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To my parents 



"The destiny of man lies in his wzremitting efforts to 

oonstantZy strive for improvement. " 

~ Confuoius (Book of Changes) 



SYNOPSIS 

The promise of digital hardware economies (due to recent advances in 

VLSI technology), has focussed much attention on more complex and soph­

isticated speech coding algorithms which offer improved quality at re­

latively low bit rates. 

This thesis describes the results (obtained from computer simulations) 

of research into various efficient (time and frequency domain) speech 

encoders operating at a transmission bit rate of 16 Kbps. 

In the time domain, Adaptive Differential Pulse Code Modulation (ADPCM) 

systems employing both forward and backward adaptive prediction were 

examined. A number of algorithms were proposed and evaluated, including 

several variants of the Stochastic Approximation Predictor (SAP). A 

Backward Block Adaptive (BBA) predictor was also developed and found to 

outperform the conventional stochastic methods, even though its complex­

ity in terms of signal processing requirements is lower. A simplified 

Adaptive Predictive Coder (APC) employing a single tap pitch predictor 

considered next provided a slight improvement in performance over ADPCM, 

but with rather greater complexity. 

The ultimate test of any speech coding system is the perceptual perform­

ance of the received speech. Recent research has indicated that this 

may be enhanced by suitable control of the noise spectrum according to 

the theory of auditory masking. Various noise shaping ADPCM 

configurations were examined, and it was demonstrated that a proposed 

pre-/post-filtering arrangement which exploits advantageously the 

predictor-quantizer interaction, leads to the best subjective 



performance in both forward and backward prediction systems. 

Adaptive quantization is instrumental to the performance of ADPCM sys­

tems. Both the forward adaptive quantizer (AQF) and the backward one­

word memory adaptation (AQJ) were examined. In addition, a novel method 

of decreasing quantization noise in ADPCM-AQJ coders, which involves the 

application of correction to the decoded speech samples, provided 

reduced output noise across the spectrum, with considerable high fre­

quency noise suppression. 

More powerful (and inevitably more complex) frequency domain speech 

coders such as the Adaptive Transform Coder (ATC) and the Sub-band Coder 

(SBC) offer good quality speech at 16 Kbps. To reduce complexity and 

coding delay, whilst retaining the advantage of sub-band coding, a novel 

transform based split-band coder (TSBC) was developed and found to com­

pare closely in performance with the SBC. 

To prevent the heavy side information requirement associated with a 

large number of bands in split-band coding schemes from impairing coding 

accuracy, without forgoing the efficiency provided by adaptive bit 

allocation, a method employing AQJs to code the sub-band signals to­

gether with vector quantization of the bit allocation patterns was also 

proposed. 

Finally, 'pipeline' methods of bit allocation and step size estimation 

(using the Fast Fourier Transform (FFT) on the input signal) were exa­

mined. Such methods, although less accurate, are nevertheless useful in 

limiting coding delay associated with SRC schemes employing Quadrature 

Mirror Filters (QMF). 
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------------------------------------------------------------------------

CHAPTER ONE INTRODUCTION 

1.1 COMMUNICATION BY SPEECH 

Communication is essentially a social affair. Man has evolved a host of 

different systems which render his social life possible - social life 

not in the sense of living in packs for hunting or for making war, but 

in a sense unknown to the lower animals[ll. Most prominent among all 

these systems of communication is of course human speech and language. 

Indeed, man is unique among all life forms in this world, in his ability 

to acquire and use speech. Human language is not to be equated with the 

sign systems of animals, for man is not restricted merely to calling his 

young, or suggesting mating, or shouting cries of danger; he can with 

his remarkable facilities of speech give utterance to almost any 

thought. Like animals, we too have our inborn instinctive cries of 

alarm, pain, etc.; we say 'oh' or 'ab'; we have smiles J groans and 

tears; we blush, shiver, yawn and frown, but such reflexes do not form 

part of the true human language. A hen can set her chicks scurrying up 

to her by clucking - communication established by a release mechanism -

but human language is vastly more than a complicated system of 

, clucking' • 

Because man lives in an air atmosphere, it is not surprising that he 

learned to communicate by producing longitudinal vibrations (acoustic 

waves) in the air medium[2,3]. At the acoustic level, speech consists 

of rapid and deterministic fluctuations in air pressure. These sound 

pressures are generated and radiated by man's vocal apparatus, they are 
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detected by his ear and apprehended by his brain. 

The specialised code of speech did not develope overnight. Passage of 

untold time probably witnessed the gradual evolution of human speech 

from the grunts and barks of man's fellow creatures to the level of 

sophistication we know today. The earliest forms of communication were 

probably mainly tactile and visual[4]. At least one speculation holds 

that man's first means of communication were probably hand signals -

speech perhaps evolved when man discovered he could supplement his hand 

signals by audible and distinctive gestures of his vocal tract. As Sir 

Richard Paget puts it, "It was the continual use of man's hands for 

craftsmanship, the chase, and the beginnings of art and agriculture that 

drove him to find other methods of expressing his ideas - namely, by a 

specialised pantomime of tongue and lips."[S] 

Speech and writing are by no means our only systems of communication. 

Social intercourse is greatly strengthened by habits of gesture - little 

movements of the hands and face, or the so-called 'body language'. With 

nods, smiles, frowns, handshakes, kisses, fist shakes and other 

gestures, we can convey the most subtle understanding[6]. However, life 

in the modern world is coming to depend more and more upon 'technical' 

means of communication telephone and telegraph, radio and printing. 

Without such technical aids, the modern city-state could not exist one 

week, for it is only by means of them that trade and business can 

proceed, transport systems run on schedule, that law and order are 

maintained and education is possible. Communication renders true social 

life practicable, for communication means organisation. Communication 

engineers have altered the size and shape of the world[l]. 
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From time immemorial, man has sought to communicate over distances by 

various means by the beat of drums, by beacons on hill-tops, by 

carrier pigeons and by coded flag signals. For example, long and short 

smoke signals were used by the Red Indians, high and low pitch drums by 

African tribesmen[41. History records that in the sixth century B.C., 

Cyrus the Great of Persia is supposed to have established lines of 

signal towers on high hill-tops, radiating in several directions from 

his capital. On these vantage points, he stationed 'leather lunged' men 

who shouted messages along, one to another. Similar 'voice towers' were 

reportedly used by Julius Caesar in Gaul[2], as well as by the ancient 

~hinese, who used such 'voice transmission systems' to herald the 

arrival of the emperor. 

Despite the desires and motivations to accomplish communication at long 

distances, it was not until man learned to generate, control and convey 

electrical current that telephony could be brought into the realm of 

reality. In 1876, the invention of the telephone by Bell[7] made 

conversations at a distance far beyond the range of the human voice 

possible for the first time. Its use spread rapidly, and over the 

years, the laying of telephone cables across the continents and along 

ocean floors has enabled conversations to be carried out between almost 

any two parts of the earth. 

Basically, the telephone converts an acoustical signal by means of 

transducers into an electrical signal which can be transmitted over long 

distances along wires at a very high speed (the speed of light). At the 

destination (or receiver), this electrical signal is re-converted back 

to acoustical energy to yield a close replica of the original waveform. 

The communication engineer is primarily concerned with efficient 
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communication i.e. the transmitting of messages (or information) 

between two points over a channel as quickly as possible and with 

minimum error [B]. Numerous communication systems have evolved over the 

years since the advent of telephony, each new development usually being 

an attempt to improve on the efficiency of its predecessor. 

Until recently, most communication systems have been concerned with the 

transmission of continuous or analogue signals which can take on an 

infinite number of variations. In contrast, one can conceive of a 

system which involves the transmission of one of a finite number of 

waveform elements or messages. A simple example of this is observed in 

the transmission of an English text using the Morse code. Here, the 

problem of transmission is reduced to one of transmitting a sequence of 

messages, each of which is selected from a specified and finite set. 

This type of communication is termed 'digital communication'[B]. 

1.2 DIGITAL SPEECH COMMUNICATION 

Digital communication systems therefore involve the transmission and 

detection of one of a finite set of known waveforms (or digital data), 

as opposed to analogue systems, where an infinitely large number of 

messages exist and the corresponding waveforms are not at all known. 

Pulse code modulation (PCM[9]) is an example of a digital communication 

technique used to transmit continuous data. The transformation from 

analogue to digital data is made possible by the process of quantization 

which essentially approximates the continuous signals so that they 

assume only certain discrete amplitudes. This is the process of 

digitising the data, which can now be transmitted by a finite number of 

symbols (or levels). Digital methods of speech coding have been 



Chapter 1 Page 5 

proposed more than three decades ago, but only attracted serious 

attention and interest during the era of the transistor. However, this 

interest has since intensified and accelerated virtually without bounds, 

fueled by the advances in transistor technology, switching circuits, the 

advent of the microprocessor and important breakthroughs in device 

technology - VLSI 

coupled devices). 

(very large 

Presently, 

scale integration) 

digital techniques 

and CCDs (charged 

are entering 

te 1ecommunication networks very quickly! 10 1 - massive investments have 

been made in digital transmission systems around the world in recent 

years. It is envisaged that by the turn of the century, if not sooner, 

most existing telecommunication networks would have gone fully 

, digital' • 

The reasons for this overwhelming interest in digital speech 

communication are numerous. A few of the more commonly advanced 

advantages associated with digitising speech (and other types of 

information) will be briefly considered!lll. 

(1) Digital encoding is able to provide for the transmission of informa­

tion over long distances and varying network topology with minimal 

degradation to speech quality,since digital signals can be accurate­

ly regenerated by repeaters placed along the transmission path. 

(2) Time division mUltiplexing (TDM) can be applied very simply and 

cheaply to telephone transmission lines and switching devices, using 

economic digital circuitry, thereby increasing channel capacity. In 

contrast, frequency division multiplexing (FDM) techniques employed 

in analogue transmission systems are considerably more expensive, 

requiring the use of complex filters. 

(3) Different types of signals can be encoded to a uniform digital for-



Chapter 1 Page 6 

mat and transmitted over the same communication system. Thus a digi-

tal system can handle a variety of signals, such as video, facsimile 

data, computer data, newS despatches, etc. 

(4) Digital speech and other data are in a convenient form for process­
~ 

ing using digital computers. Thus complex signal processing can be 

easily applied. Also, the ease of encryption of digital data makes 

it especially suitable for military communications where secrecy is 

essential. 

(5) The lower power requirement of digital, compared to analogue trans-

mission provides higher reliability and thus better suitability for 

satellite and computer-controlled communication. Moreover, high re-

dundancycan be introduced into the transmitted codes to improve de-

tection accuracy in noisy channels. 

(6) The rapid advance of device technology in terms of digital hardware 

and VLSI has led to immense economies in the realisation of digital 

circuits. In digital speech applications, numerous dedicated chips 

and chip sets have been developed. Also, voice communication with 

computers is a possibility made available by digital techniques. 

Speech synthesis has generated considerable interest with the intro-

duction of the Texas Instrument's 'speak-and-spell' synthesiser 

chip,which carries important implications in the realm of education. 

Speech recognition is also a rapidly expanding field - effective 

computer recognition of digitised speech commands could enable users 

to interact with the computer easily via speech digitisation termi-

nals. This could have far-reaching consequences in terms of the ass-

imilation of computers and robots into the everyday routine of man 

in the future. 
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It is not surprising therefore, that a tremendous amount of investment 

and research has gone into the area of digital speech coding. Indeed, 

the term 'digital' has itself become something of a fashionable 

'catch-word' in the seventies, and will doubtless be even more so, in 

the eighties. 

In the field of digital speech coding and transmission, as in any field, 

one is concerned with efficiency. Specifically, an efficient speech 

digitiser should possess good data compression capability (so that 

transmission bandwidth is, reduced without leading to degradation in the 

quality of the digitised speech) and low implementation cost. 

Obviously, these two requirements are often diametrically opposed to one 

another and frequently some sort of compromise has to be sought. An 

abundance of methods towards achieving this dual requirement has emerged 

over the relatively brief ·history of digital speech coding[12,13]. 

Traditional techniques have sought to preserve the signal waveform. 

Such 'waveform encoders' can be designed in the time as well as the 

frequency domain, and provides good quality speech at relatively high 

transmission bit rates. A different approach seeks to transmit a 

parametri~ representation of the speech signal, based on some 

appropriate model of speech production, in an attempt to obtain very 

high transmission bandwidth economies. The synthesised speech which 

derives from such ~rude representations are often of vastly inferior 

quality, although intelligibility can be quite high. Another class of 

coders, the so-called 'hybrid coders' covers the 'middle ground' between 

these two methods, seeking to combine the advantages of both. 

The work to be described in this thesis is concerned with 'waveform 

encoding' at a transmission bit rate of about 16 Rbps. Various 
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techniques in both time and frequency domain were investigated. These 

include differential and predictive coding, noise spectral shaping and 

adaptive quantization (in the time domain), and sub-band coding and 

adaptive transform coding (in the frequency domain). In each area, 

attention is focussed on new methods or modifications to existing 

methods which can lead to an improvement in performance in terms of 

quality enhancement, bit rate reduction or coder simplification. 

1.3 ORGANISATION OF THESIS 

The contents of the thesis will now be outlined. 

Following this section, the main results obtained during the course of 

the research will be highlighted. The experimental procedure, which 

involves mostly computer simulation is then briefly described in the 

next section. Details of the input speech data used, the methods of 

assessment employed, the equipment required and the structure of 

computer programs are presented. 

Chapter two provides a survey of the field of digital speech coding, 

covering the main areas of current interest. This is intended to be 

non-technical as much as possible to enable the non-specialised reader 

to be acquainted with existing speech digitisation techniques. The 

three broad areaS of speech coding are included, namely, 

analysis-synthesis vocoder systems, waveform coding (in the time and 

frequency domain) and hybrid coding methods. Various other related 

issues which have developed alongside the mainstream of speech coding 

are also considered. The problems of transmission over noisy channels, 

the effects of delays in the system, the use of variable rate coding are 
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all important factors to be considered in the design of a communication 

system or network. Implementation in hardware is also fast becoming an 

important area of development and follow-up to research, especially with 

the apparently unceasing advance in device technology. The abundance of 

systems with varying claims of good performance in the research arena 

has led to efforts to introduce a more realistic and uniform means of 

performance assessment. In the context of speech coding, the ultimate 

measure is the perceptual quality of the output speech. A variety of 

subjective tests have been designed for this purpose and some of these 

are discussed. The chapter concludes with an overview of the entire 

area of speech coding, with projections about future trends and 

directions of research. 

In chapters three through six, the research work conducted is presented. 

Chapter three considers the subject of adaptive prediction in 

differential coding systems (ADPCM and APC) with particular emphasis on 

backward modes of predictor adaptation. Chapter four extends the work 

on ADPCM further by incorporating the additional feature of noise 

shaping into the eoder. Adaptive quantization, probably the central 

element in digital ~oding systems is covered in chapter five. Chapter 

six is concerned with frequency domain techniques of speech coding and 

the principles and performance of sub-band coding and adaptive transform 

coding schemes are examined in detail. 

The final chapter, chapter seven provides a recapitulation of the work 

described and the new ideas proposed. Suggestions are made for further 

research along the directions already investigated and a final 

conclusion is made. The appendices, which consist mainly of 

mathematical derivations precede an exhaustive list of references. 
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1.4 SUMMARY OF MAIN RESULTS 

The main findings during the course of the research are outlined in the 

following: 

Chapter three examines various forms of backward predictor adaptation in 

the context of ADPCM (adaptive differential pulse code modulation) 

coding. Several modifications were made to the conventional sequential 

gradient predictor algorithm in an attempt to improve its efficiency of 

adaptation during signal transitions. Although Some evidence of a 

quicker transitional response was observed, overall performance did not 

indicate any significant SNR gain. A backward block adaptive (BBA) 

predictor was next proposed and evaluated. This was found to provide 

better prediction efficiency with lower complexity. An attempt was also 

made to reduce the complexity of the adaptive predictive coder (APC) to 

an 'implementable' level. Unfortunately, the heavy dependance of the 

coder on accurate pitch detection presented some difficulties in the 

simplification process. 

In chapter four, the concept of noise spectral shaping was examined in 

relation -to both forward and backward adaptive ADPCM systems employing 

2-bit quantization. It was found, in the forward adaptive cases, that a 

simple fixed pre-/post-filtering method of implementing noise shaping is 

adequate for coarse quantization applications, providing equivalent 

quality to that obtained with the more complicated noise-feedback coder. 

Two backward adaptive noise shaping coders employing the BBA predictor 

were also proposed and studied. These were found to provide significant 

improvement over the decoded speech quality of conventional ADPCM. One 

of them, using a backward pre-filtering method of noise shaping was able 
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to yield a speech quality at 16 Kbps comparable to that obtained from 

7-bit log PCM. 

In chapter five, a new method was proposed to reduce quantization noise 

in ADPCM systems by applying correction to the decoded signals at the 

receiver. This led to an improvement in SNR as well as subjective 

quality. 

Chapter six examines the performance of two frequency domain coders, 

namely the sub-band coder (SBC) and the adaptive transform coder (ATC). 

In an effort to reduce the delay and complexity associated with these 

two powerful techniques without losing their advantages, a new 

'transform-based' approach to split-band coding was proposed. This 

method provides comparable performance to the SBC but with substantially 

reduced coder complexity and delay. Further efforts to reduce the delay 

and complexity of split-band schemes were next investigated. The use of 

a simple form of vector quantization technique to transmit the 

adaptation information for split-band schemes results in a sizeable 

reduction in side information for coders with a large number of bands. 

Finally, a proposed parallel method of bit allocation has been able to 

reduce the overall coding delay of the sub-band coder, but this resulted 

in some degradation in the speech quality. 

1.5 BACKGROUND INFORMATION 

Some background information is presented in this section. This includes 

details of the input speech data used,the methods of assessment employed 

for the systems tested and other relevant information pertaining to the 

research work. 
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1.5.1 Input Data 

The input speech material consists of three separate data files, which 

will be referred to throughout the thesis as MALE, FEMALE and SISTER. 

(1) MALE - This contains the utterance, 

"There was an old man called Michael Finnegan, 

He grew whiskers on his chinagen." 

spoken by a male speaker. 

( 2) FEMALE - This contains the same two sentences, spoken by a high-

pitched female speaker. 

(3) SISTER - This consists of a collection of isolated words spoken by a 

male speaker and selected for their high fricative or unvoiced 

content. The words are, 

"Sister, father, S. K. Harvey, shift, thick, fist, talk, spent, 

vote." 

All three speech files are band-limited from 0 to 3400 Hz and sampled at 

8000 samples per second. MALE and FEMALE are each of approximately five 

seconds' duration and SISTER is a little more than six seconds 

(including pauses). These were all obtained from analogue speech using 

a twelve-bit analogue to digital (A/D) converter. 

1.5.2 Computer Facilities 

All the results presented have been obtained via simulation on the 

interactive PRIME 400 mini-computer [14-16] of the Loughborough 

University's Computer Centre. The programs are all written in the 

FORTRAN66 language, with graphic facilities provided by the GINO 
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software routineslll,18l. 

Emphasis is placed on structured programming - to provide clarity of 

organisation, ease of debugging and portability. Liberal use is made of 

subroutines and function segments that form the basic building blocks 

from which an entire system is constructed. Thus the main routine of a 

system need only consist of some necessary input/output facilities and a 

series of subroutine calls. 

1.5.3 Assessment of Performance 

In order to obtain a reliable assessment of the performance of the 

various coders simulated, a number of performance criteria (both 

subjective and objective) are used. These are:-

(1) Total SNR (TSNR) and average segmental SNR (SSNR) 

The SNR is possibly the quickest means of determining how well a coder 

performs in terms of waveform preservationl12,19,20l. Total SNR is 

given by, 

TSNR = 10 log 
1.O ~ 

n C 

I"' 2 ( ) I.. x n 
n 

A 2 
[x (n) -x(n) ] 

(dB) (1.1) 

where x(n) and ~(n) denote the nth input and decoded speech sample, 

respectively, and the summations are over the duration of the speech 

file used. However, in the results presented in the thesis, all SNR 

values quoted were obtained from a summation over about two seconds of 

speech (60 blocks of 256 samples). This was found to be statistically 

adequate and indeed, SNR results obtained for the entire utterance of 
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five seconds are often very similar. 

The average segmental SNR is given by, 

K 
SSNR = 1/1< L SNR(j) 

j=1 ( 1.2) 

where SNR(j) is the SNR of the jth block and K = 60. In the computation 

of the segmental SNR, blocks containing silence are not included in the 

averaging process so as not to affect the accuracy of the measure. 

Nevertheless, it is widely recognised that SNR values can be extremely 

deceptive on occassions as an indicator of output speech quality and 

thus, this measure must be supplemented by other methods of assessment 

[12,19]. 

(2) Spectral plots of the long-term average output noise 

This provides a means of observing the distribution of noise energy 

across the frequency spectrum and can be a useful indicator of the 

subjective quality of the output speech. The average level of the 

spectrum indicates the quantity of the noise energy present in the 

received speech while its shape can provide useful information about the 

nature of the subjective distortion. For example, a concentration of 

noise in the low frequency region could indicate 'roughness' or 'rumble' 

while the same level at the high part of the spectrum will probably be 

apparent as a background 'hiss'. This measure is particularly relevant 

for coders which seek to manipulate the shape of the output noise 

spectrum to exploit masking properties which can be effective in 

reducing the perception of noise. 

The output noise signal is obtained as the difference between the input 

and the received speech waveforms. In deriving the spectral 
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characteristics, 60 blocks of this noise signal are used. Frequency 

analysis is provided by a 256-point FFT (available on the NAG computer 

software library[2l]) on Hamming windowed samples of the noise signal, 

using an overlap of 50%. The logarithm (to base 10) of the Fourier 

magnitude components are taken for each block and averaged. The final 

noise spectrum consists of these averaged components. Because of the 

limited number of blocks used (60), the averaged noise spectrum produced 

tends to be characterised· by jagged edges. Consequently, a simple 

moving average smoothing process (over 3 adjacent components) is carried 

out to round off these sharp edges, without altering the general shape 

of the spectrum too greatly. 

(3) Informal subjective listening tests 

The ultimate test of any speech coder is the subjective quality of the 

output speech produced. Coder assessment is therefore not complete 

until some listening tests have been carried out. Exhaustive and long 

drawn out formal listening tests are extremely expensive in terms of 

both time and effort and are certainly not a necessity at this research 

stage. Informal listening comparisons are often quite adequate. 

To perform the listening test, the digital speech output produced by 

each coder has to be converted to analogue form and recorded on tapes or 

cassettes. This process involves the following stages: 

(i) The output speech written on disk memory on the computer is trans­

ferred onto magnetic tapes, using the MAGNET software package[14] 

available on the PRIME system. 

(ii) This data is next reformatted by the Hewlett Packard HP7970E mag­

netic tape unit and computer[22] to a form compatible with real-
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time output. 

(iii) The reformatted data is then ready to be transferred onto record­

ing tapes or cassettes via a twelve-bit D/A converter. An analogue 

low-pass filter is used during the transfer to remove out-of-band 

noise in the output speech. 

For the purposes of listening tests, data files are processed in their 

entirety. For each coding system or variation, at least two files are 

used (usually the MALE and FEMALE data), giving a total of 4 sentences 

on which assessment may be performed. Where relevant, comparisons are 

also made with the quality of speech produced by well-known systems such 

as log PCM. For 16 Kbps coding, 6 and 7 bit log PCM are probably of the 

most interest. These listening tests are carried out using both 

headphones and loudspeakers. 

Sound speetrograms were also produced on one occassion (chapter 4) with 

kind assistance from British Telecom Research Labs. However, these are 

necessarily restricted owing to the difficulties involved in gaining 

access to the equipment. 
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------------------------------------------------------------------------
CHAPTER TWO DIGITAL CODING OF SPEECH - A REVIEW 

------------------------------------------------------------------------

2.1 INTRODUCTION 

The underlying goal of any speech coding system is to transmit speech, 

with the highest possible quality, using the least channel capacity and 

at the lowest cost. Obviously, these are all mutually conflicting aims 

since, for a given coding scheme, quality is generslly proportional to 

channel capacity and complexity (which is invariably correlated with 

cost). In most situations, therefore, the need inevitably arises for 

obtaining a compromise solution, which is optimum for the particular 

environment and application. 

Current speech coding techniques have come a long way since the days of 

direct quantization of digitized speech using pulse code modulation 

(PCM)[9]. Most present day algorithms seek to exploit, with varying 

degrees of complexity, the intrinsic characteristics of speech signals 

in order to achieve better signal compression and hence higher 

efficiency. Studies of complex (and potentially efficient) speech 

coding algorithms have often been deterred by the spectre of high costs, 

although this situation is gradually changing as a result of recent 

rapid advances in VLSI (very large scale integration) technology. At 

the present time, digital speech coders of moderate complexity are 

already implementable on a single chip, and thus, with further advances 

in digital technology imminent, research into efficient high-complexity 

algorithms are considered with rather more than mere academic interest. 
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The complete design of any transmission system involves the optimal 

selection of a number of factors, such as signal quality, transmission 

bit rate, coding delay, complexity and cost. The choice of a particular 

system would obviously be very much dependant upon the transmission 

environment (for example, terrestial wire, glass fibre, radio, 

satellite). Related issues such as the effects and types of 

transmission errors, multiple (tandem) coding, etc., would also 

influence coder design. 

Digital speech coding techniques may be broadly classified into three 

main areas, according to the principles employed in their design[12,13). 

The first of these is the class of waveform coding methods. These 

essentially strive for facsimile reproduction of the signal waveform and 

hence could be used for coding non-speech signals equally well. More 

efficient speech-specific techniques however, seek to exploit properties 

of the speech waveform to achieve better signal compression. Waveform 

coders are generally fairly robust for a wide range of talker 

environment and are normally of low and moderate complexity. 

A second class of speech coders derives from modelling the speech 

production source. Such source coders, known as vocoders (VOice CODERS) 

attempt to provide a parsimonious description of speech (using a given 

model of the speech production mechanism), which could be parameterized 

and transmitted with minimal channel capacity. Consequently, vocoders 

are able to achieve high economies in transmission bandwidth. However, 

the somewhat simplistic model of speech generation employed imposes a 

severe limit to the quality of the speech produced by these means. Vo­

coder speech tends to sound 'synthetic' and 'machine-like' talker 

recognition is difficult, although high intelligibility is possible. 
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The 'middle ground' between waveform coders and vocoders is an area 

receiving increasing recognition as a viable alternative for producing 

reasonable quality speech at low bit rates. Such hybrid methods offer 

the attraction of combining some advantages of both waveform coders and 

source coders. 

2.2 TRANSMISSION BIT RATES IN SPEECH CODING 

The key issue in transmission systems is perhaps the efficient 

utilisation of channel capacity. Transmission bit rate is thus a major 

consideration in the design of speech coders. Figure 2.1 shows a 

spectrum.of speech coding transmission rates currently of interest, and 

the quality of speech reproduction obtainable at a prescribed bit rate. 

The quality of reproduced speech is broadly denoted in descending order 

as, commentary, toll, communications and synthetic. 

200 64 32 16 9.6 7.2 4.8 0.05 ~ _____________ l ________ i _______ i _________ l ____ ~ ____ l _______________ J 

Commentary 
(Broadcast) 

Toll Communications Synthetic 

Fig. 2.1 Speech Coding Transmission Bit Rates (Kbps) and Associated 
Quality 

Commentary, or broadcast quality speech is, as its name implies, high 

quality speech which is suitable for some forms of broadcast material. 

Its bandwidth is typically from 0 to 7 kRz (wide-band speech) which is 

much wider than normal narrow-band telephone (300 3400 Hz). Toll 

quality is used loosely to denote a quality of narrow-band speech which 

is without perceptible distortion. Presently, this is achievable at bit 
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rates of 16 Kbps and above. The next grade, communications quality, 

represents a speech quality which possesses noticeable degradation with 

perhaps lessened talker recognition, although intelligibilty is still 

high. This is the quality associated with waveform or hybrid coders 

operating in the range of 9.6 to 7.2 Kbps. Finally, at the very low bit 

rate range ( < 4.8 Kbps), source coders are able to provide intelligible 

synthetic quality speech with significant loss of 'naturalness' and 

substantially degraded talker recognition. 

The complexity of speech coders tends to be a function of the 

transmission bit rate. At the upper end of the scale ( ~ 32 Kbps), 
'''--- -

relatively simple waveform coding techniques are adequate to provide an 

accurate representation of the signal. As available bits are reduced, 

more sophisticated implementations become increasingly necessary to 

retain the same speech quality. Figure 2.2 illustrates the present 

'state of art' in the field of speech coding, in terms of speech quality 

as a function of bit rate[l2]. The vertical axis represents a 

hypothetical quality rating, ranging from a value of 1 (which denotes a 

quality essentially indistinguishable from the original) to 0 (which 

denotes extremely poor and unintelligible speech). It is important to 

realise however, that in reality, subjective quality is a much more 

complex attribute than is implied by this simple scale. 

It can be seen that, as the bit rate decreases from 64 Kbps, first the 

static, and then the dynamic characteristics of speech signals are 

exploited to improve coding efficiency. Indeed, as the bit rate is 

reduced even more, the quasi-periodic nature of speech signals (due to 

the pitch structure) is also used to effect further signal compression. 

In addition, advantage may be taken of the perceptual characteristics of 
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the human ear. It is known that the perception of noise in a given 

frequency band may be diminished in the presence of high energy speech 

components in the same band. This phe~omenon of 'auditory masking' is 

the principle behind coders employing 'noise shaping' methods to control 

the distribution of the noise spectrum in the decoded speech, to provide 

a more palatable output. The broken line in figure 2.2 represents the 

'middle ground' region of speech quality obtainable with hybrid coding 

techniques, which attempt to bridge the gap in quality between unnatural 

vocoder speech (which cannot be improved whatever the bit rate after 

about 2.4 Kbps) and the relatively high quality speech provided by 

waveform coders( > 16 Kbps). 

1 

parametric 
& Hybrid 

Codin5- ,,-
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Techniques L~--------~-----------------------------------

1 248 

Bit Rate (Kbps) 

Source Modelling 
(Vocoding) 

16 32 64 

Fig. 2.2 Quality vs Bit Rate for Speech Coding 
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VOCODERS 2.3 

2.3.1 Speech Production Model 

The principle of vocoders is the parameterization of speech signals 

according to a linear quasi-stationary model of speech production, which 

is based on a crude simplification of the vocal tract. A schematic 

diagram of the vocal tract is shown in figure 2.3[2]. 

The vocal tract is a non-uniform acoustical tube, between 15 to 17 cm in 

length, which extends from the lips to the glottis, and varies its shape 

as a function of time. This time varying change is caused by movements 

of the lips, jaws, tongue and velum which are known as the articulators. 

The lungs, trachea, larynx, throat, nose and mouth all contribute to the 

production of speech. Speech is produced when air is expelled from the 

lungs into the trachea and forced between the vocal cords and then 

through the length of the vocal tract to the oral and nasal outputs. 

Speech sounds may be broadly classified as either voiced or unvoiced. 

For voiced sounds, such as lil in eve, the expelled air causes the vocal 

cords to vibrate as a relaxation oscillator (the frequency of vibration 

determines the pitch), and the air stream is modulated into discrete 

puffs or pulses. Unvoiced sounds are generated either by passing the 

air stream through a constriction in the tract, or by making a complete 

closure, building up pressure behind the closure, and abruptly releasing 

it. The former gives rise to fricatives such as If I in fish, while the 

latter results in transient stops or plosive sounds, such as Ipl in 

pickle. 

The traditional model of speech production in vocoders is the source 

system model shown in figure 2.4[12]. Several assumptions are inherent 
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The sound generating mechanism (the source) is assumed 

to be linearly separable from the intelligence-modulating vocal tract 

filter (the system). Also, speech sounds are assumed to be either 

voiced or unvoiced, and are generated either from quasi-periodic vocal 

cord pulses or from random sound produced by turbulent air flow. 

2.3.2 Principles of Vocoders 

The vocoding procedure may be divided into an analysis and a synthesis 

process[2,12,23,241. The analysis is performed at the transmitter, 

where the vocal tract and excitation parameters are extracted from the 

input speech and transmitted. At the receiver, these parameters are 

used in the synthesis process to reproduce the original speech sounds. 

Synthesis is carried out using a periodic pulse generator to represent 

voiced sounds, and a random noise generator for unvoiced sounds. The 

two sources are mutually exclusive, and a parametric signal from the 

transmitter operates the switch between them. Intensity of sound 

excitation is also represented parametrically by a gain value, and pitch 

is specified by a parametric pitch signal. Voiced pitch is very much 

talker dependent, typically spanning a two-octave range, from 50 to 200 

Hz for men, and 100 to 400 Hz for women. 

Following the linear source-system model of figure 2.4, the sound output 

of the vocal tract may be represented as a convolut ion in time of the 

excitation waveform e(t) and the impulse response u(t) of the vocal 

system, thus, 

x(t) = u(t)*e(t) (2.1) 

where * denotes convolution. In the frequency domain, this convolution 
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is equivalent to a mUltiplication of the Fourier transforms of u(t) and 

e(t):-

X(w) = U(w).E(w) 

Taking magnitudes gives. 

IX(w) I = IU(w) 1·!E(w) ! 

(2.2 ) 

(2.3) 

Thus the magnitude spectrum of speech consists of two components: a 

smooth envelope given by U(w) (the frequency response of the vocal 

tract), and a fine structure corresponding to the excitation term E(w). 

For voiced speech. E(w) is a fine line structure and the envelope U(w) 

has several well-defined peaks (typically 3 or 4 for telephone speech). 

whose centre frequencies are called formants. For unvoiced speech, E(w) 

is noise-like (as e(t) is the result of air turbulence in the vocal 

tract), and U(w) usually have one or two formants above 3 kHz. Typical 

magnitude spectra of voiced and unvoiced speech segments (for 8 kHz 

sampled speech) are shown in figure 2.5. 

Vocoders depend on a parametric description of the vocal tract transfer 

function which can take on a variety of forms. These variations in 

parameter extraction techniques give rise to numerous vocoder designs in 

both time and frequency domains. In all of the designs however. the 

dependance upon the signal model of figure 2.4 places a ceiling on the 

quality of speech that is obtainable. Present research seeks to improve 

the capabilities of low bit rate vocoders by progressing beyond the 

simple source-system model. 

A brief description of the better known vocoder designs will be given in 

the following. 
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2.3.3 Channel Vocoder 

The earliest, and possibly the most well-known vocoder is the channel 

vocoder[2,12,23-28] invented by Homer Dudley in 1939[25]. The channel 

vocoder takes into consideration two important features of speech 

production and perception[26]:-

(1) that the vocal excitation of voiced speech is quasi-harmonic and 

that of unvoiced speech is a random wide-band signal, 

(2) that the perception of speech depends largely upon the preservation 

of the shape of the short-time amplitude spectrum. 

A block diagram of the channel vocoder is given in figure 2.6. A bank 

of band-pass filters separates the input signal at the transmitter 

(analyser) into contiguous spectral bands, typically 10-20 bands, each 

with a bandwidth of 300-150 Hz. The output of each band-pass filter, 

after rectification and low-pass filtering, represents the time varying 

signal amplitude of each frequency band. Also included in the analyser 

are a voiced/unvoiced detector and a pitch detector, which determines 

the pitch during voiced speech. This information is mUltiplexed with 

the spectrum defining channel signals and transmitted. 

At the receiver (synthesiser), the speech spectrum is reconstructed from 

the transmitted data. Excitation, either from a pitch modulated pulse 

generator (voiced speech) 

(unvoiced) is applied to 

or 

an 

from a broad-band noise generator 

identical set of band-pass filters. The 

output from the filters are amplitude modulated by the spectrum defining 

signals. The sum of the filter bank outputs yields the reconstructed 

speech which possesses a short-term spectrum similar to the input. 

Thus, by utilising and transmitting the short-term spectral content of 
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speech signals, instead of directly coding the waveform, the channel 

vocoder is able to effect substantial bandwidth reduction (typically by 

a factor of 10). Holmes described in detail a 19-channel vocoder 

developed for the U.K. Government's Joint Speech Research Unit (JSRU) 

based on the above principles[27]. 

2.3.4 Formant Vocoder 

An even more efficient description of the speech information may be 

obtained by specifying only the frequencies of peaks (or formants) in 

the amplitude spectrum[2,26]. This is the principle employed in the 

formant vocoders, which are able to operate at bit rates as low as 1.2 

Kbps. Figure 2.7 shows a block diagram of such a formant vocoder with 

three formants[26]. The analyser divides the speech spectrum into 

frequency bands and measures the average frequency f, and the amplitude 

A of the formants. These parameters, together with the voiced/unvoiced 

decision and pitch information are then coded and transmitted. At the 

receiver, the parameters f 1,f2 and f3 and the excitation (either fo or 

random noise) are applied to three variable resonators, whose resonant 

frequencies are determined by the appropriate f 

from the resonators are multiplied by the 

provide the synthesised speech. 

2.3.5 Pattern Matching Vocoder 

value. These signals 

A signals, and summed to 

This vocoder achieves even further bit rate reduction and is able to 

operate at 400 to 800 bps. In this scheme, the short-time speech 

spectrum is compared with a set of stored spectra, each identifiable by 

a binary code[2,29]. The code corresponding to the best match is 
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transmitted, together with the usual pitch and voiced/unvoiced 

information. The receiver uses the stored spectrum indicated by the 

received code to synthesise the speech signal. This principle of 

pattern matching is similar to the recently proposed vector quantization 

techniques for speech coding (see section 2.4.1.8). 

2.3.6 Homomorphic Vocoder 

The advent of fast Fourier transform (FFT) techniques in the latter half 

of the 1960s made feasible the implementation of high resolution 

spectral analysis of speech. This technical advance, together with 

research into deconvolution methods, led to the development of the 

homomorphic vocoder[2,23,24,26,30j. The principle behind this vocoding 

algorithm is the observation that the mouth output pressure is 

approximately the linear convolution of the vocal excitation signal and 

the impulse response of the vocal tract, as given by equations (2.1) to 

(2.3). Taking logarithm of (2.3) yields, 

log IX(w) I = (2.4) 

The convolution operation is reduced to an addition of two terms which 

can now be separated by a filtering process. The inverse Fourier 

transform of equation (2.4) gives the cepstrum C(t), 

C(t) = IDFT(logIX(w)l) = IDFT(loglu(w)l) + IDFT(logIE(w)I) (2.5) 

C(t) contains two components - a 'low time' component containing vocal 

tract information and a 'high time' component due to the excitation. 

This capability of the cepstrum to isolate the excitation component has 

led to its widespread use as a pitch detector[31j. Figure 2.8 shows the 

waveforms corresponding to each stage of signal processing performed 

during the analysis stage of the homomorphic vocoder. Figure 2.9 is a 
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block diagram of the analysis and synthesis operations involved. The 

analyser performs the operations specified by equations (2.1) to (2.5) 

in extracting the cepstrum, which is then suitably truncated to obtain 

the vocal tract information. The result is the signal c(t), which 

together with the excitation information constitute the transmission 

parameters. 

Synthesis is accomplished using the signal c(t), which is Fourier 

transformed, exponentiated, inverse Fourier transformed and finally 

convolved with the excitation source. The homomorphic or cepstrum 

vocoder yields good synthetic speech at about 7.8 Kbps, and its 

implementation has been eased recently with the advent of charged 

coupled devices (CCD's). 

2.3.7 Linear Predictive Coding (LPC) Vocoder 

In the linear predictive coding vocoder[2,12,23,24,26,32-36], modelling 

of the speech waveform is carried out in the time, rather than the 

frequency domain, thereby avoiding difficulties associated with 

frequency domain techniques, such as the accurate location of formants. 

The most commonly used model is the all-pole (or autoregressive) filter 

given by, 

H (z) = 
G 

(2.6) 
1 .-

where G is the amplitude of the input excitation, and the coefficients 

ak specify a pth order all-pole approximation of the short-term speech 

spectrum (p is typically ~ 8). The complex roots of equation (2.6) 
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gives the location of the formants and their bandwidths. 

For every speech sample x(n) at the input, a linear prediction x(n) is 

formed from the previous p samples according to 

-x(n) 
p 

~ r ,\:x(n-k) 
k~l 

(2.7) 

The filter coefficients 8
k 

are determined by minimising the square of 

the prediction error i.e. 
_ 2 

minimising (x(n)-x(n» over an analysis 

interval that spans typically several pitch periods. The solution of 

the minimisation process gives[2,12,33,37), 

A ~ 
opt 

(2.8) 

where R is the autocorrelation/covariance matrix, C is the 

autocorrelation/covariance vector and A represents the optimum (i.e. 
opt 

minimum squared error) filter coefficients (see also section 3.2). The 

block diagram of a LPC vocoder is given in figure 2.10. Analysis 

consists of extracting the pitch information and the amplitude of 

excitation G, performing a voiced/unvoiced decision and solving (2.8) 

for the filter coefficients. Synthesis is accomplished by a recursive 

filter (formed as the inverse of the linear predictor) fed with the 

excitation, which are either pitch modulated pulses or random noise. 

LPC vocoders provide good performance for bit rates in the 2.4 to 4 Kbps 

range. 

The bulk of linear prediction modelling has been on the all-pole model 

given by equation (2.6). Recent research has suggested the use of a 

pole-zero or auto-regressive moving-average (ARMA) model which is 

particularly efficient for modelling unvoiced sounds[32,33,38,39). The 
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main difficulty with ARMA modelling is the greater complexity the 

optimisation of the filter coefficients leads to the solution of a set 

of non-linear equations. 

2.4 WAVEFORM CODING 

Unlike vocoder techniques discussed in the preceding section, waveform 

coding methods do not consider reproduction of speech in terms of 

excitation descriptions, vocal tract resonances or articulatory 

parameters. Instead, an attempt is made to perform a straight-forward 

reconstruction of the acoustic waveform. Such waveform approximating 

methods are generally necessary to provide speech of a quality 

sufficient for commercial telephony. Traditional waveform coding 

techniques, such as pulse code modulation (PCM), differential pulse code 

modulation (DPCM) and delta modulation (DM) have been relatively simple. 

Present day waveform coders, however, are substantially more complex as 

the search for improved efficiency is spurred by the promise of 

implementabilty resulting from advances in device technology. 

Waveform coder algorithms may be conveniently categorized into time 

domain and frequency domain classes, but it is important to realise that 

coders in different classes can be equivalent in terms of the properties 

of speech that they exploit. For example, adaptive predictive coding 

(APC - which is a time domain algorithm) and adaptive transform coding 

(ATC - which is a frequency domain technique) exploit the same 

redundancy in the speech signal and are therefore considered 

'equivalent' in this sense. 
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2.4.1 Time Domain Methods 

2.4.1.1 Pulse Code Modulation (PCM) 

Perhaps the simplest form of waveform coding is that of linear pulse 

code modulation (PCM)[9,12,37), in which an analogue signal is uniformly 

quantized in a rectangular grid in time and amplitude. This is an 

approach widely used in methods of analogue-to-digital conversions. 

Since it does not seek to exploit any properties of speech, it is not 

constrained to this class of signals and does not possess any inherent 

data compression capability. 

Historically, PCM is the first method used for digital transmission of 

speech. It was proposed by Reeves in 1938(40) and analysed in detail by 

Cattermole(9). The operation of PCM may be summarised into the 

following steps: 

(1) The band-limited analogue signal is first sampled at or above the 

Nyquist frequency i.e. a frequency twice the signal's bandwidth. 

(2) The amplitude of each signal sample is quantized into 2B levels, 

where B is the number of bits allocated for the encoding of each 

sample. 

(3) The discrete amplitude levels are represented by distinct binary 

words of length B, which are transmitted. 

(4) The decoder converts the binary words back into amplitude levels and 

the resulting amplitude-time pulse sequence is low-pass filtered to 

yield the recovered analogue signal. 

It is clear that the only source of noise in PCM is due to the 

quantization error, which is proportional to the quantizer step-size, 

assuming that the amplitude range of the input signal does not exceed 
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that of the quantizer (i.e. no 'overload' occurs). Thus high fidelity 

reproduction of speech can be achieved by employing a large number of 

closely spaced quantization levels. but this would involve excessive and 

unacceptable bit rate requirements. Linear PCM is clearly a highly 

inefficient means of quantizing speech signals as it does not take into 

account the characteristics of. the input. More effective methods 

utilise either non-uniform quantization or adaptive quantization. 

(a) Non-uniform Quantization 

Non-uniform quantization[37.41-45] is characterised by fine quantizer 

steps for the very frequently occurring low amplitudes of speech signals 

and much coarser steps to take care of the occassional large amplitude 

excursions.Such characteristics are termed 'companding' characteristics. 

from the fact that the step-sizes are COMpressed for the low amplitudes, 

and exPAND rapidly outwards to cover the range of the signal to be 

quantized (see figure 2.11). Two non-uniform quantizers widely used in 

commercial telephony applications (denoted as A law and U law PCM) 

utilise a logarithmic charateristic for the quantizer steps. These are 

defined as follows[9,12,37 ,42]· (for ,,(n) > 0); 

Il law: xc{n) 
V In (1 + Ilx (n) IV ) 

~ 

In (1 + Il ) 
o < x(n) ~ V (2.9) 

A law: Xc (n) 
AX(n) 

~ 

1 + In A 
o ~ x(n) ~ V/A 

x (n) ~ 
v [ 1 + In (lI.x(n) IV J 

c 1 + In A 
V/lI. ~ x(n) ~ V (2.10) 

where x(n) is the input and x (n), the compressed quantizer output. p 
C 
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and A are parameters controlling the shape of the logarithmic 

characteristic, and V is the maximum amplitude of the input signal. The 

use of a logarithmic characteristic allows the quantizer to span the 

large dynamic range encountered in typical speech communication. 

Another approach to non-uniform quantization seeks to tailor the 

quantizer characteristic to the probabilty density function of the input 

signal. Max(43) proposed an iterative method for obtaining the optimum 

(i.e. minimum mean squared error distortion) quantizer input/output 

threshold levels for signals with a Gaussian density. Paez and Glisson 

(45) extended this work to signals with Laplacian and gamma 

distributions, both of which are fairly good models of long-term speech 

amplitudes. These pdfs(with a standard deviation = 0) are defined as 

follows: -

2 

p(x) 1 [-X) = ohlf exp oh (2.11) Gaussian pdf 

Lap1acian pdf p(x) 1 .:..l.d. = 2B exp{ i3} 

with 0 = I2ii (2.12) 

p(x) .1< 
exp(-k!x!) = 2lI'If ! x ! 

ganuna pdf 

with 0 
/0.75 

k 
(2.13) 

and their characteristics are shown in figure 2.12. 

(b) Adaptive Quantization 

The dynamic range of speech signals in typical voice communication 

systems can vary by as much as 40 dB. While logarithmic quantization is 

able to capture this wide variation to some extent, better results can 
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be obtained by employing a quantizer which is able to adapt its range 

according to the non-stationary nature of speech signals. Adaptive 

quantization utilises a quantizer characteristic (uniform or non-

uniform) that shrinks or expands in time like an accordion, to adapt to 

low and high speech powers respectively[12,20,37]. Although speech 

signals have a large dynamic range over a long period of time, input 

power levels vary slowly enough to facilitate the design of simple 

adaptation algorithms to track these power variations. These 

adaptations may proceed either on a 'block' basis, as in forward block 

quantization (AQF) or on a sample by sample basis, as in the well-known 

one-word memory quantizer (AQJ) algorithm developed by Jayant. 

(i) Forward Adaptation 

In forward block adaptive quantization[19,20,46-481, the quantizer 

step-size ~ is calculated for a block of N input samples (typically 4-16 

ms duration) and transmitted to the receiver. This step-size is 

normally obtained from the root-mean-square (rms) value of the block of 

signal samples as, 

= 1 
N 

(2.14) 

where a is an appropriate constant weighting factor which depends on the 

number of bits used in the quantizer. This optimum step-size is then 

used to quantize the same block of the signal. Naturally, the use of 

such 'look ahead' features ensures that the quantizer step-size is 

always matched to the power of the signal, and thus provide 

substantially improved performance over time-invariant quantizers. The 

price to be paid for this advantage is the introduction of a time delay 
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quantizer 

step-size) and the need for additional 'side information' to be 

transmitted to the receiver. Optimum quantizers may be employed with 

such forward block adaptations to obtain minimum distortion. In this 

case, the standard deviation of the block of samples is used to 

normalise the signal, before quantization by a unit variance optimum 

quantizer. For relatively short duration blocks (4-8 ms), the speech 

amplitude distribution is approximately Gaussian. As the blocksize is 

increased however, it tends toward Laplacian, and for the long-term, it 

becomes very much gamma distributed. 

(ii) Backward Adaptation 

Perhaps the best known adaptive quantizer[37,47,49] in recent years is 

the one-word memory sequential adaptation algorithm developed by Jayant 

[49]. This provides a means of matching the quantizer step-size to the 

signal variance using quantizer memory. The principle is to modify the 

step-size of the quantizer for every new input sample, by a factor 

depending on the knowledge of which quantizer slot was occupied by the 

previous sample. The step-size adaptation evolves according to, 

"'(nH) = ll(n).M(IH(n) I) 
(2.15) 

where ben) is the step-size at the nth instant, and M(.) is a 

time-invariant multiplier function that depends on the magnitude of the 

transmitted codeword at time n, denoted by IH(n)l. The characteristics 

for a 3 bit Jayant quantizer is shown in figure 2.13. 

A quantization technique similar to Jayant's algorithm is the variance 

estimating quantizer studied by Stroh[41] , Noll[20] and Castelino[50], 

where the input signal is normalised by the square root of a maximum 
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likelihood estimate of its variance at every sampling instant, and the 

result is quantized by a fixed quantizer (see figure 2.14). The 

normalising value is made proportional to a moving estimate of the 

decoded signal's standard deviation in order to obtain a unit variance 

signal which can then be optimally quantized. 

Another companding technique along the same lines is the proposal of 

Wilkinson[51]. In his scheme, the step-size ~ is adapted with a time 

constant of about 5-10 ms rather than for every sample. 

531 pro~osed a dynamic ratio quantizer (DRQ) which 

Xydeas[11,52, 

utilises an 

instantaneously adaptive non-linear element to normalise the input 

signal prior to quantization. 

Most of the adaptive quantization techniques proposed provide an SNR 

advantage over logarithmic PCM of between 3 and 5 dB. Adaptive 

quantization will be considered in greater detail in chapter 5. 

(c) Mid-rise and Mid-tread Quantizer Characteristics 

since speech signals are symmetrical about the time axis, quantizers are 

likewise symmetrical. Depending on the input/output quantizer staircase 

characteristics, two versions of the quantizer may be identified 

namely the mid-rise and the mid-tread, shown in figure 2.15. The 

mid-rise quantizer has its decision level at the origin, while the 

mid-tread has a zero output level. Mid-riser characteristics are 

preferred, mainly due to the fact that it uses an even number of levels, 

which makes it compatible with binary 

quantizer however, has superior idle 

representation. The mid-tread 

channel performance due to the 

existence of a zero level output. The use of a switch that exploits 

both mid-rise and mid-tread characteristics has been suggested by 
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Crochiere [54). 

2.4.1.2 Differential Pulse Code Modulation (DPCM) 

Adjacent amplitudes in speech waveforms sampled st the Nyquist frequency 

are often highly correlated. One consequence of this correlation is 

that the variance of the difference e(n) between speech samples x(n) and 

x(n-l) is much smaller than the variance of x(n). Since the 

quanti~ation error power is proportional to the quantizer input power 

for a given fineness of quantization, it is advantageous to quantize and 

transmit the difference between adjacent samples of speech instead of 

the speech sample itself. The reconstruction of the original speech 

sample can be performed by a simple process of integration. 

This is the basic principle of differential pulse code modulation (DPCM) 

[11,12,24,37,45,55-64), which is based on an invention by Cutler[61). 

If the variance of the quantizer input is reduced by a factor G, the 

variance of the quantization error is also reduced by G and thus the 

signal to noise ratio (SNR) will be similarly increased by G. If the 

correlation between adjacent samples of the speech signal is cl (by 

definition -1 < cl < I), it can be shown that the value of G for the 

first order differential coding 

difference between adjacent samples 

scheme (i.e. one 

is transmitted) 

in 

is 

which the 
-1 

{2(1-cl)} 

More generally, if the difference between x(n) and a weighted version of 

x(n-l), say alx(n-l) is used as the quantizer input, the variance of 

this signal is minimum when al=c l• In this case, G is given 

by (1-c
1
2)-l, a gain which is greater than unity for all values of cl' 

The quantity alx(n-l) can be considered as a first order prediction of 

x(n) and the corresponding differential coding scheme is a predictive 
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coder. MacDonald[62] found that apart from superior SNR performance, 

the choice of a1=c 1 for a first order predictor provides better 

tolerance to channel errors. 

Figure 2.16 shows a block diagram of a generalised DPCM coder and 

decoder, where P represents a pth order fixed linear predictor 

p(z) = (2.16) 

and ;(n) denotes the quantized value of e(n). From the figure, it can 

be seen that the locally decoded speech sample at the nth instant is, 
, , 
x(n) = e(n) + y(n) (2.17) 

where y(n) denotes the prediction of x(n). Also, 
, 
e(n) = e(n) + q(n) (2.18) 

where q(n) is the quantization error. As, 

e(n) = x(n) - y(n) (2.19) 

it follows from (2.17) to (2.19) that, 
, 
x(n) = x(n) + q(n) (2.20) 

Therefore, the decoded sample x(n), is the sum of the input sample x(n) 

plus the quantization error q(n) arising from the quantization of the 

difference sample e(n). Note that this condition occurs because of the 

feedback round the quantizer. y(n) is thus a prediction obtained from 

the previous p decoded samples, and not the input samples. 

The formal design of the DPCM predictor is given in chapter 3. 

2.4.1.3 Adaptive Differential Pulse Code Modulation (ADPCM) 

The term DPCM is normally used to denote the differential coder 

configuration of figure 2.16 which employs a fixed (i.e time-invariant) 
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quantizer and a fixed predictor, whose coefficients are optimised for 

long-term speech characteristics. It is apparent however, that 

predictors or quantizers whose design are based on long-term statistics 

cannot be optimum at all times because of the non-stationary nature of 

sp~ch signals, and the quite significant talker variability encountered 

in practical voice communication systems. Consequently, practical 

versions of DPCM are likely to employ adaptive quantizers and/or 

adaptive predictors the former to follow changes in signal power and 

the latter to respond to variations in the short-term speech spectrum. 

Coders incorporating such adaptive features are known as adaptive 

differential pulse code modulation (ADPCM)[37] coders. There has been a 

vast amount of research on ADPCM speech encoding systems over the years 

and most of these are concerned with various methods of adapting the 

quantizer and the predictor. 

(a) Adaptive Quantization 

The same principles of adaptive quantization[12,20,37,641 as mentioned 

in section 2.4.l.l(b) with reference to PCM coding are applicable to 

DPCM. The only difference is that, instead of the input speech signal, 

it is now the difference sequence which has to be quantized. Quantizer 

adaptation may again be either in a forward mode or a backward mode. If 

a forward block method is used, an estimation of the quantizer step-size 

will have to be made using the input signal, since the feedback DPCM 

configuration of figure 2.16 (with the quantizer inside the loop) does 

not permit the accumulation of error samples for estimation purposes. 

Backward adaptive quantization techniques in DPCM are basically similar 

to those of PCM, and the various adaptations discussed in section 

2.4.l.1(b)(ii) are also directly applicable. The one-word memory 
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quantizer of Jayant is widely used in DPCM systems. Adaptation is 

similar to the PCM case, but the multiplier values are different (see 

section 5.2.2.1)[64]. 

Stroh's method of backward variance estimation[41] can easily be applied 

to DPCM. The normalising value is still a moving estimate of the 

quantizer input, which in this case, is the sequence of quantized 

difference samples. 

One inadequacy in most adaptive quantization algorithms is the inability 

to adapt sufficiently quickly to the large amplitude excitation pulses, 

which characterise the prediction residual signal. The consequent 

'clipping' of the residual could lead to significant losses in SNR as 

well as perceptible distortion in the form of 'clicks' in the decoded 

speech. To overcome this problem, Cohn and Melsa proposed a pitch 

compensating quantizer (PCQ)[66] which uses two modes of operation: an 

envelope detector for the syllabic adaptation, and a Jayant (AQJ) loop 

for pitch compensation. A five level quantizer is used, with the two 

outermost levels placed further apart than usual, to capture the high 

amplitude excitation pulses. Qureshi and Forney[67] suggested a rather 

similar scheme which uses two Jayant loops with different adaptation 

characteristics - one for syllabic companding and the other for pitch 

compensation. 

Further discussion of adaptive quantization in DPCM systems will be 

deferred until chapter 5. 

(b) Adaptive Prediction 

While adaptive quantizers seek to follow the power level of the input 

signal, adaptive predictors[l2,l9,65] offer the possibility of tracking 
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the short-term input signal's spectral characteristics, in order to 

achieve greater variance reduction. Most forms of adaptive prediction 

ADPCM provide 2 to 3 dB advantage in SNR, compared to fixed prediction, 

under otherwise identical conditions. As in adaptive quantization, 

predictor adaptation may proceed either on a forward block mode or a 

backward sequential basis. 

In forward block adaptive prediction[l9,55], the optimum predictor 

coefficients are calculated to minimise the forward prediction error 

over a block of input samples, normally between 8 to 32 ms duration. 

Since adaptation proceeds on a block basis, a data buffer is required at 

the transmitter to collect and store incoming input samples until the 

minimisation can be performed. This introduces a delay to the system 

which is equal to the time duration of the block. At the same time, 

because the predictor coefficients are obtained from the input signal, 

they are not available at the receiver and have to be transmitted as 

side information[68]. 

The need for side information and delay may be avoided if predictor 

adaptation is performed in a backward mode[19,55,68-75]. Such backward 

adaptations usually proceed on a sequential or sample by sample basis. 

The predictor coefficients are continually updated to minimise some 

error criterion according to the general formula, 

; k ~ 1,2, .... p (2.21) 

where e is derived from information available at both transmitter and 

receiver. This usually includes previously decoded error and signal 

samples. Most backward adaptive schemes employ some form of steepest 

descent or gradient algorithm using minimum mean square error criteria. 
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Gibson investigated the performance of the stochastic approximation 

predictor[69] and the Kalman predictor[71] in speech coding applications 

and found the latter to be slightly superior. Cummiskey[76] proposed a 

similar backward adaptation technique based on the minimisation of the 

absolute, instead of the squared prediction error. In general, 

sequentially adaptive predictors tend to be rather sensitive to 

transmission errors, which can easily lead to filter instability an 

obviously unacceptable condition in practical applications. This 

drawback may be avoided to some extent if, instead of a transversal 

predictor structure, a lattice configuration is employed. Indeed, much 

interest has been focussed on the use of adaptive lattice predictors in 

ADPCM in recent years[77-79]. The details of this and various other 

adaptive schemes are covered in chapter 3. 

The advantage of DPCM over direct PCM may be eroded if the signal to be 

transmitted possesses statistically different characteristics from 

speech. For example, some telecommunication networks might be required 

to carry data, as well as speech signals. In such cases, the need might 

well arise for designing a predictor which is able to perform well for 

both speech and data inputs. Predictors which are designed for more 

than one type of signal are termed 'compromise predictors' since such 

predictors will inevitably be a SUb-optimum compromise for the different 

signals individually. O'Neal and Stroh[59] studied several cases of 

compromise prediction used in DPCM, and showed that these provide 

superior performance over PCM. Not unexpectedly, however, the SNR 

obtained with such compromise predictors is always less than the case 

where the DPCM coder is optimised and used for each type of signal 

indiv idually. 



Chapter 2 Page 43 

2.4.1.4 Pitch Predictive Coder 

While ADPCM systems are concerned only with exploiting the short-term 

spectral envelope redundancy of speech signals, a more sophisticated 

class of speech coders attempts to effect even further signal 

compression by taking advantage of the longer-term pitch redundancy 

present in voiced speech. Perhaps the most well-known research effort 

in this direction is the adaptive predictive coding (APC) system 

developed by Atal and Shroeder[12,19,37,BO-B2]. The APC coder (shown in 

figure 2.17) can be considered as an 'enhanced' version of ADPCM and 

incorporates two adaptive predictors; a short-term vocal tract 

predictor (similar to ADPCM) given by, 

= (2.22) 

and a long-term pitch predictor, given by, 

P2(Z) = az-M (2.23) 

where ais a gain parameter, M represents the pitch period in number of 

samples and p is typically ~ B. All adaptation proceed on a forward 

block basis. The optimisation of the coder parameters is performed on 

the input speech and transmitted to the receiver periodically. It was 

found that if the pitch predictor is modified to span two pitch periodS, 

i.e. 

(2.24) 

better prediction is achieved. Using this APC system, Atal and Shroeder 

reported a synthesised speech quality at a transmission bit rate of 

about 10 Kbps, better than 6 bit log PCM. 
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In later versions of the APC[8l], the pitch predictor was again modified 

to: 

~(z) (2.25) 

The three amplitude coefficients provide a frequency dependent gain 

factor which improves the prediction at higher frequencies, giving an 

average 3 dB prediction gain over the first order case. At the same 

time, Atal and Shroeder also introduced the concept of noise shaping 

(see section 2.4.l.6(a» to their APC system, to yield good subjective 

quality speech at a bit rate below 16 Kbps. 

Goldberg and Schafer[83] described a real-time mini-computer 

implementation of a simplified APC system operating at 6400 Kbps using a 

4th order short-term predictor and a pitch predictor based on the 

computationally efficient average magnitude difference function (AMDF) 

[84,85] given by, 

T 
AMDP(j) = I /x(n) - x(n-j) / (2.26) 

n=1 

The AMDF(j) is calculated for all j of interest (i.e. within the block 

of T samples) and the value of j which minimises the AMDF is the 

estimated pitch period. The quality of the synthesised speech was 

described as 'reverberant' and contains perceptible granular noise. 

Jayant investigated the performance of two pitch predictors in his pitch 

adaptive DPCM coder[86] intended for operation at 16 Kbp - one uses the 

AMDF and the other is based on the autocorrelation function. After 

experimenting with various combinations of long and short-term 

predictors, he reported that the best results were obtained with a 

prediction scheme using a fixed 3-tap short-term predictor for 
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predictor 

of strong 

periodicity. A block diagram of his system is shown in figure 2.18. 

Xydeas[ll,87,88] proposed a similar pitch synchronous DPCM scheme which 

aligns adjacent pitch periods correctly before obtaining the difference 

signal to be quantized. 

always kept very small. 

This ensures that the prediction residual is 

Unlike the short-term predictor, pitch predictors are not easily 

amenable to backward adaptation, due to the long time lags involved. 

Attempts to develope viable sequential backward gradient techniques have 

met with little success. It appears that although differential coding 

schemes employing pitch prediction offers much potential as an effective 

means of signal compression, their one major drawback is the dependance 

on accurate pitch extraction for efficient performance. Apart from the 

substantial delay incurred (typically one to two pitch periods), 

accurate pitch detection generally requires highly complex 

implementations. Indeed, because of the computational complexity 

involved, the otherwise powerful APC scheme of Atal and Shroeder have 

not been suitable for use in most real-time applications with current 

technology[37]. 

The adaptive predictive coder will be examined at greater length in 

chapter 3. 

2.4.1.5 Delta Modulation (DM) 

DPCM coders exploit the high adjacent sample correlation found in 

Nyquist-sampled speech to produce a difference signal that can be 
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quantized using fewer levels than PCM, for the same SNR performance. 

This suggests the possibility of reducing the number of quantization 

levels even further if signal correlation can be correspondingly 

increased. Consequently, one could consider a differential coder which 

uses the minimum number of quantizer levels (2 levels, 1 bit) and a 

simple predictor in a feedback loop. Delta modulation (DM) is precisely 

such a one-bit version of DPCM which combines low complexity with good 

waveform tracking properties[37,89-91). A thorough and comprehensive 

examination of delta modulation encoding techniques is given by Stee1e 

(89). In its simplest form, the DM coder operates by approximating an 

input time function by a series of linear segments of constant slope. 

Such a coder is therefore referred to as a linear or non-adaptive delta 

modulator (LDM). Not unexpectedly, as in PCM and DPCM, more efficient 

versions of DM coders exist, where the slope of the approximating 

function is variable - and these are referred to as adaptive delta 

modulation (ADM) systems. 

(a) Linear Delta Modulation (LDM) 

Figure 2.19 shows the block diagram of a linear delta modulator. The 

input analogue signal x(t) is appropriately band-limited and sampled at 

a frequency much higher than the Nyquist frequency, to give the highly 

correlated sequence {x(n)}. A first order prediction based on the 

previous locally decoded speech sample is subtracted from the input 

sample to form the error signal, 

e(n) = x(n) - a~(n-1) 

e(n) is then quantized by the two-level 

extractor) to yield b(n)(either +1 

quantizer (essentially a 

or -1) which IS coded 

(2.27) 

sign 

and 

transmitted. The receiver integrates the received ben) to give a signal 
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that is a staircase approximation of the original speech, i.e. 

~(n) ~ a~(n-l) + 6sgn(e(n» (2.28)-

with a 1 for perfec-t integration, 

< I for leaky integration 

where 6 is the DM step-size. Finally, a low-pass filter at the receiver 

removes the out-of-band noise introduced by the sharp edges of the 

staircase approximation. The filtered signal 

yields the recovered speech. 

The choice of the step-size 6 in equation (2.28) determines the type and 

extent of noise present in the DM coder. As in DPCM, the noise in DM 

coders are either granular noise or slope overload distortion. These 

are illustrated in figure 2.20. Slope overload occurs when 6 is too 

slope overload 

distortion 

s 

x(n) 

. 
x(n) 

x (n-l) 

granular 
noise 

Fig. 2.20 IllUstration of quantization noise in Linear 
Delta Modulation 

small and the staircase waveform is unable to track the rapid amplitude 

changes of the input signal effectively. The error in the decoded 

signal is thus greater than the step-size. Slope overload may be 
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avoided if the following condition is met, 

dx(t) 
dt max 

f:, 

T 
(2.29) 

where T = l/f is the sampling period, f is the sampling frequency and 
s s 

dx/dt is the derivative of the input signal. For example, if the input 

signal is a sine wave, x(t) = VsinOl t, then 
o 

dx(t) 
= Vol dt 0 max 

and no slope overload occurs if 

Vol ~ llf 
0 s 

(2.30) 

(2.31) 

Granular noise, on the other hand, arises when tracking is correctly 

maintained but the step-size is too large relative to the local slope 

characteristics of the input. It is apparent therefore, that small 

values of 6 accentuate slope overload, while large values increase 

granularity. Given the input signal statistics, it would be possible to 

obtain the optimum step-size 6 which would provide the minimum total 
opt 

error power. Abate[9l] suggested a simple rule for determining 60pt 

using the equation, 

f:, = < x(n) - x(n-l) >~ In(2F) 
opt 

F = f /2f 
s c 

where f is the bandwidth of the input signal, and F 
c 

(2.32 ) 

(2.33 ) 

is the 

over-sampling index, which is generally much greater than 1. De Jager 

[90] derived an empirical expression for the quantization noise power, 

un
2 in LDM systems, 

2 
U 

n 
= 

f 2 
K"":::' I::. 

f 
s 

(2.34 ) 

where K is an empirical constant. From this expression, the SNR for a 



LOM coder may be obtained as, 

2 2 
cr f cr 

SNR 
x s x = -Z- = 2 

cr Kf A n c 

From (2.31), the maximum amplitude Vmax of 

does not overload the coder is given by, 

V max = 
A f 
--"-211f 

o 
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(2.35) 

the sinusoid Vsinwot which 

(2.36) 

where 211fO = wo. Hence, noting that 
2 2 

crx=Vmax /2, the peak SNR is 

SNR k pea = 

3 
f 

" 2 2 
811 K f f 

c 0 

(2.37) 

Equation (2.37) shows the important result that the SNR in LOM is 

proportional to the cube of the transmission bit rate. 

Research on LOM quantization noise normally involves separate treatments 

of granular noise (Van Oe Wag[92], Goodman[93]) and overload distortion 

(Prontanotarios[94], Greenstein[95]). O'Neal[96] examined both types of 

noise and estimated the total noise power from the sum of the individual 

noise variances. Recently, Steele[97], using the expression for slope 

overload derived by Greenstein, produced equations for the peak SNR of 

LOM for Gaussian inputs, which are as simple as de Jager's formula and 

more accurate than Abate's. 

The performance of LOM may be improved using double integration[90] i.e. 

two integrators in series. This allows the prediction samples x(n) to 

respond faster to the amplitude changes in the input signal, so that a 

smaller step-size can be used, thereby leading to a direct reduction of 

granular noise without the penalty of increased overload distortion. 
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The disadvantage of fast adaptation, however, is the greater risk of 

instability[76,98]. This problem may be partially overcome using 

delayed encoding techniques, where the encoder is allowed to 'look 

ahead' at the input signal and slow down the rate of response 

accordingly[99,100]. 

Another LDM configuration is the delta sigma modulator (DSM)[IOl] shown 

in figure 2.21, where the integrator is placed in front of the 

quantizer, and the receiver consists simply of a low-pass filter. With 

such an arrangement, the error signal is integrated prior to 

quantization, and slope overload is made independent of the signal 

frequency. 

-1 
decoded 

1 

signal 
LPF ~ .. 

nput 
ignal J f -' 

Fig. 2.21 Delta Sigma Modulator (DSM) 

(b) Adaptive Delta Modulation (ADM) 

From the preceding discussion on slope overload and granularity in LDM 

systems, it is clear that instead of attempting to obtain a fixed 

step-size which is a compromise between the conflicting requirements 

for minimising either distortion, a better solution would be to allow 

the step-size to adapt optimally to the local signal characteristics. 
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This is the principle employed in adaptive delta modulation (ADM) 

systems. Various different ADM strategies have appeared in the 

literature[31,9l,102,103) although the underlying operation is the same 

i.e. to decrease the step-size when the slope of the input signal is 

small, but to allow it to expand rapidly upon detection of overload. 

The first ADM system to appear in the literature is the high information 

delta modulator (HIDM) proposed by Winkler[I02), and shown in figure 

2.22. An adaptation logic incorporated into the LDM structure allows 

the step-size A to adapt according to observations of past quantizer 

outputs. A sequence of identical bits at the quantizer output indicates 

a possible overload condition while alternative polarity bits suggest 

that A is larger than necessary. Specifically, the step-size adaptation 

is as follows: 

(i) A is doubled if the current and previous two binary outputs are of 

the same polarity, 

(ii) A is halved if the last two output bits are of opposite polarity, 

(iii) A is unchanged in all other cases. 

This simple adaptation strategy provides greatly improved dynamic range 

over LDM. Numerous other variants of this instantaneously companded 

delta modulator (ICDM) followed. Perhaps the most notable of these is 

the one-word memory ADM of Jayant(103). In this scheme, successive bits 

ben) and b(n-l) are compared to detect probable slope overload (b(n) = 

ben-I»~ or probable granularity (b(n) F ben-I»~. The step-size adapts 

according to, 

A(n) A(n-I) .Mb(n)b(n-I) M :;:, 1 (2.38) 
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i.e. ~ is either multiplied by M or IIM at each instant. The rate of 

step-size increase or decrease is governed by the single factor M, with 

M=l representing the case of non-adaptive LOM. Jayant, using a value of 

M=1.5 reported a 10 dB advantage over LOM for simulations with 

narrow-band speech sampled at 60 kHz. A block diagram of the system is 

shown in figure 2.23. Kyaw and Steele[104] extended this idea to 

include the effects of the current plus the two most recent polarity 

outputs. This gives rise to 8 possible binary patterns (3 bits), which 

are paired appropriately to give 4 different multiplier values. For a 

Gaussian input band-limited to 3.1 kHz, they reported a 4.5 dB advantage 

over Jayant's method at 40 Kbps. 

A different class of AOM utilises syllabic companding techniques, where 

the step-size changes much more slowly than the instantaneous 

adaptations, and follows the variations of the signal envelope[105-109]. 

Such systems are very robust to errors in transmission. An example is 

the continuous variable slope delta (CVSO)[108] modulator shown in 

figure 2.24. The OM step-size is determined by the output bit stream (3 

or 4 bits) stored in a shift register. When all the bits in the shift 

register are of the same polarity, a pulse H is generated, and activates 

the syllabic filter (with a suitably adjusted time constant). A pulse 

of height Ho (which is usually much smaller than H) is added to H to 

ensure that the minimum step-size is not zero. The output of the 

syllabic filter, with coefficient a 2 is multiplied with the transmitted 

bit to give the step-size ~(n) which is fed to the leaky integrator with 

coefficient al = 0.99. The step-size adaptation is thus, 

lI(n) a Mn-l) + (1-8
2

) (H+H) for ben) = b(n-l) = b(n-2) 
2 0 

otherwise (2.39) 
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Other versions of syllabic companded ADM systems include the proposal of 

Tomozawa and Kaneko[109] , Brolin and Brown[105], and the continuous 

delta modulator (CDM) of Greefkes and De Jager[107], which incorporates 

an extractor for the signal envelope used for the control of the 

step-size. 

Finally, forward transmission of the DM step-size has also been proposed 

with ADM[46]. Such systems, denoted ADM-AQF operates on the same 

principle as ADPCM-AQF - the optimum step-size is calculated from a 

block of input samples and transmitted to the receiver. The explicit 

transmission of the step-size provides better robustness to channel 

errors. 

2.4.1.6 Other Differential Coder Configurations 

DPCM, APC, and DM are all particular cases of the broad class of 

differential encoding systems. Indeed, it can be seen that the APC 

structure of figure 2.17 collapses to the DPCM coder (figure 2.16) if 

the pitch loop is removed. Additionally, if the quantizer is reduced to 

just two levels, and the predictor restricted to one tap, the delta 

modulator of figure 2.19 results. A thorough survey of this class of 

differential encoding system structures is provided by Gibson[19]. 

Apart from the more familiar coders discussed hitherto, several other 

configurations are of interest. 

(a) Noise Feedback Coder (NFC) 

The noise feedback coder (NFC)[8l,110-113], illustrated in figure 2.25, 

operates on a different principle from DPCM or APC. Instead of using 

feedback to predict the input signal, the goal of NFC is to shape the 
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output noise spectrum to produce a perceptually more pleasant output. 

To accomplish this, the quantization noise (i.e. the difference between 

the quantizer input and output) is fed back through the appropriately 

adjusted filter F. Frequently also, NFC is used together with a 

pre-filter HI in the transmitter and a corresponding post-filter 1/H1 at 

the receiver. ~ is thus also available for adjustment, although it is 

normally pre-selected from redundancy removal considerations. NFC can 

therefore be used in conjunction with redundancy removing schemes such 

as APC and DPCM, and recent efforts in this area have proven quite 

successful[81,l12). The use of noise spectral shaping in speech coders 

arises from the theory of auditory masking, which suggests that noise in 

the low frequency formant region is normally masked by the high energy 

speech components so that much of the perceived distortion in the 

decoded speech comes from the high frequency region where the signal 

level is 10w[81,115). The idea then, is to modify the shape of the 

output noise spectrum (known to be relatively flat for APC/DPCM systems) 

so that it follows the speech spectrum and remains below it at all 

frequencies. Figure 2.26 shows the desired shape of the output noise 

spectrum, together with the speech spectrum and the unshaped typically 

flat spectrum of APC or ADPCM. It has been shown, under the assumption 

of white (uncorrelated) quantization noise, that the shaded areas above 

and below the flat noise level are equal (but note the logarithmic scale 

of the vertical axis). Thus noise in one frequency region may be 

reduced only at the expense of greatly increasing it in another region. 

This however, allows sufficient control of the spectrum to reduce 

perceptual distortions in 

by Atal and Shroeder for 

ADPCM[112). 

the decoded speech, as has been demonstrated 

APC[81), and by Makhoul and Berouti for 
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An earlier approach to the concept of noise shaping employed the NFC to 

obtain a reduction in quantization noise. This is achieved by proper 

selection of the noise feedback filter F, such that the output noise is 

pushed into the out-of-band frequency region (this assumes a sampling 

frequency greater than Nyquist), where it could be filtered outllll] 

(see figure 2.27). 

The use of noise shaping features in differential coders will be 

investigated in greater detail in chapter 4. 

(b) Direct Feedback Coder (DFC) 

Another differential coder structure is the direct feedback coder (DFC) 

[116], shown in figure 2.28, in which a filter is placed in the forward 

path, rather than the backward path of the quantizer. If the quantizer 

useS only two levels, and G
2 

is an integrator, the DFC becomes the delta 

sigma modulator (DSM) of figure 2.21. 

(c) Prediction Error Coder (PEC!D*PCM) 

A differential coder that is more amenable to mathematical analysis than 

the preceding configurations is the feed-forward predictive subtractive 

coder[57], also known as a prediction error coder (PEC)[19], an adaptive 

residual coder (ARC)[73] or (as will be referred to here, using NolI's 

notation) as D*PCM[llO]. Although attractive analytically, D*PCM has 

not received much attention because of the effect of 'noise 

accumulation' at the decoder. This is due to the fact that while the 

predictors at both transmitter and receiver are the same, their inputs 

are not. The transmitter predictor operates on the undegraded input 

while the receiver predictor uses an input that is corrupted by 
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quantization noise. It can be easily shown[l10J that because of the 

positive feedback at the receiver, any quantization noise present tends 

to be emphasised, so that the noise variance of D*PCM is always greater 

than that of DPCM. Bodycomb and Haddad[117J studied the performacne of 

D*PCM for Gauss-Markov inputs with the predictor and quantizer 

separately optimised from a mean 

that D*PCM provided no improvement 

square error criterion. They found 

over direct quantization of the 

input, because of the noise accumulation effect at the receiver. For 

speech inputs however, this noise accumulation is offset by the 

advantage of variance reduction brought about by exploiting the high 

signal correlation, so that D*PCM provides an overall superior 

performance over PCM. In fact the effect of noise accumulation produces 

a shaping of the output noise spectrum which follows closely the 

frequency response of the receiver synthesis filter [112J. D*PCM can 

thus be used to provide noise spectral shaping. Indeed, the noise 

shaping APC coder of Atal and Shroeder[81J employs precisely the basic 

D*PCM structure, together with a noise feedback filter to provide fine 

control of the noise spectrum. This can be realised from the noise 

feedback coder of figure 2.25 by setting H1=1-P. 

(d) DPCM with Filtering 

Another approach to reduce quantization noise effects in DPCM is to use 

a filter in series with, and preceding the predictor at the transmitter, 

and a similar filter in the forward path of the receiver, as shown in 

figure 2.30. The object of this is to modify the input to the predictor 

in some way so as to improve its performance. Melsa[l18! used a Kalman 

filter for this purpose in ADPCM, APC and CVSD coders and Gibson[70J 

employed the same filter in his sequentially adaptive ADPCM system. 
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2.4.1.7 Entropy Coding 

It has been customary. in the design of quantizers. to adjust 

quantization intervals so as to minimise the mean square error for a 

given number of quantizer levels L. The optimum quantizer input/output 

characteristics are thus determined by the probability distribution of 

the signal to be quantized. Most optimum quantization schemes usually 

assume that the quantized values are then binary coded for transmission 

i.e. for L levels. log L bits are used to code each level. This is 
2 

equivalent to assuming that all levels are equally likely. which is 

contrary to the initial assumption of a specific distribution. If. 

instead of assigning the same length code for every output of the 

quantizer. a variable code length is used. whereby highly probable 

levels are assigned shorter codewords and vice versa. then the average 

code-length would be less than the case where uniform length codes are 

used. thus leading to a reduction in average transmission bit rate. 

Entropy coding is one such variable source encoding technique which 

utilises this principle of unequal code-lengths. When the symbols to be 

transmitted (in this case the quantizer levels) are independent. it is 

possible to generate codes with an average word-length approximating the 

entropy of the symbols. The concept of entropy will now be formally 

defined. 

Suppose that a source S outputs statistically independent symbols s .• 
'-

i=I.2 •••• q. and the probability associated with S are p .• i=l.2 •••• q. 
i '-

The entropy of the source is defined as[l191: 

H (s) = 
q 

- L p.log p. 
'- '-i=l 

(2.40) 

Each Si symbol can be uniquely represented by a codeword B which is a 
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sequence of j symbols. B ~ (b
1
.b

2 
••••• b

j
) and B is a member of a finite 

set of codewords [B1 .B2 ••••• B
q

] having length t
i

• The average length L 

of this coding procedure is defined as: 

L = 
qL 

12.41) 
i=1 

and the following important property of the entropy can be proved. 

HIs) ~ L (2.42) 

Equation (2.42) shows that the entropy of the source is the lower bound 

of the average codeword length. This means that the best coding 

procedure. where codewords B. are efficiently assigned to source symbols 
L 

Si could provide a minimum average codeword length L. equal to the 
mLn 

entropy of the source. The ratio H(S)/t = E is defined as the 

efficiency of the coding procedure. while (I-E) represents the 

redundancy. 

In waveform coding methods such as DPCM. where signal redundancy is 

removed prior to coding. the use of entropy coding on the coder output 

sequence can result in a further SNR improvement at a given transmission 

rate[120.121]. Q'Neal[120] studied the performance of DPCM with entropy 

coding on signals with a Laplacian distribution and found that when the 

number of quantization levels is large. entropy coding could provide 

about 5 dB improvement over normal DPCM. Cohn and Melsa[66]. and 

Qureshi and Forney[67] also employed entropy coding in their ADPCM 

systems with backward adaptive prediction. and a pitch compensating 

quantizer. In these schemes. a 5 level quantizer is used. with the 2 

outermost levels set further apart than usual. to 'capture' the high 

amplitude excitation pulses of the residual signal. As these high 

amplitudes occur very infrequently (typically only 1% of the time). 
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variable rate coding has to be used to ensure a reasonable transmission 

rate. Atal also uses entropy coding for his 'APC system with improved 

quantization'[122} for the same reason. 

The use of entropy coding implies the need for a buffer at both the 

transmitter and receiver, so that a signal coded into a variable length 

code can be transmitted over a channel at a uniform rate. This also 

means that a delay proportional to the buffer length will be incurred. 

Long buffers are clearly undesirable because of the problems associated 

with excessive delays, while short buffers are more susceptible to 

overflow and loss of synchronization. Systems employing entropy coding 

will thus have to incorporate appropriate buffer management measures 

suitable for the particular environment. Synchronisation of the 

variable length codes is also an important aspect of entropy coding, and 

numerous self synchronising codes have been proposed. Possibly the best 

known of these is the Huffman code, which has been used extensively over 

the years. The procedure of generating such a code is given by 

Ruffman[123} for the case of binary coding. Makhoul and Berouti 

employed a simple variant of the Huffman code which is useful in the 

case of channel errors[1121. The set of codes has all ones in each 

code, except for the last bit which is zero, as shown in table 2.1. 

This enables the receiver to re-synchronise every time it receives a 

zero. 
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Code Length Code 

1 0 
2 10 
3 110 
4 1110 
5 11110 
6 111110 

Table 2.1 Example of a Self-synchronising Code 

2.4.1.8 Multipath Search Coding (MSC) 

The performance of most conventional waveform coding schemes is 

generally poor at low bit rates, when only 1 bit or less is allowed for 

coding each signal sample. One class of waveform coders, directed at 

improving the performance at this range of bit rates, uses multipath 

search strategies based on a delayed decision about binary data 

representing speech signals[l24-l33.136-1391. 

Conventional waveform coders such as PCM and DPCM can be considered as 

single path coders. They are based on instantaneous decision: the 

encoder converts an input sample x(n) into a channel codeword c(n). 

which contains information about x(n) (as in PCM) or on x(n) and its 

predecessors x(n-l).x(n-2) ••••• (as in DPCM). The decoder converts the 

received channel codeword c(n) into an output sample y(n). In contrast. 

multipath search coding(MSC) schemes consider future values x(n+l). 

x(n+2) •••• as well, before a (delayed) decision is made about the 

optimum c(n) to be released. Figure 2.31 shows the structure of MSC 

schemes. Samples x(n) of the input signal are fed into the input buffer 

of length N. The encoder compares the buffered samples ~ with a 

collection of possible output sequences Yk ' k=l.2 •••• 2N where yT = , k 

{ykl· yk2····· ykN}· The collection of these sequences which are either 

stored or deterministically generated when needed. must be available at 



1 

2 

3 

4 

16 

Inp 
Sig 

x(n) 

ut 
na1 

Buffer 

Stored 
Codebook or 
tree/tre11i 

Search for 
c (n) 

Optimum 
Sequence 

Stored 
Code book or 
tree/trellis 

60a 

Output best 
y(n) 

Sequence 

Fig. 2.31 Mu1tipath Search Coding Schematic Diagram 

(a) Codebook Coding 

Yn Y12 Y13 Y14 
0-0--<>---0 

Y21 Y22 
0---<).--..0-.- . 

~ 

• • • • -0011 
• • 
• 

• 

0---0---0--0 

0-0--<>---0 

Length N=4 
16 Sequences 
Optimum Path 0011 

0 Y11 

Y1 

(b) Tree Coding 

Length L=4 
16 Sequences 
Optimum path 0011 

(c) Trellis Coding 

Length L=4 
Trellis Intensity K=2 
K 

2 =4 Nodes/sample 

Fig. 2.32 Mu1tipath Search Coding Schemes 



Chapter 2 Page 61 

both transmitter and receiver. The optimum output sequence is the 

nearest neighbour sequence i.e. the sequence with the minimum squared 

error, 

= (2.43) 

The decoder is informed about the chosen output sequence by a binary 

channel sequence C
k

• 

MSC coding strategies may be classified into 3 main classes: (a) 

Code book coding (b) Tree Coding (c) Trellis Coding 

In codebook coding schemes. also known as list coding or vector 

quantization[12S.1261. the set of possible output sequences 

k=1.2 •••• 2N is arranged in a finite size codebook whose elements are not 

restricted in any way. When the optimum output sequence has been found. 

the corresponding index of that sequence is transmitted as the channel 

sequence in a binary format using N bits (see figure 2.32(a». 

In tree and trellis coding schemes[124.l31-134.1391. the output 

sequences of length L are arranged in the form of a tree or trellis of 

depth L (see figures 2.32(b) & (c». Its branches are populated with 

reconstruction values. Different sequences therefore have a number of 

cOmmon elements. Each sequence forms a path through the tree or 

trellis. The channel sequence. known as the path map. provides 

information about how to trace through the tree or trellis. There is a 

slight difference between the tree and the trellis. In tree coding. the 

number of branches from each node is fixed (typically 2) and the tree 

expands outwards. doubling the number of possible paths at each stage. 

For the trellis coder. the number of paths is limited to 2K per sample. 

where K is termed the intensity of the trellis. So the trellis starts 
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as a tree, which then collapses to the specific structure of the trellis 

when L ~ K. 

The main problem in MSC is to fill the codebook or to 'populate' the 

branches of the tree or trellis with elements, in a way that 'typical' 

output sequences result. One method is to generate the elements 

successively on a sample by sample basis using an algorithm known to 

both coder and decoder. In such deterministic schemes, possible channel 

digits not only define a path but they are also assigned amplitude 

values. Another possibility is to have at the encoder and decoder, 

stored code books or tree/trellis sequences which have been determined 

beforehand •. Such stochastic schemes are much less restricted in 

providing typical output sequences. 

Codebook coding or vector quantization has been applied to the coding of 

transmission parameters such as the reflection coefficients of an LPC 

system[134,135]. Buzo and Gray[126] reported equivalent performance in 

an LPC system using 10 bits/frame vector quantization for coding the 

transmission parameters as one using 35 bits/frame scalar quantization -

an advantage of 25 bits/frame! The criterion used in locating the 

optimum output code is the minimisation of the widely used Itakura-Saito 

[134] distortion measure. More recent work[136] suggested that in 

addition to the reduction in bit rate afforded by vector quantization, 

better quality synthesised speech, compared to scalar quantization, is 

also obtained. 

Various algorithms for tree/trellis encoding of speech have been 

investigated by Anderson[137], who reported impressive gains of up to 7 

dB over DPCM, in addition to the advantages of better dynamic range and 
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more resistance to channel errors. A particularly simple and effective 

procedure is the M algorithm or the (M,L) algorithm[l38). In this 

procedure, the search progresses through the tree one level at a time, 

and a maximum of only M lowest distortion paths are retained at each 

level. At the next level, the next 2M extensions of these paths are 

compared and the worse M paths eliminated. This process is continued 

until the level L is reached, at which point the accumulated error over 

the past L samples is examined and the best path which minimises the 

error is determined. This algorithm has been used by Atal for his APC 

scheme[82) and by Jayant and Christensen[l38) in conjunction with 

adaptive quantization. Fehn and Noll[l24) obtained more modest SNR 

gains of about 3 dB in their experiments, and observed that the 

increases in SNR occurred mainly in voiced speech segments where the SNR 

values were already rather high. As such, perceptual improvements were 

smaller than suggested by the SNRs. Other notable contributions in the 

area of multipath search coding include the work of Matsuyama[l27,l28), 

Linde[l29), Berger[l30), Viterbi[l3l), Jelinik[l32) and Wilson[l33). 

2.4.2 FREQUENCY DOMAIN TECHNIQUES 

In time domain techniques of waveform coding, the input speech signal is 

treated as a single full-band signal. Redundancy is removed using 

various means of prediction prior to quantization and coding, and then 

re-inserted at the decoder. The main differences among the various time 

domain coders lie in the degree of prediction or interpolation that is 

attempted, and the differing algorithms for adapting the system 

parameters. 
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A more recent class of waveform coders seeks to exploit to a greater 

extent, the models of speech production and perception, without making 

the algorithms totally dependant on these models, as in vocoders. This 

is the general category of frequency domain coders[12,1401, in which the 

approach is to divide the speech signal into a number of frequency 

components and to encode each of these components separately. By this 

means, different frequency bands can be preferentially encoded according 

to perceptual or minimum mean square error criteria for each band, and 

quantization noise can be contained within bands. Thus, encoding 

accuracy is always placed where it is needed and indeed, bands with 

little or no energy may not be encoded at all. 

The variety of algorithms in frequency domain coding is perhaps not as 

diverse as in the more traditional time domain methods. The complexity 

associated with techniques in the frequency domain may well be a 

possible reason for this rather lesser interest in such schemes, but 

advances in device technology are gradually changing the situation. Two 

techniques in the class of frequency domain coders which have received 

possibly the greatest amount of interest in recent years are sub-band 

coding (SBC) and adaptive transform coding (ATC). These have been 

reported to provide good quality speech at relatively low bit rates. 

2.4.2.1 Sub-band Coding (SBC) 

In the sub-band coder[12,141,1421, the speech spectrum is partitioned 

into typically 4 to 16 contiguous bands by means of a bank of band-pass 

filters. Each band is then low-pass translated and downsamp1ed to a 

frequency twice its bandwidth and digitally encoded using adaptive 

step-size PCM (APCM) with an accuracy determined by some appropriate 
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criterion, subject to the number of bits available. At the receiver, 

the reverse process is performed - the sub-band signals are upsampled, 

translated back to their original frequency location and summed to give 

a close replica of the original speech signal. A block diagram of the 

sub-band coder is shown in figure 2.33. 

Apart from the advantage of containing quantization noise within bands, 

encoding in sub-bands also enables the use of different adaptive 

quantizer 'step-sizes in different bands. Thus bands with lower signal 

energy will have smaller quantizer step-sizes and contribute less noise. 

In practice, a large number of bits is usually allocated to the lower 

frequency bands where pitch and formant 

preserved to retain speech fidelity. 

where fricatives occur, a much smaller 

structure must be accurstely 

For the higher frequency bands 

number of bits is normally 

adequate. At the same time, this process of bit allocation can also be 

used to control the shape of the output noise spectrum to satisfy 

perceptual consideration. 

Early versions of the sub-band coder employ large finite impulse 

response (FIR) band-pass filters[143] to partition 

into sub-bands. Each sub-band is then low-pass 

the speech signal 

translated (by a 

modulation process), sampled at its Nyquist rate and digitally encoded. 

The large FIR filters are necessary to provide very sharp cut-off 

characteristics to minimise the effects of signal aliasing which occurs 

during decimation (or down-sampling) of the sub-band signals[144]. 

Crochiere[141] proposed an integer band sampling method for performing 

the low-pass to band-pass translations which eliminates the need for 

modulators, and is thus better suited to hardware realisation. A more 

elegant approach to split-band coding however, is the use of quadrature 
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band-splitting operation as 

hne ilie 

property for canceling effects of aliasing and imaging 

highly desirable 

in the sample 

rate conversion processes and thus allow the use of much shorter filters 

(32 taps or less). Indeed, the advantages offered by QMF's have reduced 

significantly the complexity of sub-band coders to the extent that a 

complete two-band SBC is currently implementable in hardware using just 

a single signal processing chip [146-1481 (see section 2.7.2). Recently 

also, British Telecom developed a 6 band sub-band coder which uses two 

signal processing chips, one for the encoder and the other for the 

decoder[1491. 

The sub-band coder has clearly been established as a viable technique in 

speech coding (as evident from the huge amount of interest it has 

received)[l41,142,145-160I, offering good quality speech at relatively 

low bit rates and moderate complexity. The trend in recent research 

efforts has been toward increasing the number of bands employed in the 

SBC (to exploit further the advantages of split-band coding) - from the 

original proposal of 3 or 4, to 8, 16 and even 32 bands[1571. 

discussion on the sub-band coder will be given in chapter 6. 

2.4.2.2 Adaptive Transform Coding (ATC) 

Further 

The adaptive transform coder (ATC)[12,140,161,162] operates on the same 

principles as the sub-band coder, in that the input speech is divided 

into a number of bands, and each of these bands is preferentially 

encoded according to some perceptual or minimum mean square error 

criterion. The important differences are that, the number of 'bands' 

involved in ATC is very much greater and that a block transformation, 
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rather than a filter bank is used to achieve the 'band-splitting'. For 

this reason, the ATC and the SBC have been described as narrow-band and 

wide-band analysis/synthesis coders respectively[140). 

A block diagram of the adaptive transform coder proposed by Zelinski and 

Noll[161) is shown in figure 2.34. The transmitter transforms a block 

of N normalised input samples into the frequency domain using aN-point 

discrete cosine transform (DCT)[12,164). These frequency components are 

then quantized (with different number of bits, determined by an adaptive 

bit allocation process) and transmitted. The step-sizes of the 

quantizers are obtained from a coarse description of the short-time DCT 

spectrum. At the receiver, inverse transformation on the received 

frequency samples yields the recovered speech. 

The ATC coder described above has been reported to provide excellent 

quality speech at 16 Kbps. Below this bit rate however, quality 

deteriorates rapidly - a 'low-pass' effect becomes increasingly evident 

and a 'burbly' distortion is manifested[162). This is due to the 

severely inaccurate preservation of the frequency spectrum as the coder 

becomes 'starved' for bits. Tribolet proposed a more complex low bit 

rate 'speech specific' ATe coder which uses the pitch information to 

provide a more detailed estimate of the short-time signal spectrum[165). 

He reported good quality speech at a transmission rate of less than 9.6 

Kbps using this technique (see figure 2.35). 

Other discrete transforms besides the DCT may also be used in transform 

coding schemes. However, the nCT has been shown to be superior in many 

ways in its compaction ability for speech and video signals, and to 

approximate closely the performance of the optimal (signal dependant) 
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Karhunen-Loeve transform (KLT)[161,166]. Adaptive transform coding 

techniques will be discussed in greater detail in chapter 6. 

2.4.2.3 Phase Vocoder 

The phase vocoder, developed by Flanagen and Golden[167] is similar in 

principle to the ATC and the SBC. Here, the short-time. spectral 

components of speech are converted to magnitude and phase derivative 

components which are subsequently coded for transmission. Typically 30 

frequency channels are used in the phase vocoder, giving it a frequency 

resolution between that of the sub-band coder and the transform coder. 

Techniques for adaptively quantizing the channel signals of the phase 

vocoder, similar to those of SBC and ATC can be used. Portnoff 

described an implementation of the digital phase vocoder using fast 

Fourier transform (FFT) techniqueslI6S]. 

2.4.2.4 Polar Plane Coding 

Another related frequency domain technique is that of polar plane coding 

investigated by Gethoffer[169]. In this scheme, the magnitude and phase 

components of the input signal are computed and quantized separately 

with differing accuracy. Good results were reported at bit rates below 

16 Kbps using very large transform sizes (up to 8192). 

2.5 HYBRID CODING TECHNIQUES 

A third general class of speech coding methods utilises various 

combinations of features associated with time and frequency domain 

waveform coders as well as parametric and vocoding techniques[12,13]. 
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The voice-excited vocoder is one such hybrid method, where part of the 

signal is coded using waveform coding methods (either time or frequency 

domain) and the other part coded by means of parametric representation. 

Another general class of hybrid techniques attempts direct bit rate 

reduction by parametrically compressing the speech signal in bandwidth 

and sampling rate prior to coding, using various harmonic scaling 

algorithms. Such methods are able to provide high quality speech at 

relatively low bit rates ( < 16 Kbps). 

2.5.1 Voice-excited Vocoding Techniques 

There has been considerable recent interest in hybrid methods of speech 

coding which covers the 'middle ground' between waveform coders and 

vocoders, operating in the range between 4.8 to 9.6 Kbps. This interest 

arises from several directions[170j: 

(1) the demand for a speech quality that is better than that currently 

available from vocoders - proverbially, vocoders put 'marbles in the 

talker's mouth', eliminate a talker's individuality so that all 

talkers sound alike, and make speech sound inhuman and machine-like. 

(2) the difficulty and complexity of accurate pitch prediction required 

by most vocoders - in many practical instances, this sensitivity to 

pitch errorS preclude satisfactory performance. 

(3) the unavailability of wide-band channels (data rates above 16 Kbps) 

due to economical and other factors. 

(4) the recent avai1abi1ty of modems that operate reliably in the data 

range rates around 9.6 Kbps over regular telephone lines. 

Hybrid methods of speech coding utilise the principles of both waveform 
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coders and vocoders, in an attempt to provide acceptable and natural 

sounding speech at a higher bit rate than that required by vocoders. 

The design of most hybrid coders is very similar to the LPC vocoder (see 

section 2,3.7), the main difference being that a portion of the original 

signal or residual waveform (normally a low-pass filtered version of the 

full band signal) is transmitted in place of the pitch information. In 

this way. the excitation information is contained in the transmitted 

residual, and the complexity and difficulties associated with explicit 

pitch extraction are avoided. At the receiver, some form of high 

frequency generation is employed to produce a full band residual, which 

is then applied to the LPC synthesis filter to yield the recovered 

speech. 

2.5.1.1 Residual-excited Linear Predictive (RELP) Coder 

Un and Magill!171] described a residual-excited linear predictive (RELP) 

coder suitable for operation at a transmission rate below 9.6 Kbps. A 

block diagram of this is shown in figure 2.36. The LPC analysis is 

performed on overlapping Hamming-windowed speech samples. The 

prediction residual from the LPC inverse filtering is band-limited to 

800 Hz, down-sampled and transmitted using adaptive delta 

modulation (ADM) with hybrid (i.e. both syllabic and instantaneous) 

companding (see section 2.4.1.5(b)}. At the decoder, the 'received 

residual is interpolated to restore the original sampling rate, and then 

spectrally flattened to generate high frequency harmonics. The spectral 

flattening process is shown in figure 2.37. The baseband of the 

residual is retained undistorted in the upper path, while in the lower 

path, the high frequency harmonics of the residual are generated by 
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The energy of these harmonics is further 

enhanced by a double differencer, and then high-pass filtered to remove 

signal components in the baseband frequency region. This high frequency 

signal is then summed with the original base band in the upper path (with 

G1 and G2 controlling the optimum mix between them) to yield the 

spectrally flattened residual. The input to the LPC synthesis consists 

of this spectrally flattened residual plus a suitably controlled amount 

of random noise. Un and Magill reported significant improvement in the 

quality of the synthesised speech for this RELP coder, over conventional 

vocoders. Furthermore, as no pitch extraction is required, the coder is 

robust in any operating environment, and provides a speech quality which 

degrades very gradually as the bit rate is lowered from 9.6 Kbps to 

about 4.8 Kbps. 

The LPC analysis for such RELP coders is often performed using the 

autocorrelation method[33]. The parameters for the synthesis filter 

(which may be a transversal filter or a lattice configuration) are 

normally transmitted as reflection (PARCOR)[134,135] coefficients or as 

log area coefficients (see section 3.3.1)[34]. Frequently, the use of 

pre-emphasis on the input speech is recommended before LPC analysis 

[170-172]. This reduces the short-term spectral dynamic range of the 

signal, enhances the high frequency components present and improves the 

accuracy of LPC parameter quantization. 

2.5.1.2 Voice-excited Linear Predictive (VELP) Coder 

A very similar technique to the RELP coder is the voice-excited linear 

predictive (YELP) coder where the transmitted excitation baseband is 

obtained from the original speech signal instead of the LPC residual 
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(see figure 2.38). At the receiver, the decoded baseband speech is 

added to the high-pass filtered output of the LPC synthesiser to form 

the reconstructed output speech. Note however, that the term 

'voice-excitation' has been used as a generic term to denote both 

voice-excitation and residual excitation. Viswanathan[170] compared the 

performance of RELP and VELP coders operating under identical conditions 

and found that speech from the RELP coder is more 'crisp', less muffled 

and generally less noisy than speech from the VELP coder. 

2.5.1.3 Spectral Flattening 

The quality and 'naturalness' of hybrid coders such as the RELP and VELP 

coders are very much dependant on the high frequency content of the 

synthesised speech. Since only the low frequency base band signal is 

normally transmitted, the process of spectral flattening or regenerating 

high frequency components in the excitation signal is of considerable 

signif icance. 

Numerous methods of high frequency regeneration have appeared in the 

literature[17l-l8l]. It is well known that if the baseband of speech 

contains either the fundamental pitch or at least two adjacent 

harmonics, then a waveform containing all the harmonics can be generated 

by feeding the baseband signal to an instantaneous, zero memory 

non-linear device. The spectral shape of the regenerated harmonic 

structure may be quite arbitrary and must be flattened to provide a 

suitable excitation. Figure 2.39 shows a generalised high frequency 

regeneration system applicable to voice-excited LPC systems. High 

frequencies are introduced by applying some form of non-linear 

distortion to the baseband signal. To avoid 'roughness' in the 
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recovered speech due to spectral aliasing, it is recommended that the 

baseband be upsampled to at least twice the original sampling rate 

before applying the distortion and spectral flattening[171,172J. It 

will have to be subsequently decimated to the correct sampling frequency 

before being fed to the LPC synthesiser. Frequently also, a noise 

source is added to the distorted signal to compensate for the loss of 

high frequencies in fricatives[17l-173J, but some proposals have 

dispensed with its use [170J. 

Rectification is a commonly used non-linear distortion scheme[172-l75J. 

In general, a rectifier operating on a signal x(t) has the following 

input/output characteristics[173J: 

y(t) = 1/2{(l+<1) Ix(t) I + (l-<1)x(t)} ;0 ~ <1 ~ 1 (2.44) 

where 1.1 denotes absolute value, and <1 represents the extent of 

rectification, with <1 =0 giving half-wave 

corresponding to full-wave rectification. 

value of a=0.5, have been used. 

rect if ica tion and '" =1 

Both values, as well as a 

Another method of spectral flattening and high frequency generation 

employs spectral duplication using the transmitted baseband spectrum. 

Makhoul and Berouti presented two methods, spectral folding and spectral 

translation, by which this may be done[173J. Figure 2.40 illustrates 

the two spectral duplication methods, for a baseband with bandwidth B, 

obtained from a signal with bandwidth W = 3B. Spectral folding is in 

fact simply the process of upsampling by inserting zeroes between the 

samples of the baseband. It is important, in performing spectral 

folding, that the short-term dc value should be subtracted prior to the 

operation, and added on afterwards, to eliminate a distortion at the 

folding frequency introduced by the process. Spectral translation can 
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be done by applying two complementary band selection filters to the 

spectrally folded full band signal. Spectral duplication gives rise to 

low level background tones in the synthesised speech, which although 

different from the 'roughness' characteristic of rectification methods 

of high frequency regeneration techniques, is not necessarily preferable 

perceptually. Makhoul and Berouti also suggested an alternative method 

of spectral duplication which seeks to eliminate these background tones 

by preserving the harmonic structure of the baseband. This is done by 

adjusting the width of the baseband spectrum to be a mUltiple of the 

short-term pitch fundamental frequency. Frequency domain coding would 

obviously be easier in this case - and the use of ATC for coding the 

baseband signal was proposed[l73]. A related method of ensuring that 

spectral duplication is optimally aligned to the harmonic structure of 

the input speech uses the short-term magnitude and phase components of 

the speech segment. The magnitude spectrum is duplicated at higher 

frequencies by shifting it through a pitch adaptive distance[176]. This 

optimal shift is determined at the transmitter by cross-correlating the 

high frequency spectrum of the signal with the transmitted base band and 

'peak-picking' the result [175]. Note that this process may also be 

performed using the cosine magnitude spectrum. 

Un and Lee proposed a hybrid method of spectral flattening, in which the 

high frequency signal is generated by a conventional non-linear 

distortion device (such as a rectifier) using the baseband, and passed 

through a band-pass filter[l77]. The output of the band-pass filter is 

added to its base band and then spectrally folded to yield the full-band 

excitation. This was reported to result in considerable reduction in 

the tonal noise associated with straight-forward spectral duplication. 
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A further proposal used a split-band coding method[1721, to split the 

base band into two bands, leaving a spectral gap between them to conserve 

transmission bandwidth. When the non-linear process is applied to these 

split bands, harmonics are generated at frequencies of integer multiples 

of the sumS and differences of the frequency components in the 

basebands. Since these frequency components spread more broadly, more 

high frequencies can be expected. 

Numerous other spectral flattening techniques for voice-excited LPC have 

been proposed, with varying claims for their effectiveness, and these 

may be found in references 178-180. 

2.5.1.4 Baseband Encoding 

The coding of the base band in voice-excited LPC systems may be done as 

in normal waveform coding using any suitable strategy. Differential 

coding does not offer any particular advantage in this case, due to the 

lack of correlation in the signal. ADM with hybrid companding has been 

used [171,1751 as well as log PCM (181) and APCM[170,178). Abzug(179) 

utilises an adaptive method of quantizing the base band, where the signal 
• 

samples are coded with differing accuracy according to their energy. 

Sub-band coding of the baseband has also been proposed - Esteban's 

voice-excited predictive coding (VEPC) scheme employs a bank of 

quadrature mirror filters to split the baseband into eight equal bands 

(172). These are coded individually using a block companding PCM 

technique, with the number of bits allocated to each band varied 

adaptively on a block basis. 
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If spectral flattening is performed in the frequency domain at the 

receiver, it is more convenient to also code the base band in the 

frequency domain. ATC methods using both the cosine and Fourier 

transforms have been suggested for this purpose[l73). In the Fourier 

domain, the magnitude and phase components of the baseband may be coded 

with different accuracy according to their contribution to the 

perceptual quality of the synthesised speech[176}. 

2.5.2 Harmonic Scaling Techniques 

Harmonic scaling, which has evolved from concepts of phase vocoding (see 

section 2.4.2.4) is not in itself a speech coding method. It is rather, 

a pre-processing technique which compresses the input speech by 

typically a factor of two, prior to coding and transmission, leading to 

a direct bit rate reduction. At the decoder, the received signal is 

appropriately expanded by a complementary process to yield the 

reconstructed speech[146,l59,182-l86). 

Methods of harmonic scaling have been realised in both the time and the 

frequency domain, and they focus primarily on redundancies in speech due 

to pitch structure and local stationarity. Time domain harmonic scaling 

(TDHS) has in particular, been demonstrated to be an effective means of 

achieving bandwidth reduction whilst maintaining good clean speech 

reproduction. The TDHS algorithm developed by Malah [182-184}, 

compresses the bandwidth and sampling rate of the input signal by a 

factor of two at the transmitter and expands it back at the receiver. 

This is accomplished as a time domain realisation through pitch 

synchronous processing. Figure 2.41(a) illustrates the compression 

process. The input speech x(n) is divided into blocks of 2P samples, 
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where P is the measured pitch period. This is compressed to P samples 

as follows: The first block of P samples is weighted by a window W(n) 

which linearly decreases from 1 to 0 across the block. The second block 

is similarly weighted with a window l-W(n) which linearly increases from 

o to 1. The sum of the two weighted blocks then produces one block of P 

samples of the compressed signal x (n), which looks like the first block 
c 

of x(n) at its beginning and like the second block of x(n) at the end. 

In this way, the concatenation of the blocks of x (n) forms a continuous 
c 

waveform without block end discontinuities. The inverse process of TDRS 

expansion is depicted in figure 2.41(b). In this case, 3P samples of 
, 

~ (n) (the received 
c 

x (n» are used to compute 2P samples of x(n) using 
c 

the 2P sample overlapped windows shown by the solid lines. The windows 

are then shifted by P samples and the next 2P samples of x(n) are 

computed in a similar process. Thus, for every P samples of the 
, 

compressed signal xc(n) , 2P samples of the expanded signal x(n) are 
, 

produced, such that x(n) is continuous across the boundaries of the 

concatenated output blocks. 

The frequency domain harmonic scaling (FDRS) technique[182,l84,1861, 

based on the short-time complex Fourier spectrum, aims at scaling the 

individual pitch harmonics of voiced speech signals, as in the phase 

vocoder[l671. However unlike the latter, which uses only the phase 

derivative, FDRS seeks to perform frequency scaling without discarding 

the phase information. A qualitative model for frequency division is 

shown in figure 2.42. 

Malah and Flanagan presented a unified description and assessment of 

TDHS and FDRS and investigated a hybrid scaling method in which 

compression is performed by TDHS and expansion by FDHS[l821. They 
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concluded that FORS is more robust than the simpler TORS because it is 

not explicitly dependant on pitch extraction. clean (i.e. 

uncorrupted) speech inputs, compression with TDRS results in better 

reconstructed speech quality. On the other hand, for noisy inputs, in 

addition to possible failure of the pitch detector at high noise levels, 

the TDRS expansion process tends to structure the noise, producing a 

perceptually annoying effect. They also reported that in applications 

where pitch extraction is feasible but where pitch data transmission is 

to be avoided, the hybrid TORS-FORS system provided better overall 

speech quality than TORS or FORS alone. The additional advantages of 

the hybrid system, such as reduction of noise structuring and high 

immunity to channel errors, compared to TORS alone; and the lower 

complexity and higher quality, as compared to FORS alone, makes it the 

best solution for a variety of applications. 

As mentioned above, harmonic scaling is used in conjunction with 

standard waveform coding techniques, and in this respect, TORS has 
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received proportionately greater attention than FDRS because of its 

relative simplicity and the high quality recovered speech it provides. 

Malah and Crochiere investigated the performance of TDRS with sub-band 

coding and adaptive transform coding[159]. They found that bit rate 

advantages of 7 and 4 Kbps were obtained over SRC and ATC when TDHS is 

used, at a bit rate of 9.6 and 7.2 Kbps respectively. In addition, TDRS 

algorithms appear to perform well on the speech of several simultaneous 

speakers. More recently, Crochiere, Cox and Johnston were able to 

perform real-time simulations of these combinations using a 

multi-processor approach[146]. TDHS has also been investigated by Melsa 

in conjunction with backward adaptive ADPCM (which he termed an 

'adaptive residual coder') and variable Huffman coding[1851. He 

reported good quality speech with a bit rate of 9.6 to 16 Kbps. 

2.5.3 Harmonic Coding 

Another attempt to close the performance gap between waveform coders and 

vocoders is the harmonic coder proposed recently by Almeida and Tribolet 

[187]. Figure 2.43 shows a generalised harmonic coder diagram. At the 

transmitter, the data is pre-filtered, windowed and transformed to the 

frequency domain to yield the short-time spectrum S(n,k). This 

short-time spectrum is then analysed into generalised harmonics, 

according to the estimate of the pitch. The model parameters i.e. the 

complex amplitudes of the generalised harmonics are then quantized and 
• 

used to synthesise the modeled spectrum S(n,k), using a non-stationary 

spectral model. The residual spectrum R(n,k) = S(n,k) - S(n,k) is then 

quantized and transmitted along with the pitch and model coefficients. 

At the receiver, the residual data are decoded and added to the 
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synthetic spectrum, and then fed to the short-time Fourier synthesiser 

and post-filter. Almeida and Tribolet reported promising preliminary 

results for high quality speech reproduction using the harmonic coder 

for bit rates from 4.B to 9.6 Kbps. 

2.6 TRANSMISSION ISSUES 

Much of the work on speech coder design largely ignores transmission 

issues, but sometimes transmission factors are critical to the choice or 

design of a coding strategy. This section will deal with some 

transmission considerations[lO,12,19]. 

2.6.1 Channel Errors 

For most speech coding studies, the channel is assumed to be ideal. The 

principal reason for this assumption is that it is necessary to 

determine whether a speech coder will achieve the desired performance in 

an ideal environment before complicating the problem with channel 

effects. Once an attractive speech coder design is obtained however, it 

is imperative that the effects of channel errorS be examined[19]. An 

investigation into the effects of channel errors on the SNR performance 

of several speech encoding schemes is given by Noll[lBB]. 

Subject to some qualifications and exceptions, one can say that the 

'tolerable' bit error rates in most speech coding procedures are in the 

order of 10-3 [10]. One typically gains order of magnitude advantages 

(10-2 or more) by using so-called robust versions of coding algorithms 

and by using explicit methods of bit protection (error correction/ 

coding) or by speech smoothing operations at the receiver. For 
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applications in telecommunication networks, the International Telegraph 

and Telephone Consultative Committee (CCITT) has defined certain 

requirements with respect to the performance of speech coding algorithms 

in the presence of transmission errors(10): 

(1) Algorithms must remain stable at the decoding end when disturbed by 

-3 
an error rate of 10 • 

(2) Coded speech must remain understandable up to this error rate. 

-6 -7 
(3) With a more common error rate of 10 or 10 ,the quality must re-

main subjectively equivalent to (or better than) the PCM quality un-

der the same condition. 

Some of the common measures employed to combat the effects of trans-

mission errors will be discussed in the following. 

(a) Subdued Quantizer Adaptation 

Quantizer adaptation strategies which rely on memory in their adaptation 

(such as Jayant's one-word memory algorithm) are naturally more 

sensitive to errors in transmission, because of the effect of error 

propagation. One method of checking this effect is to allow the error 

to 'leak' away within an acceptable time, at the expense of a slight 

degradation in performance. For example, the one-word memory algorithm 

(equation 2.15) can be replaced by a 'leaky' adaptation 10gic[189,190) , 

ll(n) = (2.45) 

where B (typically just smaller than I, e.g. 63/64) is the leakage 

factor which controls the speed of error dissipation. This 

modification, proposed by Goodman, has been employed successfully in 

time domain (ADPCM) as well as frequency domain (SBC) coding(12). A 

similar robust version of ADM is the syllabic (as opposed to 
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instantaneous) companding continuous variable slope delta (CVSD)[1081 

modulator with an adaptation algorithm given by equation (2.39). 

(b) Subdued Prediction 

The same error propagation effect is true for speech coding systems 

using backward adaptive prediction as noted by Moye[l9l1, Qureshi and 

Forney[671, among others. The usual approach is again to fade the 

memory of the adaptive algorithm in some fashion, although this can 

substantially reduce the efficiency of prediction. One way to restrict 

this reduction in performance is to fade the memory only when an error 

occurs, but this would entail added complexity (incurred by 

incorporating error detectors) and possibly an increased data rate[l9]. 

(c) Explicit Transmission of Coder Parameters/Error Protection 

The problem of sensitivity to transmission errors which is inherent in 

backward adaptive quantizer or predictor strategies may be avoided to 

some extent by dedicating a fraction of the coder bit rate for explicit 

transmission of adaptation information. This would obviously be better 

suited for forward block adaptation strategies such as forward block 

prediction (forward adaptive ADPCM, APC) and quantization (AQF, ATC). 

Additionally, when the channel error rates are very high, these 

parameters can be coded in a special error-protected format, by allowing 

a further increase in bit rate. Jayant [4(, I investigated the 

effectiveness of error protection for mobile telephony employing DM and 

DPCM and suggested two coders suitable for operation in that environment 

- a DM-AQF coder with bit scrambling, and an error-protected 3-bit 

DPCM-AQF. In the latter scheme, the most significant bit (MSB) is 

transmitted 3 times, the next bit twice and the least significant 
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bit (LSB) once. At the receiving end, the MSB is determined by a 

majority vote over the 3 received versions; the magnitude of the middle 

bit is forced to its smaller magnitude if the two received versions do 

not agree, and the LSB is accepted as correct. This provides good error 

protection at the expense of a doubling of the bit rate, and would 

perhaps only be justified in applications where error probability is 

high (10-2 or more), such as in the case of mobile telephony considered. 

Steele proposed several error protection coding methods based on 

statistical criteria for use with DPCM encoding schemes[192-193). One 

method transmits a PCM word representing the true amplitude of the 

signal at the end of every block of DPCM samples. If the decoded DPCM 

speech differs from the. PCM sample, one or more errors exist in the 

block, and a search based on a simple statistical criteria can be used 

to locate and correct the erroneous sample(s). Other information 

derived from the input speech can also be used for error-protection 

purposes, and another method transmits the maximum difference between 

adjacent samples within a block. If the adjacent difference between 

recovered speech samples at the receiver exceeds this transmitted value, 

then an error is indicated and appropriate correction may be applied. 

Crochiere performed an analysis on the performance of 4 and 5 band 

sub-band coders in the presence of transmission errors(150). Using the 

robust quantizer (equation 2.45) and partial bit protection (protecting 

the sign and the MSB) in the lower sub-bands, he found that 

intelligibi1ty of the recovered speech is maintained for error rates as 

high as 10-1 • Viswanathan(194) examined the noisy channel performance 

of a 16 Kbps APe coder with entropy coding using the Hamming (7,4) code 

(i.e. protect 4 data bits by adding 3 parity bits) to protect the 
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important coder parameters, and reported slight degradation in the 

h 1 · f 10-2 • h 1 speec qua 1ty or error rates up to In many cases, c anne 

errors may lead to instability in the feedback filter of ADPCM systems, 

especially when the predictor is backward adaptive and of a high order. 

One recent suggestion inverts the ADPCM predictor structure at both 

ends, so that the receiver becomes an all-zero filter[195]. Another 

method implements a 4th order filter using two stages of cascaded second 

order predictors, where each section is optimised individually [196]. 

Lattice filters have also been used extensively, in place of tranversal 

filters in ADPCM or LPC systems[78,79,197-20l] these have the 

advantage of preventing instability in the decoder filter due to 

transmission errors, if the filter coefficients are constrained to be in 

the range +1 to -1 (see section 3.3.2). 

2.6.2 Tandem Coding 

As present telecommunication networks are still mostly analogue, with 

digital sections only in some parts, the need for more than one 

coding-decoding process is not uncommon[10]. Indeed, as a worst case in 

an international communication, CCITT does not exclude the possibility 

of up to 14 coding-decoding processes in cascade. Such tandem codings 

of speech may involve identical or non-identical stages. If the 

encoding stages are separated by intermediate operations of 

digital-to-analogue conversions, the distortions introduced by different 

coding stages tend to be statistically independent, and therefore 

additive in some sense. Although there is a tendency for quality loss 

to occur most during the first stage, each subsequent coding-decoding 

operation will contribute not insignificantly to quality deterioration. 
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Crochiere[150] investigated the performance of the sub-band coder for up 

to 4 tandem codings, and found a 3 dB drop in SNR per doubling of the 

number of tandem coders. Quality degradation is perceptible after three 

coding-decodings and becomes quite obvious with 4 tandem coders. Le 

Guyader[200] also studied the effect of tandem coding in ADPCM and PCM 

systems and found noticeable degradation in speech quality for all 

systems after 8 coding-decoding processes. 

2.6.3 Delay 

Another constraint of telecommunication networks is a limitation on the 

processing delay. Increasing the 

link will make communication more 

delay in a telecommunication 4-wire 

sensitive to echoes. Disturbing 

echoes can be eliminated by echo suppressors or echo cancellers, but 

their use is not recommended, for economic reasons. In some 

applications however, such as satellite communications, the propagation 

delay is so large that there is no real constraint on processing delay, 

since the latter typically constitutes only a small fraction of total 

delay. For terrestial links, the use of echo suppressors can be avoided 

for up to possibly 20 ms delay, although CCITT recommends values much 

lower than that[lO]. 

Apart from the very simple algorithms, most speech coding methods 

utilise some form of 'look-ahead' techniques in order to achieve better 

signal compression and hence bit rate reduction. Forward block adaptive 

predictors or quantizers (AQF)[20,41,47] will obviously incur a delay 

equal to the blocksize of adaptation; typically in the range of 8 to 32 

ms. Other methods which employ similar block processing operations, 

such as ATC, LPC, RELP are also subject to the same delay. For tbe 
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sub-band coder, substantial delay is incurred by the filtering process 

involved in the splitting of the signal spectrum, and this is 

proportional to the number of bands used. Although quadrature mirror 

implementations have reduced considerably the length of the FIR filters 

required, the delay is nonetheless not insignificant. If, in addition, 

forward adaptive bit allocation and quantization is used, further delays 

will be necessitated {20I,202). 

Processing delay is obviously a drawback in terms of the 

implementability of any algorithm, and should be taken into account in 

the assessment of a system. 

2.6.4 Encryption 

One of the attractions of digitised speech is the ease with which it can 

be encrypted. Digital encryption can be accomplished either by masking 

speech carrying bits with a psuedo-random binary noise sequence known at 

the receiver, or by permuting their positions within a block of a 

certain length. In general, the residual intelligibility from 

permutation is always higher than in masking, but it does decrease with 

the length of the block used. Sometimes, the encryption procedure 

necessitates a delay, which for the block permutation method, is equal 

to the size of the block. For medium rate speech coding, such as 16 or 

24 Kbps ADPCM, a blocklength of 16 (with a delay of 1 ms) would be 

adequate for providing casual privacy in applications like mobile radio 

[12) • 

Although traditionally, encryption or scrambling is used to offer 

conununication privacy, recent research have applied scrambling 
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techniques to embed data into speech or video signals with significant 

success[203,204). 

2.6.5 Variable Rate Coding 

In the design of digital speech coders, it is often assumed that the 

coder and channel operate at fixed bit rates. In reality however, 

speech is an intermittent and non-stationary process, and in many 

applications, user demand on a communication system is variable. In 

practice, these intermittent properties can be utilised to improve the 

design of a communication system, such as is done in TASI (Time 

Assignment Speech Interpolation), or DSI (Digital Speech Interpolation) 

systems. The other property - that of a variable demand on the system 

has also been explored for use in packet transmission 

systems[12,23,206). 

In both the above systems, the important element is the variable rate 

coder. In its simplest form, it may amount to a trivial transmit/no 

transmit decision as was used in initial TASI systems. In such systems, 

a group of N users share M channels (M < N) at any instant. Only active 

parts of communications are transmitted, and during pauses between 

sentences, words or even syllables, the channel is allocated to another 

active user. Since in a typical conversation, less than 50% of the time 

on average is spent on active talking, a concentration factor of at 

least 2 is generally considered possible when the number of channels N 

is greater than 100. Even then, the prohahility (however remote) of 

'freeze out' exists (i.e. when there are more than M simultaneous 

speakers). When freeze out occurs, some active channels cannot be 

transmitted and the effect is subjectively very disturbing. One way to 
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avoid or at least limit this freeze out effect is to associate TASI with 

variable length coding schemes rather than cutting some active 

channels completely in the event of freeze out, it is subjectively 

preferable to smoothly decrease the quality of all (or part) of the 

active channels by assigning fewer bits per sample to them. 

Generally, variable rate coding may be characterised according to the 

configuration shown in figure 2.44, where both the source activity and 

the channel rate are assumed to be variable[12]. The buffer is used to 

take up the 'slack' between the source and the channel, and to smooth 

out fluctuations. A block processing approach is often used, in which a 

block of N samples is encoded with a total of B bits such that the 

average transmission rate is BIN bits per sample. The allocation of 

bits across the block can be made according to rate distortion 

relations, and is given by the well-known equation[205]: 

2 
a (n) 

i 
o + 1/2 log2 R(n) (2.46) = 

where R(n) is the number of bits for coding the nth sample in the block, 

o is a constant dependant on the characteristic of the quantizer and the 

2 • 
probability distribution of the signal, a (n) 1S the variance of the 

signal as a function of time and d 2 is the variance of the quantization 

noise, 

;n = 1,2, ••.•• N (2.47) 

Dubnowski[206] analysed the theoretical SNR for quantizing the block of 

N samples using variable rate coding and provided the following SNR 

formula, 

SNRI 
var 

= 
B 

20(i/ - 0) log 2 + 10 log 

N-l 2 fi L a (n) 
n=O 

(2.48) 

[

N-ln 2 .J" a (n) 

n=O 



-------------------------------

Chapter 2 Page 89 

The first term of (2.48) represents the SNR for a fixed rate coder and 

the second term gives the improvement in block SNR that is possible 

using variable rate coding. This gain is given by the ratio of the 

arithmetic and geometric means of the signal variance across the block. 

If the speech is highly non-stationary across the block (i.e. the 

signal variance fluctuates greatly), a large gain can be expected. For 

a single speaker, speech is locally stationary over about 30-50 ms, and 

the blocksize N would have to be much greater ( > 100 ms) in order to 

obtain a significant advantage. For the case of multiple users however, 

as in TAS!, P speakers can share a single channel by assigning each user 

a sub-block of NIp samples and concatenating the sub-blocks into one 

large block. 

An important aspect of variable rate coding is the problem of buffer 

management. Long buffers can cause unacceptable delays in the system 

while short buffers are subject to a greater risk of overflow which can 

cause excessive distortion. Dynamic buffer control techniques have been 

proposed, based on observations of either the output bit stream of the 

coder or the input samples. Dubnowski used a method of buffer control 

which is similar in many respects to the one-word memory algorithm of 

Jayant[48]. This is given by, 

(2.49) 

where d 2(n) denotes the distortion level in the quantizer at time n, and 

H(b(n-l» is a multiplier factor which is dependant on the number of 

bits b(n-l) in the transmitter buffer at time n-l. H(b(n-l» is a 

monotonically increasing function of b(n-l), being less than 1 when 

b(n-l) is near zero and greater than 1 when b(n-l) is near B, the buffer 
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length. When b(n-l) is small, d2(n) decreases (from 2.56), so that 

greater quantizer accuracy (i.e. more bits) is permissible. 

Conversely, when b(n-l) is large, coarser quantization (less bits) will 

have to be used to prevent buffer overflow and d2(n) is increased 

appropriately. An ADPCM system using variable rate coding was also 

demonstrated by Dubnowski. In this scheme, the ADPCM coder output is 

framed into packets of 60 bits, with a 2-bit header preceding each 

packet. Each packet is encoded with either 2,3,4 or 5 bits per sample 

corresponding to 30,20,15 or 12 signal samples per packet, respectively. 

The choice of the number of bits to quantize each sample is computed at 

the transmitter and transmitted as the 2 header bits for each packet. 

This explicit transmission of the bit information provides more 

robustness to transmission errors, which might otherwise lead to 

synchronisation problems. Packet switching is often employed in a 

network consisting of a number of communication terminals. In such 

cases, each packet must contain various other overhead information, such 

as the destination and source, the type of information contained 

etc.[23] 

2.7 HARDWARE ISSUES 

Although the bulk of research into speech coding algorithms has been 

carried out using computer simulations, the ultimate aim of these 

efforts is to produce systems which can be physically built and used in 

real-life applications. The last decade has seen a phenomenal advance 

in device technology and in particular, the advent of high speed 

micro-processors and programmable ICs. In the field of digital speech 

coding, implementation of potential coders in hardware has become a 
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major issue, and nUmerous special purpose ICs have been developed for 

this purpose [12,146-148,209). This section provides a brief survey on 

the current state of VLSI technology with respect to speech coding 

applications(207). 

2.7.1 Custom Chips and Devices 

A number of custom chips and chip sets have recently been introduced 

that are specifically intended for digital speech applications.(12) In 

the area of waveform coding, chips for complete ~ law AID and D/A 

conversions (including anti-aliasing filtering) have recently been 

developed and are of interest in applications of digital telephony. 

Chips for ADM (adaptive delta modulation) have also been available, and 

with growing interest in telephony at 32 Kbps, chips for ADPCM are 

expected to follow. 

In the vocoder area, synthesiser chips or chip sets which realise the 

speech production model of figure 2.4~ have also recently -" become 

available. A notable example which has generated considerable interest 

is the Texas Instrument's 'speak and spell' chip which has been used for 

voice response in educational toys. A number of other devices for 

applications in voice response and announcement systems have since 

followed. 

2.7.2 High Speed Microprocessors and Programmable lCs 

Another area of VLSI technology that is currently having a strong impact 

in digital speech applications is that of high speed microprocessors and 

programmable integrated circuits. A notable example is the Bell 
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The DSP 

is a powerful single-chip programmable microprocessor that is especially 

suited for performing digital signal processing operations. Figure 2.45 

shows a block diagram of this processor. Its main elements are: 

(1) a 1024 x 16 bit ROM memory for storage of the programs, tables and 

various constants, 

(2) a 128 x 20 bit RAM memory for storage of dynamic data and state va­

riables, 

(3) a main Arithmetic Unit (AU) with provision for multiplications, full 

product accumulation, rounding and overflow protection, 

(4) An Address Arithmetic Unit (AAU) with address registers for control­

ling memory access and provision for updating these addresses, 

(5) an I/O unit to control serial data transmission in and out of the 

circuit, and 

(6) a control unit which provides instruction decoding and process syn­

chronisation. 

The processor operates with a 800 ns machine cycle time, which is 

established by a 5 MHz clock. 

Crochiere described the implementation of various speech coder 

algorithms using the DSP[146]. A low complexity design, such as ADPCM 

using a backward adaptive quantizer (AQJ) can be realised easily on a 

single chip. In fact, one such ADP CM encoder or decoder uses no more 

than a quarter of the real-time capability of the DSP, 3 percent of RAM 

and 15 percent of program memory. This suggests that 4 ADPCM encoders 

or 4 decoders, or 2 encoder-decoders could be implemented on a single 

DSP. A medium complexity technique such as the sub-band coder (2 and 4 
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bands} using quadrature mirror filters requires one chip for the 

implementation of either encoder or decoder, using almost all the DSP 

capability and memory. For algorithms which are too complex for a 

single DSP but which can be broken down into smaller modules, a multiple 

DSP approach was used. An example of such an algorithm is time domain 

harmonic scaling combined with SBC. This is realised using 3 DSPs for 

the encoder (which involves pitch detection and harmonic compression) 

and 2 for the decoder (no pitch extraction needed). 

Another signal processing chip gaining widespread acceptance in digital 

speech applications is the NEC7720[148,209,2l0j. A block diagram of the 

chip is shown in figure 2.46. It uses a 'Harvard' architecture, in 

which the instruction store is separated from data storage. There is 

space for 512 instructions held in ROM, 23 bits wide. Instructions are 

of 3 types: 

(I) program control,including 32 conditional jumps and subroutine calls, 

(2) immediate loading of 16 bit data, 

(3) a general purpose format which can simultaneously control 6 differ-

ent functions. 

Data storage is provided separately for fixed data in ROM (512 words) 

and for variable data in RAM (128 words). The data wordlength is 16 

bits, with limited facilities for double length working, and with fixed 

data held only to 13 bit precision. Arithmetic facilities are provided 

by a 16 x 16 multiplier which is pipelined into a conventional 

arithmetic unit, both operating simultaneously at the 4 MRz instruction 

rate. Data transfer between memory units, arithmetic registers and 

input-output takes place over a 16 bit internal data bus. The NEC7720 

has been used to implement, amongst other things, the LPC vocoder, the 
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channel vocoder and a two-band sub-band coder[148). 

One major problem with the present signal procesors such as the Bell 

Labs' DSP and the NEC7720 is the difficulty of implementing a divide 

operation, so divisions are usually avoided by various means. For 

example, in the implementation of the widely used AQJ adaptation, 

division is eschewed by storing the quantizer step-sizes and inverse 

step-sizes in ROM[146,148). 

It is clear that device integration technology has advanced to a stage 

where many algorithms regarded as too complex a few years ago, are now 

being seriously considered for implementation. It is envisaged, with 

the ever increasing capability and decreasing cost of digital hardware, 

that the time will soon come when algorithm complexity ceases to be such 

a critical factor in the choice of a system. 

2.8 PERFORMANCE INDICATORS 

Although objective performance measures are highly desirable in the 

assessment of speech coders, these are not sufficiently well established 

and are generally only used as guideposts in coder design. Formal 

judgments on coded speech quality must almost inevitably depend on 

subjective testing. Nevertheless, objective measures such as signal to 

noise ratios have been useful as complements to the more reliable 

listening tests. Several performance indicators will be discussed in 

this section. 
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2.8.1 Objective Assessment 

The single most widely used indicator of speech coder performance is the 

long-term SNR[9,12,19,20,37,2111, defined by, 

SNR (dB) = 
I x

2
(n) 

10 loglO --!!~':::""'----2 
n L {x(n)-x(n») 

(2.50) 

where the summations are typically over the duration of a sentence 

length utterance. since waveform coders attempt to preserve the input 

signal waveform, the SNR, which is the ratio of the signal variance to 

the noise variance has the potential of characterising waveform coder 

quality., Indeed, the SNR would be a meaningless quantity in systems 

which are not based on waveform preservation. The SNR measure as given 

in (2.50) is however, strongly influenced by the high energy components 

of the speech waveform, and does not reflect the performance for low 

energy segments whose preservation is perceptually very important. An 

improved measure which takes this into account computes the SNR averaged 

over short-time segments of active speech (discarding silence). The 

average segmental SNR over K blocks is defined as[19,201, 

K 
SSNR = 1/1< L SNR(j) (2.51) 

j=1 

where SNR(j) is the SNR of the jth block, or segment measured in dB. 

The segmental SNR is a particularly useful performance indicator for 

coders that adapt quantizers or predictors in a block fashion. 

A related distortion measure used particularly for predictive coding 

systems is the signal-to-noise improvement ratio (SNRI or SNI), also 

known as the signal-to-residual ratio (SRR), given by[191, 



SNRI (dB) = 
n L 

10 10g
1 o L 

n 
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(2.52) 
2 

e (n) 

where e(n) is the residual signal or the prediction error. This is 

useful for measuring the effectiveness of the predictor employed in a 

DPCM or LPC configuration. 

Objective measures such as the SNR can also be formulated in the 

frequency domain, and these might be more relevant to frequency domain 

coders. Such spectral SNRs reflect the accuracy of preservation of the 

short-time magnitude spectra of speech segments which are known to be 

perceptually important. It is also known that the human ear makes a 

crude Fourier analysis of signals and does not pay much attention to 

phase - so that some loss of phase information is indeed permissible 

[2,12,26]. More recent work has aimed to use the short-time spectral 

envelope to develope perceptually meaningful objective spectral distance 

measures that can be accumulated over the running signal. The general 

approach has been to evaluate the short-time amplitude spectrum on a 

frequency-warped scale (corresponding to the equal articulation bands, 

or to the critical bands), and a non-linear transformation of spectral 

magnitudes to approximate the relationship between subjective loudness 

and amplitude[81,IIO,I40]. 

Sound spectrograms are also useful in determining how well the spectral 

characteristics of the recovered signal are matched to the input, and 

provide, an easy visual comparison between different coders. Figure 

2.47 shows an example of contour spectrograms obtained from about 5 

seconds of male and female speech for the utterance, "There was an old 

man called Michael Finnegan, he grew whiskers on his chinagen." The 
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Fig. 2.47 Time Waveforms and contour Spectrograms for (a) Male (b) Female Speech 
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speech data is sampled at 8 kHz with a bandwidth from 0 to 3400 IIz. The 

signal waveform is also shown above the spectrogram, which is 

essentially a plot of the frequency characteristics across time. The 

amplitude of the frequency components is indicated by the intensity of 

the plot. 

the high 

The dark bars in the low frequency 

amplitude formants are clearly 

region 

shown. 

corresponding to 

Note that the 

spectrograms shown in the figure are incomplete, as frequency components 

above 2.5 klIz had been left out to provide room for the input signal 

waveform. 

Finally, the distribution of output noise across the frequency spectrum 

also provides an indication of the kind of distortion to be expected in 

the recovered speech. In particular, the long-term average noise 

spectrum has proved 

applied to improve 

212-215]. 

useful in applications 

the perceptual quality 

2.8.2 Subjective Assessment 

where noise shaping is 

of recovered speech[81, 

Subjective assessment of a speech coder may be considered under the 

following sections: 

(a) Intelligibility 

Speech intelligibility is usually not a problem in waveform coded speech 

unless the bit rate is very low and there are demanding transmission 

requirements, such as a high bit error rate or multiple tandem codings. 

It is perhaps more relevant to vocoder synthesised speech, which is 

often dependant on the input speech - the sex and age of the speaker, 

additive noise and other distortions introduced in the system. 
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Intelligibility is also heavily influenced by speech content - real life 

speech is often characterised by considerable redundancies, so that a 

listener may well understand what is being said without having to hear 

every word. To minimise such effects. intelligibility tests may employ 

'logatomes', which are meaningless words with a structure consisting of 

consonant-vowel-consonant e.g. bon, vino although there LS often an 

element of unreality about them[199]. 

(b) Talker Recognition 

Talker recognisability is important, not only in telephone conversations 

among friends. but even more so in many business and government 

transactions by voice[12]. Again this tends to be a minimal issue in 

waveform coding. It is important however. in the assessment of 

vocoders. since many vocoders have a tendency to make everybody sound 

alike. and thus have poor speaker recognisability[26]. 

(c) Listener Acceptance 

Listener acceptance is probably the most commonly encountered subjective 

testing procedure[199.216.217]. Its purpose is to produce a comparative 

rating of several different coders. either as a means of comparing their 

relative performance or to calibrate a particular coder in terms of 

others whose degradation are better known (such as log peM). Typically. 

subjects are presented with pre-recorded speech material via 

loudspeakers or headphones. and asked to indicate their responses 

appropriately. Formal listening tests are often a long drawn out 

process. and a number of pre-requisite conditions are recommended[183]: 

- the listening level must be comfortable. 

- the subject matter must be varied. and the phrases used must be phone-

tically balanced. 
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- the number of listeners must be sufficient (at least 20) 

- reference conditions such as ambient noise, must be defined to ensure 

repeatability of the experiments. 

Many types of tests are available for evaluating the acceptability of a 

signal of satisfactory intelligibility. In the isopreference method 

[1831, the subject is presented with first, the input signal degraded in 

a measurable and reproducible manner and second, the input signal 

delivered by the coder under test. These are presented randomly, in 

pairs, and the subject is asked to make a forced decision on which he 

prefers. The value of degradation at which listening acceptance is 

comparable for the two signals is used to characterise the coder. The 

most frequently used degradation is multiplicative noise. A related 

test is the relative 

compared directly 

preference method, where 

with signals affected by 

degradation, such as 7 bit or 8 bit PCM. 

the coded signal is 

a known degree of 

For communication 

applications, 7 bit PCM coded speech is generally accepted as the lower 

limit of quality permissible in the telephone network. 

testing procedure is the method of judgment by 

A more elaborate 

categories of 

degradation[199,2l6,2l71. The subject is asked to classify, with 

respect to the input signal, a series of different coder outputs, using 

a scale containing 5 marking levels covering the whole range of 

degradation. A commonly used scale is the CCIR scale drawn up by the 

International Consultative Committee for Radiodiffussion, which consists 

of the following 5 grades: 

5 Imperceptible degradation 

4 Perceptible but not annoying degradation 

3 Slightly annoying degradation 
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2 Annoying degradation 

1 Very annoying degradation 

This corresponds to the rating categories "excellent - good - fair -

poor unsatisfactory" used by Bell Laboratories in Holmdel, New Jersey 

[217). The signals are presented randomly in repeated pairs A-B,A-B, 

where A is the reference signal and B the coded signal. Frequently, a 

training sequence of about 10 pairs of signals is first presented to the 

subjects to give them a 'feel' of the experiment. The results of the 

classification are analysed by plotting the histograms of the votes 

received for each category of rating of each coder tested. An example 

of a typical histogram is shown in figure 2.48, where the signal 

evaluated is obviously of a high quality. 

50% 

, 

I 
i 

1 2 3 4 5 

Fig. 2.48 Illustrative Histogram for Subjective Testing Results 

(Judgment by categories of Degradation) 

Although formal listening tests are probably the most reliable 

indicators of performance with regards to speech coders, it is not 

usually resorted to because of the complexities and difficulties 

involved in carrying out the test. During the early design phases in 
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particular, informal listening tests, supplemented by SNR values and 

perhaps spectrograms are often quite adequate[191. 

2.9 CONCLUSION 

The choice and design of a particular speech coding system for a 

specific application is often dictated by the requirements of the local 

environment, and the constraints imposed. With the huge amounts of 

research efforts expended in the field of speech coding over the years, 

a wealth of information is available to the designer to cover virtually 

every conceivable area of interest. Frequently, and particularly when 

local constraints are not overly rigid or severe, the task of the 

designer becomes one of deciding among several viable alternatives. 

This would ultimately involve an exercise in evaluating each potential 

system, and determining the optimal trade-off between such factors as 

speech quality, complexity and bit rate, subject to the local 

conditions. A knowledge of the performance of a wide spectrum of speech 

coders, together with the operating details associated with each, would 

thus be essential. This section considers briefly several issues 

related to the assessment and comparison of a range of speech coding 

algorithms. 

2.9.1 Coder Complexity 

Complexity is obviously an important issue in coder design, since it is 

invariably tied up with implementability and cost. Flanagan, et al[121 

provided an approximate ranking of a number of speech coders in terms of 

complexity, by comparing each to the simple adaptive delta modulator 

(ADM), which is assigned a complexity factor of unity. 
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------------- ---------_ .. __ .. -- -----------
Relative 

Complexity 

1 
1 
5 
5 
50 
50 
50 
50 
100 
100 
200 

500 
1000 

ADM 
ADPCM 
SBC 
PP-ADP CM 
APC 
ATC 
$V 
VEV 
LPC 
CV 
ORTHOG 

FORMANT 
ARTICULATORY 

Coder 

Adaptive Delta Modulation 
Adaptive Differential PCM 
Sub-band Coder (with CCD filters) 
pitch Predictive ADPCM 
Adaptive Predictive Coder 
Adaptive Transform Coder 
Phase Vocoder 
Voice Excited Vocoder 
Linear Predictive Coefficient Vocoder 
Channel Vocoder 
LPC Vocoder with Orthogona1ised 
Coefficients 
Formant Vocoder 
Vocal-tract synthesiser; synthesis from 
printed English text. 

2.9.2 Speech Quality and Transmission Bit Rate 

Good speech quality is the ultimate aim of any speech coding system, and 

this is generally a function of the transmission bit rate. The quality 

associated with known coders operating at or above a particular bit rate 

is given below[121: 

Quality 

Toll quality 

Communications 
Quality 

Synthetic quality 

Coder 

Log PCM 
ADM 
ADPCM 
Sub-band 
PP-ADP CM 
APC,ATC,$V, VEV 

Log PCM 
ADM 
ADPCM 
Sub-band 
APC,ATC, V,VEV 

CV,LPC 
ORTHOG 
FORMANT 

Bit Rate (in Kbps) 

56 
40 
32 
24 
24 
16 

36 
24 
16 
9.6 
7.2 

2.4 
1.2 
0.5 
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Toll quality digital transmission can be achieved with simple coders at 

40 Kbps (ADM) , 32 Kbps (ADPCM) and 24 Kbps (SBC). Mobile radio 

telephone quality at 24 Kbps with the same relatively simple coders also 

seems feasible. With increased complexity (APC,ATC), toll quality at 16 

Kbps can be attained. 

Future research in the ever expanding area of speech coding is envisaged 

to continue with increased interest. With hardware technology advancing 

in parallel, attention would be expected to be focussed on pushing the 

lower bit rate limit for toll quality speech even further, using more 

sophisticated techniques. At the same time, methods for elevating 

speech quality at data-coding speeds (7.2 to 9.6 Kbps), and for 

moderating the effects of transmission errors on conventional systems is 

an area of substantial interest. Very often, there is a tendency for 

practical applications in any field to lag quite a way behind current 

understanding of the subject. While this may be true also in the field 

of speech coding, it is a healthy sign that international 

telecommunications organisations such as CCITT are taking an active 

interest in up-to-date algorithms and research efforts in this area. 

Indeed, over the past few years, CCITT has embarked on an extensive 

programme to eval~ate potential speech coding algorithms in an attempt 

to define new standards for future network requirements[lO). 
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CHAPTER THREE ADAPTIVE PREDICTION IN DIFFERENTIAL CODING SYSTEMS 

------------------------------------------------------------------------

3.1 INTRODUCTION 

Speech that is sampled at the Nyquist rate exhibits significant 

correlation between adjacent samples. This means that a particular 

speech sample may be predicted to a good degree of accuracy from 

knowledge of previous samples. This predictability, or redundancy 

property is exploited by differential coding schemes in which a signal 

obtained from the difference between the original signal sample and a 

prediction of it based on previous samples is quantized and transmitted. 

This de-correlating (or whitening) process results in a transmitted 

signal of substantially reduced variance, compared to the original 

speech, and thus leads to a direct bit rate reduction for the same SNR 

performanc.e (see also section 2.4.1.2). 

The generalised structure of a differential coder is shown in figure 

2.16, and reproduced for convenience in figure 3.1. The blocks labelled 

P and Q are the predictor and quantizer respectively, both of which may 

be either fixed or adaptive. This will be referred to as the DPCM 

configuration[37,41,45,46,55-64). Note that the APC coder[SO-S2) of 

figure 2.17 in which an additional long-term pitch predictor is 

employed, also belongs to this general class of differential coders, 

since it also utilises the predictability property of speech. The 

function of the predictors in DPCM or APC coders is to produce as 

accurate as possible a prediction sequence {y(n» of the incoming speech 

{x(n)}, based on previously decoded samples, such that the prediction 
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error sequence {e(n)} is minimised. The simplest DPCM coder arises when 

both the quantizer and the predictor are fixed. and P is a simple 

one-tap delay. with a constant scaling factor which is either 1 (perfect 

integration) or less than 1 (leaky integration). Generally however. for 

more efficient performance. either or both P and Q are designed to adapt 

to the input signal's characteristics. Such systems. referred to as 

adaptive differential PCM (ADPCM) will be of concern in this chapter. 

In particular. the predictor part of the coder will be examined in 

detail while the quantizer will be covered in chapter 5. 

In the following sections. various known predictor algorithms are 

examined and their performance and limitations discussed. Then several 

novel predictor adaptations which seek to improve on the performance of 

standard methods are introduced. In later sections. the APC coder is 

considered. together with some pitch extraction methods. A simplified 

APC coder. designed to operate at 16 Kbps. is then described and 

evaluated. The one-word memory adaptive quantizer(49) is used in all 

computer simulations in this chapter. 

3.2 FIXED PREDICTION 

The predictor in DPCM is traditionally a transversal filter which can be 

represented in the z domain as, 

plz} = 13.1) 

where p denotes the predictor order, and {a k• k=1.2 •••• p} are the p 

coefficients of the filter (see figure 3.2). For fixed predictors, 

these coefficients are optimised using long-term statistics of the input 

signal and remain unchanged after that. Selection of the optimum 
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predictor coefficients is based on a minimum mean square error 

criterion. From figure 3.1, the error signal at the nth instant is the 

difference between the input sample x(n) and a prediction y(n) based on 

past reconstructed values of the input, i.e., 

e (n) ~ x(n) y (n) 

p 
~ x(n) - L akx(n-k) 

k~l 

(3.2) 

Note that the feedback round the quantizer insures that the error in the 

reconstructed signal x(n) is precisely the quantization error of e(n) 

and not an accumulation of previous quantization errors. The SNR gain 

over PCM, Gpcm is given by the ratio of the input speech to that of the 

prediction error signal. To maximise therefore, the predictor 

coefficients ak are chosen to minimise the prediction error variance 

i.e. 

~ 

~ 

Min {<[x(n)­a
k 

<[x(n) -

2 + < q (n) 

where q(n) is the quantization noise, given by, 
. 

q(n) ~ e(n) - e(n) ~ x(n) - x(n) 

(3.3) 

> } 

(3.4) 

(3.5 ) 

Equation (3.4) assumes that terms involving correlation between the 

input signal and the quantization noise are negligible. In addition, if 

the coder can be assumed to be good enough such that, 

(3.6) 

then the second term of (3.4) can also be neglected, leading to, 
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( <[x(n) - (3.7) 

which is the classical Wiener filtering procedure in parameter 

estimation theory[2l8) (also encountered in the design of the LPC 

vocoder - section 2.3.7). Rewriting equation (3.7) in terms of 

expectations (letting a 2 representing the variance of e(n) ), 
e 

E[{x(n) -

Expanding the right hand side, 

In matrix notation, (3.9) becomes 

= a 
x 

2 

2 
where a is the variance of the input signal and 

x 

a
1 

p (1) p (0) p (1) 

a
2 

p (2) p (1) p (0) 

A = C = R = 

aN p(M) p (M-I) . . . . 

p (N-l) 

p (N-2) 

p (0) 

(3.8) 

(3.10) 

The elements of C and R are the values of the autocorrelation function 

of the input sequence i.e. 

p(i-j) = E[x(i)x(j») 

The optimum set of predictor coefficients A which minimises 
opt 

(3.11) 

cr 
e 

2 is 

formed by equating the derivative of a 2 with respect to A to zero, thus 
e 



or 

dO" 2 
e 

cIA A=A 
opt 

-2C + 2AR = 0 

o 

The solution is therefore, 

"apt 
-1 = R C 
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(3.12) 

(3.13) 

(3.14) 

Using equations (3.10) and (3.14), the minimum variance of the 

2 prediction error O"e can be formed as, 

0" 2 
e 

= 
T -1 eRe = 2 T 

O"x -A C ol?t (3.15 ) 

2 
Note that the variance O"e of the error sequence is not constant or 

monotonically reduced as the order p of the predictor increases. This 

is because speech is not perfectly predictable from its past samples and 
2 

so as p becomes large, O"e (min) approaches a finite non-zero value. 

NolI [60) investigated the SNR gain Gpcm ' of DPCM over PCM for various 

order predictors, and showed that Gpcm typically saturates for all 

practical purposes at p=2. This observation is shown in figure 3.3 for 

both low-pass filtered (0 - 3400 Hz) and band-pass filtered (300 - 3400 

Hz) speech. Note the higher asymptotic Gpcm value for low-pass filtered 

speech. This is expected, as low-pass filtered speech has more low 

frequency energy and hence greater adjacent sample correlation. This 

implies greater possibility of redundancy removal by differential coding 

and thus a higher Gpcm • 

McDonald[62) considered the performance of DPCM systems on voice signals 

and produced some useful data on the long-term autocorrelation values of 

speech sampled at 9.6 and 8 kHz. Using these values, the optimum 

coefficients for various order fixed predictors can be found using 
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(3.14). These autocorrelation values and the corresponding predictor 

coefficients are shown in table 3.1. 

Table 3.1 Long-term Normalised Autocorrelation of 8 KHz 
Sampled Speech[62] and the Corresponding Optimum 
Predictor Coefficients. 

Order 

1 
2 
3 

4 
5 

6 
7 
8 

Normalised Autocorrelation 

p( 1) 
p(2) 
P(3) 
p(4) 
P(5) 
p(6) 
pO) 
p(8) 
p( 9) 
pOO) 

.864 
1.515 
1.748 

1.793 
1.777 

1.776 
1.776 
1.775 

Optimum 
a 2 

-0.752 
-1.223 

-1.401 
-1.338 

-1.338 
-1.341 
-1.340 

0.8644 
0.5570 
0.2274 

-0.0297 
-0.1939 
-0.2788 
-0.3030 
-0.2823 
-0.2208 
-0.1330 

Predictor Coefficients 
a3 a4 as 

.310 

.566 -0.147 

.412 .051 -0.110 

.415 .041 -0.097 

.416 .057 -0.148 

.412 .058 -0.137 

-0.008 
.061 -0.039 
.024 .010 -0.027 

"-------,---

3.3 ADAPTIVE PREDICTION 

While fixed predictors are designed on the basis of long-term signal 

statistics, adaptive predictors seek to provide better prediction of the 

input speech by varying their coefficients according to the short-term 

local signal characteristics. Predictor adaptation may proceed either 

in a forward mode or a backward basis. Block adaptation is often 

associated with the forward mode while sequential adaptation occurs 
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mainly with backward prediction. 

3.3.1 Forward Block Adaptive Prediction 

In this method[33,68,80-82,112], the optimum predictor coefficients are 

2 calculated to minimise the forward prediction error, e, over a given 

range of x(n) which is chosen to cover between 8 to 32 ms of speech 

data, i.e. minimise, 

2 
e 

n 
Hx(n) -

P 2 L "kx(n-k)] 
k~l 

This procedure is basically similar to the 

(3.16) 

optimisation process 

encountered in DPCM (equation 3.7) except that in this case the 

minimisation is performed in the short-term over a very much smaller 

block of samples. Setting the derivative of e2 with respect to the ak's 

to zero yields the normal equations (see also equations 3.9-3.14): 

p 
L a L x (n-k) x (n-i) 

k~1 k n 
~ L x(n) x(n-i) 

n (3.17) 

1 '" i ~ p 

According to the way the range of the minimisation procedure is 

specified, two cases arise from (3.17), leading to two methods of 

solution. 

In the autocorrelation method[33,ll2], e 2 is assumed to be minimised 

over the infinite duration -00 < n < 00. Equation (3.17) then becomes, 

where 

P L akR(i-k) ~ R(i) 
k~1 

0.18) 
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00 

R(i) ~ I x(n) x(n-i) (3.19) 
n::::-oo 

is the autocorrelation function of the signal and is an even function 

with respect to i. The coefficients of R(i,k) form what is known as the 

autocorrelation matrix (hence the name autocorrelation method) which is 

a symmetrical Toeplitz matrix (a Toeplitz matrix is one in which all 

elements along each diagonal are equal). As the range of x(n) is only 

over a finite interval, a window w(n) can be applied to x(n), to obtain 

another signal x'(n) which is zero outside the interval concerned; 

x'(n) ~ w(n)x(n) 

~ 0 

o ~ n ~ N-l 

otherwise 

The autocorrelation function is then, 

N-1-i 
R(i) ~ I x' (n) x' (n-i) i ~ 0 

n~O 

(3.20) 

(3.21) 

For the relatively short-term stationarity characteristics of speech 

signals, data windows such as the Hamming window or the Hanning window 

are appropriate, although for most ADPCM applications, the much simpler 

rectangular window is normally adequate. 

Unlike the autocorrelation method, the covariance method[33,80-8Z] 

minimises the prediction error over a finite interval, say 0 ~ n ~ N-l. 

Equation (3.17) becomes, 

p 
I ,\:<I>(k,i) ~ <p(O,i) 

k~l 

(3.22) 

where 

N-1 
'(i,k) ~ E x(n-i)x(n-k) (3.23) 

n~O 

is the covariance of the signal x(n) in the given interval. Again, the 
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name of the method arises from the fact that the coefficients of ~(k,i) 

form a covariance matrix. This matrix is also symmetrical, but unlike 

the autocorrelation matrix, it is not Toeplitz. Note from (3.23) that 

the values of the signal x(n) for the range -i ~ n ~ N-1 must be known, 

a total of N+p samples. The covariance method reduces to the 

autocorrelation method as the interval over which n varies goes to 

infinity. 

Numerous solutions for the normal equations of (3.17) have been 

presented in the literature for both the autocorrelation and the 

covariance methods. Covariance matrices are symmetrical and in 

practice, usually positive definite. Thus (3.22) can be solved 

efficiently by the square root or Cholesky's decomposition method[219], 

which requires about half the computation (p2/6) and 
2 

storage (p /2) of 

the more general methods such as Gauss's elimination or Crout's 

reduction. The Toeplitz characteristics of autocorrelation matrices 

permit even further reduction in computation and storage. Levinson[220] 

derived an elegant recursive procedure for solving such Toeplitz matrix 

equations, and Durbin[22l], exploiting the fact that the column vector 

R(i) in the right-hand-side of (3.18) comprises the same elements found 

in the autocorrelation matrix, produced a recursion twice as fast as 

Levinson's, requiring only p2 operations and 2p storage locations - a 

substantial saving over the more general methods (see Appendix A, 

Durbin's recursion). In solving for the coefficients of a pth order 

predictor, Durbin's method also computes the solutions for all 

predictors of order less than p. An important by-product of this 

process is the set of reflection coefficients k , 
m 

also known as 

PARCOR (PARtial CORrelation)[34,134] coefficients, which are related to 
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the ak's by, 

k = a m 
m m (3.24) 

where a,j denotes the ith linear prediction coefficient for a jth order 
~ 

predictor. The k coefficients have the important property that if m 

Ik I < 1 m ; i = l,2 ... p (3.25) 

the linear prediction filter is guaranteed to be stable. For the 

autocorrelation method, the k 's are always less than unity, so that 
m 

stability is theoretically assured. The PARCOR coefficients also 

possess desirable quantization properties, and they are often used as 

transmission parameters in place of the ~ coefficients[134,135). This 

is because the latter are extremely sensitive to errors small 

perturbations can cause radical changes in the filter's frequency 

characteristics which may lead to instability. For the k 's however J 
m 

filter stability is assured by (3.25), while at the same time, the 

smaller dynamic range ( -1 ~ k m ~ 1 for all m) offers more accurate 

quantization. In practice, optimal quantization is obtained by 

transforming the k 's into log area coefficients lb.' m given by the 

relation, 

1 + k m 
gm = log 

1 - k 

(3,26) 

m 

and linearly quantizing them[134). 

The choice between autocorrelation or covariance methods of solving for 

the optimum predictor coefficients in terms of output speech quality is 

not clear at the present, and no specific comparisons between the two 

methods for DPCM appears to have been documented. The computational 

efficiency of the autocorrelation method is an obvious advantage, 

although this would be more than offset by the substantial amount of 
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multiplications required if a data window (other than the rectangular 

window) is applied. The covariance method does not assume that all 

samples outside the analysis block are zero, and is possibly slightly 

more accurate as a result. In terms of SNR and subjective speech 

quality in DPCM systems however, indications are that differences 

between the two methods, if any, are negligible[19). On the whole, the 

autocorrelation method appears to be more widely used in ADPCM because 

of the guaranteed stability of the filter produced [112,171]. The 

covariance method has been used for adaptive predictive coding (APC) 

systems[80-82]. 

It should be emphasised that the solution of the normal equations does 

not form the major computational load - most of the operations required 

in forward adaptive prediction systems involve the computation of the 

autocorrelation or covariance coefficients, which requires pN 

operations. This can dominate the computation time if N » p as is 

often the case[33]. 

In addition to direct methods of solving the normal equations of (3.17), 

various iterative solutions exist[33,222]. In these methods, one begins 

with an initial guess of the solution. This is then updated by adding a 

correction term, which is normally based on the gradient of some error 

criterion. Such iterative methods generally require more computation 

than the direct methods unless one begins with a good initial guess. 

They are useful however, for adaptations where the whole signal is not 

available at once, and the solution has to be updated based on every new 

observation. The amount of change is usually proportional to the 

difference between the new observation and the predicted value given the 

present solution. This is indeed the principle of operation of backward 
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sequential predictors to be discussed next. 

3.3.2 Backward Sequential Adaptive Prediction 

Most backward adaptive prediction algorithms used in ADPCM investigated 

to date, allow the predictor coefficients to evolve sequentially 

according to: 

(3.27) 

where ak(n) is the value of the kth predictor coefficient at the nth 

instant and G(n) is a gain term[65-67,69,72-75). Equation (3.27) can be 

viewed as a sequential solution to the set of linear simultaneous 

equations or as an estimation theory-based algorithm for parameter 

estimation. The form of equation (3.27) arises from a sequential 
, 

minimisation of the squared quantized prediction error e(n)[69). 

At the nth instant, the square of the quantized prediction error is 

given by, 

'2 
e (n) = 

p 
{ x(n) - L 

k=l 

Differentiating with respect to a, gives, 
J 

'2 
de (n) 
da

j 
= -2e(n)x(n-j) 1 ~ j ~ p 

(3.28) 

(3.29) 

To minimise ~2(n) with respect to the jth predictor coefficient, 8j must 

be corrected in a direction opposite to the gradient of the error 

in (3.29) giving, 

= ~(n) + ; 1 ~ k ~ P (3.30) 

where g(n) is an appropriately optimised gain constant controlling the 

speed of predictor adaptation. The differences among backward adaptive 

predictors studied by various investigators evolve around the selection 
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of the gain term g(n). A simple form commonly used is[69,72,75]: 

g(n) = 
G 

M 

Y + ~ l 
M j=l 

'2 
x (n-j) 

(J.31) 

where y and G are scalar constants determined experimentally. The 

second term in the denominator is the variance of the M most recently 

decoded samples and acts as a normalisation factor or automatic gain 

control, so that the coefficient adaptation is not input amplitude 

dependant, while the constant y is included to prevent division by zero 

during silence. Frequently, M is set equal to p, the order of the 

predictor. Backward sequential predictors with the general form 

of (3.30) have been studied by Gibson[68,69,72,75], Moye[191], Cummiskey 

[76], Jones, Cohn and Melsa [73,75], Qureshi and Forney[67], for ADPCM 

coding and by Melsa and Goldberg[223] for APC systems. The update 

procedure given by (3.31) was investigated by Gibson[68,69] who referred 

to it as the stochastic approximation predictor (SAP). Cohn and 

Melsa[73] studied a slightly different formulation where the 

normalisation factor is an exponentially weighted function of previous 

decoded values, 

G x(n-k)e(n) (3.32) 
,\:(n) + = 

"2 
(I-a) I a)x (n-j) + y 

j=O 

Cummiskey[76] proposed a simpler adaptation based on the sign of the 

quantized error; 

= ,\:(n) + 
_

..::G.....:.:.X.,;( n:;..-....:k",l__ ( '( » sgn e n 
p , 
II x(n-j) 1 

j=l 

(3.33) 

This reduces hardware complexity with a possible loss in performance. 
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Evci. Xydeas and Stee1e[55.74.224] proposed a sequential gradient 

estimation predictor (SGEP) which is based on the general form of 

(3.30). In this scheme. the gain term g(n) is computed separately for 

each coefficient. using a sequential technique to estimate the gradient 

of the prediction error with respect to each ak at each time instant. 

They reported improved results over SAP at the expense of greater 

complexity. 

Gibson. Jones and Me1sa also compared the performance of ADPCM systems 

using the SAP predictor with those using the Ka1man predictor and found 

a slight advantage in the latter in terms of SNR[75]. The Ka1man 

a1gorithm[19.75] is a more complicated estimation procedure which can be 

represented by the following equations in vector notation. The ak 

coefficient vector A(n) is updated by the general form of (3.30). 
, 

A(n+1) = A(n) + K(n)e(n) 

where the gain vector K(n) is given as. 

K(n+l} 
v (n) X(n-l) 

a 

Va(n) is a pxp symmetric matrix defined as. 

v (n) = 
a 

'T [r - K(n-l) X (n-2)] va (n-l) + Vw 

(3.34) 

(3.35) 

(3.36) 

V is a pxp symmetric matrix of 
w 

{w (n).w2(n) ••••• w (n)} 
1 p 

is a vector of zero mean = 

white noise terms. I is the pxp identity matrix and Vv is a scalar 

constant. 
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Obviously, the Kalman algorithm is a comparatively more complex 

adaptation procedure than the SAP predictor. However, improved 

performance should be obtained since a different gain is computed for 

each coefficient ak , in contrast to SAP which uses a single gain G for 

all the coefficients (equation (3.31». Note also that SAP is in fact s 

particular case of the Kalman algorithm. When Va(n) = I and Vv= Y , 

equation (3.35) becomes: 

X(n-l) K(n) (3.37) 'T 
X (n-l) X(n-l) Y + 

which is essentially the SAP equation of (3.31). 

One disadvantage associated with backward sequentially adaptive 

predictors in ADP CM is the risk of instability of the system - there is 

no guarantee that the predictor coefficients at any given instant 

constitute a stable filter. Errors in transmission and too rapid 

adaptation of the coefficients can often give rise to stability 

problems. To minimise this risk of filter instability, the change in 

the magnitude of the predictor coefficients at each time instant is 

frequently made very small. This however, means that predictor 

performance will be curtailed during periods of transition in the input 

speech (such as between silence and voiced speech), when quick 

~daptation is desirable. Stability problems in linear predictors may be 

avoided if the filter is configured in a lattice structure instead of 

the conventional transversal structure. Indeed, recent trends have 

indicated a shift in favour of lattice implementations in both ADPCM and 

LPC research[77-79,198-200]. 
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The lattice filter, depicted in figure 3.4 arises directly from the 

computation of the least square error predictor coefficients by the 

autocorrelation method using Levinson's or Durbin's recursion (see 

section 3.3.1 and Appendix A). Stability of the filter is assured if 

the PARCOR or reflection coefficients, k 
m are constrained to be of 

magnitude less than one. Note that increasing the predictor order is 

achieved by adding more lattice sections in cascade, without changing 

any of the previous sections[77]. This nesting property implies that a 

lattice predictor of order p contains implementations of all orders less 

than p, as noted in Durbin's recursion. 

The following time-varying relations hold, from figure 3.4, 

fO (n) 

f (n) 
m 

= 

= 

b
O 

(n) = x(n) 

fm_l(n) + km(n)bm_1 (n-1) 

bm (n) . = km (n)fm_1 (n) + bm_1 (n-l) 

(3.38) 

(3.39) 

(3.40 ) 

where f (n) and b (n) are the mth stage forward and backward residuals m m 

respectively at time instant n, and the prediction residual e(n) is 

given by the pth stage forward residual £pen). 

In ADPCM applications, the lattice predictor is configured in a feedback 

loop with the quantizer as in figure 3.1; the input is the quantized 
. 

signal sequence (x(n)} and the output is the linear prediction yen). 

When used in conjunction with forward block processing schemes, the 

lattice implementation provides identical results with the transversal 

filter structure, and the reflection coefficients and predictor 

coefficients are related by (3.24). The attraction of the lattice 

however, is its efficiency when used in backward sequential adaptation, 

where the km's are updated at every sampling instant based on newly 

arrived information. Equations (3.39) and (3.40) show the explicit 
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dependance of km on time as km(n). Figure 3.5 shows an ADPCM coder 

employing the sequentially adaptive lattice predictor. The adaptation 

of the predictor begins with the lowest reflection coefficient and 

propagates across the higher sections. k
1

(n) is first updated (by the 

box labelled COR) from information which includes bo(n) and fo(n) (the 

latest decoded sample). Then, the forward and backward residuals for 

the next stage, fl (n) and b1 (n) are formed from the updated ~ (n) 

according to (3.39) and (3.40). These residuals are then used for 

updating the next reflection coefficient ~ and so on. This sequential 

propagation in the calculation of the k's contributes to the better 
m 

convergence properties of the lattice predictor, compared to 

gradient-type algorithms. The output of the predictor is given by, 

p 
= l k,(n)b'_I(n) 

j=l ) ) 
yen) 

Various methods have been proposed for computing the k 
m 

(3.41) 

coefficients 

sequentially - these usually involve the minimisation of the variance of 

the forward residual or the backward residual or a combination of the 

two. 

One typical method, employed by Makhoul[78,79] is based on minimising a 

weighted mean-square type of error of the form, 

B(n) 
n 2 

= I w(n-k)e (k) 
k:::;;-OO m 

(3.42 ) 

where em
2 (k) is a function of the forward and backward residuals, given 

by, 

= (3.43) 

and wen) is a window that weights the residual energy into the past. 

The constant y determines the mix between forward and backward 
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residuals. Minimising (3.42) with respect to ~(n) gives the update 

equation: 

k (n+1) = 
m 

n 
f w(n-j)f 1(j)b 1(j-1) . [. m- m-

]::;:_00 

n 

j:::_oo 
L w(n-j) [Yfm_~(j) + (1-Y)bm_~(j-1)] 

C (n) 
m 

D (n) 
m 

(3.44) 

The window determines the rate at which past samples are progressively 

'forgotten' and is typically a real pole filter of the form (in 

z-transform notation): 

W(z) = 
1 

o < S < 1 (3.45) 

where the order N and the parameter S controls the decay 

characteristics. The effect of a higher N is to provide more weighting 

to the relatively short duration in the immediate past and 'forget' the 

more distant past quickly. S controls the general decay rate of the 

window, and for a given rate, N determines the relative weighting of the 

windowed samples. This is illustrated in figure 3.6. 

For N=l, (3.45) can be expanded as an infinite series, 

w (z) -1 2 -2 3-3 
1 + Sz + S z + S z +. (3.46) 

and the right-hand side of (3.44) becomes, 

2 
f (n)b (n) + Sf (n-l)b (n-2) + B f l(n-2)b 1(n-3) ••.•• 
m-I m-I . m-I m-I m- m-

2 2 [2 2) 2[ [yf (n)+(I-y)b l(n-1)]+S yf I(n-l)+(l-y)b 1(n-2) +6 •••.. m-I m- m- m- . 

(3.47) 
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i.e. the quantities Cm(n) and Om(n) can be computed recursively as: 

~(n) = 

= 

B~(n-I) 

SD (n-l) 
m 

+ fm_l (n)bm_l (n-l) 

2 2 
+ ( yfm_l(n) + (l-y)b

m
_l (n-l)] 

0.48) 

0.49) 

For linear prediction applications, Makhoul recommended a 3-pole window 

with the optimum parameters y=1 and S between 0.984 and 0.988(79]. 

Applications of the sequential lattice predictor to ADPCM have been 

investigated extensively by le Guyader and Gilliore[200]. They used a 

I-pole window, with update equations given by, 

C (n) = (l-"{)C (n-I) - 2yf (n)b (n) 
m m m m 

D (n) = (l-y)D (n-l) + y[f 2(n) + b 2(n)] 
m m m m 

and, 

k +l(n) = C (n)/D (n) m m m 

0.50) 

0.5I) 

0.52) 

where y is chosen to be a power of 2 (e.g. -6 2 ) so that multiplications 

involving y can be reduced to simple shift operations. They also 

proposed a simplified adaptation procedure which requires no 

multiplications or divisions. This so-called sign product method is 

given by the equations, 

k (n) = sin [(~/2)k '(n)] 
m m 

where k '(n) is derived recursively as, 
m 

k +'l(n+l) = (l-y)k 'l(n) - y sgn{f (n)}.sgn{b (n)} 
m m+ rn m 

0.53 ) 

0.54) 

Their main conclusions were that the lattice ADP CM coders out-perform 

the gradient adapted coders, and that the simple sign product adaptation 

is more robust to transmission errors. The latter observation is not 

surprising since the sign product method is a form of subdued prediction 

(see section 2.6.1(b». 



Chapter 3 Page 123 

3.4 PROPOSED BACKWARD ADAPTIVE ALGORITHMS 

The speech quality provided by fixed prediction ADPCM is acceptable for 

bit rates higher than 32 Kbps, where inaccuracies in prediction are 

compensated by sufficient fineness in quantization. As the bit rate is 

reduced however, the quality steadily deteriorates, and at 16 Kbps, the 

degradation in the recovered speech is clearly unacceptable. Adaptive 

prediction is able to provide at this bit rate, about 3 dB advantage in 

SNR and substantially improved perceptual quality. Generally, forward 

adaptive predictors are simpler in terms of signal processing 

requirements and more efficient in terms of error minimisation[68,225]. 

However, the need for side information and coding delay associated with 

forward adaptation can be a serious disadvantage. Backward adaptive 

predictors which do not have this drawback are therefore more attractive 

in many applications despite their greater complexity. In terms of 

performance, Gibson noted that there is little difference between the 

two[19,68]. Consequently, our investigation is focussed on the area of 

backward adaptive prediction. Several such adaptive predictor 

algorithms were developed for use in ADPCM and are considered in the 

following sections. 

3.4.1 Sequential Adaptation 

3.4.1.1 Modified SAP (SAPM) 

Our starting point is the transversal predictor structure of figure 

3.2, in which the predictor coefficients are updated according to the 

sequential adaptation algorithm governed by the general SAP equations of 

(3.30) and (3.31). As noted above, the conventional method of updating 

the predictor coefficients using the SAP algorithm has been to 
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apply (3.30) with the same prediction gain constant, G to all the 

coefficients. This assumes, rather without justification, that the ak's 

are independent and that the optimum gain value is the same for each of 

them. Also, from (3.30), it is seen that the adaptation of the kth 

predictor coefficient at the nth instant, depends only on the latest 
A A 

quantized error sample e(n), and the decoded signal sample x(n-k), and 

not on the more recent decoded samples ~(n), ~(n-l) ••••••• ~(n-k+l) which 

are available at the receiver. We investigated a slight modification to 

this procedure which attempts to provide for the inter-relatedness of 

the ak coefficients (as is done in the Kalman algorithm) as well as to 

allow more recently decoded samples to affect the adaptation of higher 

coefficients in a similar manner to the lattice implementations. This 

modified SAP algorithm, denoted as SAPM, involves the following steps:-

(1) The first predictor coefficient a
1 

is first updated in the convent­

ional manner according to (3.30). 

(2) This updated ~ is then used to define a new error function using 

(3.28). 

(3) The new error is differentiated with respect to a
2 

to provide the 

gradient for the adaptation of '2' 

(4) Using the updated Bt and a2 , another error function is formed, and 

this is differentiated with respect to a
3 

to provide for the adapt-

ation of ~. 

(5) This procedure continues until all coefficients are updated. 

Consider the square of the quantized prediction error at the nth 

instant (from (3.28», 
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= {,,(n) - P L 
k=1 

Differentiating with respect to a
1 

gives, 

2 3e
1 

(n) 

aa
1 

= -2e1 (n)x(n-1) 

is updated as, 

(3.55) 

(3.56) 

The first coefficient a
1 

a
1

(n+l) = a
1

(n) + ge (n)~(n-1) = a (n) + Y1(n) (3.57) 
1 1 

where g is of the form of g(n) given by (3.31). Using the updated a 1, a 

second error function e
2 

(n) can be formed i.e. 

= {,,(n) - P L 
k=l 

Differentiating with respect to a 2 gives, 

2 
3e

2 
(n) 

aa
2 

= -2e2 (n)x(n-2) 

and the second coefficient is similarly updated according to, 
. 

= a
2

(n) + ge
2

(n)x(n-2) = a (n) + Y (n) 
2 2 

This process is continued for all the coefficients, giving, 

a
1 

(n+l) 

a 2 (n+l) 

a (n+l) 
P 

= 

a
1 

(n) 

a
2 

(n) 

a (n) 
p 

+ 

a
1 

(n) 

a
2 

(n) 

a en) 
p 

+ 

ge1(n)~(n-1) 

ge
2 

(n)" (n-2) 

ge (n)x(n-p) 
p 

(3.58) 

(3.59) 

0.60) 

(3.61) 

By expressing the higher order errors and Y values in terms of g and e 1 

(see Appendix B), the update equation can be shown to be, 

a1 (n+l) 

a
2 

(n+l) 

a (n+l) 
p 

= 

a
1 

(n) 

a
2

{n) 

a (n) 
p 

Or more generally, 

+ 

ge(n) x(n-I) 
"2 " 

[1-g" {n-1)]x (n-2) 

"2 "2 
[I-g" (n-llJ [l-gx (n-2)] •• x(n-p) 

(3.62) 



Chapter 3 Page 126 

where, 

F(k) = 1 k = 1 

= 
k-l 

nCl - g~2 (n-m)] 
m=l 

1 < k ~ P (3.63) 

is a function of the p most recently decoded samples. Notice that the 

SAP algorithm is obtainable from (3.63) by setting F(k) = 1 for all k. 

3.4.1.2 Adaptive Gain SAP (SAPA) 

In the general SAP algorithm given by (3.30), the actual amount of 

change to the kth predictor coefficient at each time instant is governed 

by the term g(n)e(n)x(n-k) in (3.30), where G (from (3.31» effectively 

controls the adaptation rate since the normalisation provided by the 

denominator of (3.31) cancels out the magnitude variations due to 

e(n)x(n-k) to some extent. Normally, G is optimised experimentally and 

kept fixed for a particular class of signals. Also, in order to 

minimise the risk of instability in the system, G is often kept rather 

small, to prevent too rapid changes occurring in the predictor 

coefficients. In reality however, the optimum rate of adaptation of the 

coefficients varies with time and according to the short-term signal 

characteristics. Slow variations are desirable during steady-state 

segments of voiced speech where the signal is locally stationary, while 

rapid adaptation is essential for efficient prediction in periods of 

transitions between silence or unvoiced sounds to voiced sounds or vice 

versa. A constant G is thus a sub-optimal compromise between these 

conflicting requirements. Better prediction could perhaps be achieved 

if G itself were made to adapt to the short-term signal characteristics. 
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We investigated a simple method of achieving some form of adaptation in 

G using ideas borrowed from adaptive delta modulation (section 

2.4.l.S(b». Specifically, the magnitude of G is permitted to increase 

or decrease depending on the direction of change in the predictor 

coefficients of past sampling instants. If the previous adaptations to 

a particular a k coefficient were all in one direction (whether 

increasing or decreasing), then a more rapid change is desired, and G is 

multiplied by a factor a (a> 1). Conversely, past adaptations of 

opposite polarity indicate probable local stationarity of the signal for 

which a smaller adaptation is preferable, and G is reduced appropriately 

by dividing by a. However, the variations of G must be necessarily 

bounded because of stability reasons. 

Several.variations on this theme were explored. The simplest version, 

denoted as SAPA-l switches between 2 values of G i.e. Ga and G/a 

depending on the polarity of predictor adaptation for the present and 

previous instants. If the same direction is indicated for both 

instants, the larger gain (Ga) is employed in the update equation 

otherwise, the smaller gain is used. SAPA-2 extends this logic further, 

using 3 values of G i.e. Ga, G and G/a. Ga is used when the directions 

of the previous 2 adaptations are the same as that indicated for the 

current adaptation; GI a is used when the 3 adaptations are of 

alternating polarity, and G is used in all other cases. Another 

variation, SAPA-3 allows G to assume values over a broader range, for 

quicker adaptation. Instead of using only 2 or 3 fixed values, G is 

permitted to vary freely between acceptable limits based on the same 

logic as above. In this case, the predictor gain G is a function of 
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time and is denoted by G'(n). Table 3.2 shows the logic governing the 

variation of G for each of the SAPA schemes. 

Table 3.2 Adaptive SAP (SAPA) - Variations in Predictor Gain G 

Scheme 

1 SAPA-l 

2 SAPA-2 

3 SAPA-3 

Direction of Correction 
for time instant 

(n-2) (n-l) n 

+ + 

+ 
+ 

+ + + 

+ + 
+ 

otherwise 

+ + + 

+ + 
+ 

otherwise 

Predictor Gain for 
nth instant 

Get 

G/et 

Get 

G/et 

G 

G'(n-l)et 

G'(n-l)/et 

G' (n-1) 

We note that the adaptive SAP algorithm described in the preceding 

section is similar in form to the 'fast converging stochastic gradient 

algorithm (FSAP)' mentioned by Farhang-Boroujeny and Turner(226) for 

non-speech applications. The adaptation of FSAP is given as: 

= (3.64) 

where Gf(n) represents the conventional prediction gradient of the form 

g(n)~(n)x(n-k), with g(n) as given in (3.31), and q and a are constants 

determined experimentally. The similarity between SAPA and FSAP is most 

simply shown by considering the contribution of q(ak(n)-ak(n-l» to the 

adaptation procedure for the kth coefficient. It is clear from (3.64) 

that ak is updated by two quantities: (i) the term 1/2 a (l-q)Gf(n) 

derived from the conventional SAP equation (3.30), and (ii) the previous 

magnitude of correction, [ak(n)-ak(n-l») weighted by the leakage factor 
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q (q < 1). If the previous and present adaptations are in the same 

direction, 
"le 

is increased or decreased by the sum of the 'two 

quanti ties. On the other hand, if the present and previous directions 

of adaptation are not the same, then ak is only changed by an amount 

equal to the difference of the two quantities, which would normally be 

very small. Thus FSAP may be considered as a more complex adaptive SAP 

algorithm with the variation of the "le's proceeding rather more slowly 

compared to the SAPA schemes, particularly SAPA-3 (sums and differences 

as opposed to products and quotients). 

3.4.1.3 Computer Simulation Results 

Computer simulations were carried out to evaluate the performance of the 

various predictors considered. In each case, the predictor is 

configured in an ADPCM structure employing the 2-bit one-word memory 

quantizer. The parameters used in the various algorithms are those 

which provide the best average SNR performance over the input speech 

files used. These are determined experimentally to be: 

(1) SAP 

(eqn. (3.30) & (3.31» 

(2) SAPM 

(3) SAPA 

(4) FSAP 

-G=O.015,M V (order of predictor) 

y = 100. 

- as SAP. 

- as SAP, with a= 2.0 

for SAPA-3, G'(n) is bounded by the 

limits 0.001 and 0.032. 

- G = 0.015, q = 0.95, 8 = 0.2. 

In the simulations performed, a few instances of system instability were 

observed. These normally occur when a high predictor gain G is used. 



Chapter 3 Page 130 

The risk of instability, however remote, is clearly unacceptable, and in 

practical systems, appropriate preventive measures will be necessary. 

One relatively simple method (at least in computer simulation terms) of 

checking for possible instability in ADPCM systems employing linear 

predictors is to convert the ~'s into the corresponding reflection 

coefficents k and check that Ik I < 1. This can be done using a 
m m 

backward recursion derived from Durbin's algorithm (Appendix A). An 

unstable filter can be made stable by reflecting the poles outside the 

unit circle inside, such that the magnitude of the frequency response 

remains the same[33]. For sequential predictors, a simpler alternative 

is to revert to the previous set of stable coefficients upon detection 

of possible instability. When this feature is incorporated in all the 

prediction algorithms examined, no more problems associated with 

instability were encountered for a wide range of G values. 

The various predictors were evaluated based on their SNR performance and 

convergence rate[77], which is the time taken by the algorithm to 

respond to sudden changes in the signal statistics. This is related to 

the rate of adaptation of the predictor coefficients,and the following 

experiment using second order predictors was designed to observe this 

adaptation. Four blocks (each of 32 ms duration) of speech data were 

used for the experiment - these were obtained by taking two blocks of 

female speech (part of the utterance 'There') which contains a 

transition between silence and voiced speech, and reflecting these to 

obtain the third and fourth blocks to provide a similar transition from 

voiced speech to silence. These 4 blocks of experimental data are shown 

in figure 3.7. The predictor coefficients were all initialised to zero 

and adaptation was allowed to proceed. Figure 3.8 shows the adaptation 
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of the coefficients a1 and a 2 over time for the various predictors 

investigated. As the coefficients vary very slowly, only every eighth 

value was used to plot the adaptation trajectory. Also, as a 

comparison, the 'optimum' predictor coefficients for the same data 

calculated using forward block adaptation (section 3.3.1) with a 

blocksize of 32 samples (4 ms) were included. Although these 

coefficients are not necessarily the optimum for any particular sample, 

they do provide nonetheless, a useful indication of where the optimum 

values are. 

It can be seen from the figures that the coefficients of the backward 

adaptive predictors seek to track the forward coefficients. The 

variation of the SAPM coefficients is very close to that of SAP, as 

would be expected for the low order predictor considered. However, the 

former coefficients appear to vary over a smaller amplitude range. The 

effect of an adaptive G for the SAPA algorithms is clearly evident from 

the figure - in all the variations of SAPA, the predictor coefficients 

approach the 'optimum' values from zero much more rapidly than SAP. 

Once the steady state is reached however, adaptation begins to slow down 

quite considerably. 

Although this should not be considered as a proper evaluative test for 

the predictors concerned, it does nevertheless provide a useful 

indication of the speed of adaptation of the predictor coefficients to 

changing signal statistics. The experiment demonstrates the advantage 

of having an adaptive, rather than a fixed predictor gain G, and even 

the simple two-value switched G scheme of SAPA-1 is able to provide 

quicker adaptation. This faster adaptation is also reflected in the SNR 

values measured over the 4 blocks of data - all the SAPA schemes gave 
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better SNR performance than the SAP algorithm. This advantage however, 

is not as clearly apparent when the predictor coefficients adapt from 

values closer to the optimum, rather than from zero, as is done in the 

experiment. When the ~'s were initialised to the optimum fixed 

predictor coefficients given in table 3.1, it was found that no SNR 

advantage was discernible 

long-term SNRs for 

investigated (2nd and 

all 

8th 

over the 4 blocks considered. 

the sequential prediction 

orders) do not show any 

Indeed, the 

algorithms 

significant 

differences (see Table 3.3). Examination of the individual block SNRs 

however, reveal that the SAPA variations tend to perform better during 

periods of transition in the signal, where comparatively large changes 

in the coefficients are desirable. Subjective listening tests conducted 

indicate a very slight preference in favour of SAPM, and particularly, 

SAPA-2 over conventional SAP. 
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Table 3.3 SNR Performance of ADPCM Coders with 
Backward Adaptive Prediction 

2nd Order 

Predictor MALE FEMALE SISTER 
Used SSNR TSNR SSNR TSNR SSNR TSNR 

SAP 18.79 17 .54 18.24 16.33 13.88 12.54 
SAPM 18.62 17 .21 18.51 16.68 13 .92 12.55 

SAPA-1 18.65 17.34 17 .83 16.42 12.59 11.05 
SAPA-2 18.57 17 .08 18.35 16.28 13 .27 10.88 
SAPA-3 18.42 17 .30 18.30 16.54 13 .64 11.39 

FSAP 18.52 17 .74 18.40 16.54 13.90 13 .05 

BBA 18.53 17.68 17 .94 16.39 15.50 16.53 

LAT 18.91 17 .46 18.79 16.78 15.15 15.64 
LAT-SP 18.82 17 .61 18.73 16.63 13.52 11.49 

------------------------------------------------------------------
8th order 

SAP 18.66 17 .48 19.08 17.40 12.57 9.44 
SAPM 18.65 17.60 19.18 17.07 12.24 9.34 

SAPA-l 18.68 17.16 18.78 16.74 12.91 10.67 
SAPA-2 18.49 17.51 19.38 17 .16 12.22 9.72 
SAPA-3 17 .70 16.62 18.52 16.57 13.17 11.65 

FSAP 18.42 17 .15 19.11 17.14 12.32 9.64 

BBA 18.82 17 .73 19.51 17.82 15.49 16.26 

LAT 19.15 17.16 19.88 17.97 14.69 14.02 
LAT-SP 19.06 17.68 19.08 16.93 13.13 10.67 

-------------------------------------------------------------------

3.4.2 Block Adaptation 

Block adaptive predictors are normally associated with forward 

adaptation while sequential predictors frequently operate in a backward 

mode. However, this need not always be the case. Indeed, the 

advantages of backward sequential prediction (no side information or 

delay) may be combined with those of forward block adaptation (more 
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lower complexity) with some (inevitable) sacrifice of 

accuracy. Such a backward block adaptive (BBA) prediction technique is 

now proposed and described in the following. 

3.4.2.1 Backward Block Adaptive (BBA) Predictor 

are in the same way as the The BBA predictor 

forward predictor 

coefficients 

coefficients i.e. 

computed 

based on the short-term 

autocorrelation function calculated over a block of signal samples. The 

main difference is that, in the BBA case, no 'look-ahead' advantage is 

permitted (to avoid coding delay) the predictor coefficients are 

optimised for a block of decoded samples and used to predict incoming 

speech samples which are not used in the optimisation process. The 

inherent assumption in this adaptation technique is that the statistics 

of speech signals do not vary drastically within short time segments of 

a few mill i-second duration. Thus, the predictor coefficients optimised 

for a particular block of samples will be expected to provide good 

prediction when used for samples immediately outside the block 

considered. Also, since optimisation is performed using previously 

decoded samples which are available at the receiver, the need for 

transmitting side information does not arise. 

Figure 3.9 illustrates how the BBA predictor adaptation proceeds[2l3, 

2151. Assume that at time instant T, a new 

coefficients is required, for the (T+l)th sample. 

set of predictor 

These coefficients 

are computed from the autocorrelation function derived from the previous 

N decoded samples i.e. x(T), x(T-l), x(T-2) •••• x(T-N+l), and are fixed 

and used for the next M incoming samples, x(T+l), x(T+2) ••••• x(T+M). 

When x(T+M) has been processed, a new set of coefficients is required, 
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and this is computed in a similar manner, from the updated 

autocorrelation function, derived from the current block of most 

recently decoded N samples, i.e. ~(T+M),~(T+M-l) •••• ~(T+M-N+l). The 

autocorrelation analysis is thus performed on a sliding window over the 

N most recent decoded samples, with an overlap of (N-M) samples between 

adjacent blocks. The two main parameters involved in the BBA predictor 

are M and N, where N is the number of samples (blocksize) over which 

coefficient optimisation is performed, and (N-M) represents the amount 

of overlap between adjacent blocks. The optimum N would be similar to 

the forward adaptive case - typically spanning 8-32 ms of speech. The 

amount of overlap (N-M) can obviously affect the accuracy of prediction. 

A large overlap will presumably provide coefficients closer to the 

optimum, while at the same time increasing the computational load in the 

coder since the optimisation process has to be carried out more 

frequently over a given time period. Too little overlap on the other 

hand, could mean that changes in signal statistics may not be detected 

sufficiently quickly, resulting in a mismatch between the calculated and 

the optimum coefficients for certain blocks. Clearly, a reasonable 

compromise between complexity and efficiency has to be determined. The 

performance of the BBA predictor is examined in detail in the following 

section. 

3.4.2.2 Computer Simulation Results 

The first task is to determine how the amount of overlap between 

adjacent blocks of decoded samples affect the performance of the 

predictor used in an ADPCM system. For a blocksize N of 256 samples (32 

ms) which was found to provide satisfactory results, the frequency of 
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update of the predictor coefficients for various order BRA predictors 

was varied, and their performance observed. Figure 3.10 shows the 

variations of the segmental and total SNRs (SSNR & TSNR) as a function 

of M for an 8th order predictor. 

It can be seen that the SNRs remain relatively constant over a wide 

range of M values, indicating that excessively frequent updating of the 

predictor coefficients offers little advantage. A value of M=32 (which 

is a reasonable compromise between complexity and performance) was 

selected for use in subsequent simulations, although limited tests using 

larger M values provided similar results. The effect of windowing on 

the autocorrelation block to provide more weight to the more recently 

decoded samples was also investigated. This additional complexity did 

not contribute significantly however, to the performance of the coder 

and was therefore rejected. 

The variation of the BBA predictor coefficients with time was next 

observed. Figure 3.11 shows the adaptation of the second order BBA 

predictor coefficients for the first 10 blocks of male speech compared 

to the forward predictor coefficients calculated for a blocksize of 32 

and 256 samples (denoted as F0R32 and FOR256). It can be seen that the 

variations of the BRA coefficients are rather gradual and are bounded by 

the variations of the more rapidly changing FOR32 coefficients. Also, 

the BBA coefficients follow the general direction of the FOR256 

coefficients but are consistently of lower magnitude. This could be due 

to the fact that while the forward predictor coefficients are optimised 

from the input signal, the computation of the BBA coefficients is based 

on decoded samples which contain quantization noise. Note however, that 

as long as performance is not appreciably impaired, lower magnitude 
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coefficients, which imply smaller power gains in the filter are 

desirable, because of the lessened risk of instability[8l,82j. This is 

an advantage over SAP, (figure 3.8) whose coefficients are generally 

larger in magnitude than either block methods. 

The BBA predictor was evaluated further by comparing its performance in 

ADPCM to the other algorithms considered in the preceding sections as 

well as to the adaptive lattice predictor (equations (3.50)-(3.54». 

Table 3.3 summarises the SNR performance of the same ADPCM coder 

employing each of the different prediction algorithms. LAT denotes the 

lattice adaptation given by equations (3.50)-(3.52) and LAT-SP denotes 

the sign-product method of (3.53) & (3.54)[200j. These results were 

obtained from 60 blocks (about 2 s) of each data file. It can be seen 

that for the male and female sentences, the SNR values do not vary 

significantly among coders employing second order prediction. This is 

probably due to the fact that differences among the various algorithms 

are not fully manifested at such a low order of prediction. Perhaps a 

clearer indication of predictor efficiency is provided by the results 

for eighth order prediction. The figures show that the lattice and the 

BBA predictors are ahead of the rest by an average of half a dB. This 

advantage is also perceptible subjectively. Listening tests indicate 

that the recovered speech obtained from the ADP CM coder using the BBA 

and LAT predictors contains less high frequency distortion than those 

obtained using the other sequential predictors. This becomes clear from 

observation of the distribution of the output noise associated with each 

system. Figure 3.l2(a) shows the output noise spectra obtained from 

male speech for ADP CM systems employing 8th order SAP, BBA and LAT 

predictors. The noise power of the coder employing SAP is generally 



Log Mug 

3 

-I 

-3 

-5 
o 

Log Mug 
-1 

-10 

-13 

1000 

',\.. ' 
'. \ " 

' .. ' \ ... 

,-' 

(a) Male Sentences 
(MALE) 

\"' ,,\:,.' \', 

\", ... , 
\,v" '\'\:';-, BA 

\ '1' !~\,~ 
\ .. \. \ " 

',; ~. v \ LAT 

2000 3000 1000 

• 

Frequency (Hz) 

(b) Isolated Words 
(SISTER) 

SAP 

LAT 
" '1"" t3BA I "> ~ 

\.. 

-16-1--___ -.-____ -.-____ -.-____ -, 

o 1000 2000 3000 1000 

rrequenc4 (Hl) 

Fig. 3.12' Output Noise Spectra for SAP, BBA and Adaptive 
Lattice Predictors in ADP CM 

l37a 



-- ---- ------------------------------------------------------------------------------

Chapter 3 Page 138 

greater than the other two systems across the whole of the spectrum and 

particularly so at the high frequency region, which accounts for the 

more audible 'hiss' in the recovered speech. The SNR results for the 

data file SISTER in Table 3.3 merit some comments. The actual figures 

are generally much lower than those obtained for the male and female 

sentences. Paradoxically also, the results for 8th order prediction are 

no better (or even worse) than the second order case. This observation 

can be explained by the atypical nature of the data file, which contains 

isolated words with substantially higher than normal unvoiced content. 

This lowers the average correlation of the waveform and hence, the 

predictability of the signal so that little, if any advantage is 

obtained by increasing the order of prediction. This lower 

predictability also accounts for the smaller SNR figures, and affects 

the adaptation of gradient-type algorithms such as SAP to quite an 

extent. What comes out beyond any doubt for this data file is the 

superior performance of the BBA predictor compared to the sequential 

predictors, including the lattice. Total SNR values of up to 6 dB 

advantage is recorded in some cases! This advantage is clearly seen 

from the output noise spectral plots shown in figure 3.l2(b). The 

output noise power of the BBA system is considerably lower than both SAP 

and LAT. 

3.4.3 Assessment of Prediction Algorithms 

We now consider the merits of each of the prediction algorithms proposed 

in terms of such factors as performance, complexity and robustness. 
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3.4.3.1 Performance 

The simulation results presented above indicate the potential of the BBA 

predictor used in ADPCM systems. In terms of both SNR and subjective 

preference, the BBA predictor was found to perform discernably better 

than the conventional gradient adaptations. The modification to the SAP 

algorithm (SAPM) to provide for the inter-relatedness of the predictor 

coefficients, although intuitively appealing, do not, unfortunately 

produce sufficient evidence of improved performance. Its SNR is no 

different from SAP and its recovered speech quality offers little, if 

any, advantage. Complexity-wise however, a significantly greater amount 

of signal processing is required. 

The SAPA variations appear to be able to produce more rapid adaptation 

in the predictor during periods of transition in the signal, with little 

increase in complexity over SAP. This advantage again, is not apparent 

from the SNR values since transitions in the speech signal occur 

relatively infrequently in the sentences considered. Listening tests 

seem to indicate a slight preference for SAPA over SAP nevertheless. 

Predictors employing a combination of the SAPM and SAPA techniques were 

also investigated and found to offer a performance not far from either. 

It would appear, from these observations, that the term g(n) (from 

(3.31» governing the change of the predictor coefficients do not in 

general constitute an overly critical factor as long as it is 

constrained to be within an appropriate range. Indeed, the SNR for 

ADPCM systems employing the SAP algorithm measured as a function of the 

predictor gain G was found to have a rather flat characteristic over a 

wide range of values, as shown in figure 3.13. In addition, the fact 

that Cummiskey reported satisfactory performance for his simplified 
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adaptation algorithm based only on the sign of the quantized residual 

(equation (3.34» appears to support this observation. Recently, an 

experimental comparison carried out on various sequential prediction 

algorithms concluded that, "in the context of ADPCM, the extra 

computational burden associated with more complex adaptive linear 

prediction algorithms outweighs the accompanying improvement in system 

performance" [197]. It must be noted however, that the comparison is 

carried out at a particular transmission bit rate, and the criteria used 

are the mean-square prediction error and the average SNR. This does not 

take into account the subjective quality of the received speech, for 

which differences among dissimilar classes of predictors at a different 

bit rate may well be significant. 

Indeed, a difference in subjective quality which might not be adequately 

reflected in SNR values certainly exist between the recovered speech 

produced in ADPCM coders employing the BEA predictor and those employing 

the gradient algorithms. 

3.4.3.2 Complexity 

The complexity of an algorithm is often considered in terms of its ease 

of implementation in hardware, and this might be influenced by such 

factors as the design and architecture of the particular hardware chip, 

which may be unrelated to the algorithm concerned. For simplicity 

however, we shall consider complexity in relation to the amount of 

signal processing operations required to perform a certain task. In 

this section in particular, we shall be concerned only with the 

multiplications and divisions involved, with a division being considered 

as equivalent to two multiplications. 
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To provide a basis for comparison between block and sequential methods 

of adaptation, the number of multiplications required for each algorithm 

over a block of N samples is calculated. The forward block adaptive 

(FBA) predictor is also included in the comparison, since it is closely 

• 
related to the BBA predictor. Appendix C shows how the number of 

multiplications for each algorithm is obtained. Figure 3.14 illustrates 

graphically, the complexity of the algorithms concerned. Note however, 

that this complexity measure does not take into account the computation 

involved in ensuring filter stability, some form of which will be 

required for the sequential algorithms, in practice. The vertical axis 

represents the number of multiplications involved in the processing of a 

block of 256 samples. Table 3.4 provides expressions for the 

multiplication operations required for each algorithm, as a function of 

p, the predictor order and N. The expression for the BBA predictor is 

also dependant on the parameter M. 

Table 3.4 Complexity of Adaptive Predictor Algorithms 

Predictor No. of Multiplications Required 

FBA (p+1)N + p(p+S)/2 

BBA N[(p+l) + p(p+3)/M) 

SAP (p+4)N 
SAPM (4p+l)N 

SAPA (p+4)N 
FSAP (2p+4)N 

LAT 5pN 
LAT-SP (look-up table) 

It can be seen from figure 3.14 that even without considering the 

computations required for ensuring predictor stability, the complexity 
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of backward sequentially adaptive predictors, especially the lattice 

methods is still higher than the forward case. As noted in section 

3.3.1, the bulk of the computational load in forward block adaptive 

prediction lies in the derivation of the autocorre1ation function, as 

fast algorithms, such as Durbin's recursion exist for the solution of 

the resulting Toep1itz matrix equation. For this reason, the complexity 

of the BBA predictor is also lower than the sequential methods since its 

coefficients are essentially computed in a similar way as the forward 

predictor. Compared to the forward system, the BBA predictor requires, 

due to the overlap between blocks, an additional (NtM-l) computations 

for the predictor coefficients per block of N samples, as the 

autocorre1ation calculations are the same for both cases. This is 

because in the derivation of the autocorrelation function, 

multiplications involving samples Common to adjacent blocks, due to the 

overlap, need only be performed once, and the results stored for future 

use. With N=256, p=S, the BBA predictor requires about 13% and 27% more 

computation than the forward predictor, for M=64 and 32, respectively. 

Although the BBA predictor coefficients are computed from a block of N 

decoded samples, it is not necessary to have these N values in memory at 

any sampling instant. Depending on the value of M, the autocorrelation 

function can be accumulated in partial sums (each of M values), and 

updating can proceed on a block (of M samples) basis. It is shown in 

Appendix D, that instead of storing all products used in the sequential 

computation of the autocorrelation function (which would require of the 

order of Np memory locations!), a much reduced buffer of size (p+l)NtM + 

p is sufficient. For N=256, M=32, p=8, the storage required is reduced 

quite substantially from 2048 to 80! 
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Thus, as far as complexity is concerned, it is quite apparent that the 

BBA predictor is superior to the sequential schemes. 

3.4.3.3 Stabilty and Robustness 

System stability is not a major problem in the BBA predictor because of 

the method by which the predictor coefficients are computed. Durbin's 

algorithm ensures the stability of the filter since the reflection 

coefficients, {k } are always less than one!33]. 
m 

Likewise, in the 

lattice predictor, stability can be guaranteed by constraining the 

sequentially calculated km's to be less than one at each stage. 

For the sequential gradient adaptations, stability is not automatically 

assured and some measures might have to be incorporated to prevent in-

stability occurring. This would mean additional complexity and expense. 

A further advantage of a block method of predictor adaptation (as 

opposed to a sequential method), is the possibly better 'robustness' to 

transmission errors, owing to the averaging process involved in the 

computation of the predictor coefficients. In the BBA predictor 

adaptation, the coefficents do not change directly in response to 

erroneous samples (unlike the sequential methods), but are kept fixed 

for up to M sampling instants. Burst errOrS in particular, would have a 

far less detrimental effect on the BBA predictor than on typical 

sequential predictors. Because the latter adapts instantaneously to the 

received residual signal, a succession of errors in the magnitude of 

this received signal would most certainly cause a total collapse of the 

system. 
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3.5 DISCUSSION AND CONCLUSION 

We have introduced and described in the preceding sections, several 

backward adaptive predictor algorithms based on a transversal filter 

structure, which are suitable for use in ADPCM systems. These were 

evaluated using computer simulation and compared to known techniques 

such as the stochastic approximation predictor (SAP) and the adaptive 

lattice. 

We first attempted to improve on the SAP algorithm by modifying the 

general equation for the predictor adaptation. One method sought to 

provide some inter-relation between the individual predictor 

coefficients and to permit the adaptation of higher order coefficients 

to be affected by the magnitude of the most recent decoded sample. 

Another variation provides an adaptive predictor gain constant which 

varies according to the estimation of the input signal's statistics 

taking on a large value during periods of signal transition (for faster 

adaptation) and switching over to a smaller value on detection of signal 

stationarity. Although there was evidence of improved performance in 

SNR during periods of signal transition in the latter scheme, overall 

SNR results were inconclusive. Subjective improvement over the 

conventional SAP was also slight. Further experimentation suggests that 

improvements over SAP, based on modifying the conventional equation is 

very limited, due to the relative insensitivity of predictor performance 

to changes in the adaptation equation. 

This leads to a move away from the SAP algorithm to the development of a 

backward block adaptive prediction algorithm, which was found to 

out-perform the gradient methods when employed in ADPCM, and to compare 
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Its superiority over the gradient 

adaptations is particularly significant for signals with a high unvoiced 

content, and hence lower correlation, for which an SNR advantage of up 

to 6 dB has been observed. More importantly, the improvement in 

performance is perceptible subjectively as a reduction in high freqeuncy 

noise in the recovered speech. In terms of algorithm complexity, the 

BBA predictor was also found to require substantially less computation 

for its predictor coefficients compared to the lattice and gradient 

methods. At the same time, the nature of adaptation of the BBA 

predictor promises greater robustness to transmission errors, and 

particularly burst errors since the coefficients do not respond to 

changes in single samples, but are optimised from a fairly large block 

of decoded samples. 

We conclude that the BBA predictor offers considerable potential for use 

in ADP CM systems, providing a performance comparable to the adaptive 

lattice predictor, but with much lower complexity and possibly better 

robustness. Moreover, as will be seen in chapter 5, the BBA predictor 

structure permits backward noise shaping features to be conveniently 

incorporated into the ADPCM coder producing significant improvement in 

the subjective performance of the coder without incurring any penalty in 

terms of increased transmission rate or coding de1ay[213,215]. 

3.6 PITCH ADAPTIVE CODING SCHEMES 

While ADPCM coders seek to remove the redundancy between adjacent speech 

samples by short-term prediction, a more sophisticated class of 

predictive coders attempts also to exploit the quasi-periodic nature of 

the speech wave to obtain more complete signal prediction. Probably the 
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best known pitch predictive scheme in recent times is the adaptive 

predictive coder (APC) described by Ata1 and Shroeder[80-82]. 

3.6.1 Adaptive Predictive Coding (APC) 

The block diagram of the APC is shown in figure 3.15. Signal redundancy 

is removed in two stages: first by the conventional vocal tract 

predictor PI' and then again by the pitch predictor P2 ' which in its 

simplest form is a tap and delay adjustment given by, 

P
2

(z) = ez- M . (3.64) 

where M represents a relatively long delay (2-20 ms) usually 

corresponding to a pitch period, and 8 is a scaling factor. The order 

of the predictors may be interchanged, but recent studies suggest that 

the order as given in figure 3.15 is the better arrangement[82]. The 

combined predictor is then given by: 

P(z) = PI(z) + P
2
(z)[ 1 - PI(z)] (3.65) 

Notice from figure 3.15 that the quantizer is again inside both 

predictor loops, to ensure that no noise accumulation occurs in the 

receiver. In terms of its predictive properties however, the APC may be 

represented by the two-stage feed-forward structure shown in figure 3.16 

[37]. The delay M, of the pitch predictor is chosen so that the 

correlation between speech samples which are M samples apart is highest. 

The parameter 8 is then obtained as[80]: 

< x(n)x(n-M) > 
2 

< x(n-M) > 

(3.66) 

where x(n) is the nth speech sample and <.> indicates the averaging over 

all the samples in a given time segment. It was found that more 
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accurate pitch prediction can be achieved if additional samples on both 

sides of M are also used in the prediction process(81), i.e. 

P
2

(z) B~+ -M 
B3 Z 

-M-l 
(3.67) = B2z + 1 

Atal reported a 3 dB advantage in prediction gain for this 3-tap 

predictor over the one-tap case. with this highly complicated 

configuration, good quality speech at much less than 16 Kbps has been 

achieved. 

In later work by Atal and Shroeder, the concept of noise shaping was 

applied to the APC coder to enhance the quality of the recovered speech 

with notable success[8l). Indeed, much of the current interest in noise 

shaping techniques has been largely generated as a result of their work 

on APC. More recently, in an attempt to push the bit rate further down 

without sacrificing speech quality, entropy coding was applied to the 

APC residual to ensure even more efficient utilisation of available bits 

(122). This was soon followed by an exceedingly complicated split-band 

APC scheme in which, in addition to all the previous modifications, the 

input signal is first split into frequency sub-bands, before being 

preferentially encoded using APC(226). 

3.6.2 pitch Extraction Methods 

The difference between ADPCM and APC is the use of an additional pitch 

predictor in the latter, which accounts for its more efficient (and 

complete) prediction. Accurate pitch prediction is thus instrumental to 

the performance of APC. However, although pitch extraction has been an 

important area of interest for a long time (particularly in the field of 

speech synthesis and vocoders), techniques suitable for use in time 

domain coders such as APC have not been too numerous. Most of these 
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evolve around some form of measurement of the signal correlation with 

varying degrees of complexity (which is often proportional to accuracy). 

Two pitch extraction methods relevant to the present context will be 

discussed in some detail in the following. 

3.6.2.1 Average Magnitude Difference Function (AMDF) pitch Detector 

The average magnitude difference function (AMDF)[19,84,85] pitch 

detector avoids the heavy computational requirements associated with 

direct determination of the autocorrelation function by considering only 

the average difference between samples shifted by a constant amount 

within a block. Specifically, the AMDF is defined as: 

AMDF(p) = Average I z(n) - z(n-p) I 

P = P P rnin' •••••••••• max (3.68) 

where z(n) is the nth sample of the block, which may contain the input 

speech signal or the prediction residual (after vocal tract prediction) 

or the quantized versions of either. p represents the amount of shift, 

and is bounded at each end by the minimum and maximum expected pitch 

period, p. and P • The pair of samples z(n) and z(n-p) are such 
ml.n max 

that both lie within a defined block of W samples, which is typically 

greater than the maximum pitch period (see figure 3.17). For each block 

of W samples, the AMDF is formed for all possible pairs of samples z(n) 

and z(n-p). The pitch period P is given as P if: 
est 

(3.69) AMDF(P ) < AMDF(p) for all p 
est 

i.e. the pitch period P is the separation (in number of samples) which 

gives the minimum AMDF. However, due to the wide range of voiced pitch 

variation, pitch period multiples may sometimes be identified instead. 

An additional condition frequently applied is that, for waveform 
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periodicity, 

AMDF(P est) < G1Average( Iz(n) I) for all n (3.70) 

where G1 (typically 0.5) is a threshold that is used to hypothesise 

waveform periodicity with varying degrees of confidence. For highly 

periodic segments, AMDF(Pest) « Average( Iz(n)I), so the threshold G1 

can be used to ensure that pitch values are not assigned to non-periodic 

segments. 

3.6.2.2 Autocorrelation Method of Pitch Detection 

The method used by Atal[37,80] for determining the pitch period in a 

block of speech samples (3.66) involves obtaining all correlations 

between P. and P and requires a huge amount of signal processing, 
ml.n rnax 

which may be unacceptable for many applications. A simpler, but 

inevitably less accurate method based on the same principle, utilises 

only the sign information in the computation of the autocorrelation 

[19,84]. The autocorrelation function in this case is defined as: 

C(p) = Average (sgn z(n). sgn z(n-p» (3.71) 

Again, C(p) is calculated for all pairs of samples z(n) and z(n-p) so 

that both are within the block. The pitch period P is given as Pest if, 

C(Pest) > C(p) for all p (3.72) 

In addition, C(Pest) must usually also satisfy two further conditions, 

and, 

where G2 is 

> (3.73) 

> (3.74) 

typically 0.2, and Z l' is a clipping threshold given by: c ~p 

= 0.64 max( Izl1 ,I zl 3 ) (3.75) 
rnax max 

Izl1 is the maximum z value in the first third of the block and max 
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. 3 
Izl is the maximum in the last third of the block (see figure 3.18). max 

The inclusion of these two conditions have been quite effective in 

mitigating spurious peaks in the C(p) function, and provides for better 

accuracy in the prediction. 

3.6.2.3 Other pitch Extraction Techniques 

Numerous other pitch extraction techniques in both time and frequency 

domain have been documented in the literature[19,3l,84-88,228,229]. 

These include the cepstral method (widely used in vocoder applications) 

[31], the parallel processing method, techniques based on linear 

predictive coding (LPC) analysis, inverse filtering, etc. A thorough 

comparison of some of these pitch detectors is provided by Rabiner, et 

al[84]. Generally, block methods of pitch detection such as the AMDF 

and the autocorrelation methods described above are attractive because 

they are relatively simple, and also because the delay in the system is 

confined to only one block of samples. More recently, Miller[228] 

proposed a pitch detection algorithm in which pitch markers are 

identified by a series of elimination processes and logical tests. This 

method requires a large data file (up to 10000 samples) for successful 

operation. Although reliability was reported to be high, the need for 

an immense amount of storage (and the corresponding delay) renders it 

clearly unsuitable for most speech coding purposes. 

3.7 PROPOSED PITCH ADAPTIVE DIFFERENTIAL CODER 

While the efficiency of pitch adaptive coders such as the APC is without 

doubt, the complexity involved has limited its applicability to a great 

extent. Much of the complexity in APC is due to the pitch predictor, 
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which requires a large amount of signal processing operations for 

efficient performance. In order to produce a viable APC system for 

practical purposes, the complexity of the coder will need to be reduced 

quite substantially. In addition, forward adaptive prediction (for both 

predictors) as used by Atal will also be unacceptable for 16 Kbps 

transmission using constant rate coding because of the requirement of 

side information. In fact, Atal uses an 8th (or 10th) order vocal tract 

predictor, a 3-tap pitch predictor and a forward adaptive Gaussian 

quantizer (AQF) giving a sizeable side information overhead of 3-4 Kbps 

(81). 

We decided to investigate the effects on speech quality of greatly 

simplifying the APC so that it is suitable for operation at 16 Kbps 

without (or with minimal) side information. Obviously, quality 

deterioration is to be expected the object of the exercise is to 

determine the extent of the degradation and to compare the results of 

such a simplified pitch adaptive coder with other techniques of 

comparable complexity at the same bit rate. 

3.7.1 System Description 

The proposed simplified APC system follows the same general 

configuration of figure 3.15 • Two bits are assigned for quantizing the 

prediction residual e(n) using the backward adaptive Jayant's quantizer, 

to give a nominal transmission bit rate of 16 Kbps. Ideally, no side 

information should be required, to avoid any increase in bit rate. This 

means that all necessary adaptation should proceed in a backward mode, 

although this might not always be possible. The pitch information in 

particular, needs to be extracted from the input samples, as backward 
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adaptive methods of pitch detection are known to be highly unreliable 

[19,230]. For simplicity, the pitch predictor used is the single tap 

gain and delay arrangement of equation (3.64), which is defined by only 

two parameters, M and S. The few bits of additional information 

associated with M and S may be embedded in the transmitted data stream 

of the residual by 'stealing' bits from some of the samples, if it is 

essential that the total bit rate be strictly confined to 16 Kbps. For 

a typical pitch adaptation period of 32 ms, this side information 

represents an insignificant proportion of the total transmitted bits 

(about 10 out of 512) and may be easily accommodated without affecting 

the performance of the system. The vocal tract predictor was chosen to 

be either fixed or backward adaptive in view of the constraint on side 

information, and the pitch information is updated once every 32 ms (256 

samples). Both the AMDF and the autocorrelation methods of pitch 

extraction were examined. Pmin and Pmax are set to 16 and 160, to cover 

a range of pitch frequencies between 50 and 500 Hz. 

3.7.2 pitch Synchronisation 

One important feature of the APC coder not mentioned by Atal but noted 

by Xydeas[87,88] , is the need to align samples in adjacent pitch periods 

correctly before removing the pitch redundancy in the signal. The 

residual signal after vocal tract prediction consists typically of a 

rapidly varying random signal with distinct 'spikes' at time intervals 

corresponding to the pitch period (see figure 3.19). These pitch 

periods usually vary in length gradually, increasing or decreasing by a 

few sampling instants at a time. The function of the pitch predictor P2 

is to obtain the difference between samples separated by the estimated 
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pitch period, with the aim of removing these spikes. To do this 

efficiently, it is important that adjacent pitch periods are correctly 

aligned before the subtraction is performed, i.e. the predictor buffer 

must be either 'stretched' or 'squeezed' in anticipation of the expected 

pitch of the incoming block' of speech, to ensure that subtraction is 

performed between corresponding high amplitude samples. The pitch 

predictor is thus a linear filter whose length varies according to the 

estimated pitch period. With most pitch detection methods based on time 

domain measurements, there is a possibility that the estimates obtained 

are mUltiples of the actual pitch period. For the APC coder, such 

'errors' are not likely to affect performance provided that the same 

estimate is obtained for the duration of the voiced utterance so that 

the pitch predictor filter is not subject to drastic changes in length. 

It is preferable in practice therefore, to include some form of check 

for such occurrences to ensure a smooth transition between pitch 

periods. The method employed to provide for pitch synchronous operation 

in the proposed APC coder will now be described. 

The parameters M ~nd a are obtained from a block of 256 samples of the 

input speech using either the AMDF or the autocorrelation method of 

pitch extraction. The length of the pitch predictor filter P is 

lengthened or shortened (or remains the same) according to the updated 

value of M. To ensure correct alignment of the pitch pulses, changes 

are only made to the stored samples in the predictor filter whose 

magnitudes are relatively small. The way in which this is done is b~st 

illustrated by an example. Assume that the present length of the pitch 

predictor filter is 32 taps and it is required to be changed to 36 taps 

for the next block. The 32 stored samples in the filter are divided 
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into sub-blocks of 5 samples each, as shown in figure 3.20(a), starting 

from the least recent sample. Sample(s) which are left over (such as 

samples 31 & 32 in this example) are excluded from consideration. The 

average energy of samples within each sub-block is calculated and the 

block with the lowest energy is identified. Assume that this is block 

number 4. The filter is then 'stretched' at this point by inserting the 

required number of samples (in this case 4) between the original samples 

15 and 16. This is done by duplicating samples 16 to 19 at this 

location as shown in figure 3.20(b), thereby extending the filter length 

to 36 taps. Truncation of the filter is performed in a similar way. 

Consider, for instance the case when the filter is required to be 

shortened from 32 to 28 taps. In this case, the 4 samples of sub-block 

number 4 are simply removed and the least recent 15 samples shifted up. 

This ensures that the positions of corresponding pitch pulses are 

properly aligned, and that any necessary modification involves only the 

small magnitude segments. Alternatively, instead of duplicating samples 

in the former case, zeros could be inserted in the appropriate buffer 

locations. 

Various other conditions have to be imposed on the pitch predictor to 

allow for deviations from normal operation. When no pitch periodicity 

is detected in the signal (as during unvoiced speech or pauses), 8 is 

set to zero, M is unchanged and the system becomes an ADPCM coder. A 

simple detection logic for 

included. Although multiples 

identifying pitch period multiples is also 

in pitch do not affect the coder 

performance in theory, it is important that changes in the filter length 

do not occur too drastically, such as from say, 33 to 66 or 991 Certain 

intuitive tests can be carried out to detect the occurrence of pitch 
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multiplicity. The following simple procedure was found to be adequate 

for the data files used in the investigation. Let the current pitch 

period be Mland the estimated pitch period for the next block be M
z

• 

pitch multiplicity is characterised by the observation that the quotient 

of the larger and the smaller pitch values is close to an integer 

greater than unity. Specifically, one of the pitch period is considered 

to be a mUltiple of a pitch value near (or equal to) the other if: 

(3.76) 

where £ is a suitable small quantity (e.g. 0.2) and n is an integer 

greater than one. If M2 is found to be the pitch multiple, then the 

required change AM, in the length of the filter is given by, 

~ = NINT (Ml - Mz/n) (3.77) 

where NINT(.) denotes the nearest integer. On the other hand, if Ml is 

the pitch multiple, the corresponding change will be, 

= (3.78) 

By this means, changes in the filter length is kept within reasonable 

limits. The pitch predictor adaptation logic is summarised in the flow 

chart of figure 3.21. 

3.7.3 Computer Simulation Results 

Prior to obtaining results for the complete APC system, initial tests 

were carried out to determine the most suitable pitch detection 

algorithm to be 

extractors were 

employed. The 

both evaluated 

AMDF and the autocorrelation pitch 

by comparing the pitch estimates each 

produces with values measured from the actual data. The optimum 

parameters for the two methods were experimentally determined to be: 

for the AMDF algorithm, 
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and = 0.9, 

Z = 0.64 for the autocorrelation method. clip 

The recommended threshold of 0.2 for G2(191 was found to be too low, and 

resulted in the failure of the algorithm to detect many blocks which are 

unquestionably periodic. Raising it to 0.9 provided considerably 

improved detection. The parameter a was found to vary between 0.6 and 

about 1.2 with values concentrated around 0.8-0.9, suggesting that it 

could possibly be kept fixed for simplicity. 

The APC scheme was first simulated using a fixed first order vocal tract 

predictor. Figure 3.22 shows the signals corresponding to about 100 ms 

of female (voiced) speech after each stage of prediction. The pitch 

periodicity is clearly evident in the residual signal after some 

adjacent sample redundancy had been removed by the vocal tract predictor 

(figure 3.22(b». These pitch pulses were largely removed in the next 

stage by the pitch predictor (figure 3.22(c». Figure 3.23 illustrates 

the gain in segmental SNR due to pitch prediction, for both male and 

female speech, over 60 blocks (2 s) of the data. The considerable 

improvement due to the more complete prediction of APC over simple ADPCM 

is apparent in the figure, and this advantage appears to be greater for 

female speech. The latter observation is not surprising as female 

speech waveforms are generally more periodic and better structured than 

male speech, and are therefore more suited for pitch adaptation. Indeed 

for the same utterance, a larger number of blocks in the female speech 

was classified as periodic. This is also reflected in the average SNR 

values obtained - the inclusion of pitch prediction provided a 4 dB 

advantage for the female speech compared with only 1 dB for male speech. 
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The performance of the APC coder with different vocal tract predictors 

was next investigated to see if the same advantage provided by the pitch 

predictor could be maintained when higher order (and by implication more 

efficient) vocal tract predictors are used. Figure 3.24 compares the 

residual signal after each stage of prediction using 1st and 2nd order 

fixed and 1st and 2nd order forward adaptive predictors. The effect of 

employing a higher order predictor can be clearly seen in the residual 

after the first stage of prediction. Because of the better 

decorrelating ability of 2nd order prediction, the resulting residual 

signal is reduced in magnitude by a greater extent and contains a 

significantly greater proportion of high frequency components. For the 

2nd order fixed predictor, the periodic pulses are still retained, and 

these are quite successfully removed in the subsequent pitch prediction 

process, although the final residual appears to be no better (in fact, 

slightly worse) than when a 1st order predictor was used. The 

coefficients of the forward adaptive predictors are optimised from the 

short-term signal correlation and they are therefore able to remOve a 

greater amount of redundancy from the input signal compared to the fixed 

case. However, this more efficient decorrelating process appears to 

produce a more random residual whose pitch structure is not as clearly 

defined in certain places (see figure 3.24(a)(iii». As a result, the 

ability of the pitch predictor to effect further signal compression is 

affected to a degree so that the final residual signal produced (figure 

3.24(b)(iii» does not show as much improvement. Indeed, for the signal 

segment considered, the 2nd order forward adaptive predictor produces 

the least amount of signal compression of the four cases. Similar 

observations were made when the vocal tract predictor was replaced by a 

backward adaptive predictor. 
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Figure 3.25 shows the long-term average output noise spectra of the APC 

schemes employing 1st and 2nd order fixed prediction. It is clear that 

the simpler 1st order predictor, owing to its lower efficiency, was able 

to assist the pitch prediction process more, to give lesser overall 

output noise. Figure 3.26 provides a comparison of the noise spectra of 

both male and female speech for 3 schemes, namely, ADPCM with 2nd order 

fixed prediction, ADPCM with 2nd order forward prediction, and APC using 

first order vocal tract prediction. The advantage of APC over fixed 

prediction ADPCM is evident and expected. However, its performance with 

respect to the comparatively simpler forward adaptive ADP CM is not as 

impressive. For female speech, APC is possibly slightly better, while 

for male speech it is actually worse. Table 3.5 shows the average 

segmental SNR obtained for the various coding schemes considered. 

It appears that the simplified APC system is unable to provide the 

required level of performance to justify the complexity involved in the 

use of the pitch predictor. Its SNR at best is no better than the 

simpler adaptive prediction ADPCM. Subjectively also, the decoded 

speech quality of the APC system offers little, if any perceptible 

advantage over that of 2nd order forward adaptive ADPCM. 
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Table 3.5 SNR Performance of Various Predictive Coding Schemes 

Scheme 

ADPCM: 
Fixed Predictor 

1st order 
2nd order 

Forward Adaptive Predictor 
1st order 
2nd order 

APC 
Fixed Predictor 

1st order 
2nd order 

Forward Adaptive Predictor 
1st order 
2nd order 

3.7.4 Discussion 

MALE 

16.44 
16.02 

16.81 
19.05 

17.39 
16.53 

17.20 
16.83 

FEMALE 

14.32 
15.26 

14.54 
18.89 

18.98 
18.39 

18.73 
17.98 

Although the quasi-periodic nature of speech signals has been 

extensively studied for a long time, attempts to fully exploit this 

property to achieve efficient signal compression in speech coding 

applications have been largely unsuccessful without recourse to highly 

complicated implementations. Our investigation into simplified pitch 

adaptive schemes seems to have borne this out. 

Apart from the sophisticated APC system proposed by Atal, a number of 

other pitch adaptive differential coders of varying degrees of 

complexity have been investigated by sundry researchers. The main 

problem with many of these schemes is the difficulty of accurate and 

reliable pitch extraction. Errors in pitch estimate also tend to 
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propagate (because of the length of filters used), giving rise to a 

reverberant quality in the recovered speech[83,ll2]. Another problem 

with APC systems encountered in our studies is the interaction between 

the two predictors employed. Short-term predictors which are efficient 

when used in isolation (as in ADPCM) proved to be less effective when 

combined with the long-term pitch predictor in APC. Our limited 

experiments appear to indicate that this is because the former produces 

a more random residual with the pitch structure blurred to some extent, 

thereby upsetting the operation of the latter, whose performance depends 

entirely on the accurate preservation of the pitch information. This 

observation was also noted by Jayant[86] during his investigation into 

pitch adaptive DPCM coding schemes. After performing several simulation 

studies, Jayant arrives at a configuration that uses a 3-tap fixed short 

term predictor, switching to a single-tap long-term predictor upon 

detection of strong periodicity (see figure 2.18). This pitch adaptive 

system was reported to provide a 3.8 dB advantage over the fixed 3-tap 

DPCM coder for female speech - a result which is in agreement with our 

simulation studies in the preceding section. 

Backward adaptive APC systems have been investigated by Melsa, et al 

[223,230], using gradient algorithms or Kalman type adaptations, with 

little success. The main problem as before, is the difficulty of 

accurate pitch detection. 

We conclude that while pitch adaptive schemes possess considerable merit 

as a powerful speech coding technique, its general applicability and 

usefulness has hitherto been largely limited by the complexity 

associated with reliable and accurate pitch prediction. Our studies 

indicate the difficulty of obtaining a relatively low complexity version 
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of the coder without significantly curtailing its potential. Indeed, 

the use of a pitch predictor in differential speech coders is by no 

means always desirable - Makhou1 and Berouti decided in fact to discard 

this long-term predictor from their adaptive predictive scheme on the 

ground that its inclusion provides more bad than good on ba1ance[112]. 

The reason is that the pitch predictor is not always effective, and 

errors present in the system tend to be propagated over long periods of 

time owing to the necessary length of the filter used. 

3.8 CONCLUSION 

Adaptive prediction is undoubtedly a promising and important area in 

speech coding, as is evident from the vast amounts of research devoted 

to the subject. Various forms of predictor adaptation have been 

examined in this chapter, including several novel variations on certain 

known algorithms. In the context of ADPCM coding of speech, the 

superiority of adaptive over fixed prediction has been unquestionably 

established. Variations in performance among different efficient 

adaptive algorithms however, are not as immediately apparent, and often 

other factors such as complexity and robustness predominate in the 

selection of an algorithm for a particular application. The backward 

block adaptive (BBA) prediction algorithm described in section 3.4.2.1 

has been shown to provide good performance with relatively low 

complexity. Also, the block adaptation employed could possibly offer 

better robustness to transmission errors, although further experiments 

will have to be carried out for confirmation. 

pitch adaptive speech coding schemes have also been examined in some 

detail. While undoubtedly powerful in theory, such schemes are 
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unfortunately heavily dependant on accurate pitch prediction for 

efficient performance, and this has proved to be a severe limitation to 

their potential. Accurate pitch prediction is invariably linked with 

high complexity and/or long delays. 

Algorithms for predictor adaptation are largely based on some form of 

minimum mean square error criterion, and predictor efficiency is often 

measured in terms of its SNR. Recent evidence has suggested however, 

that the SNR measure does not accurately reflect the subjective quality 

of the recovered speech, which is the ultimate test of any speech coding 

system. Much current interest has therefore been centred on various 

sUbjective criteria for use in speech coder assessment which will be 

more reliable indicators of speech quality. In particular, the concept 

of noise shaping to improve the perceptual quality of decoded speech has 

found widespread applications in a range of speech coders [81-82,112, 

113,231-233]. This subject will be treated in more detail in the 

following chapter. 
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------------------------------------------------------------------------

CHAPTER FOUR ADAPTIVE NOISE SPECTRAL SHAPING IN ADP CM SYSTEMS 

------------------------------------------------------------------------

4.1 INTRODUCTION 

Traditionally, waveform coders have attempted to minimise the mean 

square error difference between the original and coded speech waveforms, 

and methods of assessing coder efficiency have conventionally been in 

terms of some form of signal-to-noise ratio (SNR) measurement[9,12,19, 

20,37,211]. Recent studies have indicated however, that the perception 

of signal distortion is not based on the SNR alone. Indeed, it is now 

well recognised that the subjective loudness of distortion (or noise) in 

a coder depends to a considerable extent on both the short-time spectrum 

of the quantizing noise and its relation to the short-time spectrum of 

the speech signal. The theory of auditory masking suggests that noise 

in the formant regions could be partially or totally masked by the 

typically high energy low frequency components of the speech signal, so 

that much of the perceived noise in a coder comes from the high 

frequency regions where the signal level is low. Thus, the frequency 

components of the noise around the formant regions can be permitted to 

have higher energy relative to the components in the inter-formant and 

the high frequency regions[81,82,l10,l12,ll3,l15,23l-233]. 

Waveform coders which are designed based on a minimum mean-square error 

criterion produces an output noise signal which has a typically flat 

spectrum[81,82,llO]. The subjective loudness of this noise could be 

reduced by appropriate shaping of its spectrum, trading a decrease in 
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the energy of the high frequency components for an increase in noise in 

the low frequency formant region. The principle of noise shaping is 

illustrated in figure 4.1. For minimum perceptual distortion, the noise X-­
spectrum should remain below the signal spectrum at all frequencies. 

However, for effective noise masking, the gap between the signal and 

noise levels must be sufficiently large (typically 20 dB or more)[233). 

Techniques for performing such noise spectral shaping have been devised 

for both time and frequency domain speech coders and these have been 

applied with considerable success[12,19,40). 

In this chapter, we consider only the technique of noise shaping applied 

to time domain coders, and in particular to the ADP CM coder operating at 

or around 16 Kbps. The theory of noise shaping is first reviewed and 

the various noise shaping coder configurations described. simulation 

results are subsequently presented for two noise shaping ADPCM coders 

where parameter adaptation proceeds on a forward mode. Following this, 

backward adaptive methods for performing noise shaping are investigated. 

These have the advantage of not requiring side information for 

adaptation, so that the bit rate can be kept at 16 Kbps. Subjective 

listening tests on the recovered speech demonstrate the significant 

perceptual advantage provided by noise shaping, whether applied in a 

forward or a backward mode. 

4.2 NOISE SPECTRAL SHAPING 

Much of the current interest in the area of noise spectral shaping has 

arisen as a result of the work on APC of Atal and Shroeder[81), and 

Makhoul and Berouti[112), although the idea of shaping the noise 

spectrum has been present in the literature for a long time. Generally, 
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control of the noise spectrum may be achieved in one of two ways 

either by using noise feedback or by employing some form of signal 

pre-filtering. 

4.2.1 Quantization Noise Feedback 

In both the work of Atal and Makhoul, control of the noise shape is 

realised by incorporating an additional filter on the differential coder 

(APC or ADPCM) which feeds back the quantization noise i.e. the 

difference between the quantizer input and output. Figure 4.2 shows the 

noise-feedback coder employed by Atal, where P is the normal pth order 

linear predictor, 

p (z) PI -k 
~ akz 

k~1 
(4.1) 

and F is a transversal filter given by, 

m 
-k F(z) I bkz 

k~1 

(4.2) 

Note that while his final design includes the pitch predictor, this has 

been left out in the analysis for simplicity, on the ground that it does 

not affect the basic principle involved. The quantizer input in figure 

4.2 can be 

e (n) 

where, 

eas ily shown 

~ x(n) -

to be, 

a x(n-k) -
k 

q(n) ~ e(n) - e(n) 

denotes the quantization error at the nth instant. 

now given as, 

(4.3) 

(4.4) 

The coder output is 



i.e. 

P 
x(n) = e(n) + I akx(n-k) 

k=l 

e(n) = x(n) - PI akx(n-k) 
k=l 

It follows from (4.3) to (4.5) that, 

P 
q(n) = x(n) - I a x(n-k) 

k=l k 
- {x(n) -

i.e. 

q(n) -
m 
L bkq(n-k) = x(n) - x(n) -

k=l 
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P 
I ~x(n-k) -

k=l 

P 
I ak{x(n-k) - x(n-k)} 

k=l 

(4.5) 

(4.6) 

In frequency domain notation, (4.6) can be written as, 

X(w) - X(w) 
1 - F(w) 

Q(w) 1 _ pew) (4.7) 

where Q(w), F(w) and p(w) are the Fourier transforms of the quantization 

noise, F(z) and p(z) respectively. 

For F=P, the output noise is the same as the quantizer noise, giving a 

flat frequency spectrum. However, with FFP, the coder of figure 4.2 is 

able to control the shape of the output noise spectrum with appropriate 

choice of the feedback filter F. Under the assumption that the 

quantization noise is white, the spectrum of the coder output noise is 

determined only by the factor (l-F)/(l-P) as implied by (4.7). It can 

also be easily shown (see Appendix E) that the following constraint 

holds[81], 
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(4.8) 

where r(f) is the squared magnitude of the factor (l-F)/(l-P) at a 

frequency f, 

r(f) = (4.9) 

and T is the sampling interval. 

The interpretation of (4.8) is that, assuming that the power of the 

quantizing noise is not changed significantly by the feedback loop, the 

average value of log power spectrum of the output noise is determined 

solely by the quantizer and is not affected by the choice of the filters 

F or P. In this way, the spectrum of the output noise can be shaped to 

suit perceptual requirements by reducing noise from one frequency region 

at the expense of increasing it in another (see figure 4.1). However, 

the constraint of (4.8) is in terms of log power spectrum, so that any 

deviation from the flat (minimum mean-square error) case will result in 

increased total noise power, although the areas above and below the 

average level i.e. the shaded areas will always be equal. 

Atal suggested selecting the filter F to minimise an error measure in 

which the noise is weighted according to Some subjectively meaningful 

criterion. This could be done by weighting the noise power at each 

frequency f by a function W(f). Since the ratio of noise power to 

. . 1 (21TjfT) 12 signal power at any frequency f 1S proport10nal to l-F e • one 

could choose F to minimise, 
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(4.10) 

(4.11) 

Several interesting choices for W(f) were discussed. The first assumes 

that W(f) is constant for all frequencies, giving a solution F=O. The 

result is the feedforward D*PCM structure[llO) (see section 2.4.l.6(c», 

where the coder output noise has the same spectral envelope as the input 

speech. SNR is low and the reconstructed speech contains perceptible 

low frequency 'roughness'. Another choice is to let W(f)=II_pl-2 , 

giving F=P, and the coder becomes effectively the ADPCM structure. This 

results in minimum unweighted noise power 

yielding a flat noise spectrum and a high 

is much less noisy than the previous case 

'hiss , is audible. An intermediate choice 

be made by letting 

F( z) P(z/a) = P \' k -k 
L '\ca z 

k=l 

in the recovered speech, 

SNR. The subjective quality 

although a high frequency 

between the two extremes can 

(4.12) 

where a controls the extent of noise shaping, from the flat minimum 

mean-square error case (F=P, CI=l) to the fully shaped case (F=O, CI=O). 

A value of CI=0.7 was reported to provide the best subjective 

performance, eliminating the high frequency hiss without introducing low 

frequency roughness and yields an SNR slightly lower than the mmse case. 

Noll[llO) undertook a rigorous mathematical analysis of the generalised 

noise feedback coder (NFC) of figure 4.2 and showed that both DPCM and 

D*PCM are special cases of the NFC. DPCM is described as a fully 
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whitening filter while D*PCM only performs partial whitening. 

The perceptual advantages obtained by shaping the output noise spectrum 

of APC coders was also investigated by Makhoul and Berouti[ll2,113]. 

The configuration used by them is shown in figure 4.3, where F' is given 

by, 

F' (z) = (4.13) 

Again, the pitch predictor is not included in the analysis and in fact, 

it was discarded by Makhoul in his final design. The difference between 

this configuration and that employed by Atal is in the position of the 

vocal tract predictor P. Nevertheless, the coders are the same with 

regard to their noise shaping ability. From figure 4.3, the quantizer 

input is given by, 

e(n) x(n) -
m 

I b' q(n-k) -
k=l k 

(4.14) 

The receiver is similar to that of figure 4.2, sO the recovered output 

is, 

p 
x(n) = e(n) + I ak,,(n-k) 

k=l 

From (4.4), (4.14) and (4.15), 

p 
q(n) = ,,(n) - L ak,,(n-k) - (,,(n) -

k=l 

i.e. 

m 

m 
I b' q(n-k) -

k~l k 

x(n) - x(n) q(n) - I b' q(n-k) 
k=l k 

(4.16) can be written in frequency domain notation as, 

(4.15) 

(4.16) 
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X(w) - X(w) = [1 - F'(w) )Q(w) (4.17) 

In this case, the shape of the output noise spectrum is determined by 

the factor [l-F'(w»), where F' as before can be chosen to satisfy 

perceptual criteria. From (4.7) and (4.17), it can be seen that the 

noise shaping coders of figures 4.2 and 4.3 can be made equivalent by 

setting, 

1 - F' (z) 

giving, 

= 
1 - F(z) 
1 - P (z) 

1 - F(z) = [1 - F'(z) )[ 1 - p(z») 

To obtain the same noise shape as before, 

F' (z) 1 _ 1 - P(z/a) 
1 - P (z) 

(4.18) 

(4.19) 

Note that in both coders, the introduction of noise shaping involves 

only the modification of the transmitter of the ADPCM structure - the 

receiver remains the same. 

4.2.2 Adaptive Pre-filtering 

A third configuration for shaping the output noise spectrum in a similar 

manner consists of a pre- and post-filtering arrangement 

differential coder[82) , as shown in figure 4.4. In this case, 

1 - R(z) 1 - P(z) 
= 

1 - P(z/a) 

It is clear from the figure that, 

X(w) - X(w) = 
Q(w) 

1 - R(w) 
= Q(w) 1 - P(z/a) 

1 - P (z) 

on a 

(4.20) 

(4.21) 
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i.e. the quantization noise spectrum is again shaped by the factor 

(l-F)/(l-P). Note that the predictor P' in figure 4.4 is optimised for 

the pre-filtered speech {r(n)}, while P in (4.20) is optimised from the 

original speech in the same way as the previous two configurations. The 

structure of figure 4.4 is a relatively less studied noise shaping 

coder. This could be due to the fact that a fully adaptive version of 

the coder requires two sets of predictor coefficients to be computed and 

transmitted i.e. the normal coefficients for P' plus the coefficients 

for R required for noise shaping. The consequent increase in delay, 

transmission rate (due to the additional side information) and 

complexity is generally difficult to justify. 

The final output noise for all 3 coders is the flat quantization noise 

Q(w) shaped by the factor (l-F)/(l-P). The frequency response of this 

noise shaping transfer function (l-F)/(l-P) is given in figure 4.5 for 

an 8th order filter. The solid curve represents the envelope of the 

speech input, modelled by the filter l/(l-P) and the broken curve 

illustrates a typical noise shape which results from the factor 

(l-F)/(l-P) with a=0.7. The two formants of the speech waveform can be 

clearly seen in the figure. 

4.2.3 Discussion 

Atal[8l) reported good toll quality speech from his APC coder with noise 

shaping, using a 10th order vocal tract predictor, a 3-tap pitch 

predictor (equation (3.67)) and a 3-level forward adaptive quantizer 

(AQF) optimised for a Gaussian distributed signal. With an input 

sampling frequency of 8 kHz, the transmission bit rate is in the region 

of 16 Kbps. Makhoul[112] also obtained good quality speech "virtually 
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indistinguishable from the original" at 16 Kbps using an 8th order 

predictor and a 19-1evel entropy coder for the prediction residual. He 

uses a lower sampling rate of 6.67 kHz for his input however, thus 

allowing more bits effectively to code the residual signal and side 

information. While there is little doubt that the two schemes are able 

to achieve very good quality coded speech at 16 Kbps, their one common 

drawback is the high complexity involved; in the former case, with a 

complicated pitch predictor and in the latter, with variable bit rate 

entropy coding. Obviously, such complex implementations contribute 

greatly to the overall system performance, and could possibly 'mask' the 

full potential of noise shaping. It would be interesting therefore, to 

consider the effectiveness of noise shaping applied to coders at a lower 

level of complexity. 

We investigate in the following sections such less complex differential 

speech coders which utilise the concept of noise shaping. These may be 

divided into two groups and considered separately, depending on whether 

forward or backward adaptation of the parameters is employed. 

4.3 FORWARD ADAPTIVE NOISE SHAPING 

In the noise shaping coders proposed by both Atal and Makhoul, the 

coefficients of the noise feedback filter F and F' are obtained from 

those of the vocal tract predictor, and these parameters are derived 

using forward block adaptive (FBA) prediction[33,47) (see section 

3.3.1). The quantizer employed is also forward block adaptive (see 

section 2.4.1.1 b(i»). The use of such forward adaptation implies the 

need for delay and side information transmission. Generally, the delay 

would be equal to the blocksize used for the calculation of the optimum 
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predictor coefficients, since a block of input samples have to be 

buffered for this purpose. The quantizer step-size can be estimated 

from the same block of input samples so that no additional delay is 

required. The adaptation rate of the predictor need not be the same as 

that for the quantizer. Frequently, the predictor is able to tolerate 

less frequent updating of its coefficients, and consequently the 

blocksize used is also larger. 

It was decided to investigate the 

techniques applied to the simple 

effectiveness 

ADPCM coder, 

of noise 

employing 

shaping 

2-bit 

quantization. To keep the complexity to a minimum, with a view on 

practical implementability, only the basic features of the noise shaping 

coder as described by Atal or Makhoul were retained. The noise shaping 

coder of figure 4.3 (which shall be denoted as NSFl) was simulated and 

compared with the pre-/post-filter configuration of figure 4.4 (denoted 

as NSF2). Note that the coder of figure 4.2 is equivalent to figure 

4.3, given the relation of (4.18) and provides identical results with 

the same choice of noise shaping factor a. 

4.3.1 Computer Simulation Results 

Preliminary experiments were conducted to determine the optimum values 

of parameters to be used in the simulation. The predictor coefficients 

are computed from the input signal every 256 samples (32 ms) and 

transmitted as side information. A 4th order predictor is used. An 

estimate of the standard deviation of the prediction residual (which lS 

the quantizer input) is made every 64 samples (8 ms) from the input 

signal, using feed-forward adaptive prediction. This is given as: 
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2 
,\:x(n-j-k) } (4.22) 

with M=64 and p=4. The optimum scaling factor c, to account for the 

quantization noise present in the actual quantizer input was determined 

experimentally to be 1.5. The quantizer used is optimised for signals 

with a Gaussian distribution. Quantizers optimised for other 

distributions (such as the Laplacian, gamma and uniform pdfs[43,45]) 

were also tried but were found to provide inferior results in terms of 

SNR. The exception is the Laplacian quantizer, which appears to perform 

rather well, particularly for female speech. 

For each of the schemes NSFl and NSF2, the noise shaping factor ~ was 

varied over the range between 0 and 1. Figure 4.6 shows the long-term 

average log magnitude spectra of the output noise produced by each 

scheme for various ~, and clearly demonstrates the effect of noise 

shaping. Table 4.1 summarises the total and segmental SNR values for 2 

seconds of speech obtained. 

The SNR generally decreases as the extent of noise shaping is increased, 

as expected since the total noise power is also increased. It is 

interesting however, that at all levels of noise shaping, the SNR of 

NSF2 is better than that of NSFl. This observation is borne out by the 

comparison of the output noise spectra produced by the two schemes (for 

~=O.S and 0.7) as shown in figure 4.7, where it can be seen that the 

output noise level of NSF2 is consistently lower than that of NSFl. 
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Table 4.1 SNR performance of Noise Shaping Coders NSFl and 
NSF2 ( 2 s of Male and Female Speech) 

---

Noise NSFl CODER NSF2 CODER 
Shaping MALE FEMALE MALE FEMALE 
Factor a SSNR TSNR SSNR TSNR SSNR TSNR SSNR TSNR 

1.0 21.45 20.59 21.41 20.49 21.45 20.59 21.41 20.49 
0.9 21.28 20.81 21.28 20.20 21.61 20.86 21.63 20.88 

0.8 20.22 20.10 20.26 19.46 20.93 20.33 21.55 20.46 
0.7 18.70 18.95 18.92 18.18 20.01 19.41 20.95 20.16 
0.6 17 .56 18.01 17.63 17.17 18.67 18.44 19.84 18.86 

0.5 15.99 16.75 16.05 15.59 17.11 17 .25 18.72 17 .98 
0.0 7.78 6.74 8.81 7.96 11.08 10.97 13 .33 12.63 

Recordings of the output speech were made for a range of a values and 

the best subjective performance was found to be for a=0.6 to 0.7, a 

finding in good agreement with Atal and Makhoul. Listening tests 

indicate a clear preference for the decoded speech produced by NSF2, 

consistent with the above observation on SNR and output noise spectra. 

4.3.2 Discussion of Simulation Results 

The quite s.ignificant difference in performance between the two noise 

shaping coders is unexpected as it has been generally accepted (albeit 

without experimental evidence) that they should produce very similar 

results(82). A possible explanation for this observation is given as 

follows[2121:- In the NSF1 coder, the predictor P is optimised from the 

input signal but operates on the decoded speech samples which are 

corrupted by quantization noise. This limits the accuracy of the 

prediction process and produces a certain power of the residual signal. 

The residual signal in turn determines the quantization noise power 
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(assuming no quantizer overload) which defines the level about which 

eventual noise shaping is performed. Thus in figure 4.6(a), the noise 

spectra for various a values are shaped about the level given by a=1, so 

that the areas bounded by each curve above and below this line are 

approximately equal. In the NSF2 scheme however, the pre-filter l-R 

(which is essentially a spectral flattener) operates in a quantization 

noise-free environment on the input speech and reduces the power of the 

signal to be presented to the ADPCM encoder to follow. The combined 

action of the pre-filter and the ADPCM predictor P' results in a 

prediction residual at the quantizer input, which has a variance smaller 

than that of NSFl. The flat quantization noise spectrum of this 

residual is thus also lower. This lower quantization noise however, is 

obtained only at the expense of noise accumulation at the receiver, when 

post-filtering has to be applied to restore the spectral balance of the 

signal. The amount of noise accumulation will be proportional to the 

extent of whitening produced by the pre-filter. But in this case, this 

necessary noise accumulation process is used to advantage to perform the 

noise shaping. The post-filter 1/(1-R) shapes the noise about the 

reduced noise level, to give an output noise spectrum which possesses 

the same shape as that produced by NSFl (for the same a), but with a 

consistently lower magnitude acroSS all 

4.8 illustrates the different levels 

shaped, for the two schemes. 

frequency components. Figure 

about which the output noise is 

The better performance of NSF2 is due to a net gain from the effects of 

two conflicting processes:-

(i) the feed-forward pre-filter, which reduces the variance of the 

quantizer input and hence the quantization noise, and 
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(ii) the post-filter which accumulates noise at the receiver. 

In the results obained, it would appear that the reduction in noise due 

to the pre-filter is greater than the corresponding noise accumulation, 

so that overall improvement over NSFI is obtained. Indeed, from table 

4.1, it can be seen that the SNR of NSF2 is actually increased (albeit 

only slightly) when a small degree of noise shaping is applied (a=O.9). 

The relative contribution of the pre- and post-filter to the performance 

of NSF2 appears to be a function of the fineness of quant izat ion 

employed. When quantization is coarse, the effectiveness of the ADPCM 

predictor P' is quite severely limited by the relatively greater amounts 

of quantization noise present in its input, so that the effect of the 

pre-filter is predominant. As the number of quantizer levels is 

increased however, the contribution of the pre-filter would also be 

diminished, and the noise accumulation at the receiver becomes more 

significant. Hence, it would be expected that the margin of improvement 

of NSF2 over NSFI would be inversely related to the fineness of 

quantization. To investigate the validity of this hypothesis, the 

performance of the two coders were examines! under conditions of fine 

(4-bit) quantization. Figure 4.9 shows the output noise spectra of the 

two schemes obtained with 4-bit quantization, for two values of a. It 

can be seen that the superiority of NSF2 over NSFl does indeed diminish 

as finer quantization is employed. 

4.3.3 Fixed Pre-filtering 

The better performance of NSF2 over NSFI is obtained at the expense of 

increased complexity, delay and transmission bit rate, since an 

additional set of predictor coefficients needs to be computed and 
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transmitted. It was decided to investigate if this performance could be 

maintained without the penalty of a higher bit rate. One way to keep 

the same bit rate for both NSF1 and NSF2 is to allow the pre-filter in 

the latter scheme to be fixed. Two fixed pre-filters were examined in 

relati~n to NSF2. The first, denoted FP1 is a simple first order 

pre-emphasis, given by, 

1 - R(z) -1 = 1 - Sz (4.23) 

and the second (FP2) is a second order filter of the form given by 

(4.20), where the coefficients a
l 

and a
2 

are derived from the long~term 

autocorrelation function of speech. The parameters of FP1 and FP2 used 

in the simulation were determined experimentally to be S=O.S and a=0.7. 

Figure 4.10 shows the output noise spectra of both schemes compared to 

NSF2. It is seen that the FP2 codec fails to Suppress the high 

frequency noise to the extent of either FP1 or NSF2 and provides a 

'hump' in the noise spectrum corresponding to the poles of the 

pre-filter used. FP1, on the other hand, is able to provide a 

well-balanced low and high frequency performance, giving a long-term 

average noise spectrum rather similar to NSF2. It must be remembered 

however, that unlike the latter system where the noise tracks the 

short-term speech spectrum, the shaping provided by FP1 is non-adaptive. 

The subjective quality of the recovered speech produced by the FPI codec 

is a little worse than that of NSF2 but is comparable, if not slightly 

better than NSFI. 

The predictor-quantizer interaction noted in the preceding discussion 

for the adaptive pre-filtering scheme NSFl is also applicable to FPl. 

Figure 4.11 shows the segmental SNR of FPl as a function of the pre­

emphasis coefficient, for 2 and 4 bit quantization. It can be seen that 
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for coarse quantization, over a sizeable range of pre-emphasis values, 

the SNR is higher than when no pre-emphasis is applied. For fine 

quantization however, the effect of pre-emphasis is clearly to reduce 

the SNR, and at a quicker rate too. 

4.3.4 Conclusion 

From the preceding investigation, the effect of applying noise shaping 

to improve the perceptual quality of ADPCM decoded speech has been 

demonstrated at a transmission bit rate of about 16 Kbps. At this bit 

rate, and with a relatively low level of coder complexity, 

communications quality speech is possible using the basic adaptive 

prediction ADPCM coder with noise shaping. Interaction between the 

various components of the coder can be exploited to provide improved 

performance in the application of noise shaping. It was found that for 

the same noise shape, the use of an adaptive pre-/post-filtering 

arrangement to perform noise shaping produces better results than the 

conventional adaptive noise feedback coder. Specifically, for a 

relatively simple ADP CM coder operating under coarse quantization 

conditions, noise shaping is best applied using a fixed pre-emphasis. 

This is able to produce a quality of the recovered speech equivalent to 

or better than the more complex adaptive noise feedback coder. 

The same experiments as described above were performed on wide band 

speech, band-limited 

transmission rate of 

from 

32 

o 

Kbps 

7 kHz and sampled at 16 kHz, giving a 

plus side information. Similar 

observations to the narrow band speech were obtained in all cases[2l2). 
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4.3.5 Note on Publication 

A paper entitled, "Noise Spectral Shaping Applied to Coarse Quantization 

Differential Speech Coders" was presented at the Mediterranean 

E1ectrotechnica1 Conference (MELECON 1983) in May 1983 and was recorded 

in the Conference Proceedings p. C1.0S. This paper was written in 

co-authorship with Dr. C.S. Xydeas and Mr. S.N. Koh and covers the 

work described in section 4.3 of this chapter. 

4.4 BACKWARD ADAPTIVE NOISE SHAPING 

The work described in the preceding ,sections, and indeed previous work 

documented in the literature on noise shaping in predictive coding 

schemes, have largely involved systems employing forward adaptive 

predictors[B1-B2,112) and/or quantizers[Bl-82,l12,231). The delay and 

side information associated with such forward adaptation has been a 

major drawback of these otherwise effective systems. Backward adaptive 

schemes do not have these problems and are therefore more attractive in 

manyapp1ications[68). We deve10pe in the following sections, methods 

for applying the concept of noise shaping to enhance the quality of the 

coded speech produced by differential speech coders, which are not 

excessively complex, and for which no delay or side information are 

required. These are able to operate at 16 Kbps using 2-bit 

quantization. 

4.4.1 Description of Backward Noise Shaping Coder 

The coder to be employed for this purpose is of the general adaptive 

differential structures shown in figures 4.2 to 4.4. The constraint on 
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side information implies the need for a backward strategy for all 

adaptation prediction, quantization 

backward adaptive predictors 

backward block adaptive (BBA) 

in chapter 

and noise shaping. 

3 suggest the 

Results on 

use of the 

predictor for 

prediction and noise shaping. The similarity of 

predictor allows most of the work developed 

the purposes of adaptive 

the BBA to the FBA 

for the latter to be 

directly and conveniently applied. Furthermore, because of the noise 

accumulation effect inherent in noise shaping schemes, the use of block 

adaptation is to be preferred to sequential adaptation as far as the 

risk of instability is concerned. And obviously, with the amount of 

adaptation involved, the computational demands of the BBA predictor are 

relatively modest compared to the sequential methods[225). Backward 

quantizer adaptation is easily implemented using the 2-bit Jayant 

quantizer (AQJ)[49). 

Two fully backward adaptive noise shaping schemes, denoted as NSBl and 

NSB2 are proposed and described in the following[213,215). In both 

cases, an 8th order BBA predictor is used. The predictor coefficients 

are computed from past decoded signal samples using a blocksize of 256 

samples, and these are updated every 32 sampling instants, as described 

in section 3.4.2.1. 

4.4.1.1 Scheme 1 (Quantization Noise Feedback) 

The first scheme follows directly from the conventional noise shaping 

coder structure of figure 4.3. The noise feedback filter F' adapts 

according to (4.19), where P is the BBA predictor. The effect of noise 

shaping is clearly seen in the output noise spectra for different values 

of a, shown in figure 4.12. Listening tests indicate an optimum a value 
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of 0.7, which is the same value obtained in the forward adaptive cases. 

This value of a provides the best compromise in terms of subjective 

quality between the high and low frequency distortions, eliminating much 

of the high frequency 'hiss' without increasing low frequency 'rumble' 

appreciably. As shaping is increased (by decreasing a) however, the low 

frequency 'roughness' and 'breathiness' becomes increasingly apparent 

and the quality deteriorates. 

4.4.1.2 Scheme 2 (Adaptive Pre-filtering) 

The work on noise shaping in forward adaptive ADPCM systems (section 

4.3.2)[212] suggests the possibility of exploiting predictor-quantizer 

interaction to reduce the level of quantization noise about which 

shaping is performed. It was found, in the simulation of the forward 

adaptive schemes, that the application of noise shaping using a pre­

/post-filter arrangement on the basic ADPCM coder provides a clear 

perceptual and SNR advantage over the conventional noise feedback coder. 

We decided to investigate if the same observation is true for the 

similarly configured backward adaptive noise shaping 

above, that the adaptive pre-filter scheme NSF2 

system. We 

requires 

note 

the 

transmission of the pre-filter coefficients in addition to the ADP CM 

predictor parameters a requirement which is clearly unacceptable for 

operating at a transmission bit rate of 16 Kbps using 2-bit 

quantization. Since the BBA predictor adapts in a backward mode, the 

pre-filter coefficients can also be made to adapt according to the BBA 

predictor to avoid the transmission of side information. The 

configuration used to incorporate such a backward adaptive pre~filter 
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into the ADPCM coder is shown in figure 4.13. The filter R adapts 

according to: 

1 - P' (z) 
R(z) ~ 1-

1 - P'(z/ex) (4.24) 

where P' is the BBA predictor optimised from past samples of the pre-

filtered signal {r(n)}. At the receiver, corresponding post-filtering 

is applied to the received r(n) to recover the input speech. 

For this backward adaptive arrangement, the interaction among the 

various elements in the system is rather more complex, although the same 

general explanation as that for the forward adaptive case applies to a 

great extent. The effect of the pre-filter, whether forward or backward 

adaptive, is still the same i.e. to produce a smaller residual signal 

and hence a lower level of quantization noise. Once again, the spectral 

plots of the output noise provide much insight into the operation of the 

coder. From figure 4.14, it is apparent that the backward pre-filter 

arrangement produces certain desirable characteristics. Specifica lly, 

it is able, for the same noise shaping factor ex~O.7, to provide a noise 

shape similar to NSBl over the high frequency part of the spectrum, but 

it performs the task more efficiently, by not pushing up the low 

frequency noise to the same extent. Hence, for the same (tolerable) low 

frequency noise level, NSB2 will provide even more suppression of the 

high frequency distortion present, which would lead to an enhancement in 

the quality of the received speech. The noise spectral plot for NSB2 

with ex~O.2 (figure 4.14) illustrates this effect. 

Listening tests confirmed the deduction from the output noise spectra. 

The quality of the recovered speech produced by NSB2 (with ex~O.2) was 

found to be significantly superior to that of NSBl (ex~O.7). The total 
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and segmental SNR for various levels of noise shaping, for the two 

schemes are plotted in figure 4.15. Due to the relatively smaller low 

frequency noise level of NSB2, its SNR drops less rapidly as noise 

shaping is increased, compared to NSB1. 

4.4.2 Subjective Listening Test 

In order to obtain a more realistic assessment of the two proposed noise 

shaping coders, an informal subjective listening test involving a total 

of twenty five subjects was conducted. The recovered speech from the 

schemes NSBl and NSB2 were compared to that obtained from 6 and 7 bit ~ 

law log PCM[9] (denoted as PCM6 and PCM7) , equivalent to bit rates of 48 

and 56 Kbps respectively. Each of the four schemes was compared with 

every other scheme (except for PCM6 vs PCM7 for obvious reasons) in a 

randomly ordered A-B paired comparison test. The recovered speech from 

two schemes were presented to the subjects each time, and they were 

asked to respond with either a preference for one over the other or with 

no preference at all. Male and female sentences were separately tested. 

The results are summarised in table 4.2. 

For male speech, there is undoubted preference (at least 80%) for both 

noise shaping schemes over PCM6. NSBl is adjudged to be about the same 

as PCM7, while NSB2 is clearly superior to all the others. For female 

speech, the pattern is not as clear-cut - NSBl is preferred to PCM6 but 

not to PCM7, while NSB2 is deemed slightly better than PCM7, and clearly 

superior to PCM6. 
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---_._._"--- ------------------ -_._-_. 

Table 4.2 Results of Subjective Listening Tests (in percentages) 

Schemes MALE SPEECH FEMALE SPEECH 
A B pref A pref B No pref pref A pref B No pref 

PCM6 NSBl 0 92 8 20 36 44 
PCM7 NSB1 12 20 68 40 12 48 

PCM6 NSB2 0 100 0 0 72 28 

PCM7 NSB2 0 80 20 40 52 8 
NSBl NSB2 4 80 16 4 72 24 

Figure 4.16 provides a quick summary of the paired comparison test 

results (obtained from the average of the individual tests for male and 

female speech), and illustrates quite clearly, the overall superior 

quality provided by NSB2. Figure 4.17 shows the contour spectrograms of 

the recovered male speech sentences corresponding to each of the four 

schemes evaluated, together with that of the original unprocessed 

speech. It can be seen, by comparing with ,the original, that a 

considerable amount of additive noise is present in the high frequency 

region of the spectrum for the PCM schemes (note in particular the 

beginning of the sentence). This gives rise to a high frequency 

background 'hiss' in the speech, which although small in amplitude, is 

nevertheless perceptually annoying. In contrast, the noise shaping 

coders NSBl and NSB2 are able to suppress this high frequency noise 

successfully and thus reduce significantly the background hiss. It is 

clear from the figure that the spectrogram corresponding to NSB2 

provides the closest resemblance to the original. as would be expected 

from the results of the subjective test. 
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It is interesting to note the SNRs associated with the four coders 

evaluated. While the noise shaping coders have SNR values in the region 

of 15-17 dB (see figure 4.15), the corresponding SNR obtained using 6 

and 7 bit log PCM coding are about 25 and 30 dB respectively a 

difference of up to 15 dBI This demonstrates without doubt, the 

fallibility of using objective measurements such as signal-to-noise 

ratios as a means of assessing the performance of coders belonging to 

different classes, an observation noted by many researchers[12,19,82]. 

4.4.3 Note on Publications 

A paper entitled, "16 Kbps ADPCM with Backward Noise Spectral Shaping" 

has been accepted for presentation at the Second International 

Conference on New Systems and Services in Telecommunications to"be held 

in Liege, Belgium in November 1983. This paper is written in 

co-authorship with Dr. e.s. Xydeas and covers the work presented in 

section 4.4 of this chapter. 

A more complete version of this paper, entitled, "Noise Shaping in 

Backward Adaptive ADPCM at 16 Kbps" which also covers the work on the 

backward block adaptive (BBA) predictor in section 3.4.2 has been 

submitted for publication to the IERE Proceedings. This paper is also 

written in co-authorship with Dr. C.S. Xydeas. 

4.5 CONCLUSION 

In this chapter, we have examined the application of noise spectral 

shaping to relatively simple ADPCM coders operating at a nominal bit 

rate of 16 Kbps. The aim has been to investigate the subjective 
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performance of such noise shaping ADPCM systems which do not involve a 

high level of complexity as those proposed by other researchers. 

Forward adaptive noise shaping systems were first studied, and two 

methods of achieving noise spectral shaping were simulated, one based on 

the conventional noise feedback coder and the other utilising an 

adaptive pre- and post-filtering arrangement on the basic differential 

coder structure. The latter scheme was found to provide better SNR and 

subjective performance, due largely to the effect of predictor-

quantizer interaction which works to advantage under the coarse 

quantization conditions considered. Unfortunately however, the better 

performance was achieved at the expense of a slight increase in side 

information and hence transmission bit rate. To avoid this additional 

side information requirement, a simple fixed pre-filter arrangement was 

considered, and this was found to provide a decoded speech quality a 

little worse than the adaptive case although comparable, if not slightly 

better than the more complicated conventional adaptive noise feedback 

coder. 

The use of noise shaping techniques for improving the perceptual 

performance of differential coders has been demonstrated. With coarse 

quantization however, the level of noise present in the recovered speech 

can be a limiting factor to the effectiveness of such techniques. 

Various studies, have indicated that, for effective auditory masking of 

noise, the noise power must be about 20 dB below the signal power at the 

same frequency[233]. Nevertheless, even when this condition is not 

satisfied (as in the case of coarse quantization), noise shaping can 

still be useful as a means of obtaining the optimum balance between low 

and high frequency distortion to produce the most subjectively pleasing 
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output[2l21. 

Our simulations have shown that for a relatively 'un-sophisticated' 4th 

order adaptive prediction ADPCM scheme, the use of noise feedback to 

provide noise shaping is unwarranted, since equivalent, if not better 

performance can be obtained using a much simpler fixed pre-filter for 

the same purpose. 

In an attempt to avoid the transmission of side information and the need 

for coding delay associated with 'look-ahead' forward adaptive 

strategies, the possibility of applying noise shaping in a backward 

manner was explored. Two schemes for achieving backward adaptive noise 

shaping, based on the configurations considered in the forward adaptive 

coders, were developed and evaluated. It was found that shaping of the 

output noise was again able to provide significant improvement in the 

output speech quality over the unshaped case. The backward adaptive 

pre-filter scheme in particular, was able to exploit predictor-quantizer 

interaction efficiently, to produce an impressive decoded speech quality 

comparable to that obtained using 7-bit log PCM coding[2l3,2l51. 

In the work described hitherto, little attention is paid to the 

quantizer, in order not to detract from the main theme of the respective 

chapters. However, having discussed the prediction and noise shaping 

aspects of differential coding schemes in sufficient detail, the time 

has now come to consider the intricacies of adaptive quantization, which 

is crucial to the efficient performance of speech coding schemes. This 

will form the subject matter for the next chapter. 
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------------------------------------------------------------------------

CHAPTER FIVE ADAPTIVE QUANTIZATION 

5.1 INTRODUCTION 

The performance of differential coders (DPCM, ADPCM, APC) is determined 

by two factors - prediction and quantization. The predictor attempts to 

reduce the variance of the input signal by removing redundancies present 

in its waveform while the quantizer seeks to represent the resultant 

prediction residual in terms of discrete amplitudes, with minimum 

distortion subject to the constraint on the number of levels it can 

employ for this purpose. Provided that the noise introduced by the 

quantization process does not affect the prediction, the final SNR of 

such coding schemes is therefore governed by the general equation[121, 

SNR = SNR + SNR (5.1) 
p q 

where SNR depends on the estimation accuracy of the prediction process 
p 

employed and is sometimes referred to as the signal-to-noise ratio 

improvement (SNRI)[191. SNR is the SNR produced by the quantization of 
q 

the residual signal. 

For efficient performance, both predictor and quantizer are normally 

required to be adaptive. In practice, adaptive prediction is not a 

critical requirement when the transmission bit rate is sufficiently high 

(above 32 Kbps). Adaptive quantization however, is rather more crucial 

to system performance. Noll[471 has shown that a DPCM system employing 

adaptive quantization and fixed prediction produces a massive 7 dB 

advantage over logarithmic PCM. When adaptive prediction is used, this 
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advantage is increased by a further 3-4 dB. with an additional 2-3 dB 

improvement possible with entropy coding. These results were obtained 

using 3-bit quantization. 

This chapter is concerned with the quantization aspect of speech coding 

schemes, and in particular, with those schemes operating at a trans-

mission bit rate of about 16 Kbps. At this bit rate, and with the input 

speech sampled at 8 kHz, only 2 bits are allowed for the quantization of 

each transmitted signal sample (assuming no signal decimation or entropy 

coding) so that some form of quantizer adaptation is a virtual 

necessity. The adaptive quantization methods used for the ADPCM systems 

in chapters 3 and 4 are examined in greater detail in this chapter. 

Other quantizer adaptation techniques are also considered. Following 

this, a simple novel approach to reducing quantization noise in ADPCM 

systems is proposed and described. This is evaluated using computer 

simulation on the 2-bit one-word memory backward adaptive quantizer!49]. 

5.2 ADAPTIVE QUANTIZATION TECHNIQUES 

The basic function of the quantizer is to assign to each input sample, 

one of a set of several discrete magnitude levels, which is closest to 

the input sample. In a B bit uniform quantizer, the number of these 

d o lOt d levels 1°S 2B. 1screte amp 1 u e Hence, the quantization error power is 

proportional to the square of the quantizer step-size i.e. the distance 

between adjacent amplitude levels. In typical voice communications 

systems, the dynamic range of speech signals considering inter-talker as 

well as intra-talker variations can be as much as 40 dB!37]. Early 

attempts to accommodate this large signal dynamic range has been in the 

form of time-invariant non-uniform quantizers, with fine quantizer steps 
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in the small amplitude region and much coarser steps for large 

amplitudes (see section 2.4.1.1.(a»[9,42,44). Logarithmic 

PCM[9,l2,37), which is still being used in many communication networks, 

is one such non-uniform quantization technique. Other methods have 

sought to match the quantizer input-output levels to the input signal's 

statistics(43), and various quantizers optimised for signals with 

Gaussian, Laplacian and gamma distributions[43,45) have been designed. 

Such time-invariant techniques however, fail to recognise that the large 

dynamic range of speech signals is the result of a non-stationary or 

time-varying process, and these methods are therefore only optimal for a 

specific input signal power. Better results can be obtained using a 

quantization strategy that is variable in time i.e. with a 

characteristic that adapts to the input signal level. 

Adaptive quantization[47,49-53) utilises a quantizer characteristic that 

shrinks or expands in time like an accordion, depending on the input 

signal power. Typically, speech power levels vary sufficiently slowly 

in time to allow simple adaptation strategies to be designed to track 

these variations. In differential coding schemes, the quantizer input 

is the prediction residual which has a much reduced dynamic range 

compared to the corresponding speech signal. Nevertheless, the power 

variation is still considerable, and adaptive quantization is no less 

desirable[60, 64). Adaptive quantizers may be either forward or 

backward adaptive, depending on whether adaptation is based on the input 

samples or on the quantized output, respectively. These two main 

classes shall be considered separately in the following. 
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5.2.1 Forward Adaptive Quantization (AQF) 

Forward adaptive quantizers (AQF)[19,4l,46-48) normally adapt its step-

size on a block basis. A block of N input samples is buffered and the 

average energy of the signal samples within the block is obtained. This 

value determines the step-size ~, which is then used to quantize the 

same block of samples. Thus, 

1 N-l 2 ~ 
a[ i I x (n-j)] 

j=O 
(5.2) 

where a is an appropriate constant weighting factor which depends on the 

number of bits used in the quantizer. By using the actual quantizer 

input to obtain the step-size, this method ensures that the quantizer 

range is always matched to the signal. If it is required that the 

quantizer characteristics be designed for a particular signal 

distribution, (5.2) can be used to estimate the standard deviation of 

the block of samples. a would obviously be different in this case. 

For ADPCM applications, quantization of the prediction residual is 

performed on a sample-by-sample basis, so that it is not possible to 

buffer a block of residual signal samples for the purpose of calculating 

the optimum quantizer step-size. In this case, some form of step-size 

estimation will have to be made. Figure 5.1 shows an ADPCM codec 

employing forward adaptive quantization. A block of N input samples is 

buffered, the feed-forward prediction residual is formed, and an 

estimate of the step-size for the block is made, based on the average 

residual energy. Several methods for calculating the step-size for DPCM 

and ADPCM systems have been suggested. 
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Noll[47] proposed using the maximum difference between adjacent samples 

within a block to determine the optimum step-size a, for a single-tap 

DPCM system: 

aMax{ Ix(n-j) - x(n-j-l)I } (5.3) 

j = O,l,2 •••• N-2 

where a is an optimising parameter. Jayant[46] presented a similar 

formula for estimating the AQF step-size which uses the average forward 

prediction error: 

where 

= 
1 

a N-1 

N-2 
l:lx(n-j) 

j=o 

a 0.50 for B = 3 

= 0.25 for B = 4 

- a x(n-j-1) I 
1 

(5.4) 

a1 is the first order predictor coefficient and B is the number of bits 

per sample employed by the quantizer. For higher order predictors, NolI 

[47] suggested using, 
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(5.5) 

where Cl is a parameter and the {\:' k=l,2, ••• p} are the p predictor 

coefficients. Optimum quantizers may also be employed in DPCM coding, 

in which case the block of N error samples are first normalised by the 

estimated standard deviation of the block before being quantized by a 

unit variance optimum quantizer. The standard deviation of the error 

samples estimated from the input signal is normally modified by a 

weighting factor greater than unity, to account for the presence of 

additive quantization noise in the actual error signal that is 

quantized[41J. 

Figure 5.2 shows the probability density functions (pdf) of two seconds 

of male and female speech. The short-term pdfs (figure 5.2(a» were 

obtained by averaging over all normalised short-time pdfs, taken in 

blocks of 64 samples (8 ms). These are very much Gaussian when the 

blocksize used is small and tends toward Laplacian as the blocksize 

increases. The long-term pdfs (figure 5.2(b» obtained from the full 

two seconds of speech are also shown. These are undoubtedly gamma 

distributed, due to the presence of proportionately greater amounts of 

low amplitude components in a typical speech utterance (including pauses 

and silence). Figure 5.3 shows the similar pdfs of the speech residual, 

obtained using second order feed-forward adaptive prediction on the same 

speech data. Clearly, the distribution of the residual signal is not 

very much different from that of the original speech. 

From these observations of the pdfs, the use of quantizers optimised for 

specific distributions can be expected to yield better performance for 
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2-bit quantization however, the 

Chapter 5 Page 195 

AQF. Higher SNR has indeed been 

such 'optimum' quantizers. For 

advantage of these over uniform 

quantization is slight (half a dB or less on average). 

The 'look-ahead' facility of forward adaptive quantizers necessitate a 

delay in the system, since a block of input samples has to be buffered 

in order to estimate the step-size. In addition, this step-size 

estimate needs also to be communicated to the receiver, thus requiring 

additional channel capacity. (In practice, it is the quantized version 

of the step-size that is used at both transmitter and receiver to ensure 

identical operation.) The delay and side information requirement which 

might be undesirable or unacceptable in certain applications may be 

avoided if quantizer adaptation is made to proceed in a backward mode, 

based on past output samples, which are available at both transmitter 

and receiver. 

5.2.2 Backward Adaptive Quantization (AQB) 

The attraction of backward adaptive quantizers[12,20,37,49,50,64] as 

noted above, lies in their ability to operate without delay or side 

information. Essentially, the adaptation involves some form of 

'prediction' of the incoming signal power which is used to update the 

quantizer step-size. since no prior information about signal energy is 

available, adaptation must be made based on the most recently decoded 

samples at a given time instant in order to maximise prediction 

accuracy. Consequently, backward adaptive quantizers usually vary their 

step-sizes instantaneously, at every sampling instant, as opposed to the 

block adaptation of AQF. Several backward quantizer adaptation 
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algorithms will now be considered. 

5.2.2.1 Jayant's Adaptive Quantizer (AQJ) 

Undoubtedly the most well-known and widely used backward adaptive 

quantizer is the instantaneous one-word-memory algorithm developed by 

Cummiskey, Flanagan and Jayant, and commonly referred to as the Jayant's 

quantizer (AQJ)[49,64j. This provides a simple means of matching the 

step-size of the quantizer to its input, using quantizer memory. 

Specifically, if the outputs of a uniform B-bit quantizer are of the 

form, 

x(n) ~ 
H(n) lI(n) 

2 

B 
IH(n) I ~ 1.3 ...... 2 -1 

lI(n) > 0 

(5.6) 

the step-size lI(n+l) is given by the previous step-size multiplied by a 

time-invariant function of the code-word magnitude IH(n)l; i.e. 

1I(n+1) ~ lI(n).M(IH(n)l) (5.n 

where M(.) denotes the multiplier function. By this means, the 

quantizer seeks to expand or contract its amplitude range according to 

the variance of the incoming input samples. Figure 5.4 illustrates the 

input-output characteristics of a 3-bit Jayant quantizer. Note that the 

B-1 
number of multiplier values is given by 2 Since adaptations follow 

quantizer output rather than input, step-size information in this scheme 

need not be explicitly communicated but, in the case of error-free 

transmission, can be re-created exactly by the receiver. 

Alternatively, this adaptive quantizer can be viewed as one which 

normalises the input samples x(n) with a state variable u(n) and uses a 

fixed range quantizer to quantize the result, as shown in figure 5.5. 
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It can be seen that the state variable u(n) is updated in the same way 

as I::.(n) of (5.7), being the product of its previous value and the 

multiplier associated with the previous quantizer slot occupied i.e. 

u(n) = u(n-l).M(!H(n-l)!) (5.8) 

The reverse process i.e. multiplication by u(n) is performed to obtain 

the decoded sample. 

Notice in figure 5.4, that the step-size adaptation is based only on the 

magnitude of the latest decoded output and not on its sign. This is a 

consequence of the observation that the probability density function of 

speech signals is expected to be symmetrical about a mean value of zero. 

Table 5.1 shows the recommended multiplier values provided by Jayant, 

for B = 2,3 and 4 bit quantizers for both PCM and DPCM coders. These 

recommended multipliers do not in general constitute over1y critical 

target values. It is important however, that step-size increases should 
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be more rapid than step-size decreases. This has to do with the 

following comparison of two basic types of quantization errors: 

overload errors, which occurs when the step-size is too small and the 

signal sample falls outside the quantizer range, and granular errors 

that are inherent in quantization, even when the quantizer range is 

adequate. Granular errors are bounded by the step-size and are 

therefore relatively smaller in magnitude compared to overload errors. 

As a result, they also tend to be less harmful to SNR. 

Table 5.1 Step-size Multipliers for the One-Word Memory Quantizer 

CODER PCM DPCM 

B 2 3 4 2 3 4 

-.---------- ------
M1 0.6 0.85 0.8 0.8 0.9 0.9 
M2 2.2 1.00 0.8 1.6 0.9 0.9 
M3 1.0 0.8 1.25 0.9 
M4 1.5 0.8 1.75 0.9 
M5 1.2 1.2 
M6 1.6 1.6 
M7 2.0 2.0 
M8 2.4 2.4 

Although the one-word memory quantizer performs well in ideal channels, 

the sequential adaptation it employs renders it extremely susceptible to 

transmission errors. A robust version of this quantizer, proposed by 

Goodman[190], modifies the step-size adaptation algorithm of equation 

(5.7) to incorporate a leakage factor S, 

~(n+l) = ~S(n).M(IH(n)l) ;0 < S < 1 (5.9) 

S is normally just less than unity (for example, 63/64) and controls the 

rate at which the effects of transmission errors are dissipated. This 

modification improves the quantizer's error performance considerably, at 

the cost of slightlY reduced efficiency. 
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The AQJ has been used extensively in DPCM and ADPCM systems for the 

quantization of the prediction residual signal. Notice the slight but 

important difference in the optimum multiplier values used for DPCM 

coding (see table 5.1) • This has to do with the fact that while high 

adjacent sample correlation exists at the input of a PCM quantizer (this 

being equal to the correlation between Nyquist sampled speech), the same 

is not true for DPCM quantizer inputs, due to the differentiating (or 

high-passing) process involved. DPCM quantizer inputs are generally 

much less correlated and thus step-size increases must be even more 

rapid than step-size decreases[37,49]. 

Goodman[l89] conducted a theoretical study of the AQJ and considers its 

performance in terms of such factors as its range fluctuation, 

adaptation speed and the stability of the process. He showed that the 

sequence of quantizer ranges is a stochastically stable process, and 

that the steady state fluctuation of the normalising factor u(n) is 

related to a function of the maximum and minimum multiplier values by, 

R 
Max M(.) 

log2 
Min M(.) 

The adaptation response is then inversely related to R. 

(5.10) 

Thus with 

appropriate choice of the multiplier values, the optimal trade-off 

between adaptation speed and accurate steady-state performance for a 

particular application may be obtained. 

5.2.2.2 Variance Estimating Quantizer (VEQ) 

A backward quantizer adaptation strategy similar to Jayant's algorithm 

is the variance estimating quantizer (VEQ) studied by Noll[20], Stroh 
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[41J and Castelino[50J. The VEQ, shown in figure 5.6, normalises the 

input signal by the square root of a maximum likelihood estimate of its 

variance and quantizes the resulting ratio using a fixed quantizer. The 

normalising variable u(n) is made proportional to a moving estimate of 

the decoded signal's standard deviation in order to obtain a unit 

variance signal which can then be optimally quantized. Thus, u(n) is 

given by, 

2 
u (n) 

2 1 
Cl N 

N 

L 
A2 
x (n-j) (5.11) 

j=l 

where Cl is an optimising constant. An exponential average of previous 

quantizer outputs have also been used. This is of the form, 

2 
u (n) 

2 "" 

j=1 
L 

'-1 A2 
(l-yly) x (n-j) (5.12 ) 

where the effective memory of the variance estimator varies by changing 

the value of the leakage constant y. The introduction of y weights each 

decoded sample into the past, attaching more weight to the more recent 

samples and gradually 'forgetting' distant samples. The formulation of 

(5.12) can be expressed in recursive .form as, 

u(n) ( 
2 A2 2:J l, 

Cl (l-y) x (n-l) + yu (n-l~ (5.13) 

From figure 5.6, it can be seen that, 

x(n-1) = u(n-1).q(n-1) ( 5.14) 

Substituting into (5.13) gives, 

u(n) 
2 2 l, = u(n-l) [ Cl (l-y) q (n-l) + y J (5.15) 

Clearly, (5.15) is the same as the Jayant adaptation of the normalising 

factor given in (5.8) if: 
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(5.16) 

and consequently, the variance estimating quantizer is equivalent to 

Jayant's quantizer. 

5.2.2.3 pitch Compensating Quantizer (PCQ) 

The lack of a 'look-ahead' facility in the AQJ algorithm renders it 

rather susceptible to overload during the occurrence of sudden 

transitions in the input signal. This is particularly so when the 

quantizer is used in differential coding structures where its 

shortcomings are manifested in the clipping of the high amplitude 

residual samples related to the speech excitation or pitch pulses. Such 

'clipping' can produce annoying 'clicks' in the decoded speech and a 

reduction in SNR A fast adaptation response to avoid overload is 

possible with suitable choice of the multiplier values, but this will, 

on the other hand, increase the granular noise during the low amplitude 

segments of the signal. The obvious solution is to have some form of 

variable adaptation algorithm which is able to increase the quantizer 

step-size rapidly upon detection of overload, without sacrificing 

performance during the less rapidly varying segments of the signal. At 

least two such quantizers which attempts to incorporate some 

compensation for the pitch pulses, have been proposed. 

The first pitch compensating quantizer (PCQ) proposed by Cohn and Melsa 

[661. uses two adaptive u(n) estimators simultaneously. One is an 

envelope estimator (denoted u (n» e which computes a moving average of 

the magnitudes of previous quantized samples. The other, uj(n) is a 

Jayant's estimator with non-uniform quantization levels and specially 

selected multiplier values. These multipliers are all less than unity 
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except for the two outermost levels which are set at values much higher 

than normal. For example, in as-level quantizer, the multipliers are 

given as: M(l) 0.4, M(2) = 0.8 and M(3) = 2.2. The quantizer 

characteristic is shown in figure 5.7. 
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Fig. 5.7 Characteristics of Pitch Compensating Quantizer (POQ) 

Both ue and u j are updated at each time instant and the actual normal­

ising factor u(n) used is the larger of the two, i.e. 

u(n) (5.17) 

When signals with slowly varying amplitudes are being quantized, u. 
J 

assumes small values because only the mUltipliers less than unity are 

being used. In such cases, lle provides a more accurate estimation of 

the signal variance and is taken as the normalising factor. When the 

quantizer detects a possible pitch pulse with one of its outermost 

levels however, u j increases rapidly due to the high multiplier value 

associated with the outermost levels, and becomes greater than ue ' 
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Consequently, the step-size increases quickly to 'capture' the high 

amplitude sample(s). After the pitch pulses have been quantized, u. 
J 

decays just as quickly so that the envelope estimator takes over again. 

The second pitch compensating quantizer developed by Qureshi and Forney 

[67] employs two Jayant estimators, one for tracking syllabic variations 

of the input signal and the other for providing large values of u(n) 

upon detection of possible pitch pulses, by using high values for the 

outermost levels as before. The quantization strategy is similar to the 

first method except that the envelope estimator is substituted with a 

Jayant's estimator whose multipliers are set close to unity so that its 

output follows the long-term syllabic variations of the input signal. 

The adaptation process is best understood by considering logarithms. 

Defining U(n) = 10g2u(n), Qureshi's PCQ adapts according to, 

U(n) = U
1

(n) + U
2

(n) + U . 
m~n 

(5.18) 

where llmin is a constant and defines the minimum value of U(n). 

is related to the normalising factor of the first Jayant 

estimator (pitch compensator) and is updated according to: 

= (5.19) 

where M1 is a set of multipliers which are all zeroes except for the 

value which corresponds to the outermost levels of the quantizer. Yl is 

a leakage constant less than unity which causes U1(n) to decay 

exponentially after the occurrence of the outermost quantization level. 

U2(n) is related to the second Jayant estimator and is similarly defined 

as, 

= Y2 U (n-l) + M (n-l) 
2 2 (5.20) 

where again, Y2 is a leakage factor and M2 is a set of coefficients 

which are close to zero except for the outermost levels. The quantizer 
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gain, or normalising factor is finally given by, 

u(n) = Int [2
Int

[U(n)J (1 + U(n) - Iu(n) I) J (5.21) 

where Int [.1 means "the integer part of". 

5.2.3 Discussion 

The use of pitch compensating methods such as those described above to 

improve on the performance of AQJ has certainly led to a reduction in 

clipping errors in the quantization of the prediction residual, with a 

consequent increase in SNR over the un-compensated case. Unfortunately 

however, the techniques proposed require variable rate coding, with its 

attendant problems of delay, synchronisation and buffer management (see 

section 2.6.5). In many applications, the difficulties associated with 

variable rate coding would usually outweigh any advantages over fixed 

rate coding that could be expected. 

In the following sections, we describe a new approach to the problem of 

quantizer compensation, which do not attempt to modify the basic AQJ 

algorithm in any way. Instead, correction is made to the decoded speech 

samples at the receiver only, based on simple statistical measurements. 

5.3 QUANTIZER CORRECTION 

The work on quantizer correction has arisen out of our efforts to seek 

improved quantizer performance for the 2-bit Jayant quantizer in the 

context of DPCM or ADP CM coding. With only 2-bits (4 levels) assigned 

to code each signal sample, quantization accuracy is obviously limited 

and 'clipping' of the residual signal frequently occurs. Figure 5.8 
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illustrates this effect. The first plot, labelled (a) shows a typical 

DPCM residual signal (obtained using second order fixed prediction) with 

the distinct high amplitude periodic excitation pulses. Figure 5.8(b) 

shows the quantized version of the same signal obtained with 2-bit AQJ, 

which clearly demonstrates the clipping of the pitch pulses. Apart from 

this clipping effect, it can also be seen that the quantizer output 

tends to decay too slowly following the occurrence of a large output. 

We decided to investigate if these limitations of the quantizer can be 

corrected without attempting to modify the basic DPCM coder 

configuration, and without requiring any additional information to be 

communicated to the receiver. The last constraint implies that all 

necessary information must be obtained from the quantizer output bit 

stream. 

5.3.1 Correction Technique 

, 
Consider a DPCM coder (figure 5.9) where x(n), x(n), e(n) and e(n) 

denote the input speech, decoded speech, the quantizer input (prediction 

residual) and output, respectively. The proposed quantizer correction 

technique is based on observing the quantizer output sequence {e(n)} in 

small blocks at a time and then applying appropriate correction, based 

on these observations, to the corresponding decoded speech sequence 
, 

{x(n)}. The amount of correction to be applied depends on the 

distribution of the block of e(n) samples and these can be obtained from 

long-term statistics. Figure 5.10 shows how the correction is applied 

at the DPCM decoder. The quantized output sequence is extracted from 

the transmitted bit stream and fed to the box labelled COR where 

correction is made to the appropriate decoded speech samples. This 
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quantizer correction procedure will now be described[2l4J. 

Consider the quantizer input-output relation at the transmitter in terms 

of small blocks of 3 contiguous samples. The quantization process 

introduces an error given by e(n)-~(n), which, in the absence of 

transmission errors, is equal to the output noise x(n)-i(n). If the 

polarity of this error is known, some form of correction can be 

applied to ~(n) to provide a reduction in the output noise. A 

correction factor fi(n) for the ith block can be defined as, 

f. (n) 
l. 

= 
ei(n) - ei (n) 

e. (n) 
l. 

n = 1,2,3 (5.22) 

where n denotes the position of the sample witbin the block. Adjacent 

blocks slide forward by one sample each time instant to give an overlap 

of 2 samples between blocks. When fi (n) > 0, it implies that I~i (n)1 < 

I'll (n)1 i.e. the magnitude of the quantized value is smaller than the 

actual sample. An appropriate correction to increase the magnitude of 
A 

the corresponding decoded signal 'i (n) would thus lead to lower noise 

for this particular sample. In the same way, the fi (n) < 0 condition 

indicates that a decrease in the magnitude of ~ (n) is desirable. The 
l. 

decoded samples can be therefore corrected according to: 

~ (n) 

where ~ (n) 

~. (n) + f. (n) e. (n) 
1. 1. J. 

(5.23) = 

is the corrected sample and f. (n) represents a fixed 
1. 

correction, optimised from long term characteristics. Obvious ly, a 

correction using f. (n) itself (from (5.22» would lead to zero noise in 
1. 

the decoded speech. 
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For a 2-bit (4 level) quantizer, one bit is required to carry the sign 

information, leaving only one bit for the magnitude. We shall denote 

the lower and upper magnitude levels by 1 and 2 respectively. 

Each of the 3 sample groups is identified according to its magnitude 

sequence. Of the 8 possible sequences, only the following four 

symmetrical patterns were considered in the correction process. 

(a) 2 2 2 (b) 1 1 1 (c) 1 2 1 (d) 2 1 2 

For each of these patterns, a further classification into 4 possible 

sub-groups is performed, depending on the sequence of the signs i.e. 

sequence 1 + + + or 

sequence 2 + + - or - - + 

sequence 3 + - - or + + 

sequence 4 + - + or + -

This grouping of the sign sequences follows from the symmetrical 

properties of the quantizer input about the zero axis. 

This analysis was performed separately on all the input speech data 

files using 4 different prediction techniques (all 2nd order) on the 

ADPCM coder. These are: 

(1) Fixed prediction - with the predictor coefficients obtained from the 

long-term autocorrelation of speech (see section 3.2)[62). 

(2) Forward block adaptive (FBA) prediction 

samples (see section 3.3.1)[41). 

using a blocksize of 256 

(3) Backward sequentially adaptive prediction - using the SAP algorithm 

(section 3.3.2)[75). 

(4) Backward block adaptive (BBA) prediction - with the predictor coef­

ficients updated every 32 samples using a blocksize of 256 samples 
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(section 3.4.2.1)[213,215). 

In each case, the speech data was coded using the respective ADPCM coder 

with 2-bit AQJ and the statistics of f, (n) (from (5.22)) were obtained. 
~ 

The percentage of occurrence of each pattern, as well as the probability 

distribution of each factor fi(n) were noted. Table 5.2 shows an 

example of the analysis performed for the case of fixed prediction 

ADPCM, and provides the following information: 

(1) The percentage of occurrence of each sign sequence (1,2,3 and 4) re-

lated to each magnitude sequence a,b,c and d. 

(2) The statistics of the 3 correction factors fen) associated with each 

sign sequence. 

(3) Other useful information regarding the probability distribution of 

each f(n), such as its mean value, the average of its positive va-

lues and the average of its negative values. The variance of fen) is 

also indicated by the cumulative percentage entries, which gives the 

proportion of fen) greater or less than a certain value. 

Looking at table 5.2(a) i.e. the statistics of pattern (a), it can be 

seen that the application of a positive correction to the decoded output 

block at the receiver corresponding to pattern(a) sequence 1 would 

result in lower noise more than 90% of the time for the first two 

samples and about 70% for the third sample in the block. This 

particular combination corresponds to the magnitude sequence 222 with 

all samples of the same polarity, and indicates quite strongly the 

occurrence of pitch pulses. As the quantizer requires a few sampling 

instants to respond to these high amplitude samples, much of the 

'clipping' occurs on the rising edges of the transition. Hence, the 

correction factors fen) associated with the first 2 samples of this 

particular output sequence are very largely positive. In obtaining 
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Sequence Sequence 2 Sequence 3 Sequence 4 
1 2 3 1 2 3 1 2 3 1 2 3 

Total 467 48 22 13 , 84.91 8.73 4.00 2.36 

\)0 90.4 96.6 61.5 100.0 39.6 27.1 27.3 81.8 86.4 61.5 23.1 7.7 
%<0 9.6 3.4 38.5 0.0 60.4 72.9 72.7 18.2 13.6 38.5 76.9 92.3 

\)3 3.0 6.6 3.2 4.2 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
\)2 6.9 13.9 6.6 16.7 2.1 0.0 0.0 0.0 9.1 0.0 0.0 0.0 

%>1 31.7 39.0 18.8 47 .9 4.2 2.1 0.0 0.0 22.7 7.7 0.0 0.0 
%>0.5 64.2 67.9 33.2 91. 7 14.6 2.1 0.0 45.5 50.0 23.1 7.7 0.0 

%<-.2 3.2 "0.6 22.5 0.0 33.3 39.6 40.9 4.5 9.1 7.7 38.5 69.2 
\<-.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

\<-.6 0.0 0.0 0.0 0.0 .0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
%<-.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Av>O 0.93 1.18 0.95 1.25 0.52 0.30 0.09 0.50 0.76 0.46 0.20 0.00 
Av(O -0.17 -0.14 -0.20 0.00 -0.20 -0.18 -0.21 -0.13 -0.17 -0.12 -0.17 -0.23 
Mean 0.82 1.14 0.51 1.25 0.09 -0.05 -0.13 0.38 0.64 0.24 -0.08 -0.21 

(a) Pattern (a) 222 

Sequence 1 Sequence 2 Sequence 3 Sequence 4 1 2 3 1 2 3 1 2 3 1 2 3 
Total 1353 855 1102 1258 , 29.62 18.72 24.12 27.54 

%>0 39.6 38.5 52.5 63.2 25.3 38.5 21.3 74.0 43.8 18.6 35.9 49.7 %<0 60.4 61.5 47.5 36.8 74.7 61.5 78.7 26.0 56.2 81.4 64.1 50.3 

%>3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 %>2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
%>1 0.1 0.2 1.1 0.6 0.5 0.9 0.1 1.4 0.6 0.2 0.2 1.2 \>0.5 14.0 14.0 25.7 23.6 6.5 19.1 5.5 42.3 18.3 2.9 9.1 23.6 
'(-.2 46.9 50.8 38.7 26.2 65.8 52.4 67.3 19.0 46.6 69.4 50.1 41.8 \<-.4 31.9 37.5 28.5 14.6 53.3 41.5 50.1 12.0 34.4 53.4 35.9 30.6 
'(-.6 19.0 22.8 18.9 7.1 38.1 30.3 30.5 8.1 22.5 35.6 21.5 20.1 '(-. B 7.2 11.1 9.9 2.9 20.2 15.6 13 .8 4.3 11.8 19.3 9.6 9.9 
Av>O 0.40 0.40 0.49 0.40 0.34 0.48 0.32 0.53 0.43 0.25 0.34 0.48 Av<O -0.44 -0.50 -0.50 -0.37 -0.57 -0.55 -0.51 -0.43 -0.51 -0.53 -0.46 -0.50 Mean -0.11 -0.15 0.02 0.12 -0.34 -0.15 -0.33 0.28 -0.10 -0.39 -0.18 -0.02 

(b) Pattern (b) 111 

Table 5.2 Statistics of Correction Factors for 2nd Order 
Fixed Prediction IIIlPCM 
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sequence I sequence 2 SI'quence J Sequence- 4 
I 2 3 I 2 1 2 0, 

1 2 ) 

Total 1176 532 721 834 • 36.0' 16.30 22.10 25.56 

\)0 79.1 '5.2 42.6 87.6 17.9 24.4 11.2 61.6 36.9 4.7 15.0 27.2 
\(0 20.9 5'.8 57.' 12.4 82.1 75.6 88.8 38.4 63.1 95.3 85.0 72.8 

\)3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
.>2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

\)1 1.1 0.3 0.8 1.5 0.2 0.2 0.0 0.6 0.0 0.2 0.0 0.0 
\>0.5 44.8 2.4 17.7 58.8 1.9 7.5 2.6 5.1 13.0 1.3 1.3 7.7 

\<-.2 12.2 19.9 47.5 8.1 51.5 67.3 83 •• 11.1 54.6 91.7 48.3 62.8 \<-.4 6.6 0.0 34.6 4.5 0.0 55.8 11.8 0.0 43.3 82.3 0.0 48.8 

%<-.6 4.1 0.0 23.0 3.2 0.0 41.7 58.3 0.0 31.2 63.5 0.0 35.3 
\<-.8 2.0 0.0 10.6 2.6 0.0 25.2 35.0 0.0 17.1 38.7 0.0 16.8 

Av)O 0.53 0.18 0.44 0.62 0.19 0.37 0.32 0.21 0.39 0.32 0.17 0.35 
Av<O -0.33 -0.16 -0.50 -0.41 -0.22 -0.60 -0.66 -0.14 -0.56 -0.68 -0.20 -0.55 
Mean 0.35 -0.01 -0.10 0.49 -0.14 -0.37 -0.55 0.08 -0.21 -0.63 -0.15 -0.30 

(c) Pattern (c) 121 

Sequence 1 Sequence 2 Sequence 3 Sequence 4 1 2 3 1 2 3 1 2 3 1 2 3 
Total 705 235 177 552 • 42.24 14.08 10.61 33.07 
.>0 49.8 87.9 42.3 77 .9 17.0 47.2 46.3 74.6 51.4 8.2 1.1 33.9 '<0 50.2 12.1 57.7 22.1 83.0 52.8 53.7 25.4 48.6 91.8 98.9 66.1 
\)3 0.0 0.0 0.0 0.4 0.0 0.4 0.6 0.0 0.6 0.0 0.0 0.0 \)2 0.0 0.0 0.1 1.7 0.0 0.9 1.1 0.0 0.6 0.0 0.0 0.0 
\)1 0.3 2.7 I.' 6.4 0.0 3.0 5.6 0.0 5.1 0.2 0.2 0.5 \)0.5 1.8 52.1 6.7 20.9 6.0 13 .2 13.0 .5.2 18.1 0.9 0.7 2.9 
\; (-. 2 18.0 6.5 27.4 6 •• 77.4 28.1 27.1 20.9 28.8 61.6 97.5 33.5 %<-.4 0.0 2.7 0.0 0.0 63.8 0.0 0.0 13.0 0.0 0.0 93.1 0.0 
\<-.6 0.0 2.1 0.0 0.0 5'.9 0.0 0.0 8.5 0.0 0.0 77 .0 0.0 \<-.8 0.0 1.3 0.0 0.0 33.2 0.0 0.0 4.0 0.0 0.0 '8.7 0.0 
Av>O 0.19 0.55 0.29 0.41 0.35 0.43 0.'6 0.56 0.44 0.19 0.68 0.20 Av<O -0.16 -0.32 -0.18 -0.13 -0.65 -0.20 -0.18 -0.47 -0.21 -0.22 -0.74 -0.19 Mean 0.01 0.45 0.02 0.29 -0. '8 0.10 0.11 0.30 0.13 -0.19 -0.73 -0.06 

(d) Pattern (d) 212 

Table 5.2 Statistics of Correction Factors 

------------------------------------------------------------------------
pattern(a) Pattern (b) Pattern (c) Pattern (d) 

------------------------------------------------------------------------
Factors 1 2 3 1 2 3 1 2 3 1 2 3 

Sequence 1 0.8 1.1 0.4 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.4 0.0 
Sequence 2 1.4 0.0 0.0 0.0 0.0 0.0 0.3 -.2 -.2 0.5 -.2 0.0 
Sequence 3 0.0 0.0 0.0 -.4 0.4 0.0 -.6 0.0 -.3 0.0 0.4 0.0 
Sequence 4 0.0 0.0 0.0 -.3 -.2 0.0 -.6 -.2 -.2 -.2 -.7 0.0 
------------------------------------------------------------------------

Table 5.3 Optimiscd Correction F'actor~; 
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these correction factors, one is clearly exploiting certain specific and 

fairly well defined properties which are peculiar to the speech residual 

signal. The actual amount of correction for each individual sample is 

determined experimentally. 

It was observed that the long-term statistics for the factors f(n) 

exhibit very little variations among the different speech files used and 

the various prediction algorithms employed. It is possible therefore, 

to obtain an universal set of optimised correction factors based on all 

data files and averaged over the prediction schemes considered. This 

set of optimised correction factors is shown in table 5.3. The same 

analysis was also performed on 

sequences, 112, 122, 211 and 221. 

the 4 non-symmetrical magnitude 

It was found however, that the f(n)'s 

associated with these sequences were very much less well-defined, and 

little advantage results from using these factors. 

The underlying assumption in associating specific correction factors 

with particular quantizer output sequences as done above is that certain 

redundancy or predictability still remains in the speech residual signal 

and these appear to he quite independent of the type of prediction 

employed. Obviously, it would not be possible to obtain any sensible 

relationship when the signal to be quantized is a random signal. 

Consequently, in the analysis performed to obtain the f(n) statistics, 

blocks containing low amplitude random noise (which are actually silence 

segments) must be excluded from consideration. A simple silence 

detector was used for this purpose. This consists of measuring the 

average signal energy in blocks of 20 samples and comparing it to a 

threshold value. When the average signal energy falls below this 

threshold, the block is deemed to be silence, and is not considered in 
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the analysis. This simple procedure was found to be quite effective in 

eliminating unwanted contributions from segments of silence in the 

speech signals. 

5.3.2 Computer Simulation Results 

The technique of quantizer correction using the factors given in table 

5.3 was applied to the ADPCM systems considered. In all cases, an 

improvement in performance was recorded. Table 5.4 shows the total and 

segmental SNR obtained for each case before and after the application of 

correction, obtained from 2 seconds of speech from each data file. 

-----------------------------------------------------------------------
Table 5.4 

Predictor Used 

FIXED 
(a) Original 
(b) Corrected 

FORWARD (FBA) 
(a) Original 
(b) Corrected 

SAP 
(a) Original 
(b) Corrected 

BBA 
(a) Original 
(b) Corrected 

SNR Results for Various Second-order ADP CM Systems 
(With and Without Quantizer correction) 

MALE 
SSNR TSNR 

16.02 
17.03 

19.05 
20.03 

18.77 
19.91 

18.53 
19.78 

16.49 
17 .65 

18.19 
19.38 

17.54 
18.86 

17.68 
19.17 

FEMALE 
SSNR TSNR 

15.26 
16.34 

18.89 
19.96 

18.04 
19.26 

17 .94 
19.05 

15.01 
16.30 

16.97 
18.24 

16.33 
17.61 

16.39 
17 .65 

SISTER 
SSNR TSNR 

14.26 
15.85 

15.61 
17 .08 

13.88 
14.58 

15.50 
16.28 

17 .30 
18.48 

17 .01 
18.43 

12.54 
13 .91 

16.53 
18.02 

The average improvement in SNR is between 1.25 to 1.5 dB. but this does 

not reflect the actual performance of individual blocks, since those 

blocks which are not strongly periodic do not register very much gain. 

Figure 5.11 shows the segmental SNR for 1 second of male speech, before 
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and after applying quantizer correction, obtained for the fixed and the 

BBA prediction ADPCM coder. It can be seen that increases in SNR of as 

much as 2 dB or more can be achieved in some segments of the signal. 

This improvement in segmental SNR is also reflected in the corresponding 

output noise spectra plots shown in figure 5.12. In addition to the 

reduced noise power level across the frequency spectrum, considerable 

high frequency noise suppression is also achieved by the quantizer 

correction process. The same observations were obtained for the other 

prediction schemes and for all the data files considered. More 

importantly, informal listening tests conducted indicate a decided 

preference for the corrected speech over the normal ADPCM decoded 

speech. The background hiss characteristic of ADP CM systems at this low 

bit rate, although still audible, is perceptibly reduced after 

correction[2141. 

5.3.3 Note on Publication 

A paper entitled, "Noise Reduction in ADPCM AQJ Systems Using Quantizer 

Correction at the Receiver" has been published in the lEE Electronics 

Letters, vol. 19, no. 11, pp. 420-421, May 1983. It was written in 

co-authorship with Dr. e.s. Xydeas and covers the work described in 

section 5.3 of this chapter. 

5.4 SUMMARY AND CONCLUSION 

It has long been recognised that in speech digitisation schemes, the 

quantizer plays a central role in determining system performance[471. 

Consequently, much early study has concentrated on the efficient 

design of the quantizer, in attempts to match the quantizer 
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characteristics with either assumed or measured probability densities of 

speech. More recent designs take into account the short-term 

stationarity of speech signals and the importance of adapting the range 

of the quantizer to match the local signal strength of its input[4l,48]. 

Such adaptive quantizers have provided significantly improved 

performance, both objectively and subjectively. 

In this chapter, we have examined both classes of adaptive quantizers: 

(i) the forward adaptive scheme where the adaptation decision is 

based on the unquantized input data and communicated to the recei­

ver as side information, and 

(ii) the backward adaptive procedure - where adaptation is based on the 

received quantized signal, and can therefore be replicated at the 

receiver with no auxiliary information. 

Computer simulation results confirmed that the forward method is slight­

ly better if no cost is assessed for the side information. Practical 

considerations however, appear to favour backward adaptation[19,68]. 

In the area of backward adaptive quantization, the one-word memory (AQJ) 

quantizer proposed by Jayant[49] (and the later robust version of 

Goodman[190]) has stood the tests of time and emerged undoubtedly as the 

most widely used quantization scheme in waveform coding applications. 

Efforts to improve further on the AQJ have been numerous. The most 

notable of these are perhaps the attempts to provide for quicker 

adaptation response to the infrequent large amplitude excitation pulses, 

characteristic of the speech prediction residual signal of DPCM and 

ADPCM systems. The pitch compensating quantizer (PCQ) designs of Cahn 

and Melsa[66], and Qureshi and Forney[67], have succeeded in arresting 

these large amplitude excursions of the residual signal to Some extent, 
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but this was achieved at the cost of having to resort to variable bit 

rate coding, which is unacceptable for many applications. Frequently, 

in this, as in many other areas, improvement to an existing scheme is 

only possible at some cost, which in this case could be in terms of 

complexity, robustness and practicability. Ultimately, the designer 

will have to select a design which offers the best compromise for his 

particular application. 

We have introduced a new approach to the problem of improving the 

performance of the AQJ, which consists of applying correction to the 

DPCM or ADPCM decoded signal samples, based on information obtained from 

the quantizer output sequence. This method seeks to compensate for the 

limitation of the AQJ in its quantization of the residual signal, by 

modifying the recovered speech signal in an appropriate way. 

Experiments on the 2-bit AQJ have indicated that improvement in SNR has 

indeed been achieved by the correction process. Output noise is 

decreased over the entire frequency spectrum, with most of the reduction 

occurring in the high frequency region. Perceptual improvement in the 

coded speech has also been obtained, in the form of lessened background 

noise. 

While the simple quantizer correction process is able to provide noise 

reduction to some extent, its limitation lies in its use of fixed 

correction factors, obtained from observations of the long-term 

quantizer input-output statistics. As a consequence, a 'compromise' 

amount of correction is used for a given quantizer output sequence, 

which is too little for some cases and too much for others. Better 

performance could be achieved if the correction factors are made to 

adapt to local signal conditions. Further research is required in this 
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area to explore the possibilities of providing adaptive correction. 

The work described so far, in the last three chapters has been on rather 

'traditional' waveform coding methods which operate in the time domain 

on the speech signal waveform. Recent trends in the area of speech 

coding have indicated a shift towards more complex frequency domain 

techniques which are able to exploit the properties of the speech 

waveform more effectively, to provide even better signal compression. 

These more powerful waveform coding techniques will be considered in the 

chapter to follow. 
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CHAPTER SIX FREQUENCY DOMAIN SPEECH CODING 

------------------------------------------------------------------------

6.1 INTRODUCTION 

The rapidly increasing capability and decreasing cost of digital 

hardware in recent years has brought about renewed interest in 

sophisticated speech coding algorithms which are able to operate 

efficiently at relatively low transmission bit rates. One consequence 

of this advance in digital technology has been a noticeable drift away 

from the 'traditional' time domain speech coders into the realm of 

frequency domain coding. The basic concept in frequency domain coding 

is to divide the speech spectrum into frequency bands or components 

using either a filter bank or a block transform analysis. After 

encoding and decoding, these frequency components are used to 

re-synthesise a replica of the input waveform by either filter bank 

summation or inverse transformation. By splitting the input speech in 

this manner, different frequency bands can be preferentially encoded 

according to perceptual or minimum mean-square error criteria for each 

band. At the same time, quantization noise can be contained within 

bands, and prevented from creating out-of-band harmonic 

distortions(140). 

Two basic types of frequency domain speech coders are considered in this 

chapter, namely, the sub-band coder (SBC)[141) and the adaptive 

transform coder (ATC)[16l). In the first case, the speech spectrum is 

partitioned into a set of typically 4 to 16 contiguous sub-bands by 



means of a filter bank analysis. 
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In the second, a block transform 

analysis is used to decompose the signal into typically 64 to 512 much 

finer frequency components. Both techniques attempt to perform some 

sort of short-time spectral analysis of the input signal, although the 

spectral resolution achieved by the two methods are quite different. 

The sub-band coder provides rather coarse frequency resolution, with the 

frequency components consisting of broad bands ranging from about 200 to 

1000 Hz in width. The adaptive transform coder, on the other hand, 

seeks to model the detailed structure of the speech waveform, and 

permits much finer frequency analysis. These two methods have therefore 

been referred to as 'wide-band' and 'narrow-band' analysis/synthesis 

coders, respective1y[140]. 

The sub-band coder and the adaptive transform coder are described in 

detail in the following sections. Their performance, for a range of 

parameter values is examined via computer simulation. Problems and 

practical difficulties associated with each coder, such as complexity 

and delay, are also discussed. Finally, a new approach to split-band 

coding schemes is proposed and presented. This combines the techniques 

of sub-band and transform coding methods, and provides a performance 

comparable to either, in terms of SNR and decoded speech quality, but 

with lower complexity and shorter coding delay. 

6.2 SUB-BAND CODING (SBC) 

The sub-band coder (figure 6.1)[12,141,142] partitions the input signal 

spectrum into typically 4 to 16 frequency sub-bands via a bank of band­

pass filters. Each sub-band is in effect, low-pass translated to zero 

frequency by a modulation process, decimated to its Nyquist rate (twice 
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the width of the band) and digitally encoded using adaptive step-size 

PCM (APCM). The number of bits employed for each band is determined by 

some perceptual or minimum mean-square error criterion. On 

reconstruction, the sub-band signals are decoded, modulated back to 

their original locations and then summed to give a close replica of the 

original signal. 

Coding of the speech signal in sub-bands offers several advantages. 

Quantization noise can be contained within frequency bands to prevent 

masking of one frequency range by noise in another. Also, as noted 

earlier, bands can be preferentially encoded i.e. more bits can be 

assigned to the high energy low frequency bands where pitch and formant 

structure must be accurately preserved, and less bits to the upper 

frequency region where fricatives and noise-like sounds occur. 

Additionally, by appropriate assignment of bits to the sub-bands, the 

shape of the output noise spectrum may be suitably controlled to satisfy 

perceptual requirements[12,140J. 

6.2.1 Partitioning of Frequency Bands 

The central feature of the sub-band coder is the splitting of the input 

signal into frequency bands. Early proposals to perform the band 

splitting employed large finite impulse response (FIR) band-pass filters 

[141,142J. These are necessary to provide the very sharp cut-off 

characteristics required to minimise the effects of signal aliasing, 

which occurs during the decimation of the sub-band signals[144J. 

~nitial designs of sub-band coders consist of relatively few sub-bands. 

Band partitioning was made according to perceptual criteria, so that 
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each band contributes equally to the so-called articulation index (AI). 

The AI concept(234) is based upon a non-uniform division of the 

frequency scale for the speech spectrum. Twenty non-uniform contiguous 

bands are derived, each of which contributes 5% to the total AI. One 

early design uses 4 sub-bands, covering 200-700 Hz, 700-1310 Hz, 1310-

2020 Hz and 2020-3200 Hz. Each of these bands contribute about 20% to 

AI, giving a total of 80%. Figure 6.2 illustrates this partitioning of 

the speech spectrum[14l). 

6.2.1.1 Integer Band Sampling 

Crochiere, one of the pioneers of sub-band coding, proposed an integer 

band sampling technique for performing the low-pass to band-pass 

translations which eliminates the need for modulators and are therefore 

more easily realised in hardware[14l1. This is illustrated in figure 

6.3. The speech band is partitioned into b sub-bands by band-pass 

filters BPl to BPb • The output of each filter in the transmitter is 

re-sampled at the rate of 2f., where f. is the bandwidth of the ith 
1.. 1.. 

sub-band. These decimated signals are then digitally encoded and 

multiplexed for transmission. At the receiver, the decoded sub-band 

signals are upsampled to their original sampling rate by inserting 

zero-valued samples. These signals are then filtered by another set of 

band-pass filters, identical to those at the transmitter. Finally, the 

outputs of these filters are summed to give a reconstructed replica of 

the original input signal. 

The integer band sampling method imposes certain constraints on the 

choice of sub-bands, as illustrated in figure 6.3. Sub-bsnds are 

required to have a frequency range between m f and (m +l)f , where m 
i i i i i 
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is an integer. This constraint is necessary to avoid aliasing in the 

sampling process. 

6.2.1.2 Quadrature Mirror Filter (QMF) Bank 

Although the integer band sampling method has been reported to produce 

encouraging results, very long filters[1421 (175-200 tap FIR designs) 

are necessary to provide the sharp cut-off characteristics required in 

order to reduce a1iasing or inter-band 'leakage' arising from the 

sampling processes. A more elegant design, proposed by Esteban[1451, 

allows for almost perfect cancellation of this aliasing effect, by 

utilising a set of low and high-pass filters which possesses 

'quadrature' relationships. This quadrature mirror filter (QMF) 

approach will be described in the following. 

Consider the design of a 2 (equal) band sub-band coder which uses a 

low-pass and a high-pass filter to split the bands, as shown in figure 

6.4. The down-sampling processes in both upper and lower bands 

introduce aliasing terms in each of the sub-band signals. In the lower 

band, the signal frequency above f /4 is folded down into the range 0 to 
s 

f5/4, and appears as aliasing in this signal, as illustrated by the 

shaded region in figure 6.4(b). Similarly, for the upper band, any 

signal energy below f /4 is folded upward into its Nyquist band f /4 to 
5 5 

f5/2. The amount of this mutual aliasing of energy or inter-band 

leakage is directly dependant on the degree to which the filters hl(n) 

and h2(n) approximate ideal low-pass and high-pass filters, 

respect ively. 

In the re-construction process, the sub-band sampling rates are 
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increased by inserting zeroes between each sub-band sample. This 

introduces a periodic repetition of the signal spectra in the sub-band. 

For example. in the lower band. the signal energy from 0 to f /4 
s 

is 

symmetrically folded around fs/4 into the range of the upper band. This 

unwanted signal energy or 'image' is filtered out by the low-pass filter 

hl(n) at the receiver. The filtering operation effectively interpolates 

the zero-valued samples that have been inserted between the sub-band 

signals to values that appropriately represent the desired waveform. In 

the same way. the 
,. , 

1mage from the upper band is reflected to the lower 

sub-band and filtered out by the filter -h2(n). 

Because of the quadrature relationships of the sub-band signals in the 

QMF bank. the remaining components of the images can be exactly 

cancelled by the aliasing terms introduced in the analysis (in the 

absence of transmission errors). In practice. this cancellation is 

obtained down to the level of the quantization noise of the coders. 

To obtain this cancellation property in the QMF bank. the filters hI(n) 

and h2(n) must be symmetrical FIR designs with even numbers of taps i.e. 

hl(n) = h2(n) = 0 for n < 0 (6.1) 

and n >, T 

where T (even) is the number of taps. The symmetrical property implies 

that. 

hI(n) = hI(r-I-n) (6.2a) 

and 

h2(n) = -h2(T-I-n) ; n = 0.I.2 •••• T/2-1 (6.2b) 

The QMF bank further requires that the filters satisfy the condition. 

h2(n) = (-1) hI(n) n = O,l,2 •••• T-l (6.3) 

which is the mirror image relationship of the filters. 
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With the above constraints, the aliasing cancellation property of the 

QMF bank can be easily verified[l4S,147] as shown in appendix F. It can 

be seen, from the appendix, that the filters must also satisfy the 

condition, 

(6.4) 

jlll 
where Hl(e ) denote the Fourier transforms of hl(n) and 

h2(n), respectively. The requirement 

approximated for modest values of 

of 

T. 

(6.4) can be 

Johnstonl1S8] 

very closely 

describes a 

procedure based on the Hooke and Jeeves optimisation algorithm and 

presents a set of filter designs for various number of taps, from 8 to 

64. Less optimal filters can also be obtained using conventional 

Hanning window designs [143]. Figure 6.5 shows the frequency response 

for a 32 tap filter design obtained by Johnston (32 D design). It can 

be seen that the requirement of (6.4) is satisfied to within ± 0.025 dB, 

which is more than satisfactory for good SBC performance. 

For band-splitting into mOre than two bands, the basic QMF bank can be 

repeated in a tree structure. Figure 6.6 shows the use of QMF in a 8 

band sub-band coder. Notice the order of the filters hI and h2 at each 

stage of the tree. This arrangement, as shown in the figure, ensures 

that the parallel outputs of the encoders El to E8 corresponds to the 8 

equal sub-bands arranged in ascending order of frequency. Furthermore, 

h2, instead of -h2 can be used at the receiver if the signs of all 

outputs from h2 are reversed. Sub-band coders with non-uniform bands 

(such as octave designs) may also be obtained using the QMF bank 

approach, subject to some limitations. This is done by truncating 
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certain sections of the tree as shown in figure 6.7 for a 5 band 

sub-band coder(153). 

The use of symmetrical FIR filters in the QMF bank introduces a delay in 

the system equal to (T-l)/2 samples at each stage. However, because the 

sampling rate of the sub-band signals is halved at each stage, the 

actual amount of delay (referred to the original sampling rate) 

increases up the tree. Considering the delay at both analysis and 

synthesis stages, the total delay introduced 

b-band QMF bank is given by (T-l)(b-l) samples, 

uniform filters at all stages(145). 

by the tree-structured 

assuming the use of 

Studies have indicated that the tree-structured QMF sub-band coder 

yields much inproved processed speech quality compared to the integer 

band sampling technique, despite 

[147,153). Consequently, virtually 

sub-band coders use the QMF bank. 

6.2.2 Coding of Sub-band Signals 

the latter's use of long FIR filters 

all current implementations of 

One advantage of sub-band coders noted previously, is the exploitation 

of the non-flat spectral density of speech signals which allows unequal 

quantization to be applied to the frequency bands. The allocation of 

bits for coding each sub-band may be fixed or adaptive. 

6.2.2.1 Fixed Bit Allocation 

In early designs, the number of bits assigned for coding each sub-band 

signal is determined from long-term signal statistics, and are fixed for 

a given coder. Crochiere[14l,150,153) uses the backward adaptive Jayant 
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quantizer (AQJ)[49] for his schemes, while Esteban[145] employs block 

quantization with forward transmission of step-sizes (AQF)[20, 41]. For 

a fairly large number of bands, the constraint on available quantizer 

bits do not in general allow the assignment of 2 bits to code the high 

frequency bands, a condition which is necessary for the backward 

adaptation of the AQJ. Crochiere[142] suggested using the 1 Ilk bit 

quantizer, a modification of the AQJ, 

approach, the sign of the signal 

proposed 

is encoded 

by Goodman. In this 

every sample, and the 

magnitude is transmitted with one bit every k samples. The sign bit 

transmits essentially the 'zero crossing' or phase information and the 

magnitude bit conveys the amplitude information of the waveform at a 

reduced rate. 

6.2.2.2 Adaptive Bit Allocation 

As speech is a non-stationary signal, fixing the number of bits (from 

long-term consideration) for coding each sub-band will necessarily be 

sub-optimum in the short-term. Better results can be obtained by 

allowing the number of bits assigned to each frequency band to vary 

according to local signal statistics. Adaptive or dynamic techniques of 

bit allocation attempt to distribute available bits more efficiently by 

assigning bits to the sub-bands according to their energy composition 

over a short segment of typically 10 to 30 ms of speech. In this way, 

efficient coding is maintained and no bits are 'wasted'. Naturally, 

adaptive bit allocation requires the transmission of side information 

periodically so that the receiver is kept informed of the update in the 

bit allocation patterns. The optimum assignment of bits is based on a 

minimum mean square error criterion and is given by the well-known 
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2 
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d + 1/2 log2 D* 
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i 1,2, ••.• b (6.5) 

the variance, and R., the optimum number of bits for the 
~ 

ith sub-band. b is the number of bands in the sub-band coder, or the 

number of bands considered in the allocation process, since certain 

frequency bands beyond the signal cut-off frequency may be omitted. d 

is a correction term that reflects the performance of practical 

quantizers, and D* denotes the noise power, 

b 

L 
i=l 

D* = lib 
2 

e. 
~ 

(6.6) 

where e.
2 

is the noise power incurred in quantizing the ith sub-band. 
1. 

The bit assignment obtained from (6.5) must satisfy the constraint of 

available bits, R 

R = 
b 

L R. 
~ i=l 

(6.7) 

It is easy to obtain the result that all bands must have the same dis-

tort ion. The optimum bit assignment is then, 

2 
o. 

1/2 log2 
~ 

R. = R + 
[ b 2 

rib 
~ 

j=l
TIOj 

(6.8) 

where R is the average bit rate, given by, 

b 
R = lib L R. 

i=l ~ 
(6.9) 

The Rt's calculated from (6.8) cannot take on negative or fractional 

values in practice since they represent the number of quantizer bits to 
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Hence, rounding to the nearest positive integer or zero is 

necessary, and this must be done without violating the constraint of 

(6.7). 

The bit allocation equation given by (6.5) can be modified slightly to 

provide some control of the output noise shape which might be desirable 

from a perceptual point of view[12,1401. However, the relatively small 

number of frequency bands in sub-band coders does not allow much room 

for manouvre in this respect. Such frequency domain noise shaping is 

more appropriate in the context of adaptive transform coding (see 

section 6.3.3 below). 

6.2.3 Computer Simulation 

6.2.3.1 General Procedure 

The uniform tree-structured QMF implementation of the sub-band coder is 

simulated on the computer. The same number of taps is used for the low 

and high-pass filters at every stage of the tree. 32 taps are used for 

the 2,4, and 8 band SBCs and 16 taps, for the 16 band case. The filter 

coefficients are obtained from Johnston's '32 tap(E)' and '16 tap(C)' 

designs[1581. These are shown in table 6.1 

When the number of sub-bands is sufficiently large, certain bands in the 

high frequency end of the spectrum may not need to be transmitted at 

all, since they correspond to information beyond the bandwidth of the 

input signal. The input speech data used in the simulation is band­

limited to 3400 Hz and sampled at 8000 Hz, so the frequency band between 

3400 and 4000 Hz theoretically does not contain any speech information. 

Hence, for the so-called 8 and 16 band sub-band coders, effectively only 
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7 and 14 bands, respectively, are actually transmitted. This is useful 

in conserving quantizer bits. 

Table 6.1 Coefficients for 32 and 16 tap FIR Quadrature Mirror Filters 

(a) 32 tap 

hl(O) = 0.005123 
hl(l) = -0.011276 
hl(2) = -0.000962 
hl(3) = 0.015681 

hl(4) = -0.002612 
hl(5) = -0.021038 
hl(6) = 0.007380 
hl(7) = 0.028123 

(b) 16 tap 

hl(O) = 0.006526 
hl(l) = -0.020488 
hl(2) = 0.001991 
hl(3) = 0.046477 

= hI(3I) 
= hI(30) 
= hI(29) 
= hI(28) 

= hI(27) 
= hI(26) 
= hI(25) 
= hI(24) 

= hI( 15) 
= hl(l4) 
= hI( 13) 
= hl(2) 

hI(8) = -0.014569 = hl(23) 
hI(9) = -0.038306 = hl(22) 

hI (0) = 0.026624 = hl(2l) 
hlOI) = 0.055707 = hI(20) 

hl(l2) = -0.051383 = hl(l9) 
hl(l3) = -0.097684 = hl(18) 
hl(l4) = 0.138764 = hl(17) 
hI( 15) = 0.459646 = hl(16) 

hl(4) = -0.026276 = hl(ll) 
hl(5) = -0.099296 = hl(lO) 
hl(6) = 0.117867 = hl(9) 
hl(7) = 0.472112 = hl(8) 

Figure 6.S shows the decimated sub-band signals of the 8 band SBC, 

obtained from a typical segment of voiced speech. Notice the 

characteristic concentration of signal energy in the lower frequency 

bands and also, the lack of correlation in the signals after decimation. 

The signal correlation in the sub-bands decreases as the number of bands 

is increased, since the corresponding spectra becomes progressively 

'flatter' as the width of the frequency bands gradually narrows. Table 

6.2 shows the average first shift autocorrelation coefficients obtained 

from the sub-band signals for the 2, 4 and 8 band coders. It can be 

seen that, apart from the first band of the two-band SBC, little 

correlation can be expected in the sub-band signals. Correlation values 
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for the same frequency bands also vary widely among different input 

data. Therefore, the use of differential techniques to encode the 

sub-band waveforms does not offer any advantages[1451, and consequently, 

in thesimulations performed, all encoding is done using APCM. 

Table 6.2 Correlation Coefficients for Sub-band Signals 

MALE 

2-band 
4-band 
8-band 

FEMALE 

2-band 
4-band 
8-band 

SISTER 

2-band 
4-band 
8-band 

a(1) 

0.832 
0.580 
0.147 

0.603 
0.321 

-0.279 

0.763 
0.585 
0.406 

a(2) 

-0.074 
-0.405 
-0.302 

-0.364 
-0.412 
-0.256 

-0.139 
-0.304 
-0.337 

a(3) 

0.116 
0.397 

a(4) 

0.304 
-0.168 

0.402 -0.071 
0.302 -0.255 

0.183 
0.262 

0.166 
-0.263 

a(5 ) a(6) 

-0.294 -0.017 

-0.035 0.258 

-0.220 -0.037 

a(7) 

0.047 

-0.335 

0.172 

a(8) 

-0.016 

0.077 

-0.047 

----.-------.------

6.2.3.2 Bit Allocation 

Both fixed and adaptive methods of assigning bits to code the sub-band 

signals were investigated. Adaptive bit allocation is performed using 

the alternative formulation of (6.8)[1611, 

R. 
~ 

b 
- ~ L 

2b j=l 
(6. lO) 

By changing the geometric mean term of (6.8) into an arithmetic mean in 
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(6.10), implementation on the computer is greatly simplified. 

only take on integer values, each value as derived from (6.10) 
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As R, can 
~ 

must be 

rounded to the nearest positive whole number or zero. Following this, 

further adjustments must be made to ensure that the integer bit 

assignment satisfies the constraint on available bits given by (6.7). 

The full bit allocation procedure as implemented in the simulation 

involves the following steps: 

(1) The , 2 
var1ances cr. 

~ 
of each sub-band signal over an appropriate time 

segment (typiclally 8-32 ms) are first calculated. 

(2) Sub-bands which are beyond the input signal's frequency range (such 

as band 8 for the 8 band coder, bands 15-16 of the 16 band coder) 

are effectively prevented from being assigned bits by dividing their 

variances by a constant factor (e.g. 10) before including them in 

the bit allocation process. This method provides virtually identical 

bit allocation patterns to the case when the out-of-range bands are 

excluded from consideration, and can be more conveniently implement-

ed on the computer. 

(3) These values of 0,2 are then used in the bit assignment equation of 
~ 

(6.10) to obtain the Ri's. The average bit rate R used in the equa-

tion must be modified to account for channel capacity occupied by 

the side information. 

(4) The Ri's are then rounded up or down to the nearest integer value to 

give the bit assignment map. 

(5) Further adjustments are necessary to ensure that the constraint on 

available bits (equation (6.7)) is satisfied and that no band re-

ceives more than the maximum allowable number of bits (7 in this 

case). If more bits than available have been allocated, then the ex-

cess bits are taken away from bands which least deserve them i.e. 
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for which the integer rounding process adds the greatest amount. For 

example, a band with an initial Ri of 3.6, rounded up to 4 is deemed 

initial R. of 4.8 rounded up 
L 

to be less de servant than one with an 

to 5. Similarly, when the number of bits allocated is fewer than 

available, the extra bits are given to bands which most deserve them 

i.e. the bands from which the integer rounding process takes away 

the greatest amount. 

The flow chart of the bit allocation procedure is shown in figure 6.9. 

R. is the number of bits assigned to the ith band from (6.10), R' is R 
1 i i 

rounded to the nearest integer, R is the total number of bits available 

and R is the maximum allowable number of bits for each band. 
max 

Adaptive bit allocation is generally used with forward adaptive 

quantization of the sub-bands, where the sub-band signal variances are 

transmitted to the receiver. The quantized version of these variances 

are used at both transmitter and receiver to compute the bit allocation 

pattern and the quantizer step-sizes. This ensures that the parameters 

used at both ends are identical. Consequently, the bit allocation 
, 

equation of (6.10) uses ai' instead of a
i 

' in practice. The fixed bit 

allocation map may be obtained by using the same procedure and averaging 

the bits assigned to each frequency band over the long-term. However, 

to prevent loss of bandwidth in the synthesised speech, at least one bit 

must be assigned to each frequency band, even though some of the high 

frequency bands contain insignificant information most of the time. 

Because of this inefficient utilisation of available bits, and the 

inability to properly track the short-term signal spectral variations, 

the performance of sub-band coders employing fixed bit allocation is 
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necessarily inferior to the fully adaptive case. Its advantages 

however, lies in its much reduced complexity. Esteban[145) proposed the 

bit allocation pattern 3333 1111 for an 8 band SBC operating at 16 Kbps 

using an input signal band-limited from 0 to 4 kHz. 

6.2.3.3 Quantization 

The sub-band signals are normally coded using APCM-AQF, particularly 

when the number of bands is large. The step-sizes employed in the 

quantization are determined from the signal variance of each band, which 

are transmitted as side information. The proportion of available bits 

assigned for the side information depends on the frequency of update of 

the quantizer step-sizes. Table 6.3 shows the segmental SNR results 

obtained for the 2,4,8 and 16 band sub-band coders simulated, where the 

quantizer step-sizes (and bit allocation patterns) are updated after 

every 256, 128, 64 and 32 input samples. Allowance has been made for 

the side information required for transmission of the sub-band variances 

(5 bits each per block), so the results apply for a total transmission 

rate of 16 Kbps. 

---------------

Table 6.3 Segmental SNR performance for Sub-band Coder Employing 
Adaptive Bit Allocation and APCM-AQF (16 Kbps) 

Update 
Blocksize 256 128 64 32 

Male Female Male Female Male Female Male Female 
2-band 18.76 18.48 19.10 18.74 19.30 18.95 19.26 18.95 
4-band 23.03 22.18 22.09 20.65 22.71 21.05 18.50 16.16 

8-band 23.64 22.73 23.71 22.44 22.37 20.37 
16-band 23.80 22.66 22.99 21.18 18.16 17.34 
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It can be seen that the SNR generally increases with the number of 

sub-bands and reaches its peak when b=8. SNR also falls as the 

blocksize for updating the quantizer is reduced, since proportionately 

less bits are available for signal coding, due to the resulting increase 

in side information. A quantizer update blocksize of 128 samples (or 16 

ms) appears to be a good compromise in terms of performance and delay. 

Figure 6.10 shows the output noise spectra for the 4, 8 and 16 band 

coders employing adaptive bit allocation, with the parameters updated 

every 16 ms. The lower noise level of the 8 and 16 band coders over the 

4 band case is clearly demonstrated. 

6.2.3.4 Subjective Quality 

Recordings were made of the decoded speech from sub-band coding schemes 

using various combinations of parameters. Informal listening tests 

indicate a high quality of received speech generally, for the bit rate 

concerned. The high frequency hiss characteristic of time domain coders 

such as ADP CM at this bit rate is virtually absent, as can be deduced 

from figure 6.10. For the 4 and 8 band coders however, a whistling 

distortion is quite clearly audible. This was found to be due to the 

high frequency peaks (fig. 6.10) which were not totally removed by the 

analogue filter used in the recording. These however, could be removed 

by digitally filtering the output speech using a 33-tap FIR low-pass 

filter on the computer. Nevertheless, a 'whispery' distortion remains, 

accompanied by a hollowness when the number of bands is small. The 

'whisper' is due to aliasing effects which occurs in the synthesis 

process when one or more bands (usually the high frequency bands) are 
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not transmitted, and a folded scaled down image of the low frequency 

band(s) occupies the spectral gaps in the signal. The 'hollowness' is 

due to these spectral gaps. 

is 

For 

much 

16 

less 

bands however, this hollowness 

noticeable. In fact, the disappears and the whisper 

quality obtained for the 

the original. 

16 band coder is excellent and very close to 

Recordings were also made for the same sub-band systems, which have the 

maximum number of bits allowed in each band reduced to 5. Although 

quality is still generally good, the distortions in this case are 

considerably more apparent. 

Before discussing the merits or demerits of the sub-band coder further, 

we shall pause briefly to consider the other powerful frequency domain 

coder which provides even finer frequency analysis. 

transform coder will be described in the next section. 

6.3 ADAPTIVE TRANSFORM CODING (ATC) 

The adaptive 

The adaptive transform coder (ATC)[12,140,161,l62] is a more complex 

frequency analysis technique which involves block transformations of 

windowed segments of the input speech. 

set of transform coefficients which 

Each segment is represented by a 

are separately quantized and 

transmitted. At the receiver, the quantized coefficients are inverse 

transformed to produce a replica of the original segment. Adjacent 

segments are then joined together to form the synthesised speech. 



log Mug 
2 

-8 

-\3 

8 Band 

.;.. 4 Band , 
\', 

" \ 
) 

16 Band / 

-\8-+ _____ --,-, _____ " _____ -, _____ -,, 

o \000 2000 3000 1000 

Frequency (Hz) 

232a 

Fig_ 6_10 output Noise Spectra of 4,8 and 16 band Sub-band Coder 
Using Adaptive Bit Allocation and APCM-AQF (Male Speech) 

10 KLT 

~-
OCT 

8 
,..- OFT 

~ ~. 

CD 6 
7/' ,./,,/ 

-cJ ~ /' ~ 

0 ~ .----.----_.- OST ... p-_._.o-j 
C> 4 

-~., ./ ~ __ ....o------ WHT 
--L'----

2 --~. 

128 

N 

Fi<j. 6.11 'l'heorctical Gain::; in SNH flver PCM of Various 
Uni tary Tran~ form~; 



Chapter' 6 Page 233 

6.3.1 The Block Transformation 

Block transformation techniques have been widely used in image coding 

systems with much success[23S], but it was only recently applied to 

speech coding. The class of transforms of interest for speech 

processing are the orthogonal time-to-frequency transformations. 

It can be shown[48,16l] that the gain of a transform coding scheme 

(using an N point transform) over PCM can be given as, 

= 

2 

2 
cr 

(6.11) 

where cr 
2 

represents the variance of the signal and cr. are the variances 
J 

of the N transform coefficients. This gain is in fact the ratio of the 

arithmetic and geometric means of the variances of the transform 
2 

coefficients, since the signal variance cr for unitary transforms is 

equal to the average of the variances of the transform coefficients. 

2 
cr = 1/N 

N 2 
I cr. 

j=l J 
(6.12 ) 

Zelinski and Noll[16l] obtained the value of G
tc 

for various unitary 

transforms, using a stationary tenth order Markov process whose first 

ten autocorrelation coefficients are equal to the first ten long-term 

autocorrelation coefficients of speech. Figure 6.11 shows the results 

obtained using various blocksizes of the Karhunen-Loeve, discrete 

cos ine, discrete Fourier, discrete slant, and the Walsh-Hadamard 

transforms. Note that the discrete cosine transform (DCT) has a 

performance very close to the optimum signal-dependant Karhunen-Loeve 

transform (KLT) and significantly superior to the others. 
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Indeed, the DCT has been found to be ideally suited for the coding of 

speech as well as picture signals[12,140,161,164,235). Apart from its 

signal independence, and its approximation to the KLT, its even symmetry 

helps to minimise end effects encountered in block coding methods. The 

DCT of an N-point sequence is formally defined as, 

x (k) 
c 

N-l" e2n+l)k1f~ 
l x(n)c(k)cos 2N ) 

n=O 

k 0.1.2 •..••. N-I 

where c(k) = 1, k = 0 

k ~ 1,2 ••••••• N-l 

The inverse DCT is defined as, 

x(n) = 
N-I ((2n+l)k1f~ 

I/N l Xc(k)C(k) cos \ 2N ) 
k=O 

n = 0.1.2 •.•.•. N-l 

(6.I3a) 

(6.13b) 

Fast algorithms have been derived for implementing the DCT with great 

computational efficiency, comparable to the FFT[236-238). 

6.3.2 Quantization of the Transform Coefficients 

The quantization of the transform coefficients is of fundamental 

importance since it determines the accuracy of preservation of the 

short-time signal spectrum, and hence the quality of the synthesised 

speech. Usually these coefficients are individually quantized, with the 

step-sizes and number of bits determined from the energy distribution in 

the cosine basis spectrum. For minimum mean-square error distortion. 

the number of bits assigned for coding the N transform coefficients is 
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determined by the same bit allocation equations used for sub-band coding 

i.e. equations (6.5) to (6.9), with b (the number of sub-bands) 

replaced by N (the number of transform coefficients). Unlike the SBC 

however, fixed bit allocation is not applicable to ATC. This is because 

the latter operates by adapting to the fine resolution short-term 

frequency characteristics of speech, which 

block to block. Consequently, a bit 

long-term statistics would be severely 

may vary drastically 

assignment pattern based 

sub-optimum, as has 

from 

on 

been 

demonstrated by Zelinski and Noll[161]. Further, as was observed 

previously with regard to SBC, fixed bit allocation requires the 

assignment of at least one bit to each frequency component to prevent 

loss of bandwidth in the synthesised signal. This would result in 

substantial 'wastage' of bits for the transform coder which has 

typically 128-256 transform coefficients. 

6.3.3 Noise Shaping 

As in time domain waveform coding techniques, the noise spectrum of 

frequency .domain coders may also be shaped appropriately to improve the 

perceptual quality of the decoded speech[12,140]. The bit assignment 

rule prescribed by (6.5) produces an output noise with flat spectral 

characteristics, which is known to be perceptually sub-optimal. This 

flat noise spectrum however, could be controlled to some extent by 

performing the bit assignment based on a different criterion. The 

modified bit assignment rule to permit control of the noise spectrum 

[12,140,239] is given by, 



= d + 1/2 1og
2 

2 W.a. 
~ ~ -----D* 

where Wi represents a positive weighting. 
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i = O,l, •..•.• N-l (6.14) 

By changing the weighting 

function Wi , the shape of the output noise spectrum can be varied, from 

the flat minimum distortion case to a shape which follows the input 

signal's spectral envelope. For any particular transmission bit rate, 

the perceptually optimum value of Wi can be determined by means of 

listening tests. 

6.3.4 Adaptation Strategy 

The adaptive bit assignment used in ATC schemes seeks to exploit the 

non-flatness of the speech signal density, by distributing bits unevenly 

across the spectrum. The actual step-sizes to be used in the quantizer 

however, needs to be estimated, since the expected spectral levels of 

the transform coefficients are not known a priori. Thus, some side 

information which reflects the dynamic properties of speech must be 

transmitted. This adaptation information is used at both transmitter 

and receiver to determine the bit assignment pattern and the quantizer 

step-sizes for the block and is therefore of critical importance. Two 

basic adaptation techniques will now be considered. 

6.3.4.1 Zelinski and NolI's Scheme 

The best known adaptive transform coder for speech applications is 

probably the proposal of Zelinski and NolI shown in block diagram form 

in figure 6.12[161,162]. A block of N input speech samples is first 

normalised by its estimated standard deviation and then transformed into 
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Fig. 6.12 Block Diagram of an Adaptive Transform Coder 

a set of frequency domain coefficients via an N-point DCT. A coarse 

description of the cosine basis spectrum is extracted and transmitted to 

the receiver as side information. This (quantized) coarse spectral 

estimate is used at both transmitter and receiver to calculate the 

optimum assignment of bits and the quantizer step-sizes for coding the 

coefficients. The spectral estimate consists of a small number of 

samples computed by averaging the DCT spectral magnitudes (figure 6.13). 

These samples are then geometrically interpolated (i.e. linearly 

interpolated in log magnitude) to yield the expected spectral levels at 

all frequencies used for determining the quantizer parameters. 

Excellent synthesised speech quality was reported using this method at 

16 Kbps. 

As the bit rate is reduced however, it becomes increasingly difficult to 

accurately encode the fine structure (pitch details) of the DCT 
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spectrum, and this gives rise to a 'burbly' distortion in the recovered 

speech. At the same time, the shortage of bits results in wide gaps in 

the spectrum, as a substantial proportion of coefficients are not 

transmitted. This leads to significant loss of bandwidth and the 

so-called 'low-pass' effect[12,140,162). 

A number of remedial measures have been proposed to combat this quality 

deterioration at low bit rates. These include uneven spacing of the 

side information spectral estimates (to give more emphasis to 

perceptually important frequency regions[162,239), ensuring that a 

minimum proportion of transform coefficients are transmitted and 

substituting non-transmitted coefficients with an amount of noise (to 

reduce the low-pass effect), and more efficient quantization of the side 

information by exploiting various redundancies present[162). However, 

these attempts have not succeeded in adequately correcting for the 

inaccuracy of preservation of the short-time spectrum, which is the 

predominant cause of the performance degradation. 

6.3.4.2 Vocoder Driven Adaptive Transform Coder 

A later proposal for low bit rate ATC schemes utilises a more complex 

'speech specific' adaptation algorithm based on the traditional model of 

speech production to predict the DCT spectral levels. The prediction 

involves two components as illustrated in figure 6.14. The first is 

associated with the spectral envelope and the second with the harmonic 

(fine) structure of the spectrum. This so-called vocoder driven ATC[12, 

140,165,240) is able to provide a more parsimonious allocation of 

available bits according to the fine structure of the spectrum and thus 

avoid the quality degradation encountered at low bit rates. A block 



diagram of the system is shown in figure 6.15. 
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The estimate of the 

short-term DCT spectrum is obtained as follows. The original DCT 

spectrum is first squared and inverse transformed with an inverse OFT to 

yield a 'psuedo' autocorrelation function (ACF) rather similar to the 

normal ACF. The first p+l values of this function are used to define a 

correlation matrix in the usual normal equations formulation sense. The 

solution of these equations yield s an LPC filter of order p, whose 

inverse spectrum provides the estimate of the formant structure of the 

DCT spectrum (figure 6.l4(a». The spectral fine structure is obtained 

from a pitch model, derived from the maximum value of the psuedo-ACF 

above the range p+l. The corresponding pitch gain G is the ratio of the 

psuedo-ACF at this maximum value, over its value at the origin. With 

these two parameters, a pitch pattern can be generated (figure 6.l4(b». 

The two spectral components are multiplied and normalised to yield the 

final spectral estimate (figure 6.l4(c» used in the bit assignment and 

step-size adaptation process. 

6.3.5 Computer Simulation 

As we are concerned with evaluating the performance of speech coders 

operating at 16 Kbps, the use of the highly complicated vocoder-driven 

adaptive strategy is not warranted, since the simpler (although still 

highly complex) model of Zelinski and NolI is adequate at this bit rate. 

This ATC design was therefore chosen for simulation on the computer. 

A l28-point DCT was used to perform the block transformation. The basis 

spectrum is estimated using 16 uniformly spaced support values, each 

obtained by averaging over 8 neighbouring transform coefficients. For 

example, the first support value, obtained from the average variance of 
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the first 8 coefficients is positioned at location 4, the next at 

location 12, then 20, and so on until location 124. These support 

values are then quantized with 2 bits before interpolation (on the log 

magnitude) is performed to obtain the complete spectral estimate. 

Figure 6.16 shows how this spectral estimate compares with the spectrum 

for a typical segment of speech. The bit allocation procedure using 

this spectral estimate is performed in the same way as for the sub-band 

coder, shown in the flow-chart of figure 6.9. The number of bits 

assigned to each frequency component must be rounded to the nearest 

integer. Excess bits are taken from the least deserving coefficients 

and extra bits are given to the most deserving cases in the same manner 

as before. With 5 bits used for coding the block standard deviation 

(for normalisation purposes) and 32 bits for the 16 support values, a 

total of 219 bits per block of 128 samples are available for 

distribution among the transform coefficients. Base 2 logarithm is 

taken of the support values before quantization to ensure a more uniform 

amplitude distribution. 

Gaussian density[43!. 

All quantizers are designed for signals with a 

The segmental SNR obtained for the male and female speech files are 

respectively 24.47 and 22.40 dB. Subjective quality of the recovered 

speech is extremely good for the male speech, where distortion is barely 

perceptible. For the female speech however, a slight 'buzz' can be 

heard in tbe background, due possibly to edge effects related to the use 

of block transforms[140!. 
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6.4 DISCUSSION 

The efficiency of frequency domain speech coding has been amply 

demonstrated by the sub-band and transform coders described above. Much 

of the superiority of such frequency domain coders over their time 

domain counterparts, lies in the effective exploitation of the non-flat 

spectral density of speech and the use of different encoding accuracy 

for different frequency regions. This flexibility ensures that the 

'usefulness' of every available bit is maximised. 

Variations to the basic structure of the coders described have been 

proposed by several researchers, but most of these involve very minor 

modifications. In sub-band coding, much of the more recent research 

efforts have concentrated on simplifying the bit allocation process[160] 

and reducing side information bit rate by exploiting spatial 

redundancies in the signal energy[lS4,lS7]. pitch prediction has also 

been incorporated in some systems[lSl,lS3,209] although the 

justification for this substantial additional complexity is dubious. 

One important development in sub-band coding has been the use of 

polyphase filter designs in the implementation of the QMF bank[147]. 

This has resulted in an appreciable reduction in the amount of signal 

processing required in the filtering process, compared to the direct 

time convolution methods. 

For the adaptive transform coder, some improvement in the synthesised 

speech quality has been reported using a post-processing enhancement 

scheme on the vocoder-driven ATC[240]. Also in the same area, another 

notable effort seeks to reduce coder complexity by employing small 

(9-point) transforms[24l]. These were aimed at providing good quality 
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speech at very low bit rates « 10 Kbps). More recently, an attempt to 

bridge the gap between wide-band and narrow-band frequency domain coders 

came in the form of a 32 band sub-band coder[157], which uses vector 

quantization techniques for adapting the bit allocation and quantizer 

step-sizes in order to minimise side information requirement. This 

highly complex scheme was reported to provide comparable quality with 

ATC at the same bit rate. 

Obviously, the advantages of these powerful techniques over time domain 

methods have not been achieved without a cost. Frequency domain coders 

are generally much more complex, and usually require long coding delays. 

The use of FIR filter banks with their inherent delay, has been a 

limiting factor in sub-band coders. This delay and the computational 

complexity of the analysis/synthesis filter bank processes increase 

proportionately with the number of bands and 

even with the use of quadrature mirror 

could prove prohibitive 

filters and polyphase 

implementations. The sub-band coding approach for digitizing speech can 

thus be quite demanding in terms of both delay and complexity, 

especially at low bit rates( < 16 Kbps), where fine frequency resolution 

is essential to enable the coder to efficiently adapt to the short-term 

speech spectral variations. At the same time, when the number of bands 

is large, it becomes increasingly necessary to employ adaptive (or 

dynamic) bit allocation and forward block adaptive quantization (AQF) so 

that available bits are optimally allocated to each sub-band. This 

unfortunately, imposes a further delay on the system (equal to the 

quantizer/bit allocation update blocksize) in addition to the filter 

propagation delay. 
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The delay in the adaptive transform coder depends on the size of 

transform used, which is usually sufficiently large to provide adequate 

frequency resolution. While this delay is generally less than that of 

sub-band coders, the complexity of ATC is much higher, since the 

encoding and bit allocation processes are effectively performed for a 

considerably larger number of frequency bands. This complexity issue 

renders the otherwise powerful ATC unattractive for many applications 

[242,243). A reduction in blocksize has been suggested as a possible 

means of coder simplification[162,241). Unfortunately, the advantages 

of coding in the frequency domain also tends to be eroded when the 

transform size is small, and the resultant performance degradation far 

outweighs the reduction in complexity. 

6.5 A TRANSFORM APPROACH TO SPLIT-BAND CODING 

In the following sections, we propose a 'transform based' split-band 

coding (TSBC) approach, which permits fine spectral resolution (and 

therefore a more accurate representation of the short-term speech 

spectral variations) without the accompanying increase in delay and 

complexity encountered in conventional sub-band coding systems. A block 

transformation is used to perform the band-splitting into a number of 

equally or unequally spaced bands. The time signals corresponding to 

these bands can be coded in the Same way as in SBC, using fixed or 

adaptive bit allocation with forward or backward adaptive quantization. 

The proposed method allows for a more flexible design approach to 

frequency domain coding, as a whole range of trade-offs between 

performance, delay and complexity is possible, to suit specific 
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applications. More importantly, the delay and complexity of the 

proposed system (in terms signal processing operations) is substantially 

reduced, compared to sub-band coders employing filter banks[201,202j. 

6.5.1 System Description 

Fig. 6.17 Block Diagram of the Transform-based Split-band Coder 

The sequence of input samples {x } is segmented into blocks X , of N 
n n 

samples. Each block X is transformed via an N-point discrete cosine n 

transform (DCT) to yield a block Y , of N transformed coefficients. Y 
n n 

is then divided into contiguous blocks Wl(O ,W o (2) , ••••• W (b). 
~ n each 

containing NIb samples, where b is the number of frequency bands in the 
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TSBC system. Each of these smaller blocks Wn(i) is separately 

de-transformed via an NIb point inverse DCT to give the 'psuedo' 

sub-band signals Zl(1).Z2(2) •••••• Zn(b). The energy En(i) in each of 

the Zn(i) bands is computed and transmitted as side information. The 

quantized version of this information is used at both the transmitter 

and the receiver to compute the optimum number of bits assigned for the 

coding of each sub-band signal Zu(i). as well as the step-sizes for the 

individual quantizers. At the receiver. the reverse process is 

performed - the decoded 'psuedo' sub-band signals. Zu(i) are forward 

transformed with an NIb point DCT to give the signals Wn (i). These are 

then combined in the correct order to form Yn • A fina~ N point inverse 

DCT on Yn yields the recovered signal x,.,. 

The blocksize for the update of the bit allocation and quantizer 

step-sizes need not be equal to the transform size. When the latter is 

relatively small. the side information is calculated and transmitted 

only once over a number of input transform blocks. This is to ensure 

that the side information bit rate remains a fairly small proportion of 

the total transmission rate. so that sufficient bits are available to 

accurately code the sub-band signals. 

The splitting of the input signal Xn can also be considered in terms of 

matrix operations as: 



NxN NxN NxN 

N/b N-N/b 
,..-"-.. . 

z (1) Bt 0 0 n N/b 
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n 0 Bt 
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n 0 0 t 

BN/b 

At the receiver, the synthesis procedure to recover 

Nx1 NxN NxN 

BN/b 0 0 0 

0 BN/b 0 0 

X = Bt 
n N 

o o ..... 

This pair of matrix equations can be represented by, 

t Z 13N/b BNXn n 

and 

X = Bt 
13N/bZn n N 

Chapter 

X n 

Nx1 

X n 

takes 

Nx1 

Z (l) 
n 

Z (2) 
n 

Z (b) 
n 
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(6.15a) 

the form, 

(6.15b) 

(6.16a) 

(6.16b) 

respectively, where B is the cosine basis matrix for an N point 
N 

transform and ~ , which denotes the transpose of BN is also the inverse 

N point cosine basis matrix (using the symmetrical definition of the DCT 

pair) • 8N/b represents the NxN square matrix containing b sub-matrices 

BN/b along its 'diagonal' and zeroes elsewhere. Z is the (Nxl) 
n 

dimensional matrix formed from b (NIb x 1) dimensional sub-matrices 



Z (i), i = 1,2 .... b. 
n 
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The value of b determines the spectral resolution (number of bands) of 

the split-band system, which can vary from the fine resolution provided 

by ATC to the 'one-band' case of waveform coding schemes. Specifically, 

3 cases arise, 

(i) b = N 

i.e. the number of frequency bands is equal to the transform blocksize. 

In this case, 

t 
1 (single value) (6.17) BN/b = BN/b = 

and 

SN/b 
t 

(6.18) 8N/b = IN 

where IN is the NxN identity matrix. From (6.l6a) and (6.l6b) therefore, 

z = B X = Y n N n n {6.19a) 

and 

Bt 
, 

Bt 
, 

X = Z = Y n N n N n 
(6.19b) 

Thus, the transform coefficients Y are in fact coded individually, and 
n 

the system becomes an adaptive transform coder. 

(ii) b = 1 

Equations (6.l6a) and (6.lb) yield, 

z = et B X X n N N n n (6.20a) 

and 

X B~ SN/b z Z n n n 
(6.20b) 
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i.e no splitting of the signal 1S performed and the full band signal is 

directly coded. 

(iii) 1 < b < N 

A range of differing degrees of spectral resolution can be achieved, 

with b defining the fineness of resolution. 

Non-uniform splitting of bands (such as octave sub-band designs) can be 

simply realised by dividing the transform coefficients Y into unequal 
n 

parts before carrying out the second stage transformations. 

Bit allocation and quantization is performed in the same way as in 

sub-band coding (sections 6.2.3.2 and 6.2.3.3). 

6.5.2 Computer Simulation Results 

The performance of the proposed TSBC system was evaluated using computer 

simulation. Many combinations of various parameters are possible. The 

three main variables in the system are: 

(a) b - the number of frequency bands 

(b) N - the blocksize of the initial transform 

(c) A - the blocksize for the update of side information, which defines 

the rate of adapting the sub-band bit allocation and quantizer 

step-sizes to the short-term speech spectral variations. 

Computer simulation results related to the variations of these para-

meters are outlined as follows:-

(1) Varying the number of bands, b 

With A fixed at 256, the levels of the output noise spectra for various 
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values of b are shown in figure 6.18 for transform sizes 128 and 64. It 

can be seen that the level of output noise is generally inversely 

related to the number of bands, except for the case when b = 32. This 

is due to the fact that increasing b increases the side information 

requirements (for the same update blocksize A) so that proportionately 

fewer bits are available to code the subband signals. The allocation of 

5 bits for the energy of each band takes up more than 25% of the 

available bits, leaving less than 75% to code the Z (i) signals, which 
n 

in turn leads to poorer performance. Thus, in this case, the advantage 

of better spectral resolution is partially offset by lower encoding 

accuracy, due to the proportionately larger side information 

requirements. 

(2) Varying the Transform size, N 

With A again fixed at 256 samples, the effect on the output noise 

spectra, of the variation of the transform size N is demonstrated in 

figure 6.19 for the 8 and 16 band cases. Not unexpectedly, the noise 

level is reduced when the transform blocksize N increases, since N 

determines the fineness of frequency resolution of the first block 

transformation. 

(3) Varying the blocksize A, for bit allocation and quantization 

Fixing the transform size N to 64, the blocksize A is varied for the 16 

and 32 band cases (see figure 6.20). Increasing A reduces the side 

information requirements and hence releases more bits to quantize the 

sub-band signals, resulting in lower output noise as shown. However, 

this only applies to a certain extent, since the accuracy of the 

quantizer step-size estimate is also reduced when A is excessively 

large. Additionally, the delay associated with a large A may be a more 

immediate constraint in practical terms. 
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A summary of computer simulation results of the proposed coder in terms 

of segmental SNR performance is shown in figure 6.21. The performance 

of the conventional QMF sub-band coder is also included for comparison. 

It can be seen that the proposed split-band scheme compares favourably 

with the SBC when the transform size is fairly large. As a further 

comparison, figure 6.22 shows the output noise spectra of the 

conventional 16-band SBC, the ATC and ADPCM together with the proposed 

split-band coder for N=128, b=16 and A=256 (all at 16 Kbps). The ADPCM 

coder employs second order 

blocksize of 256 samples) 

forward adaptive prediction[20] (with a 

and the one-word memory 

Clearly, the average noise level of TSBC is comparable to 

quantizer[49]. 

the SBC and 

ATC. Figure 6.22 also illustrates the superiority of frequency domain 

coders over simple time domain ADPCM schemes. 

The results of the noise spectra corresponds closely to the perceptual 

quality of the received speech. The subjective performance of TSBC is 

generally comparable to the SBC but the perceived distortion is 

different. In the SBC, a 'whispery' distortion and 'hollowness' 

(section 6.2.3.4) 1S present in the perceived speech when the number of 

bands is small. For the proposed scheme, the 'Whisper' is present to a 

lesser extent but a further low amplitude 'buzz' is audible, and becomes 

gradually more apparent as Nand/or b is reduced. This 'buzz' is also 

discernible in the ATC, particularly for the female speech (see section 

6.3.5) and is possibly due to edge effects related to the use of block 

transforms. However, for reasonably high values of N (e.g. 64, 128) 

and a large number of bands (8,16), this distortion is barely 

perceptible using headphones and only slightly audible over the 
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loudspeakers. As the rate of update of side information increases, 

proportionately fewer bits are available to code the sub-band signals, 

and the result is a 'burbly' distortion similar to that obtained with 

ATC at low bit rates[162]. Also, when the transform size, N is reduced, 

spectral resolution of the main transformation becomes coarser, and the 

recovered speech possesses a certain 'roughness'. 

6.5.3 Discussion 

A realistic assessment of speech coding schemes must necessarily 

consider aspects of practical implementations. Good performance is 

obviously the primary aim of any coding system, although this must be 

weighed against the complexity involved (which determines the 

'implementahility' and cost), the robustness to transmission errors, and 

the delay required, amongst other factors. 

The analysis/synthesis transform approach to split-band coding proposed 

here involves shorter delays and requires a significantly smaller amount 

of computation, compared to SBC schemes operating under the same 

conditions. These two factors are discussed in greater detail in the 

following. 

6.5.3.1 Delay 

The delay in the sub-band coder consists of two components:-

(1) the analysis/synthesis propagation delay through the quadrature 

mirror filter banks, given as (b-l)(T-1) samples for a b band SBC 

using uniform T-tap filters. For example, a 16 hand SBC employing 

16 tap QMFs, will incur a delay of 225 sampling periods. 



Chapter 6 Page 252 

(2) the delay introduced by forward adaptive bit allocation and quantiz­

ation of the sub-band signals. This is defined by the parameter A. 

The delay in the proposed scheme is independent of band is 

significantly lower than that imposed on the corresponding sub-band 

coder since the band splitting and bit allocation processes can be 

performed within the same block A, and no additional filter propagation 

delay arises. For the same 16 band example, there would be a reduction 

in delay of 225 samples (-28 ms), assuming that the time taken to 

perform the band-splitting is relatively insignificant. 

6.5.3.2 Complexity 

The complexity of an algorithm is normally considered in terms of the 

amount of signal processing involved and the storage required. A 

reasonable measure of signal processing requirements is the number of 

multiplication and addition operations employed per sample of the input 

signal. 

Quadrature mirror designs[145] of FIR filters and their polyphase[147] 

implementation allow the number of filtering operations in sub-band 

coders to be appreciably reduced over the case where direct filtering is 

employed. Specifically, the filtering process involves T/2 log2b real 

multiplications and (T/2+1)log2b real additions (see appendix G). 

Several fast algorithms exist for the computation of the DCT[236-238]. 

One such algorithm[236] entails 3N/2(log2N - 1) + 2 real additions and 

N10g 2N - 3N/2 + 4 real multiplications for an N point DCT. For the two 

stage transformation employed in the proposed scheme, the computational 

requirements per input sample are: (see appendix H) 
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real additions 310g
2

N - 3 - 3/210g
2

b + 2(b+l)/N 

210g2N - 3 - 10g2b + 4(b+l)/N real multiplications. The computational 

requirements for the two methods of band splitting are shown in figure 

6.23. Note the different scales on the vertical axes. It is clear that 

the effective number of signal processing operations (per input sample) 

in the proposed scheme is substantially lower than that of the sub-band 

coder. This is a significant advantage in implementation terms. 

The storage requirements of the sub-band coder increase proportionately 

with the number of bands and the length of filters used since all 

intermediate samples propagating through the filters must be retained. 

Assuming equal length filters at all stages, this storage requirement is 

given by (b l)T real locations. Obviously, if forward block adaptive 

quantization is employed, there would be further demands on memory 

storage determined by the blocksize of adaptation. The fixed memory 

requirements for storing the filter coefficients are relatively modest _ 

because of the symmetrical properties of QMFs, only one half (T/2) of 

the filter coefficients need to be stored[1471. 

For the proposed scheme, the cosine basis functions of the DCT matrix 

need to be stored in fixed memory. However, only the values in the 

first quadrant are required, since the other functions are obtainable 

via symmetrY[2441. For a N point transform, N fixed storage locations 

are required. The dynamic memory requirement is determined by the size 

of transform used and the update blocksize. Again, for forward 

quantization and bit allocation, the 'block transform' approach allows 

considerable memory to be 'shared' between the split-band analysis and 

the adaptive bit allocation process. The dynamic memory requirements of 

TSBC is therefore, generally lower than that of the sub-band coder. 
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6.5.4 Note on Publications 

A paper entitled, "A Transform Approach to Split-band Coding Schemes" 

written in co-authorship with Dr. C.S. Xydeas has been accepted for 

publication in the lEE Proceedings on Communications, Radar and Signal 

Processing (Pt. F). This Covers the work described in section 6.5 and 

some parts of section 6.6 below. 

A shorter version of the paper entitled, "Split-band Coding of Speech 

Signals Using a Transform Technique" has been submitted for 

consideration to the International Conference on Communications (ICC 

'84) to be held in Amsterdam on May 14-17, 1984. 

6.6 FURTHER CONSIDERATION ON BIT ALLOCATION AND QUANTIZATION 

The effect on system performance of each of the parameters in the TSBC 

scheme has been demonstrated in the preceding sections. Generally, the 

performance of the coder improves (to a limit) with the transform size, 

N, the number of bands, b and the blocksize for parameter adaptation, A. 

On the other hand, complexity and delay also increase in the same 

direction. In practical implementations, there is inevitabaly a 

trade-off in terms of performance, complexity and delay, and the TSBC 

scheme offers a flexible design approach to satisfy a range of 

constraints. Some room for similar manouvre also exists for the 

conventional QMF sub-band coder, albeit to a lesser extent. The number 

of bands, the length of filters used and the rate of parameter 

adaptation can all be controlled. 

In this section, we consider Some issues related to the bit allocation 

and quantization procedures for sub-band signals relevant to both SBC 



and TSBC schemes. 

6.6.1 Forward and Backward Adaptation Variations 

Forward adaptive quantization of the sub-band 

undoubtedly efficient, becomes progressively 

number of bands employed increases. This 

less 

is 
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signals although 

attractive as the 

because the side 

information requirements also become increasingly non-trivial and coding 

accuracy can be seriously affected. A further disadvantage associated 

with all forward adaptive schemes is of course the need for a delay. 

Fixed bit allocation, if used together with backward adaptive 

quantization offers a distinct advantage in terms of available bits for 

coding the sub-band signals (as no side information is required) and a 

reduction in coder delay. Unfortunately however, as noted previously, 

the inability to track the short-term frequency variations in the input 

signal imposes a severe limit to performance, especially with a large 

number of bands. Also, in such cases, a significant proportion of 

available bits are 'tied up' by the high frequency bands (to prevent 

loss of bandwidth) leading to a reduction in overall coding efficiency. 

Backward adaptive bit allocation with backward quantization, which 

offers the promise of dynamic assignment of bits without the need for 

side information is an attractive proposition. The bit allocation can 

be made to vary according 

previously decoded sub-band 

theoretically possible, most 

to the relative energy composition of 

samples. 

conceivable 

Unfortunately, although 

forms of backward bit 

allocation adaptation would be extremely sensitive to transmission 

errors. Once the bit allocation pattern in the receiver is not matched 
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to that at the transmitter, the system collapses unless some form of 

recovery is incorporated (which inevitably means more complexity and 

loss of performance). 

Another possible combination is to employ forward adaptive bit 

allocation with backward quantization. In this case, the adaptive bit 

allocation process is performed at the transmitter and the bit 

allocation map is communicated to the receiver. This method would 

retain the advantage of optimum bit allocation, with reduced side 

information and lower receiver complexity (as the bit allocation 

procedure need not be repeated at the receiver). The reduction in side 

information arises because, unlike the signal variances which must be 

fairly accurately quantized, the information concerning the bit 

allocation pattern can only take on a very limited range of integer 

values, and thus can be transmitted with a smaller number of bits. 

Figure 6.24 shows as an e~ample, the histograms for the number of bits 

assigned to each sub-band for the 8-band TSBC scheme, using a transform 

size of 128, with the bit allocation updated every 32 ms (256 samples). 

It can be seen that generally, the bit information for the lower 

sub-bands of the signal can be coded with 2 bits (4 possible values) 

while the same information related to the higher part of the spectrum 

requires no more than 1 bit. This provides a saving of 3 to 4 bits for 

each band, compared to the case where the average energy of each band is 

coded with 5-bit accuracy. The saving is substantial when the spectral 

resolution is high, as in the 32 band case, where the increased side 

information can seriously impair coding efficiency. This method of 

transmitting the bit allocation map may be considered as a simple form 

of vector quantization (see section 2.4.1.8), where the code book 
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contains a set of all bit allocation patterns of practical interest, and 

a codeword is transmitted once per block of samples to indicate which 

pattern is to be used. 

A potential problem exists with the use of instantaneous backward 

adaptive quantizers (such as the AQJ[49]) with adaptive bit allocation. 

The adaptation algorithm of AQJ requires a minimum of 2 bits to allow 

the step-size to adapt to the magnitude variations of the quantizer 

input but the high frequency bands are often only assigned one bit. One 

method to overcome this difficulty uses the 1 IlK bit quantizer[142], 

where the sign information is transmitted with one bit every sampling 

instant, while the magnitude is encoded with an additional bit every K 

samples. We propose another method where 

magnitude of the 1 bit AQJ output is obtained 

an approximation for the 

from a suitably scaled 

version of the output of one of the lower bands. The actual ratios for 

scaling depend on the energy in the reference band (which would be 

indicated by the number of bits assigned to it) and can be optimised 

from long-term statistics. Using this technique, the important zero­

crossing (sign) information is preserved for these high frequency bands 

and the magnitudes follow a scaled down version of the signal envelope 

of one of the lower bands. The use of forward adaptive bit allocation 

with AQJ is probably more relevant to the TSBC system, since no 

advantage in terms of a reduction in delay is available for the SBC. 

Hybrid methods of quantization may also be used, where some bands 

(especially the I-bit high frequency bands) are coded with AQF, while 

the lower bands use AQJ - the particular design chosen would obviously 

depend on the environment and application. For the TSBC scheme, one way 

of avoiding long coder delays is by using smaller transform sizes, if 



the resulting degradation is tolerable. 
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Unfortunately, apart from 

degraded performance, a smaller blocksize means more overhead side 

information and therefore less bits available for coding. 

6.6.2 Parallel Bit Allocation 

Typically about half the delay incurred by the SBC is due to the use of 

forward adaptive bit allocation and quantization, since the adaptation 

is based on the outputs of the QMF bank. While this delay may be 

avoided by employing fixed bit allocation with AQJ, the resultant 

degradation in performance is unfortunately far from acceptable. 

We examine a method by which this delay can be eschewed by attempting 

the bit allocation for the sub-band signals during the necessary time 

delay incurred by the QMF bank. Figure 6.25 illustrates how this 

'pipe-line' or parallel bit allocation approach operates, compared to 

the conventional 'serial' method. For an 8 or 16 band SBC, the delay 

due to the QMF analysis bank is typically about 15 ms, which is a 

suitably long time for bit allocation and quantizer adaptation. 

This parallel bit allocation can be carried out by performing a spectral 

analysis on the input signal segment, while it is propagating through 

the analysis filter bank. One way to do this is by using the discrete 

Fourier transform. The short-time Fourier spectrum of the input speech 

segment provides an estimate of the energy distribution in the various 

frequency bands. The accuracy of estimation might not be sufficiently 

high to permit the use of AQF (with transmission of step- sizes) 

although the relative energy composition of the various bands should be 

adequate to provide a bit allocation pattern (for use with AQJ) which 
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reflects the dynamic spectral variations of the input signal. 

6.6.3 Computer Simulation 

The adaptation strategies discussed above are investigated via computer 

simulation. 

The proposed method of scaling the 1 bit AQJ magnitude to the output of 

a high energy reference band is first examined. The relationship 

between the energy of bands assigned 1 bit, to that of the reference 

band must be determined to obtain a suitable scaling constant. This 

scaling ratio depends on a number of factors: 

(1) the number of bands in the coder, 

(2) the position of the 1 bit band with respect to the reference band, 

since bands assigned 1 bit might have different energy levels at 

different parts of the spectrum (The errors of rounding to the near­

est integer in the bit allocation process would be expected to be 

largest for the 1 bit bands); and 

(3) the number of bits assigned to the reference band. 

Experiments were carried out on both the SBC and TSBC. In each case, 

adaptive bit allocation is performed on the sub-band signals, a 

reference band is se lected, and the ratio of the variance of bands 

assigned 1 bit to that of the reference band is obtained. To maximise 

estimation accuracy, the reference band must be a band with consistently 

high energy. Consequently, the first band is chosen as the reference 

for the 4 and 8 band coders, the second band for the 16 band coder and 

the third band for the 32 band case. Fortunately, the experiments 

performed revealed very little variability in the scaling ratios. The 

ratio between the energy of the 1 bit band to that of the reference 
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appears to be quite independent of the former's position in the 

frequency spectrum, as well 'as to the number of bands employed in the 

coder. A simple table based on long-term statistics can thus be drawn 

up (table 6.4). This table of scaling factors are used in all 

subsequent simulations. 

Table 6.4 Scaling Constants for the One-bit Sub-band 
----------------------

No. of Bits in Reference Band 
Scaling Factor for I-bit Band 

3 
0.29 

4 
0.12 

5 
0.06 

6 
0.03 

7 
0.015 

Jayant[49] provided the optimum multiplier values for the AQJ algorithm 

for 2,3,4 and 5 bit quantizers. As the maximum number of bits used in 

the sub-band schemes is 7, the multipliers related to the 6 and 7 bit 

AQJ have to be determined. Experiments were performed for this purpose 

and the optimum multiplier values obtained empirically (maximum SNR) are 

shown in table 6.5. 

Figure 6.26 illustrates how the method of scaling the 1 bit AQJ output 

to a reference band compares with the original unquantized signal. The 

example is for the sixth band of a 8 band SBC when the reference (first) 

band is assigned between 5 and 7 bits. Notice that the signal envelope 

for the 1 bit band has been reasonably well preserved. 
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---- - ---.--.--.-.-- --_.- - ------------------- ... ---.- .. -.-

Table 6.5 Optimum Multiplier Values for 6 and 7 Bit AQJ 

(a) 6 Bit 

0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 
0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 
1.9 2.0 2.1 2.2 2.4 2.6 2.8 3.0 

(b) 7 Bit 

0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 
0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 
0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 
0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 
1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 
1.85 1.90 1.95 2.00 2.1 2.2 2.3 2.4 
2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 

Figure 6.27 shows the SNR performance of SBC and TSBC using AQF with 

forward transmission of the sub-band variances, and AQJ with vector 

quantization of the bit allocation pattern. It can be seen that for the 

SBC, the use of AQF results in better SNR performance for all cases, 

even though less quantizer bits are actually being used for coding the 

sub-band signals, compared to the AQJ case. The advantage of explicit 

transmission of quantizer amplitude information appears to be much 

greater than the less accurate instantaneous magnitude adaptation of 

AQJ. For the TSBC systems, the same observation can be made. Note 

however, the better performance of the 32 band case using AQJ. This is 

due to the fact that the coding efficiency for the sub-band signals is 

quite seriously affected by the heavy side information incurred by the 

32 band coder using AQF. 

The output noise spectral plots provide the same observations. Figure 

6.28 shows the output noise level for the 16 band SBC for three cases: 
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(a) fixed bit allocation with AQJ (b) adaptive bit allocation with AQF 

and (c) adaptive bit allocation with AQJ. The parameters are updated 

every 128 samples. Much of the advantage of AQF over AQJ occurs in the 

low frequency region as can be seen from the figure. Also, this 

performance advantage appears to be greater for male than for female 

speech. A whole set of results was obtained for all combinations of 

coder parameters. The general observation is that the use of AQJ leads 

to a drop in SNR in all cases (except the 32 band TSBC) and an increased 

'burbly' distortion in the synthesised speech, similar to that obtained 

with ATC at low bit rates. 

The application of parallel bit allocation is examined in relation to 

the 4, 8 and 16 band SBCs for which the QMF analysis stage incurs delays 

equal to 46.5 103.5 and 112.5 samples, respectively. To enable the use 

of the fast Fourier transform (FFT) for the frequency analysis, the 

blocksize of the discrete Fourier transforms used is chosen to be a 

power of two, nearest to the filter delay i.e. 64 for the 4 band coder 

and 128 for the 8 and 16 band cases. This gives a delay due to 

quantization and bit allocation, of about 17, 24 and 5 samples, 

respectively. 

To observe the estimation accuracy of the DFT, the variances of the 

actual sub-band signals (derived from the outputs of the QMF analysis 

bank) are compared with the variances estimated by the DFT, for a number 

of contiguous blocks of the the input signal. This is shown in figure 

6.29 for the 8 band SBC. It can be seen that the estimation of the 

sub-band signal variance is reasonably accurate for the low frequency 

bands. For the higher frequency regions however, the DFT performs 

badly, failing utterly to produce reasonable estimates in many cases. 
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This poor estimate for the higher bands is due largely to the 

imperfections of the DFT model as a spectral analyser. The errors in 

the model are particularly emphasised at the high frequency region where 

signal energy is very low. Nevertheless, it is reasonable to assume 

that the relative energy distribution among the sub-bands would not be 

too drastically affected by these inaccuracies. Consequently, the bit 

allocation map obtained by this means would be fairly similar to the 

'serial' method. Observations of the bit allocation maps for the two 

methods do reveal some minor differences, mostly occurring with bands 

which are assigned a small number of bits. These deviations from the 

optimal cases however, are sufficiently frequent to result in a drop in 

SNR performance. Figure 6.30 shows the SNR performance of the SBC using 

this method of bit allocation, compared to the two cases considered 

before. The same trend is shown by the output noise spectral plots 

(figure 6.31). Parallel bit allocation generally produces a higher 

level of output noise compared to the other two methods. 

The higher noise level is also audible subjectively. The synthesised 

speech produced by parallel bit allocation methods contains even more of 

the 'burbly' distortion noted for schemes employing AQJ, and the quality 

is quite significantly worse than the conventional SBC. 

6.7 SUMMARY AND CONCLUSION 

The area of frequency domain speech coding has been examined in some 

detail in this chapter, with particular emphasis on sub-band and 

adaptive transform coding. While these techniques are generally able to 
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offer improvements in performance over simple time domain coders at the 

same bit rate, they are usually also comparatively much more complex and 

normally incur fairly long coding delays. These drawbacks may well 

render them unsuitable for many applications. 

The sub-band coder, in particular has received an enormOus amount of 

interest in recent years as a viable means of achieving good quality 

speech at low to medium bit rates with a complexity that is acceptable. 

[147-160]. Much of this interest has been due to the development of 

quadrature mirror filters which are able to achieve frequency band 

splitting without the aliasing problems that have dogged earlier designs 

using band-pass filters. Realisation of the SBC in hardware has also 

been eased considerably with the introduction of polyphase filter 

designs. However, for SBCs with a large number of bands, the 

accumulated delay due to the QMF tree, plus the delay incurred by 
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forward adaptive bit allocation and quantization may still prove to be 

unacceptable for Some applications. 

In an effort to minimise this undesirable delay and the complexity 

involved in the filtering process, a novel approach to split-band coding 

is proposed and described[201]. This was found to provide comparable 

performance to the sub-band coder, but with much reduced complexity and 

delay. Moreover, the approach promises greater flexibility and control 

of the various parameters involved so that a whole range of different 

coder designs are available to meet the requirements of a variety of 

applications. 

A number of techniques for further reducing the delay and complexity 

associated with split-band coding schemes have also been presented and 

examined. The USe of backward quantization together with forward 

transmission of bit allocation patterns using a simple form of vector 

quantization, has resulted in a significant reduction of side 

information bit rate for coders employing a large number of bands. The 

problem of the one-bit backward quantizer adaptation for the high 

frequency bands was overcome by transmitting the sign information of the 

signal and obtaining the magnitude adaptation from a scaled version of a 

high energy reference band. A further parallel method of adaptive bit 

allocation was proposed for use with the QMF tree-structured sub-band 

coder. This is able to halve the delay associated with the conventional 

method and would be attractive for applications where coding delay 

although permitted, must be controlled to a suitably low value (to avoid 

the use of echo cancellers in transmission networks, for instance[lO). 

Experimental results unfortunately indicate a drop in performance when 

backward adaptive quantization is employed. 
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One interesting consequence of the proposed transform-based approach to 

split-band speech coding is the ability to achieve 32 band frequency 

resolution (fine frequency resolution becomes increasingly essential for 

obtaining good quality speech at low bit rates), without the 

unacceptable delay and complexity of the conventional sub-band coder, 

thus bringing wide-band analysis split-band schemes a step closer to the 

ultimate narrow-band coding analysis provided by the adaptive transform 

coder. 
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CHAPTER SEVEN RECAPITULATION AND CONCLUSION 

This final chapter provides a brief recapitulation of the work described 

in the last four chapters of the thesis, together with the main results 

obtained. Suggestions for possible areas and directions of future 

research are also given. 

7.1 RECAPITULATION 

A fairly wide cross-section of current digital speech coding techniques 

has been investigated in detail in the course of this research. The 

underlying aim of the exercise is, of course an attempt to search for 

new and more efficient methods of speech coding which are able to 

provide improvements over existing methods, in terms of straight forward 

bit rate reduction, enhancement of decoded speech quality, increased 

robustness to transmission errors or a decrease in coder complexity. 

This frequently involves slight modifications to existing algorithms, 

although on occassions, an entirely new approach may be undertaken. 

Much of the work done is geared for applications at a transmission bit 

rate of 16 Kbps, but the performance of coders at higher or lower rates 

is also considered where it is relevant to the context. 

Chapter three begins with a survey of current prediction techniques used 

in ADPCM speech coding. Both fixed and adaptive prediction were 

considered, and for the latter, both forward and backward adaptive 

algorithms were examined. Generally, forward prediction is superior to 
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backward adaptation in terms of error minimisation and signal processing 

requirements. However. the dual penalty of coding delay and additional 

side information transmission associated with forward methods can be a 

serious disadvantage in certain applications. Consequently. much of the 

research effort is concerned with backward adaptation techniques, which 

do not have these problems and are therefore more attractive in many 

cases. Backward prediction algorithms normally involve some form of 

steepest descent or gradient technique of adaptation. where the 

predictor coefficients are sequentia11y modified based on past 

information. in an attempt to minimise the prediction error. Such 

methods are traditionally based on a transversal filter structure and 

are characterised by the general predictor update equation. 
, , 

= ak(n) + g(n)e(n)x(n-k) (7.1) 

where {skI k=1.2 •••• p} are the p predictor coefficients at the nth 

instant. g(n) is a gain constant and ~(n) and ~(n) are the quantized 

prediction residual and decoded signal sample. respectively. An example 

of this technique is the conventional stochastic approximation predictor 

(SAP) which uses a fixed gain. g(n). optimised from long-term 

characteristics for the adaptation. It is known however. that the gain 

constant should ideally be able to adapt to the short-term signal 

statistics. taking on a large value for quicker adaptation during signal 

transitions and a smaller value during steady-state periods of 

short-term stationarity. At the same time. the use of the most recent 

decoded samples in the adaptation of the higher predictor coefficients 

(not permitted by (7.1» could possibly lead to better prediction 

accuracy. since it ensures that the latest available information is 

always utilised in the update process. Two modifications to the basic 

SAP algorithm were proposed in an attempt to produce more efficient 
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adaptation. The first introduces a simple switched gain term, which can 

take on a number of different values depending on the directions of 

predictor adaptation at previous instants. Successive adaptations in 

one direction indicate a possible signal transition the predictor 

coefficients need to change quickly, and g(n) is set to a high value. 

On the other hand, adaptations of opposite polarity imply signal 

stationarity, and therefore, a smaller value of g is desirable. The 

second modification seeks to provide some inter-relation between the 

predictor coefficients and to allow the adaptation of higher 

coefficients to be affected by the most recent decoded signal samples. 

Although there was evidence of improved performance during signal 

transitions as a consequence of these modifications, this was not 

sufficiently significant to produce conclusive results in terms of SNR 

gains. Further experimentation suggests that the scope for improving 

prediction efficiency based on modifying the SAP algorithm is very 

limited, due to the relative insensitivity of predictor performance to a 

wide range of changes in the amount of adaptation used. 

This led to a move away from sequential techniques to the development of 

the backward block adaptive (BBA) predictor, in which predictor 

adaptation is based on an optimally determined block of previous decoded 

samples. This was found to perform better than the gradient methods 

generally, and to compare well with the efficient sequential lattice 

algorithm, in terms of both SNR and subjective speech quality. The 

better performance is particularly significant for signals with a high 

unvoiced content and frequent magnitude transitions, where an 

improvement over the gradient methods of as much as 6 dB was recorded. 

At the same time, the BBA predictor promises greater robustness to 

-------------------------------------------------------- J 
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transmission errors (since a block, as opposed to a sequential 

adaptation is involved) and lower complexity in terms of signal 

processing requirements, compared to the sequential methods. The use of 

the BBA predictor is therefore recommended for ADPCM applications. 

The second part of chapter three considers some pitch adaptive coding 

schemes, with the aim of simplifying the powerful adaptive predictive 

coder (APC) to an easily implementable level of complexity without 

sacrificing too much of its signal compression ability. A relatively 

simple one-tap pitch predictor based on the average magnitude difference 

function (AMDF) algorithm was used together with a fixed vocal tract 

predictor for this simplified APC scheme. Although SNR was high for 

periodic segments of the speech signal when the pitch is correctly 

detected, the coder was too dependant on pitch extraction accuracy (not 

provided by the simple one-tap predictor) to give consistently reliable 

performance. The use of adaptive vocal tract prediction does not help 

either, as it appears to affect the periodic structure of the residual 

signal in a way which interferes with the signal compression process 

provided by the pitch loop. Further tests showed that the general 

performance of this simplified APC system is no better than the much 

simpler ADPCM with adaptive prediction. 

Chapter four examines the effectiveness of incorporating noise shaping 

features into differential coders. The principle of noise shaping is 

the manipulation of the relative output noise distribution in the 

frequency domain, to produce a reduced perception of noise in the 

decoded speech. Two methods of achieving noise shaping in ADPCM systems 

were introduced and investigated one employs quantization noise 

feedback via a noise shaping filter on the ADPCM structure, while the 
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other performs the shaping of the noise spectrum externally, i.e. using 

pre- and post-filtering on the differential system. Both forward and 

backward methods of adaptation were examined. In the forward case, the 

coder adaptation parameters were all optimised from the input speech 

samples and transmitted as side information to the receiver. Noise 

shaping is thus also considered as forward adaptive, since the 

coefficients of the noise feedback filter are derived from those of the 

predictor. For this case, the pre-/post-filtering approach was found to 

yield better SNR and subjective speech quality, due largely to the 

favourable interaction of the predictor and quantizer under the coarse 

(2-bit) quantization condition. The improvement however, was obtained 

at a slight expense of an increase in coding delay and transmission bit 

rate, since an additional set of adaptive pre-filter coefficients has to 

be computed and transmitted. This penalty can be avoided if the 

pre-filter is fixed. In 

was noticeable, the general 

this case, although a drop in speech quality 

performance is still comparable to, or 

better than the more complicated adaptive noise-feedback scheme. We 

conclude that for applications in which coarse quantization is employed, 

the need for a relatively complex noise-feedback filter is unwarranted, 

since a fixed pre-/post-filtering arrangement (or pre-emphasis) is 

adequate to provide the available improvement in subjective performance. 

As noted previously, the necessity of delay and side information may 

render forward adaptive methods unsuitable for certain applications. 

Consequently, our investigation into noise shaping also involved fully 

backward adaptive techniques which do not suffer from these drawbacks. 

The same two methods of noise shaping as in the forward case were 

examined, with the important difference that all adaptation 
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prediction, pre-filtering and quantization are performed in a backward 

mode. The BBA predictor developed in chapter three was used for this 

purpose. Experiments indicate that significant improvements in decoded 

speech quality are obtainable from both methods over conventional ADPCM. 

In particular, the backward adaptive pre-/post-filtering configuration 

proposed was able to exploit advantageously the quantizer-predictor 

interaction in the system to yield extremely good quality speech, which 

at 16 Kbps, is comparable to that obtained from 7-bit log PCM. 

Adaptive quantization techniques are considered in chapter five, where 

emphasis is placed on the backward adaptation algorithms suitable for 

use in ADPCM systems. Undoubtedly the best known adaptive quantization 

technique is the one-word memory algorithm (AQJ) developed by Jayant. 

However, although its efficiency has been widely recognised, it is 

nonetheless limited in its ability to respond quickly to rapid signal 

transitions, such as that encountered in the ADP CM prediction residual. 

This residual signal consists typically of a randomly varying waveform 

punctuated by large magnitude spikes at the positions of the excitation 

(or pitch) pulses. One proposal for improving the AQJ is the pitch 

compensating quantizer (PCQ) requiring 

which are quite unacceptable for 

variable rate coding 

many applications. A 

methods, 

different 

approach to this problem, which does not attempt to alter the basic 

ADPCM configuration in any way, was proposed and developed in this 

chapter. This method consists of applying correction to the ADPCM 

decoded speech samples at the receiver based on observations of the 

received quantizer output sequences. The appropriate correction factors 

used are obtained from long-term statistics, derived from relating the 

quantizer output sequences to the corresponding input samples at the 
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transmitter. Experiments on ADPCM systems employing different methods 

of prediction indicate a general reduction in the coder output noise 

level across the frequency spectrum, due to the correction, with 

substantial suppression of high frequency noise. This noise reduction 

is reflected in higher SNR values and reduced background hiss in the 

decoded speech. 

Chapter six is concerned with frequency domain coding. The adaptive 

transform coder (ATC) and the sub-band coder (SBC) were both simulated 

and examined. Generally, the decoded speech at 16 Kbps produced by 

these powerful frequency domain coders is of a high quality. However, 

the associated complexity is often also much greater than time domain 

coders such as ADPCM. Moreover, some coding delay is invariably 

required in 'these systems and this can be quite substantial in many 

cases, such as in the tree-structured filter-bank implementation of the 

SBC. In order to control the amount of delay and the level of 

complexity associated with the SBC and ATC, a new approach to frequency 

domain coding was developed and evaluated. This is essentially a 

split-band coding scheme similar to the SBC, except that instead of a 

filter-bank analysis, a discrete transformation approach is used to 

perform the partitioning of the input signal into frequency sub-bands. 

These sub-band signals are then coded in the usual way - using dynamic 

bit allocation and forward adaptive quantization (AQF). This 

transform-based split-band coder (TSBC) was found to provide comparable 

performance to the SBC, but with much reduced complexity and coding 

delay. In addition, the approach employed allows greater flexibility in 

the design of a coding system, as the various parameters involved are 

easily modified to yield the optimal trade-off between performance, 
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delay and complexity for a given application and environment. 

Much of the superior performance of frequency domain coders (the 

split-band techniques in particular) lies in the use of preferential 

encoding i.e. the adaptive assignment of bits for coding each frequency 

component or band in accordance with some minimum distortion criterion. 

The adaptation 

periodically to 

parameters 

the receiver 

therefore needs to 

as side information. 

be communicated 

The amount of this 

side information is a function of the number of frequency bands employed 

and can be quite considerable when the number of bands is 

method of reducing the side information for SBC and 

large. One 

TSBC schemes 

proposed in the chapter utilises a simple form of vector quantization to 

transmit the bit allocation information to the receiver, while the 

sub-band signals are quantized using AQJ. By this means, the side 

information can be kept to a suitably small proportion of total 

available bit rate so that coding efficiency is not impaired. However, 

the use of the AQJ instead of the more efficient AQF leads to a 

perceptible degradation in the subjective decoded speech quality. 

A further effort to reduce the total delay in the SBC makes use of 

parallel bit allocation. Unlike the conventional method where the bit 

assignment process is performed on blocks of the sub-band signals 

emerging from the analysis filter bank, this proposal determines the bit 

allocation pattern corresponding to a given block of the input signal 

during the time delay incurred by the propagation of the signal through 

the filter bank. Together with the use of backward quantization for the 

sub-band signals, this method avoids the delay due to the adaptive bit 

allocation procedure, without forgoing the advantages and flexibility of 

preferential encoding. The actual bit assignment pattern is computed 
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from the discrete Fourier transform (DFT) of the appropriate block of 

input signal, in parallel with the split-band analysis. However, 

although the bit allocation patterns produced by this means appear to 

reflect the frequency composition of the input signal rather well, 

preliminary observations indicate that the slight deviation from the 

optimum (serial) allocation is sufficient to result in a drop in coder 

performance. 

It has not been possible, during the course of this research into 

various speech coding techniques, to cover each area investigated with a 

completeness or thoroughness that would be desirable. Nevertheless, it 

is believed, the main lines of investigation in each area have been 

pursued with sufficient depth, although a not insignificant amount of 

follow-up research remains to be done. Some suggestions for further 

investigation continuing from the present work are given in the 

following. 

7.2 SUGGESTIONS FOR FURTHER RESEARCH 

While the ADPCM configuration continues to attract interest in speech 

coding applications, recent trends have indicated that much of this is 

concerned with practical aspects of the coder, especially with regard to 

its performance in a less than ideal transmission environment. 

Telecommunication organisations such as CCITT, which has favoured the 

ADP CM configuration during its recent standard-setting exercise for 32 

Kbps coding, are particularly interested in the capability of the coder 

. f 10-3 • 1 h to w1thstand errors, up to rates 0 Consequent y, t e BBA 

predictor developed in chapter three for ADPCM applications must also be 

tested in a noisy transmission environment to assess its robustness to 
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transmission errors. While the predictor can be expected to be more 

robust than the conventional gradient algorithms by intuitive reasoning 

(since the block method of adaptation employed provides some 'smoothing' 

effects>, proper evaluative tests must be conducted nonetheless, before 

conclusions can be drawn. 

The interest in the exploitation of pitch periodicity in speech signals 

to effect signal compression has not waned over the years, although a 

simple yet effective solution to accurate pitch detection remains as 

elusive as ever. Due to the wide variations in pitch frequency 

encountered in speech signals, the use of pitch adaptive methods of 

redundancy removal in differential schemes has been fraught with 

difficulties. In fact, the pitc.h predictor has been dispensed with 

recently by one researcher working on differential coding systems, on 

the ground that its contribution to efficiency is far outweighed by the 

many problems connected with its use. Nevertheless, considering that a 

great proportion of normal speech is quasi-periodic voiced sounds," the 

exploitation of pitch information will continue to have an appeal. 

There is much scope for further research in this direction - not merely 

in attempting to produce novel methods of pitch prediction, but more 

importantly, to arrive at an algorithm which can be applied to 

differential schemes without excessive complexity and which is able to 

maintain an acceptable level of performance during the occurrence of 

pitch errors without leading to instability in the system. 

The work on noise shaping covered in chapter four is perhaps more 

complete than the other chapters. Once again however, it is necessary 

to consider the performance of the various systems proposed, in the 

presence of transmission errors. While the backward pre-/post-filtering 
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method of noise shaping provides the best performance in terms of speech 

quality, it is possibly also the least robust system of all, due to the 

use of backward adaptation for the predictor, pre-filter and quantizer. 

Experiments must be conducted to determine the error performance of this 

system, and remedial measures applied where necessary. One problem 

associated with all backward adaptation algorithms is the danger of 

divergence. For adaptive prediction, this occurs when the predictor at 

the receiver fails to track the predictor at the transmitter, due to the 

accumulated effects of transmission errors in the latter. A possible 

method of checking this divergence is to re-synchronise the predictors 

at both ends periodically - setting the coefficients to certain fixed 

pre-determined values and then allowing adaptation to proceed. Also, 

all the systems employing the AQJ will need to have it replaced by the 

robust version which incorporates a leakage factor to dissipate the 

effects of errors. In the same way, some form of subdued prediction. 

might also be helpful in improving predictor errOr performance. 

The quantizer correction procedure described in chapter five provides a 

new approach to noise reduction in ADPCM-AQJ systems which leaves the 

basic differential coder structure undisturbed. However, because the 

set of correction factors used were obtained from long-term statistics, 

it would be a sub-optimum compromise for the short-term, being too large 

for some cases and too small for others. What is required is obviously 

a set of variable correction factors which is able to adapt according to 

the short-term requirements of the signal. To avoid the need for side 

information, this adaptation must preferably evolve in a backward mode, 

based on previously decoded samples. A useful first step might be to 

link the magnitudes of the correction factors to the local signal power. 
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The energy in the vicinity of a pitch pulse is always higher than 

average and this could be used to control the variation of the gain 

term. 

In the realm of frequency domain coding, modifications to existing 

techniques for the purpose of obtaining improved performance are usually 

rather limited. While the sub-band coder has received much attention as 

a viable means of speech coding in recent years, a great proportion of 

the interest it generates has been focus sed on secondary issues, such as 

the use of more efficient methods of performing the bit allocation, and 

coding the side information. The same is true of the adaptive transform 

coder. Apart from the highly complicated vocoder-driven strategy 

,suggested for low bit rate applications, the ATC system has been 

virtually unchanged since its first appearance in the literature. It 

appears that for frequency domain coders such as these, where quality is 

already extremely good, more attention should perhaps be shown on the 

problems of complexity and delay. This has been done to some extent by 

the proposed transform-based split-band coding (TSBC) approach to 

frequency domain coding. More efforts are required in this direction 

however, to understand more fully the implications of this approach. 

The problems of delay and side information requirements associated with 

split-band coding schemes is also a useful area for further study. The 

parallel method of bit assignment suggested in chapter six has not been 

investigated to sufficient depth owing to limitations of time. This is 

useful in controlling the delay of the SBC while maintaining the 

flexibility and advantages of adaptive allocation of bits, and would 

certainly merit further attention. Limited experiments performed have 

indicated that the use of AQJ for coding the sub-band signals has led to 
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More investigations are 

needed to study the cause of this distortion and to develop remedial 

measures if possible. Shaping of the output noise spectrum to improve 

perceptual performance is also worthy of some consideration. 

For the ATC, the use of a smaller size transform holds much attraction 

in terms of coder simplification and practical implementability. There 

is a lot of scope for research in this area, and recent results have 

indicated that the degradation introduced by the use of small transforms 

may be overcome. For the TSBC as well, the use of a smaller initial 

transform can be useful in reducing both complexity and delay. 

7.3 CLOSING REMARKS 

The work presented in this thesis is but a tiny corner in the vast and 

rapidly expanding field of speech coding research. While the underlying 

goal of any speech coding system is likely to remain unchanged with 

time, further breakthroughs in digital technology may lead to a 

re-ordering of the relative importance of different factors pertaining 

to coder design. Complexity, in particular, will be expected to become 

an increasingly less important consideration as hardware capabilities 

continue to surge ahead unabated. This could usher in a new generation 

of coder algorithms based on exhaustive iterative or search techniques 

(presently too complex for implementation) which will be able to provide 

good quality speech at low bit rates. Also, continuing research on the 

development of a more accurate and comprehensive model of speech 

production could, in the not too distant future, allow the full 

potential of source coding to be realised without sacrificing speech 

quality. 
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Nevertheless, the time and frequency domain algorithms for speech coding 

examined in this thesis will continue to be of important relevance in 

many areas of digital speech communication. It is our hope that the 

efforts expended in this research work have resulted in a contribution 

in some small measure to the vast pool of current knowledge in the 

subject. 
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APPENDIX A 

Durbin's Recursive Solution for the Autocorrelation Equation 

The autocorrelation method of solving for the predictor coefficients is 

given by the set of normal equations[33], 

where 

p 
LakR(li-kl) = R(i) 

k=1 

p = order of predictor 

1 ~ i ~ P 

R(i) = ith shift autocorrelation 

a
k 

= kth predictor coefficient 

(A. I) 

Durbin's method involves solving the recursive relations given by the 

following set of equations[33,221]: 

E(O) = R(O) (A.2) 

i-I 
a, (i-I)R(i_j) R (i) + L 

j=1 J 
k, = - I ~ i 

'" P 
(A. 3) 

1 E (i-I) 

(i) 
k, (A.4) a, = 

1 1 

(i) (i-I) 
+ k, (i-l) 

1 ~ j ~ i-I (A.S) aj = aj a, 
1 l-j 

E(i) (1 - k,2)E(i-l) (A.6) 
1 

The optimum predictor coefficients {a
k

, k=I,2 ••• p} are obtained as, 
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= -a (p) 
i 

; 1 ~ i ~ p 

and the reflection coefficients are given by the ki's. 

APPENDIX B 

(A.7) 

Derivation of the Update Equation for the Modified SAP Algorithm (SAPM) 

------------------------------------------------------------------------

The general SAP update equation is given by, 

~(n+l) = ~(n) + yk(n) 

where, 

yk(n) = gek(n)x(n-k) 

The residuals ek(n) are given by, 

e (n) = x(n) 

m ) 2 

Thus all residuals can be expressed in terms of e
l 

(n), 

e
2

(n) = el(n) - y1(n)x(n-1) 

e
3

(n) e
2

(n) - y
2

(n)x(n-2) 

= 

~-l (n) - Yk- l (n)x(n-k+l) 

(B.1 ) 

(B.2) 

(B.3 ) 

(B.4) 

el (n) - Yl(n)~(n-1) - y2 (n)x(n-2) - •• ek_l (n)x(n-k+l) 
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The correction terms, Yk(n), which are functions of ek(n) can also be 

expressed in terms of e (n): 
1 

, 
yl(n) = gel (n)x(n-l) 

y2(n) = ge 2(n)x(n-2) 

= g[el(n) - yl (n)x(n-l)]x(n-2) 
A 2 ' 

= g[el(n) - gel(n)x (n-l)]x(n-2) 
"2 ' 

= gel(n)[l - gx (n-l)]x(n-2) 

y3(n) = ge 3(n)x(n-3) 

= g[el(n) - yl(n)x(n-l) - Y2(n)x(n-2)]x(n-3) 
"2 "2" 

= gel(n)[l - gx (n-l)][l - gx (n-2)]x(n-3) 

yk(n) 
"2 "2 

= gel(n)[l - gx (n-l)][l - gx (n-2)] •••••• 

"2 " 
••• [1 - gx (n-k+l)]x(n-k) (B.S) 

Or more generally, as el(n) = e(n), the update equation is given by, 

ak(n) + ge(n)x(n-k).F(k) (B.6) 

where, 

F(k) = 1 k = 1 

k-l n '2 
= m=l [1 - gx (n-m) J 1 < k ~ P 
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APPENDIX C 

computational Requirements of Adaptive Prediction Algorithms 

An estimate of the complexity of each adaptive prediction algorithm is 

presented. This complexity is measured only in terms of the number of 

multiplications required, with a division considered computationally 

equivalent to two multiplications. It must be emphasised however, that 

the accuracy of the following analysis is necessarily limited for the 

sake of simplicity. In many instances, the amount of computation may be 

reduced at the expense of increased storage. A complexity measure based 

solely on multiplications alone is thus incomplete, although it does 

provide a useful indication of the relative complexity among the various 

algorithms(225). 

(1) Forward Block Adaptive (FBA) Predictor 

The computation of the predictor coefficients may be divided into two 

parts: (i) the calculation of the autocorrelation function over the 

block of N samples, and (ii) the solution of the normal equations using 

Durbin's recursion. 

(i) Autocorre1ation Calculations 

Considering a block of N signal samples {x },the autocorre1ation values, 
n 

R(n) required for a pth order predictor are given as: 
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N-l-i 
R(i) l: x (n)x(n+i) i ~ 0 (c. 1) 

This requires, 

N + (N-l) + (N-2) + ••••••• (N-p) mUltiplications 

i.e. 

(p + 1) N -

= (p+l)N - p(p+l)/2 multiplications. 

(ii) Durbin's Recursion 

Durbin's recursive solution of the autocorrelation equation is given in 

Appendix A[33,22l]. The computational requirement for each step is con-

sidered as follows for the first 3 stages, 

For i=l, (A.3) to (A.6) are given as: 

kl = R(l)/E(O) 1 division or 2 

multiplications 

( 1) 
kl al = o multiplications 

E(l) = (1 - k1
2)E(O) 2 multiplications 

i=2, 

R(2) + a1(1)R(1) 

k2 = 
E (1) 

3 multiplications 

(2) a
l 

(1) (1 + k
2

) a
l 

1 multiplication 

E(2) = (1 - k/)E(l) 2 multiplications 



i=3, 

R(3) + a
1 

(2) R(2) + a
2 

(2) R(l) 

= -----~~~----~--­E (2) 
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4 multiplications 

a
l 

(3) 
= a l 

(2) + k
3

a
l 

(2) 
2 multiplications 

a
2 

(3) 
= 

(2) + k
3
a

l 
(2) 

2 multiplications a2 

E(3) = (1 - k/)E(2) 2 multiplications 

Considering a pth order predictor, the number of multiplications for 

each step is given by, 

Step 1 (eqn. (A.3» : 

2 + 3 + 4 + ••••••• (p+l) 

= p + 

= p + p(p+l)/2 

Step 2 (eqn. (A.5» 

o + 1 + 2 + •••••••• (p-l) 

= p(p+l)/2 - p 

Step 3 (eqn. (A.6» 

2 + 2 + 2 + ••••••••• ( P terms) 

Thus Durbin's recursion requires 

p + p(p+l)/2 + p(p+l)/2 - p + 2p 

= p(p+3) multiplications 
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Hence, for the pth order FBA predictor, the total amount of computation 

required using a blocksize of N is given by, 

(p+l)N - p(p+l)/2 + p(p+3) 

= (p+l)N + p(p+5)/2 multiplications 

(2) Backward Block Adaptive (BBA) Prediction Algorithm 

For the BBA predictor, the autocorrelation values can be updated sequen-

tially as new samples arrive. Considering a block of N signal samples 

{x }, the autocorrelation values required for a pth order predictor are 
n 

obtained as, 

R(O) = 2 + 2 + x 2 + 2 
xl x ••••••••••••••••••• x 2 ) N 

R(l) = x
l

x
2 

+ x2x) + x 
3

x
4 + •••••••••• •• x x 

N-I N 
R(2) = x

l
x
3 

+ x x + x)xS + ••••••••••• x x 2 4 N-2 N 

R(p) x x + x x + ••••••••••••••• x x 
I p+l 2 p+2 N-p N 

AT the next instant, these are updated as, 

i.e. 

R'(O) 

R'(l) 

R'(p) 

R'(p) = 

= 2 2 x
4 

+ •••••••••••••••• ,x
N

+
1 

= x x + x x + ••••••••••••••••••• x x 
2 3 3 4 N N+l 

= x x + x x + ••••••••••• x x 
2 p+2 3 p+3 N+l-p N+l 

R(p) - x x 
Ip+l 

+ x x 
N+l-p N+l 

(C.2) 

(C.3) 

(C.4) 
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Hence, at each time instant, each of the (p+l) autocorrelation values is 

updated by discarding the least recent element in the block and adding 

the contribution from the latest sample. This requires (p+l)N multiplic-

at ions for a block of N samples. 

For the BBA predictor, the autocorrelation is calculated once for a 

block of N samples, and Durbin's recursion is performed N/M times. This 

gives the total amount of computation per block of N samples as 

(p+l)N + p(p+3)N/M 

= N[ p+l + p(p+3)/M ) mUltiplications. 

(3) Stochastic Approximation Predictor (SAP) 

The update equation for the SAP algorithm[75) is given (from (3.30) and 

(3.31) by: 

a (n+1) 
k 

A 

Ge (n) x (n-k) 

P A2 
Y + lip L x (n-j) 

j=1 

(C.5) 

The normalisation term in the denominator is a moving average variance 

estimator. At the nth instant, it is given by, 

NORM(n) = 
A2 A2 A2 

IIp [x (n-l) + x (n-2) + ••••••••• x (n-p») (c.6) 

and for the (n+l)th instant, it is, 

NORM(n+1) = 
A2 A? A2 

IIp [x (n) + x-(n-l) + ••••••• x (n-p+l») (C .7) 
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From (C.6) and (C.7), it can be seen that, at each sampling instant, the 

'2 
latest x term is included and the least recent term discarded. Thus, 

one multiplication and one division (by p) is required. Alternatively, 

the division by p can be avoided by scaling G and y appropriately. 

Hence, the normalisation requires one multiplication. The gain term in-

vo1ves one division by the normalising factor, or equivalently, two 

multiplications. The g~(n) term appears in the update of all the coef-

ficients and needs to be computed once only. So, the computation of all 

these requires 3 multiplications. Finally, the update procedure of (C.S) 

needs one more multiplication per coefficient, hence giving for the SAP 

algorithm, a total requirement of (p+4) multiplications per sample or 

(p+4)N multiplications per block of N samples. 

(4) Modified SAP algorithm (SAPM) 

The update equation is given by, 

ge (Il) x (n-1) 

'2 ' 
[1-gx (n-1)] x (n-2) 

= + 

a (n+1) 
p 

a (n) 
p 

'2 '2]' 
[1-gx (n-1)J [1-gx (n-2) 00 ox(n-p) 

(Co 8) 

The term g is computed in the same way as SAP, requiring 3 mu1tiplica-

tions. Because of the different gains for the different coefficients, 

the computational load of SAPM depends on the predictor order p. The re-

quirements are tabulated as follows: 
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Coefficient Effective Gain Additional 
multiplication 

a 
1 

g~(n)~(n-l) 2 

a 
2 

a 
3 

a 
p 

g~(n)~(n-2)[I-g~2{n-l») 4 

g~(n)~{n-3)[1-g~2{n-l»)[1-g~2(n-2») 4 

The sucessive coefficients are updated by an accumulated product so the 

gain term is also successively accumulated, e.g. 

" " .... 2 
ge(n) for a , ge(n)[l-gx (n-l») for a , etc. The total requirements are: 

1. 2 

3 + 2 + 4(p-l) = 4p+l multiplications per sampling instant or (4p+l)N 

multiplications per block of N samples. 

(S) Adaptive Gain SAP (SAPA) 

The SAPA variations are similar to SAP in its computational require-

ments. The different values of g used can be stored in fixed memory and 

retrieved for use when required. 

(6) Fast Converging SAP (FSAP) 

The update equation of FSAP[226) is given from (3.64) as: 

a (n+O = a (n) + 1/2 S{I-q)G (n) + q(a (n) - a (n-O) (C.9) 
k k f k k 

The term 1/2 S(l-q)G (n) is similar to the SAP adaptations (S and q are 

fixed constants) and therefore, requires (p+4) multiplications per sam-

pIe. An additional multiplication per coefficient is due to the term 
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q(a (n)-a (n-l» giving a total of (2p+4) multiplications per sample or 
k k 

(2p+4)N multiplications per block of N samples. 

(7) Adaptive Lattice Predictor (LAT) 

The so-called direct method of adaptation[200] proceeds as given by 

(3.50) to (3.52): 

Cm(n) = (l-Y)Cm(n-l) - 2Yfm(n)bm(n-l) (C.lO) 

2 2 
(C.ll ) Omen) = (l-Y)Om(n-l) + Y[fm (n) + bm (n)] 

and 

km+l(n) = - Cm(n)/Om(n) (C.12) 

At each instant, (C.lO) requires, 3 multiplications, 

(C.ll) requires 4 multiplications, 

and (C.12) requires 1 division or equivalently, 2 multi-

plications. This gives a total of 9p multiplications per sample. How-

ever, if Y is made a power of 2, then some multiplications can be re-

duced to simple shift operations. In this case, the requirements become: 

(C.lO) - I, 

(C.ll) - 2, 

and (C.12) - 2 multiplications, 

giving a total of SpN multiplications per block of N samples. 
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(8) Adaptive Lattice - Sign-Product Method (LAT-SP) 

The sign product method[200] of adapting the lattice predictor is 

governed by (3.53) - (3.54): 

k (n) = sin [(rr/2)k '(n)] m m (C.13) 

where, 

= (l-Y)k +1'(n) - ysgn{f (n)}.sgn{b (n)} m m m 

In this case, no multiplications are involved, if y is chosen to be a 

power of 2, and (C.14) is implemented by means of a look-up table. 

------------------------------------------------------------------------
APPENDIX D 

computation of Autocorrelation Function for Backward Block Adaptive 

Predictor 

------------------------------------------------------------------------

It is shown in Appendix C(2) that the autocorrelation function for the 

BBA predictor may be calculated sequentially by adding the most recent 

contribution and discarding the least recent. Since the computation of 

the predictor coefficients is performed only once every M samples, the 

contribution of each newly decoded sample can be accumulated in partial 

sums (of M samples) to avoid excessive memory demand. For example, the 

zero-shift autocorrelation for a block of N samples is given by: 

R(O) = 2 2 
+ •••••• xU + ••••• +~ (D.l ) 

After M sampling instants, its updated value is: 



Thus, 

R'(O) = 2 2 
"M+l + xM+2 + ••••••••••••••• + 

R' (0) = R (0) -
M 2 
L xi + 

i=l 

N+M 2 

L Xj 
j=N+l 
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(D.2) 

(D.3) 

The terms involved in the summation need not be stored individually but 

can be accumulated as each decoded sample arrives. For instance, if 

N=256 and M=32, then instead of 256 memory locations, only N/M = 8 are 

required, each storing the accumulated products of 32 samples as indic-

ated below: 

- --- ------_.-- --- ._----" -------,---------1------,-----

1 2 3 4 5 6 7 8 
----- --- --_._--- -.--"'- - -------- --

1-32 33-64 65-96 97-128 129-160 161-192 193-224 225-256 

The same method may be used for the other autocorrelation values, so 

that the total memory requirements is approximately given as (p+1)N/M+p. 

APPENDIX E 

Proof of Constraint on Quantization Noise Spectrum 

------------------------------------------------------------------------

Proof of constraint: 

1 
f 

s 
log r(f)df = o (E. l) 
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given, 

r (f) 
1 _ F(e2TfjfT) 2 

1 _ P(e2TfjfT) (E.2) 

where F and P are linear filters given by the general form G(z) in the z 

domain, 

m 
G (z) L (E.3) 

k=l 

f is the sampling frequency and T the sampling period. The roots of s 

both (I-F) and (l-P) are assumed to be inside the unit circle[8Il. 

Consider the function (I-F), which is expressed in z transform notation 

as: 

m 
1 - F (z) = 1 - L 

k=l 

= (E.4) 

-1 
(E.4) is a polynomial in z which can be factorised to give, 

1 - F (z) (E.5) 

i.e. 
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1 - F (z) = 
m 

TI(l -

k=l 
(E.6) 

where Z k is the kth root of [l-F(z)]. 

Taking logarithm of (E.6) converts the product term on the r.h.s. to a 

summation, 

m 
log (l - F(Z)} L (E.7) 

k=l 

Since the roots of (I-F) lies inside the unit circle, Iz I < 1 and each 
k 

term in the r.h.s. of (E.7) can be expanded in a logarithmic series, as 

-1 
a polynomial function of z • Hence, 

-1 -1 
+ 1/2 

2 -2 1/3 
3 -3 

log(l - zl z ) = -z z zl z - zl z + ... 
1 

-1 -1 
1/2 

2 -2 1/3 3 -3 
log(l - z2z ) -z z + z2 z - z2 z + ... 2 

-1 
log(l - z z ) 

m 

-1 2 -2 3 -3 
= -z z + 1/2 z z - 1/3 z z + .• m m m 

Summing up similar terms in the expansion gives, 

m -1 I log(l - ZkZ ) 
k=l 

(Zl + 

2 
+ 1/2(zl + 

-1 
• •• Z ) Z 

m 

2 -2 
••• Z ) z 

m 

m m m m 
(-1) l/m(zl + z2 + z3 

m -m 
••• Z ) Z 

m 

(E.8) 



where c 
n 

= 

Therefore, 

= 

~ -n 
L C Z 

n=l n 

log {l - F(Z)} = 

n + •••• Z = 
m 

\' -n 
l. c z = 

n=l n 
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(E.9) 

m (E.lO) 

I 
k=l 

~ -21TjfTn 
Lee 

n=l n 
(E .11) 

The integral of log[l-F(z)] over the frequency range from 0 to fs is 

then given by, 

f
f. 

aS {log {l - = c Ifs I n 
n=l o 

o 

(E .12) 

Since P is of the same form as F, the same result holds for (l-P), thus, 

logr(f)df = o 

------------------------------------------------------------------------

APPENDIX F 

Aliasing Cancellation Property of Quandrature Mirror Filter 

Bank [145 ,1471 

------------------------------------------------------------------------

Let Xl(e jW ) and X2(e jW ) be the Fourier transforms of the lower and upper 

sub-band signals, respectively before decimation and X(e jW ) be the 
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transform of x(n). Then, 

(F .1) 

and 

(F.2) 

where H1(ejW ) and H2(ejW ) are the Fourier transforms of h1(n) and h2(n), 

respectively. After decimation, the lower and upper sub-band signals may 

be defined as Yl(ejW ) and Y2(ejW ), respectively and can be expressed as, 

(F.3) 

and 

(F .4) 

Letting Ul(ejW ) and U2(ejW ) be the interpolated lower and upper sub-band 

signals in the receiver, and ignoring effects of quantization, we get, 

(F.S) 

and 

(F.6) 

Finally, the output signal X(~W), 
. 

the transform of x(n) in figure 

6.4(a), can be expressed as, 

(F .7) 
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Combining equations (F.I) to (F.7) gives the input to output relation 

j(w+~) jw j(w+~) jw j(w+~) 
+ X(e )[Hl(e )Hl(e ) - H2(e )H2(e ) I 

(F.B) 

The first term of the r.h.s. of (F.B) expresses the desired component of 

X(e jw) and the second term expresses the undesired aliasing component. 

The cancellation of this aliasing component can be observed by trans-

forming equantion (6.3) to get, 

(F.9) 

and applying this condition to (F.B). It can be easily verified that the 

second term cancels, leaving 

(FolO) 

From the symmetry property in equation (6.2), it can be shown that the 

jw 
frequency response of HI(e ) can be expressed in the form, 

= (F.ll) 

Recalling that N is even, and applying this condition to (F.IO), leads 

to the expression, 

(F.12) 
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In the above expression, jw(T-l) 
the term e implies that there is a T-I 

sample delay between x(n) and x(n). Furthermore, it can be seen from 

(F.12) that if x(n) is to be a (delayed) replica of x(n), then HI(ejw ) 

must satisfy the requirement that, 

+ = I (F.13) 

or equivalently, 

= 1 (F.14) 

------------------------------------------------------------------------
APPENDIX G 

computational Requirements of the Tree-structured Quadrature Mirror 

Filter Bank Sub-band Coder 

------------------------------------------------------------------------

Consider the filtering .of N samples through the QMF filter bank[1451, 

employing T tap filters. Using polyphase implementations[l471, the tree 

structure of figure G.I results. Considering the first stage, the N 

input samples x(n) are divided into 2 signals of N/2 samples each, con-

taining the odd and even values of x(n) respectively. The odd samples 

are filtered by a T/2 tap filter containing the odd filter coefficients 

of the original QMF and the even samples by a T/2 tap filter containing 

the even coefficients. The sums and differences of the two filter out-

puts are taken to produce the (decimated) upper and lower band signals, 

respectively. 



'---'N/2 

r----,N/4 

r----rN/4 

i-_-rN/ 2 

N/4 

N 
x 

n 
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Fig. G.l 

polyphase Implementation 
of Sub-band Coder 

For the first stage, the filtering of N samples of x(n) involves twice 

N/2 x T/2 = NT/2 multiplications and additions. Also, the N/2 outputs 

from the two filters must be added and subtracted, giving 2 x N/2 = N 

further additions. So, for the first stage, the computational require-

ments are: NT/2 multiplications and NT/2 + N additions. 

For subsequent stages, the amount of computation remains the same as is 

clear from figure G.l, so that a b band sub-band coder requires: 

NT/2 lo~ b multiplications and N(T/2 + 1) lo~ b additions. Each sample 

therfore requires, T/2 lo~ b mul tiplications and (T!2 + 1) log
2 

b addit-

ions. 

------------------------------------------------------------------------

APPENDIX H 

computational Requirements of the Transform-based Split Band Coder 

------------------------------------------------------------------------

For an N point DCT, the amount of computation is given by, 3N/2(log2N-l) 
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b x Nib point IDCT 

N point DCT 

x(n) 

Fig. H.l Transform-based Split-band Coder 

+2 additions and Nlog
2

N-3N/2+4 multiplications[236]. The b band split­

band coder of figure H.l requires 1 N point and b N/b point transforms, 

thus requiring, 

and 

3N/2 (log2N - 1) + 2 + b[3N/2b (log2 (N/b) - 1) + 2] 

= 3Nlog2N - 3N - 3N/2 lo~b + 2(b + 1) additions. 

Nlo~N - 3N/2 + 4 + b[N/b lo~(N/b) - 3N/2b + 4] 

= 2Nlog2 N - 3N - Nlog b + 4(b + 1) multiplications. 
2 

Therefore, for each sample, the requirements are, 

310~ N - 3 - 3/2 10&:1 b + 2(b + l)/N additions 

and 

2log
2
N - 3 - 10g2b + 4(b + 1)/N multiplications. 
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