Transition state theory for solvated reactions beyond recrossing-free dividing surfaces

The accuracy of rate constants calculated using transition state theory depends crucially on the correct identification of a recrossing-free dividing surface. We show here that it is possible to define such optimal dividing surface in systems with non-Markovian friction. However, a more direct approach to rate calculation is based on invariant manifolds and avoids the use of a dividing surface altogether, Using that method we obtain an explicit expression for the rate of crossing an anharmonic potential barrier. The excellent performance of our method is illustrated with an application to a realistic model for isomerization.