Loughborough University
Browse
99-14.pdf (291.3 kB)

Traveling waves and pulses in a one-dimensional network of excitable integrate-and-fire neurons

Download (291.3 kB)
preprint
posted on 2006-02-15, 10:36 authored by P.C. Bressloff
We study the existence and stability of traveling waves and pulses in a one-dimensional network of integrate-and-fire neurons with synaptic coupling. This provides a simple model of excitable neural tissue. We first derive a self-consistency condition for the existence of traveling waves, which generates a dispersion relation between velocity and wavelength. We use this to investigate how wave-propagation depends on various parameters that characterize neuronal interactions such as synaptic and axonal delays, and the passive membrane properties of dendritic cables. We also establish that excitable networks support the propagation of solitary pulses in the long-wavelength limit. We then derive a general condition for the (local) asymptotic stability of traveling waves in terms of the characteristic equation of the linearized firing time map, which takes the form of an integro-difference equation of infinite order. We use this to analyze the stability of solitary pulses in the long-wavelength limit. Solitary wave solutions are shown to come in pairs with the faster (slower) solution stable (unstable) in the case of zero axonal delays; for non-zero delays and fast synapses the stable wave can itself destabilize via a Hopf bifurcation.

History

School

  • Science

Department

  • Mathematical Sciences

Pages

298289 bytes

Publication date

1999

Notes

This is a pre-print. The definitive version: BRESSLOFF, P.C., 2000. Traveling waves and pulses in a one-dimensional network of excitable integrate-and-fire neurons. Journal of Mathematical Biology, 40(2), pp.169-198, is available at: http://www.springerlink.com/link.asp?id=100436.

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC