Tracking a walking person using activity-guided annealed particle filtering

2016-02-09T14:35:47Z (GMT) by John Darby Baihua Li Nicholas Costen
Tracking human pose using observations from less than three cameras is a challenging task due to ambiguity in the available image evidence. This work presents a method for tracking using a pre-trained model of activity to guidesampling within an Annealed Particle Filtering framework. The approach is an example of model-based analysis-by-synthesis and is capable of robust tracking from less than 3 cameras with reduced numbers of samples. We test the scheme on a common dataset containing ground truth mo-tion capture data and compare against quantitative results for standard Annealed Particle Filtering. We find lower ab-solute and relative error scores for both monocular and 2-camera sequences using 80% fewer particles. © 2008 IEEE.