred to as
adaptive differential PCM (ADPCM) will be of concern in this chapter.
In particular, the predictor part of the coder will be examined in

detail while the quantizer will be covered in chapter 5.

In the following sections, various known predictor algorithms are
examined and their perforﬁance and limitations discussed. Then several
novel predictor adaptations which seek to improve on the performance of
standard methods are introduced, In later sectionms, the APC coder is
considered, together with some pitch extraction methods. A simplified
APC coder, designed to operate at 16 Kbps, is then described and
evaluated, The one—wo;d memory adaptive quantizer[49] is used in all

computer simulations in this chapter.

3.2 FIXED PREDICTION

The predictor in DPCM is traditionally a transversal filter which can be

represented in the z domain as,

P(z) = ) az (3.1)

where p denotes the predictor order, and {ak? k=1,2....p} - are the p
coefficients of the filter (see figure 3.2). For fixed predictors,
these coefficients are optimised using long~term statistics of the input

signal and remain unchanged after that, Selection of the optimum
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x(n) ~ e(n) é(n) ;(n)

y{n)

£(n)

Fig. 3.1 Generalised Differential Coder Configuration

Input

ADDER

Predicted Value

Fig. 3.2 Structure of a pth Order Linear Predictor
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predictor coefficients is based on a minimum mean square error
criterion., From figure 3.1, the error signal at the nth instant is the
difference between the input sample x(n) and a prediction y(n) based on

past reconstructed values of the input, i.e,,

e(n) = x(n) - y(n)
p -
= x(n) - ) a, x(n-k) (3.2)
k=1 .

Note that the feedback round the quantizer insures that the error in the
reconstructed signal x(n) is precisely the quantization error of e(n)
and not an accumulation of previous quantization errors. The SNR gain
over PCM, Gpcm is given by the ratio of the input speech to that of the

prediction error signal. To maximise Gpcm therefore, the predictor

coefficients a, are chosen to minimise the rediction error variance
% P

i.e,
1Y - 2
Min { <ez(n)> = <[x(n) - z akx(n—k)]> } (3.3)
% k=1
R P 2 2 2
= Mlg { <Ex(n) - X akx(n-k)] >+ < g {n) E ak >}
k k=1 k=1

{(3.4)

where q(n) is the quantization noise, given by,

g(n) = e(n) - e() = x(n) - x(n) (3.5)
Equation (3.4) assumes that terms involving correlation between the
input signal ‘and the quantization noise are negligible. In additionm, if
the coder can be assumed to be good enough such that,

<@ (n)> << <x2(n)> (3.6)

then the second term of (3,4) can also be neglected, leading to,
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P 2 -
min  { <[x(n) - Jaxx] >} (3.7
k=1

A

which is the classical Wiener filtering procedure in parameter
estimation theory[218] (also encountered in the design of the LPC
vocoder - section 2,3.7), Rewriting equation (3.7) in terms of

: . 2 '
expectations (letting % representing the variance of e(n) )},

P 2
2 ‘
Efe®tm] = o = E[{xtm) - - J a x(n-k)} ] (3.8)
e k
k=1

Expanding the right hand side,

p p_p
2 2
g =E[x(n)] -2 z E[X(n)x(n—k)] + ) Y aaEfxtn-k)x(n-2))
© ket X ke1a K

(3.9)

In matrix notation, (3.9) becomes

0e2 = crx2 - 2ATC + ATRA (3.10)

2 . . . .
where o  is the variance of the input signal and

2, | 0(1)] (000 p(1) . . . . p(y-1)]

a, p(2) p{l) p(o)y . . . . p(N-2)
A =] c=1: R = ’ )

_aNJ me)- hp(N—l) e e e e e . plo) |

The elements of C and R are the values of the autocorrelation function
of the input sequence i.e,

o(i-3) = E[x(i)x(})] (3.11)

The optimum set of predictor coefficients A which minimises o 2 is
e

opt

2 with respect to A to zero, thus

formed by equating the derivative of o
e
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do 2
e = 0 (3.12)
da A=A *
opt
or
=2C + 2AR = 0 (3.13)

The solution is therefore,
Apt =R C (3.14)
Using equatioms (3.10) and (3.14), the minimum variance of the

— 2
prediction error o, can be formed as,

2 2 T-1 2 T
g = - = -
a, C'R C q, A" C (3.15)

Note that the variance Ue20f the error sequence is not constant or
monotonically reduced as the order p of the predictor increases., This
is because speech is not perfectly predictable from its past samples and
- 80 as p becomes large, 062(min) approaches a finite non-zero value,
Noll [60] investigated the SNR gain Gpcm’ of DPCM over PCM for various
order predictors, and showed that Coem typically saturates for all
practical purposes at p=2, This observation is shown in figure 3.3 for
both low-pass filtered (0 - 3400 Hz) and band-pass filtered (300 - 3400
Hz) speech. Note the higher asymptotic Goem value for low-pass filtered
speech, This is expected, as low-pass filtered speech has more low
frequency emergy and hence greater adjacent sampie correlation, This

implies greater possibility of redundancy removal by differential coding

and thus a higher Gpém'

McDonald[62] considered the performance of DPCM systems on voice signals
and produced some useful data on the long-term autocorrelation values of
speech sampled at 9.6 and 8 kHz. Using these values, the optimum

coefficients for various order fixed predictors can be found using
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Fig. 3.3 Optimum SNR Gain, G vs Order of Predictor, p
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(3.14). These autocorrelation values and the corresponding predictor

coefficients are shown in table 3.1.

Table 3.1 Long-term Normalised Autocorrelation of 8 Klz
Sampled Speech[62] and the Corresponding Optimum
Predictor Coefficients.

Normalised Autocorrelation

p() 0.8644
p(2) 0.5570
p(3) 0.2274
0(4) -0.0297
p(5) -0.1939
p(6) -0.2788
e(7) -0.3030
p(8) -0.2823
p(9) -0,2208
0n(10) -0.1330
Order Optimum Predictor Coefficients
a3 2, a3 a4 ag g a9 ag
1 864
2 1,515 ~-0.752
3 1,748 -1,223 «310
4 1.793 -1.401 .566 -0.147
5 1-777 _10338 0412 0051 _0-110
6 1.776 -1.338 415 041 -0,097 -0.008
7 1.776 -1.341 416 057 -0,148 Q061 -0,03¢0
B 1.775 -1.340 412 .058 -0,.137 024 010 -0.027
3.3 ADAPTIVE PREDICTION

While fixed predictors are designed on the basis of long-term signal
statistics, adaptive predictors seek to provide better prediction of the
input speech by wvarying their coefficients according to the short-term
local signal characteristics, Predictor adaptation may proceed either
in a forward mode or a backward basis. Block adaptation is often

associated with the forward mode while sequential adaptation occurs
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mainly with backward prediction,

3.3.1 Forward Block Adaptive Prediction

In this method[33,68,80-82,112], the optimum predictor coefficients are
calculated to minimise the forward prediction error, ez, over a given
range of x(n) which is chosen to cover between 8 to 32 ms of speech

data, i,e, minimise,
2 P 2
e® = Jlxtm) - ax(ni)] (3.16)
k=1 -

This procedure is basically similar to the optimisation process

encountered in DPCM (equation 3.7) except that in this case the

minimisation is performed in the short-term over a very much smaller
2

block of samples. Setting the derivative of e“ with respect to the ak's
to zero yields the normal equations (see also equations 3.9-3.14):
P ] ]
) a, nz x(n-k)x(n-i) = nz x(n)x(n-i) (3.17)
k=1
1l <ic<p

According to the way the range of the minimisation procedure is
specified, two cases arise from (3.17), 1leading to two methods of

solution,

In the autocorrelation method[33,112], e’ is assumed to be minimised

over the infinite duration —e < n < « , Equation (3,17) then becomes,

(3.18)

A
o
A
o]

p
] a RGi-K) = R(i) Pl
k=1

where
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w
R(i) = } x(n)x(n-i) | (3.19)

n=—w
is the autocorrelation function of the signal and is an even function
with respect to i, The coefficients of R(i,k) form what is known as the
autocorrelation matrix (hence the name autocorrelation method) which is
a symmetrical Toeplitz matrix (a Toeplitz matrix is one in which all
elements along each diagonal are equal). As the range of x(n) is only

over a finite interval, a window w(n) can be applied to x(n), to obtain

another signal x“(n) which is zero outside the interval concerned;

x"(n) w(n)x(n) ; 0 ¢ n g N-1 (3.20)
= 0 ; otherwise

The gutocorrelation function is then,

N-1-i
R(i) = } x' (n)x" (n~-1) ;120 (3.21)
n=0

For the relatively short-term stationarity characteristics of speech
signals, data windows such as the Hamming window or the Hanning window
are appropriate, although for most ADPCM applications, the much simpler

rectangular window is normally adequate.

Unlike the autocorrelation method, the covariance method{33,80-82]
minimises the prediction error over a finite interval, say 0 ¢ n ¢ N-1.

Equation (3.17) becomes,

P
! aek,i) = of0,i) (3.22)
k=1

where

N-1
®(i,k} = ) x(n-i)x(n-k) (3.23)
n=0

is the covariance of the signal x(n) in the given interval, Again, the
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name of the method arises from the fact that the coefficients of ®(k,i)
form a covariance matrix. This matrix is also symmetrical, but unlike
the autocorrelation matrix, it is not Toeplitz. Note from (3.23) that
the values of the signal x(n) for the range -i { n ¢ N-1 must be known,
a total of N+p samples. The covariance method reduces to the
autocorrelation method as the interval over which n varies goes to

infinity,

Numerous  solutions for the normal equations of (3.17) have been
presented in the 1literature for both the autocorrelation and the
covariance methods., Covariance matrices are symmetrical and 1in
practice, usually positive definite. Thus (3.22) <can be solved
efficiently by the square root or Cholesky”s decomposition method[219],
which requires about half the computation (p2/6) and storage (p2/2) of
the more general methods such as Gauss”s elimination or Crout’s
reduction, The Toeplitz characteristics of autocorrelation matrices
permit even further reduction in computation and storage. Levimson{220]
derived an elegant recursive procedure for solving such Toeplitz matrix
equations, and Durbin[221], exploiting the fact that the column wvector
R{i) in the right-hand-side of (3,18) comprises the same elements found
in the autocorrelation matrix, produced a recursion twice as fast as
Levinson“s, requiring only p2 operations and 2p storage locations - a
substantial saving over the more general methods (see Appendix A,
Durbin”s recursion). In solving for the coefficients qf a pth order
predictor, Durbin's method also computes the solutions for  all
predictors of order less than p., An important by-product of this
process is the set of reflection coefficients En’ alse known as

PARCOR (PARtial CORrelation)[34,134] coefficients, which are related to
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the ak's by,
k =a (3.24)
where aiJ denotes the ith linear prediction coefficient for a jth order
predictor. The km coefficients have the important property that if

lk | < 1 54 =1,2...p (3.25)

™
the linear prediction filter is guaranteed to be stable, For the
autocorrelation method, the km's are always less than unity, so that
stability is theoretically assured, The PARCOR coefficients also
possess desirable quantization properties, and they are often used as
transmission para@eters in place of the a coefficients{134,135]., This
is because the latter are extremely sensitive to errors - small
perturbations can cause radical changes in the filter”s frequency
characteristics which may lead to instability, For the %n's however,
filter stability is assured by (3.25), while at the same time, the
smaller dynamic range { -1 ¢ En £ 1 for all m) offers more accurate
quantization, In practice, optimal quantization is obtained by
transforming the %n’s into log area coefficients g given by the

relation,

L+ ko (3.26)
g = lOg 7 - v
n 1 km

and linearly quantizing them[134].

The choice between autocorrelation or covariance methods of solving for
the optimum predictor coefficients in terms of output speech quality is
not clear at the present, and no specific comparisons between the two
methods for DPCM appears to have been documented, The computational
efficiency of the autocorrelation method is an obvious advantage,

although this would be more than offset by the substantial amount of
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multiplications required if a data window (other than the rectangular
window) is applied, The covariance method does not assume that all
samples outside the analysis block are zero, and is possibly slightly
more accurate as a result, In terms of SNR and subjective speech
quality in DPCM systems however, indications are that differences
between the two methods, if any, are negligible[19}. On the whole, the
autocorrelation method appears to be more widely used in ADPCM because
of the guaranteed stability of the filter produced [112,171]. The
covariance method has been used for adaptive predictive coding (APC)

systems{80-82],

It should be emphasised that the sclution of the normal equations does
not form the major computatiomal load — most of the operations required
in forward adaptive prediction systems involve the computation of the
autocorrelation or covariance coefficients, which requires pN
operations, This can dominate the computation time if N >> p as is

often the case[33].

In addition to direct methods of solving the normal equations of (3.17),
various iterative solutions exist{33,222]. 1In these methods, one begins
with an initial guess of the solution, This is then updated by adding a
correction term, which is normally based on the gradient of some error
criterion, Such iterative methods generally require more computation
than the direct methods unless one begins with a good initial guess,
They are useful however, for adaptations where the whole signal is not
available at once, and the solution has to be updated based on every new
observation. The amount of change is wusually proportional to the
difference between the new observation and the predicted value given the

present solution., This is indeed the principle of operation of backward
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sequential predictors to be discussed next.

3.3.2 Backward Sequential Adaptive Prediction

Most backward adaptive prediction algorithms used in ADPCM investigated
to date, allow the predictor coefficients to evolve sequentially
according to:

a (a+1) = a (n) + G(n)e(n) ; 1 <¢kgp (3.27)
where ak(n) is the value of the kth predictor coefficient at the nth
instant and G(n) is a gain term[65-67,69,72-75]. Equation (3.27) can be
viewed as a sequential solution to the set of linear simultaneous
equations or as an estimation theory-based algorithm for parameter
‘estimation, The form of equation (3.27) arises from a sequential

minimisation of the squared quantized prediction error e(n)[69].

At the nth instant, the square of the quantized prediction error is

given by,
e“(n) = {x) - J a x(nk }2 (3.28)
k
k=1
Differentiating with respect to a, gives,
]
de_(n) P . .
SEE—H— = ~2e{n)x{n-j) ;1 <3 gp (3.29)

To minimise az(n) with respect to the jth predictor coefficient, aj must
be corrected in a direction opposite to the gradient of the error
in (3.29) giving,

a (1) = a.(n) + glx(o-kle(k) ;1 <k<p (3.30)
where g(n) is an appropriately optimised gain constamt controlling the

speed of predictor adaptation. The differences among backward adaptive

predictors studied by various investigators evolve around the selection
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of the gain term g{n), A simple form commonly used is[69,72,75]:
G

g(n) = M.
‘ 1 2 \
y + o Z x (n-3j)
i=1

(3.31)

where y and G are scalar constants determined experimentally. The
second term in the denominator.is the variance of the M most recently
decoded samples and acts as a normalisation factor or automatic gain
control, so that the coefficient adaptation is not input amplitude
dependant, while the constanty is included to prevent division by zero
during silence. Frequently, M is set equal to p, the order of the
predictor, Backward sequential predictors with the general form
of {3.30) have been studied by Gibson[68,69,72,75], Moye[191], Cummiskey
[76]1, Jones, Cohn and Melsa [73,75], Qureshi and Forney[67], for ADPCM
coding and by Melsa and Goldberg[223] for APC systems, The update
procedure given by (3.31) was investigated by Gibson[68,69] who referred
to it as the stochastic approximation predictor (SAP). Cohn and
Melsa[73] studied a slightly different formulation where the
normalisation factor islan exponentially weighted function of previous

decoded values,

G x(n-K)e (n) (3.32)

(1-w) T o3x2(n-j) +y
j=0

ak(n+l) = ak(n) +

Cummiskey[76] proposed a simpler adaptation based on the sign of the

quantized error;

ak(n+1) = ak(n) + pr(n"k) sgn(é(n)) (3.33)

7| x(n-3) |
j=1

This reduces hardware complexity with a possible loss in performance,
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Evci, Xydeas and Steele[55,74,224] proposed a sequential gradient
estimation predictor (SGEP) which is based on the general form of
(3.30). In this scheme, the gain term g(n) is computed separately for
each coefficient, using a sequential technique to estimate the grddient
of the prediction error with respect to each a, at each time instant.
They reported improved results over BSAP at the expense of greater

complexity,

Gibson, Jones aﬁd Melsa also compared the performance of ADPCM systems
using the SAP predictor with those using the Kalman predictor and found
a slight advantage in the latter in terms of SNR[75]. The Kalman
algorithm[19,75] is 2 more complicated estimation procedure which can be
represented by the following equations in vector notation. The a,
coefficient vector A(n) is updated by the general form of (3.30),

AD) = A(n) + K(n)é(a) | (3.34)

where the gain vector K(n) is given as,

v_(n) X{n-1)

X

K(n+l) = = s (3.35)
Vv + X (n-l)va(n)x(n—l)
Vo(n) is a pxp symmetric matrix defined as,
T
v = [1-K-1DX (0-2)] v, (a-1) + Vv (3.36)
AT(n) = {;(n),;(n-l),.....;(n—p+1)}; v, is a pxp symmetric matrix of
w(n) where w<(n) = {wl(n),wz(n),....wp(n)} is a vector of zero mean

white noise terms, I is the pxp identity matrix and V,, is a scalar

constant,
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Obviously, the Kalman algorithm is a comparatively more complex
adaptation procedure than the SAP predictor. However, improved
performance should be obtained since a different gain is computed for

each coefficient a, , in contrast to SAP which uses a single gain G for

k’
all the coefficients (equation (3,31)). Note also that SAP is in fact a
particular case of the Kalman algoritim. When V (r) = I and Vo= Y
equation (3.35) becomes:

K(n) = X(n-1) (3.37)

Y + QT(n-l)x(n-l)

which is essentially the SAP equation of (3.31).

One disadvantage associated with  backward sequentially  adaptive
predictors in ADPCM is the risk of instability of the system - there is
no guarantee that the predictor coefficients at any given instant
constitute a stable filter, Errors in transmission and too rapid
adaptation bf the coefficients can often give rise to  stability
problems, To minimise this risk of filter instability, the change in
the magnitude of the predictor coefficients at each time instant 1is
frequently made very small, This however, means that predictor
performance will be curtailed during periods of transition in the input
speech (such as between silence and voiced speech), when quick
adaptation is desirable, Stability problems in linear predictors may be
avoided if the filter is configured in a lattice structure instead of
the conventional transversal structure, Indeed, recent trends have
indicated a shift in favour of lattice implementations in both ADPCM and

LPC research[77-79,198-200].
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The lattice filter, depicted in figure 3.4 arises directly from the
computation of the least square error predictor coefficients by the
autocorrelation method using Levinson”s or Durbin”s recursion (see
section 3.3.,1 and Appendix A). Stability of the filter is assured if
the PARCOR or reflection coefficients, k ~ are constrained to be of
magnitude less thanr one, Note that increasing the predictor order is
achieved by adding more lattice sections in cascade, without changing
any of the previous sections{77]. This‘nesting property implies that a
lattice predictor of order p contains implementations of all orders less

than p, as noted in Durbin”s recursion,

The following time-varying relations hold, from figure 3.4,

fo(n) = qo(n) = x(n) (3.38)
£@ = £ () +%k ()b ,(a~1) (3.39)
b,(m) = k () _,(n) +b _, (1) (3.40)

where gn(n) and qn(n) are the mth stage forward and backward residuals
respectively at time instant n, and the prediction residual e(n) is

given by the pth stage forward residual f(n).

In ADPCM applications, the lattice predictor is configured in a feedback
loop with the quantizer as in figure 3,1; the input is the quantized
signal sequence {;(n)} and the output is the linear prediction y{(n).
When used in conjunction with forward block processing schemes, the
lattice implementation provides identical results with the transversal
filter structure, and the reflection coefficients and predictor
coefficients are related by (3.24)., The attraction of the lattice
however, is its efficiency when used in backward sequential adaptation,
where the k,”s are updated at every sampling instant based on newly

arrived information, Equations (3.39) and (3.40) show the explicit
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Fig. 3.5 ADPCM Using Iattice Predictor
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dependance of km on time as km(n). Figure 3,5 shows an ADPCM coder
employing the sequentially adaptive lattice predictor, The adaptation
of the predictor begins with the lowest reflection coefficient and
propagates across the higher sections, kl(n) is first updated (by the
box labelled COR)} from information which includes bo(n) and fo(n) (the
latest decoded sample). Then, the forward and backward residuals for
the next stage, f£,(n) and b (n) are formed from the updated kl(n)
according to (3.39) and (3.40), These residuals are then used for
updating the next reflection coefficient ké and so on. This sequential
propagation in the calculation of the E“’s contributes to the better
convergence properties of the lattice predictoer, compared to

gradient—~type algorithms, The output of the predictor is given by,

P
yin) = 7§ k(n)b ) (n) (3.41)
j=1

Various methods have been proposed for computing the ko coefficients
sequentially — these usually involve the minimisation of the variance of
the forward residual or the backward residual or a combination of the

two.

One typical method, employed by Makhoul[78,79] is based on minimising a
weighted mean—-square type of error of the form,
n 2
E(n) = 7 win-k)e_“(k) (3.42)
mn
k=—co
where emz(k) is a function of the forward and backward reeiduals, given
by,
2 2 2
en (k) = (1 - v (k) + yb,“(k) 3 0 ¢y gl (3.43)
and w(n) is a window that weights the residual energy into the past.

The constant <y determines the mix between forward and backward
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residuals, Mirnimising (3.42) with respect to k, (n) gives the update

equation;
n
_ Lweig ) G
X _(n+l) = - 1=
m n 5 )
I win-3) [y, T + opp 2(5-1)]
j:—oo
C {n)
= -5 (3.44)
D (n)
m

The window determines the rate at which past samples are progressively
“forgotten” and is typically a real pole filter of the form (in
z-transform notation):

Wwiz) = —t— 'L 0<B <1 (3.45)

-1 N
(1 -8z")
where the order N and the parameter 8 controls the decay

characteristics. The effect of a higher N is to provide more weighting
to the relatively short duration in the immediate past and “forget” the
more distant past quickly., B controls the general decay rate of the
window, and for a given rate, N determines the relative weighting of the

windowed samples., This is illustrated in figure 3.6.
For N=1, (3.45) can be expanded as an infinite series,

Wiz) = 1+ Bz-l + 822-2 + B3z-3 + ..., (3.46)

and the right-hand side of (3,44) becomes,

2 .
fm_l(n)bm_l(n) + Bfm_l(n-l)bm_l(n—z) + R fm_l(n—2)bm_1(n 3)e....

‘ 2 2 2 2 2
[Yfm_l(n)+(1—Y)bm_l(n—1)]+6[yfm_l(n—1)+(1—y)bm_1(n-z)]+3 [ ...,
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i.e. the quantities Cy(n) and D,(n) can be computed recursively as:

Cp(n)

D, (n)

8C,(a-1) + f£_3(n)b, _; (n-1) (3.48)

2 2
8D, (=1) + [ Y£. 2 (n) + (1=)b 2, (n-1)] (3.49)
For linear prediction applications, Makhoul recommended a 3-pole window

‘with the optimum parameters y=l and 8 between 0.984 and 0,988[79].

Applications of the sequential lattice predictor to ADPCM have been
investigated extensively by le Guyader and Gilliore[200]. They used a

l-pole window, with update equatioms given by,

¢ (@) = (1)C (n-1) - 2vf (a)o (n) (3.50)

D (m) = (1D (a-1) * y[£ *(a) + b (n)] (3.51)
and,

kh+l(n) = qn(n)/q“(n) (3.52)

where v is chosen to be a power of 2 (e.g. 2—6) gso that multiplications
involving Y can be reduced to simple shift operations, They also
proposed a simplified adaptation procedure which requires ne
multiplications or divisions, This so-called sign product method is
given by the equations,

k (n) = sin [(ﬂ/Z)km'(n)] (3.53)
where km'(n) is derived recursively as,

km;l(n+1) = (I"Y)km;l(n) -y sgn{fm(n)}.sgn{bm(n)} (3.54)
Their main conclusions were that the lattice ADPCM coders out—perform
the gradient adapted coders, and that the simple sign product adaptation
is more robust to transmission errors, The latter observation is not

surprising since the sign product method is a form of subdued prediction

(see section 2.6.1(b)),
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3.4 PROPOSED BACKWARD ADAPTIVE ALGORITHMS

The speech quality provided by fixed prediction ADPCM is acceptable for
bit rates higher than 32 Kbps, where inaccuracies in prediction are
compensated by sufficient fineness in quantization. As the bit rate is
reduced however, the quality steadily deteriorates, and at 16 Kbps, the
degradation in the recovered speech is clearly unacceptable., Adaptive
prediction is able to provide at this bit rate, about 3 dB advantage in
SNR and substantially improved perceptual quality, Generally, forward
adaptive predictors are simpler in terms of signal processing
requirements and more efficient in terms of error minimisation[68,225].
However, the need for side information and coding delay associated with
forward adaptation can be a serious disadvantage, Backward adaptive
predictors which do not have this drawback are therefore more attractive
in many applications despite their greater complexity. In terms of
performance, Gibson noted that there is little difference between the
two{19,68], Consequently, our investigation is focussed on the area of
backward adaptive prediction., Several such adaptive predictor
algorithms were developed for use in ADPCM and are considered in the

following sections.

3.4.1 Sequential Adaptation

3.4.1.1 Modified SAP (SAPM)

Qur starting point 1s the transversal predictor structure of figure
3.2, in which the predictor coefficients are updated according to the
sequential adaptation algorithm governed by the general SAP equations of
{3.30) and (3.31). As noted above, the conventional method of updating

the predictor coefficients using the BSAP algorithm has been to
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apply (3.30) with the same prediction gain constant, G to all the
coefficients, This assumes, rather without justification, that the a,’s
are independent and that the optimum gain value is the same for each of
them. Also, from (3.30), it is seen that the adaptation of the kth
predictor coefficient at the nth instant, depends only on the 1latest
quantized error sample é(n), and the decoded signal sample ;(n—k), and
not on the more recent decoded samples ;(n), ;(n-l).......ﬁ(n—k+1) which
are available at the receiver. We investigated a slight modification to
this procedure which attempts to provide for the inter-relatedness of
the a coefficients (as is done in the Kalman algorithm) as well as to
allow more reéently decoded samples to affect the adaptation of higher
coefficients in a similar manner to the lattice implementations, This
modified SAP algorithm, denoted as SAPM, involves the following steps:-
(1) The first predictor coefficient a is first updated in the confent-
ional manner according to (3,30).

(2) This updated a, is then used to define a new error function using
(3.28).

(3) The new error is differentiated with respect to a.2 to provide the
gradient for the adaptation of a, .

(4) Using the updated 3 and a another error function is formed, and

2’

this is differentiated with respect to a_ to provide for the adapt-

3
ation of 3.

(5) This procedure continues until all coefficients are updated,

Consider the square of the quantized prediction error at the nth

instant (from (3.28)),
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’ ~ p ~
elz(n) = {x(n) - } akx(n-k)}2 (3.55)
k=1 :
Differentiating with respect to a; gives,
2 ~
oy () ~2e, (n)x(n-1) (3.56)
aal

The first coefficient a, is updated as,
al(n+1) = al(n) + ge, (n)x(o-1) = al(n) + Yy(n) (3.57)
where g is of the form of g(n) given by (3.31). Using the updated a,, a

second error function e2 {n) can be formed i.e.

- P ) . :
e, ) = fxt) - ] aktnk) -y (n)xta-) ¥ (3.58)
k=1

Differentiating with respect to a, gives,

k

2 -
de, M ~2e, (n) x(n-2) (3.59)
8a2
and the second coefficient is similarly updated according to,

a,(m+1) = a (n) + gez(n)ﬁcn—z) = a,(n) + Yz(n) (3.60)

This process is continued for all the coefficients, giving,

~- - - - — - ~ - -

al(n+l) ai(n) Y, al(n) gel(n)%(n-l)

a2(n+l) - a2(n) + {Yal - az(n) + gez(n)X(n-2) (3.61)
1 - ' -

_ép(n+ )_ -ép(n)d ‘de qap(n{J -?ep(n)x(n P)J

By expressing the higher order errors and Y values in terms of g and e,

(see Appendix B), the update equation can be shown to be,

a, (n+1) a, (n) gen) |x(n-1)
a2(n+l) - az(n) + [i—gxz(n~l)]x(n—2)
LaP(nﬂL |_ap(n)_ _['_1-g;2(n-1)_'l [l—g:?z(n—z)] . .x(n-p)

(3.62)

Or more generally,
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ap(n+l) = ap(n) + gé(n)é(n—k).F(k)

where,
F{k) = 1 s k=1
k-1 3
= I]@ - gx (n-mﬂ : L <k £p {3.63)
m=1

is a function of the p most recently decoded samples. Notice that the

SAP algorithm is obtainable from (3.63) by setting F(k) = 1 for all k.,

3.4.1.2 Adaptive Gain SAP (SAPA)

In the general SAP algorithm given by (3.30), the actual aﬁount of
change to the kth predictor coefficient at each time instant is éoverned
by the term g(n);(n)g(n—k) in (3.30); where G (from (3.31)) effectively
controls the adaptation rate since the normalisation provided by the
denominator of (3.31) cancels out the magnitude variations due to
;(n);(n-k) to some extent. Normally, G is optimised experimentally and
kept fixed.for a particular class of signals, Also, in order to
minimise the risk of instability in the system, G is often kept rather

small, to prevent too rapid changes occurring in the predictor
coefficients, In reality however, the optimum rate of adaptation of the
coefficients varies with time and according to the short-term signal
characteristics., Slow variations are desirable during steady-state
segments of voiced speech where the signal is locally stationary, while
rapid adaptation is essential for efficient prediction in periods of
transitions between silence or unvoiced sounds to voiced sounds or vice
versa. A constant G is thus a sub-optimal compromise between these
conflicting requirements. Better prediction could perhaps be achieved

if G itself were made to adapt to the short—term signal characteristics.
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We investigated a simple method of achieving some form of adaptation in
G using ideas borrowed from adaptive delta modulation (section
2.4.1,5(b)). Specifically, the magnitude of G is permitted to increase
or decrease depending omr the direction of change in the predictor
coefficients of past sampling instants, If the previous adaptations to
a particular a, coefficient were all in one direction (whether
increasing or decreasing), then a more rapid change is desired, and G is
multiplied by a factor a ( &> 1). Conversely, past adaptations of
opposite polarity indicate probable local stationarity of the signal for
which a smaller adaptation is preferable, and G is reduced appropriately

by dividing by o . However, the variations of G must be necessarily

bounded because of stability reasons,

Several variations on this theme were explored, The simplest version,
denoted as SAPA-1 switches between 2 wvalues of G i.e, Go and G/c
depending on the polarity of predictor adaptation for the present and
previous instants, If the same direction is indicated for both
instants, the larger gain (Ga) is employed in .the update equation -
otherwise, the smaller gain is used., SAPA-2 extends this logic further,
using 3 values of G i,e, G%, G and G/, Go is used when the directions
of the previous 2 adaptations are the same as that indicated for the
current adaptation; G/o is used when the 3 adaptations are of
alternating polarity, and G is wused in all other cases., Another
variation, SAPA-3 allows G to assume values over a broader range, for
quicker adaptation. Instead of wusing only 2 or 3 figed values, G is
permitted to vary freely between acceptable limits based on the same

logic as above. In this case, the predictor gain G is a function of




Chapter 3 Page 128
time and is denoted by G"(n). Table 3.2 shows the logic governing the

variation of G for each of the SAPA schemes.

Table 3.2 Adaptive SAP (SAPA) - Variations in Predictor Gain G
Scheme Direction of Correction Predictor Gain for
for time instant nth instant

(n-2) {n-1) n

1 SAPA-1 + + GO
+ - G/a
- +
2 SAPA-2 + + + (oo}
+ - + G/
otherwise G
3  SAPA-3 + + + ¢* (n-1)a
+ - + ¢ (n-1)/c
- + -
otherwise G (n-1)

We note that the adaptive SAP algorithm described in the preceding
section is similar in form to the “fast converging stochastic gradient
algorithm (FSAP)” mentioned by Farhang-Boroujeny and Turner{226] for
non-speech applications., The adaptation of FSAP is given as:

. a (n+l) = a (n) + 1/2B8(1-q)Gg(n) + q{ay (n)-a (n-1)) (3.64)
where Gf(n) represents the conventional prediction gradient of the form
g(n)e(n)x(n-k), with g(n) as given in (3.31), and q and B are constants
determined experimentally. The similarity between SAPA and FSAP is most
simply shown by comsidering the contribution of q(a) (n)-a (n-1)) to the
adaptation procedure for the kth coefficient. It is clear from (3.64)
that a, is updated by two quantities: (i) the term 1/2 8 (l-q)Gf(n)
derived from the conventional SAP equation (3.30), and (ii) the previous

magnitude of cbrrection, lap (n)-a (n-1)] weighted by the leakage factor
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q (¢ < 1). If the previous and present adaptations are in the same
direction, a is increased or decreased by the sum of the ‘two
quantities, On the other hand, if the present and previous directions
of adaptation are not the same, then a, is only changed by an amount
equal to the difference of the two quantities, which would normally be
very small, Thus FSAP may be considered as a more complex adaptive SAP
algorithm with the variation of the ak's proceeding rather more slowly
compared to the SAPA schemes, particularly SAPA-3 (sums and differences

as opposed to products and quotients).

3.4.1.3 Computer Simulation Results

Computer simulations were carried out to evaluvate the performance of the
various predictors considered, In each case, the predictor 1is
configured in an ADPCM structure employing the 2~bit one-word memory
quantizer, The parameters used in the various algoritlms are those
which provide the best average SNR performance over the input speech

files used., These are determined experimentally to be:

(1) SAP - G =0.015, M = p (order of predictor)
{eqn. (3.30) & (3.31)) Y =100,
(2) SAPM - as SAP,
(3) SAPA ~ as SAP, with a= 2.0
for SAPA-3, G"(n) is bounded by the

limits 0,001 and 0.032.

(4) FSAP G = 0,015, q = 0,95, 8 = 0.,2.

In the simulations performed, a few instances of system instability were

observed, These normally occur when a high predictor gain G is used.
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The risk of instability, however remote, is clearly unacceptable, and in
practical systems, appropriate preventive measures will be necessary.
One relatively simple method (at least in computer simulation terms) of
checking for possible instability in ADPCM systems employing linear
predictors is to convert the ak’s into the corresponding reflection
coefficents k and check that Ikm| <1, This can be done using a
backward recursion derived from Durbin”s algorithm (Appendix A). An
unstable filter can be made stable by reflecting the poles outside the
unit circle inside, such that the magnitude of the frequency response
remains the same{33]. For sequential predictors, a simpler alternative
is to revert to the previéus set of stable coefficients upon detection
of possible instability. When this feature is incorporated in all the
prediction algorithms examined, no more problems associated with

instability were encountered for a wide range of G values,

The various predictors were evaluated based on their SNR performance and
convergence rate[77], which is the time taken by the algorithm to
respond to sudden changes in the signal statistics, This is related to
the rate of adaptation of the predictor coefficients, and the following
experiment using second order predictors was designed to observe this
adaptation. Four blocks (each of 32 ms duration) of speech data were
used for the experiment - these were obtained by taking two blocks of
female speech (part of the utterance “There”) which contains a
transition between silence and voiced speech, and reflecting these to
obtain the third and fourth blocks to provide a similar transition from
voiced speech to silence, These 4 blocks of experimental data are shown
in figure 3.7. The predictor coefficients were all initialised to zero

and adaptation was allowed to proceed. Figure 3.8 shows the adaptation
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of the coefficients a; and a, over time for the wvarious predictors
investigated. As the coefficients vary very slowly, only every eighth
value was wused to plot the adaptation trajectory. Also, as a
comparison, the “optimum” predictor coefficients for the same data
calculated using forward block adaptation (section 3.3.1) with a
blocksize of 32 samples (4 ms) were included., Although these
coefficients are not necessarily the optimum for any particular sample,

they do provide nonetheless, a useful indication of where the optimum

values are,

It can be seen from the figures that the coefficients of the backward
adaptive predictors seek to track the forward coefficients. The
variation of the SAPM coefficients is very close to that of SAP, as
would be expected for the low order predictor considered, However, the
former coefficients appear to vary over a smaller amplitude range. The
effect of an adaptive G for the SAPA algorithms is clearly evident from
the figure ~ in all the variations of SAPA, the predictor coefficients
approach the “optimum” values from zero much more rapidly than SAP,
Once the steady state is reached however, adaptation begins to slow down

quite considerably.

Although this should not be considered as a proper evaluative test for
the predictors concerned, it does nevertheless provide a useful
indication of the speed of adaptation of the predictor coefficients to
changing signal statistics, The experiment demonstrates the advantage
of having an adaptive, rather than a fixed predictor gain G, and even
the simple two-value switched G scheme of SAPA-~1 is able to provide
quicker adaptation, This faster adaptation is also reflected in the SKNR

values measured over the 4 blocks of data - all the SAPA schemes gave
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better SNR performance than the SAP algorithm. This advantage howevér,
is not as clearly apparent when the predictor coefficients adapt from
values closer to the optimum, rather than from zero, as is done in the
experiment, When the ak’s were initiélised to the optimum fixed
predictor coefficients given in table 3.1, it was found that no SNR
advantage was discernible over the 4 blocks considered. Indeed, the
long-term SNRs for all the sequential prediction algorithms
investigated (2nd and 8th orders) do not show any significant
differences (see Table 3.3)., Examination of the individual block SNRs
however, reveal that the SAPA variations tend to perform better during
periods of transition in the signal, where comparatively large changes
in the coefficients are desirable. Subjective listening tests conducted

indicate a very slight preference in favour of SAPM, and particularly,

SAPA-2 over conventional SAP.
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Table 3.3 SNR Performance of ADPCM Coders with
Backward Adaptive Prediction

2nd Qrder
Predictor MALE FEMALE SISTER
Used SSNR TSNR SSNR TSNR SSNR TSHNR

SAP 18.79 17.54 18.24 16.33 13.88 12.54
SAPM 18,62 17,21 18.51 16.68 13,92 12.55

SAPA~1 18.65 17.34 17.83 16.42 12.59 11.05
SAPA-2 18.57 17.08 18.35 16.28 13.27 10.88
SAPA-3 18.42 17.30 18.30 16.54 13.64 11.39
FSAP 18.52 17.74 18.40 16,54 13.90 13.05
BBA 18,53 17.68 17.94 16,39 15.50 16.53

LAT 18.91 17.46 18.79 16,78 15.15 15.64
LAT-sp 18.82 17.61 18.73 16,63 13.52 11,49

8th order

SAP 18.66 17,48 19.08 17.40 12.57 9.44
SAPM 18.65 17.60 19.18 17.07 12.24 9.34

SAPA-1 18.68 17.16 18.78 16.74 12.91 10.67
SAPA-2 18.49 17.51 19,38 17.16 12.22 9.72
SAPA-3 17.70 16.62 18.52 16.57 13.17 11.65
FSAP 18.42 17.15 19.11 17.14 12.32 9.64
BBA 18,82 17,73 19.51 17.82 15.49 16.26

LAT 19,15 17.16 19.88 17.97 14.6% 14,02
LAT-SP 19,06 17.68 19.08 16.93 13.13 10.67

3.4.2 Block Adaptation

Block adaptive predictors are norﬁally associated with forward
adaptation while sequential predictors frequently operate in a backward
mode, However, this mneed not always be the case, Indeed, the
advantages of backward sequential prediction (no side information or

delay) may be combined with those of forward block adaptation (more
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robustness, lower complexity} with some (inevitable) sacrifice of
accuracy. Such a backward block adaptive (BBA) prediction technique 1is

now proposed and described in the following.

3.4.2.1 Backward Block Adaptive (BBA) Predictor

The BBA predictor coefficients are computed in the same way as the
forward predictor coefficients i.e. based on the short-term
autocorrelation function calculated over a block of signal samples, The
main difference is that, in the BBA case, no “look-ahead” advantage is
permitted (to avoid coding delay) - the predictor coefficients are
optimised for a block of decoded samples and used to predict incomi?g
speech samples which are not used in the optimisation process. The
inherent assumption in this adaptation technique is that the statistics
of speech signals do not vary drasﬁically within short time sepgments of
a few milli-second duration, Thus, the predictor coefficients optimised
for a particular block of samples will be expected to provide good
prediction when used for samples immediately outside the block
considered, Also, since optimisation is performed using previously
decoded samples which are available at the receiver, the need for

transmitting side information does not arise,

Figure 3.9 illustrates how the BBA predictor adaptation proceeds[213,
215]. Assume that at time instant T, a mnew set of predictor
coefficients is required, for the (T+l)th sample. These coefficients
are computed from the autpcorrelation function derived from the previous
N decoded samples i,e, ;(T), ;(T—l), ;(T~2)....;(T-N+1), and are fixed

and used for the next M incoming samples, x(T+1), x(T+2).....x(T+M)}.

When x(T+M) has been processed, a new set of coefficients 1is required,
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and this is computed in a similar manmer, from the updated
autocorrelation function, derived from the current block of most
recently decoded N samples, i.e, ﬁ(T+M),£(T+M-1)....Q(T+M—N+1). The
autocorrelation analysis is thus performed on a sliding window over the
N most recent decoded samples, with an overlap of (N-M) samples between
adjacent blocks. The two main parameters involved in the BBA predictor
are M and N, where N is the number of samples (blocksize) over which
coefficient optimisation is performed, and (N-M) represents the amount
of overlap between adjacent blocks. The optimum N would be similar to
the forward adaptive case - typically spanning 8-32 ms of speech. The
amount of overlap (N-M) can obviously affect the accuracy of prediction.
A large overlap will presumably provide coefficients closer to the
optimum, while at the same time increasing the computational load in the
coder since the optimisation process has to be carried out more
frequently over a given time period., Too little overlap on the other
hand, could mean that changes in signal statistics may not be detected
sufficiently quickly, resulting in a mismatch between the calculated and
the optimum coefficients for certain blocks. Clearly, a reasonable
compromise between complexity and efficiency has to be determined., The
performance of the BBA predictor is examined in detail in the following

section,

3.4.2,2 Computer Simulation Results

The first task is to determine how the amount of overlap between
adjacent blocks of decoded samples affect the performance of the
predictor used in an ADPCM system, For a blocksize N of 256 samples (32

ms} which was found to provide satisfactory results, the frequency of
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update of the predictor coefficients for various order BBA predictors
was varied, and their performance observed, TFigure 3,10 shows the
variations of the segmental and total SNRs (SSNR & TSNR) as a function

of M for an 8th order predictor,

It can be seen that the SNRs remain relatively constant over a wide
range of M values, indicating that excessively frequent updating of the
predictor coefficients offers little advantage. A value of M=32 (which
is a reasonable compromise between complexity and performance) was
selected for use in subsequent simulatioms, although limited tests using
larger M values provided similar results. The effect of windowing on
the autocorrelation block to provide more weight to the more recently
decoded samples was also investigated, This additional complexity did
not contribute significantly however, to the performance of the coder

and was therefore rejected,

The variation of the BBA predictor coefficients with time was next
observed. Figure 3,11 shows the adaptation of the second order BBA
predictor coefficients for the first 10 blocks of male speech compared
to the forward predictor coefficients calculated for a blocksize of 32
and 256 samples (denoted as FOR32 and FOR256). It can be seen that the
variations of the BBA coefficients are rather gradual and are bounded by
the variations of the more rapidly changing FOR32 coefficients, Also,
the BBA coefficients follow the general direction of the FOR256
coefficients but are consistently of lower magnitude. This could be due
to the fact that while the forward predictor coefficients are optimised
from the input signal, the computation of the BBA ccefficients is based
on decoded samples which contain quantization noise., Note however, that

as long as performance is not appreciably impaired, lower magnitude
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coefficients, which 1imply smaller power gains in the filter are
desirable, because of the lessened risk of instability[81,82]. This is
an advantage over SAP, (figure 3.8) whose coefficients are generally

larger in magnitude than either block methods,

The BBA predictor was evaluated further by comparing its performance in
ADPCM to the other algorithms considered in the preceding sections as
well as to the adaptive lattice predictor (equations (3.50)-(3.54)).
Table 3.3 summarises the SNR performance of the same ADPCM coder
employing each of the different prediction algorithms, LAT denotes the
lattice adaptation given by equations (3,50)-~(3.52) and LAT-SP denotes
- the sign-product method of (3.53) & (3.54)[200]. These results were
obtained from 60 blocks (about 2 s) of each data file. It can be seen
that for the male and female sentences, the SNR valges do not vary
significantly among coders employing second order prediction, This is
probably due to the fact that differences among the various algorithms
are not fully manifested at such a low order of prediction. Perhaps a
clearer indication of predictor efficiency is provided by the results
for eighth order prediction, The figures show that the lattice and the
BBA predictors are ahead of the rest by an average of half a dB, This
advantage is also perceptible subjectively. Listening tests indicate
that the recovered speech obtained from the ADPCM coder using the BBA
and LAT.predictors contains less high frequency distortion than those
obtained using the other sequential predictors. This becomes clear from
observation of the distribution of the output nroise associated with each
system, Figure 3.12(a) shows the output noise spectra obtained from
male speech for ADPCM systems employing 8th order SAP, BBA and LAT

predictors, The noise power of the coder employing SAP is generally
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greater than the other two systems across the whole of the spectrum and
particularly so at the high frequency region, which accounts for the
more audible “hiss” in the recovered speech, The SNR results for the
data file SISTER in Table 3.3 merit some comments, The actual figures
are generally much lower than those obtained for the male and female
sentences. Paradoxically also, the results for 8th order prediction are
no better (or even worse) than the second order case. This observation
can be explained by the atypical nature of the data file, which contains
isolated words with substantially higher than normal unvoiced content.
This lowers the average correlation of the waveform and hénce, the
predictability of the .signal g0 that iittle, if any advantage is
obtained by increasing the order of prediction. This lower
predictability also accounts for the smaller SNR figures, and affects
the adaptation of gradient-type algorithms. such as SAP to quite an
extent, What comes out beyond any doubt for this data file is the
superior performance of the BBA predictor compared to the sequential
predictors, including the lattice. Total SNR values of up to 6 dB
advantage is recorded in some cases! This advantage is clearly seen
from the output noise spectral plots shown in figure 3.12(b). The
output noise power of the BBA system is comsiderably lower than both SAP

and LAT,

3.4.3 Assessment of Prediction Algorithms

We now consider the merits of each of the prediction algorithms proposed

in terms of such factors as performance, complexity and robustness,
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3.4.3.1 Performance

The simulation results presented above indicate the potential of the BBA
predictor used in ADPCM systems. In terms of both SNR and subjective
preference, the BBA predictor was found to perform discernably better
than the conventional gradient adaptations, The modification to the SAP
algorithm (SAPM) to provide for the inter-relatedness of the predictor
coefficients, although intuitively appealing, do not, unfortunately
produce sufficient evidence of improved performance, Its SNR is no
different from SAP and its recovered speech quality offers 1little, if
any, advantage. Complexity-wise however, a significantly greater amount

of signal processing is required.

The SAPA variations appear to be able to produce more rapid adaptation
in the predictor during periods of tramsition in the signal, with little
increase in complexity over SAP, This advantage again, is not apparent
from the SNR values since transitions in the speech signal occur
relatively infrequently in the senteﬁces considered, Listening tests
seem to indicate a slight preference for SAPA over SAP nevertheiess.
Predictors employing a combination of the SAPM and SAPA techniques were
also investigated and found to offer a performance nmot far from either.
It would appear, from these observations, that the term g(n) (from
(3.31)) governing the change of the predictor coefficients do not in
general constitute an overly critical factor as long as it is
constrained to be within an appropriate range. Indeed, the SNR for
ADPCM systems employing the SAP algorithm measured as a function of the
predictor gain G was found to have a rather flat characteristic over a

wide range of values, as shown in figure 3,13, In addition, the fact

that Cummiskey reported satisfactory performance for his simplified
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adaptation algorithm based only on the sign of the quantized residual
(equation (3.34)) appeérs to support this observation, Recently, an
experimental comparison carried out on various sequential prediction
algorithms concluded that, "in the context of ADPCM, the extra
computational burden associated with more complex adaptive linear
prediction algorithms outweighs the accompanying improvement in system
performance" [197]. It must be noted however, that the comparison is
carried out at a particular transmission bit rate, and the criteria used
are the mean-square prediction error and the average SNR, This does not
take into account the subjective quality of the received speech, for
which differences among dissimilar classes of predictors at a different

bit rate may well be significant.

Indeed, a difference in subjective quality which might not be adequately
reflected in SNR values certainly exist between the recovered speech
produced in ADPCM coders employing the BBA predictor and those employing

the gradient algorithms,

3.4.3.2 Complexity

The complexity of an algorithm is often considered in terms of its ease
of implementation in hardware, and this might be influenced by such
factors as the design and architecture of the particular hardware chip,
which may be unrelated to the algorithm concerned. For simplicity
however, we shall consider complexity in relation to the amount of
signal processing operations required to perform a certain task. In
this section in particular, we s8hall be concerned only with the

multiplications and divisions involved, with a division being considered

as equivalent to two multiplications.
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To provide a basis for comparison between block and sequential methods
of adaptation, the number of multiplications required for each algorithm
over a block of N samples is calculated, The forward block adaptive
(FBA) predictor 1is also included in the comparison, since it is closely
related to the BBA predictor. Appendix C shows how the number of
multiplications for each algorithm is obtained. Figure 3.l14 illustrates
graphically, the complexity of the algorithms concerned., Note however,
that this complexity measure does not take into account the computation
involved in ensuring filter stability, some form of which will be
required for the sequential algorithms, in practice, The vertical axis
represents the number of multiplications involved in the processing of a
block of 256 samples. Table 3.4 provides expressions for the
multiplication operations required for each‘algorithm, as a function of
p, the predictor order and N, The expression for the BBA predictor is

also dependant on the parameter M.

Table 3.4 Complexity of Adaptive Predictor Algorithms

Predictor No, of Multiplications Required
FBA (p+1)N + p(p*+5)/2

BBA N[(p+1} + p(p+3)/M]

SAP. (p+4)N

SAPM (4p+1)N

SAPA (p+4)N

FSAP (2p+4)N

LAT SpN

LAT-SP (look-up table)

It can be seen from figure 3,14 that even without considering the

computations required for ensuring predictor stability, the complexity
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of backward sequentially adaptive predictors, especially the lattice
methods is still higher than the forward case. As noted in section
3.3.1, the bulk of the computational load in forward block adaptive
prediction lies in ‘the derivation of the autocorrelation function, as
fast algorithms, such as Durbin”s recursion exist for the solution of
the resulting Toeplitz matrix equation. For this reason, the complexity
of the BBA predictor is also lower than the sequential methods since its
coefficients are essentially computed in a similar way as the forward
predictor, Compared to the forward system, the BBA predictor requires,
due to the overlap between blocks, an additional (N/M-1) computations
for the predictor coefficients per block of N samples, as the
autocorrelation calculations are the  same for both cases, This is
because in the derivation of the autocorrelation function,
multiplications involving saﬁples common to adjacent blocks, due to the
overlap, need only be performed once, and the results stored for future
use, With N=256, p=8, the BBA predictor requires about 13% and 27% more

computation than the forward predictor, for M=64 and 32, respectively.

Although the BBA predictor coefficients are computed from a block of N
decoded samples, it is not necessary to have these N values in memory at
any sampling instant. Depending on the value ofIM, the autocorrelation
function can be accumulated in partial sums (each of M values), and
updating can proceed on a block (of M samples) basis. It is shown in
Appendix D, that instead of storing all products used in the sequential
computation of the autocorrelation function (which would require of the
order of Np memory locations!), a much reduced buffer of size (p+l1)N/M +

p is sufficient., For N=256, M=32, p=8, the storage required is reduced

quite substantially from 2048 to 80!
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Thus, as far as complexity is concerned, it is quite apparent that the

BBA predictor is superior to the sequential schemes,

3.4,3,3 Stabilty and Robustness

System stability is not a major problem in the BBA predictor because of
the method by which the predictor coefficients are computed. Durbin”s
algorithm ensures the stability of the filter since the reflection
coefficients, {km} are always less than one[33]. Likewise, in the
‘lattice predictor, stability can be pguaranteed by constraining the

sequentially calculated km’s to be less than one at each stage.

For the sequential gradient adaptations, stabiliﬁy is not automatically
assured and some measures might have to be incorporated to prevent in-

stability occurring. This would mean additional complexity and expense,

A further advantage of a block method of predictor adaptation (as
opposed to a sequential method), is the possibly better “robustness” to
transmission errors, owing to the averaging process involved in the

computation of the predictor coefficients, In the BBA predictor

adaptation, the coefficents do not change directly in response to

erroneous samples (unlike the sequential methods), but are kept fixed
for up to M sampling instants, Burst errors in particular, would have a
far less detrimental effect on the BBA predictor than on typical
sequential predictors, Because the latter adapts instantaneously to the
received residual signal, a succession of errors in the magnitude of

this received signal would most certainly cause a total collapse of the

systen.,
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3.5 DISCUSSION AND CONCLUSION

We have introduced and described in the preceding sections, several
backward adaptive predictor algorithms based on a transversal filter
structure, which are suitable for wuse in ADPCM systems. These were
evaluated using computer simulation and compared to known techniques
such as the stochastic approximation predictor (SAP) and the adaptive

lattice,

We first attempted to improve on the SAP algorithm by modifying the
general equation for the predictor adaptation. One method sought to
provide some inter-relation Dbetween the  individual predictor
coefficients and to permit the adaptation of higher order coefficients
to be affected by the magnitude of the most recent decoded sample.
Another variation provides an adaptive predictor gain constant which
varies according to the estimation of the input signal”s statistics -~
taking on a large value during periods of signal transition (for faster
adaptation) and switching over to a smaller value on detection of signal
stationarity., Although there was evidence of improved performance in
SNR during periods of signal transition in the latter scheme, overall
SNR results were inconclusive. Subjective improvement over the
conventional SAP was also slight. Further experimentation suggests that
improvements over SAP, based on modifying the conventional equation is
very limited, due to the relative insemsitivity of predictor performance

to changes in the adaptation equation,

This leads to a move away from the SAP algorithm to the development of a
backward block adaptive prediction algorithm, which was found to

out-perform the gradient methods when employed in ADPCM, and to compare
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well with the adaptive lattice, Its superiority over the gradient
adaptations is particularly significant for signals with a high unvoiced
content, and hence lower correlation, for which an SNR advantage of up
to 6 dB has been observed. More importantly, the improvement in
performance is perceptible subjectively as a reduction in high freqeuncy
noise in the recovered speech, In terms of algorithm complexity, the
BBA predictor was also found to require substantially less ‘computation
for its predictor coefficients compared to the lattice and gradient
methods. At the same time, the nature of adaptation of the BBA
predictor promises greater vrobustness to transmission errors, and
particularly burst errors since the coefficients do not respond to
changes in single samples, but are optimised from a fairly large block

of decoded samples,

We conclude that the BBA predictor offers considerable potential for use
in ADPCM systems, providing a performance comparable to the adaptive
lattice predictor, but with much lower complexity and possibly better
"~ robustness. Moreover, as will be seen in chapter 5, the BBA predictor
structure permits backward noise shaping features to be conveniently
incorporated into the ADPCM coder producing significant improvement in
the subjective performance of the coder without incurring any penalty inmn

terms of increased transmission rate or coding delay[213,215].

3.6 PITCH ADAPTIVE CODING SCHEMES

While ADPCM coders seek to tremove the redundancy between adjacent speech
samples by short-term prediction, a more sophisticated class of
predictive coders attempts also to exploit the quasi~-periodic nature of

the speech wave to obtain more complete signal prediction, Probably the
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best known pitch predictive scheme : in recent times is the adaptive

predictive coder (APC) described by Atal and Shroeder{80-82].

3.6.1 Adaptive Predictive Coding (APC)

The block diagram of the APC is shown in figure 3.15. Signal redundancy
is removed in two stages: first . by the conventional wvocal tract
predictor P,, and then again by the pitch predictor P,, which in its
simplest form is a tap and delay ad justment given by,

P,(z) = gz M (3.64)
where M represents a relatively long delay (2-20 ms) usually
corresponding to a pitch period, and B is a scaling factor. The order
of the predictors may be interchanged, but recent studies suggest that
the order as given in figure 3.15 is the better arrangement[82]. The
combined predictor is then given by:

P(z) = Pl(z) + Pz(z)[ 1 - Pl(z)] (3.65)
Notice from figure 3.15 that the quantizer 1is again inside both
predictor loops, to ensure that no noisé accumulation occurs in the
receiver. In terms of its predictive properties however, the APC may be
represented by the two-stage feed-forward structure shown in figure 3.16
[37]. The delay M, of the pitch predictor is chosen so that the
correlation between speech samples which are M samples apart is highest.

The parameter B is then obtained as[80]:

< x{n) x{n-M} > (3.66)

< x{n-M) 2 >

where x(n) is the nth speech sample and <.> indicates the averaging over

all the samples in a given time segment, It was found that more
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accurate pitch prediction can be achieved if additional samples on both
sides of M are also used in the prediction process[8l], i.e,

M-1

M + Baz— ] (3.67)

= -M+1 -

P2(z) B,z + B,z

Atal reported a 3 dB advantage in prediction gain: for this 3-tap
predictor over the one-tap case. With this highly complicated
“configuration, good quality speech at much less than 16 Kbps has been

achieved,

In later work by Atal and Shroeder, the concept of noise shaping was
applied to the APC coder to enhance the quality of the recovered speech
with notable success[81]. Indeed, much of the current interest in noise
shaping techniques has been largely generated as a result of their work
on APC.  More recently, in an attempt to push the bit rate further down
~ without sacrificing speech quality, entfopy coding was applied to the
APC residual to ensure even more efficient utilisation of available bits
[122]. This was soon followed by an exceedingly complicated split-band
APC scheme in which, in addition to all the previous modifications, the
input signal is first split into frequency sub-bands, before being

preferentially encoded using APC[226].

3.6.2 Pitch Extraction Methods

The difference between ADPCM and APC is the use of an additional pitch
predictor in the latter, which accounts for its more efficient {and
complete) prediction, Accurate pitch prediction is thus instrumental to
the performance of APC., However, although pitch extraction has been an
important area of interest for a long time (particularly in the field of
speech synthesis and vocoders), techriques suitable for use in time

domain coders such as APC have not been too numerous. Most of these
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evolve around some form of measurement of the signal correlation with
varying degrees of complexity (which is often proportional to accuracy).
Two pitch extraction methods relevant to the present context will be

discussed in some detail in the following.

3.6.2,1 Average Magnitude Difference Function (AMDF) Pitch Detector

The average magnitude difference function (AMDf)[lQ,B&,BS] pitch
detector avoids the heavy computational requirements associated with
direct determination of the autocorrelation function by considering only
the average difference between samples shifted by a constant amount
within a block, Specifically, the AMDF is defiﬁed as:

AMDF(p) = Average| z(n) - z(n-p)]

P =P s seeseeenss B (3.68).
where z(n) is the nth sample of the block, which may contain the input
speech signal or the prediction residual (after vocal tract prediction)
or the quantized versions of either. ©p represents the amount of shift,
and is bounded at each end by the minimum and maximum expected pitch
period, Pmin and Pmax' The pair of samples z(n) and =z{(n-p) are such
that both lie within a defined block of W samples, which is typically
greater than the maximum pitch period (see figure 3.17). For each block
of W samples, the AMDF is formed for all possible pairs of samples z(n)
and z{n-p). The pitch period P is given as Pe N if:

s

AMDF(Pest) < AMDF(p) for all p (3.69)

i.e, the pitch period P is the separation (in number of samples) which
gives the minimum AMDF., However, due to the wide range of voiced pitch

variation, pitch period multiples may sometimes be identified instead,

An additional condition frequently applied is that, for waveform
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periodicity,

AMDF(P__,} < GlAverage(lz(n)|) for all n (3,70}

est

where Gl (typically 0.5) is a threshold that is used to hypothesise
waveform periodicity with varying degrees of confidence, For highly
periodic segments, AMDF(Pest) << Average(|z(n)|), so the threshold Gy
can be used to ensure that pitch values are not assigned to non-periodic

segments,

3.6,2.2 Autocorrelation Method of Pitch Detection

The method used by Atal[37,80] for determining the pitch period in a
block of speech samples (3.66) involves obtaining all correlations
between Pmin and Pmax and requires a huge amount of signal processing,
which may be unacceptable for many applications, A simpler, but
inevitably less accurate method based on the same principle, utilises
only the sign information in the computation of the autocorrelation
[19,84]. The autocorrelation function in this case is defined as:

c{p) = Average (sgn z(n). sgn z(n-p)) (3.71)
Again, C(p) is calculated for all pairs of samples z(n) and z{(n-p) so

that both are within the block, The pitch period P is given as Pt if,

c(p__.) > cC(p) for all p (3.72)

est

In addition, C(P_ , ) must usually also satisfy two further conditions,

) > 2 (3.73)

c(p clip

est

and,

) > @ (3.74)

c(p >

est

vhere G, is typically 0.2, and chip is a clipping threshold given by:

1 3
Zoyip = O0-64 max( |z| o, 2l ) (3.75)
1
JZJmax is the maximum z value in the Ffirst third of the block and




Chapter 3 Page 150
|z|max is the maximum in the last third of the block (see figure 3,18),
The inclusion of these. two conditions have -been quite effective in

mitigating spurious peaks in the C(p) function, and provides for better

accuracy in the prediction,

3.6.2.3 Other Pitch Extraction Techniques

Numerous other pitch extraction techniques ip both time and frequency
domain have been documented in the literature[l9,31,84-88,228,229].
These include the cepstral method (widely used in vocoder applications)
[31], the parallel processing method, techniques based on  linear
predictive coding (LPC) analysis, inverse filtering, etc. A thorough
comparison of some of these pitch detectors is provided by Rabiner, et
al[84]., Generally, block methods of pitch detection such as the AMDF
and the autocorrelation methods described above are attractive because
they are relatively simple, and also because the delay in the system is
confined to only one block of samples, More recently, Miller[228]
proposed a pitech detection algorithm in which pitch markers are
identified by a series of elimination processes and logical tests. This
method requires a large data file (up to 10000 samples) for successful
operation, Although reliability was reported to be high, the need for
an immense amount of storage (and the corresponding delay) renders it

clearly unsuitable for most speech coding purposes.

3.7 PROPOSED PITCH ADAPTIVE DIFFERENTIAL CODER

While the efficiency of pitch adaptive coders such as the APC is without
doubt, the complexity involved has limited its applicability to a great

extent, Much of the complexity in APC is due to the pitch predictor,
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which requires a large amount of signal processing operations for
efficient performance. In order to produce a viable APC system for
practical purposes, the complexity of the coder will need to be reduced
quite substantially. In addition, forward adaptive prediction (for both
predictors) as used by Atal will also be unacceptable for 16 Kbps
transmission using constant rate coding because of the requirement of
side information. In fact, Atal uses an 8th (or 10th) order vocal tract
predictor, a 3-tap pitch predictor and a forward adaptive Gaussian
quantizer (AQF) giving a sizeable side information overhead of 3-4 Kbps

[81].,

We decided to investigate the effects on speech quality of greatly
simplifying the APC so that it is suitable for operation at 16 Kbps
without (or with minimal) side information. Obviously, quality
deterioration is to be expected - the object of the exercise is to
determine the extemt of the degradation and to compare the results of
such a simplified pitch adaptive coder with other techniques of

comparable complexity at the same bit rate,

3.7.1 System Description

The proposed simplified APC system follows the same general
configuration of figure 3.15 . Two bits are assigned for quantizing the
prediction residual e{n) using the backward adaptive Jayant's quantizer,
to give a nominal transmission bit rate of 16 Kbps. Ideally, no side
information should be required, to avoid any increase in bit rate, This
means that all necessary adaptation should proceed in a backward mode,
although this might not always be possible, The pitch information in

particular, needs to be extracted from the input samples, as backward




Chapter 3 Page 152
adaptive methods of pitch detection are known to be highly unreliable
[19,230]. For simplicity, the pitch predictor used is the single tap
gain and delay arrangement of equation (3.64), which is defined by only
two parameters, M and 8 . The few bits of additional information
associated with M and B may be embedded in the transmitted data stream
of the residual by “stealing” bits from some of the samples, if it is
essential that the total bit rate be strictly confined to 16 Kbps. For
a typical pitch adaptation period of 32 ms, this side information
represents an insignificant proportion of the total transmitted bits
(about 10 out of 512) and may be easily accommodated without affecting
the performance of the system. The vocal tract predictor was chosen to
be either fixed or backward adaptive in view of the constraint on side
information, and the pitch information is updated once every 32 ms (256
samples). Both the AMDF and the autocorrelation methods of pitch
extraction were examined, Ppin and Ppyy are set to 16 and 160, to cover

a range of pitch frequencies between 50 and 500 Hz.

3.7.2 Pitch Synchronisation

One important feature of the APC coder not mentiomed by Atal but noted
by Xydeas[87,88], is the need to align samples in adjacent pitch periods
correctly before removing the pitch redundancy in the signal, The
residual signal after wvocal tract prediction consists typically of a
rapidly varying random signal with distinet “spikes” at time intervals
corresponding to the pitch period (see figure 3.19). These pitch
periods usually vary in length gradually, increasing or decreasing by a
few sampling instants at a time., The function of the pitch predictor P,

is to obtain the difference between samples separated by the estimated
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pitch period, with the aim of removing these spikes. To do this
efficiently, it is important that adjacent pitch periods are correctly
aligned before the subtraction is performed, i.e. the predictor buffer
must be either “stretched” or “squeezed” in anticipation of the expected
pitch of the incoming Block *of speech, to ensure that spbtraction is
performed between corresponding high amplitude samples. The pitch
predictor is thus a linear filter whose length varies according to the
estimated pitch period., With most pitch detection methods based on time
domain measuremeﬁts, there is a possibility that the estimates obtained
are multiples of the actual pitch period. For the APC coder, such
“errors’ are not likely to affect performance provided that the same
estimate is obtained for the durationm of the voiced utterance so that
the pitch predictor filter is not subject to drastic changes in length,
It is preferable in practice therefore, to include some form of check
for éuch occurrences to ensure a smooth transition between pitch
periods, The method employed to provide for pitch synchronous operation

in the proposed APC coder will now be described.

The parameters M ‘and B are obtained from a block of 256 samples of the
input speech using either the AMDF or the autocorrelation method of
pitch extraction. The 1length of the pitch predictor filter P is
lengthened or shorténed (or remains the same) acéording to the updated
value of M. To ensure correct alignment of the pitch pulses, changes
are only made to the stored samples in the predictor filter whose
magnitudes are relatively small, The way in which this is done is best
illustrated by an example, Assume that the present length of the pitch
predictor filter is 32 taps and it is required to be changed to 36 taps

for the pext block., The 32 stored samples in the filter are divided
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into sub~blocks of 5 samples each, as shown in figure 3,20(a), starting
from the least recent sample, Sample(s) which are left over (such as
samples 31 & 32 in this example) are excluded from consideration. The
average energy of samples within each sub-block is calculated and the
block with the lowest energy is identified. Assume that this is block
number 4. The filter is then “stretched” at this point by inserting the
required number of samples (in this case 4) between the original samples
15 and 16, This is dore by duplicating samples 16 to 19 at this
location as shown in figure 3.20(b), thereby extending the filter length
to 36 taps. Truncation of the filter is performed in a similar way.
Consider, for instance the case when the filter is required to be
shortened from 32 to 28 taps. In this case, the 4 samples of sub-block
number 4 are simply removed and the least recent 15 samples shifted up.
This ensures that the positions o¢of corresponding pitch pulses are
properly aligned, and that any necessary wodification involves only the
small magnitude segments, Alternatively, instead of duplicating samples
in the former case, zeros could be inserted in the appropriate buffer

locations,

Various other conditions have to be imposed on the bitch predictor to
allow for deviations from normal operation., When no pitch periodicity
is detected in the signal (as during unvoiced speech or pauses), B is
set to zero, M is unchanged and the system becomes an ADPCM coder. A
simple detection 1logic for identifying pitch period multiples is also
included. Although multiples in pitch do not affect the coder
performance in theory, it is important that changes in the filter length
do not occur too drastically, such as from say, 33 to 66 or 991 <Certain

intuitive tests can be carried out to detect the occurrence of pitch
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multiplicity. The following simple procedure was found to be. adequate
for the data files used in the investigation, let the current pitch
period be M, and the estimated pitch period for the next block be M,.
Pitch multiplicity is characterised by the observation that the quotient
of the larger and the smaller pitch values is close to an integer
greater than unity. Specifically, one of the pitch period is considered
to be a multiple of a pitch value near (or equal to) the other if:

n=-c < Max (M/My, My/My) < n +€ (3.76)
where ¢ is a suitable small quantity (e.g. 0.2) and n is an integer
greater than one, If M, is found to be the pitch multiple, then the
required change AM, in the length of the filter is given by,

MM = NINT (M; - M,/n) (3.77)
where NINT(.) denotes the nearest integer. On the other hand, if M; is
the pitch multiple, the corresponding change will be,

Moo= M - nM, (3.78)
By this means, changes in the filter length is kept within reasonable
limits, The ‘pitch predictor adaptation logic is summarised in the flow

chart of figure 3.21.

3.7.3 Computer Simulation Results

Prior to obtaining results for the complete APC system, initial tests
were carried out to determine the most suitable pitch detection
algorithm to be employed, The AMDF and the autocorrelation pitch
extractors were both evaluated by comparing the pitch estimates each
produces with values measured from the actual data., The optimum

parameters for the two methods were experimentally determined to be:

G, = 0.5 for the AMDF algorithm,
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and 62 = 0,9,
zclip = 0,64 for the autocorrelation method.
The recommended threshold of 0.2 for G2[19] was found to be too low, and
resulted in the failure of the algorithm to detect many blocks which are
unquestionably periodic. Raising it to 0.9 provided considerably
improved detection. The p#rameter B was found to vary between 0.6 and

about 1.2 with values concentrated around 0.8-0.9, suggesting that it

could possibly be kept fixed for simplicity,

The APC scheme was first simulated using a fixed first order vocal tract
predictor, Figure 3.22 shows the signals corresponding to about 100 ms
of female (voiced) speech after each stage of prediction, The pitch
periodicity is clearlj evident in the residual signal after some
adjacent sample redundancy had been removed by the vocal tract predictor
(figure 3,22(b)). These pitch pulses were largely removed in the next
stage by the pitch predictor (figure 3.22(c)). Figure 3.23 illustrates
the gain in segmental SNR due to pitch prediction, for both male and
female speech, over 60 blocks (2 s) of the data, The considerable
improvement due to the more complete prediction of APC over simple ADPCM
is apparent in the figure, and this advantage appears to be greater for
female speech. The latter observation is not surprising as female
speech waveforms are generally more periodic and better structured than
male speech, and are therefore more suited for pitch adaptation. Indeed
for the same utterance, a laréer number of blocks in the female speech
was classified as periodie, This is alsc reflected in the average SNR

values obtained -~ the inclusion of pitch prediction provided a 4 dB

advantage for the female speech compared with only 1 dB for male speech.
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The performance of the APC coder with different vocal tract predictors
was next investigated to see if the same advantage provided by the pitch
predictor could be maintained when higher order (and by implication more
efficient) vocal tract predictors are used, Figure 3,24 compares the
residual signal after each stage of prediction using lst and 2nd order
fixed and lst and 2nd order forward adaptive predictors. The effect of
employing a higher order predictor cam be clearly seen in the residual
after the first stage of prediction, Because of the  better
decorrelating ability of 2nd order prediction, the resulting residual
signal is reduced in magnitude by a greater extent and contains a
significantly greater proportion of high frequency components, For the
2nd order fixed predictor, the periodic pulses are still retained, and
these are quite successfully removed in the subsequent pitch prediction
process, although the final resi&ual appears to be no better (in fact,
slightly worse) than when a lst order predictor was used, The
coefficients of the forward adaptive predictors are optimised from the
short—term signal correlation and they are therefore able to remove a
greater amount of redundancy from the input signal compared to the fixed
case. However, this more efficient decorrelating process appears to
produce a more random residual whose pitch structure is not as clearly
defined in certain places (see figure 3.24(a)(iii)), As a result, the
ability of the pitch predictor to effect further signal compression is
affected to a degree so that the final residual signal produced (figure
3.24(b)(iii)) does not show as much improvement. Indeed, for the signal
segment considered, the 2nd order forward adaptive predictor produces
the least amount of signal compression of the four cases, Similar
observations were made when the vocal tract predictor was replaced by a

backward adaptive predictor.
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Figure 3,25 shows the long-term average output noise spectra of the APC
schemes employing 1st and 2nd order fixed prediction. It is clear that
the simpler lst order predictor, owing to its lower efficiency, was able
to assiqt the pitch prediction process more, to give lesser overall
output noise, Figure 3,26 provides a comparison of the noise spectra of
both male and female speech for 3 schemes, namely, ADPCM with 2nd order
fixed prediction, ADPCM with 2nd order forward prediction, and APC using
first order vocal tract prediction. The advantage of APC over fixed
prediction ADPCM is evident and expected, However, its performance with
respect to the comparatively simpler forward adaptive ADPCM is not as
impressive, For female speech, APC is possibly slightly better, while
for male speech it is actually worse, Table 3.5 shows the average

segmental SNR obtained for the various coding schemes considered.

It appears that the simplified APC system is wunable to provide the
required level of performance to justify the complexity involved in the
use of the pitch predictor. Its SNR at best is no better than the
simpler adaptive prediction ADPCM. Subjectively also, the decoded
speech quality of the APC system offers little, if any perceptible

advantage over that of 2nd order forward adaptive ADPCM.
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Table 3.5 SNR Performance of Various Predictive Coding Schemes

Scheme MALE FEMALE
ADPCM:
Fixed Predictor
1st order 16.44 14.32
2nd order 16,02 15.26
Forward Adaptive Predictor
lst order 16,81 14.54
2Znd order 19.05 18.89
APC
Fixed Predictor
1st order 17.39 18,98
2nd order 16.53 18.39
Forward Adaptive Predictor
lst order 17 .20 18.73
2nd order 16.83 17.98

3.7.4 Discussion

Although the quasi~periodic nature of speech signals has  been
extensively studied for a long time, attempts to fully exploit this
property to achieve efficient signal compression in speech coding
applications have been largely unsuccessful without recourse to highly
complicated implementations.. Our investigation into simplified pitch

adaptive schemes seems to have borne this out.

Apart from the sophisticated APC system proposed by Atal, a number of
other pitch adaptive differential coders of varying degrees of
complexity have been investigated by sundry researchers, The main
problem with wany of these schemes is the difficulty of accurate and

reliable pitch extraction. Errors in pitch estimate also tend to




Chapter 3 Page 160
propagate (because of the length of filters used), giving rise to a
reverberant quality in the recovered speech[83,112), Another problem
with APC systems encountered in our studies is the interaction between
the two predictors employed., Short-term predictors which are efficient
when used in isolation (as in ADPCM) proved to be less effective when
combined with the long-term pitch predictor in APC. Our limited
experiments appear to indicéte that this is because the former produces
a more random residual with the pitch structure blurred to some extent,
thereby upsetting the operation of the latter, whose performance depends
entirely on the accurate preservation of the pitch information. This
observation was also noted by Jayant[86] during his investigation into
pitch adaptive DPCM coding schemes. After performing several simulation
studies, Jayant arrives at a configuration that uses a 3-tap fixed short
term prediétor, switching to a single—-tap long-term predictor upon
detection of strong periodicity (see figure 2,]18). This pitch adaptive
system was reported to provide a 3.8 dB advantage over the fixed 3-tap
DPCM coder for female speech - a result which is in agreement with our

simulation studies in the preceding sectionm,

Backward adaptive APC systems have been investigated by Melsa, et al
[223,230], using gradient algorithms or Kalman type adaptations, with
little success, The main problem as before, is the difficulty of

accurate pitch detection,

We conclude that while pitch adaptive schemes possess considerable merit
as a powerful speech coding technique, 1its general applicability and
usefulness has hitherto been largely limited by the complexity
associated with reliable and accurate pitch prediction, Our studies

indicate the difficulty of obtaining a relatively low complexity version
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of the coder without significantly curtailing its potential. Indeed,
the use of a pitch predictor in differential speech coders is by no
means always desirable — Makhoul and Berouti decided in fact to discard
this long-term predictor from their adaptive predictive scheme on the
ground that its inclusion provides more bad than good on balance[112].
The reason is that the pitch predictor is not always effective, and
errors present in the system tend to be propagated over long periods of

time owing to the necessary length of the filter used.

3.8 CONCLUSION

Adaptive prediction is undoubtedly a promising and important area in
speech coding, as 1is evident from the vast amounts of research devoted
to the subject, Various forms of predictor adaptation have been
examined in this chapter, including several novel variations on certain
known algorithms, In the context of ADPCM coding of speech, the
superiority of adaptive over fixed prediction has been unquestionably
established. Variations in performance among different efficient
adaptive algorithms however, are not as immediately apparent, and often
other factors such as complexity and robustness predominate in the
selection of an algorithm for a particular application. The backward
block adaptive (BBA) prediction algorithm described in section 3.4.2.1
has been shown to provide good performance with relatively low
complexity. Also, the block adaptation employed could possibly offer
better robustness to transmission errors, although further experiments

will have to be carried out for confirmationm,

Pitch adaptive speech coding schemes have also been examined in some

detail, While wuyndoubtedly powerful in theory, such schemes are
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unfortunately heavily dependant on accurate pitch prediction for
efficient performance, and this has proved to be a severe limitation to
their potential. Accurate pitch prediction is imvariably linked with

high complexity and/or long delays.

Algorithms for predictor adaptation are largely based on some form of
minimum mean square error criterionm, and predictor efficiency is often
measured in terms of its SNR. Recent evidence has suggested however,
that the SNR measure does not accurately reflect the subjective quality
of the recovered speech, which is the ultimate test of any speech coding
system. Much current interest has therefore been centred on various
subjective criteria for use in speech coder assessment which will be
more reliable indicators of speech quality., 1In particular, the concept
of noise shaping to improve the perceptual quality of decoded speech has
found widespread applications in a range of speech coders [81-82,112,

113,231-233). This subject will be treated in more detail in the

following chapter.
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CHAPTER FOUR  ADAPTIVE NOISE SPECTRAL SHAPING IN ADPCM SYSTEMS

4,1 INTRODUCTION

Traditionally, waveform coders have attempted to¢ minimise the mean
square error difference between the original and coded speech waveforms,
and methods of assessing coder efficiency have conventionally been in
terms of some form of signal-to-noise ratio (SNR) measurement[9,12,19,
20,37,211]. Recent studies have indicated however, that the percaptioh
of signal distortion is not based on the SNR alone. Indeed, it is now
well recognised that the subjective loudness of distortion {(or noise) in
a coder depends to a considerable extent on both the short-time spectrum
of the quantizing noise and its relation to the short-time spectrum of
the speech signal, The theory of auditory masking suggests that noise
in the formant regions could be partially or totally masked by the
typically high energy low frequency components of the speech signal, so
that much of the perceived noise in a coder comes from the high
frequency regions where the signal level is low, Thus, the freguency
components of the noise around the formant regions can be permitted to
have higher energy relative to the componeats in the inter-formant and

the high frequency regions[8],82,110,112,113,115,231-233],

Waveform coders which are designed based on a minimum mean-square error
criterion produces an output noise signal which has a typically flat
spectrum[81,82,110], The subjective loudness of this noise could be

reduced by appropriate shaping of its spectrum, trading a decrease in
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the energy of the high frequency components for an increase in noise in
the low frequency formant region. The principle of noise shaping is
illustrated in figure 4.1. For minimﬁm ﬁerceptual distortion, the noise’;}é:w
spectrum should remain below the signal spectrum at all frequencies. o
However, for effective noise masking, the gap between the signal and
noise levels must be sufficiently large (typically 20 dB or more)[233].
Techniques for performing such noise spectral shaping have been devised
for both time and ffequency domain speech coders and these have been

applied with considerable success[12,19,40].

In this chapter, we consider only the technique of noise shaping applied
to time domain coders, and in particular to the ADPCM coder operating at
or around 16 Kbps, The theory of noise shaping is first reviewed and
the various noise shaping coder configurations described. Simulation
results are subsequently presented for two noise shaping ADPCM coders
where parameter adaptation proceeds on a forward mode. Following this,
backward adaptive methods for performing noise shaping are investigated.
These have the advantage of not requiring side information for
adaptation, so that the bit rate can be kept at 16 Kbps. Subjective
listening tests on the recovered speech demonstrate the significant
perceptual advantage provided by noise shaping, whether applied in a

forward or a backward mode.

4,2 NOISE SPECTRAL SHAPING

Much of the current interest in the area of noise spectral shaping has
arisen as a result of the work on APC of Atal and Shroeder{81]}, and
Makhoul and Berouti[ll12], although the idea of shaping the noise

spectrum has been present in the literature for a long time. Generally,
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control of the noise spectrum may be achieved in one of two ways -
either by using noise feedback or by employing some form of signal

pre—filtering.

4,2,1 Quantization Noise Feedback

In both the work of Atal and Makhoul, control of the noise shape is
realised by incorporating an additional filter on the differential coder
(APC or ADPCM) which feeds back the quantization noise i.e. the
difference between the quantizer input and output. Figure 4,2 shows the
noise-feedback coder employed by Atal, where P is the normal pﬁh order

linear predictor,

P -
p(z) = ) a z k (4.1)
k=1

and F is a transversal filter given by,
ri(z) = Z bkz (4.2)

Note that while his final design includes the pitch predictor, this has
been left out in the amalysis for simplicity, on the ground that it does
not affect the basic principle involved. The quantizer input in figure

4,2 can be easily shown to be,

p m |
e(n) = x(n) - Jax(nk) - ] b, q(n-k) (4.3)
=1 k=1
where,
a(n) = e(n) - e(n) (4.4)

denotes the quantization error at the nth instant, The coder output is

now given as,
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~ ~ P ~
x(n) = e(n) + ] a x(n-k)
k=1
i,e,
~ ~ p ~
e{n) = x(n) - Z a x{n=k) (4.5)
k
k=1
It follows from (4.3) to (4,5) that,
) = ] ax(n) - € 7l ")
g{n) = x(n) - a x{n-k) - {x(n) - x{n-k) - b q(n-k)}
k=1 k k=1 ak k=1 k
i.e,

m ~ ~
q(n) - Ebkq(n-k) = x(n} - x{n) =~ ) a {x(n-k) - x(n-k)} (4.6)
k=1 k=1

In frequency domain motatiom, (4.6) can be writtem as,

X(0) - X(w) = 9(u) ToEu

vhere Q(w), F(w) and P(w) are the Fourier transforms of the quantization

noise, F(z) and P(z) respectively,

(4.7}
For F=P, the output noise is the same as the quantizer noise, giving a
flat frequenmcy spectrum. However, with F#P, the coder of figure 4.2 is
able to control the shape of the output noise spectrum with appropriate
choice of the feedback filter F. Under the assumption that the
quantization noise is white, the spectrum of the coder output noise is
determined only by the factor (1-F)/(1-P) as implied by (4.7). It can

also be easily shown (see Appendix E) that the following constraint

holds[81],
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£
1/fsf;5 log T(E)df = 0O (4.8)

where T(f) is the squared magpitude of the factor (1-F)/(1-P) at a

frequency £,

2T
2T5ET

2
1 - rle |
1 - P{e

)

()
) |

(4.9)

and T is the sampling interval,

The interpretation of (4,8) is that, assuming that the power of the
quantizing noise is not changed significantly by the feedback loop, the
average value of log power spectrum of the output noise is determined
solely by the quantizer and is not affected by the choice of the filters
F or P, 1In this way, the spectrum of the output noise can be shaped to
suit perceptual requirements by reducing noise from one frequency region
at the expense of increasing it in another (see figure 4.1). However,
the constraint of (4.8) is in terms of log pover spectrum, so that any
deviation from the flat (minitmum mean—square error) case will result in
increased total noise power, although the areas above and below the

average level i.e. the shaded areas will always be equal,

Atal suggested selecting the filter F to minimise an error measure in
which the noise is weighted according to some subjectively meaningful
criterion. This could be done by weighting the noise power at each

frequency f by a function W(f). Since the ratio of noise power to
. . 2m3ET, |2
signal power at any frequency f is proportional to |1-F(e ™ |

)

, one

could choose F to minimise,
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E = IS| 1 - re?™ e ar (4.10)
0
subject to the constraint,
f X
JS log {|1 - F(ez"JfT)l2 }af = o (4.11)
O
Several interesting choices for W(f) were discussed, The first assumes
that W(f) 1is constant for all frequencies, giving a solution F=0. The
result is the feedforward D*PCM structure[l10] (see section 2.4.1.6(c)),
where the coder output noise has the same spectral envelope as the input
speech, SNR is low and the reconstructed speech contains perceptible
low frequency ‘roughness”. Another choice is to let W(f)=|1-PI-2,
giving F=P, and the coder becomes effectively the ADPCM structure. This
results in minimum unweighted noise power in the recovered speech,
yielding a flat noise spectrum and a high SNR. The subjective quality
is much less noisy than the previous case although a high frequency
“hiss” is audible, An intermediate choice between the two extremes can

be made by letting
P -
F(z) = P(z/a) = ):akakzk (4.12)
k=1

where o controls the extent of noisge shaping, from the flat minimum
mean—square error case (F=P, a=1) to the fully shaped case (F=0, a=0).
A value of o=0.7 was reported to provide the best subjective
performance, eliminating the high frequency hiss without introducing low

frequency roughness and yields an SNR slightly lower than the mmse case,

Nol1{110] undertook a rigorous mathematical analysis of the generalised
noise feedback coder (NFC) of figure 4.2 and showed that both DPCM and

D*PCM are special cases of the NFC. DPCM is described as a fully
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whitening filter while D*PCM only performs partial whitening.

The perceptual advantages obtained by shaping the output noise spectrum
of APC coders was also investigated by Makhoul and Berouti[112,113].

The configuration used by them is shown in figure 4.3, where F” is given

by,

F'(z) = L bz (4.13)

Again, the pitch predictor is not included in the analysis and in fact,
it was discarded by Makhoul in his final design., The difference between
this configuration and that employed by Atal is in the position of the
vocal tract predictor P. Nevertheless, the coders are the same with
regard to their noise shaping ability, From figure 4.3, the quantizer

input is given by,

N m p -~
etn) = x(n) -  Fuamk - ] axink {(4.14)
k=1 k=1

The receiver is similar to that of figure 4.2, so the recovered output
is,

P

~

x(n) = é(n) + ) ak;(n-k) {4.15)

k=1

From (4.4), (4.14) and (4.15),

~ P - m p ~
q(n) = x(n) - ) akx(n-k) - {x(n) - ) b', qln-k) - ) akx(nvk)}
k=1 k=1 k=1
i.e.
~ m
x{n) - x{n) = g(n) - ’ b'kq(n-k) (4.16)
k=1

(4,16) can be written in frequency domain notation as,
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X(w) - X(w) = [1-F(u) ]Qw) (4.17)

In this case, the shape of the output noise spectrum is determined by
the factor [1-F"(w)], where F” as before can be chosen to satisfy
perceptual criteria. From (4.7) and (4.17), it can be seen that the

noise shaping coders of figures 4,2 and 4.3 can be made equivalent by

setting,
— _ 1 -r2)
1l -F'(z) = T = p(z)
giving,
1-F(z) = [1-7F(z) [ 1-p(z)] (4.18)

To obtain the same noise shape as before,

1l - plz/c)

F'{(z) = 1 - 1-o(2)

(4.19)

Note that in both coders, the introduction of noise shaping involves
only the modification of the transmitter of the ADPCM structure ~ the

receiver remains the same,

4.,2,2 Adaptive Pre-filtering

A third configuration for shaping the output noise spectrum in a similar
manner consists of a pre- and post-filtering arrangemenrt on a

differential coder[82], as shown in figure 4.4. In this case,

_ 1 -Pr(2)
1-R@) = $ ol (4.20)

It is clear from the figure that,

o . (w) 3
X{w) - H{w) = i—:QET;T = 0w}

1l - Plz/a)
1l - p(z)

{4.21)
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i.e, the quantization noise spectrum 1is again shaped by the factor
(1-F)/(1-P). DNote that the predictor P” in figure 4,4 is optimised for
the pre~filtered speech {r(n)}, while P in (4.20) is optimised from the
original speech in the same way as the previous two configurations, The
structure of figure 4,4 is a relatively less studied noise shaping
coder, This could be due to the fact that a fully adaptive version of
the coder requires two sets of predictor coefficients to be computed and
transmitted i.e, the normal coefficients for P° plus the coefficients
for R required for noise shaping. The consequent increase in delay,
transmission rate (due to the additional side information) and

complexity is generally difficult to justify.

The final output noise for all 3 coders is the flat quantization noise
Q(w) shaped by the factor (1-F)/(1-P). The frequency response of this
noise shaping transfer function (1-F)/(1-P) is given in figure 4.5 for
an 8th order filter. The solid curve represents the envelope of the
speech input, modelled by the filter 1/(1-P) and the broken curve
illustrates a typical noise shape which results from the factor
(1-F)/(1-P) with @=0.,7. The two formants of the speech waveform can be

clearly seen in the figure,

4,2.3 Discussion ' .

Atal[8l] reported good toll quality speech from his APC coder with noise
shaping, using a 10th order vocal tract predictor, a 3-tap pitch
predictor (equation (3.67)) and a 3-level forward adaptive quantizer
(AQF)roptimised for a Gaussian distributed signal., With an input
sampling frequency of 8 kHz, the transmission bit rate is in the region

of 16 Kbps. Makhoul[112] also obtained good quality speech '"virtually
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indistinguishable from the original® at 16 Kbps using an 8th order
predictor and a 19~level entropy coder for the prediction reéidual. He
uses 3 lower sampling rate of 6.67 kHz for his input however, thus
allowing more bits effectively to code the residual signal and side
information., While there is little doubt that the two schemes are able
to achieve very godd quality coded speech at 16 Kbps, their one common
drawback is the high complexity involved; in the former case, with a
complicated pitch predictor and in the latter, with wvariable bit rate
entropy coding. Obviously, such complex implementations contribute
greatly to the overall system performance, and could possibly “mask” the
full potential of noise shaping, It would be interesting therefore, to
consider the effectiveness of noise shaping applied to coders at a lower

level of complexity.

We investigate in the following sections such less complex differential
speech coders which utilise the concept of noise shaping. These may be
divided into two groups and considered separately, depending on whether

forward or backward adaptation of the parameters is employed,

4.3 FORWARD ADAPTIVE NOISE SHAPING

In the noise shaping coders proposed by both Atal and Makhoul, the
coefficients of the noise feedback filter F and F” are obtained from
those of the vocal tract predictor, and these parameters are derived
using forward block adaptive (FBA)l prediction[33,47] (see section
3.3.1). The quantizer employed is also forward block adaptive (see
section 2.4.1.1 b(i}). The use of such forward adaptation implies the
need for delay and side information transmission, Generally, the delay

would be equal to the blocksize used for the calculation of the optimum
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predictor coefficients, since a block of input samples have to be
buffered for this purpose. The quantizer step-size can be estimated
from the same block of input samples so that no additional delay is
required. The adaptation rate of the predictor need not be the same as
that for the quantizer. Frequently, the predictor is able to tolerate
less frequent updating of its coefficients, and consequently the

blocksize used is also larger.

It was dgcided to invéstigate the effectiveness of noise shaping
techniques applied to the ‘simple ADPCM coder, employing 2-bit
quantization, To keep the complexity to a minimum, with a wview on
practical implementability, only the basic features of the noise shaping
coder as described by Atal or Makhoul were retained. The noise shaping
coder of figure 4.3 (which shall be denoted as NSFl) was simulated and
compared with the pre—-/post-filter configuration of figure 4.4 (denoted
as NSF2)., Note that the coder of figure 4.2 1is equivalent to figure
4.3, given the relation of (4.18) and provides identical results with

the same choice of noise shaping factor g.

4,3.1 Computer Simulation Results

Preliminary experiments were conducted to determine the optimum values
of parameters to be used in the simulation, The predictor coefficients
are computed from the input signal every 256 samples (32 ms) and
transmitted as side information, A  4th order predictor is used, An
estimate of the standard deviation of the prediction residual (which is
the quantizer input) is made every 64 samples (8 ws) from the input

signal, using feed-forward adaptive prediction, This is given as:
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b 2
_ § { x(n-3) - ) § a _x(n=j-k) } (4.22)
J= _

with M=64 and p=4., The optimum scaling factor ¢, to account for the
quantization noise present in the actual quantizer input was determined
experimentally to be 1.5. The quantizer used is optimised for signals
with a Gaussian distribution, Quantizers optimised for other
distributions (such as the Laplacian, gamma and uniform pdfs{43,45])
were also tried but were found to provide inferior results in terms of
SNR. The exception is the Laplacian quantizer, which appears to perform

rather well, particularly for female speech,

For each of the schemes NSFl and NSF2, the noise shaping factor o was
varied over the range between 0 and 1, Figure 4,6 shows the long—-term
average log magnitude spectra of the output noise produced by each
scheme for various o, and clearly demonstrates the effect of noise
shaping, Table 4.1 summarises the total and segmental SNR values for 2

seconds of speech obtained,

The SNR generally decreases as the extent of noise shaping is increased,
as expected since the total noise power 1is also increased. It is
interesting however, that at all levels of noise shaping, the SNR of
NSF2 is better than that of NSFl. This observation is borne out by the
comparison of the output noise spectra produced by the two schemes (for
a=0.5 and 0.7) as shown in figure 4.7, where it can be seen that the

output noise level of NSF2 is consistently lower than that of NSFI,
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Table 4.1 SNR performance of Noise Shaping Coders NSF! and
NSF2 ( 2 8 of Male and Female Speech)

Noise NSF1 CODER NSF2 CODER

Shaping MALE FEMALE MALE FEMALE

Factor ¢ SSNR  TSNR SSNR  TSNR SS8NR  TSNR SSNR  TSHKR
1.0 21.45 20.59 21.41 20.49 21.45 20,59 21.41 120.49
0.9 21.28 20.81 21.28 20.20 21.61 20.8 21,63 20,88
0.8 20.22 20.10 20.26 19.46 20,93 20.33 21.55 20.46
0.7 18.70 18.95 18.92 18.18 20.01 19.41 20,95 20.16
0.6 17.56 18.01 17.63 17.17 18.67 18.44 19.84 18.86
0.5 15.99 16.75 16,05 15.59 17.11 17.25 18.72 17.98
0.0 7.78 6.74 8.81 7.96 11,08 10.97 13.33 12.63

Recordings of the output speech were made for a range of o values and
the best subjective performance was found to be for o=0.6 to 0,7, 2a
finding in good agreement with Atal and Makhoul, |Listening tests
indicate a clear preference for the decoded speech produced by NSF2,

consistent with the above observation on SNR and output noise spectra.

4,3,2 Discussion of Simulation Results

The quite significant difference 1in performance between the two noise
shaping coders is unexpected as it has been generally accepted (albeit
without experimental evidence) that they should produce very similar
results[82)}., A possible explanation for this observation is given as
follows[212]:- In the NSFl coder, the predictor P is optimised from the
input signal but operates on the decoded speech samples which are
corrupted by quantization noise, This limits the accuracy of the
prediction process and produces a certain power of the residual signal,

The residual signal in turn determines the quantization noise power
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(assuming no quantizer overload) which defines the level about which
eventual noise shaping is performed, Thus in figure 4.6(a), the noise
spectra for various o values are shaped about the level given by uv=l, so
that the areas bounded by each curve above and below this 1line are
approximately equal. In the NS5F2 scheme however, the pre-filter 1-R
(which is essentially a spectral flattener) operates in a quantization
noise-free environment on the input speech and reduces the power of the
signal to be presented to the ADPCM encoder to¢ follow., The combined
action of the pre-filter and the ADPCM predictor P” results in a
prediction residual at the quantizer input, which‘has a variance smaller
than that of NSFl. The flat quantization noise spectrum of this
residual is thus also lower, This lower quantization noise howéver,.is
obtained only at the expense of noise accumulation at the receiver, when
post-filtering has to be applied to restore the spectral balance of the
gignal. The amount of noise accumulation will be proportional to the
extent of whitening produced by the pre-filter. But in this case, this
necessary noise accumulation process is used to advantage to perform the
noise shaping, The post-filter 1/(1-R) shapes the noise about the
reduced noise level, to give an output noise spectrum which possesses
the same shape as that produced by NSF1 {(for the same @), but with a
consistently lower magnitude across all frequency components, Figure
4,8 illustrates the different levels about which the cutput noise is

shaped, for the two schemes,

The better performance of NSF2 is due to a net gain from the effects of
two conflicting processes:-

(i) the feed-forward pre-filter, which reduces the variance of the

quantizer input and hence the quantization noise, and
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(ii) the post-filter which accumulates noise at the receiver,
In the results obained, it would appear that the reductjon in noise due
to the pre-filter is greater than the corresponding noise accumulation,
so that overall improvement over NSF1l is obtained. Indeed, from taBle
4,1, it can be seen that the SNR of NSF2 is actually increased (albeit
only slightly) when a small degree of noise shaping is applied (0=0.,9),
The relative contribution of the pre- and post-filter to the performance
of NSF2 appears to be a function of the fineness of quantization
employed, When quantization is coarse, the effectiveness of the ADPCM
predictor P” is quite severely limited by the relatively greater amounts
of quantization noise present in its input, so that the effect of the
pre-filter is predominant. As the number of quantizer levels is
increased however, the contribution of the pre-filter would also be
diminished, and the noise accumulation at the receiver becomes more
significant. Hence, it would be expected that the margin of improvement
of NSF2 over NSF1 would be inversely related to the fineness of
quantization. To investigate the wvalidity of this hypothesis, the
performance of the two coders were examined under conditions of fine
(4-bit) quantization. Figure 4.9 shows the output noise spectra of the
two schemes obtained with 4-bit quantization, for two values of o . It -
can be seen that the superiority of NSF2 over NSF1 does indeed diminish

as finer quantization is employed.

4.3.3 Fixed Pre-filtering

The better performance of NSF2 over NSFl is obtained at the expense of
increased complexity, delay and transmission bit rate, since an

additional set of predictor coefficients needs to be computed and
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transmitted. It was decided to investigate if this performance could be
maintained without the penalty of a higher bit rate. One way to keep
the same bit rate for both NSF1 and NSF2 is to allow the pre~filter in
the latter scheme to be fixed, Two fixed pre-filters were e#amined in
relation to NSF2. The first, denoted FPl is a simple first order
pre-emphasis, given by, |

1-R(z) = 1-gz"" (4.23)
and the second (FP2) is a second order filter of the form given by
(4.20), where the coefficients a8, and a, are derived from the long-term
autocorrelation function of speech, The parameters of FPl and FP2 ﬁsed
in the simulation were determined experimentally to be g=0,8 and o=0.7.
Figure 4,10 shows the output noise spectra of both schemes compared to
NSF2. It is seen that the FP2 codec fails to suppress the high
frequency noise tb the extent of either FP1 or NSF2 and provides a
“hump” in the noise spectrum corresponding to the poles of the
pre-filter used, FPl, on the other hand, is able to provide a
well-balanced low and high frequency performance, giving a 1long-term
average noise spectrum rather similar to NSF2, It must be remembered
however, that unlike the latter system where the noise tracks the
short-term speech spectrum, the shaping provided by FPl is non-adaptive,
The subjective quality of the recovered speech produced by the FP1l codec

is a little worse than that of NSF2 but is comparable, if not slightly

better than NSFl.

The predictor-quantizer interaction noted in the preceding discussion
for the adaptive pre-filtering scheme NSFl is also applicable to FP1,
Figure 4.11 shows the segmental SNR of FPl as a function of the pre-

emphasis coefficient, for 2 and 4 bit quantization, It can be seen that
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for coarse quantization, over a sizeable range of pre-~emphasis values,
the SNR is higher than when no pre-emphasis 1is applied, For fine
quantization however, the effect of pre-emphasis is clearly to reduce

the SNR, and at a quicker rate too.

4.,3.4 Conclusion

From the preceding investigation, the effect of applying noise shaping
to improve the perceptual quality of ADPCM decoded speech has been
demonstrated at a transmission bit rate of about 16 Kbps., At this bit
rate, and with a relatively low level of coder complexity,
communications quality speech is possible .using the basic adaptive
prediction ADPCM coder with noise shaping. Interaction between the
various components of the coder can be exploited to provide improved
performance in the application of noise shaping. It was found that for
the same noise shape, the use of an adaptive pre-/post—filtering
arrangement to perform noise shaping produces better results than the
conventional adaptive noise feedback coder. Specifically, for a
relatively simple ADPCM coder operating under coarse quantization
conditions, noise shaping is best applied using a fixed pre-emphasis,
This is able to produce a quality of the recovered speech equivalent to
or better than the more complex adaptive noise feedback coder,

The same experiments as described above were performed on wide band
speech, band-limited from 0 ~ 7 KkHz and sampled at 16 kHz, giving a
transmission rate of 32 Kbps plus side information, Similar

observations to the narrow band speech were obtained in all cases[212].
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4.3,5 Note on Publication

A paper‘entitled, "Noise Spectral Shaping Applied to Coarse Quantization
Differential Speech Coders" was presented at the Mediterranean
Electrotechnical Conference (MELECON 1983) in May 1983 and was recorded
in the Conference Proceedings p. 01.68. This paper was written in
co~authorship with Dr. €C.5. Xydeas and Mr. S,N, Koh and covers the

work described in section 4,3 of this chapter,

4.4 BACKWARD ADAPTIVE NOISE SHAPING

The work described in the preceding sections, and indeed previous work
documented in the literature on noise shaping in predictive coding
schemes, have largely involved systems employing forward adaptive
predictors[81~82,112] and/or quantizers[81-82,112,231], The delay and
side information associated with such forward adaptation has been a
major drawback of these otherwise effective systems. Backward adaptive
schemes do not have these problems and are therefore more attractive im
many applications[68]. We develope in the following sections, methods
for applying the concept of noise shaping to emhance the quality of the
coded speech produced by differential speech coders, which are not
excessively complex, and for which no delay or side information are
required, These are able to operate at 16 Kbps using 2-bit

quantization,

4,4,1 Description of Backward Noise Shaping Coder

The coder to be employed for this purpose is of the general adaptive

differential structures shown in figures 4.2 to 4.4, The constraint omn
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side information implies the need for a backward strategy for all
adaptation - prediction, quantization and noise shaping. Results on
backward adaptive predictors in chapter 3 suggest the use of the
backward block adaptive (BBA) predictor for the purposes of adaptive
prediction and noise shaping. The similarity of the BBA to the FBA
predictor allows most of the work developed for the latter to be
directly and conveniently‘applied. Furthermore, because of the noise
accumulation effect inherent in noise shaping schemes, the use of block
adaptation is to be preferred to sequential adaptation as far as the
risk of instability is concerned. And obviously, with the amount of
adaptation involved, the computational demands of the BBA predictor are
relatively modest compared to the sequential methods[225}. Backward
quantizer adaptation 1is easily implemented using the 2-bit Jayant

quantizer (AQJ)[49].

Two fully backward adaptive noise shaping séhemes, denoted as NSBl and
NSB2 are proposed and described in the following[213,215]. 1In both
cases, an 8th order BBA predictor is used, The predictor coefficients
are computed from past decoded signal samples using a blocksize of 256
samples, and these are updated every 32 sampling instants, as described

in section 3.4.2.1.

4.4,1,1 Scheme 1 (Quantization Noise Feedback)

The first scheme follows directly from the conventional noise shaping
coder structure of figure 4.3. The noise feedback filter F” adapts
according to (4.19), where P is the BBA predictor, The effect of mnoise
shaping is clearly seen in the output noise spectra for different values

of a, shown in figure 4,12, Listening tests indicate an optimum o value
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of 0.7, which is the same value obtained in the forward adaptive cases.
This value of o provides the best compromise in terms of subjective
quality between the high and low frequency distortions, eliminating much
of the high frequency “hiss” without increasing low frequemcy “rumble”
appreciably,. As shaping is increased (by decreasing a) however, the low
frequency “roughness” and “breathiness” becomes increasingly apparent

and the quality deteriorates.,

4,4,1.2 Scheme 2 (Adaptive Pre-filtering)

The work on noise shaping in forward adaptive ADPCM systems (section
4,3.2)[212] suggests the possibility of exploiting predictor~quantizer
interaction to reduce the level of quantization noise about which
shaping is performed. It was found, in the simulation of the forward
adaptive schemes, that the application of noise shaping using a pre-
/post—filter arrangement on the basic ADPCM coder provides a clear

perceptual and SNR advantage over the conventional noise feedback coder,

We decided to investigate if the same observation 1is true for the
similarly configured backward adaptive noise shaping system. We note
above, that the adaptive pre-filter scheme NSF2 requires the
transmission of the pre-filter coefficients in addition to the ADPCM
predictor parameters - a requirement which is clearly unacceptable for
operating at a transmission bit rate of 16 Kbps using 2-bit
quantization. Since the BBA predictor adapts in a backward mode, the
pre-filter coefficients can alsc be made to adapt according to the BEBA
predictor to avoid the transmission of side information, The

configuration used to incorporate such a backward adaptive pre~filter
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into the ADPCM coder is shown in figure 4.13. The filter R adapts

according to:

1 - p'(2)

R(z) = l-l_:nP'_{-z/_a) (4.24)

where P’ is the BBA predictor optimised from past samples of the pre-
filtered signal {r{m)}. At the receiver, corresponding post-filtering

is applied to the received r{n) to recover the input speech.

For this backward adaptive arrangement, the interaction among the
various elements in the system is rather more complex, although the same
general explanation as that for the forward adaptive case applies to a
great extent., The effect of the pre-filter, whether forward or backward
adaptive, is still the same i,e, to pro;uce a smaller residual signal
and hence a lower level of quantization noise. Once again, the spectral
plots of the output noise provide much insight into the operation of the
coder, From figure 4,14, it is apparent that the backward pre-filter
arrangement produces certain desirable characteristics, Specifically,
it is able, for the same noise shaping factor 2=0,7, to provide a noise
shape similar to NSBl1 over the high frequency part of the spectrum, but
it performs the task more efficiently, by not pushing up the low
frequency noise to the same extent., Hence, for the same (tolerable) low
frequency noise level, NSB2 will provide even more suppression of the
high frequency distortion present, which would lead to an enhancement in

the quality of the received speech., The noise spectral plot for NSBZ

with a=0,2 (figure 4.14) illustrates this effect,

Listening tests confirmed the deduction from the output noise spectra,
The quality of the recovered speech produced by NSB2 (with o=0,2) was

found to be significantly superior to that of NSBl (a=0.7). The total
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and segmental SNR for various levels of noise shaping, for the two
schemes are plotted in figure 4,15. Due to the relatively smaller low
frequency noise level of NSB2, its SNR drops less rapidly as noise

shaping is increased, compared to NSBI,

4.4.2 Subjective Listening Test

In order to obtain a more realistic assessment of the two proposed noise
shaping coders, an informal subjective listening test involving a total
of twenty five subjects was conducted., The recovered speech from the
schemes NSB1 and NSB2 were compared to that obtained from 6 and 7 bit u
law log PCM{9] (denoted as PCM6 and PCM7), equivalent to bit rates of 48
and 56 Kbps respectively. Each of the four schemes was compared with
every other scheme (except for PCM6 vs PCM7 for obvious reasons) in a
randomly ordered A-B paired comparison test. The recovered speech from
two schemes were presented to the subjects each time, and they were
asked to respond with either a preference for one over the other or with
no preference at all, Male and female sentences were separately tested,

- The results are summarised in table 4.2,

For male speech, there is undoubted preference (at least 80%) for both
noise shaping schemes over PCM6. NSBI is adjudged to be about the same
as PCM7, while NSBZ is clearly superior to all the others. For female
speech, the pattern is not as clear—-cut — NSBl is preferred to PCM6 but

not to PCM7, while NSB2 is deemed slightly better than PCM7, and clearly

superior to PCM6,
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Table 4.2 Results of Subjective Listening Tests (in percentages)

Schemes MALE SPEECH FEMALE SPEECH

A B pref A pref B No pref pref A pref B No pref
PCM6 NSB1 0 92 8 20 36 44
PCM7 NSBl 12 20 68 40 12 48
PCM6 NSB2 0 100 0 0 72 28
PCM7 NSB2 0 80 20 40 52 8
NSBl NSB2 4 80 16 4 72 24

Figure 4,16 provides a quick summary of the paired comparison test
results (obtained from the average of the individual tests for male and
female speech), and illustrates quite clearly, the overall superior
quality provided by NSB2., Figure 4,17 shows the contour spectrograms of
the recovered male speech sentences corresponding to each of the four
schemes evaluated, together with that of the original unprocessed
speech, It can be seen, by comparing with -the original, that a
considerable amount of additive noise is present in the high frequency
region of the spectrum for the PCM schemes (note in particular the
beginning of the sentence). This gives rise to a high frequency
background “hiss” in the speech, which although small in amplitude, 1is
nevertheless perceptually annoying. In contrast, the noise shaping
coders NSBl and NSB2 are able to suppress this high frequency noise
successfully and thus reduce significantly the background hiss. It is
clear from the figure that the spectrogram corresponding to NSB2
provides the closest regemblance to the original, as would be expected

from the results of the subjective test,
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It is interesting to note the SNRs associated with the four coders
evaluated. While the noise shaping coders have SNR values in the region
of 15-17 dB (see figure 4.15), the corresponding SNR obtained using 6
and 7 bit log PCM coding are about 25 and 30 dB respectively -~ a
difference of up to 15 dBI This demonstrates without doubt, the
fallibility of using objective measurements such as signal~to-noise
ratios as a means of assessing the performance of coders belonging to

different classes, an observation noted by many researchers[12,19,82].

4.4.3 Note on Publications

A paper entitled, "16 Kbps ADPCM with Backward Noise Spectral Shaping"
has been accepted for presentation at the Second International
Conference on New Systems and Services in Telecommunications to be held
in Liege, Belgium in November 1983, This paper 1is written in
co-authorship with Dr. C.S. Xydeas and covers the work presented in

section 4.4 of this chapter,

A more complete version of this paper, entitled, "Noise Shaping in
Backward Adaptive ADPCM at 16 Kbps" which also covers the work on the
backward block adaptive (BBA) predictor in section 3.4.2 has been
submitted for publication to the IERE Proceedings. This paper is also

written in co-authorship with Dr. C.S. Xydeas.

4.5 CONCLUSION

In this chapter, we have examined the application of noise spectral
shaping to relatively simple ADPCM coders operating at a nominal bit

rate of 16 Kbps. The aim has been to investigate the subjective
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performance of such noise shaping ADPCM systems which do not involve a

high level of complexity as those proposed by other researchers.

Forward adaptive noise shaping systems were first studied, and fwo
methods of achieving noise spectral shaping were simulated, one based on
the conventional noise feedback coder and the other utilising an
adaptive pre— and post—~filtering arrangement on the basic differential
coder structure, The latter scheme was found to provide better SNR and
subjective performance, due largely to the effect of predictor-
quantizer  interaction which works to advantage under the coarse
quantization conditions considered. Uﬁfortunately however, the better
performance was achieved at the expense of a slight increase in side
information and hence transmission bit rate. To avoid this additional
side information requirement, a simple fixed pre-filter arrangement was
considered, and this was found to provide a decoded speech quality a
little worse than the adaptive case although comparable, if not slightly
better than the more complicated conventional adaptive noise feedback

coder.

The use of noise shaping techniques for improving the perceptual
performance of differential coders has been demonstrated. With coarse
quantization however, the level of noise present in the recovered speech
can be a limiting factor to the effectiveness of such techniques,
Various studies, have indicated that, for effective auditory masking of
noise, the noise power must be about 20 dB below the signal power at the
same frequency[233]. Nevertheless, even when this condition is not
satisfied (as in the case of coarse quantization), noise shaping can
still be useful as a means of obtaining the optimum balance between low

and high frequency distortion to produce the most subjectively pleasing
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output{212].

OQur simulations have shown ﬁhat for a relatively “un-sophisticated” 4th
order adaptive prediction ADPCM scheme, the use of noise feedback to
provide noise shaping is unwarranted, since equivalent, if not better
performance can be obtained using 2 much simpler fixed pre-filter for

the same purpose,

In an attempt to avoid the transmission of side information and the meed
for coding delay associated with “look-ahead” forward adaptive
strategies, the possibility of applying noise shaping in a backward
manner was explored. Two schemes for achieving backward adaptive noise
shaping, based on the configurations considered in the forward adaptive
coders, were developed and evaluated. It was found that shaping of the
output moise was again able to provide significant improvement in the
output speech quality over the unshaped case, The backward adaptive
pre~filter scheme in particular, was able to exploit predictor-quantizer
interaction efficiently, to produce an impressive decoded speech quality

comparable to that obtained using 7-bit log PCM coding[213,215].

In the work described hitherto, little attention is paid to the
quantizer, in order not to detract from the main theme of the respective
chapters. However, having discussed the prediction and noise shaping
aspects of differential coding schemes in sufficient detail, the time
has now come to consider the intricacies of adaptive quantization, which

is crucial to the efficient performance of speech coding schemes, This

will form the subject matter for the next chapter.
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CBAPTER FIVE ADAPTIVE QUANTIZATION

5.1 INTRODUCTION

The performance of differential coders (DPCM, ADPCM, APC) is determined
by two factors — prediction and quantization, The predictor attempts to
reduce the variance of the input signal by removing redundancies present
in its waveform while the quantizer seeks to represent the resultant
prediction residual in terms of discrete amplitudes, with minimum
distortion subject to the constraint on the number of levels it can
employ for this purpose, Provided that the noise introduced by the
quantization process does not affect the prediction, the final SNR of
such coding schemes is therefore governed by the general equation[12],
SNR = SNRP + suxq’ (5.1)
where SNRP depends on the estimation accuracy of the prediction process
employed and is sometimes referred to as the signal-to-noise ratio
improvement {(SNRY)[19]. SNRq is the SNR produced by the quantization of

the residual signal,

For efficient performance, both preﬁictor and quantizer are normally
required to be adaptive. In practice, adaptive prediction is not a
critical requirement when the transmission bit rate is sufficiently high
(above 32 Kbps). Adaptive quantization however, is rather more crucial
to system performance. Noll{47] has shown that a DPCM system employing
adaptive quantization and fixed prediction produces a massive 7 dB

advantage over logarithmic PCM., When adaptive prediction is used, this
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advantage is increased by a further 3-4 dB, with an additional 2-3 dB
improvement possible with entropy coding. These results were obtained

using 3-bit quantization,

This chapter is concerned with the quantization aspect of speech coding
schemes, and in particular, with those schemes operating at a trans-
mission bit rate of about 16 Kbps. At this bit rate, and with the input
speech sampled at 8 kHz, only 2 bits are allowed for the quantization of
each transmitted signal sample (assuming no signal decimation or entropy
coding) so that some form of quantizer adaptation is a virtual
necessity. The adaptive quantization methods used for the ADPCM systems
in chapters 3 and 4 are examined in greater detail in this chapter,
Other quantizer adaptation techniques are also considered., Following
this, a simple novel approach to reducing quantization noise in ADPCM
systems is proposed and described, This is evaluated using computer

simulation on the 2-bit one-word memory backward adaptive quantizer[49].

5.2 ADAPTIVE QUANTIZATION TECHNIQUES

The basic function of the quantizer is to assign to each input sample,
one of a s8et of several discrete magnitude levels, which is closest to
the input sample, In a B bit uniform quantizer, the number of these
discrete amplitude levels is ZB. Hence, the quantization error power is
proportional to the square of the quantizer step~size i.,e, the distance
between adjacent amélitude levels, 1In typical voice communications
systems, the dynamic range of speech signals considering inter-talker as
well as intra~talker variations can be as much as 40 dB[37}. Early
attempts to accommodate this large signal dynamic range has been in the

form of time—invariant non-uniform quantizers, with fine quantizer steps
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in the small amplitude region and much coarser steps for 1arge_
amplitudes (see section 2.4.1.1.(a))[9,42,44]. Logarithmic
PCM{9,12,37], vhich is still being used in many communication networks,
is one such non-uniform quantization technique, Other methods have
sought to match the quantizer input-output levels to the input signal”s
statistics[43], and various quantizers optimised for signals with
Gaussian, lLaplacian and gamma distributions[43,45] have been designed.
Such time-invariant techniques however, fail to recognise that the large
dynamic range of speech signals is the result of a non-stationary or
time-varying process, and these methods are therefore only optimal for =
specific input signal power. Better results can be obtained using a
quantization strategy that is variable in time i.e, with a

characteristic that adapts to the input signal level,

Adaptive quantization[47,49-53] utilises a quantizer characteristic that
shrinks or expands in time like an accordion, depending on the input
signal power, Typically, speech power levels vary sufficiently slowly
in time to allow simple adaptation strategies to be designed to track
these variations, In differential coding schemes, the quantizer input
is the prediction residval which has a2 much reduced dynamic range
compared to the corresponding speech signal, Nevertheless, the power
variation is still considerable, and adaptive quantization is no 1less
desirabie[ﬁo, 64]. Adaptive quantizers may be either forward or
backward adaptive, depending on whether adaptation is based on the input

samples or on the quantized output, respectively. These two main

classes shall be considered separately in the following,
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5.2.1 Forward Adaptive Quantization (AQF)

Forward adaptive quantizers (AQF){19,41,46-48] normally adapt its step-
size on a block basis. A block of N input samples is buffered and the
average energy of the signal samples within the block is obtained. This
value determines the step-size A, which is then used to quantize the

same block of samples, Thus,

N-1 s
b= af3 I Pn9)] (5.2)
3=0

where o is an appropriate constant weighting factor which depends on the
number of bits used in the quantizer. By using the actual quantizer
input to obtain the step-size, this method ensures that the quantizer
range is always matched to the signal, If it is required that the
quantizer characteristics be designed for a particular signal
distribution, (5.2) can be used to estimate the standard deviation of

the block of samples. ¢ would obviously be different in this case.

For ADPCM applications, quantization of the prediction residual is
performed on a sample-by-sample basis, so that it is not possible to
buffer a block of residual signal samples for the purpose of calculating
the optimum quantizer step-size, In this case, some form of step-size
estimation will have to be made, Figure 5.1 shows an ADPCM codec
employing forward adaptive quantization. A block of N input samples is
buffered, the feed-forward prediction residual is formed, and an
estimate of the step-size for the block is made, based on the average
residual energy. Several methods for calculating the step—size for DPCM

and ADPCM systems have been suggested.
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estimated step-size

x(n) e(n)]  |e(n) x(n)

v
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(a) Transmitter (b) Receiver

Fig. 5.1 ADPCM~AQF Codec

Noll[47] proposed using the maximum difference between adjacent samples
within a block to determine the optimum step-size A, for a single-tap
DPCM system:

A = aMax{ [x(n=j) - x(n-j-1)| } (5.3)

j=20,1,2....8-2

where 0 is an optimising parameter, Jayant[46] presented a similar
formula for estimating the AQF step-size which uses the average forward
prediction exror:

N-2

A = a E%I . Z{x(nwj) - alx(n—j-l)| (5.4)

where

Q
1]

0.50 for B =3

0.25 for B = 4
ay is the first order predictor coefficient and B is the number of bits

per sample employed by the quantizer. For higher order predictors, Noll

[47] suggested using,
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N-p~1 ol 2
A = a L xtn-3) = ] a x(n-j-Kk) ) (5.5)
j=1 k=1

where ¢ is a parameter and the {ak, k=1,2,...p} are the p predictor
coefficients, Optimum quantizers may also be employed in DPCM coding,
in which case the block of N error samples are first normalised by the
estimated standard deviation of ﬁhe block before being quantized by a
unit variance optimum quantizer. The standard deviation of the error
samples estimated from the imput signal is normally modified by a
weighting factor greater than unity, to account for Fhe presence of
additive quantization noise in the actual error signal that is

quantized[41].

Figure 5,2 shows the probability density functions (pdf) of two seconds
of male and female speech, The short-term pdfs (figure 5.2(a)) were
obtained by averaging over all normalised short~time pdfs, taken in
blocks of 64 samples (8 ms). These are very much ®Gaussian when the
blocksize used is small and tends toward Laplacian as the blocksize
inéreases. The long-term pdfs (figure 5.2(b)) obtained from the full
two seconds of speech are also shown. These are undoubtedly gamma
distributed, due to the presence of proportionately greater amounts of
low amplitude components in a typical speech utterance (including pauses
and silence). Figure 5.3 shows the similar pdfs of the speech residual,
obtained using second order feed-forward adaptive prediction on the same
speech data, Clearly, the distribution of the residual signal is not

very much different from that of the original speech,

From these observations of the pdfs, the use of quantizers optimised for

specific distributions can be expected to yield better performance for
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both APCM and ADPCM coding using AQF. Higher SNR has indeed been
reported by Noll[47], for the use of such “optimum” quantizers., For
2-bit  quantization however, the advantage of these over uniform

quantization is slight (half a dB or less on average).

The “look-shead” facility of forward adaptive quantizers necessitate a
delay in the system, since a block of input samples has to be buffered
in order to estimate the step-size, In addition, this step-size
estimate needs also to be communicated to the receiver, thus requiring
additional channel capacity. (In practice, it is the quantizéd version
of the step-size that is used at both transmitter and receiver to ensure
identical operation.,) The delay and side information requirement which
might be undesirable or unacceptable in certain applications may be
avoided if quantizer adaptation is made to proceed in a backward mode,
based on past output samples, which are available at both transmitter

and receiver,

5.2.2 Backward Adaptive Quantization (AQB)

The attraction of backward adaptive quantizers[12,20,37,49,50,64] as
noted above, lies in their ability to operate without delay or side
information. Essentially, the adaptation involves some form of
“prediction” of the incoming signal power which is used to update the
quantizer step-size. Since no prior information about signal energy is
available, adaptation must be made based on the most recently decoded
samples at a given time imstant in order to maximise prediction
accuracy. Consequently, backward adaptive quantizers usually vary their

step-sizes instantaneously, at every sampling instant, as opposed to the

block adaptation of AQF. Several backward quantizer  adaptation
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algorithms will now be considered,

5.2.2.1 Jayant”“s Adaptive Quantizer {AQJ)

Undoubtedly the most well-known and widely used backward adaptive
quantizer is the instantaneous one-word-memory algorithm developéd by
Cummiskey, Flanagan and Jayant, and commonly referred to as the Jayant”s
quantizer (AQJ)[49,64]. This provides a simple means of matching the
step-size of the quantizer to its input, using quantizer memory.
Specifically, if the outputs of a uniform B-bit quantizer are of the

form,

x(n) = m(m 20 s H) | = 1,3,0....2501 (5.6)

Aln) > 0

the step~size A(n+l) is given by the previous step-size multipiied by a
time—invariant function of the code-word magnitude |H(n)l; i.e,

A(n+1) = A(n)MC|E()]) (5.7)
where M(.) denotes the multiplier function. By this means, the
quantizer seeks to expand or contract its amplitude range according to
the variance of the incoming input samples. Figure 5.4 illustrates the
input—output characteristics of a 3-bit Jayant quantizer. Note that the
number of multiplier values is given by ZB_l- Since adaptations follow
quantizer output rather than input, step-size informatiom in this scheme
need not be explicitly cowmunicated but, in the case of error-free

transmission, can be re-created exactly by the receiver.

Alternatively, this adaptive quantizer can be viewed as one which
normalises the input samples x(n) with a state variable u(n) and uses a

fixed range quantizer to quantize the result, as shown in figure 5.5,
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It can be seen that the state variable u(n) is updated in the same way
as A(n) of (5.7), being the product of its previous value and the
multiplier associated with the previous quantizer slot occupied i.e.
u(n) = u(n-1).M(|{H{a-1)]) (5.8)
The reverse process i.e., multiplication by u{n) is performed to obtain

the decoded sample.

Notice in figure 5.4, that the step-—size adaptation is based only on the
magnitude of the latest decoded output and not on its sign, This is a
consequence of the observation that the probability density function of
speech signals is expected to be symmetrical about a mean value of zero.
Table 5.1 shows the recommended multiplier values provided by Jayant,
for B = 2,3 and 4 bit quantizers for both PCM and DPCM coders. These
recommended multipliers do not in general constitute overly critical

target values. It is important however, that step-size increases should
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be more rapid than step-size decreases. This has to do with the
following comparison of two basic types of quantization errors:
overlpoad errors, which. occurs when the step-size is too small and the
signal sample falls outside the quantizer range, and granular errors
that are inherent in quantization, even when the quantizer range is
adequate, Granular errors are bounded by the step-size and are
therefore relatively smaller in magnitude compared to overload errors.

As a result, they also tend to be less harmful to SNR.

Table 5.1 Step-size Multipliers for the One~Word Memory Quantizer

CODER PCM DPCM

B 2 3 4 2 3 4
M1 0.6 0.85 0.8 0.8 0.9 0.9
M2 2.2 1.00 0.8 1.6 0.9 0.9
M3 1.0 0.8 1.25 0.9
M4 1.5 0.8 1.75 0.9
M5 1.2 1.2
M6 1.6 1.6
M7 2.0 2.0
M8 2.4 2.4

Although the one-word memory quantizer performs well in ideal channels,
the sequential adaptation it employs renders it extremely susceptible to
transmission errors, A robust version of this quantizer, proposed by
Goodman[190), modifies the step—size adaptation algorithm of equation
(5.7) to incorporate a leakage factor 3,

atn+1) = AP () (@) |) 0 <B <1 (5.9)
B is normally just less than unity (for example, 63/64) and controls the
rate at which the effects of transmission errors are dissipated. This
modification improves the quantizer”s error performance considerably, at

the cost of slightly reduced efficiency.
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The AQJ has been used extensively in DPCM and ADPCM systems for the
quantization of the prediction residual signal. Notice the slight but
important difference in the optimum multiplier values used for DPCM
coding (see table 5.1). This has to do with the fact that while high
adjacent sample correlation exists at the input of a PCM quantizer (this
being equal to the correlation between Nyquist sampled speech), the same
is not true for DPCM quantizer inputs, due to the differentiating (or
high-passing) process involved. DPCM quantizer inputs are generally
much less correlated and thus step—size increases must be even more

rapid than step-size decreases[37,49].

Goodman[189] conducted a theoretical study of the AQJ and considers its
performance in terms of such factors as its vrange fluctuation,
adaptation speed and the stability of the process. He showed that the
sequence of quantizer ranges is a stochastically stable process, and
that the steady state fluctuation of the normalising factor u(n) is

related to a function of the maximum and minimum wmultiplier values by,

R = 1log Max M(.) : {(5.10)

2Min M(.)
The adaptation response is then inversely related to R, Thus with
appropriate choice of the multiplier values, the optimal trade—off
between adaptation speed and accurate steady-state performance for a

particular application may be obtained.

5.2.2,2 Variance Estimating Quantizer (VEQ)

A backward quantizer adaptation strategy similar to Jayant”s algorithm

is the variance estimating quantizer (VEQ) studied by Noll[20], Stroh
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[41) and Castelino[50]. The VEQ, shown in figure 5.6, normalises the
iﬁput signal by the square root of a maximum likelihood estimate of its
variance and quantizes the resulting ratio using a fixed quantizer, The
normalising variable u(n) is made proportional to a moving estimate of
the decoded signal”s standard deviation in order to obtain a unit
variance signal which can then be optimally quantized. Thus, u{n) is

given by,
R e T ] (5.11)

j=1

where o is an optimising comstant. An exponential average of previous

quantizer outputs have also been used. This is of the form,

®
2w = o« 3 ey e (5.12)

j=1
where the effective memory of the variance estimator varies by changing
the value of the leakage constant y. The introduction of y weights each
decoded sample into the past, attaching more weight to the more recent
samples and gradually “forgetting” distant samples. The formulation of

(5.12) can be expressed in recursive form as,
wm) = [o®-y) -1 + yuP(nen)] (5.13)

From figure 5.6, it can be seen that,

x(a-1) = u(n-1).q(n-1) (5.14)
Substituting into (5.13) gives,

am) = uleeD) [ o) ¢ (n-1) + v 1 (5.15)

Clearly, (5.15) is the same as the Jayant adaptation of the normalising

factor given in (5.8) if:
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2 2 L
MOJEG-1) ) = [ o (my) (n-1) + v ] (5.16)
and consequently, the variance estimating quantizer is equivalent to

Jayant“s quantizer,

5.2.2.3 Pitch Compensating Quantizer (PCQ)

The lack of a “look-ahead” facility in the AQJ algorithm renders it
rather susceptible to overload during the occurrence of sudden
transitions in the input signal. This is particularly so when the
quantizer is wused in differential coding structures where its
shortcomings are manifested in the clipping of the high amplitude
residual samples related to the speech excitation or pitch pulses. Such
“clipping” can produce annoying “clicks” in the decoded speech and a
reduction in SNR . A fast adaptation response to avoid overload is
possible with suitable choice of the multiplier values, but this will,
on the other hand, increase the granular noise during the low amplitude
segments of the signal, The obvious solution is to have some form of
variable adaptation algorithm which is able to increase the quantizer
step—size rapidly wupon detection of overload, without sacrificing
performance during the less rapidly varying segments of the signal, At
least two such quantizers which attempts to incorporate  some

compensation for the pitch pulses, have been proposed.

The first pitch compensating quantizer (PCQ) proposed by Cohn and Melsa
[66], uses two adaptive u(n) estimators simultaneously, One is an
envelope estimator (denoted ue(n)) which computes a moving average of
the magnitudes of previous quantized samples., The other, uj(n) is a

Jayant“s estimator with non-uniform quantization levels and specially

selected multiplier values, These multipliers are all less than unity
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except for the two outermost levels which are set at values much higher
than normal, For example, in a 5-level quantizer, the multipliers are
given as: M(1) = 0.4, M(2) = 0.8 and M(3) = 2,2, The quantizer

characteristic is shown in figure 5.7.

Qutput x{n)

a4 kb M(3)
A L M(2)
M{1) -
1} hd ¥ ¥  § 2 L] Y
A 3A 5A Input x(n}
M(2) 2 2 2

M(3)

Fig. 5.7 Characteristics of Pitch Compensating Quantizer (PCQ)

Both u, and uj are updated at each time instant and the actual normal-
ising factor u(n) used is the larger of the two, i.e.

u(n) = Mex[ u,(n), uj(n) ] (5.17)
When signals with slowly varying amplitudes are being quantized, uj
assumes small values because only the multipliers less than unity are
being used. In such cases, u, provides a more accurate estimation of
the signal variance and is taken as the normalising factor. When the
quantizer detects a possible pitch pulse with one of its outermost
levels however, ug increases rapidly due to the high multiplier wvalue

associated with the outermost levels, and becomes greater than Ug e
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Consequently, the step-size increases quickly to “capture” the high
amplitude sample(s). After the pitch pulses have been quantized, uj

decays just as quickly so that the envelope estimator takes over again,

The second pitch compensating quantizer developed by Qureshi and Forney
[67] employs two Jayant estimators, onme for tracking syllabic variations
of the input signal and the other for providing large values of u(n)
upon detection of possible pitch pulses, by using high values for the
outermost levels as before. The quantization strategy is similar to the
first method except that the envelope estimator is substituted with a
Jayant”s estimator whose multipliers are set close to unity so that its
output follows the long-term syllabic variations of the input signal,
The adaptation process is best understood by considering logarithms,
Defining U(n) = logzu(n), Qureshi”s PCQ adapts according to,

Um) = U (n) +U(n) +U . : (5.18)
where Up,;, is a constant and defines the minimum value of U(n). Ul(n)
is related to the normalising factor of the first Jayant
estimator (pitch compensator) and is updated according to:

G(n) = v,0(n-1) + Ml(n-l). : (5.19)
vhere M} is a set of multipliers which are all zeroces except for the
value which corresponds to.the outermost levels of the quantizer. v, is
a leakage constant lgss_ than ‘unity which causes Ul(n) to decay
exponentially after the occurrence of the outermost quantization level,
U,(n) is related to the second Jayant estimator and is similarly defined
as,

Uy(n) = v, U,(n=1) + M, (n-1) (5.20)
where again, Y, is a leakage factor and M2 is a set of coefficients

which are close to zero except for the outermost levels, The quantizer
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gain, or normalising factor is finally given by,

Int[U(n)]

u(n) = Int [ 2 (L + U(n) - Jum)|) ] (5.21)

where Int[,] means "the integer part of".

5.2.)3 Discussion

The use of pitch compensating methods such as those described above to
improve on the performance of AQJ has certainly 1e& to a reduction in
clipping errors im the quantization of the prediction residual, with a
consequent increase in SNR over the uﬁ-compensated case, Unfortunately
however, the techniques proposed require variable rate coding, with its
attendant problems of delay, synchronisation and buffer management (see
section 2.6.5). In many applications, the difficulties associated with
variable rate coding would usually outweigh any advantages over fixed

rate coding that could be expected,

In the following sections, we describe a mew approach to the problem of
quantizer compensation, which do not attempt to modify the basic AQJ
algorithm in any way. Instead, correction is made to the decoded speech

samples at the receiver omly, based on simple statistical measurements.

5.3 QUANTIZER CORRECTION

The work éﬁ quantizer correction has arisen out of our efforts to seek
improved quantizer perforﬁance for the 2-bit Jayant quantizer in the
context of DPCM or ADPCM coding. With only 2-bits (4 levels) assigned
to code each signal sample, quantization accuracy is obviously limited

and “clipping” of the residual signal frequently occurs. Figure 5.8
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illustrates this effect, The first plot, labelled (a) shows a typical
DPCM residual signal (obtained using second order fixed prediction) with
the distinct high amplitude periodic excitation pulses. Figure 5.8(b)
shows the quantized version of the same signal obtained with 2-bit AQJ,
which clearly demonstrates the clipping of the pitch pulses., Apart from
this clipping effect, it can also be seen that the quantizer output

tends to decay too slowly following the occurrence of a large output.

We decided to investigate if ﬁhese liﬁitations of the quantizer can be
corrected without attempting to modify the basic  DPCM coder
configuration, and without requiring any additional information to be
communicated to the receiver, The last constraint implies that all
necessary information must be obtained from the quantizer output bit

stream,

5.3.1 Correction Technique

Consider a DPCM coder (figure 5.9) where x(n), ;(n), e(n) and é(n)
denote the input speech, decoded speech, the quantizer input (predictiom
residual) and output, respectively. The proposed quantizer correction
technique is based on observing the quantizer output sequence {e(n)} in
small blocks at a time and then applying appropriate correction, based
on these observations, to the corresponding decoded speech sequence
{;(n)}. The amount of correction to be applied depends on the
distribution of the block of ;(n) samples and these can be cbtained from
long-term statistics. Figure 5.10 shows how the correction is applied
at the DPCM decoder. The quantized output sequence is extracted from
the transmitted bit stream and fed to the box labelled COR where

correction is made to the appropriate decoded speech samples, This
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quantizer correction procedure will now be described[214].

Consider the quantizer input-output relation at the tramsmitter in terms
of small blocks of 3 contiguous samples, The quantization process
introduces an error given by e(n)-é(n), which, in the absence of
transmission errors, is equal to the output noise x(n)-ﬁ(n).. If the
polarity of this error is known, some form of correction can be
applied to Q(n) to provide a reduction in the output noise., A
correction factor fi(n) for the ith block can be defined as,
e, (n) - éi(n)

fi(n) = - ;n=1,2,3 (5.22)
ei(n)

where n denofes the position of the sample within the block. Adjacent
blocks slide forward by one sample each time instant to give an overlap
of 2 samples between blocks. When f; (n) > 0, it implies that I;i(n)[ <
]gi(n)| i,e, the magnitude of the quantized value is smaller than the
actual sample, An appropriate correction to increase the magnitude of
the corresponding decoded signal ;i(n) would thus lead to lower noise
for this particular sample, In the same way, the f; (n) < 0 condition
indicates that a decrease in the magnitude of ;i(n) is desirable, The

decoded samples can be therefore corrected according to:
% (n) = xi(n) + ﬁi(n) ei(n) (5.23)
where ;i(“) is the corrected sample and f_(n) represents a fixed
1

correction, optimised from long term characteristics, Obviously, a

correction using fi(n) itself (from (5.22)) would lead to zero noise in

the decoded speech,




Chapter 5 Page 207

For a 2-bit (4 level) quantizer, one bit is required to carry the sign
information, leaving only one bit for the magnitude, We shall denote

the lower and upper magnitude levels by 1 and 2 respectively.

Each of the 3 sample groups is identified according to its magnitude
sequence, Of the 8 possible sequences, only the following four
symmetrical patterns were conéidered in the correction process,

() 222 (b)111 (c)121 (d)212
For each of these patterns, a further classification into 4 possible

sub-groups is performed, depending on the sequence of the signs i.e.

sequence 1 t ++ 4+ or - - -
sequence 2 : ++ - or - - +
sequence 3 T == or - + +
sequence 4 :t + -4+ or - + -

This grouping of the sign sequences follows from the symmetrical

properties of the quantizer input about the zero axis.

This analysis was performed separately on all the input speech data

files using &4 different prediction techniques (all 2nd order) on the

ADPCM coder., These are:

(1) Fixed prediction - with the predictor coefficients obtained from the
long-term autocorrelation of speech (see section 3.2)[62].

(2) Forward block adaptive (FBA) prediction - wusing a blocksize of 256
samples (see section 3,3.1)[41].

(3) Backward sequentially adaptive prediction - using the SAP algorithm
(section 3.3.2)[75]. y

(4) Backward block adaptive (BBA) prediction - with the predictor coef-

ficients wupdated every 32 samples using a blocksize of 256 samples
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(section 3.4.2.1)[213,215].

In each case, the sﬁeech data was coded using the respective ADPCM coder

with 2-bit AQJ and the statistics of fi(n) (from (5.22)) were obtained.

The percentage of occurrence of each pattern, as well as the probability

distribution of each factor fi(n) were noted., Table 5,2 shows an

example of the analysis performed for the case of fixed prediction

ADPCM, and provides the following information:

(1) The percentage of occurrence of each sign sequence (1,2,3 and 4) re-
lated to each magnitude sequence a,b,c and d.

(2) The statistics of the 3 correction factors f(n) associated with each
sign sequence, ‘

(3) Other useful information regarding the probability distribution of
each £(n), such as its mean value, the average of its positive va-
lues and the average of its negative values. The variance of f(n) is
also indicated by the cumulative percentage entries, which gives the
proportion of f£f(n) greater or less than a certain value.

Looking at table 5.2{(a) i.e, the statistics of pattern (a), it can be

seen that the application of a positive correction to the decoded output

block at the receiver corresponding to pattern{a) sequence 1 would
result in lower noise more than 907 of the time for the first two
samples and about 70% for the third sample in the block. This
particular combination corresponds -to the magnitude sequence 222 with
all samples of the same polarity, and indicates quite strongly the
occurrence of piteh pulses., As the quantizer requires a few sampling
instants to respond to these high amplitude samples, much of the

“¢lipping” occurse on the rising edges of the tramsition, Hence, the

correction factors f(n) associated with the first 2 samples of this

particular output sequence are very largely positive. In obtaining
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Sequence 1 Sequence 2 Sequence 3 Sequence 4
1 2 3} 1 2 3 1 2 3 1 2 3
Total 467 48 22 13
3 84,91 8,73 4,00 2,36
>0 90.4 96.6 61.5 100.0 39.6 27.1 27.3 81.8 B6.4 61.5 23.1 7.7
<0 9.6 3.4 18,5 0,0 60.4 72.9 72.7 18.2 13.6 38.5 76.9 92.3
>3 3.0 6.6 3.2 4.2 2.1 0.0 0.0 0,0 0.0 0.0 0.0 0.0
%>2 6.9 13.9 6.6 16.7 2.1 0.0 0.0 0,0 9.1 0.0 0.0 0.0
t>1 31.7 19.0 18.8 47.9 4.2 2,1 0.0 0.0 22.7 7.7 0,0 0.0
£>0.5 64.2 67.9 33.2 91.7 1l4.6 2.1 0.0 45.5 50.0 23.} 7.7 0.0
$<~.2 3.2 0.6 22.5 0.0 33,3 39.6 40.9 4.5 3.1 7.7 38.5 69.2
4¢~. 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 c,0 0.0 0.0 0.0
t<-.6 0.0 0.0 0.0 6.0 ,0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4<-.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Av>0 .23 1.i8 0.95 1,25 0.52 0.30 0,09 0,50 0,76 0.46 0.20 0,00
Av<O -6.17 -0.14 -0.20 0.00 -0.20 -0.18 ~0,21 -0.13 -0,17 -0.12 -0.17 -0,23
Mean .82 1,14 0,51 1.25 0.09 -0,.05 -0.13 0.38 0.64 0.24 -0.08 ~0,2)
(a) Pattern (a) 222
Sequence 1 Sequence 2 Sequence 3 Sequence 4
1 2 3 1 2 3 1 2 3 1 2 3
Total 1353 855 1102 1258
% 29,62 18.72 24.12 27.54
>0 3g.6 38.5 52.5 63.2 25,3 38,5 21.3 74,0 43.8 18.6 35,9 4%5.7
%<0 60.4 61.5 47.5 36.8 74,7 61.5 78.7 26.0 56.2 Bl.4 64,1 50.3
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6,0 0.0 0,0
92 0.0 0.0 0.0 g.0 Q.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.1 0.2 1.1 0.6 0.5 0.9 0.1 1.4 0.6 0.2 0,2 1.2
$>0,5 14,0 14.0 25,7 23.6 6.5 19.1 5.5 42,3 18.3 2.9 9.1 23.6
$¢-.2 46.9 50.8 38.7 26,2 65.8 52.4 67.3 19.0 46.6 69.4 50,1 41.8
$<-,4 31.9 37.5 28.5 14.6 53.3 41.5 50,1 12,0 34.4 53,4 35.9 30.6
$<-.6 19.0 22.8 18.% 7.1 38.1 30.3 30.5 8.1 22,5 35.6 21.5 20.1
$¢<-.8 7.2 11,1 9.9 2.9 20,2 15,6 13.8 4.3 11.8 19.3 9.6 9.9
Av>0) 0.40 0.40 0.49 0.40 0.34 0,48 0.32 0.53 0.43 0,25 0.34 0.48
Av<O =0.44 ~0.50 -0.50 ~0.37 -0.57 -0,55 -0.51 -0.43 -0.51 ~0.53 -0.46 -0,50
Mean -0.11 -0.15 0.02 0.12 -0,.34 -0.15 -0.33 0.28 ~0.10 -0.39 -0,18 -0.02

(b) pPattern (b) 111

Table 5.2 Statistics of Correction Factors for 2nd Order
Fixed Prediction ADPCM
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these correction factors, one is clearly exploiting certain specific and
fairly well defined properties which are peculiar to the speech residual
signal. The actual amount of correction for each individual sanple 1is

determined experimentally,

It was observed that the long-term statistics for the factors f(n)
exhibit very little variations among the different speech files used and
the various prediction algorithms employed. It is possible therefore,
to obtain an universal set of optimised correction factors based on all
data files and averaged over the prediction schemes considered, This
set of optimised correction factors is shown in table 5.3. The same
analysis was also performed on the 4 non-symmetrical magnitude
sequences, 112, 122, 211 and 221. It was found however, that the f{(n)’s
associated with these sequences were very much less well-defined, and

little advantage results from using these factors.

The underlying assumption in associating specific correction factors
with particular quantizer output sequences as done above is that certain
redundancy or predictability still remains in the speech residual signal
and these appear to be quite independent of the type of prediction
employed. Obviously, it would not be possible to obtain any sensible
relationship when the signal to be quantized is a random signal.,
Consequently, in the analysis performed to obtain the £(n) statistics,
blocks containing low amplitude random noise (which are actually silence
segments) must be excluded from consideration, A simple silence
detector was used for this purpose, This consists of measuring the
average signal energy im blocks of 20 samples and comparing it to a
threshold value. When the average signal energy falls below this

threshold, the block is deemed to be silence, and is not considered in
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the analysis. This simple procedure was found to be quite effective in
eliminating unwanted contributions from segments of silence in the

speech signals,

5.3.2 Computer Simulation Results

The technique of quantizer correction using the factors given inl table
5.3 was applied to the ADPCM systems considered, In all cases, an
improvement in performance was recorded. Table 5.4 shows the total and
segmental SNR obtained for each case before and after the application of

correction, obtained from 2 seconds of speech from each data file,

—

Table 5.4 SNR Results for Various Second-order ADPCM Systems
(With and Without Quantizer Correction)

MALE FEMALE SISTER
Predictor Used SSNR TSNR S5NR TSNR SSNR TSNR
FIXED
(a) Original 16.02 16.49 15.26 15.01 14.26 17.30
(b) Corrected 17.03 17,65 16,34 16.30 15.85 18,48

FORWARD (FBA)
(a) Original 19,05 18.19 18.89 16.97 15.61 17.01
(b) Corrected 20.03 19,38 19,96 18,24 17.08 18.43

SAP
(a) Original 18,77  17.54 18.04 16.33 13.88 12.54
(b) Corrected 19,91 18.86 19.26 17 .61 14.58 13.91

BBA
(a) Original 18.53 17.68 17.94  16.39 15.50 16.53

(b) Corrected 16,78  19.17 19.05 17.65 16.28 18.02

The average improvement in SNR is between 1.25 to 1.5 dB, but this does
not reflect the actual performance of individual blocks, since those
blocks which are not strongly periodic do not register very much gain.

Figure 5.11 shows the sepmental SNR for 1 second of male speech, before
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Fig, 5.11 Segmental SNR for ADPCM Systems Before and After
Applying Quantizer Correction
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and after applying quantize; correction, obtained for the fixed and the
BBA prediction ADPCH coder. It can be seen that increases in SNR of as
much as 2 dB or more can be achieved in some segments of the signal.
This improvement in segmental SNR is also reflected in the corresponding
output noise spectra plots shown in figure 5.12. In addition to the
reduced noise power level across the frequency spectrum, considerable
high frequency noise suppression is also achieved by the quantizer
correction process. The same observations were obtained for the other
prediction schemes and for all the data files considered. More
importantly, informal listening tests conducted indicate a decided
pfeference for the corrected épeech over the normal ADPCM decoded
speech., The background hiss characteristic of ADPCM systems at this low

bit rate, although still audible, 1is perceptibly reduced after

correction[214].

5.3.3 Note on Publication

A paper entitled, "Noise Reduction in ADPCM AQJ Systems Using Quantizer.
Correction at the Receiver" has been published in the IEE Electronics
Letters, vol. 19, no. 11, pp. 420-421, May 1983. It was written in
co-authorship with Dr, C.S. Xydeas and covers the work described in

section 5.3 of this chapter,

5.4 SUMMARY AND CONCLUSION

It has long been recognised that in speech digitisation schemes, the
quantizer plays a central role in determining system performance[47].
Consequently, much early study has concentrated on the efficient

design of the quantizer, in attempts to match the quantizer
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Fig. 5.12 Output Noise Spectra for ADPCM Systems Before and After
Applying Quantizex Correction
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characteristics with either assumed or measured probability densities of
speech, More recent designs take into  account the short-term
stationarity of speech signals and the importance of adapting the range
of the quantizer to match the local s8ignal strength of its input[41,48].
Such.  adaptive quantizers have provided significantly improved
performance, both objectively and subjectively,

In this chapter, we have examined both classes of adaptive quantizers:

(i} the forward adaptive scheme -~ where the adaptation decision is
based on the unquantized input data and communicated to the recei—
ver as side information, aund

(ii) the backward adaptive procedure -~ where adaptation is based on the
received quantized signal, and can.therefore be replicated at the
receiver with no auxiliary information,

Computer simulation results confirmed that the forward method is slight=-

ly berter if no cost is assessed for the side information. Practical

considerations however, appear to favour backward adaptation(19,68],

In the area of backward adaptive quantization, the one-word memory (AQJ)
quantizer proposed by Jayant[49] (and the later robust version of
Goodman[190]) has stood the tests of time and emerged undoubtedly as the
most widely wused quantization scheme in waveform coding applications.
Efforts to improve further on the AQJ have been numerous, The most
notable of these are perhaps the attempts to provide for quicker
adaptation response to the infrequent large amplitude excitation pulses,
characteristic of the speech prediction residual signal of DPCM and
ADPCM systems. The pitch compensating quantizer (PCQ) designs of Cohn
and Melsa[66], and Qureshi and Forney[67], have succeeded in arresting

these large amplitude excursions of the residual signal to some extent,
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but this was achieved at the cost of having to resort to wvariable bit
rate coding, which is unacceptable for many applications. Frequently,
in this, as in many other areas, improvement to an existing scheme 1is
only possible at some cost, which in this case could be in terms of
complexity, robustness and practicability, Ultimately, the designer
will have to select a design which offers the best compromise for his

particular application,

We have introduced a new approach to the problem of improvimg the
performance of the AQJ, which consists of applying correction to the
DPCM or ADPCM decoded signal samples, based on information obtained from
the quantizer output sequence, This method seeks to compensate for the
limitation of the AQJ in its quantization of the residual signal, by
modifying the recovered speech signal in an  appropriate  way,
Experiments on the 2-bit AQJ have indicated that improvement in SNR has
indeed been achieved by the correction process, Output noise is
decreased over the entire frequency spectrum, with most of the reduction
occurring in the high frequency region, Perceptual improvement in the
coded speech has also been obtained, in the form of lessened background

noise,

While the simple quantizer correction process is able to provide noise
reduction to some extent, its limitation lies in its use of fixed
correction factors, obtained from observations of the long-term
quantizer input-output statistics, As a consequence, a “compromise”
amount of correction 1is used for a given quantizer output sequence,
which is too little for some cases and too much for others, Better

performance could be achieved if the correction factors are made to

adapt to local signal conditions. Further research is required in this
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area to explore the possibilities of providing adaptive correction.

The work described so far, in the last three chapters has been on rather
“traditional” waveform coding methods which operate in the time domain
on the speech signal waveform. Recent trends in the area of speech
coding have indicated a shift towards more complex frequency domain
techniques which are able to exploit the properties of the speech
waveform more effectively, to provide even better signal compression,

These more powerful waveform coding techniques will be considered in the

chapter to follow.
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CHAPTER SIX FREQUENCY DOMAIN SPEECH CODING

— -

6.1 INTRODUCTION

The rapidly increasing capability and decreasing cost of digital
hardware in recent years has brought about renewed 1interest in
sophisticated speech coding algorithms which are able to operate
efficiently at relatively low transmission bit rates. One consequence
of this advance in digital technology has been a noticeable drift away
from the “traditional” time domain speech coders into the realm of
frequency domain coding, The basic concept in frequency domain coding
is to divide the speech spectrum inte frequency bands or components
using either a filter bank or a block transform analysis. After
encoding and decoding, these frequency components are uséd to
re-synthesise a replica of the input waveform by either filter bank
summation or inverse transformation. By splitting the input speech in
this manner, different frequency bands can be preferentially encoded
according to perceptual or minimum mean-square error criteria for each
band, At. the same time; quantization noise can be contained within

bands, and prevented from creating out-of-band harmonic

distortions[140].

Two basic types of frequency domain speech coders are considered in this
chapter, namely, the sub-band coder (SBC)[141] and the adaptive
transform coder (ATC)[161]. 1In the first case, the speech spectrum is

partitioned into a set of typically 4 to 16 contiguous sub-bands by
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means of a filter bank analysis. In the second, a block transform
analysis is used to decompose the signal into typically 64 to 512 much
finer frequency components. Both techniques attempt to perform some
sort of short-time spectral analysis of the input signal, although the
spectral resolution achieved by the two methods are quite different.
The sub-band coder provides rather coarse frequency resolution, with the
frequency components comsisting of broad bands ranging from about 200 to
1000 Hz in width, The adaptive transform coder, on the other hand,
seeks to model the detailed structure of the speech waveform, and
permits much finer frequency analysis. These two methods have therefore
been referred to as “wide-band” and “narrow~band” analysis/synthesis

coders, respectively[140].

The sub~band coder and the adaptive transform coder are described in
detail in the following sections. Their performance, for a range of
parameter values is examined via computer simulation, Problems and
practical difficulties associated with each coder, such as complexity
and delay, are also discussed. Finally, a new approach to split-band
coding schemes is proposed and presented., This combines the techniques
of sub-band and transform coding methods, and provides a performance
comparable to either, in terms of SNR and decoded speech quality, but

with lower complexity and shorter coding delay,

6.2 SUB-BAND CODING (SBC)

The sub-band coder (figure 6.1)[12,141,142] partitions the input signal
spectrum into typically 4 to 16 frequency sub-bands via a bank of band-
pass filters, Each sub-band is in effect, low-pass translated to zero

frequency by a modulation process, decimated to its Nyquist rate (twice
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the width of the band) and digitally encoded using adaptive step-size
PCM (APCM). The number of bits employed for each band is determined by
some perceptual or minimum mean-square error criterion. On
reconstruction, the sub-band signals are decoded, modulated back to
their original locations and then summed to give a close replica of the

original signal,

Coding of the speech signal in sub-bands offefs several advantages,
Quantization noise can be contained within frequency bands to prevent
masking of one frequency range by noise in another. Also, as noted
earlier, bands can be preferenti&lly encoded i.e, more bits can be
assigned to the high‘energy loﬁ frequency bands where pitch and formant
structure must be accurately preserved, and less bits to the wupper
frequency region where fricatives and noise-like sounds occur.
Additionally, by appropriate assignment of bits to the sub-bands, the
shape of the output noise spectrum may be suitably controlled to satisfy

perceptual requirements(12,140],

6.2.1 Partitioning of Frequency Bands

The central feature of the sub-band coder is the splitting of the input
signal into frequency bands., Early proposals to perform the band
splitting employed large finite impulse response (FIR) band-pass filters
[141,142] ., These are necessary to provide the very sharp cut-off
characteristics required to minimise the effects of signal aliasing,

which occurs during the decimation of the sub-band signals[144].

Initial designs of sub~band coders consist of relatively few sub-bands,

Band partitioning was made according to perceptual c¢riteria, so that
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each band contributes equally to the so-called articulation index (AT).
The AT concept[234] is based upon a non-uniform division of the
frequency scale for the speech spectrum. fwenty non-uniform contiguous
bands are derived, each of which contributes 5% to the total AI. One
early design uses 4 sub-bands, covering 200-700 Hz, 700-1310 Hz, 1310-
2020 Hz and 2020-3200 Hz. Each of these bands contribute about 20% to
AI, giving a total of 80%Z. Figure 6,2 illustrates this partitioning of

the speech spectrum[141],

6.2,1.1 Integer Band Sampling

Crochiere, one of the pioneers of sub-band coding, proposed an integer
band sampling technique for performing the low-pass to band-pass
translations which eliminates the need for modulators and are therefore
more easily realised in hardware[141]. This is illustrated in figure
6.3, The speech band is partitioned into b sub-bands by band-pass
filters BP; to BP,. The output of each filter in the transmitter is
re—sampled at the rate of Zfi’ where fi is the bandwidth of the ith
sub-band, These decimated signals are then digitally encoded and
multiplexed for transmission, At the receiver, the decoded sub-band
signals are upsampled to their original sampling rate by inserting
zero-valued samples, These signals are then filtered by another set of
band-pass filters, identical to those at the transmitter., Finally, the
outputs of these filters are summed to give a reconstructed replica of

the original input signal.

The integer band sampling method imposes certain constraints on the

choice of sub-bands, as illustrated in figure 6.3. Sub-bands are

required to have a frequency range between m f and (m +1)f , where m_
ii i i i
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is an integer, This constraint is necessary to avoid aliasing in the

sampling process,

6.2.1.2 Quadrature Mirror Filter (QMF) Bank

Although the integer band sampling method has been repofted to produce
encouraging results, very long filters[142]} (175-200 tap FIR designs)
are necessary to provide the sharp cut-off characteristics required in
order to reduce aliasing or inter-band “leakage” arising from the
sampling processes. A mofe elegant design, proposed by Esteban[145],
allows for almost perfect cancellation of this aliasing effect, by
utilising a set of low and high-pass filters which possesses
“quadrature” relationships. This quadrature mirror filter (QMF)

approach will be described in the following.

Consider tge ldesign of a 2 (equal) band sub-band coder which uses a
low-pass and a high“pass filter to split the bands, as shown in figure
6.4. The down-sampling processes in both upper and lower bands
introduce aliasing terms in each of the sub-band signals. In the Ilower
band, the signal frequency above f5/4 is folded down into the range 0 to
fs/4, and appears as aliasing in this signal, as illustrated by the
shaded region in figure 6.4(b). Similarly, for the wupper band, any
signal enmergy - below f_ /4 is folded upward into its Nyquist band fslh to
ESIZ. The amount of this mutual aliasing of energy or inter—band
leakage is directly dependant on the degree to which the filters hl(n)
and h2(n) abpfoximate ideal  low-pass and high-pass filters,

respectively.

In the re-construction process, the sub-band sampling rates are
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increased by inserting =zeroes between each sub-band sample., This
introduces a periodic repetition of the signal spectra in the sub-band.
For example, in the lower band, the signal energy from 0 to fsl4 is
symmetrically folded around f_/4 into the range of the upper band. This
unwanted signal energy or “image” is filtered out by the low-pass filter
hl(n) at the receiver, The filtering operation effectively interpolates
the zero-valued samples that have been inserted between the sub-band
signals to values that appropriately represent the desired waveform, In
the same way, the “image” from the upper band is reflected to the lower

sub-band and filtered out by the filter -h2(m).

Because of the quadrature relationships of the sub-band signals in the
QMF bank, the remaining components of the images can be exactly
cancelled by the aliasing terms introduced in the analysis (in the
absence of transmission errors), In practice, this cancellation is

obtained down to the level of the quantization noise of the coders,

To obtain this cancellation property in the QMF bank, the filters hl(n)

and h2{n) must be symmetrical FIR designs with even numbers of taps i.e.

]

hl(n) h2(n) = 0 for n < 0 (6.1)
and n 2 T
where T (even) is the number of taps., The symmetrical property implies

that,

It

hl(n) h1(T-1-n} (6.2a)

and

h2(n) =h2(T-1-n) ; no=0,1,2....7/2-1 (6.2b)
The QMF bank further requires that the filters satisfy the condition,
h2(n) = (-1) hi(n) _ s no=0,1,2.,..T~1 (6.3)

which is the mirror image relatiomship of the filters,
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With the above constraints, the aliasing cancellation property of the
QMF bank can be easily verified[145,147] as shown in éppendix F. It can
be seen, from the appendix, that the filters must also satisfy the

condition,

e |« |2 2 = 2 (6.4)

where Hl(ejw) and HZ(ejm) denote the Fourier transforms of hl{(n) and
h2(n), respectively., The requirement of (6.4) can be very closely
approximated for modest values of T. Johnston{[158) describes a
procedure based on the Hooke and Jeeves optimisation algorithm and
presents a set of filter designs for various number of taps, from 8 to
64, Less optimal filters can also be obtained using conventional
Hanning window designs [143]. Figure 6.5 shows the frequency response
for a 32 tap filter design obtained by Johnston (32 D design)., It can
be seen that the requirement of (6.4) is satisfied to within £ 0.025 dB,

which is more than satisfactory for good SBC performance,

For band-splitting into more than two bands, the basic QMF bank can be
repeated in a tree structure. Figure 6.6 shows the use of QMF in a 8
band sub-band coder, Notice the order'of the filters hl and h2 at each
stage of the tree, This arrangement, as shown in the figure, ensures
that the parallel outputs of the encoders El to E8 corresponds to the §
equal sub-bands arranged in ascending order of frequemcy., Furthermore,
h2, instead of -h2 can be used at the receiver if the signs of all
outputs from h2 are reversed, Sub-band coders with non-uniform bands
(such as octave designs) may also be obtained using the QMF bank

approach, subject to some limitations, This is dome by truncating
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certain sections of the tree as shown in figure 6.7 for a 5 band

sub-band coder[153].

The use of symmetrical FIR filters in the QMF bank introduces a delay in
the system equal to (T-1)/2 samples at each stage., However, because the
sampling rate of the sub-band signals is halved at each stage, the
actual amount of delay (referred to the original sampling rate)
increases up the tree, Considering the delay at both analysis and
synthesis stages, the total delay introduced by the tree-structured
b~band QMF bank is given by (T-1)(b-1) samples, assuming the use of

uniform filters at all stages[145].

Studies have indicated that the tree-structured QMF sub-band coder
yields much inproved processed speech quality compared to the integer
band sampling technique, despite the latter”s use of long FIR filters
[147,153]. Consequently, virtually all current implementations  of

sub-band coders use the QMF bank,

6.2,2 Coding of Sub-band Signals

One advantage of sub-band coders noted previously, is the exploitation
of the non-flat spectral demsity of speech signals which allows unequal
quantization to be applied to the frequency bands. The allocation of

bits for coding each sub-band may be fixed or adaptive,

6.2.2.1 Fixed Bit Allocation

In early designs, the number of bits assigned for coding each sub-band
signal is determined from long-term signal statistics, and are fixed for

a given coder, Crochiere[141,150,153] uses the backward adaptive Jayant
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quantizer (AQJ}[49] for his schemes, while Esteban[145] employs block
quantization with forward transmission of step-sizes (AQF)[20, 4l1]. For
a fairly large number of bands, the constraint on available quantizer
bits do not in general allow the assignment of 2 bits tc code the high
frequency bands, a condition which is necessary for the backward
adaptation of the AQJ., Crochiere[l42] suggested using the 1 1/k bit
quantizer, a modification of the AQJ, proposed by Goodman. In this
approach, the sign of the signal is encoded every sample, and the
magnitude ié transmitted with one bit every k samples. The sign bit
transmits essentially the “zero crossing” or phase information and the
magnitude bit conveys the amplitude information of the waveform at a

reduced rate,

6.2.2,2 Adaptive Bit Allocation

As speech is & non-statiomary signal, fixing the number of bits (from
long~term consideration) for coding each sub-band will necessarily be
sub-optimum in the short-term, Better results c¢an be obtained by
allowing the number of bits assigned to each frequency band to vary
according to local signal statistics, Adaptive or dynamic techniques of
bit allocation attempt to distribute available bits more efficiently by
assigning bits to the sub-bands according to their energy composition
over a short segment of typically 10 to 30 ms of speech., In this way,
efficient coding is maintained and no bits are “wasted”., Naturally,
adaptive bit allocation requires the transmission of side information
periodically so that the receiver is kept informed of the update in the

bit allocation patterns., The optimum assignment of bits is based on a

minimum mean square error criterion and is given by the well-known
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equation[12,48,140,161]

2
g,

L
Ri = 4+ 1/2 I.Og2 o 1,2,....b (6.5)

~
[T8
I

where Ui2 is the variance, and Ri’ the optimum number of bits for the
ith sub-band. b is the number of bands in the sub-band coder, or the
number of bands comsidexed in the allocation process, since certain
frequency bands beyond the signal cut-off frequency may be omitted. d
is a correction term that reflects the performance of practical
quantizers, and D* denotes the noise power,
2
D* = 1/b e, (6.6)
. i
i=1
2, . . . . . .
where e, 1is the noise power incurred in quantizing the ith sub-band.
The bit assignment obtained from (6.5) must satisfy the constraint of

available bits, R _

R = R {(6.7)

It is easy to obtain the result that all bands must have the same dis-

tortion. The optimum bit assignment is then,

2
ag.

R, = R+ 1/2 log, —¢ = 75 (6.8)

1 2
Tl
1 J

j=

vhere R is the average bit rate, given by,

b
R = b R (6.9)
i=1

The Ri's calculated from (6.8) cannot take on negative or fractional

values in practice since they represent the number of quantizer bits to
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be used, Hence, rounding to the nearest positive integer or zero is
necessary, and this must be done without violating the constraint of

(6 07) .

The bit allocation equation given by (6.5) can be modified slightly to
provide some control of the output noise shape which might be desirable
from a perceptual point of view[12,140], However, the relatively small
number of frequency bands in sub-band coders does mnot allow much room
for manouvre in this respect, Such frequency domain noise shaping is
more appropriate in the context of adaptive transform coding (see

section 6,3.3 below).

6.2.3 Computer Simulation

6.2,3.1 General Procedure

The uniform tree-structured QMF implementation of the sub-band coder is
simulated on the computer. The same number of taps is used for the low
and high-pass filters at every stage of the tree, 32 taps are used for
the 2,4, and 8 band SBCs and 16 taps, for the 16 band case. The filter
coefficients are obtained from Johnston’s “32 tap(E)” and “16 tap(C)~

designs[158]. These are shown in table 6.1

When the number of sub-bands is sufficiently large, certain bands in the
high frequency end of the spectrum may not need to be transmitted at
all, since they correspond to information beyond the bandwidth of the
input signal. The input speech data used in the simulation is band-
limited to 3400 Hz and sampled at 8000 Hz, so the frequency band between
3400 and 4000 Hz theoretically does not contain any speech information.

Hence, for the so-called 8 and 16 band sub-band coders, effectively only
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7 and 14 bands, respectively, are actually transmitted. This is usgeful

in conserving quantizer bits,

Table 6.1 Coefficients for 32 and 16 tap FIR Quadrature Mirror Filters

(a) 32 tap

h1{0) = 0.005123 = h1(31) h1(8) = -0.014569 = hl1{23)
h1(1) = -0.011276 = h1(30) h1(9) = -0,038306 = h1(22)
h1(2) = -0.000962 = hi(29) h1(10) = 0.026624 = h1(21)
hi1(3) = 0.015681 = h1(28) h1(11) = 0.055707 = h1(20)
h1{4) = -0.002612 = h1(27) h1(12)} = -0,051383 = hi(19)
h1(5) = -0.021038 = h1(26) hi1(13) = -0.097684 = hl1(18)
h1{6) = 0.007380 = hi1(25) hi{14) = 0.138764 = h1(17)
h1{7) = 0.028123 = hl(24) h1(15) = 0.,459646 = hl1(16)
(b) 16 tap

h1(0) = 0.006526 = hl{15) h1(4) = ~0.026276 = hl1(1l1)
b1{1) = ~0.020488 = hl1(14) h1(5) = -0.099296 = h1(10)
h1(2) = 0,001991 = h1(13) . h1(6) = 0,117867 = h1(9)

h1(3) = = h1(12) h1(7) = 0.472112 = hl{(8)

0.046477

Figure 6.8 shows the decimated sub-band signals of the 8 band SBC,
obtained from a typical segment of voiced speech, Notice  the
characteristic concentration of signal energy in the lower frequency
bands and also, the lack of correlation in the signals after decimation,
The signal correlation in the sub-bands decreases as the number of bands
is increased, since the corresponding spectra becomes progressively
“flatter” as the width of the frequency bands gradually narrows. Table
6.2 shows the average first shift autocorrelation coefficients obtained
from the sub-band signals for the 2, 4 and 8 band coders. It can be
seen that, apart from the first band of the two-band SBC, little

correlation can be expected in the sub-band signals. Correlation values
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for the same frequency bands alse vary widely among different input
data., Therefore, the use of differential techniques to encode the
sub~band waveforms does not offer any advantages[l145], and consequently,

in thesimulations performed, all encoding is done using APCM.

Table 6.2 Correlation Coefficients for Sub~band Signals

MALE

a(l)  a(2) a(3)  a(4)  a(5)  a(6) a(7) a(8)

2-band  0.832 -0.074
4=band  0.580 -0.405 0.116 0.304
8-band  0.147 -0.302 0.397 -0.168 -0.294 -0.017 0,047 -0.016

FEMALE

2~band 0.603 -0.364
4-band  0.321 -0.412 0,402 -0.071 .
8-band -0.279 -0.256 0.302 -0.255 -0.035 0.258 ~0.335 0.077

SISTER

2-band 0.763 -0.139
4=band 0.585 -0.304 0.183 0.166
8-band 0.406 =-0.337 0,262 -0.263 -0,220 -0.037 0.172 -0.047

6.2.3.2 Bit Allocation

Both fixed and adaptive methods of assigning bits to code the sub-band
signals were investigated, Adaptive bit allocation is performed using
the alternative formulation of (6.8)[161],

2 1 b 2
= R - 6.10
R R + 1/2 log,o0, 55 jzlz log20j ( )

By changing the geometric mean term of (6.8) into an arithmetic mean in
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(6.10), implementation on the computer is greatly simplified, As Ri can
only take on integer values, each value as derived from (6.10) must be
rounded to the nearest positive whole number or zero. Following this,
further adjustments must be made to ensure that the integer bit
assignment satisfies the constraint on available bits given by (6.7).
The full bit allocation procedure as implemented in the simulation
involves the following steps:

(1) The variances 012 of each sub-band signal over an appropriate time
segment (typiclally 8-32 ms) are first calculated.

(2) Sub-bands which are beyond the input signal”s frequency range (such
as band 8 for the 8 band coder, bands 15-16 of the 16 band coder)
are effectively prevented from being assigned bits by dividing their
variances by a constant factor {e,g., 10) before including them in
the bit allocation process. This method provides virtually identical
bit allocation patterns to the case when the out—-of-range bands are
excluded from consideration, and can be more conveniently implement-
ed on the computer,

(3) These values of 0i2 are then used in the bit assignment equation of
(6.10) to obtain the R;“s. The average bit rate R used in the equa-
tion must be modified to account for channel capacity occupied by
the side information,

(4) The R;"s are then rounded up or down to the nearest integer value to
give the bit assignment map.

(5) Further adjustments are necessary to ensure that the constraint on
available bits (equation {6.7)) 1is satisfied and that no band re-
ceives more than the maximum allowable number of bits (7 in this
case), If more bits than available have been allocated, then the ex-

cess bits are taken away from bands which least deserve them i.e.
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for which the integer rounding process adds the greatest amount, For
example, a band with an initial Ri of 3.6, rounded up to 4 is deemed
to be less deservant than one with an  initial Ri of 4.8 rounded up
to 5. Similarly, when the number of bits allocated is fewer than
available, the extra bits are given to bands which most deserve them
i.e, the bands from which the integer rounding process takes away

the greatest amount,

The flow chart of the bit allocation procgdﬁre is shown in figure 6.9.
Ri is the number of bits assigned to the ith band from (6.10), R “ is R
i i

rounded to the nearest integer, R is the total number of bits available

and R.max is the maximum allowable number of bits for each band.

Adaptive bit allocation 1is generally used with forward adaptive
quantization of the sub-bands, where the sub-band signal variances are
transmitted to the receiver. The quantized version of these variances
are used at both transmitter and receiver to compute the bit allocation
pattern and the quantizer step—sizés. This ensures that the parameters
used at both ends are identical., Consequently, the bit allocation
equation of (6.10) uses éi, instead of Ui s in practice. The fixed bit
allocation map may be obtained by using the same procedure and averaging
the bits assigned to each frequency band over the long-term. However,
to prevent loss of bandwidth in the synthesised speech, at least one bit
must be assigned to each frequency band, even though some of the high
frequency bands contain insignificant information most of the time.
Because of this inefficient wutilisation of available bits, and the

inability to properly track the short-term signal spectral variations,

the performance of sub-band coders employing fixed bit allocation is
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necessarily inferior to the fully adaptive case, 1Its advantages

however, lies in its much reduced complexity. Esteban[145] proposed the
bit allocation pattern 3333 1111 for an 8 band SBC operating at 16 Kbps

uging an input signal band-limited from O to 4 kHz.

6.2.3.3 Quantization

The sub-band signals are normally coded using APCM-AQF, particularly

when the number of bands is large, The step-sizes employed in the

quantization are determined from the signal variance of each band, which

are transmitted as side information. The proportion of available bits

assigned for the side information depends on the frequency of update of

the quantizer step-sizes, Table 6.3 shows the segmental SNR results

obtained for the 2,4,8 and 16 band sub-band coders simulated, where the

quantizer step-sizes (and bit allocation patterns) are updated after

every 256, 128, 64 and 32 input samples, Allowance has been made for

the side information required for transmission of the sub-band variances
(5 bits each per block), so the results apply for a total transmission

rate of 16 Kbps.

Table 6.3 Segmental SNR performance for Sub-band Coder Employing
Adaptive Bit Allocation and APCM-AQF (16 Kbps)

Update
Blocksize 256 128 64 32
Male Female Male Female Male Female Male Female
2-band 18.76 18.48 19.10 18.74 19.30 18.95 19,26 18.95
4-band 23,03 22,18 22,09 20.65 22.71 21.05 18,50 16.16
8-band 23.64 22,73 23.71 22.44 22,37 20.37
16-band 23.80 22.66 22,99 21.18 1B.16 17.34
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It can be seen that the SNR generally increases with the number of
sub-bands and reaches its peak when b=8, S5NR also falls as the
blocksize for updating the quantizer is reduced, since proportionately
less bits are available for signal coding, due to the resulting increase
in side information. A quantizer update blocksize of 128 samples (or 16

ms) appears to be a good compromise in terms of performance and delaj.

Figure 6.10 shows the output noise spectra for the 4, 8 and 16 band
coders employing adaptive bit allocation, with the parameters updated
every 16 ms, The lower noise level of the 8 and 16 band coders over the

4 band case is clearly demonstrated,

6.2.3.4 Subjective Quality

Recordings were made of the decoded speech from sub-band coding schemes
using various combinations of parameters, Informal listening tests
indicate a high quality of received speech generally, for the bit rate
concerned. The high frequency hiss characteristic of time domain coders
such as ADPCM at this bit rate is virtually absent, as can be deduced
from figure 6,10, For the 4 and 8 band coders however, a whistling
distortion is quite clearly audible, This was found to be due to the
high frequency peaks (fig. 6.10) which were not totally removed by the
analogue filter used in the recording. These however, could be removed
by digitally filtering the output speech using a 33-tap FIR low-pass
filter on the computer., Nevertheless, a “whispery” distortion remains,
accompanied by a2 hollowness when the number of bands is small, The
‘whisper” is due to aliasing effects which occurs in the synthesis

process when one or more bands (usually the high frequency bands) are
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not transmitted, and a folded scaled down image of the low frequency
band(s) occupies the spectral gaps in the signal, The “hollowness” is
due to these spectral gaps., For 16 bands however, this hollowness
disappears and the whisper is much less noticeable. In fact, the
quality obtained for the 16 band coder is excelleat and very close to

the original,

Recordings were also made for the same sub-band systems, which have the
maximum number of bits allowed in each band reduced to 5. Although
quality is still generally good, the distortioms in this case are

considerably more apparent,

Before discussing the merits or demerits of the sub-band coder further,
we shall pause briefly to consider the other powerful frequency domain
coder which provides even finer frequency analysis. The adaptive

transform coder will be described in the next section.

6.3 ADAPTIVE TRANSFORM CODING (ATC)

The adaptive transform coder (ATC)[12,140,161,162] is a more complex
frequency analysis technique which involves block transformations of
windowed segments of the input speech, Each segment is represented by a
set of transform coefficients which are separately quantized and
transmitted. At the receiver, the quantized coefficients are inverse

transformed to produce a replica of the original segment. Adjacent

segments are then joined together to form the synthesised speech.
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6.3.1 The Block Transformation

Block transformation techniques have been widely used in image coding
systems with much success[235], but it was only recently applied to
speech coding, The <¢lass of transforme of interest for speech

processing are the orthogonal time-to-frequency transformations,

It can be shown[48,161] that the gain of a transform coding scheme

(using an N point transform) over PCM can be given as,

2

a
Gtc = q im {6.11)

2
ﬂ"j
ol
2 J 2

where 0 represents the variance of the signal and Gj are the variances

of the N transform coefficients, This gain is in fact the ratio of the

arithmetic and geometric means of the variances of the transform
2

coefficients, since the signal variance ¢ for unitary transforms is

equal to the average of the variances of the transform coefficients.

2 N 2
¢ = 1/N } 0. (6.12)
j=1
Zelinski and Noll[161] obtained the value of Gtc for wvarious unitary
transforms, using a stationmary tenth order Markov process whose first
ten autocorrelation coefficients are equal to the first ten long~term
autocorrelation coefficients of speech. Figure 6.11 shows the results
obtained using various blocksizes of the Karhunen-Loeve, discrete
cosine, discrete Fourier, discrete slant, and the Walsh-Hadamard

transforms, Note that the discrete cosine transform (DCT) has a

performance very close to the optimum signal-dependant Karhunen-Loeve

transform (KLT) and significantly superior to the others.
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Indeed, the DCT has been found to be ideally suited for the coding of
speech as well as picture signals[12,140,161,164,235], .Apart from its
signal independence, and its approximation to the KLT, its even symmetry
helps to minimise end effects encountered in block coding methods. The

DCT of an N-point sequence is formally defined as,

N-1

X.(x) = ) xn)elk)cos [M] (6.13a)
c 2N
n=0
k =0,1,2......N-1
where c(k) = 1, k=0

n
=
o5 ]

k = 1’2,.0.‘..N_1

The inverse DCT is defined as,

{6.13b)

N-1
x{n) = 1M Zxc(k)C(chos({zn;)kﬂ]

k=0

i

n o,1,2......N-1

Fast algorithms have been derived for implementing the DCT with great

computational efficiency, comparable to the FFT[236-238].

6.3.2 Quantization of the Transform Coefficients

The quantization of the transform coefficients 1is of fundamental
importance since it determines the accuracy of preservation of the
short-time signal spectrum, and hence the quality of the synthesised
speech, Usually these coefficients are individually quantized, with the
step-sizes and number of bits determined from the energy distribution in
the cosine basis spectrum, For minimum mean-square error distortion,

the number of bits assigned for coding the N transform coefficients is
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determined by the same bit allocation equations used for sub-band coding
i.e. equations (6.5) to (6.9), with b (the number of sub-bands)

'replaced by N (the number of transform coefficients). Unlike the SBC
however, fixed bit allocation is not épplicable to ATC. This is because
the latter operates by adapting to the fine resolution short-term
frequency characteristicsrof speech, which may vary drastically from
block to block., Consequently, a bit assignment pattern based on
_ long-term statistics would be severely sub—optimum, as has been
demonstrated by Zelinski and Noll[l61]., Further, as was observed
previously with regard to SBC, fixed bit allocation requires the
assignment of at least omne bit to each frequency component to prevent
loss of bandwidth in the synthesised signal. This would result in
substantial ‘wastage” of bits for the transform coder which has

typically 128-256 transform coefficients.

6.3.3 Noise Shaping

As in time domain waveform coding techniques, the noise spectrum of
frequency domain coders may also be shaped appropriately to improve the
perceptual quality of the decoded speech[12,140]. The bit assignment
rule prescribed by (6.5) produces an output noise with flat spectral
characteristics, which is known to be perceptually sub-optimal., This
flat noise spectrum however, could be controlled to some extent by
performing the bit assignment based on a different criterion. The

modified bit assigmment rule to permit control of the noise spectrum

[12,140,239] is given by,
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W,U.2

1 .
= s 1= 0,1,.00...N-1 (6.14)

= d + 2
Ri 1/ log2

where W; represents a positive weighting. By changing the weighting

function W;, the shape of the output noise spectrum can be varied, from

the flat mipimum distortion case to a shape which follows the input
signal”s spectral envelope. For any particular transmission bit rate,
the perceptually optimum value of W; can be determired by means of

listening tests,

6.3.4 Adaptation Strategy

|3

The édaptivé bit assignment wused in ATC schemes seeks to exploit the
non~flatness of the speech signal density, by distributing bits unevenly:
across the spectrum, The actual step—sizes to be used in the quantizer
however, needs to be estimated, since the expected spectral levels of
the transform coefficients are not kmown a priori. Thus, some side
information which reflects the dynamic properties of speech must be
transmitted. This adaptation information is used at both transmitter
and receiver to determine the bit assignment pattern and the quantizer
step-sizes for the block and is therefore of criéical importance. Two

basic adaptation techniques will now be considered.

6.3.4.,1 Zelinski and Noll“s Scheme

The best known adaptive transform coder for speech applications is
probably the proposal of Zelinski and Noll shown in block diagram form
in figure 6.12{161,162]., A block of N input speech samples is first

normalised by its estimated standard deviation and then transformed into
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Fig. 6.12 Block Diagram of an Adaptive Transform Coder

a set of frequency domain coefficients via an N-point DCT., A coarse
description of the cosine basis spectrum is extracted and transmitted to
the receiver as side information. This (quantized) coarse spectral
estimate is used at both transmitter and receiver to calculate the
optimum assignment of bits and the quantizer step-sizes for coding the
coefficients, The spectral estimﬁte consists of a small number of
samples computed by averaging the DCT spectral magnitudes (figure 6.13).
These samples are then geometrically interpolated (i.e. linearly
interpolated in log magnitude) to yield the expected spectral levels at
all  frequencies used for determining the quantizer parameters.

Excellent synthesised speech quality was reported using this method at

16 Kbps.,

As the bit rate is reduced however, it becomes increasingly difficult to

accurately encode the fine structure (pitch details) of the DCT
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spectrum, and this gives rise to a “burbly” distortionr in the recovered
speech, At the same time, the shortage of bits results in wide gaps in
the spectrum, as a substantial proportion of coefficients are not
transmitted. This 1leads to significant loss of bandwidth and the

so~called “low-pass” effect[12,140,162].

A pumber of remedial measures have been proposed to combat thié quality
deterioration at low bit rates. These include uneven spacing of the
side information spectral estimates (to give more emphasis to
perceptually important frequency regions[162,239]), ensuring that a
minimum proportion of transform coefficients are transmitted and
substituting non-transmitted coefficients with an amount of noise (to
reduce the low-pass effect), and more efficient quantization of the side
information by exploiting various redundancies present{l162]. However,
these attempts have not succeeded in adequately correcting for the
inaccuracy of preservation of the short-time spectrum, which is the

predominant cause of the performance degradation,

6.3.4.2 Vocoder Driven Adaptive Transform Coder

A later proposal for low bit rate ATC schemes utilises a more complex
“speech specific” adaptation algorithm based on the traditional model of
speech production to predict the DCT spectral levels, The prediction
involves two components as illustrated inm figure 6.l4, The first is
agsociated with the spectral envelope and the second with the harmonic
(fine) structure of the spectrum. This so-called vocoder driven ATC[12,
140,165,240] is able to provide a more parsimonious allocation of

available bits according to the fime structure of the spectrum and thus

avoid the quality degradation encountered at low bit rates, A block
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diagram of the system is shown in figure 6.15. The estimate of the
ghort-term DCT spectrum is obtained as follows. The original DCT
spectrum is first squared and inverse transformed with an inverse DFT to
yield a “psuedo” autocorrelation function (ACF) rather similar to the
normal ACF. The first p+l values of this function are-used to define a
correlation matrix in the usual normal equations formulation sense. The
solution of these equations yield s an LPC filter of order p, whose
inverse spectrum provides the estimate of the formant structure of the
DCT speptfum (figure 6.14(a)). The spectral fine structure is obtained
from a pitch model, derived from the maximum value of the psuedo—-ACF
above the range p+l. The corresponding pitch gain G is the ratio of the
psuedo-ACF at this maximum value, over its value at the origin. With
these two parameters, a pitch pattern can be generated (figure 6.14(b)}).
The two spectral components are multiplied and normalised to yield the
final spectral estimate (figure 6.14(c)) used in the bit assignment and

step~size adaptation process,

6.3.5 Computer Simulation

As we are concerned with evaluating the performance of speech coders
operating at 16 Kbps, the use of the highly complicated vocoder-driven
adaptive strategy 1is not warranted, since the simpler (although still
highly complex) model of Zelinski and Noll is adequate at this bit rate.

This ATC design was therefore chosen for simulation on the computer.

A 128-point DCT was used to perform the block transformation., The basis
spectrum is estimated using 16 uniformly spaced support values, each
obtained by averaging over 8 neighbouring transform coefficients, For

example, the first support value, obtained from the average variance of
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the first 8 coefficients is positioned at location 4, the next at
location 12, then 20, and 80 on wuntil location 124. These support
values are then quantized with 2 bits before interpolation (on the log
magnitude) is performed to obtain the cowmplete spectral estimate,
Figure 6.16 shows how this spectral estimate compares with the spectrum
for a typical segment of speech, The bit allocation procedure using
this spectral estimate is performed in the same way as for the sub-band
coder, shown in the flow-chart of figure 6.9. The number of bits
assigned to each frequency component must be rounded to the nearest
integer. Excess bits are taken from the least deserving coefficients
and extra bits are given to the most deserving cases in the same manﬁer
as before. With 5 bits used for coding the block standard deviation
(for normalisation purposes) and 32 bits for the 16 support values, a
total of 219 bits per block of 128 samples are available for
distribution among the transform coefficients. Base 2 1logarithm is
taken of the support values before quantization to ensure a more uniform
amplitude distribution., All quantizers are designed for signals with a

Gaussian density[43].

The segmental SNR obtained for the male and female speech files are
respectively 24,47 and 22,40 dB, Subjective quality of the recovered
speech is extremely good for the male speech, where distortion is barely
perceptible. For the female speech however, a slight “buzz” can be

heard in the background, due possibly to edge effects related to the use

of block transforms[140].
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6.4 DISCUSSION

The efficiency of frequency domain speech coding has been amply
demonstrated by the sub-band and transform coders described above. Much
of the superiority of such frequency domain coders over their time
domain coﬁnterparts, lies in the effective exploitation of the non-flat
spectral density of speech and the use of different encoding accuracy
for different frequency regions, This flexibility ensures that the

“usefulness” of every available bit is maximised.

Variations to the basic structure of the coders described have been
proposed by several researchers, but most of these involve very minor
modifications. In sub~band coding, much of the more recent research
efforts have concentrated on simplifying the bit allocation process[160]
and reducing side informatiom bit rate by exploiting spatial
redundancies in the signal energy[154,157}. Pitch prediction has also
been incorporated in some systems[151,153,209] although the
justification for this substantial additional complexity is dubious.
One important development in sub-band coding has been the use of
polyphase filter designs in the implementation of the OQMF bank[147].
This has resulted in an appreciable reduction in the amount of signal
processing required in the filtering process, compared to the direct

time convolution methods.

For the adaptive transform coder, some improvement in the synthesised
speech quality has been reported using a post-processing enhancement
scheme on the vocoder-driven ATC[240]. Also in the same area, another
notable effort seeks to reduce coder complexity by employing small

(9-point) transforms[241]. These were aimed at providing good quality
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speech at very low bit rates (< 10 Kbps). More recently, an attempt to
bridge the gap between wide-band and narrow-band frequency domain coders
came in the form of a 32 band sub-band coder{157], which uses vector
quantization techniques for adapting the bit allocation and quantizer
step-sizes in order to minimise 8ide information requirement., This
highly complex scheme was reported to provide comparable quality with

ATC at the same bit rate,

Obviously, the advantages of these powerful techniques over time domain
methods have not been achieved without a cost. Frequency domain coders

are generally much more complex, and usually require long céding delays.

The use of FIR filter banks with their inherent delay, has been a
limiting factor in sub-band coders. This delay and the computational
complexity of the analysis/synthesis filter bank processes increase
proportionately with the number of bands and could prove prohibitive
even with the use of quadrature mirror filters and polyphase
implementations. The sub-band coding approach for digitizing speech can
thus be quite demanding in terms of both delay and complexity,
especially at low bit rates({ < 16 Kbps), where fine frequency resolution
is essential to enable the coder to efficiently adapt to the short-term
speech spectral variations. At the same time, when the number of bands
is large, it becomes increasingly necessary to employ adaptive (or
dynamic) bit allocation and forward block adaptive quantization (AQF) so
that available bits are optimally allocated to each sub-band. This
unfortunately, imposes a further delay on the system (equal to the
quantizer/bit allocation update blocksize) in addition to the filter

propagation delay,
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The delay in the adaptive transform coder depends on the size of
transform used, which is usually sufficiently large to provide adequate
frequency resolution. While this delay is generally less than that of
sub-band coders, the complexity of ATC is much higher, since the
encoding and bit allocation processes are effectively performed for a
considerably larger number of frequency bands. This complexity issue
renders the otherwise powerful ATC unattractive for many applications -
{242,243]. A reduction in blocksize has been suggested as a possible
means of coder simplification{162,241]. Unfortunately, the advantages
of coding in the frequency domain alsc tends to be eroded when the
transform size is small, and the resultant performance degradation far

outweighs the reduction in complexity.,

6.5 A TRANSFORM APPROACH TO SPLIT-BAND CODING

In the following sections, we propose a “transform based” split-band
coding (TSBC) approach, which permits fine spectral resolution {and
therefore a more accurate representation of the short-term speech
spectral variations) without the accompanying increase in delay and
complexity encountered in conventional sub-band coding systems. A block
transformation is used to perform the band~splitting into a number of
equally or unequally spaced bands. The time signals corresponding to
these bands can be coded in the same way as in SBC, using fixed or
adaptive bit allocation with forward or backward adaptive quantization.
The proposed method allows for a more flexible design approach to
frequency domain coding, as a whole range of trade-offs between

performance, delay and complexity is possible, to suit specific
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applications. More importantly, the delay and complexity of the
proposed system {(in terms signal processing operations) is substantially

reduced, compared to sub-band coders employing filter banks{201,202].

6.5.1 System Description

The generalised structure of the proposed split-band scheme is shown in
figure 6,17. For simplicity, the following description will be for the

case where the input signal is split into a number of uniform frequency

bands.
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Fig. 6.17 Block Diagram of the Transform-based Split-band Coder

The sequence of input samples {xn} is segmented into blocks Xn, of N
samples, Each block xn is transformed via an N-point discrete cosine
transform (DCT) to yield a block Yn, of N transformed coefficients, Yn

is then divided into contiguous blocks Wl(l),wq(2)......wn(b). each

containing N/b samples, where b is the number of frequency bands in the
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TSBC system. Each of these smaller blocks Wn(i) is - separately
de-transformed via an NK/b point inverse DCT to give the “psuedo”
sub-band signals Zl(l),Zz(Z),.....Zn(b). The energy E (i) in each of
the Zn(i) bands 1s computed and transmitted as side information. The
quantized version of this information is used at both the transmitter
and the receiver to compute the optimum number of bits assigned for the
coding of each sub-band signal Z (i), as well as the step-sizes for the
individu;l quantizers. At the receiver, the reverse process is
performed — the decoded “psuedo” sub-band signals, in(i) are forward
transformed with an N/b point DCT to give the signals ﬁn(i). These are

then combined in the correct order to form Y,. A final N point inverse

DCT on Y yields the recovered signal X .

The blocksize for the update of the bit allocation and quantizer
step—sizes need not be equal to the transform size, When the latter is
relatively small, the side information is calculated and transmitted
only once over a number of input transform blocks. This is to ensure
that the side information bit rate remains a fairly small proportion of
the total transmission rate, so that sufficient bits are available to

accurately code the sub-band signals.

The splitting of the input signal X can also be considered in terms of

matrix operations as:
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NxN NxN NxN Nx1
N/b N-N/b
- - " ’ A- o J - - —
t
zn(l) BN/b 0o.... 0O
t
zn(z) o] BN/b P o
) R ) X By X (6.15a)
t
b 0
zn( )~ i 0 BN/b_ I 1

At the receiver, the synthesis procedure to recover Xn takes the form,

Nxl NxN . NxN Nx1
T | 1 s 6 0...0 ] [z ]
N/b o] zn(l)
0 B o ...
N/b ° chz)
~ _ t . . - -
X = By : ) ; ; {6.15b)
0 Ol..llB z
N/b Zn(b)
This pair of matrix equations can be represented by,
z = 85 Bx
- u/b Bu¥n (6.16a)
and
x = BSpg 3z
n N "N/b™n {(6.16b)

respectively, where BN is the cosine basis matrix for an N point
transform and B§ » which denotes the transpose of BN is also the inverse
N point cosine basis matrix (using the symmetrical definition of the DCT
pair). BN/b represents the NxN square matrix contaiming b sub-matrices

BN/b along its “diagonal” and zerces elsewhere, Zn is the (Nx1)

dimensional matrix formed from b (N/b x 1) dimensional sub-matrices
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Zn(i), i = 1,2ullob0

The value of b determines the spectral resolution (number of bands) of
the split-band system, which can vary from the fine resolution provided
by ATC to the “one-band” case of waveform coding schemes. Specifically,
3 cases arise,

(i) b=N

i.e., the number of frequency bands is equal to the transform blocksize,

In this case,

BN/b = B;/b = 1 (single wvalue) {(6.17)
and
8 N (6.18)
Nb "N/ N .

where I is the NxN identity matrix, From (6.16a) and (6.16b) therefore,

Zn = Ban = Yn {6.19a)
and
X = B = B .
N N zn N Yn (6.19b)

Thus, the transform coefficients Y are in fact coded individually, and
the system becomes an adaptive transform coder.
(ii) b =1

Equations (6.16a) and (6.1b) yield,

Z = B.B X = X (6.20a)

and

]
|

n ~ °nBymw i T % {6.20b)
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i.e no splitting of the signal is performed and the full band signal is
directly coded.
(iii) 1 <b <N
A range of differing degrees of spectral resolution can be achieved,

with b defining the fineness of resolution,

Non-uniform splitting of bands (such as octave sub-band designs) can be
simply realised by dividing the transform coefficients Yn into unequal

parts before carrying out the second stage transformations.

Bit allocation and quantization is performed in the same way as in

sub-band coding (sections 6,2.3.2 and 6.2.3.3).

6.5.2 Computer Simulation Results

The performance of the proposed TSBC system was evaluated using computer

simulation. Many combinations of various parameters are possible,  The

three main variables in the system are:

(a) b - the number of frequency bands

(b) N - the blocksize of the initial transform

(c) A - the blocksize for the update of side information, which defines
the rate of adapting the sub~band bit allocation and quantizer
step-sizes to the short-term speech spectral variations.

Computer simulation results related to the variations of these para-

meters are outlined as follows:-

(1) Varying the number of bands, b

With A fixed at 256, the levels of the output noise spectra for wvarious
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values of b are shown in figure 6.18 for transform sizes 128 and 64. It
can be seen that the level of output noise is generally inversely
related to the number of bands, except for the case when b = 32, This
is due to the fact that increasing b increases the side information
requirements (for the same update blocksize A) so that proportionately
fewer bits are available to code the subband signals, The allocation of
5 bits for the enrergy of each band takes up more than 25% of the
available bits, leaving less than 75% to code the Zn(i) signals, which
in turn leads to poorer performancé. Thus, in this case, the advantage
of better spectral resolution is partially offset by lower encoding
accuracy, due to the proportionately larger side information
requirements,

(2) Varying the Transform size, N

With A again fixed at 256 samples, the effect on the output mnoise
spectra, of the variation of the transform size N is demonstrated in
figure 6,19 for the 8 and 16 band cases., Not unexpectedly, the noise
level is reduced when the transform blocksize N increases, since N
determines the fineness of frequency resolution of the first block
transformation.

(3) varying the blocksize A, for bit allocation and quantization

Fixing the transform size N to 64, the blocksize A is varied for the 16
and 32 band cases (see figure 6,20). Increasing A reduces the side
information requirements and hence releases more bits to quantize the
sub-band signals, resulting in lower output noise as shown. However,
this only applies to a certain extent, since the accuracy of the
quantizer step-size estimate is also reduced when A 1is excessively

large, Additionally, the delay associated with a large A may be a more

immediate constraint in practical terms.




24%a

(a) A=256
/‘{‘/‘ . N=128

=11

-15

0 1000 2009 3000 4000
Freguency (Hz)

(b} A=256

[\\/\/\/ N=64

-13

2 1099 2000 3000 4000
Frequency (Hz)

Fig. ©.18 Output Noise Spectra of TSBC System
Variable Number of Bands, b




249b

t.og Mag
1.
F/J\/\‘\/\\ (a) 8 Band
Y el )\ A=256
d/,"“ o -\ f

\/j‘“\

»

[P

. 6
N o
N Xf‘.;?k[ 32

" \ , 64
VLS N L
128
'°|5 T ] T 1
2 1004 2009 3000 4904
frequency (Hz)
Log Mag
|
Y
\//—/f\’ ”f>fi}*\ (b) 16 Band
Y \ A=256
“3_, f—‘—, ‘.u’_. \ '-\‘-\d\—d\

8 |0aa 200 1000 4000
Frequency (HZ)

Fig. 6.19 Output Noise Spectra of TSBC System
Variable Transform Size, N




Log Mag
5,
64 (a) 16 Band
B N=64
’ NPl
M >
’n ?Vfﬁﬁ}#gﬁzj-kﬂ \HA
= /\ 256
/ 512
-10] .
W AL .
'.]5 1 i Ll 1
0 1009 2000 3000 4090
Freguency (Hz)
Log Mag
5,
(b) 32 Band
ol 256 N=64
r \(f\’_ff w7
;- ‘ \'..]
-3 512
-10 o
‘\ s aN
o T
_]S 1 ] ' 1
2 1009 2000 3000 4000

Frequency (Hz)

Fig. 6.20 Output Noise Spectra for TSBC System
Variable Update Blocksize, A

249c




Chapter 6 Page 250

A summary of computer simulation results of the proposed coder in terms
of segmental SNR performance is shown in figure 6.21., The performance
of the conventional QMF sub-band coder is also included for comparison,
It can be seen that the proposed split-band scheme compares favourably
with the S8BC when the transform size is fairly large. As a further
comparison, figure 6,22 shows the output noise spectra of the
conventional 16—bandr SBC, the ATC and ADPCM together with the proposed
split-band coder for N=128, b¥16 and A=256 (all at 16 Kbps ). The ADPCM
coder employs second order forward adaptive prediction[20] <{(with a
blocksize of 256 samples) and the one-word memory quantizer[49].
Clearly, the average noise level of TSBC is comparable to the SBC and
ATC., Figure 6.22 also illustrates the superiority of frequency domain

coders over simple time domain ADPCM schemes.

The results of the noise spectra corresponds closely to the perceptual
quality of the received speech, The subjective performance of TSBC is
generally comparable to the SBC but the perceived distortion is
different, In the SBC, a “whispery” distortion and “hollowness”
(section 6.2.3.4) is present in the perceived speech when the number of
bands is small, For the proposed scheme, the “whisper” is present to a
lesser extent but a further low amplitude “buzz” is audible, and becomes
gradually more apparent as N and/or b is reduced. This “buzz” is also
discernible in the ATC, particularly for the female speech {see section
6.3.5) and is possibly due to edge effects related to the use of block
transforms, However, for reasonably high values of N (e.g. 64, 128)
and é large number of bands (8,16), this distortion 1is  barely

perceptible using headphones and only slightly audible over the
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loudspeakers. As the rate of update of side information increases,
proportionately fewer bits are available to code the sub-band signals,
and the result is a “burbly” distortion similar to that obtained with
ATC at low bit rates[162]. Also, when the transform size, N is reduced,
spectral resolution of the main transformation becomes coarser, and the

recovered speech possesses a certain “roughness”.

6.5.3 Discussion

A realistic assessment of speech coding schemes must necessarily
consider aspects of practical implementations. Good performance is
obviously the primary aim of any coding system, although this must be
weighed against the complexity involved (which determines the
“implementability” and cost), the robustness to transmission errors, and

the delay required, amomgst other factors.

The analysis/synthesis transform approach to split—band coding proposed
here involves shorter delays and requires a significantly smaller amount
of computation, compared to SBC schemes operating under the same
conditions., These two factors are discussed in greater detail in the

following.

6.5.3.1 Delay

The delay in the sub-band coder consists of two components:-
(1) the analysis/synthesis propagation delay through the quadrature
mirror filter banks, given as (b-1)(T-1) samples for a b band SBC

using uniform T-tap filters. For example, a 16 band SBC employing

16 tap QMFs, will incur a delay of 225 sampling periods.
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(2) the delay introduced by forward adaptive bit allocation and quantiz-

ation of the sub-band signals, This is defined by the parameter A,

The delay in the proposed scheme is independent of b and is
significantly lower than that imposed on the corresponding sub-band
coder since the band splitting and bit allocation processes can be
performed within the same block A, and no additionmal filter propagation
delay arises, For the same 16 band example, there would be a reduction
in delay of 225 samples (~28 ms), assuming that the time taken to

perform the band-splitting is relatively insignificant.

6.5.3.2 Complexity

The complexity of an algorithm is normally considered in terms of the
amount of sipgnal processing involved and the storage required. A
reasonable measure of signal processing requirements is the number of
multiplication and addition operations employed per sample of the input

signal,

Quadrature mirror designs[145] of FIR filters and their polyphase[147]
implementation allow the number of filtering operations in sub-band
coders to be appreciably reduced over the case where direct filtering is
employed. Specifically, the filtering process involves T/2 logzb real
multiplications and (T/2+1)log,b real additions (see appendix G).
Several fast algorithms exist for the computation of the DCT[236-238].
One such algorithm[236] entails 3N/2(1og2N - 1) + 2 real additions and
Nlog,N - 3N/2 + 4 real multiplications for an N point DCT., For the two
stage transformation employed in the proposed scheme, the computational

requirements per input sample are: (see appendix H)
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3log2N -3 - 3/21032b + 2(b+1)/N real additions and
Zlog N - 3 - logzb + 4(b+1)/N real multiplications. The computational
requirements for the two methods of band splitting are shown in figure
6.23, Note the different scales on the vertical axes. It is clear that
the effective number of signal processing operations (per input sample)
in the proposed scheme is substantially lower than that of the sub-band

coder. This is a significant advantage in implementation terms,

The storage requirements of the sub-band coder increase proportionately
with the number of bands and the length of filters used since all
intermediate samples propagating through the filters must be retained,
Assuming equal length filters at all stages, this storage requirement is
given by (b = 1)T real locations. Obviously, if forward block adaptive
quantization is employed, there would be further demands on memory
storage‘determined by the blocksize of adaptation, The fixed memory
requirements for storing the filter coefficients are relatively modest -
because of the symmetrical properties of QMFs, only one half (T/2) of

the filter coefficients need to be stored[147].

For the proposed scheme, the cosine basis functions of the DCT matrix
need to be stored in fixed memory. However, only the wvalues in the
first quadrant are required, since the other functions are obtainable
via symmetry{244]. For a N point transform, N fixed storage locations
are required. The dynamic memory requirement is determined by the size
of transform used and the update blocksize. Again, for forward
quantization and bit allocation, the “block transform” approach allows
congiderable memory to be “shared” between the split-band analysis and

the adaptive bit allocation process. The dynamic memory requirements of

TSBC is therefore, generally lower than that of the sub-band coder.
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6.5.4 Note on Publications

A paper entitled, "A Transform Approach to Split-band Coding Schemes"
written in co-authorship with Dr. C€.S. Xydeas has been accepted for
publication in the IEE Proceedings on Communications, Radar and Signal
Processing (Pt. F). This covers the work described in section 6.5 and

some parts of section 6.6 below,.

A shorter version of the paper entitled, "Split-band Coding of Speech
Signals Using a Transform Technique"” has been submitted for
consideration to the International Conference on Communications (ICC

“84) to be held in Amsterdam on May 14-17, 1984,

6.6 FURTHER CONSIDERATION ON BIT ALLOCATION AND QUANTIZATION

The effect on system performance of each gf the parameters in the TSBC
scheme has been demonstrated in the preceding sections., Generally, the
performance of the coder improves (to a limit) with the transform size,
N, the number of bands, b and the blocksize for parameter adaptation, A.
On the other hand, complexity and delay also increase in the same
direction. In practical implementations, there is inevitabaly a
trade-off in terms of performance, complexity and delay, and the TSBC
scheme offers a flexible dgsign approach to satisfy a range of
constraints. Some room for similar manouvre also exists for the
conventional QMF sub-band coder, albeit to a lesser extent. The number
of bands, the 1length of filters used and the rate of parameter

adaptation can all be controlled,

In this section, we consider some issues related to the bit allocation

and quantization procedures for sub-band signals relevant to both SBC
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and TSBC schenes,

6.6.1 Forward and Backward Adaptation Variations

Forward adaptive quantization of the sub-band signals although
undoubtedly efficient, becomes progressively less attractive as the
number of bands employed increases, This is because the side
information requirements also become increasingly non-trivial and coding
accuracy can be seriously affected. A further disadvantage associated

with all forward adaptive schemes is of course the need for a delay.

Fixed bit allocation, if used together with backward adaptive
quantization offers a distinct advantage in terms of available bits for
coding the sub~band signals (as no side information is required) and a
reduction in coder delay. Unfortunately however, as noted previously,
the inability to track the short-term frequency variations in the input
signal imposes a severe limit to performance, especially with a large
number of bands. Also, in such cases, a significant proportion of

available bits are “tied up” by the high frequency bands (to prevent

loss of bandwidth) leading to a reduction in overall coding efficiency.

Backward adaptive bit allocation with backward quantization, which
offers the promise of dynamic assignment of bits without the need for
side information 1is an attractive proposition. The bit allocation can
be made to vary according to the relative energy compogition of
previously decoded sub-band samples. Unfortunately, although
theoretically possible, most conceivable forms of backward bit
allocation adaptation would be extremely sensitive to transmission

errors, Once the bit allocation pattern in the receiver is not matched
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to that at the transmitter, the system collapses unless some form of
recovery is incorporated (which inevitably means more complexity and

loss of performance).

Another possible combination is to employ forward adaptive bit
allocation with backward quantization., In this case, the adaptive bit
allocation process 1is performed at the transmitter and the bit
allocation map is communicated to the receiver, This method would
retain the advantage of optimum bit allocation, with reduced side
information and lower receiver complexity (as the bit allocation
procedure need not be repeated at the receiver). The reduction in side
information arises because, unlike the signal variances which must be
fairly accurately quantized, the information concerning the bit
allocation pattern can only take on a very limited range of integer

values, and thus can be transmitted with a smaller number of bits.

Figure 6.24 shows as an example, the histograms for the number of bits
assigned to each sub-band for the 8~band TSBC scheme, using a transform
size of 128, with the bit allocation updated every 32 ms (256 samples}.
It can be seen that generally, the bit information for the lower
sub-bands of the signal can be coded with 2 bits (4 possible values)
while the same information related to the higher part of the spectrum
requires no more than 1 bit, This provides a saving of 3 to 4 bits for
each band, compared to the case where the average energy of each band is
coded with 5-bit accuracy. The saving is substantial when the spectral
resolution is high, as in the 32 band case, where the increased side
information can seriously impair coding efficiency. This method of
transmitting the bit allocation map may be considered as a simple form

of vector quantization (see section 2,4.1.8), where the codebook
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contains a set of all bit allocation patterns of practical interest, and
" a codeword 1is transmitted once per block of samples to indicate which

pattern is to be used,

A potential problem exists with the use of instantaneous backward
adaptive quantizers (such as the AQJ[49]) with adaptive bit allocation,
The adaptation algorithm of AQJ requires a minimum of 2 bits to allow
the step-size to adapt to the magnitude variations of the quantizer
input but the high frequency bands are often only assigned one bit., One
method to overcome this difficulty uses the 1 1/K bit quantizer[142],
where the sign information is transmitted with one bit every sampling
instant, while the magnitude is encoded with an additional bit every K
samples, We propose another method where an approximation for the
magnitude of the 1 bit AQJ output is obtained from a suitably scaled
version of the output of one of the lower bands. The actual ratios for
scaling depend on the energy in the reference band (which would be
indicated by the number of bits assigned to it) and can be optimised
from long-term statistics. Using this technique, the important =zero-
crossing (sign) information is preserved for these high frequency bands
and the magnitudes follow a scaled down version of the signal envelope
of one of the lower bands. The use of forward adaptive bit allocation
with AQJ is proBably more relevant to the TSBC system, since no

advantage in terms of a reduction in delay is available for the SBC.

Hybrid methods of quantization may also be wused, where some bands
(especially the l-bit high frequency bands) are coded with AQF, while
the lower bands wuse AQJ - the particular design chosen would obviously
depend on the environment and application, For the TSBC scheme, one way

of avoiding long coder delays is by using smaller transform sizes, if
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the resulting degradation is tolerable, Unfortunately, apart from
degraded performance, a smaller blocksize means more overhead side

information and therefore less bits available for coding.

6.6.2 Parallel Bit Allocation

Typically about half the delay incurred by the SBC is due to the use of
forward adaptive bit allocation and quantization, since the adaptation
is based on the cutputs of the QMF bank. While this delay may be
avoided by employing fixed bit allocation with AQJ, the resultant

degradation in performance is unfortunately far from acceptable.

We examine a method by which this delay can be eschewed by attempting
the bit allocation for the sub-band signals during the necessary time
delay incurred by the QMF bank, Figure 6.25 illustrates how this
“pipe~line” or parallel bit allocation approach operates, compared to
the conventional “serial” method. For an 8 or 16 band SBC, the delay
due to the QMF analysis bank is typically about 15 ms, which is a

suitably long time for bit allocation and quantizer adaptation,

This parallel bit allocation can be carried out by performing a spectral
analysis on the input signal segment, while it is propagating through
the analysis filter bank. One way to do this is by using the discrete
Fourier transform. The short-time Fourier spectrum of the input speech
segment provides an estimate of the energy distribution in the various
frequency bands, The accuracy of estimation might not be sufficiently
high to permit the use of AQF (with transmission of step- sizes)

although the relative energy composition of the various bands should be

adequate to provide a bit allocation pattern (for use with AQJ) which
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reflects the dynamic spectral variations of the input signal.

6.6.3 Computer Simulation

The adaptation strategies discussed above are investigated via computer

simulation.

The proposed method of scaling the 1 bit AQJ magnitude to the output of
a high energy reference band is first examined. The relationship
between the energy of bands assigned 1 bit, to that of the reference
band must be determined to obtain a suitable scaling constant, This
scaling ratio depends on a number of factors:

{1) the number of bands in the coder,

(2) the position of the 1 bit band with respect to the reference band,
since bands assigned 1 bit might have different energy levels at
different parts of the spectrum (The errors of rounding to the near-
est integer in the bit allocation process would be expected to be
largest for the 1 bit bands); and

(3) the number of bits assigned to the reference band.

Experiments were carried out on both the S$BC and TSBC, In each case,

adaptive bit allocation 1is performed on the sub-band signals, a

reference band is selected, and the ratio. of the wvariance of bands

assigned 1 bit to that of the reference band is obtained. To maximise

estimation accuracy, the reference band must be a band with consistently

high energy. Consequently, the first band is chosen as the reference
for the 4 and 8 band coders, the second band for the 16 band coder and
the third band for the 32 band case. Fortunately, the experiments

performed revealed wvery 1little variability in the scaling ratios, The

ratio between the energy of the 1 bit band to that of the reference
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appears to be quite independent of the former”s position in the
frequency spectrum, as well ‘as to the number of bands employed in the
coder, A simple table based on long~term statistics can thus be drawn
up (table 6.4). This table of scaling factors are used in all

subsequent simulations,

Table 6.4 Scaling Constants for the One-bit Sub-band

No. of Bits in Reference Band 3 4 5 6 7
Scaling Factor for l-bit Band 0.29 0.12 0.06 0.03 0.015

Jayant[49] provided the optimum multiplier values for the AQJ algorithm
for 2,3,4 and 5 bit quantizers, As the maximum number of bits used in
the sub-band schemes is 7, the multipliers related to the 6 and 7 bit
AQJ have to be determined. Experiments were performed for this purpose
and the optimum multiplier values obtained empirically (maximum SNR) are

shown in table 6.5.

Figure 6.26 illustrates how the method of scaling the 1 bit AQJ output
to a reference band compares with the original unquantized signal. The
example is for the sixth band of a 8 band SBC when the reference (first)

band is assigned between 5 and 7 bits, Notice that the signal envelope

for the 1 bit band has been reasonably well preserved,
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Table 6,5 Optimum Multiplier Values for 6 and 7 Bit AQJ

{(a) 6 Bit
0.95 0,95 0,95 0,95 0.95 0,95 0,95 0.95
0.95 0.95 0.95 0,95 0,95 0.95 0,95 0.95
1.1 1.2 1.3 1,4 1.5 1.6 1.7 1.8
1.9 2.0 2.1 2.2 2.4 2.6 2.8 3.0
(b} 7 Bit

0.99 0.99 0.99 0.99 0.99 0.99 0,99 0.99
0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40
1.45 1,50 1,55 1.60 1.65 1.70 1.75 1.80
1.85 1.90 1.95 2.00 2.1 2.2 2.3 2.4

2.5 2,6 2.7 2.8 2.9 3.0 3.1 3.2

Figure 6.27 shows the SNR performance of SBC and TSBC wusing AQF with
forward transmission of the sub-band variances, and AQJ with vector
quantization of the bit allocation pattern. It can be seen that for the
S8BC, the use of AQF results in better SNR performance f£for all cases,
even though less quantizer bits are actually being used for coding the
sub-band signals, compared to the AQJ case. The advantage of explicit
transmission of quantizer amplitude information appears to be much
greater than the less accurate instantaneous magnitude adaptation of
AQJ, For the TSBC systems, the same observation can be made. Note
however, the better performance of the 32 band case using AQJ. This is
due to the fact that the coding efficiency for the sub-band signals is
quite seriously affected by the heavy side information incurred by the

32 band coder using AQF,

The output noise spectral plots provide the same observations. Figure

6.28 shows the cutput noise level for the 16 band SBC for three cases:
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(a) fixed bit allocation with AQJ (b) adaptive bit allocation with AQF
and (c) adaptive bit allocation with AQJ. The parameters are updated
every 128 samples., Much of the advantage of AQF over AQJ occurs in the
low frequency region as can be seen from the figure. Also, this
performance advantage appears to be greater for male than for female
speech. A whole set of results was obtained for all combinations of
coder parameters, | The general observation is that the use of AQJ leads
to a drop in SNR in all cases (except the 32 band TSBC) and an increased
“burbly” distortion in the synthesised speech, similar to that obtained

with ATC at low bit rates,

The application of parallel bit allocation is examined in relation to
the 4, 8 and 16 band SBCs for which the QMF analysis stage incurs delays
equal to 46,5 103.5 and 112.5 samples, respectively. To enable the use
of the fast Fourier transform (FFT) for the frequency analysis, the
blocksize of the discrete Fourier transforms used 1is chosen to be a
power of two, nearest to the filter delay i.e. 64.for the 4 band coder
and 128 for the 8 and 16 band cases. This gives a delay due to
quantization and bit allocation, of about 17, 24 and 5 samples,

respectively,

To observe the estimation accuracy of the DFT, the variances of the
actual sub-band signals (derived from the outputs of the QMF analysis
bank) are compared with the variances estimated by the DFT, for a number
of contiguous blocks of the the input signal. This is shown in figure
6.29 for the 8 band SBC. It can be seen that the estimatjon of the
sub~band signal variance is reasonably accurate for the low frequency

bands. For the higher frequency regions however, the DFT performs

badly, failing utterly to produce reasonable estimates in many cases.
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This poor estimate for the higher bands is due largely to the
imperfections of the DFT model as a gspectral analyser, The errors in
the model are particularly emphasised at the high frequency region where
signal energy is very low. Nevertheless, it is reasonable to assume
that the relative energy distribution among the sub-bands would not be
too drastically affected by these inaccuracies. Consequently, the bit
allocation map obtained by this means would be fairly similar to the
scerial” method. Observations of the bit allocation maps for the two
methods do reveal some minor differences, mostly occurring with bands
which are assigned a small number of bits. These deviations £from the
optimal cases however, are sufficiently frequent to result in a drop in
SNR performance. Figure 6.30 shows the SNR performance of the SBC using
this method of bit allocation, compared to the two cases considered
before. The same trend is shown by the output noise spectral plots
(figure 6,31). Parallel bit allocation generally produces a higher

level of output noise compared to the other two methods.

The higher noise level is also audible subjectively. The synthesised
speech produced by parallel bit allocation methods contains even more of
the “burbly” distortion noted for schemes employing AQJ, and the quality

is quite significantly worse than the conventional SBC.
6.7 SUMMARY AND CONCLUSION
The area of frequency domain speech coding has been examined in some

detail in this chapter, with particular emphasis on sub-band and

adaptive transform coding. While these techniques are generally able to
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offer improvements in performance over simple time domain coders at the
same bit rate, they are usually also comparatively much more complex and
normally incur fairly long coding delays. These drawbacks may well

render them unsuitable for many applications.

The sub-band coder, in particular has received an enormous amount of
interest in recent years as a viable means of achieving good quality
speech at low to medium bit rates with a complexity that is acceptable
[147-160]., Much of this interest has been due to the development of
quadrature mirror filters which are able to achieve frequency band
splitting without the aliasing problems that have dogged earlier designs
using band-pass filters, Realisation of the SBC in hardware has also
been eased considerably with the introduction of polyphase filter
designs. However, for SBCs with a large number of bands, the

accumulated delay due to the QMF tree, plus the delay incurred by
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forward adaptive bit allocation and quantization may still prove to be

unacceptable for some applications,

In an effort to minimise this undesirable delay and the complexity
involved in the filtering process, a novel approach to split-band coding
is proposed and described[201], This was found to provide comparable
performance to the sub-band coder, but with much reduced complexity and
delay. Moreover, the approach promises greater flexibility and control
of the various parameters involved so that a whole range of different
coder designs are available to meet the requirements of a variety of

applications,

A number of techniques for further reducing the delay and complexity
associated with split-band coding schemes have also been presented and
examined, The use of backward quantization together with forward
transmission of bit allocation patterns using a simple form of vector
quantization, has resulted in a significant reduction of side
information bit rate for coders employing a large number of bands, The
problem of the omne-bit backward quantizer adaptation for the high
frequency bands was overcome by tramsmitting the sign information of the
signal and obtaining the magnitude adaptation from a scaled version of a
high energy reference band. A further parallel method of adaptive bit
allocation was proposed for use with the OQMF tree-structured sub-band
coder., This is able to halve the delay associated with the conventional
method and would be attractive for applications where coding delay
although permitted, must be controlled to a suitably low value (to avoid
the use of echo cancellers in transmission networks, for instance[l0]).
Experimental results unfortunately indicate a drop in performance when

backward adaptive quantization is employed.
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One interesting consequence of the proposed transform-based approach to
split-band speech coding is the ability to achieve 32 band frequency
resolution (fine frequency resolution becomes increasingly essential for
obtaining good quality speech at low bit rates), without the
unacceptable delay and cowmplexity of the conventional sub-band coder,
thus bringing wide-band analysis split-band schemes a step closer to the

ultimate narrow-band coding analysis provided by the adaptive transform

coder.
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CHAPTER SEVEN  RECAPITULATION AND CONCLUSION

This final chapter provides a brief recapitulation of the work described
in the last four chapters of the thesis, together with the main results
obtained, Suggestions for possible areas and directions of future

research are also given,

7.1 RECAPITULATION

A fairly wide cross—section of current digital speech coding techniques
has been investigated in detail in the course of this research. The
underlying aim of the exercise is, of course an attempt to search for
new and more efficient methods of speech coding which are able to
provide improvements over existing methods, in terms of straight forward
bit rate reduction, enhancement of decoded speech quality, increased
robustness to transmission errors or a decrease in coder complexity.
This frequently involves slight modifications to existing algorithms,
although on occassions, an entirely new approach may be undertaken.
Much of the work done is geared for applications at a transmission bit
rate of 16 Kbps, but the performance of coders at higher or lower rates

is also considered where it 1s relevant to the context,

Chapter three begins with a survey of current prediction techniques used
in ADPCM speech coding, Both fixed and adaptive prediction were
considered, and for the latter, both forward and backward adaptive

algorithms were examined. Generally, forward prediction is superior to
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backward adaptation in terms of error minimisation and signal processing
requirements, However, the dual penalty of coding delay and additional
side information tramsmission associated with forward methods can be a
serious disadvantage in certain applications, Consequently, much of the
regearch effort is concerned with backward adaptation techniques, which
do not have these problems and are therefore more attractive in many
cases. Backward prediction algorithms normally involve some form of
steepest descent or gradient technique of adaptation, where the
predictor coefficients are sequeﬁtially modified based on past
information, in an attempt to minimise the prediction error, Such
methods are traditionally based on a transversal filter structure and
are characterised by the general predictor update equation,

a(atl) = a () + g(n)e(n)x(n=k) (7.1)
where {ak, k=1,2,...p} are the p predictor coefficients at the nth
instant, g(n) is a gain constant and e(n) and x(n) are the quantized
prediction residual and decoded signal sample, respectively, An example
of this technique is the conventional stochastic approximation predictor
(SAP) which wuses a fixed gain, g(n), optimised from long-term
characteristics for the adaptation, It is known however, that the gain
constant should ideally bg able to adapt to the short-term signal
statistics, taking on a large value for quicker adaptation during signal
transitions and a smaller value during steady-state periods of
short—-term stationarity. At the same time, the use of the most recent
decoded samples in the adaptation of the higher predictor coefficients
(not permitted by (7.1)) could possibly lead to better prediction
accuracy, since it ensures that the latest available information is
always utilised in the update process. Two modifications to the basic

SAP algorithm were proposed in an attempt to produce more efficient
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adaptation, The first introduces a simple switched gain term, which can
take on a number of different values depending on the directions of
predictor adaptation at previous instants. Successive adaptations in
one direction indicate a possible signal transition - the predictor
coefficients need to change quickly, and g{n) is set to a high value.
On the other hand, adaptations of opposite polarity imply signal
stationarity, and therefore, a smaller value of g is desirable, The
second modification seeks to provide some inter-relation between the
predictor coefficiénts and to allow the adaptation of higher
coefficients to be affected by the most recent decoded signal samples,
Although there was evidence of improved performance during signal
transitions as a consequence of these modifications, this was not
sufficiently significant to produce conclusive results in terms of SNR
gains. Further experimenﬁation suggests that the scope for improving
prediction efficiency based on modifying the SAP algorithm is very
limited, due to the relative insensitivity of predictor performance to a

wide range of changes in the amount of adaptation used.

This led to a move away from sequemtial techniques to the development of
the backward block adaptive (BBA) predictor, in which predictor
adaptation is based on an optimally determined block of previocus decoded
samples, This was found to perform better than the gradient methods
generally, and to compare well with the efficient sequential lattice
algorithm, in terms of both SNR and subjective speech quality., The
better performance is particularly significant for signals with a high
unvoiced content and frequent magnitude transitions, where an
improvement over the gradient metbods of as much as 6 dB was recorded.

At the same time, the BBA predictor promises greater robustness to
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transmission errors (since a block, as opposed to a sequential
adaptation is involved) and lower complexity in terms of signal
processing requirements, compared to the sequential methods. The use of

the BBA predictor is therefore recommended for ADPCM applications.

The second part of chapter three considers some pitch adaptive coding
schemes, with the aim of simplifying the powerful adaptive predictive
coder (APC) to an easily implementable 1level of complexity without
sacrificing too much of its signal compression ability. A relatively
simple one-tap pitch predictor based on the average magnitude difference
function (AMDF) algorithm was used together with a fixed wvocal tract
predictor for this simplified APC scheme. Although SNR was high for
periodic segments of the speech signal when the pitch is correctly
detected, the coder was too dependant on pitch extraction accuracy (not
provided by the simple one-tap predictor) to give consistentiy reliable
performance. The use of adaptive vocal tract prediction does not help
either, as it appears to affect the periodic structure of the residual
signal in a way which interferes with the signal compression process
provided by the pitch loop. Further tests showed‘ that the pgeneral
performance of this simplified APC system is no better than the much

simpler ADPCM with adaptive prediction.

Chapter four examines the effectiveness of incorporating noise shaping
features into differential coders., The principle of noise shaping is
the manipulation of the relative output noise distribution in the
frequency domain, to produce a reduced perception of noise in the
decoded speech. Two methods of achieving noise shaping in ADPCM systems
wvere i&troduced and investigated — one employs quantization noise

feedback via a noise shaping filter on the ADPCM structure, while the
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other performs the shaping of the noise spectrum externally, i.e, using
pre— and post-filtering on the differential system. Both forward and
backward methods of adaptation were examined. In the forward case, the
coder adaptation parameters were all optimised from the input speech
samples and transmitted as side information to the receiver, Noise
shaping is thus also considered as forward adaptive, gsince  the
coefficients of the noise feedback filter are derived from those of the
predictor, For this case, the pre-/post-filtering approach was found to
yield better SNR and subjective speech quality, due largely to the
favourable interaction of the predictor and quantizer under the coarse
(2-bit) quantization condition, The improvement however, was obtained
at a slight expense of an increase in coding delay and transmission bit
rate, since an additional set of adaptive pre-filter coefficients has to
be computed and transmitted; This penalty can be avoided if the
pre~filter is fixed, In this case, although a drop in speech quality
was noticeable, the general performance is still comparable to, or
better than the more complicated adaptive noise-feedback scheme., We
conclude that for applications in which coarse quantization is employed,
the need for a relatively complex noise-feedback filter is unwarranted,
since a fixed pre-/post-filtering arrangement (or pre-emphasis) is

adequate to provide the available improvement in subjective performance,

As noted previously, the necessity of delay and side information may
render forward adaptive methods unsuitable for certain applications.
Consequently, our imvestigation into noise shaping also involved fully
backward adaptive techniques which do not suffer from these drawbacks.
The same two methods of noise shaping as in the forward case were

examined, with the important difference that all  adaptation -
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prediction, pre-filtering and quantization are performed in a backward
mode. The BBA predictor developed in chapter three was used for this
purpose. Experiments indicate that significant improvements in decoded
speech quality are obtainable from both methods over conventional ADPCM.
In particular, the backward adaptive pre-/post—filtering configuration
prbposad was able to exploit advantageously the quantizer-predictor
interaction in the system to yield extremely good quality speech, which

at 16 Ebps, is comparable to that obtained from 7-~bit log PCM.

Adaptive quantization techniques are considered in chapter five, where
emphasis is placed on the backward adaptation algorithms suitable for
use in ADPCM systems. Undoubtedly the best known adaptive quantization
technique is the one-word memory algoxithm (AQJ) developed by Jayant,
However, although its efficiency has been widely recognised, it is
nonetheless limited in its ability to respond quickly to rapid signal
transitions, such as that encountered in the ADPCM prediction residual.
This residual signal consists typically of a randomly varying waveform
punctuated by large magnitdde spikes at the positions of the excitation
(or pitch) pulses. One proposal for improving the AQJ is the pitch
compensating quantizer (PCQ) requiring variable rate coding methods,
which are quite unacceptable for many applications, A different
approach to this problem, which does not attempt to alter the basic
ADPCM configuration in any way, was proposed and developed in this
chapter, This method consists of applying correction to the ADPCM
decoded speech samples at the receiver based on observations of the
received quantizer output sequences. The appropriate correction factors
used are obtained from long-term statistics, derived from relating the

quantizer output sequences to the corresponding input samples at the
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transmitter, Experiments on ADPCM systems employing different methods
of prediction indicate a general reduction in the coder output noise
level across the frequenéy spectrum, due to the correction, with
substantial suppression of high frequency noise. This noise reduction
is reflected in higher SNR values and reduced background hiss in the

decoded speech,

Chapter six is concerned with frequency domain coding, The adaﬁtive
transform coder (ATC) and the sub-band coder (SBC) were both simulated
and examiped, Generally, the decoded speech at 16 Kbps produced by
these powerful frequency domain coders is of a high quality., However,
the associated complexity is often also much greater than time domain
coders such as ADPCM. Moreover, some coding delay 1is invariably
required in these systems and this can be quite substantial in many
cases, such as in the tree-structured filter-bank implementation of the
SBC. In order to control the amount of delay and the level of
complexity associated with the SBC and ATC, a new approach to frequency
domain coding was developed and evaluated. This 1is essentially a
split-band coding scheme similar to the SBC, except that instead of a
filter-bank analysis, a discrete transformation approach is used to
perform the partitioning of the input signal inte frequency sub-bands.
These sub-band signals are then coded in the usual way - using dynamic
bit allocation and forward adaptive quantization (AQF). This
transform-based split-band coder (TSBC) was found to provide comparable
performance to the SBC, but with much reduced complexity and coding
delay, In addition, the approach employed allows greater flexibility in
the design of a coding system, as the various parameters involved are

easily modified to yield the optimal trade-off between performance,
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delay and complexity for a given application and environment,

Much of the superior performance of frequency domain coders (the
split-band techniques in particular) lies in the use of preferential
’encoding i,e, the adaptive assignment of bits for coding each frequency
component or band in accordance with some minimum distortion criterion.
The adaptation parameters therefore needs to be communicated
periodically to the receiver as side information. The amount of this
side information is a function of the number of frequency bands employed
and can be quite considerable when the number of bands is large, Oné
method of reducing the side information for SBC and TSBC schemes
proposed in the chapter utilises a simple form of vector quantization to
transmit the bit allocation information to the receiver, while the
sub-band signals are quantized uéing AQJ. By this means, the side
information can be kept to a suitably small proportion of total
available bit rate so that coding efficiency is not impaired. Bowever,
the use of the AQJ instead ¢f the more efficient AQF leads to a

perceptible degradation in the subjective decoded speech quality,

A further effort to reduce the total delay in the SBC makes use of
parallel bit allocation., Unlike the conventional method where the bit
assipgnment process 1is performed on blocks of the sub-band signals
emerging from the analysis filter bank, this proposal determines the bit
allocation pattern corresponding to a given block of the input signal
during'the time delay incurred by the propagation of the signal through
the filter bank. Together with the use of backward quantization for the
sub-band signals, this method avoids the delay due to the adaptive bit
allocation procedure, without forgoing the advantages and flexibility of

preferential encoding, The actual bit assignment pattern is computed
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from the discrete Fourier transform (DFT) of the appropriate block of
input signal, in parallel with the split-band analysis., However,
although the bit allocation patterns produced by this means appear to
reflect the frequency composition of the input signal rather well,
preliminary observations indicate that the slight deviation from the
optimum (serial) allocation 1is sufficient to result in a drop in coder

performance.

It has not been possible, during the course of this research into
various speech coding techniques, to cover each area investigated with a
completeness or thoroughness that would be desirable. Nevertheless, it
is believed, the main lines of investigation in each area have been
pursued with sufficient depth, although a not insignificant amount of
follow-up research remains to be done., Some suggestions for further
investigation continuing f£rom the present work are given in the

following.

7.2 SUGGESTIONS FOR FURTHER RESEARCH

While the ADPCM configuration continues to attract interest in speech
coding applications, recent trends have indicated that much of this is
concerned with practical aspects of the coder, especially with regard to
its performancé in a less than ideal transmission environment.
Telecommunication organisations such as CCITT, which has favoured the
ADPCM configuration during its recent standard-setting exercise for 32
Kbps coding, are particularly interested in the capability of the coder
to withstand errors, up to rates of 1073, Consequently, the BBA
predictor developed in chapter three for ADPCM applications must also be

tested in a noisy transmission environment to assess its robustness to
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transmission errors. While the predictor can be expected to be more
robust than the conventional gradient algorithms by intuitive reasoning
(since the block method of adaptation employed provides some “smoothing”’
effects), proper’ evaluative tests must be conducted nonetheless, before

conclusions can be drawn.

The interest in the exploitation of pitch periodicity in speech signals
to effect signal compression has not waned over the years, although a
simple yet effective solution to accurate pitch detection remains as
elusive as ever, Due to the wide variations in pitch frequency
encountered in speech signals, the use of pitch adaptive methods of
redundancy removal in differential schemes has been fraught with
difficulties, In fact, the pitch predictor has been dispensed with
fecently by one researcher working on differential coding systems, on
the ground that its contribution to efficiency is far outweighed by the
many problems connected with its use, Nevertheless, considering that a
great proportion of normal speech is quasi-periodic voiced sounds, the
exploitation of pitch information will continue to have an appeal.
There is much scope for further research in this direction — mot merely
in attempting to produce novel methods of pitch prediction, but wmore
importantly, to arrive at an algorithm which can be applied to
differential schemes without excessive complexity and which is able to
maintain an acceptable level of performance during the occurrence of

pitch errors without leading to instability in the system.

The work on noise shaping covered in chapter four is perhaps more
complete than the other chapters. Once again however, it is necessary
to consider the performance of the various systems proposed, in the

presence of transmission errors. While the backward pre-/post-filtering
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method of noise shaping provides the best performance in terms of speech
quality, it is possibly also the least robust system of all, due to the
use of bacﬁward adaptation for the predictor, pre-filter and quantizer.
Experiments must be conducted to determine the error performance of this
system, and remedial measures applied where necessary., One problem
associated with all backward adaptation algorithms is the danger Qf
divergence. For adaptive prediction, this occurs when the predictor at
the receiver fails to track the predictor at the transmitter, due to the
accumulated effects of transmission errors in the latter. A possible
method of checking this divergence is to re-synchronise the predictors
at both ends periodically - setting the coefficients to certain fixed
pre—determined values and then allowing adaptation to proceed, Also,
all the systems employing the AQJ will need to have it replaced by the
robust version which incorporates a leakage factor to dissipate the
effects of errors, In the same way, some form of subdued prediction,

might also be helpful in improving predictor error performance.

The quantizer correction procedure described in chapter five provides a
new approach to noise reduction in ADPCM-AQJ systems which leaves the
basic differential coder structure undisturbed. However, because the
set of correction factors used were obtained from long~term statistics,
it would be a sub-gptimum compromise for the short-term, being too large
for some cases and too small for others, What is required is obviously
a set of variable correction factors which is able to adapt according to
the short—term requirements of the signal., To avoid the need for side
information, this adaptation must preferably evolve in a backward mode,
based on previously decoded samples. A useful first step might be to

link the magnitudes of the correction factors to the local signal power.
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The energy in the vicinity of a pitch pulse is always higher than
average and this could be used to control the variation of the gain

term,

In the realm of £frequency domain coding, modifications to existing
techniques for the purpose of obtaining improved performance are usually
rather limited. While the sub-band coder has received much attention as
a viable means of speech coding in recent years, a great proportion of
the interest it generates has been focussed on secondary issues, such as
the use of more efficient methods of performing the bit allocation, and
coding the side information, The same is true of the adéptive transform
coder, Apart from the highly complicated vocoder-driven strategy
suggested for low bit rate applications, the ATC system has been
virtually unchanged since its first appearance in the literature. It
appears that for frequency domain coders such as these, where quality is
already extremely good, more attention should perhaps be shown on the
problems of complexity and delay. This has been done to some extent by
the proposed transform-based split-bamd coding (TSBC) approach to
frequency domain coding, More efforts are required in this direction
however, to understand more fully the implications of this approach,
The problems of delay and side information requirements associated with
split-band coding schemes is also a useful area for further study. The
parallel method of bit assignment suggested in chapter six has not been
investigated to sufficient depth owing to limitatioms of time, This is
useful in controlling the delay of the SBC while maintaining the
flexibility and advantages of adaptive allocation of bits, and would
certainly merit further attention, Limited experiments performed have

indicated that the use of AQJ for coding the sub-band signals has led to
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a “burbly” distortion in the decoded speech, More investigations are
needed to study the cause of this distortion and to develop remedial
measures if possible, Shaping of the output noise spectrum to improve

perceptual performance is also worthy of some consideration,

For the ATC, the use of a smaller size transform holds much attraction
in terms of coder simplification and practical implementability. There
is a lot of scope for research in this area, and recent results have
indicated thaf the degradation introduced by the use of small fransforms
may be overcome, For the TSBC as well, the use of a smaller initial

transform can be useful in reducing both complexity and delay.

1.3 CLOSING REMARKS

The work presented in this thesis is but a tiny corner in the vast and
répidly expanding field of speech coding research, While the underlying
goal of any speech coding system is 1likely to remain unchanged with
time, further breakthroughs in digital technology may lead to a
re-ordering of the relative importance of different factors pertaining
to coder design. Complexity, in particular, will be expected to become
an increasingly less important consideration as hardware capabilities
continue to surge ahead unabated. This could usher in a new generation
of coder algorithms based on exhaustive iterative or search techniques
(presently too complex for implementation) which will be able to provide
good quality speech at low bit rates. Also, continuing research on the
development of a more accurate and comprehensive model of speech
production could, in the not too distant future, allow the full
potential of source coding to be realised without sacrificing speech

quality.
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Nevertheless, the time and frequency domain algorithms for speech coding
examined in this thesis will continue to be of important relevance in
many areas of digital speech communication, It is our hope that the
efforts expended in this research work have resulted in a contribution

in some small measure to the vast pool of current knowledge in the

subject.
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APPENDIX A

Durbin“s Recursive Solution for the Autocorrelation Equation

The autocorrelation method of solving for the predictor coefficients is

given by the set of normal equations[33],

fa R(|i-k|) = R(i) s lgsigp (A.1)
k=1
where p = order of predictor
R(i) = ith shift autocorrelation
a, = kth predictor coefficient

Durbin”s method involves solving the recursive relations given by the

following set of equations[33,221]:

E(0) = R(0) (A.2)
S _
R(1) + X a,(l“l)R(i_j)
_ j=1 7 '
fioTT plsisgp (A.3)
E{(i-1)
IECE I "
1 1
(1) (i-1) (i~1) . o
aj - ] + ki al—j s 1 £ 31511 {(A.5)
E(i) = (1 - kiz)E(i—l) (4.6)

The optimum predictor coefficients {ak, k=1,2,..p} are obtained as,
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- _. (p) . .
a, a, 1 1¢igoyp (A.7)

and the reflection coefficients are given by the ki's.

APPENDIX B

Derivation of the Update Equation for the Modified SAP Algorithm (SAPM)

The general SAP update equation is given by,
a (n+1) = a (a) + v, (n) (B.1)
where,

Yk(n) = gek(n);:(n—k) (B.2)

The residuals ek(n) are given by,

- - pZ -
e (n) = e(n) = x(n) - a x{n-k)
1 k=1 k
e(n) = e () -v_ . (x(n-[m-11) ;m 32 (B.3)
m m-1 m-1

Thus all residuals can be expressed in terms of el(n),

ey(m) = e () - v, (Wx(a-1)
e3(n) = ez(n) - Yz(n);(n—Z)

= el(n) - Yl(n)x(n-l) - Yz(n)x(n—Z) (B.4)
ek(n) = ek_l(n) - Yk_l(n);(n-k+1)

e, (n) = v, (mx(a-1) = ¥, ()x(n-2) = ..e,_, (n)x(n-k+1)
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The correction terms, Y, (n), which are functions of ey(n) can also be

\
expressed in terms of el(n): ‘
|
|

v (m) = gel(n);c(n—l)
T,{(n) = ge,(n)x(n-2) 1
= gle;(n) - v, (n)x(n-1)Ix(n-2)
= gley(m) - ge,()x’(n-1)1x(n-2)
= ge ()1 - gx’(a-1)1x(o-2)
vyn) = gey(n)x(n-3)
= gley(n) - yq(mx(n-1) - y,(n)x(n-2)]x(n-3)
= ge ()1 - gx’(a=D)]11 - gx’(n=2)]x(n-3)
() = ge, (1~ gx’(a=DI[1 - gx (a-D]..uus

voof1 = gx2(n-k+1)]x(n-k) (B.5)

A

Or more generally, as el(n) = e(n), the update equation is given by,

a (tl) = a(n) + ge(n)x(n-k).F(K) (B.6)
where,

F(k)

= 1 s k=1

k-1 ~s
—[I[l - gx (n—m)] i L<ksgp
m=1
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APPENDIX C

Computational Requirements of Adaptive Prediction Algorithms

An estimate of the complexity of each adaptive prediction algorithm is
presented, This complexity is measured only in terms of the number of
multiplications required, with a division considered computationally
equivalent to two multiplications. It must be emphasised however, that
the accuracy of the following analysis is necessarily limited for the
sake of simplicity, In many instances, the amount of computation may be
reduced at the expense of increased storage. A complexity measure based
solely on multiplications alone is thus incomplete, although it does
proﬁide a useful indication of the relative complexity among the various

algorithms[225].

(1) Forward Block Adaptive (FBA) Predictor

The computation of the predictor coefficients may be divided into two
parts: (1) the calculation of the autocorrelation function over the
block of N samples, and {ii) the solution of the normal equations using

Durbin”s recursion,

(i) Autocorrelation Calculations

Considering a block of N signal samples {xn},the autocorrelation values,

R{n) required for a pth order predictor are given as:
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N-1-1
R(i) = .Y k() x{n+i) ;i
n=0

(c.1)

W
o

This requires,

N + (N-1) + (N-2) + vsveeeeo{N-p) multiplications

= (p+1)N -~ p(p+1)/2 multiplications,

(ii) Durbin”s Recursiomn
Durbin’s recursive solution of the autocorrelation equation is given in
Appendix A[33,221]. The computational requirement for each step is con-

sidered as follows for the first 3 stages,

For i=1, (A.3) to (A.6) are given as:

ky = R(1)/E(0) ; 1 division or 2
multiplications
(L) . . .
ay = kl ; 0 multiplications
1)y = (1 - klZ)E(O) ; 2 multiplications
i=2,
R(2) + 2, VRO
k2 = - =YED ; 3 multiplications
al(Z) _ al(l)(l + kz) : 1 multiplication

E(2) = (1 - k22)E(1) ; 2 multiplications
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i=3,

R{3) + al(z)R(2) + az(z)R(l)
k3 = =- 502 ; 4 multiplications
2
al(3) = al( ) + k3al(2) ; 2 multiplications
2
a2(3) = az( ) + k3al(2) : 2 multiplications
E(3) = (1 - k3°)E(2) ; 2 multiplications

Considering a pth order predictor, the number of multiplications for
each step is given by,
Step 1 (eqn. (A.3)) :

2+ 3 +4+ ceiaeaptl)

p+ L7
i=1

p + p(p+l)/2

Step 2 (eqn. (A.5))
0 +1 +2+ o.oonnlo(p"l)

= p(p+1)/f2 -1p

Step 3 (eqn. (A.6))
2 +2 + 2 + .....'Il.( p terms)
= 2p
Thus Durbin”s recursion requires :

p + p(ptl)/2 + p(p+l)/2 -p + 2p

= p(p+3) multiplications
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Hence, for the pth order FBA predictor, the total amount of computation
required using a blocksize of N is given by,
(p+1)N - p(p+1}/2 + p(p+3)

= (p+1)N + p(p+5)/2 multiplications

(2) Backward Block Adaptive (BBA) Prediction Algorithm

For the BBA predictor, the autocorrelation values can be updated sequen-
tially as new samples arrive., Comsidering a block of N signal samples
{xn}, the autocorrelation values required for a pth order predictor are

obtained as,

2 2 2 2
R = + + + L I N AN I BN BN BN BN BN BN R NN BN BN N NN ]
(0} X, X, X, X
= + + LR O B B B B B N B
R(1) xlx2 x2x3 x3x4 * xN—lxN
R = + + + LI B B B B S BN Y )
R = x4 x4k *N-2"N
R(p) = X X + X X + saverssrssseeesX X (Ctz)
1 p+l 2 p+2 N-p N
AT the next instant, these are updated as,
. 2 2 2 2
R = + + + *A® NS BES NSRS ESEE
(0) T T N1
R’(l) = x x + x x + ....ll‘..ll.....'..x
34 N N+1
R(p) = x x + %X x P X (c.3)
2 p+2 3 p+3 N+1l-p N+l
i.e. R°(p) = R(p) - x x + (C.4)

X X
1 p+l N+l-p N+1
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Hence, at each time instant, each of the (p+l) autocorrelation values is
updated by discarding the least recent element in the block and adding
the contribution from the latest sample, This requires (p+l)N multiplic-

ations for a block of N samples,

For the BBA predictor, the autocorrelation is calculated once for a
block of N samples, and Durbin’s recursion is performed N/M times. This

gives the total amount of computation per block of N samples as

(p+1)N + p(p+3)N/M

= N[ p+l + p{p+3)/M ] multiplications,

(3) Stochastic Approximation Predictor (SAP)

The update equation for the SAP algoxittm{75] is given (from (3.30) and

(3.31)) by:

ak(n+l) = ak(n) + Ge (n)x (n-k) (C.5)

P -

2 .

Yy + 1/p ) x (n-3)
j=1

The normalisation term in the denominator is a moving average variance

estimator. At the nth instant, it is given by,

NORM(n) = 1/p [x2(n-1) + ¥2(0-2) * weeeesos x2(n-p)] (c.6)

and for the (n+l)th instant, it is,

NORM(n+l) = 1/p [x2(n) + x2(n=1) * vovessex2(n=p+1)] (c.7)
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From (C.6) and (C.7), it caﬁ be seen that, at each sampling instant, the
latest ;2 term is included and the least recent term discarded. Thus,
one multiplication and one division (by p) is required, Alternatively,
the division by p can be avoided by scaling G and Y appropriately.
Hence, the normalisation requires one multiplication. The gain term in-
volves one division by the normalising factor, or equivalently, two
multiplications. The ge(n) term appears in the update of all the coef-
ficients and needs to be computed once only. So, the computation of all
these requires 3 multiplications, Finally, the update procedure of (c.5)
needs one more multiplication per coefficient, hence giving for the SAP
algorithm, a total requirement of (p+4) multiplications per sample or

(p+4)N multiplications per block of N samples,

(4) Modified SAP algorithm (SAPM)

The update equation is given by,

P~ = i~ = ~ " -
a, (n+1) a, (n) ge(n) |[x(n-1)
az(n+1) a2(n) l}—gxz(n—l)]x(n—Z)
. = . + .
~o _ g -
ap(n+l) a {n) d}—gx (n-l)J[l—gx (n-2ﬂ ...X(n-p)
(.8

The term g is computed in the same way as SAP, requiring 3 multiplica-
tions. Because of the different gains for the different coefficients,

the computational load of SAPM depends on the predictor order p. The re-

quirements are tabulated as follows:
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Coefficient Effective Gain Additional
multiplication
al g;(n);(n—l) 2
a, ge(n)x(n-2) [ 1-gx2(n~1)] 4
3, ge(n)x(n-3) [1-gx? (n-1) ] [ 1-gx2 (n-2) ] 4
ap g;(n);(n“P)[l-gﬁz(n-l)]...[l-g;2(n—p+1)] 4

The sucessive coefficients are updated by an accumulated product so the
gain term is also successively accumulated, e.g.

g;(n) for a, g;(n)[;—giz(nwl)] for aé, etc., The total requirements are:
3+ 2+ 4(p-1) = 4p+]l multiplications per sampling instant or (4p+1)N

multiplications per block of N samples,
(5) Adaptive Gain SAP (SAPA)

The 5APA variations are similar to SAP in its computational require-
ments. The different values of g used can be stored in fixed memory and

retrieved for use when required.
(6) Fast Comverging SAP (FSAP)
The update equation of FSAP[226]) is given from (3.64) as:

ak(n+1) = ak(n) +1/2 B(I-q)Gf(n) + q(ak(n) - ak(n—l)) (c.9)
The term 1/2 g(1-q)G (n) is similar to the SAP adaptations (g and q are
fixed constants) and therefore, -requires (p+4) multiplications per sam-

ple. An additional multiplication per coefficient is due to the term
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q(ak(n)*ak(n—l)) giving a total of (2p+4) multiplications per sample or

(2p+4)N multiplications per block of N samples.
(7) Adaptive Lattice Predictor (LAT)

The so~called direct method of adaptation[200] proceeds as given by

(3.50) to (3.52):

C(n) = (1-1C (n~1) - 2Yf ()b (n-1) : (c.10)
2 2
D (n) = (1-Y)D (n-1) + Y[£ (n) + b (n)] (c.11)
and
k (@) = =cC(n)/D (n) (c.12)

At each instant, (C.10) requires, 3 multiplications,
(C.11) requires 4 multiplications,
and (C.12) requires 1 division or equivalently, 2 multi-
plications., This gives a total of 9p multiplications per sample. How—
ever, if vy is made a power of 2, then some multiplications can be re-
duced to simple shift operations,., In this case, the requirements become:
(c.10) - 1,
(c.11) - 2,
and (C.12) - 2 multiplications,

giving a total of 5pN multiplications per block of N samples,
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(8) Adaptive Lattice - Sign-Product Method (LAT-SP)

The sign product method{200] of adapting the lattice predictor is

governed by (3.53) - (3.54):

km(n) = sgin [(wlz)km'(n)] (c.13)
where,
ko (n+l) = (I“Y)kmﬂ'(n) - Ysgn{fm(n)}.sgn{bm(n)}

In this case, no multiplications are involved, if y is chosen to be a

power of 2, and (C.14) is implemented by means of a look-up table.

APPENDIX D
Computation of Autocorrelation Function for Backward Block Adaptive

Predictor

It is shown in Appendix C(2) that the autocorrelation function for the
BEA predictor may be calculated sequentially by adding the most recent
contribution and discarding the least recent. Since the computation of
the predictor coefficients is performed only once every M samples, the
contribution of each newly decoded sample can be accumulated in partial
sums (of M samples) to avoid excessive memory demand, For example, the
zero-shift autocorrelation for a block of N samples is given by:

2 2 2

R(O) = % ° + X “ 4+ cvveee X

2
l 2 . li + L N +XN (Dol)

After M sampling instants, its updated value is:
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. _ 2 2 2
R (0) = xM+l + xM+2 s N xM+N (D.Z)
Thus,
M 2 N+M 2
R'(0) = R{(0) - in + L X, (D.3)
i=1 j=N+1 I

The terms involved in the summation need not be stored individually but
can be accumulated as each decoded sample arrives, For instance, if
N=256 and M=32, then instead of 256 memory locations, only N/M = 8 are
required, each storing the accumulated products of 32 samples as indic-

ated below:

1 2 3 4 5 6 7 8

1-32 | 33-64 | 65-96 j 97-128 | 129-160 | 161-192 | 193-224 | 225-256

The same method may be used for the other autocorrelation values, so

that the total memory requirements is approximately given as (p+1)N/M+p,

APPENDIX E

Proof of Constraint on Quantization Noise Spectrum

Proof of constraint:

1 fs
¥ J log I'(f)df = 0O (E.1)
S 0
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given,

1 - F(eZHJfT 2

1 - P{e

r{£) (E.2)

2mjfT

where F and P are linear filters given by the general form G(z) in the z

domain,

Glz) = ) 9, % (E.3)

fs is the sampling frequency and T the sampling period. The roots of

both (1-F) and (1-P) are assumed to be inside the unit circle[8l].

Consider the functiom (I1-F), which is expressed in z transform notation

as:

1L-Flz) = 1- J b, z

It
-

i
=2
N

1
+
o
N
+

bz ) (E.4)

e T . .
(E.4) is a polynomial in z =~ which can be factorised to give,

L (E.5)

1-Fl2) = Q-220-225....(1-3z2
1 2 m
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n -1
l-PF(z) = |I(1 - zkz ) (E.6)
k=1

wvhere z}{is the kth root of [1-F(z)].

Taking logarithm of (E.6) converts the product term on the r,h,s. to a
summation,
m

log {1 - F(z)} = ¥ log {1 - zkz_l} (E.7)
k=1

Since the roots of (1-F) lies inside the unit circle, |zk| < 1 and each
term in the r.h.,s, of (E.7) can be expanded in a logarithmic series, as

: . =1
a polynomial function of z ., Hence,

-1 -1 2 -2 . 3 -3
log{(l - z,2 ) = -z, + 1/2 zyz - 1/3 2, 2 + ...
-1 -1 2 -2 3 -3
log(l - z,2 y = —z,2  + 1/2 z, 2 - 1/3 2,2t ...
-1 -1 2 -2 3 -3
- = - - + ..
log(l z 2 ) zz ot 1/2 z z /3 z =z

(E.8)

Summing up similar terms in the expansion gives,

z_l)

m
¥ log(l - 2,

_ m
k=1 2 2. =2
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= ) cnz_n (E.9)
=1
m (E.10)
where ¢ = z " + 2z 4+ 2" = z z "
n 1 2 Y "m &%k
k=1
Therefore,
® -n ® ~2713ETn
log {1 - F(z)} = lcz = }ce (E.11)
n n
n=1 n=1

The integral of log[l-F(z)] over the frequency range from 0 to f_ is

then given by,

£
] . il f .
2 -
J {log {1 - F(e*™ Ty )ar = J e [ S gAML o
0O n
n=1 0
(E.12)

Since P is of the same form as F, the same result holds for (1-P), thus,

gjfs
£ =
fs o logl {£)df o)

APPENDIX F
Aliasing Cancellation Property of Quandrature Mirror Filter

Bank[145,147]

Let X1(e3®) and X2(eJ®) be the Fourier transforms of the lower and upper

sub-band signals, respectively before decimation and x(e¥) be the
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transform of x(n). Then,

X1(ed¥) = x(el®) H1(eI¥) (F.1)

and

x2(ei®) = x(eI¥) H2(eI¥) (F.2)

where H1(eJ®) and H2(e®) are the Fourier transforms of hl(n) and h2(n),
respectively, After decimation, the lower and upper sub-band signals may
be defined as Y1(el®”) and Y2(eJ®), respectively and can be expressed as,

Y1(ed®) 1/2 [X1(eJ®9/2) 4+ x1(ed w+2m/2)) (F.3)

and

Y2(eI®) 1/2 [X2(ei®/2) 4+ x2(ed w¥2m) /2y (F.4)

n

Letting Ul(e}®¥) and U2(eI®) be the interpolated lower and upper sub-band

signals in the receiver, and ignoring effects of quantization, we get,

U1¢ed®) = 2 vl(eI2w) Hi(edw) (F.5)
and

U2¢edw) = -2 v2(ed2w) H2(elw) (F.6)

Finally, the output signal i(ejw), the transform of ;(n) in figure

6.4(a), can be expressed as,

i(ej“) = Ul(edw) + U2{eiw) ‘ (F.7)
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Combining equations (F.1) to (F.7) gives the imput to output relation

23 = xe3ym%e??) - %))

{w+T)

3y e dm1ced ™) - mace?mace’ My

+ X(

(F.8)

The first term of the r,h.s. of (F.8) expresses the desired component of
ﬁ(ejw) and the second term expresses the undesired aliasing component.
The cancellation of this aliasing component can be observed by trans-

forming equantion (6.3) to get,
H1(e?®) = m2(e? M) (F.9)

and applying this condition to (F.8), It can be easily verified that the

second term cancels, leaving

~ jw

1) = xe)[miZ(eI?) - m3ed 0ty (F.10)

From the symmetry property in equation (6.2), it can be shown that the

frequency response of Hl(ejm) can be expressed in the form,
a(e”) = |med?y | SUTL/2 (F.11)

Recalling that N is even, and applying this condition to (F.10), leads

to the expression,

MY = @O unE)? + jurd “y 2%y JUTY (g12)
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. jw (T~1
In the above expression, the term eJm( )

A

sample delay between x(n) and x(n). Furthermore, it can be seen from

implies that there is a T-1

A

(F.12) that if x(n) is to be a (delayed) replica of x{n), then Hl(ejm)

must satisfy the requirement that,
j 2 j (w+ 2
e ° + 212 - (F.13)
or equivalently,

' jm(ej“’)!2 + le(ejw)f2 = 1 (F.14)

APPENDIX G
Computational Requirements of the Tree-structured Quadrature Mirror

Filter Bank Sub~band Coder

Consider the filtering .of N samples through the QMF filter bank[145],
employing T tap filters. Using polyphase implementations[147], the tree
structure of figure G.1 results. Considering the first stage, the N
input samples x{(n) are divided into 2 signals of N/2 samples each, con-
taining the odd and even values of x(n) respectively. The odd samples
are filtered by a T/2 tap filter containing the odd filter coefficients
of the original QMF and the even samples by a T/2 tap filter containing
the even coefficients, The sums and differences of the two filter out—

puts are taken to produce the (decimated) upper and lower band signals,

respectively,
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N/4
N/4
-—-—‘T/? /
N/2 T/2 N/2
N/4 N/4
——t T/2
N Fig. G.l
e X
n Polyphase Implementation
N/4 /2 N/4 of Sub-band Coder
N/2 N/2
T/2
N/4 N/4
/ /2 /

For the first stage, the filtering of N samples of x(n) involves twice
N/2 x T/2 = NT/2 multiplications and additions. Also, the Nf2 outputs
from the two filters must be added and subtracted, giving 2 x N/2 =N
further additions, So, for the first stage, the computational require-

ments are: NT/2 multiplications and NT/2 + N additions.

For subsequent stages, the amount of computation remains the same as is
clear from figure G.l1, so that a b band sub-band coder requires:
NT/2 log,b multiplications and N(T/2 + 1) logzb additions, Each sample
therfore requires, T/2 logzb multiplications and (T/2 + 1) logzb addit-

ions.

APPENDIX H

Computational Requirements of the Transform—based Split Band Coder

- — o ——— ot

- — —_

For an N point DCT, the amount of computation is given by, 3N/2{log,N-1)




Appendices Page 30]

b x N/b point IDCT

- N point DCT

x(n)

Fig. H.l1 Transform-based Split-band Coder

+2 additions and NlogzN"3N/2+4 multiplications[236]. The b band split-
band coder of figure H,l requires 1 N point and b N/b point transforms,

thus requiring,

3N/2 (log,N ~ 1) + 2 + b[3N/2b (log, (N/b) - 1) + 2]

It

3Nlog,N ~ 3N - 3N/2 log2b + 2(b + 1) additions,
and

Nlog,N - 3N/2 + 4 + b[N/b logz(N/b) - 3N/2b + 4]

2Nlog,N - 3N =~ Nlogzb + 4(b + 1) multiplications.
Therefore, for each sample, the requirements are,

310g2N -3 =-3/2 log,b + 2{b + 1)/N additioms

and

210g2N =3 - log,b + 4(b + 1)/N multiplications.
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