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Abstract 

Torsional vibrations in differentials of Rear Wheel Drive vehicles are of major 

importance for the automotive industry. Hypoid transmissions, forming the motion 

transfer mechanism from the driveshaft to the wheels, suffer from severe vibration 

issues. The latter are attributed to improper mesh between the mating gear flanks 

due to misalignments, variation of contact load and shifting of the effective mesh 

position. For certain operating conditions, the gear pair exhibits high amplitude 

motions accompanied with separation of the mating surfaces. Ultimately, single or 

even double-sided vibro-impact phenomena evolve, which have been related to 

noise generation. This thesis attempts to address these issues by effectively 

analysing the dynamic behaviour of a hypoid gear pair under torsional motion. The 

case study considered is focused on a commercial light truck. 

The major difference of the employed mathematical model to prior formulations is the 

usage of an alternative expression for the dynamic transmission error so that the 

variation of contact radii and transmission error can be accounted for. This approach 

combined to a correlation of the resistive torque in terms of the angular velocity of 

the differential enables the achievement of steady state, stable periodic solutions.  

The dynamic complexity of systems with gears necessitates the identification of the 

various response regimes. A solution continuation method (software AUTO) is 

employed to determine the stable/unstable branches over the operating range of the 

differential. The ensuing parametric studies convey the importance of the main 

system parameters on the dynamic behaviour of the transmission yielding crucial 

design guidelines. 

A tribo-dynamic investigation aims at expanding the dynamic model from pure dry 

conditions to a more integrated elastohydrodynamic (EHL) approach. Analytical and 

extrapolated solutions are applied for the derivation of the film thickness magnitude 

based on the kinematic and loading characteristics of the dynamic model. The 

temperature rise is governed mainly by conduction due to the thin lubricant films. 

The generated friction is also computed as a function of the viscous shear and 

asperity interactions. The effective lubricant viscosity is greatly affected by the 

pressure increase due to the resonant behaviour of the contact load. 
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The final part of this work is involved with a feasibility study concerning the 

application of Nonlinear Energy Sinks (NES) as vibration absorbers, exploiting their 

ability for broadband frequency interaction. Response regimes associated with 

effective energy absorption are identified and encouraging results are obtained, 

showing the potential of the method.   
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Chapter 1 - Introduction 

1.1 - Background  

Gear noise is a crucial issue when considering transmission systems. Sound 

emission can cause a great deal of inconvenience for passengers and perception of 

deteriorated vehicle quality when exceeding certain limits or lying within specific 

frequency ranges. Although a wide range of gear applications exists, the sources of 

gear noise remain fundamental. The fluctuations of tooth load associated with 

transmission error are considered as the primary source of such phenomena. 

The sound generated from gear meshing is transmitted via forces and motions to the 

supporting shafts, bearings and housing, eventually reaching the surroundings of the 

transmission system. The basic cause for the gear mesh noise is the imperfect (non-

conjugate) action of the teeth flanks. These imperfections create a set of dynamic 

forcing at the gear teeth, which in turn is transmitted to the shafts and bearings of the 

system and hence to the transmission casing. One may identify three main paths for 

the transmitted noise. The first path involves the airborne whereas the second is 

appointed to structure-borne noise, being transmitted through the casing walls. 

These can act as ―loud speakers‖, propagating the noise conceived by an external 

listener. One should also mention a third path of special importance, involving forces 

transmitted through the gearbox mounts to surrounding vehicle components, whose 

oscillations can generate noise. The vibration and noise generation mechanism is 

shown in Figure 1.1. 

Axle gear whine is a high frequency noise appearing mostly in hypoid gear pairs of 

differentials. Unlike rattling which in encountered mostly in lightly loaded gear 

mechanisms, whining is associated to considerable external loading conditions. It 

covers a variety of operating conditions while its frequency content is related to the 

gear mesh orders. Gear manufacturing quality and inherent geometry are significant 

factors affecting axle whine. A strong correlation between noise and torsional 

vibrations of the differential has been established; their resonant behaviour has been 

matched in the frequency domain. Improper mesh generated by high amplitude 
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dynamic phenomena result into vibro-impacts and separation of the teeth flanks, 

affecting greatly the levels of perceived noise. 

 

Figure 1.1- Differential Gear vibration and noise generation mechanism (after Saunders, 2005) 

It is vital to control the generated sound even though an analysis for noise 

minimization presents considerable challenges. The reason is the geometric 

complexity; the manufacturing process is crucial for the surface geometry. 

Furthermore, it is not always possible to achieve perfect mesh, since conjugancy is 

usually feasible at one shaft mounting position. Also, one should not neglect the lack 

of analytical solutions for calculating the radii of curvature of the gear teeth and the 

difficulties in quantifying the tooth profiles and manufacturing complexities, including 

piece-to-piece variations. This fact creates significant complications in the modelling 

process.  

In order to investigate the axle gear whine phenomenon, a dynamic model of gear 

pairs has been utilised in this thesis, simulating conditions that occur during 

meshing. The reported analysis is only confined to torsional vibrations, neglecting 

any other induced motions; nonetheless dynamic investigation is targeted towards 

realistic operating conditions. The aim is to investigate the pure interactions between 

the pinion and the crown gear during meshing without effects from other sources. 



3 

 

Special attention is paid to the introduction of geometric properties defining the 

contact and to the calculation of the factors affecting noise emission. 

1.2 - Aims and Objectives 

The overall aim of this thesis is to perform a thorough analysis of hypoid gear 

dynamics, identifying the root causes behind their behaviour. 

The contact between two hypoid gears is considerably more complicated than in the 

case of other gearing systems, chiefly because of complex changing contact 

geometry through mesh. Each point in the contact area traces a curvilinear path in 

contrast to a nearly straight line pattern observed in spur or helical gears. Moreover, 

the surface curvatures are much more complex to determine, which affect contact 

footprint and meshing stiffness, as well as contact deformation and lubricant film 

thickness. 

The complexity of the contact geometry explains the dearth of analytical solutions in 

the open literature with regard to the meshing parameters. Hence, semi-analytic 

expressions, based on numerical data will be proposed for the latter in this thesis. 

The specific objectives of this thesis are: 

 To create a detailed dynamic model, able to capture the complicated dynamic 

response of hypoid transmissions under a broad range of realistic operating 

conditions. 

 To compute the family of periodic solutions and the stability of the various 

response branches followed by parametric studies. 

 To expand the analysis to the more realistic lubricated elliptical point contact 

under elatohydrodynamic regime of lubrication; coupling the effect of 

dynamics to a tribological consideration. 

 To relate the gear pair dynamic behaviour with conditions potentially leading 

to noise generation and study the effect of non-linear palliative attachments 

while acting as passive vibration absorbers. 

Therefore, even if the general aim of the thesis is the study of hypoid gear dynamics, 

the specific objectives are oriented on the engineering Noise, Vibration and 
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Harshness (NVH) problem as posed by gear whine phenomenon. This fact is 

supported by the potential use of this study for noise evaluation purposes. 

The approach implemented in this work is based on contact mechanics and 

elastohydrodynamics (EHL) theory. However, in accordance with the theory, Tooth 

Contact Analysis (TCA) numerical data will be imported into the dynamic model. The 

concept of Targeted Energy Transfer (TET) will be also discussed. This approach 

has not hitherto been applied to non-linear phenomena in powertrain systems.  

1.3 - Hypoid Gears and applications 

Hypoid gear sets transfer power and motion between crossed axes. They resemble 

spiral bevel gears which perform rotation about intersected axes. The other main 

difference is the asymmetrical teeth flanks; the pressure angle on each side of the 

tooth is different. Nevertheless, many of the machines used for manufacturing spiral 

bevel gears can be used to manufacture hypoids. A typical hypoid gear pair can be 

seen in Figure 1.2. 

 

Figure 1.2- A hypoid gear pair 

The primary domain of application for hypoid gear drives has been the automotive 

industry for almost 90 years now. The rotary motion of an engine, installed 

lengthwise in a vehicle, can only be transmitted to the crosswise positioned wheels 

by means of angular gearing. Although most of the first engine-driven vehicles in 

Europe used worm gears, spiral bevel and hypoid gearing were proved to be the 

best solution in USA by 1920. When the engine architecture was shifted towards 

cross-wise installations instead of lengthwise, a reduction in demand occurred. Yet, 
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designs requiring such gear sets (tractors, trucks, train engines, luxury car 

automobiles) still persist. Furthermore, there is a trend towards four wheel drive 

automobiles, requiring two to three bevel/ hypoid gear sets.   

The history of hypoid gears is connected with the development of gear machine 

technology. There exist three major manufacturing companies; Gleason Works 

(USA), Oerlikon-Buhrle (Switzerland) and Klingelnberg-Sons (Germany). Both 

Gleason and Oerlikon have begun the manufacturing of cutting machines at the end 

of 19th century. The production of bevel gears was affected by the fact that curved 

tooth traces demonstrated much better rolling behaviour, resulting in larger contact 

ratios and increased torque transmissibility. Thus, a combination of linear and 

circular motion was introduced in the manufacturing process. The first machines able 

to produce hypoid gears were built by Gleason in 1925. One year later Shell Oil 

Company began marketing the first hypoid oil pump and Ford Motor Company in 

USA started equipping vehicles with hypoid bevel gears. Ford was the first 

automotive company to do so. 

High reduction and contact ratios are one of the main advantages of hypoid 

gearings. By applying positive axial offset, the face module can be increased 

substantially, resulting in doubling of the outside diameter. Therefore, there is an 

important increase in pinion strength without noticeably increasing the overall space 

requirements. In this case the number of teeth is not proportional to the pitch 

diameter. This fact enables the reduction of the smallest number of teeth on the 

pinion. Hence, it is possible to make large pinions, while minimizing the driven gear 

size. Furthermore, the contact ratio is affected due to a strong overlap ratio increase. 

If the introduction of helical or worm gears can achieve an increase of contact ratio 

from 1.5 up to 2.5, the hypoid offset can result in an increase up to 3.5. This fact 

reduces the meshing impact as well as the flank compression and the root stress. 

Therefore, while in operation, hypoid gears are usually quieter and smoother than 

spiral bevel gears. They possess greater tolerance to shock loading and can be used 

at much higher single stage ratios than the spiral bevel gears. 

The development of longitudinal sliding is another important characteristic of hypoid 

gear systems. Similar to the case of spur gear pairs, spiral bevel gears demonstrate 

only relative sliding in the profile direction. On the pitch cone, this relative velocity 
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diminishes. This pure rolling condition affects the destruction of the hydrodynamic oil 

cushion resulting in fatigue related symptoms along the pitch line leading to pitting 

development (Stadtfelt, 1993). By applying an axial offset, one can ensure that 

relative sliding takes place in the entire flank region, preserving the continuity of the 

lubricant film and smoothing the transmission line between the engine and the road. 

However, the high level of sliding reduces the efficiency of hypoid gear sets 

compared with a similar set of spiral bevel gears.  

To summarize, hypoid gears have significant advantages in comparison with the 

spiral bevel gears. They operate in a more stable manner, absorbing the shock 

excitations induced by other parts of the powertrain system. They are characterized 

by high contact and transmission ratios, as well as minimal wear due to longitudinal 

sliding. The important role they have in the automotive industry has attracted a great 

deal of attention related to various NVH phenomena. The thesis attempts to study 

the dynamics of a hypoid gear pair in relation to the axle gear whine noise.    

1.4 - Structure of the Thesis 

Chapter 1 provides an introduction to gear noise in hypoid gear systems. It also 

states the aim and specific objectives of the thesis.  

Chapter 2 is focused on a review of the theoretical background supporting this study. 

A brief description of axle noise is given correlating its appearance to hypoid gear 

vibration issues. Various mechanical gearing models are presented, highlighting the 

special treatment of hypoid gear sets in terms of Tooth Contact Analysis (TCA). The 

application of elastohydrodynamic (EHL) lubrication in gear mechanisms is also 

discussed followed by a number of applied measures to alleviate unwanted vibration 

problems. In the end, the advantages underlying the implementation of the concept 

of Targeted Energy Transfer (TET) are discussed.  

Chapter 3 involves dry contact between the mating flanks. The fundamental 

mechanical model is proposed and the basic contact parameters are calculated by 

introducing semi-analytical expressions. The implications of applying Tooth Contact 

Analysis (TCA) are also illustrated. 
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In Chapter 4 the fundamental mechanical model is expanded to simulate the effect of 

lubrication. The necessary contact parameters are again computed leading to the 

definition of friction in the contact zone by considering the operating conditions of 

hypoid transmissions. Eventually this leads to a non Newtonian treatment of the 

problem while accounting for the heat dissipation of the lubricant due to the shear 

effect. 

Chapter 5 discusses the results obtained by the dynamic analysis over a range of 

system parameters for the case of dry contact. Current formulation is compared to 

previous dynamic models illustrating the system nonlinearities appearing in the 

dynamic response. An analysis of the various response regimes is conducted 

followed by a stability analysis of the periodic solutions combined to parametric 

studies of the various factors.  

Chapter 6 depicts the effect of lubrication on the dynamic response and vice versa. 

Comparison of various treatments is given including thermal, non Newtonian and two 

dimensional analyses.  

Chapter 7 attempts the application of Targeted Energy Transfer (TET) in geared 

systems. This concept is applied to a hypoid gear set in order to attempt reduction of 

undesired dynamic responses. A variety of response regimes is identified while the 

energy transactions are illustrated. 

Chapter 8 derives overall conclusions for the work completed, evaluates the 

approaches followed and suggests aspects that should be studied in the future.  
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Chapter 2 - Literature Review 

2.1 - Introduction 

A major step towards the completion of a research project is an effective definition of 

the problem. A dynamic model of a transmission system can be of varying 

complexity, based on the specifications of the investigation. An extremely 

complicated model may prove to be computationally inefficient and beyond scope. 

On the contrary, a simple modelling approach might be insufficient to reveal 

elaborate characteristics of the investigated phenomena. Therefore, it is important to 

understand the aspects of the problem and subsequently set the specifications of the 

numerical model that is going to be developed. This procedure is assisted by a 

thorough review of the already published material. 

In the beginning of this chapter, industrial concerns arising from drivertrain 

oscillations will be discussed, highlighting the importance of detailed modelling. 

Eventually, vibration control methods will be assessed while underlying all state of 

the art achievements. 

Initially, an overview of the problems related to differential unit vibrations in 

automotive industry is presented, underlying the importance of this research subject. 

The significance of teeth contact parameters affecting gear mesh is identified; 

simulation and experimental methods for their prediction are discussed. 

Subsequently, various numerical models describing the dynamics of systems with 

gears are presented. A variety of simulation techniques is available, linked to the 

level of detail maintained by the investigation. 

After examining the macro (global) scale of gear teeth dynamics, focus will be shifted 

on their micro scale, namely the contact of the mating gear flanks. Equally important 

is the study of the dual nature of transmission vibrations combining dynamics with 

tribological and friction effects. The tribological foundation is presented by reviewing 

the general Elastohydrodynamics (EHL) theory, comprising of analytical, numerical, 

thermal and non-Newtonian considerations. Gear lubrication is covered in a separate 

section, describing the formation of lubricant film and friction generation mechanism 
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in gear flanks. Dynamic modelling of friction is also reviewed, stating the main issues 

requiring an auxiliary formulation.  

The last part of this chapter illustrates the applied measures for solving issues 

associated to hypoid gear vibrations followed by an analysis of the concept of 

Targeted Energy Transfer (TET). There seems to be significant potential in exploiting 

the latter in order to be used as an effective active solution. Finally, the observed 

gaps in existing knowledge are recognised, identifying the space for the investigation 

which is covered by this study.  

2.2 - Problem Description 

Axle whine noise has been addressed as one of the major Noise, Vibration and 

Harshness concerns that automotive industry is facing. The continuous trend for 

improved vehicle noise quality led to the gradual revealing of previously masked 

noise sources (Yoon et al, 2011). Due to the extended use of axle components in 

drivetrain technology, controlling differential noise has been associated to the overall 

vehicle sound quality (Lee et al, 2005). 

Whining of the differential axle is characterised by a tonal nature (Curtis et al, 2005), 

meaning that it is perceived on a specific frequency region (or intervals). It occurs 

mainly in loaded hypoid gears and the gear mesh frequency plays a dominant role 

herein (Juang et al, 2006). It appears at a variety of operating conditions; during 

drive and coasting, high and low torque loading (Lee, 2007) whereas the frequency 

range covers a bandwidth from 200 to 1200Hz based on the individual 

characteristics of the vehicle (Hirasaka et al, 1991; Lee and Kocer, 2003; Steyer et 

al, 2005). The overall noise can be divided into two discrete transfer paths; an 

airborne and a structure borne. The first one corresponds to a vibration of the axle 

system focusing on the dynamic mesh force (Lee et al, 2005). However, the second 

one includes the interaction of the body and driveline structural components towards 

the amplification of the axle vibration level (Kim et al, 1999). 

The main source of the axle whine lies in the gear mesh characteristics. Figure 2.1 

shows the analysis of the perceived noise from a traditional source – path – receiver 

point of view (Chung et al, 1999). The meshing process of the hypoid gear pair 

entails all the crucial excitation factors affecting noise generation. Initial credit can be 
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attributed to the gear design characteristics affecting the mesh stiffness variation. It 

was shown (Hellinger et al, 1997) that the latter can influence significantly both the 

magnitude and the frequency content of the generated dynamic forces.                 

 

Figure 2.1- Axle whine noise source and transfer paths (source: FORD Motor Company UK Ltd) 

Another significant contribution comes from the gear pair manufacturing quality, as 

well as potential assembly errors. It is widely acknowledged that transmission error is 

the most crucial factor when assessing gear quality. It can be regarded as ―the 

deviation between the output gear and the position it would normally occupy if the 

gears were perfectly conjugate‖ (Dudley and Townsend, 1991). It can be expressed 

both in angular and translational form along the line of action. Its influence in noise 

excitation has been discussed in a number of research studies (Hirasaka et al, 1991; 

Lee, 2007; Yoon et al, 2011). 

An equally important effect on the dynamic mesh force appears due to interactions 

with other driveline components. The effect of propshaft inertia and stiffness has 

been mentioned by Nakayashiki et al (1983), Chung et al (1999), as well as Lee 

(2007). Furthermore, it has been shown that both bending and torsional modes of 

the propshaft can significantly control the driveline noise (Steyer et al, 2005; Sun et 

al, 2011).  
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Besides the development of the teeth mesh force, the overall noise level is also 

affected by the structural transmissibility paths of the vehicle (Wani and Singh, 

2005). Inside the axle assembly this is mainly due to the shafts, bearings and 

additional modes of lateral gear body oscillations. The latter have minimal impact on 

the tooth flank vibration level; however they effectuate large motions near the 

bearings. Therefore, if these modes coincide with mesh force resonances, the 

bearing support forces will get amplified (Miyauchi et al, 2001). The vibration energy 

also travels through structural components of the vehicle, such as the suspension 

springs and dampers. Additionally, body integrity is also critical, since it can result to 

amplification of the generated noise (Hagino et al, 1990; Chung et al, 1999). 

 

Figure 2.2:- Correlation of Sound Pressure Level and Torsional Vibration Level for 550Hz (after 

Nakayashiki et al, 1983) 

Correlation between noise and vibration level has been provided in various studies, 

highlighting the importance for a rigorous dynamic analysis. Nakayashiki et al (1983) 

presented a strong correlation between the torsional vibration of the ring gear and 

the overall perceived axle whine noise for different frequencies. The correlation 

graph for the case of 550Hz is shown in Figure 2.2. They concluded that controlling 
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the torsional vibration level, would lead to axle whine alleviation. Additional 

experimental evidence was provided by a test rig (Hirasaka et al, 1991). The 

resonant frequencies of both noise and vibration amplitudes were found to correlate. 

This fact is depicted in Figure 2.3. The above findings are supported by the work of 

Lee et al (2005), where waterfall plots of the interior noise were compared to 

vibration amplitudes at certain locations of the differential axle. Therefore, it can be 

concluded that the axle whine noise as perceived in the vehicle cabin is strongly 

connected to the vibration level of the differential assembly. 

 

 

Figure 2.3-  Correlation of resonant frequency of noise and vibration amplitudes (after 

Hirasaka et al, 1991) 

The influence of differential unit vibrations on the radiated noise reveals the 

necessity for their study. Ideally, this task would require a multi-body dynamics 
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approach in order to account for the entire driveline system interactions. 

Nevertheless, such an analysis would demand a model of considerable complexity 

and a vast amount of computational time. Hence, the focus of this research study will 

be placed on the differential unit itself, where the dynamic mesh force is generated 

(Lee and Kocer, 2003; Sun et al, 2003). The total response at the differential casing 

is the product of the mesh force, amplified by the transmissibility function at the 

bearings (Miyauchi et al, 2001).  Due to the lubricant effect at the bearings, a level of 

damping is introduced; hence the transmissibility curve is usually smooth without 

significant peaks. As a result, the bearing force curve retains the shape of the 

dynamic mesh force. It is therefore within reason to conclude that the dynamic mesh 

force can give a good representation of the vibration levels in the differential unit.        

 

Figure 2.4- Bearing Forces as a product of Mesh force and Transmisibility function (after 

Miyauchi et al, 2001) 

The dynamic mesh force is affected primarily by the gear train torsional dynamics 

(Sun et al, 2005). Therefore, a torsional gear pair model would effectively describe 

the dynamic responses associated to the noise generation. It would also be able to 

account for the various nonlinearities, such as contact loss and tooth flank impacts or 

estimate the magnitude of the frictional excitations due to the sliding motion of the 

mating surfaces. These factors have been linked to noise generation as well (Lee, 

2007). Furthermore, although the effect of the propshafts was mentioned to be 

important, a hypothesis for its torsional rigidity would yield the worst case scenario. 

As shown by Hirasaka et al (1991), reducing the torsional rigidity of the propshaft 

leads to the decrease of the dynamic mesh force peak amplitude.  Based on the 

above considerations, a simplified torsional model of the differential gear train would 

be effective in describing the general vibrational characteristics of the differential 

unit, while addressing the root causes of noise generation. Thus, any potential 
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method for reducing the amplitude of the induced vibrations could be applied on this 

fundamental model. 

2.3 - Modelling / Simulation techniques 

2.3.1 Dynamic modelling 

The previous section stressed the importance of drivetrain vibrations as a major 

industrial concern; there is a strong correlation between unwanted oscillations and 

NVH issues. It was derived through the assumption that the dynamic response of the 

engaged gears can yield a representative picture of the overall system behaviour. 

Thus, it is a logical approach to focus on the various modelling techniques describing 

the dynamics of gear pairs.  

 

Figure 2.5-  General form of a gear pair oscillator (after Blankenship and Kahraman, 1995) 

There is a plethora of reasons underlying gear vibration; including backlash and 

errors in the form and finish of mating gear teeth pairs, defined as kinematic 

transmission error. These errors and misalignment of gear pairs and their supporting 

shafts are important causes of vibration and noise, as well as poor lubrication, 

friction and wear. Therefore, besides studying the effect of machine and cutter tool 

settings to reduce mal-form and finish, the dynamic response of gear sets when in 

situ, has also been extensively investigated. The latter area is due to the effect of 

various system nonlinearities. Consequently, an array of modelling techniques is 

used, depending on the conditions pertaining to a defined problem (Ozguven and 

Houser, 1988a).  
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Figure 2.6- Mechanical Model of a spur gear pair (after Kahraman and Singh, 1990) 

A number of numerical models have been proposed to obtain the dynamic response 

of gear pairs in order to ascertain the extent of system stability and capture the 

occurring periodic motions. Implementation of lumped parameter models is a 

common practice, followed by analytical expressions for time varying parameters, 

such as the teeth meshing stiffness. The main source of nonlinearity in these 

formulations is the presence of backlash, promoting impacts which can lead to 

impulsive actions and potential chaotic behaviour. 

In certain cases, the general form of a geared system can be described by a 

simplified single degree of freedom mechanical oscillator (Blankenship and Singh, 

1995), as depicted in Figure 2.5. The dynamic response is defined by the variable x  

denoting the relative deflection of the gear teeth. An external forcing function )(f  is 

applied to the system; the stiffness factor )(  is periodic and is multiplied by a 

nonlinear restoring function )]([ txg
 
due to the inherent backlash of the system. 

Eventually, the resulting equation of motion is given in the following expression: 

 
)()]([)]([2  fxgxx  
  

(2.1) 

In essence, this is the case of a Mathieu-Hill oscillator with piecewise linear restoring 

force. 
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Initial work on the dynamics of spur gear pair has been conducted by Ozguven and 

Houser (1988b), as well as Kahraman and Singh (1990). Both studies present a 

nonlinear modelling approach resulting in a torsional, single degree of freedom 

system. It was concluded that when the torsional mode is weakly coupled to the 

other vibration modes of the system, the gear pair dynamic behaviour can be 

efficiently described by the motion along the line of action. The mesh stiffness was 

assumed to be invariant with respect to time in both cases; hence only its mean 

value was included in the study. In the first case, the variable mesh stiffness effect 

was approximated by including the loaded transmission error as an internal 

excitation factor computed by a separate computational procedure. Experimental 

validation showed satisfactory correlation levels while the increase of the dynamic 

forces was attributed mainly to mesh stiffness variation.  

The focus on the second study was on the nonlinear dynamic response inflicted by 

the combined effect of backlash and static transmission error. A combination of 

analytical and numerical techniques was applied to define the existence of multiple 

solutions based on the initial conditions. The mechanical model proposed by 

Kahraman and Singh (1990) can be viewed in Figure 2.6. Numerical integration 

revealed a multitude of coexisting solutions at certain conditions and parameter 

values. An analytical approach based on the Harmonic Balance Method (HBM) was 

able to yield the various response regimes without being affected by the initial 

conditions. Parametric studies confirmed the dependence of multiple response 

regimes on load and damping characteristics of the system. Experimental validation 

was in this case efficient in predicting the transition frequency between the different 

response regimes. Failure of exact qualitative correlation was due to the lack of 

knowledge for the properties of the experimental rigs and the adopted assumption of 

constant mesh stiffness. 

Further work on the dynamics of spur gear pairs was targeted on the development of 

analytical methods in order to predict the various solutions exhibited by the system. 

Blankenship and Singh (1995) employed the Harmonic Balance Method, whereas 

Natsiavas et al (2000) introduced an alternative approximate method combining the 

treatment of piecewise linear systems with perturbation techniques applied at 

systems with time varying coefficients.  Application of the first approach by 
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Blankenship and Kahraman (1995) (by taking into account a single harmonic term in 

the time varying parameters) was correlated with experimental data. Parametric 

studies showed the effect of various design variables such as the oscillating mesh 

stiffness component, damping ratio and applied preload. It was shown that the above 

parameters affect both the solutions‘ nature together with the bifurcation frequencies.  

The second analytical method was investigated by Theodossiades and Natsiavas 

(2000). The analysis was concentrated on the fundamental parametric and external 

resonance. The system was found to undergo a complicated dynamic response, 

characterised by multiple coexisting solutions and jump phenomena. The gear pair 

parameters were proven to affect significantly the nature of the response and the 

generated dynamic amplitudes. It was also shown that their variation could lead into 

stability issues accompanied to period doublings, boundary crises and chaotic 

regimes. The obtained results from the analytical method were correlated efficiently 

to numerical integration. 

The effect of mesh force transmissibility was also of importance so that the coupling 

between the lateral and torsional motion of the gear wheels could be investigated. A 

nonlinear, six-degree of freedom dynamic model was developed by Ozguven (1991); 

through a numerical integration procedure, the necessity of multiple degree of 

freedom model was investigated. It was derived that the coupling between torsional 

and lateral motions is highly dependent on the torsional compliance off the carrying 

shafts and the bearing stiffness. An additional model by Kahraman and Singh (1991) 

included the effect of periodic system coefficients expressed in Fourier series form. It 

was shown that the variation of mesh stiffness is related to the backlash induced 

nonlinearities rather than the ones attributed to the rolling bearing elements. The 

work of Blankenship and Singh (1995) addressed the same issue in helical gears 

while solving a linear time invariant system. The importance of lateral degrees of 

freedom was justified on the ground of structure borne noise prediction. Of great 

importance is the investigation conducted by Theodossiades and Natsiavas (2001a, 

2001b). Two multiple degree of freedom dynamic models are presented, 

incorporating the effect of journal and rolling bearings in the dynamic response of 

geared systems. The significant part is the dependence of the resistive torque on the 

instantaneous angular velocity of the output shaft rather than being defined a priori. 
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The mesh stiffness and transmission error were now shown to behave in a strongly 

nonlinear manner. Complex dynamic behaviour was revealed by numerical 

integration of the equations of motion.     

Similar analyses on crossed-axes gear sets have shown more complex responses. 

For example, hypoid gears used in a wide range of applications, present complex 

meshing geometry. Consequently, there is a lack of analytical expressions to 

quantify the effect of their underlying governing parameters. Prior to the development 

of Tooth Contact Analysis (TCA) tools, experimental and empirical formulations were 

common place (Kiyono et al, 1991; Donley et al, 1992). These early models 

precluded the exact meshing geometries. Instead, they were based on 

simplifications to the meshing force vector used in purely torsional dynamic 

analyses.  

The first attempt to build a hypoid gear vibration model based on exact geometry, 

was made by Cheng and Lim (2001). The generation of gear pair surfaces and the 

discretisation of the elliptical contact area resulted in the development of a three-

degree of freedom (DOF) model. The significance of this approach was in relating 

the meshing parameters to the actual gear geometric characteristics. Moreover, it 

allowed for the transmission of mesh load to the structural components of the 

differential unit. A further study (Cheng and Lim, 2004) included backlash non-

linearity and time-dependent meshing parameters, enabling the identification of 

resonant modes and, therefore, the study of the effect of load torque on system 

dynamics. Wang et al (2007) focused on a hypoid gear pair, describing the 

dependence of meshing parameters‘ variation with the dynamic response of the 

system. An original two-DOF system was reduced to a single DOF and its dynamic 

response was computed using two different models. The first model only included 

the fundamental harmonics of the meshing parameters, whilst the second one 

imported their exact values. The generation of impacts was discussed, as well as the 

transition of system‘s response from a periodic motion to a chaotic state with the 

variation of load torque and introduction of damping. 
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2.3.2 Tooth Contact Analysis 

As mentioned previously, gear whine noise is affected by certain design parameters 

as the static transmission error and variation of mesh stiffness. These factors, as will 

be shown in the following sections, affect significantly the dynamic response of the 

system, acting as internal and parametric excitations. Quantification of the above 

properties has been achieved in a number of studies, mainly by conducting a stress 

analysis together with experimental measurements. Spiral bevel and hypoid gear 

members will be the focus, since they are mostly exhibiting gear whine noise. 

An overview of the principles of contact mechanics, describing the load distribution 

and the deflections of mating structures has been given by Johnson (1985). In his 

textbook, the Hetzian contact theory is discussed while cases that require numerical 

solutions are presented. Therefore, in gear mechanisms, global deformations due to 

bending and torsion need to be accounted for. Such complex three-dimensional 

contact problems were proven complicated to solve, on the grounds that the contact 

conditions could not be adequately introduced in a numerical formulation. An attempt 

to overcome this issue was done by Chaudhary and Bathe (1986) for both static and 

dynamic conditions, by applying the method of Lagrange multipliers. 

All numerical stress analysis models rely on the knowledge of the contact bearing. 

The meshing area needs to be known a priori before applying the loading conditions. 

Indeed, as alleged by Litvin et al (2006), stress analysis is the final stage of an 

optimized gear design process. In the first place, an implementation of a local 

synthesis technique is necessary for the optimization of gear machine settings, 

followed by tooth contact analysis (TCA) in order to simulate the meshing action.  

A method for the surface representation of spiral bevel/hypoid gear members is 

essential for the conduction of the aforementioned tasks. Such an approach was 

proposed by Litvin et al (1991) for the case of face hobbed hypoid gears. Equations 

in three dimensional space were provided, based on the kinematics of the gear 

generation process and on the geometry of the cutting tool. A similar work by Lin et 

al (1997) provided the surface characteristics of spiral bevel/hypoid gears 

manufactured using the modified roll method. Comparison of the theoretical 
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approximations with actual measured teeth surfaces showed satisfactory 

consistency.  

Vijayakar (1991) employed the Simplex algorithm together with a linearization 

technique in order to solve complicated contact problems, applying this method in 

the case of gear pair contacts. The representation of the contacting bodies was 

found to be optimised by Chebyshev polynomials, while the analysis was able to 

yield load distribution and transmission error. This methodology was finally combined 

to a surface integral solution to overcome the problem of the continuous movement 

of the contact zone, appearing at hypoid transmissions. Published results for the 

case of a hypoid gear pair were provided, whereas the principles of this work were 

implemented for the formulation of Tooth Contact Analysis commercial software 

(Advanced Numerical Solutions, 1998). 

A similar approach has been followed by Gosselin et al (1995, 2000). In the 

preceding study, the effect of spiral bevel geometry in load sharing capacity and 

loaded transmission error is investigated, showing that higher contact ratio is usually 

preferable. The subsequent experimental work validated the simulation technique 

adequately, while illustrating an increase in the measured transmission error values 

proportional to the value of the external torque. 

Further experimental stress analysis of spiral bevel gears was conducted by 

Handschuh and Kircher (1999), comparing the extracted data with existing analytical 

models. The results obtained followed the trend predicted by analytical models; 

however, there was a certain deviation due to the position of the strain gauges. 

Furthermore, the dynamic effect was proved to be minimal when the gears were 

running in slow to moderate speeds.  

An alternative numerical method using the Finite Element Method (FEM) was 

formulated by Simon (2007). He assumed that the contact is deployed along a 

―potential‖ contact line, yielded as the locus of points on the mating surfaces 

characterized by minimum separation. Tooth bending and shear effects are also 

considered herein, investigating the effect of certain design parameters on the 

contact properties.  
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The various steps involved in a computational stress analysis of spiral bevel gears 

were illustrated by Argyris et al (2002). Local synthesis and Tooth Contact Analysis 

are coupled in an iterative process in order to determine the optimal configuration. 

The consequences of previous formulation were implemented as a design tool by 

Litvin et al (2006) for noise reduction purposes. Gear sets with improved contact 

pattern, lower stress concentration and reduced transmission error were obtained. 

The effect of the latter in the generated noise and vibration issues was shown. 

Furthermore, advantages of parabolic cutting blades over straight ones were 

identified, leading to higher endurance of the gear teeth. 

The major disadvantage of all FEA based models is the computational inefficiency. 

The requirement of a vast amount of computational time for yielding a contact 

representation results in restrictions on parametric studies. Kolinvand and Kahraman 

(2009) have suggested an alternative method based on ease off topography to 

determine the unloaded TCA. Teeth compliances were calculated though a semi 

analytical formulation based on Rayleigh-Reitz model, so that the computational 

efficiency was improved without distorting the accuracy of the results. An accurate 

TCA tool for simulating hypoid gear mesh is CALYX software (Advanced Numerical 

Solutions, 1998). It will be used to determine the mesh characteristics of the gear 

sets considered in this thesis. 

2.4 - Tribological consideration 

As already noted, friction generated in gearing systems is an important area of 

investigation, since it determines the efficiency of transmission and differential 

systems, as well as affecting their dynamic response. Confining oneself to some 

representative studies, it is important to note that gear teeth are often only partially 

lubricated, as many fore-running contributions have shown (Snidle et al, 1997; 

Gohar, 2001). This is known as mixed elastohydrodynamic regime of lubrication, 

where the mechanisms contributing to friction are viscous shear of a thin lubricant 

film and interaction of asperities of the contiguous surfaces with a film of insufficient 

thickness in between. This is referred to as boundary friction and is prevalent in gear 

teeth interactions (De la Cruz et al, 2010). Vaishya and Singh (2001a, 2003) 

developed a dynamic model with viscous friction on gear flanks. Neglecting the effect 
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of backlash and simplifying the derivation of coefficient of friction, they were able to 

perform a stability analysis for gear pairs using the Floquet theory (Floquet, 1883). 

Similar analyses were conducted for helical gears by Velex and Cahouet (2000), 

Velex and Sainsot (2002), as well as Kar and Mohanty (2007). The common 

approach in the above studies was the dependence of friction on the variation of the 

contact line length. A method based on TCA was introduced by He et al (2007) for 

calculating the effect of friction the bearing forces on a twelve-DOF helical 

transmission system.  

For helical gear pairs, De la Cruz et al (2010) have reported models for a transaxle 

transmission system, where a combined tribological and dynamic analysis was 

carried out. In their work the unselected loose gear teeth pairs were modelled as 

lightly loaded thermo-hydrodynamic conjunctions with viscous friction, whilst the 

engaged gear pairs were subject to a mixed thermo-elastohydrodynamic regime of 

lubrication. They showed that thermal effects in the gear teeth pair contacts 

significantly reduce lubricant film thickness. An analytic solution to energy equation 

for the determination of lubricant temperature in the contact was used whilst Grubin‘s 

(1949) analytical solution was employed for the loaded elastohydrodynamic 

conjunctions of engaged gear teeth pairs. This provided a quasi-static solution, 

which does not take into account the enhanced load carrying capacity of the teeth 

pair contact conjunctions due to lubricant squeeze film effects. The approach, 

including the squeeze film effect was advocated by Rahnejat (1984, 1985) subject to 

various regimes of lubrication, including isothermal elastohydrodynamic conditions 

for contact vibration problems. It was shown that the lubricant film behaviour is 

frequency dependent. An extension of this work by Mehdigoli et al (1990), 

representing a pair of gears as wavy surfaced discs showed that fluid film lubrication 

possesses insignificant damping under elastohydrodynamic conditions, which 

verified the earlier experimental findings of Johnson and Gray (1975). However, 

these studies did not include the effects of viscous or boundary friction, nor shear 

thinning of the lubricant in a thermal contact. Another numerical quasi-steady mixed 

isothermal EHL solution, combined with torsional vibration of gear pairs was 

highlighted by Li and Kahraman (2009) for teeth line contact conditions, applicable to 

spur gears and as an approximation for helical gears.          
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A few tribo-dynamics studies have been reported for hypoid gears including the 

effects of viscous and boundary friction. Geometrical complexities of hypoid gears in 

mesh and the need to determine the instantaneous area of contact necessitates use 

of numerical methods, rather than the simpler analytical approaches. The sliding 

velocities of mating gear teeth pairs and the sense of application of friction cannot be 

calculated analytically due to the time varying nature of the mesh vector. As already 

noted, an approach to obtain the friction vector has been reported by Cheng and Lim 

(2003), based upon a simulated geometry, whereas the derivation of kinematic 

contact properties was described by Xu and Kahraman (2007). Authors validated the 

various empirical formulae for representation of coefficient of friction against an 

elastohydrodynamic lubrication model. Good agreement with experimental results 

was shown and a formula extrapolating the results was obtained.  

A number of other researchers have also focused on transient EHL representation of 

the contact zone between the gear flanks. These include the works reported by 

Holmes et al (2003a, 2003b, 2005), who treated the contact zone of pairs of hypoid 

gear teeth as a point contact problem. Isothermal solution of gear lubrication problem 

has received more attention than those including thermal effects. An investigation of 

thermal effects was also reported by Handschuh and Kircher (1996), who calculated 

the temperature distribution in the contact zone due to heat generation. 

In this thesis TCA is used to determine the kinematic and geometrical properties of 

the hypoid gears, necessary for the thermo-elastohydrodynamic analysis that 

follows. The rate of change of the teeth contact radii has been considered in the 

analysis. This is a main contribution of the current work compared to those 

previously published. It reveals more pronounced dynamics, characterised by teeth 

separation near 1:1 resonant conditions. Asperity contribution to friction is also 

included by characterisation of the tooth flank topography and use of the Greenwood 

and Tripp (1970, 1971) friction model. Therefore, the analysis in this paper is that of 

quasi-static mixed thermo-elastohydrodynamics of hypoid gear teeth pairs, and its 

effect upon the dynamics of a hypoid gear pair of a vehicle differential unit. Such an 

approach has not hitherto been reported in literature.  
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2.5 - Applied measures 

Due to the severity and importance of axle vibrations, methods for alleviating the 

unwanted motions have been suggested. The nature of the problem was shown to 

be twofold; on one hand it is the transmission error acting as excitation, promoting 

vibrations of the gear teeth flanks; on the other hand it is the dynamic interactions of 

the various differential and driveline components. Thus, noise and vibration reduction 

can be achieved by combining two individual paths; either focusing on the micro-

geometry and manufacturing methods of the gear members to ensure better surface 

quality and lower levels of transmission error or by applying dynamic tuning 

techniques so that the resonance issues between the mesh frequency and the 

natural frequencies of the system are attacked (Hagino et al, 1990). 

The effect of altering the gear tooth profiles in a search of optimized contact 

geometry has been illustrated by Lee (2007), as well as Yoon et al (2011). In the 

former case, the ring gear was processed with different cutter settings, resulting to 

considerable reduction of the transmission error by almost 46%. Although the 

contact area remains unaltered, the profile modification retains the contact zone 

inside the tooth face even under fully loaded conditions. The result is an attenuation 

of previously reported high vibration levels at certain driveshaft speeds, despite the 

fact that the structural resonances remain. In the latter case, an enlargement of the 

contact zone was introduced in order to resolve noise issues under deceleration 

conditions. A decrease of the measured transmission error was confirmed to exist 

upon the modified gear set for the loading torques of interest. The overall interior 

noise was reduced considerably. 

However, manufacturing interventions are not always effective. There are examples 

where although the gear manufacturing quality is the best possible, vibrations reach 

critical levels (Donley et al, 1992). In such cases the unwanted motions need to be 

studied using dynamic analysis. The essence lies into proper tuning and mapping of 

the system mode shapes in order to avoid resonance issues. Initially, concern should 

be given to the generated dynamic mesh force. The latter is analogous to the mesh 

stiffness, which in turn is affected by the dynamic compliances of the pinion and ring 

gear (Sun et al, 2003). The mesh force per unit transmission error can be 
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represented as the reciprocal of pinion motion  
p , ring gear motion  

g  and tooth 

compliance  th  (Miyauchi et al, 2001): 
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   (2.2)    

 

Figure 2.7- Dynamic mesh force and Gear pair compliances per unit transmission error (after 

Sun et al, 2003) 

From the above expression, it can be observed that the mesh force is maximized at 

the frequencies defined by the intersection points of pinion and ring gear compliance. 

At these frequencies, the real parts of both compliances are opposite numbers; 

whereas the remaining imaginary parts are much smaller. Hence, the reciprocal of 

the summation of the compliances will reach its maxima as illustrated in the top 
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section of Figure 2.7. The principle of dynamic tuning involves various approaches. 

Lee and Kocer (2003) formulated an optimization method to reduce the peak 

amplitudes of mesh force. Their analysis relies on the identification of modal 

contributions at the resonant frequencies, followed by the determination of modal 

energy participation of each driveline component. The final step was a parametric 

analysis of the component design variables so that an improved configuration would 

 

Figure 2.8- Optimized designs towards dynamic mesh force reduction (after Lee and Kocer, 

(2003) 

be created. Nevertheless, even though the dynamic mesh stiffness peaks were 

reduced, the new peaks were shifted towards a higher frequency range addressing 

potential new resonance issues. This fact is depicted in Figure 2.8 where the red 



27 

 

curves show the reduced levels of mesh stiffness compared to the green curves 

depicting the baseline case. 

 

Figure 2.9- Noise reduction ring design (after Miyauchi et al, 2001) 

An analysis towards achieving robust axle behaviour in terms of NVH issues was 

conducted by Sun et al (2003). The study is concentrated on optimizing the mesh 

force together with its transmissibility towards the rest of the structure. It was shown 

that a reduction of the ring gear inertia together with a decrease in the torsional 

stiffness of the pinion side could be favourable into downgrading the dynamic mesh 

force over certain frequency range intervals. In terms of the force transmissibility the 

main aim is to ensure that the resonant frequencies of the optimized mesh force do 

not coincide with bending and lateral resonances of additional driveline components. 

This is the essence of modal tuning which was presented by Steyer et al (2005). The 

main task is the avoidance of coalescent modes; sufficient frequency separation 

needs to be applied so that the response magnification will stay below acceptable 

levels. 

Another method to enhance the above behaviour is by introducing an attachment to 

the gear member, as suggested by Miyauchi et al (2001). The component shown in 

Figure 2.9 was called ―noise reduction ring‖ and was connected to the ring gear. Its 

effect on the generated vibrations was studied both numerically and experimentally. 

The tuning strategy of the ring local resonant frequency is focused towards the 

increase of the compliance magnitude at the intersection points. A parallel 

consequence of the ―noise reduction ring‖ is the creation of high compliance around 

the region of three nodal modes due to a modal separation effect. This event results 
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into a further reduction of the mesh force. The combined effect can be observed in 

Figure 2.10.        

 

Figure 2.10- The effect of "noise reduction ring" on the compliance and mesh force magnitude 

(after Miyauchi et al, 2001) 

Controlling axle vibrations is also achieved by exploiting the properties of the 

dynamic vibration absorber; whose principle can be found in vibration textbooks 

(Rao, 2004). In this case, the natural frequency of the absorber needs to coincide 

with the excitation frequency. Lee (2007) studied the possibility of attaching a 

torsional damper to the driveshaft in the form of a slip Yoke damper ring, shown in 

Figure 2.11. An effective tuning of the damper can split the major frequency peak 

into two, together with an almost 50% reduction of the maximum amplitude of the 
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mesh force. Similar effects have been observed by Wani and Singh (2005) when 

monitoring the pinion nose vibration level. 

 

Figure 2.11- View of slip yoke damper ring (after Lee, 2007) 

 

Figure 2.12- View of tunable cardboard liner (after Sun et al, 2011) 

Attenuation of driveline vibrations can be accomplished by installing ―tuned liners‖ 

inside the propshafts, as discussed by Sun et al (2011), shown in Figure 2.12. The 

latter has been proven to be the most compliant part in the driveline; hence its 

vibration behaviour is crucial for all NVH issues. The attached component is usually 

in the form of a cardboard tube and the dynamic tuning is accomplished through a 

spring element, connecting the absorber to the driveshaft. The desirable tuning 

frequency is in the range of 300 to 500Hz for axle whine alleviation. The feasibility of 

the design was examined by Finite Element modelling and testing. It was shown that 

the attachment increased the damping effect for the bending modes of the 
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propshafts. Validation at vehicle level confirmed the ability of the tuned liners to 

control both the driveshaft bending and the axle mesh torsional dynamics. Although 

tuned cardboard liners can effectively absorb unwanted motions, their efficiency is 

dependent on the ratio between their mass and the main structure. Applications of 

the concept in smaller diameter steel propshafts could prove to be problematic. 

To summarize, the applied measures towards the reduction of axle noise and 

vibration can be divided into two major groups; the first involves the improvement of 

the gear pair manufacturing quality so that the effect of the internal excitation is 

substantially reduced. The second is related to the dynamic tuning of the system; 

special care should be taken in the achievement of mode separation in order to 

reduce the dynamic mesh force, as well as its transmissibility to the rest of the 

structure. However, if dynamic absorbers are used, the tuning frequency of the 

attachment must coincide with the resonant frequency. All the presented methods 

suffer from considerable disadvantages; for instance, manufacturing quality is often 

optimized and the transmission error is essential as a design variable. Furthermore, 

mode separation is not always possible due to design limitations whereas the tuned 

absorbers require the addition of considerable mass to the system (the cost is 

moderately estimated at £9 per kg of added mass), while their efficiency is only at a 

narrowband frequency range. Consequently, the efficiency of an additional method is 

going to be examined in this study; namely the exploitation of the concept of 

Targeted Energy Transfer (TET). 

2.6 - The concept of Targeted Energy Transfer 

The concept of Targeted Energy Transfer (TET) is a relatively contemporary aspect 

in the field of nonlinear dynamics. Theoretical and experimental studies have been 

published highlighting the importance of this phenomenon in capturing portions of 

unwanted vibrational energy, hence acting as a passive vibration absorber. 

The first studies were focused on impulsively excited systems. An initial theoretical 

and numerical study of this concept was accomplished by Gendelman et al (2001). 

Systems comprising of linear and essentially nonlinear parts were considered and it 

was shown that the vibration energy can be transferred from the linear towards the 

nonlinear part of the system in an irreversible manner. The latter is termed a 
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Nonlinear Energy Sink (NES). The necessary condition was a certain energy 

threshold, able to trigger a 1:1 stable subharmonic orbit of the underlying 

Hamiltonian system. A following study by Vakakis et al (2003) showed the effect of 

coupling a non-linear attachment to a linear system of multiple degrees of freedom. It 

was proven that energy pumping can still be achieved through resonance of the 

attachment with all the existing modal oscillators. Important conditions are an 

adequate level of excitation energy and the presence of damping; undamped 

systems could generate beat phenomena and energy exchange but not in an 

irreversible form. 

 

Figure 2.13- Linear substructure and Nonlinear attachment (after Vakakis et al, 2003) 

A combined theoretical and experimental work was conducted by Jiag et al (2003). It 

was demonstrated that an NES can absorb energy from a linear oscillator under 

steady state conditions. Such an application presents certain advantages, such as 

the ability of energy absorption over a broadband frequency range rather than the 

narrow band of a tuned absorber. Further experimental evidence was provided by 

McFarland et al (2005). In this study the governing mechanisms were identified and 

correlation with analytical and numerical results was achieved. Effective energy 

pumping was taking place even with smaller mass ratios and the capability of an 

NES to resonate and subsequently extract energy from multiple modes of a structure 

was confirmed.  

A practical application of TET was investigated by Lee et al (2007a). In this work a 

Nonlinear Energy Sink was attached to a two degree of freedom wing model so that 

aeroelastic instabilities were supressed. Numerically conducted parametric studies 
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yielded the mechanism behind efficient suppression. The NES initial design 

characteristics were set based on a rigorous theoretical analysis. Experimental 

validation was provided by a subsequent study (Lee et al, 2007b). 

Based on the above findings, it seems feasible to exploit the benefits of an NES as a 

vibration absorber in a torsional geared system. The dependence of the natural 

frequency of the system on the loading conditions (Cheng and Lim, 2004) would 

require a broadband energy absorbing mechanism.  

2.7 - Synopsis 

This Chapter gives the background of the aspects that will be covered in the rest of 

the thesis. In the beginning, vibration issues of the differential unit are bridged to 

driveline noise. With the assistance of certain assumptions, it is explained how the 

dynamic analysis of the differential gear pair can reflect the overall behaviour of the 

driveline. Focus is therefore shifted towards the generation of the mesh force and the 

source of the excitation, the gear pair itself. 

Even though a number of analytical and numerical studies have been reported in 

literature, there is a tendency to overlook certain important aspects of the dynamic 

problem. The dynamic transmission error is essentially a non holonomic constraint 

when a variation of contact radii occurs as a result of the geometric complexity. 

Current formulations tend to overlook this fact through a set of assumptions, 

neglecting the contact radii variation inside this constraint. The validity of this 

approximation was nevertheless not properly documented. There is no reported work 

retaining the non integrable form of the dynamic transmission error in the dynamic 

analysis. Such a case needs to be investigated. It is also challenging to study the 

effect on the perceived periodic solutions and conduct subsequent parametric 

studies. Furthermore, the operating conditions need to be adjusted accordingly by 

relating the resisting torque to the angular velocity of the differential unit. 

An inclustion of the frictional effects in the dynamic formulation of hypoid gears was 

also never attempted. Models with constant kinematic and loading conditions exist 

yielding the magnitude of the friction coefficient. An addition of the friction excitation 

in the dynamic model would add more depth to the overall analysis, determining the 
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interdependence between the dynamics and tribology. The above tasks are 

associated with the novelty of the current study. 

The following section covers the dynamic modelling of gear systems. The transition 

from simple models of spur gears with approximated mesh parameters to the more 

complicated hypoid transmissions is described. A discussion of the derivation 

method of the mesh parameters follows. The importance of a tribological 

consideration is included before moving to the applied measures for alleviating the 

unwanted vibrational motions. Eventually the concept of TET is discussed as an 

alternative of the existing measures. 
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Chapter 3 - Global Dynamics 

3.1 -  Introduction 

The objective of this chapter is to present the theoretical foundation for simulating 

the torsional dynamics of hypoid transmissions.  The fundamental mathematical 

model is based on a system of coupled harmonic oscillators with stiffness and 

damping characteristics. Analysis is confined to torsional motions of the gear pairs, 

neglecting any lateral forces generated from shafts and bearings.  The investigation 

of steady state oscillations requires the inclusion of aspects from drivetrain and 

vehicle dynamics.  

The variables appearing in the equations of motion are explained; they are 

kinematic, geometric and forcing functions, characterised by periodicity because of 

the nature of gear teeth contacts. This leads the discussion to the Loaded Tooth 

Contact Analysis (LTCA). Unlike spur and helical transmissions, mesh sequence and 

contact properties cannot be derived analytically; hence a numerical simulation of 

the gear teeth engagement is necessary. 

3.2 -  Dynamic Modelling 

3.2.1  Gear Pair Dynamics  

A wide number of studies on the dynamics of parallel axis gears are available in 

literature. For the case of spur gears, torsional vibrations can be uncoupled from the 

other modes of the system resulting to a single equation of motion (Kahraman and 

Singh, 1990). A similar approach was followed by Wang et al. (2007), (with certain 

simplifications) when proposing a model for hypoid transmissions. However, this 

approximation will be proven to lead into false conclusions; hence its adoption will be 

avoided in this study.  

The mechanical model of the hypoid gear pair studied in the current work is shown in 

Error! Reference source not found., where only the torsional vibrations are being 

considered. It is a common practice to model the teeth contact as if it is concentrated 

on a single point (Ozguven and Houser, 1988). Thus, the gear mesh is represented 
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by two elements of negligible mass; a spring of stiffness ( mk ) and a damper ( mc ) 

deployed along the line of action. The same approach has been realised in most 

torsional gearing models (Blankenship and Singh, 1995; Theodossiades and 

Natsiavas, 2000; Wang et al., 2007). The gear set members are considered as a 

couple of rigid rotating disks.  

For the case of spur gears, due to the involute profile, the contact force in every flank 

has the same direction; along the line of action defined by the base radii (Dudley and 

Townsend, 1991). The mesh point moves on this line regardless of the external 

factors. However, the geometric complication of hypoid transmissions, forbids the 

definition of a base radius. The contact pattern is elliptical and the contact load is 

distributed on a finite area rather than a line (Kolivand and Kahraman, 2009). 

Therefore, a theoretical mesh point needs to be defined to account for the effect of 

all the load distribution across the gear flanks. This point is not essentially lying on a 

line, implying that the line of action will be constantly changing, defining a couple of 

hypothetical base radii which will be referred as contact radii Figure 3.1. The pinion 

angular displacement ( p
 ) is used as a reference variable to define the modulation 

of all the contact properties.  

The contribution of various misalignments and geometrical errors are considered by 

an input displacement function ( )(
p

e  ) exerted in the direction of mesh, namely the 

kinematic transmission error.  

The free body diagram can be seen in Figure 3.2. The two bodies are assumed to be 

rigid solids. The centres of rotation are not allowed to move laterally, since the shafts 

and the bearings supporting the wheels are assumed to be rigid. The motion of each 

gear is described by its rotation; the latter can be regarded as a composition of the 

rigid body angular displacement plus a perturbation component expressing the 

torsional vibration motion. In other words:  

)(tt iii        , gpi ,  
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Figure 3.1- General hypoid gear pair mesh model 

where pω  and gω  are the constant angular velocities of the rigid bodies. Subscripts 

p and g will be appointed to the pinion and gear, respectively, from now on. 

The meshing stiffness accounts for the internal reaction force generated in the 

system. It depends on the number and position of the mating flanks and is a periodic 

function of the relative angular position of the gears. The same applies to the 

kinematic (manufactured) transmission error which describes the profile 

inaccuracies. 

Taking into account that the mean angular velocities of the gears remain constant, 

the previous parameters may also be expressed as periodic functions of the pinion 

angle. By neglecting the tooth variations, the fundamental frequency of both 

quantities is equal to the gear meshing frequency: 
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 ggppmesh
NN  

        

where 
p

N  and 
g

N  represent the number of teeth of the pinion and gear, 

respectively. The above consideration allows the expression of mesh stiffness and 

static transmission error in a Fourier series (angular) form: 

 

Figure 3.2- Free body diagram of the hypoid gear pair 
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The harmonic nature of both quantities introduces harmonic excitations in the 

system, triggering resonance issues.  

The equations of motion with respect to the angular rotations ( p ) and ( g ) can be 

written in the following form: 
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          pgpmppmpppp TxfkRxcRI      (3.3) 

 
          ggpmpgmpggg TxfkRxcRI      (3.4) 

where terms (  xcm  ) and ( )()( xftk gm ) express the damping and elastic forces 

developed during gear meshing. The mesh stiffness is represented by the term (

)( pmk  ), whereas ( mc ) is the structural damping coefficient. Variable x  is a 

function of the rotational angles ( )(tp ), ( )(tg ), the contact radii ( pR , gR ) and 

the static transmission error input ( )( pe  ): 

      p

t

t

gpg

t

t

ppp edRdRtx   
00

)(   (3.5) 

Parameters ( pT ) and ( gT ) represent the externally applied torques at the pinion and 

gear respectively, whereas   ( pI , gI ) are the mass moments of inertia of the two 

sides of the differential gear pair. Function ( )(xfg ) defines the effect of backlash 

nonlinearity in the deflection between the mating teeth. If the quantity ( b2 ) 

represents the total gear normal backlash, then: 
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
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       ,

            ,0

       ,

)(   (3.6)  

Therefore, gear backlash introduces strong nonlinearities to the dynamic response. 

This may lead to regions of multiple solutions and chaotic attractors, depending on 

the system characteristics (Theodossiades and Natsiavas, 2001a). 

3.2.2 Vehicle and Drivetrain Dynamics 

In the previous section, the equations of motion of the mathematical model were 

presented. However, no particular discussion was made over the external torque 
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excitations applied to the system and their relation. In order to understand their 

dependence and extend the mathematical model to realistic conditions, some 

elements of vehicle and drivetrain dynamics need to be taken into account. 

One of the objectives of the present study is the numerical identification and 

evaluation of axle whine. This form of drivetrain noise has been shown to occur 

during driving (Lee et al., 2005) or coasting conditions (Choi et al., 2011), namely 

when the axle dynamic response deviates from an equilibrium. Therefore, it is of 

great importance to define the necessary conditions leading to all possible 

equilibrium positions which the system is able to reach. 

An equilibrium point implies a condition when the external excitations balance each 

other so that the system settles to steady state response. In any other case the 

system will be accelerated infinitely, resulting to unbounded solutions. When 

considering the previous gear mesh models in literature, some comments can be 

made. At spur gear models, the transmission ratio is always constant, hence input 

and output torque are related with the ratio of the base radii: 

 

g

bg

bp

p T
R

R
T    (3.7) 

Nonetheless, in hypoid transmissions the mesh vector is shifting, hence the 

transmission ratio follows the variation of contact radii ( pR ) and ( gR ) (equations   

(3.3), (3.4)). As a result, by using a similar expression to equation

 

(3.7), input and 

output torque values cannot balance each other, causing the system to settle to a 

solution far away from an initial input condition. A numerical solution shows that the 

system decelerates far from its initial velocity, implying that such a relationship is 

incompatible with the physics of the system. Therefore, an alternative expression 

needs to be sought by incorporating the dynamics of the drivetrain, as well as the 

vehicle itself. 

The equation governing the equilibrium between drive and resistance forces at the 

drivetrain system is derived from the energy conservation principle. In specific, the 
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input force supplied by the engine must be equal to the total resistance requirement 

at the wheels of the vehicle (Bosch, 2004): 

 
2

2
asincos 


 Acemamgamgf

r

i
T wtot

tot
e    (3.8)  

The left hand side term of the above equation denotes the input force at the rear 

axle. The right hand side is separated into four types of resistance; rolling, ascent, 

acceleration and aerodynamic. The various terms appearing inside the equation are 

related to the vehicle properties and traction conditions. They are presented in Table 

3.1. 

Table 3.1- Vehicle properties and operating conditions 

Variable Physical  Meaning 

e
T

 
engine torque                                         

tot
i

 
total conversion ratio 

r  dynamic radius of the tyre 

tot
  

total mechanical efficiency 

m  vehicle mass 

g
 gravitational acceleration 

f
               

coefficient of rolling resistance 

a  ascent angle 

a  acceleration of the vehicle 

w
c

 
aerodynamic drag coefficient 

A  frontal area of the vehicle 

  air density 

  vehicle speed 
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Parameter e is the rotational inertial coefficient given by the following expression 

(Bosch, 2004): 

 
2

222

1
mr

JiiJiJ
e mGhAhR 

    (3.9) 

The mass moment of inertia of the wheels is denoted by ( RJ ), whereas the 

drivetrain and engine by ( AJ ) and ( mJ ), respectively. Conversion ratios ( hi ) and (

Gi ) refer to the final drive and transmission. 

When the mean vehicle speed is constant, the acceleration term in equation  (3.8) 

can be dropped and the latter yields the necessary condition for achieving a stable 

equilibrium condition. The mean engine torque requirement is defined if the mean 

vehicle speed of the specific equilibrium point is substituted therein. Therefore, due 

to the aerodynamic drag, a certain value of the vehicle velocity 
0

  defines a unique 

equilibrium point. For a dynamic analysis, the input engine torque consists of a 

constant term ( 0eT ) yielded by equation  (3.8) and an engine order perturbation term. 

The resistance torque is also time variant due to the kinematic relationship relating 

the angular velocity of the differential to the vehicle speed: 
g

r  . Looking back at 

equations (3.3) and  (3.4), the properties of the engine and the differential unit need 

to be substituted for the ones of the gear pair. 

This is in accordance to the physical concept of the system. At a specific throttle 

position, the mean engine delivered torque is constant. At the same time, the vehicle 

moves with a constant mean velocity and the differential rotates with the 

corresponding angular speed, which are unique for every equilibrium point. 

Nevertheless, the resistive torque follows the angular velocity fluctuation while its 

mean value remains fixed based on the equilibrium requirements. 

Alternatively, the equilibrium can be violated after a certain time step ( ct ), for 

instance under the occurrence of coasting conditions. In this case, the numerical 

investigation should be split into two periods; the first for ctt   and the second for 

ctt  . During steady state, the mean input torque will be equal to ( 0eT ) whereas in 
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the transient case its value will depend on whether the system is accelerating or 

decelerating. Figure 3.3 shows an indication of the input torque variation with respect 

to time, depending on the driving conditions, where the input torque is assumed to 

alter linearly outside the equilibrium. The transient phase needs to be analysed by 

applying the complete form of equation (3.8), including the acceleration term. In the 

same manner, the angular acceleration of the drivetrain will be connected to the 

vehicle acceleration with the expression: gra .  

 

Figure 3.3- Torque variation for Equilibrium, Drive and Coasting conditions 

The inclusion of vehicle and drivetrain dynamics in the equations of motion is crucial 

for the accurate representation of the system, since the mathematical formulation 

now reflects the operating conditions of the vehicle.    

3.3 - Formulation of Gear Mesh 

Equations 
 

 (3.1) to (3.9) describe the dynamics of the drivetrain system. As 

already mentioned, moments of inertia and the applied torques appearing at 

equations  (3.3), (3.4) need to be replaced with the ones of the whole powertrain 
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system. This is due to the fact that the main point of concern is the dynamic 

response of the gear pair which generates the noise emission mechanism. 

In reality, gear mesh is deployed on a contact area of multiple flanks. However, the 

dynamic model presented in the previous sections assumes the gear mesh to be 

concentrated on a single point. This means that the correspondence between the 

real contact zone and the mesh parameters present in the dynamic model needs to 

be established. Hence, from the gear pair design characteristics and through a mesh 

simulation, contact radii, mesh stiffness and kinematic transmission error need to be 

defined. 

Before analysing the gear mesh, it is necessary to define a set of coordinate 

systems. Their formation is illustrated in Figure 3.4. Each coordinate system denoted 

by ( iS ) is represented by a set of axes (
i

x , 
i

y  and 
i

z ). The global coordinate 

system ( fS ) is identical to ( gS ), which is attached to the crown gear wheel. The 

third one (
p

S ) is connected to the pinion body. Similar notation has been followed by 

other researchers (Kiyono et al, 1981; Cheng and Lim, 2003; Wang et al, 2007).     

3.3.1 Kinematic Analysis 

Contact radii ( pR ) and ( gR ) affect crucially the dynamics of the system. They 

represent the moment arm of the meshing force (equations (3.3), (3.4)) and 

simultaneously define the relative displacement of the gears (equation (3.5)). Before 

attempting their calculation, it is important to explain their relation to the geometry of 

the gear configuration. A kinematic analysis will reveal this. 

The modelling approach discussed in the previous section (Figure 3.1) involves a 

continuous variation in the orientation of the line of action. At an arbitrary time 

snapshot 
i

t , the linear velocity of the pinion along the line of action will be: 
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  Mpp rnv


    (3.10)  

with 
T

zyx nnnn ][


 being the instantaneous unit vector in the direction of the 

contact force,  Tpp 00  


 the angular velocity of the pinion and 

 TMMMM zyxr 


 the position vector of the theoretical mesh point M

(Figure 3.5). All vectors are defined with respect to the pinion coordinate system. If 

all vectors are substituted in equation (3.10), the following expression can be 

derived: 
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with ( pj


) being the unit vector along the rotational direction ( py ) of the pinion. 

Therefore: 
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S
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S
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x
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 (3.12) 

Similar expressions can be derived for the gear, assuming that the corresponding 

quantities are expressed with respect to coordinate system, gS : 
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(3.14) 

The kinematic analogy of the hypoid contact radius with spur or helical gear base 

radius is profound. It yields the approaching velocity of the wheels along the line of 

action if multiplied to their angular speed. The main difference is its variation; it 

follows the evolution of mesh position vector Mr


 and mesh force vector n


. Gear 

mesh will engage into a curvilinear path instead of a straight line.  
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Figure 3.4- Global and Local Coordinate Systems 

Looking back to the teeth mesh model of Figure 3.1, the infinitesimal displacement 

d  between the two bodies during a time interval dt  in the mesh direction will be: 

 

 
dtRdtRdtvdtvd ggppgp      (3.15) 

The overall total displacement at a time instant ( t ) can be derived by integrating 

equation 
 

  (3.15) with respect to 

time: 

 

dtRdtRdtvdtvd ggppgp   
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Figure 3.5- Derivation of linear velocity along the line of action 
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(3.16) 

where ( 0t ) is the initial time of reference. This function is the expression of the 

dynamic transmission error for hypoid gear pairs. It can be used for spur gears as 

well, however in that case the radii pR  and gR  are independent of time. In this case: 

 ggpp RRt  )(
  

(3.17) 

This expression describes the dynamic transmission error in parallel axis systems. It 

leads to the reduction of the order of the system to a single degree of freedom by 

decoupling the rigid body rotations and revealing only the relative torsion.  

The same formula was applied by Wang et al. (2007), followed by a reduction of the 

rank of the system to one degree of freedom, on the basis that the derivatives of the 
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contact radii with respect to time are trivial ( 0 pp RR  , 0 gg RR  ). 

Nevertheless, this approximation is not realistic; even though their variation with 

respect to pinion angle may be small, the corresponding time derivatives become 

significant at higher angular velocities. This approach is, therefore, insufficient to 

reveal the real dynamic behaviour of the system. Moreover, if the aforementioned 

approximation is adopted, the definition of the dynamic transmission error by 

equation (3.17) will yield unbounded solutions. Because of the above, in this study 

the dynamic transmission error is defined by equation 

 

(3.16); in a form of a time 

integral, in contrast to previous studies. This method results essentially into a two 

degree of freedom system which will be the foundation for conducting a tribological 

analysis. Numerical evidence on the above claims will be given in the following 

chapters. 

In essence, contact radii in hypoid gear mesh are varying quantities and their 

calculation is associated with the determination of mesh point ( M ) and mesh force 

direction vector n


 as suggested by equations (3.12) and (3.14). The same equations 

have been introduced by Cheng and Lim (2003) and were also adopted by Wang et 

al (2007). From Figure 3.5, it can be seen that any point on the instantaneous line of 

action of the mesh force will produce the same result for the contact radii. The 

important value is the distance between the line of action and the axis of rotation, 

which is confirmed by the cross product present in equations (3.12) and (3.14). 

Hence, determination of the line of action is sufficient for the calculation of the 

contact radii. The geometric complexity necessitates the implementation of 

numerical techniques for the derivation of the necessary mesh quantities.  

3.3.2 Load distribution and contact geometry 

It was shown that the calculation of the contact radii is associated to the contact 

geometry; the orientation of the contact force (unit vector n


), as well as its line of 

action (locus of mesh points M ) need to be defined. Additionally the equivalent 

stiffness of the meshing teeth as well as the kinematic transmission error is required 

for predicting the dynamic response. 

A rigid body representation of the pinion under quasi-static equilibrium is depicted in  
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Figure 3.6, where the gear is assumed to be fixed and only the pinion is free to 

rotate. The pinion gear reaches an equilibrium position through the balance of the 

externally applied torque ( pT ) and elastic reaction forces ( icF , ) exerted by the crown 

gear due to the contact of the mating flanks. The determination of the total reaction 

force is the first step required for the solution of the dynamic model. The line of 

action and the direction of the contact force yield the contact radii (eq. (3.12) and 

(3.14)). Furthermore, its magnitude combined with the angular deflection of the rigid 

body will lead to the calculation of the mesh stiffness.  

 

 

Figure 3.6- The pinion under quasi-static equilibrium 

Although methods for generating the contact zone (Litvin and Fuentes, 2004) and 

FEA models predicting the loaded deflection (Gosselin et al, 1995; Simon, 2000) are 

present in literature, sometimes the arising equations are too complex to be solved 

analytically. Therefore, it is necessary to employ a fully numerical simulation of the 

gear mesh known as Loaded Tooth Contact Analysis (LTCA).  

An efficient numerical tool in analysing hypoid gear mesh is CALYX (Vijayakar, 

1998), a commercial software conducting three dimensional LTCA. If the gear pair 

design data is imported in the program, CALYX is able to provide an accurate 

representation of the mesh sequence quasi-statically. Calculations are made by a 
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combination of a surface integral method together with Finite Element Analysis; in 

this way the derivation of the actual compliances accounting for Hertzian contact, as 

well as bending and torsion of the tooth is possible (Vijayakar, 1991). The gear pair 

characteristics on which the analysis is based are shown in Table 3.1. The output of 

LTCA renders the contact zone properties between the mating flanks. For instance, 

Figure 3.7 shows the distribution of the contact pressure on the meshing teeth. 

 

Figure 3.7- Distribution of contact pressure (N/mm
2
) on the pinion flanks (LTCA by CALYX) 

The objective of LTCA, as already mentioned, is to calculate the total mesh force. 

Numerical output is attributed to the individual segments of the contact zone; a 

number of cells are forming the computational grid. The important data pieces entail 

their position vector ( i
r


 ) and surface normal vector ( in


), as well as the applied load 

iw . The force applied on a contact cell can be expressed as 
iii

nwf


 . Hence, a 
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system of forces Nffff


...,,, 321  applied at discrete points Nrrrr


,...,, 32,1  is 

obtained. This is in general a system of non-concurrent, non-coplanar forces acting 

on a rigid body. Definition of the resultant force will yield the equivalent mesh point.  

In Statics (Riley, Sturges and Morris, 1995), two different force systems are 

considered equivalent if they produce the same external effect when applied to a 

rigid body. In this way, a general force system consisting of various forces acting on 

different positions can be resolved into a resultant force ( F


) and a couple, (C


). The 

resultant ),( CF


 of the system Nffff


...,,, 321  can be determined if each force of 

the system is resolved into an equal parallel force through an arbitrary chosen point 

(for simplicity at the origin of the fixed coordinate system) and a couple, ( ic


)
 
(Figure 

3.8). Thus the original system will be replaced by two systems: 

a) a system of non-coplanar, concurrent forces through the origin O  with the 

same magnitude and direction as the forces of the initial system 

b) a system of non-coplanar couples    

The resultant of the concurrent force system is a force through the origin O : 

 
nFkFjFiFFFFF zyxzyx


   (3.18) 

With: 
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Each force ( if


) applied at a contact cell i  will introduce a couple ( ic


) at the origin 

O  of the global coordinate system when transferred at that point. This couple will 

have the same moment as the moment of the original force about point O  (Figure 

3.8). This is expressed by: 

 iii frc


                        (3.23) 

 

Figure 3.8- Determination of the equipollent forcing system. Each force   is equivalent to a 

parallel force and a couple with respect to a reference point 

 



52 

 

The total moment induced by all the couples will be: 

 
eCkCjCiCCCCC zyxzyx




  
(3.24) 

With: 

 
   )( iziyiyizixx rfrfcC   (3.25) 

 
   )( izixixiziyy rfrfcC

  
(3.26) 

 
   )( iyixixiyizz rfrfcC                             (3.27) 

 
     222

  iziyix cccCC


                (3.28) 
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Table 3.2- Gear pair parameters and machine/cutter settings (Gleason face hobbed gear set) 

Pinion parameters:  

Number of pinion teeth 13 

Pinion face width (mm) 33.851 

Pinion face angle (deg) 29.056 

Pinion pitch angle (deg) 29.056 

Pinion root angle (deg) 29.056 

Pinion spiral angle (deg) 45.989 

Pinion pitch apex (mm) -9.085 
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Pinion face apex (mm) 1.368 

Pinion Outer cone distance (mm) 83.084 

Pinion offset (mm) 24.000 

Pinion hand Right 

  

Gear parameters: 
 

Number of gear teeth 
36 

Gear face width (mm) 
29.999 

Gear face angle (deg) 
59.653 

Gear pitch angle (deg) 
59.653 

Gear root angle (deg) 
59.653 

Gear spiral angle (deg) 
27.601 

Gear pitch apex (mm)               
8.987 

Gear face apex (mm) 
10.948 

Gear Outer cone distance (mm) 
95.598 

Gear offset (mm) 
24 

 

Pinion machine and cutter parameters:  

Inside cutter blade angle (IB) (deg) 21.529 

Outside cutter blade angle (OB) (deg) 16.743 

Machine center to back (mm) -0.288 
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Basic swivel angle (deg) -32.865 

Basic cradle angle (deg) 64.433 

Tilt angle 31.736 

Sliding base (mm)               20.647 

Ratio of roll 2.762 

Blank offset (mm) 23.908 

Machine root angle (deg) 0.202 

Cutter point radius (mm) 63.743 

Radial setting (mm) 86.983 

 

Gear machine and cutter parameters:  

Machine root angle (deg) 59.653 

Machine center to back (mm) 7.026 

Horizontal setting (mm) 66.650 

Vertical setting (mm) 62.642 

Inside cutter blade angle (deg)               22.436 

Outside cutter blade angle (deg)               15.815 

Cutter point radius (mm) 64.185 

 

By implementing the above methodology, the initial system nffff


...,,, 321  

coincides with a resultant force and a couple ),( CF


 drawn at the origin O  of the 
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global coordinate system. According to the theory of equipollent systems, when the 

couple (C


) is perpendicular to the resultant force ( F


), the two can be combined to 

form a single force ( F


) whose line of action is at a distance FCd /  from point O  

in a direction that makes the moment of ( F


) the same as that of (C


). Indeed, one 

can prove that in the studied case, at every angular position of a meshing cycle 

0 en


. If the resultant force is applied at a point ),,( mmm zyxM , then the cross 

product of theoretical mesh point with the resultant force must be equal to the total 

moment applied at the body. Hence: 

 
CFr OM


/  

or, 
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which finally leads to the following system of linear equations: 
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zmxmy
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CzFyF

  

(3.31) 

The above system is in the form BXA   with: 
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It can be seen that 0A , hence the system might have infinite or no solutions at all. 

To define this fact, we find the reduced matrices 
RA  and 

RBA ][   (O‘Neil, 2011): 
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Since 0 en


: 

0
1

/)()/()/(  en
F

FCFCFCFFCFFCFC
z

zxxyyzzzxxzyyz



Thus,   2][)(  RR BArankArank  , so the system has infinite number of 

solutions. The solution of system by selecting tzm  as independent unknown is 

given by: 
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(3.32)  

By arbitrarily selecting a value for ( mz ) the locus of points ),,( mmm zyxM  is 

found, described by the following vector equation: 

 
btarOM




  
(3.33) 

With 

 
   Tzyzx

T

zxzy FFFFbFCFCa 1//,0// 


  

As it can be seen, the calculation of radial distances is independent of the point of 

application of the force. Hence, any point ),,( mmm zyxM  of line (3.33) verifies the 

properties of the mesh point. At this stage, the mesh force unit vector n


 has been 

calculated by equation (3.21), whereas the position of the mesh point 
Mr


 has been 

defined by the set of equations (3.32). Thus, by importing those values in equations 

(3.12) and (3.14), the contact radii of the gear pair can be derived, with respect to 

pinion rotational angle. Figure 3.9 depicts the normalized contact radii (with respect 

to their mean value) for various values of the input torque, during one mesh cycle. It 

can be noticed that the exhibited fluctuation over the mean value seems to fade 

when the input torque increases. 

The mesh factor ( mk ) represents the overall meshing stiffness of the gears during 

contact. It includes the contribution of elastic contact of the meshing teeth (Hertzian 

deformation), the bending and shearing effect of the flanks, as well as the tooth base 

rotation. 
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                                         (a)                                                                             (b) 

Figure 3.9-  Dimensionless contact radii with respect to pinion angular rotation for a complete 

mesh cycle: (a) Pinion contact radius pR̂ , (b) Gear contact radius gR̂ . 

 

An expression for the derivation of mesh stiffness for hypoid transmissions has been 

proposed by Cheng and Lim (2003). This is similar to previous equations used by 

Ozguven and Houser (1988) for spur gears and by Blankenship and Singh (1995) for 

helical gears. This equation is applicable to quasi-static conditions, realised usually 

in Loaded Tooth Contact Analysis. The mesh stiffness is given by: 

 0 


Lp

m
R

F
k

  

(3.34) 
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                                        (a)                                                                           (b) 

Figure 3.10- Dimensionless mesh parameters with respect to pinion angular rotation for a 

complete mesh cycle: (a) Mesh Stiffness 
mk̂ , (b) kinematic transmission error 

L̂  

Current modelling approach simulates the gear contact by neglecting the effect of 

lubrication. This approximation is valid for relatively high levels of contact load. In this 

case, it can be assumed that the dry contact stiffness is much lower than the 

stiffness of the lubricant fluid; the latter can be regarded as almost incompressible. 

Hence the equivalent stiffness is assumed to be independent of the lubricant film 

with no loss of generality. In the above equation, ( F ) is the resultant load acting on 

the meshing teeth,  ( L ) is the loaded angular transmission error and ( 0 ) is the 

unloaded transmission error in translational form. As implied by equation (3.34), 

mesh stiffness is a function of load distribution, contact and geometric imperfections, 

flank modifications and is also dependent on the angular position of the gears. 

Therefore, it is obvious that the calculation of the total deflection between the mating 

bodies under loaded and unloaded conditions is a prerequisite. This procedure 

should be repeated for a number of angular positions during the meshing cycle to 

ensure sufficient data is collected. 

 

Figure 3.11- Dependence of mean contact stiffness with input torque 

Loaded and unloaded body deflections are calculated by CALYX. For the pure 

geometric (unloaded) contribution, a quasi-static analysis with (almost) zero applied 

input torque is performed. The transmission error results can be seen in Figure 
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3.10b, whereas the stiffness is depicted in Figure 3.10a. The fluctuations over the 

mean value seem to dissipate as well while the torque level increases. The mean 

stiffness value with respect to input torque is illustrated in Figure 3.11. There seems 

to be a significant growth rate at low to medium torque levels, before gradually 

dropping until reaching high loading conditions. The mean stiffness values derived 

by CALYX can be extrapolated to an expression in the form of:  

 
2

10 )(
C

pp TCTk 
  

 (3.35) 

where ( iC ) are constants. Similar results have been obtained by Cheng and Lim 

(2003). 

Throughout this section, it was shown how the geometric complexity of hypoid 

transmissions perplexes the derivation of mesh parameters. The whole process is 

not straightforward at all, since a complete LTCA is required. The value of each 

contact parameter is inserted in the equations of motion and the dynamic problem 

can be numerically solved. As expected, the contact properties are periodic functions 

of the pinion angle. Hence, to increase the computational efficiency and resolve 

discontinuity issues, the above quantities are expressed into Fourier series. 

Neglecting any tooth-to-tooth variations, the fundamental period is NT  2  (in 

angular form), where pN  is the number of teeth for the pinion. For instance, the 

pinion contact radius pR  can be expressed in a Fourier series with respect to the 

pinion angular position p   as: 

 




n

i
ppsippcippp iNRiNRRR

1
0 )]sin()cos([)(   (3.36) 

It can be shown that a Fourier expansion with three harmonic terms describes the 

contact parameters adequately. The original output is compared with the Fourier 

expansion in Figure 3.12. 
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The procedure for calculating the mesh properties can be summarized in the 

following steps: 

(a) For pinion angular position ( p ), calculate the resultant force and moment 

from LTCA data using equations (3.18), (3.22) and (3.24) - (3.30). 

(b) For an arbitrary selected value of ( t ), determine the coordinates of the 

equivalent mesh point using equations (3.32). 

(c) From equations (3.12) and (3.14) calculate the contact radii ( )( ppR  and 

)( pgR  ). 

(d) From equation (3.34) derive the mesh stiffness )( pmk   along the line of 

action. 

To conclude, a list of the main assumptions involved in the formulation of the 

dynamic model and the derivation of the contact properties are presented. 
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                                       (a)                                                                             (b) 

 

                                                                              (c) 

Figure 3.12- Comparison of derived mesh properties and the corresponding Fourier expansion 

for input torque 20Nm: (a) kinematic (unloaded) transmission error (b) pinion contact radius (c) 

mesh stiffness  

Table 3.3- List of main assumptions 

(1) The gear mesh is concentrated into a single point. 

(2) The equations of motion are formulated in the form of coupled mechanical 

oscillators comprising of mass, stiffness and damping elements. 

(3) Mesh stiffness ( mk ) is the effect of the elastic reaction contact force between 

the two gears; it is assumed to be identical under quasi-static and dynamic 
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conditions.  

(4) The lateral motion of the gear wheels, as well as the bearing interactions are 

ignored; only the torsional motions are accounted for. 

(5) The torsional rigidity of the powertrain and differential unit is assumed so that 

their inertias can be introduced in the gear pair model. 

(6) The resisting torque is a function of the vehicle speed and, therefore, the 

angular velocity of the differential unit. 

 

3.4 -  Synopsis  

In this chapter the concepts of global dynamics of hypoid gears were presented. 

Initially, the fundamental mechanical model was introduced in a similar manner to 

previous studies for spur and helical gear sets. The main difference is focused on a 

time variant line of action resulting in an alternative expression for the dynamic 

transmission error. Hence, reduction of the order of the system is not possible, 

resulting essentially in a three degree of freedom system. 

The determination of the contact parameters is crucial for the solution of the system. 

Their physics was discussed and analytical expressions for their derivation were 

presented. However, the complex geometrical issues encountered in hypoid gear 

sets enforce the use of numerical simulation tools. Therefore, the basic aspects of 

Loaded Tooth Contact Analysis were introduced stressing on the numerical 

simulation of the contact and eventually the calculation of load distribution and rigid 

body deflection. 

The data provided by such a quasi-static analysis was used to derive the contact 

parameters. By this means, it is possible to switch from a multiple contact cell 

representation into a model focused on a single mesh point. The results obtained 

were compared and successfully validated with previously published research 

studies. The periodicity observed in their fluctuation allowed expansion in Fourier 

series. The fitment was proved satisfactory. The discrete set of values was thus 
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transformed into analytical expressions which can be inserted in the dynamic model, 

improving computational efficiency. 

Through all the preceding steps, the equations of motion can be solved and the 

system response can be determined for teeth dry contacts. The significance of the 

dry contact model is important; it is the backbone for the upcoming numerical 

models, covering the aspects of lubrication and Targeted Energy Transfer.   
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Chapter 4 - Tribological Consideration 

4.1 -  Introduction 

The previous chapter discussed the formulation of a global dynamic model for the 

differential gear pair. An ―integrated‖ approach was maintained, meaning that the 

derivation of the external and internal forcing elements was achieved on a macro-

scale; the system components were practically treated as rigid bodies. The current 

chapter is focused on the micro-scale of the problem, investigating the dependence 

between the global dynamics and the sliding motion of the mating flanks. Interesting 

conclusions can be drawn about the properties of the lubrication regime, friction 

generation and mechanical efficiency of the transmission. 

Various modelling approaches are presented based on an increased level of 

complexity; the operating conditions of hypoid transmissions necessitate the 

consideration of non-Newtonian fluid analysis. The tribological investigation will be 

restricted on analytic solutions. It is true that a numerical solution would be more 

accurate; however, it would require a significant amount of computational time. 

Therefore, the lubricant film will be estimated by an analytical expression derived by 

Grubin (1949). Thermal effects will also be considered (heat dissipation conducted 

by the lubricant due to the sliding motion of the gear flanks). Tooth Contact Analysis 

will be implemented once again since a number of contact parameters characterizing 

the mating surfaces need to be specified.       

4.2 -  Dynamic Modelling of Lubricated Contact  

During the meshing process, the gears in contact exhibit a combined motion of 

rolling and sliding. Velex and Cahouet (2000) have concluded that sliding friction is 

mainly responsible for power losses in helical gears for low to medium rotational 

speeds. When considering hypoid gear sets, due to the axial offset, an intensive 

longitudinal sliding occurs (Stadfelt, 1993). For the above reasons, it can be implied 

that the sliding effect overwhelms the rolling; hence rolling friction can be regarded 

as insignificant. This notion is maintained by Gohar (2001) in the analysis of frictional 

effects in EHL contact problems.  
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The available gear dynamics models in literature tend to include friction as an 

external excitation caused by the relative sliding motion of the working teeth. 

However as shown by Vaishya and Singh (2001b), friction can interact with the 

dynamics of the system in a complex manner by:  

 acting as a parametric excitation, 

 inducing nonlinearities due to its dependence to the instantaneous sliding 

velocity,   

 enhancing the damping capability of the system  

In an accurate dynamic model all the above factors need to be addressed.  

 

Figure 4.1- Frictional model of a gearing system 

The mechanical model used to account for the friction generation mechanism is 

presented in Figure 4.1. A frictional force is exerted on a direction perpendicular to 
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the line of action of the gear mesh. The latter, defined by unit vector  n


, is 

dependent on the angular position of the system as already mentioned in Chapter 3. 

Friction is the result of the relative sliding of the mating flanks, which takes place in 

the direction denoted by unit vector  


. An analogous approach has been 

implemented by Vaishya and Singh (2001a) for parallel axis gears; in a hypoid 

transmission, however, the variation of the sliding direction during a mesh cycle 

should be considered. 

 

Figure 4.2- Free body diagram of lubricated model 

The corresponding free body diagram, shown in Figure 4.2, is an expansion of the 

one presented in the dynamic analysis of the previous chapter. The main 

suppositions of section 3.2.1 are still in effect; the mesh force along the line of action 

is represented by stiffness and damping elements. The dynamic effect of lubrication 

is summarized in the appearance of a pair of frictional torques generated by the 

relative sliding. Hence, such a formulation only involves the torsional motion, 
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neglecting the effect of friction on the lateral motion of the system, especially along 

the sliding direction. 

The equations of motion are similar to equations (3.3) and (3.4) with the only addition 

being the inclusion of the corresponding frictional torque )( , pfrT  and )( ,gfrT : 

 
          pfrpgpmppmpppp TTxfkRxcRI ,  

 
(4.1) 

 
          gfrggpmpgmpggg TTxfkRxcRI ,  

 
(4.2) 

All the other parameters are yielded by the formulation presented in Chapter 3. By 

convention, it is always assumed that the friction assists the motion of each gear 

member. This fact is also reflected in the above equations. Nevertheless, both terms 

)( , pfrT  and  )( ,gfrT  will be treated as algebraic quantities; whether their effect is 

assistive or resistive is revealed by the sign of the friction force itself. This is in 

accordance with prior considerations by Vaishya and Singh (2003), Kar and Mohanty 

(2007) as well as Liu and Parker (2008).  

4.3 - Thermal Elastohydrodynamic Analysis  

The previous chapter illustrated the process for the derivation of the mesh 

properties. The main hypothesis required the application of the gear contact force on 

a single equivalent mesh point instead of a finite area over a number of flanks; this 

resulted eventually to a macro-scale analysis. However, when considering the 

updated model described by equations (4.1) and (4.2), a different approach needs to 

be introduced.  

A tribological analysis needs to be conducted on each of the mating teeth pairs in 

contact. The individual frictional contributions need to be added together so that the 

total frictional torque is formed. Such a formulation involves essentially two basic 

steps; the first one refers to the definition of the direction of friction which always 

opposes the relative sliding velocity. The second step involves understanding the 

underlying mechanism of friction; in the case of viscous shear this is inversely 

proportional to the lubricant film thickness (Gohar and Rahnejat, 2009). There would 

be also a significant boundary friction contribution due to asperity interactions on the 
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contiguous surfaces when the lubricant film thickness is insufficient to guard against 

their direct interaction (Vaishya and Singh, 2003).  Therefore, friction is investigated 

on the micro-scale of the gear pair system, where the kinematic, forcing and 

lubricant properties are vastly pronounced. 

The lubrication regime of gearing mechanisms has been proven to lie in the mixed 

Elastohydrodynamic (EHD) region (Snidle and Evans (1997); Gohar (2001)). The 

thinning of lubricant film results into coexistence of viscous shear and asperity 

interactions between the mating teeth surfaces. Athough a numerical transient 

analysis of the lubricated conjunction would include the squeeze film effect (thus, the 

continuity of film history); it would be computationally very intensive. This is because 

a number of meshing teeth pairs (typically 2 to 3) are in simultaneous mesh in each 

step of the dynamic simulation. The influence of additional salient factors for a 

realistic solution such as asperity interactions and thermal shear thinning of a 

lubricant film would make the problem almost computationally intractable. To ensure 

that steady state condition is achieved, a vast number of time steps needs to elapse; 

hence numerical efficiency is decreased further. Therefore, an analytic treatment 

should be preferred, along the same lines as that of De la Cruz et al (2010), while 

applying an EHL analytical approach of Grubin (1949) for the elliptical conjunction of 

hypoid gears.  

An outline of the EHL generic formulation is depicted in Figure 4.3. Due to the 

relative sliding of the gear flanks, a lubricant film is formed between the two surfaces. 

The contact load is applied in a direction normal to the sliding motion. This raises the 

operating temperature of the lubricant. The main parameters of Figure 4.3 are 

explained below:  
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Figure 4.3- The Elastohydrodynamic Conjunction 

Table 4.1- Basic parameters in EHL formulation 

Variable Physical  Meaning 

pU  pinion surface velocity on the tangential 
plane of the contact                                        

gU  gear surface velocity on the tangential 
plane of the contact 

ps,  pinion surface temperature 

gs,  gear surface temperature 

0  bulk (inlet) temperature 

c  temperature at the center of lubricant film 

0h                parallel region film thickness 

W  contact load 

  shear stress 

 

When considering involute profile gear mechanisms, the relative motion always 

occurs in a direction normal to the contact line (Velex and Maatar, 1996; Wang et al, 
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2004; Theodossiades et al, 2007). However, in hypoid transmissions, geometric 

complexity results in a continuous rotation of the contact zone (Litvin et al, 2006). 

This results in the implementation of TCA tools for deriving the kinematic and 

geometric properties of the distributed contact area. Such a technique was employed 

by Xu and Kahraman (2007), by discretising the mesh zone into a set of finite line 

increments; subsequently a quasi-static tribological analysis was conducted. 

In this work, a tribological analysis will be enforced on the contact ellipse based on 

the properties of its central location point. By this means, it will be assumed that the 

latter characterizes the entire conjunction. This formulation enables the analytical 

treatment of the lubrication problem (Grubin, 1949; Mostofi and Gohar, 1982; 

Chittenden et al, 1985), hence avoiding time consuming numerical techniques.      

As mentioned previously, the direction of friction coincides with the direction of the 

sliding velocity. Therefore, a kinematic analysis for the identification of the relative 

sliding direction is the first necessary step. 

4.3.1 Contact Kinematics 

The kinematics of the contact are crucial for the ensuing tribological analysis. The 

various kinematic and geometric attributes are presented in Figure 4.4. The 

corresponding notation is explained in Table 4.2. In general, the velocity of the 

contact point will be synthesis of two individual components. The first (not depicted in 

the figure) which lies along the direction normal to the contact zone has been already 

defined in equations (3.11) and (3.13). The second is set on the tangential plane of 

the contact area (Kolivand et al, 2010).  

The tangential component influences the frictional properties; equally important is its 

orientation with respect to the contact ellipse, so that analytical estimations for the 

film thickness can be applied (Gohar and Rahnejat, 2008). As seen in Figure 4.4, the 

entraining and sliding velocities are forming angles 1  and 2  with respect to the 

minor axis of the contact ellipse. The semi-axes of the latter are defined by unit 

vectors x̂  and ŷ  .The corresponding velocity projections of the pinion at the contact 

point are obtained as:  
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Figure 4.4-  Geometric and kinematic properties at the contact footprint 

 
   rjxrxu ppp

p 
 ˆˆ)(    (4.3) 

 
   rjyry ppp

p 
 ˆˆ)(    (4.4) 

Table 4.2- Notation of contact footprint variables  

Variable Physical  Meaning 

U


 Entraining velocity of the lubricant at the 
contact point 

x̂  Unit vector along the minor axis of the 
contact ellipse 

zxR  Radius of curvature along the minor axis 
of the contact ellipse 

ŷ  Unit vector along the major axis of the 
contact ellipse 
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zyR  Radius of curvature along the major axis 
of the contact ellipse 

U


  Sliding velocity at the contact point 

1                
Angle between entraining velocity and 

minor axis of contact ellipse 

2  Angle between sliding velocity and minor 
axis of contact ellipse 

̂  
Unit vector along the direction of relative 

sliding 

 

The notation used in the previous equations is consistent with section 3.3.1, where 

)( p


 is the pinion angular velocity and )( pj


 is the unit vector along the rotational 

direction of the pinion. In this case the position vector )(r


 represents the contact 

point on the individual flank under consideration and not the equivalent mesh point 

derived in section 3.3.2. All vectors are defined with respect to a coordinate system 

),,( pppp zyxS  fixed at the centre of the pinion (Figure 3.4). By definition: 

 
 rjxr pxpfr


 ˆ,,   (4.5) 

 
 rjyr pypfr


 ˆ,,   

(4.6) 

A set of similar expressions also exists for the gear wheel, if all vectors are 

expressed relatively to the coordinate system ),,( gggg zyxS , fixed at the centre of 

the gear wheel (Figure 3.4): 
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   rjxrxu ggg

g 
 ˆˆ)(    (4.7) 

 
   rjyry ggg

g 
 ˆˆ)( 

  
(4.8) 

 
 rjxr gxgfr


 ˆ,,   

(4.9) 

 
 rjyr gygfr


 ˆ,,   

(4.10) 

Equations (4.6), (4.7),  (4.9)-(4.10) are equivalent to the contact radii which were 

calculated in section 3.3.1. If they are multiplied by the angular speed of the gear 

member, they yield the instantaneous velocity component with respect to the contact 

ellipse. Thus, in this thesis, they will be called surface velocity radii as well. 

Therefore, their importance is associated with the inclusion of the dynamic effect in 

the kinematics of the mating flanks. This fact will be proved numerically in the 

following section by comparing the velocities obtained directly from CALYX and the 

ones derived by the above analytic expressions. The sliding velocity is yielded by 

(Theodossiades et al, 2007): 

 ̂UU 


  (4.11) 

 

 
   2)()(2)()( gpgp uuU  

  
(4.12) 

 

 

    yxuu
U

gpgp ˆˆ
1ˆ )()()()( 


 
  

(4.13) 

The friction force essentially lies in the direction of the sliding velocity )ˆ( . The 

moment arm of the frictional torques can be calculated in the same sense to contact 

radii - see equations (3.12), (3.14):  
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 )()()(

,
ˆ ppp SS

p

S

pfr rjr


   (4.14) 

 
 )()()(

,
ˆ ggg SS

p

S

gfr rjr



  

(4.15) 

Radii  pfrr ,  and gfrr ,  represent the moment arms for friction torque applied to the 

pinion and gear wheel, respectively. As shown by Cheng and Lim (2003), they are 

related to the tangential friction component at the contact point in the sliding direction

)(


. They depend on the position of the contact point and the orientation of the 

contact ellipse. This information is derived from CALYX, based on a numerical 

representation of the gear pair geometry. 

4.3.2 Contact properties 

4.3.2.1 Contact ellipse imposition 

From the preceding analysis, it can be seen that the contact point definition is 

essential for calculating the oil entrainment conditions. Additionally, the location of 

the contact zone on the gear flank is associated to the equivalent radii of curvature, 

affecting both the elastostatic distortion and the formation of the lubricant film. 

Therefore, the imposition of a contact zone is a crucial task. 

For the case of spur and helical gears, the involute profile yields a representation of 

the contact zone in a form of finite line; hence the mobility and surface 

characteristics of the contact can be analytically defined (Dudley and Townsend, 

1991; Theodossiades et al, 2007). Yet the geometric complexity of hypoid gears, as 

already discussed in the previous chapter, enforces the use of TCA for the derivation 

of the contact conditions. The formulation presented in section 3.3.2 illustrated the 

prediction of an average mesh point by balancing the overall load and moment 

distribution. However, the tribological analysis is conducted on each flank; thus the 

results of TCA obtained by CALYX need to be applied on each individual pair of 

mating surfaces rather than the whole gear member. 

As already seen, CALYX provides a representation of the contact zone in the shape 

of a grid of points. The points of particular interest are termed ‗principal‘; they can 

approximate the centreline of the contact ellipse. A quasi-static numerical model 
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predicting the friction coefficient has been proposed by Xu and Kahraman (2007), 

focusing the tribological consideration on the line joining the principal points. The 

current study employs an analytical approach of the lubrication problem; thus an 

alternative characterisation of the contact zone will be sought. Such a simplified 

approximation of the contact grid has been introduced by Park and Kahraman (2009) 

as part of surface wear model for hypoid gears. This technique which matches the 

finite grid to a contact ellipse by using an interpolation algorithm is illustrated in 

Figure 4.5. 

 

Figure 4.5-  Evaluation of contact zone from TCA (after Park and Kahraman, 2009) 

The method implemented in this thesis is even simpler; the instantaneous contact 

ellipse is represented by the central principal point. Hence, all the properties of the 

latter are attributed to the contact zone itself permitting the use of closed form 

solutions for the tribological aspect of the problem. 

4.3.2.2 Meshing and engagement cycle 

Before presenting the contact properties derived from TCA, it is useful to provide the 

definition of the meshing and engagement cycles. These quantities may be 
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expressed in angular form, for instance with respect to the pinion roll angle )( p . 

Their physical meaning is illustrated in Figure 4.6. 

 

Figure 4.6- Mesh and engagement cycle 

In the above diagram, the line of action is bounded by points A and C. At the initial 

point of observation )0( t , it is assumed that the flank pair #2 is engaging into 

contact by entering the line of action at point A; at the same time the preceding flank 

pair #1 is at position B. The meshing cycle is defined as the elapsed time needed for 

flank pair #2 to reach position B (He et al, 2007). It is related to the base pitch for the 

case of spur and helical gears; nevertheless for the hypoid transmissions an 

equivalent expression can be used by using the angular pitch instead due to the 

absence of a base radius as a physical quantity. Hence: 

 
N

t
p

mesh


2
   (4.16) 

By comparing the previous equation with the definition of meshing frequency in 

section 3.2.1, it is obvious that the meshing cycle is in essence the meshing period; 

furthermore it expresses the phase difference between two successive mating 
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flanks. If the number of pinion teeth is denoted by N , equation (4.16) can be also 

expressed in angular form, thus: 

 N

p
mesh




2)( 
  

(4.17) 

The next step is the determination of the engagement cycle, identified as the elapsed 

time during the engagement process of gear pair. From Figure 4.6, this corresponds 

to the distance between positions A and C. The quotient of engagement to meshing 

cycle yields the overall contact ratio )( tm : 

 
p
mesh

p
eng

mesh

eng

t
t

t
m




   (4.18) 

The meshing cycle can be calculated numerically from TCA, by computing the time 

or the angular hysteresis between the engagements of 2 successive pairs. Indeed a 

value of 0.4712 rad is derived for the hypoid gear pair under investigation. The 

theoretical value is equal to 
13

2  (Equation 4.17) yielding a relative error of almost 

2.5% which is an acceptable value.  

Likewise, the overall contact ratio can be computed from two individual methods to 

test the validity of Equation 4.18; either by dividing the numerically obtained cycles or 

by finding the mean value of the mating flanks in contact for a meshing cycle. Both 

approaches rely on TCA results aiming to compare Eq. (4.18) to the theoretical 

definition of the contact ratio (Dudley and Townsend, 1991). From Eq. (4.18) a value 

2.8611 is maintained while from the definition the result is 2.8378. Comparison of the 

two quantities conveys an error of 0.82%. The error magnitude is also relevant to the 

time/angular increment used by TCA; therefore a reduction in the step of the quasi-

static analysis would diminish the observed error. 
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4.3.2.3 Surface velocities and radii 

As mentioned previously, the contact ellipse is characterized by the centre point of 

the numerically predicted contact grid. As a result, the contact properties of the 

overall elliptical contact coincide with those of that principal point. If the position 

vector )(r


 is identified, the corresponding surface velocities and radii can be derived 

from equations (4.3) - (4.10). The results displayed in Figure 4.7 are attributed to the 

12th pinion and 3rd gear flank. It should be mentioned that the depicted quantities are 

dimensionless, as typical length is chosen the mean value of equivalent radius of 

curvature along the x-direction mRzx 0181.00   and as typical angular velocity the 

pinion angular velocity of the quasi-static analysis sec/6.1040 radp  .     

 

Figure 4.7- Velocities and surface velocity radii; (a) velocity across x-direction, (b) velocity 

across y-direction, (c) surface velocity radius 0, / zxxfr Rr  and (d) surface velocity radius 

0, / zxyfr Rr . pinion ,   gear. The pinion torque is equal to 50Nm. 
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The validity of expressions (4.3) - (4.10) can be confirmed if the velocities derived 

directly from CALYX are compared to those predicted by the analytic expressions 

(4.3) - (4.4) and (4.7) - (4.8). The comparison charts in dimensionless form shown in 

Figure 4.8 prove that the analytical expressions are valid; hence the surface velocity 

can be yielded as the product of the instantaneous angular velocity and the surface 

velocity radius. By this means the fluctuations appointed to the dynamic effects will 

be incorporated in the tribological analysis, similarly to the methodology followed by 

Vaishya and Singh (2001a) for a spur gear pair.    

 

Figure 4.8: Comparison between analytical and CALYX predicted velocities; (a) pinion 

direction –x, (b) pinion direction –y (c) gear direction –x, (d) gear direction –y CALYX ,  

 analytical. The pinion torque is equal to 50Nm. 

4.3.2.4 Contact geometry and load distribution 

The approximation of the contact zone into an elliptical footprint requires the 

knowledge of the equivalent radius of curvature, as well as the magnitude of the 
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contact load. The equivalent radii of curvature zxR , zyR  along the x and y axis 

of the contact ellipse are given by the following set of expressions (Gohar, 2001): 
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(4.20) 

The values 11R  and 12R  denote the principal minimum and maximum radii of 

curvature of the pinion, whereas 21R  and 22R  denote the corresponding values for 

the gear. The angle   is formed between the planes containing 11R  and 21R . The 

principal curvatures are obtained from TCA for the current contact position; hence 

from the above equations the relative (equivalent) curvature values can be 

computed. The dimensions of the contact ellipse are determined by its semi-axes. 

Considering that the parameter 

zyzx

zyzx

RR

RR

2
1

2
1

2
1

2
1

cos




  determines the gap shape 

of mating flanks, the contact ellipse semi axes are given by (Gohar, 2001): 
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The parameters   and   are provided in tabulated form with respect to cos  

(Gohar, 2001); a polynomial fit of 7th power is proved to yield satisfactory accuracy. 

Comparisons are shown in Figure 4.9.  

 

Figure 4.9- Parameters α and β;  tabulated data ,   polynomial fit 

The contact load magnitude is calculated in accordance to the analysis presented in 

section 3.3.2; however in this case only the resultant force across the flank into 

consideration will be computed. The mean contact pressure will be derived by 

dividing the flank load W  to the elliptical contact area (Gohar and Rahnejat, 2008): 
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 ab

W
pmean


   (4.23) 

 

Figure 4.10- Geometric and load factors; (a) Radii of curvature,  zxR̂ , zyR̂ , (b) 

 , cos , (c)  axisa , axisb , (d) W , meanp  . The 

pinion torque is equal to 50Nm. 

The basic geometric and loading factors are presented in Figure 4.10. The radii of 

curvature are depicted in dimensional form with respect to their mean value whereas 

the semi axes of the contact ellipse are divided by the mean value of zxR . The radii 

of curvature at the first instances of the contact take relatively low values (Figure 

4.10a); hence from equations (4.21) and

 

(4.22), the contact ellipse covers a limited 

area on the gear flank resulting in the observed pressure spikes of Figure 4.10d. 

Another important observation from the last figure is that there is no load 

transmission for a considerable portion of the engagement cycle; even though TCA 

effective engagement cycle 
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predicts that the flank is under contact. Therefore, a contradiction exists between the 

effective and the calculated value of the engagement cycle from equations 
 

 

(4.17) and (4.18). An explanation will be given by examining the effect of input torque 

to the teeth contact properties. 

4.3.2.5 The input torque effect 

To determine the role of pinion external loading, additional TCA will be conducted for 

different input torque values; subsequently the contact parameters will be compared.  

 

Figure 4.11- Surface velocity radii with respect to input torque; (a) 0
)(

, / zx
p
xfr Rr  , (b) 0

)(
, / zx
p

yfr Rr

, (c) 0
)(

, / zx
g

xfr Rr , (d) 0
)(

, / zx
g

yfr Rr 50Nm, 100Nm, 200Nm, 300Nm) 

Figure 4.11 shows the effect of input torque on the surface velocity radii. It can be 

seen that the latter are independent of the torque magnitude implying that the 

orientation of the contact ellipse remains unaffected. The same conclusions can be 

drawn from Figure 4.12 where the equivalent radii of curvature are depicted. As a 
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result, the contact position remains fixed regardless of the applied loading 

conditions.    

 

Figure 4.12- Radii of curvature with respect to input torque; 50Nm, 100Nm, 

200Nm, 300Nm 

The effect of input torque on the applied load, mean pressure and size of the contact 

zone is illustrated in Figure 4.13. In this case, the input torque affects all the above 

quantities. Increased torque results in greater applied load, which in turn causes an 

enlarged contact area. The combined effect is also reflected in the mean pressure 

which also rises with load. A second crucial remark is the extension of the effective 

engagement cycle with the ascent of external loading.  

The previous fact becomes more obvious if the effective contact ratio is recalculated 

with an alternative version of equation (4.17) by using the effective engagement 

cycle instead. The ratio of the effective to the nominal contact ratio is plotted with 

respect to the input torque in Figure 4.14. It can be seen that the effective contact 

ratio approaches the nominal one as the input torque increases.  

The overall conclusion from LTCA is that the geometric properties (curvature and 

surface velocity radii) remain unaffected by the torque fluctuation. Nonetheless, the 

loading conditions, the dimensions of the contact zone and the effective duration of 

the contact are significantly altered. Since the dynamic model needs to be 

established for a wide input torque range (eq.3.18), then the contact load distribution 

on the engagement cycle needs to be adjusted for the torque. This is due to the fact 
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that the dimensions of the contact zone and the mean pressure are dependent on 

the load itself as seen in equations (4.21) - (4.23).  

 

Figure 4.13- Effect of input torque on the applied load, mean pressure and dimensions of 

contact ellipse; (a) contact ellipse minor semi axis 
0/ zxaxis Ra , (b) contact ellipse major semi 

axis
0/ zxaxis Rb , (c) contact load W and (d) mean contact pressure meanp  ; 50Nm, 

100Nm,  200Nm, 300Nm  
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Figure 4.14- Ratio of effective contact ratio to the nominal one 

4.3.2.6 Coupling of contact properties with the dynamic model 

All the previously presented teeth contact parameters refer to quasi-static TCA. The 

coupling with the dynamic model is implemented in two ways; initially by using 

equations (4.3) - (4.4) and 
 
(4.7) - 

 
(4.8). The mean angular velocities p  and g

 
are 

substituted with the instantaneous values of p  and g  that arise from the dynamic 

analysis. By this means, the nonlinearities caused by the fluctuation of the angular 

velocities will be taken into account, similarly to the modelling approach of Vaishya 

and Singh (2003). 

The second link between dynamics and tribology is identified in the influence of the 

dynamic load. Due to parametric resonances seen frequently in gear systems, the 

dynamic load can escalate considerably at certain operating conditions. Such an 

event will cause increased values of the contact load. The latter is influencing 

explicitly the formation of the lubricant film. Nevertheless, this dependence is usually 

weak under EHL conditions as shown analytically by Grubin (1949). Yet, another 

indirect influence exists due to the change of lubricant properties under piezo-

viscous conditions. The extremely high levels of contact pressure cause the shear 

stress to exceed the Eyring limit value so that a non-Newtonian treatment is 

necessary. 

For the above reasons, while taking into account the effect of contact load in the 

formation of the contact zone, a loading sharing function needs to be defined. Hence 
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the overall dynamic load can be shared into the individual flanks in contact based on 

the quasi-static TCA. The load sharing factor can be easily calculated by division of 

the contact load on the flank under consideration to the overall transmitted load on 

the gear member. A similar technique was followed for spur and helical gears 

(Vaishya and Singh, 2001; He et al., 2007). Therefore: 

 

 

 

total

i

W

W
lf    (4.24) 

  

  

 

Figure 4.15- Load sharing factor for different values of input torque 50Nm, 100Nm, 

200Nm, 300Nm  

The shape of load sharing factor with respect to different torque levels during the 

engagement cycle is seen in Figure 4.15. Its significance is dual for the purposes of 

the dynamic analysis; in the first place it yields the percentage of dynamic load 

applied on each mating flank and at the same time it defines the idle period of the 

engagement cycle. It is characterized by two quantities; its maximum magnitude and 

its duration, which is naturally equal to the effective engagement cycle. It is obvious 

that as the external input torque rises, the maximum value of the load sharing factor 

drops and the duration period increases. This is due to the increase on the effective 
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engagement cycle causing the effective contact ratio to reach the nominal value of 

one, showing consistency with the findings of Figure 4.14. 

To summarize the remarks of TCA, there are two types of parameters required for 

the link between the tribological and dynamic analysis. The first type is independent 

of the external loading conditions and depends only on the instantaneous contact 

position, as defined within the engagement cycle. These set of parameters involve 

the surface velocity and curvature radii. On the other hand, the second type of 

contact properties is associated with the specific operating conditions. This type 

involves mainly the load carrying capacity of the gear pair which is defined by the 

load sharing coefficient. If the contact load is defined, a set of additional properties 

affecting the lubricant rheology can be determined; for instance the mean contact 

pressure.  

The contact parameters are inserted into the numerical model through an 

interpolation technique. By this manner, the combined effect of numerical integration 

of equations of motion and quasi-static contact analysis is obtained. This an efficient 

way to account for the geometrical complexities posed by hypoid gear transmissions. 

4.3.3 Film thickness calculation 

The film thickness determination is a crucial part of the tribological analysis. A 

plethora of factors need to be considered concurrently; the pressure distribution 

along the conjunction is combined with elastostatic deformation and lubricant fluid 

properties. 

As stated earlier, a numerical solution of the problem would require a significant 

amount of computation (Xu et al, 2007; Holmes et al, 2005). Therefore, in this work, 

the estimation of the lubricant film thickness will be based on analytical (Grubin, 

1949) or extrapolated formulae (Mostofi and Gohar, 1982; Chittenden et al, 1985). 

The above expressions convey the lubricant film magnitude along the parallel flanks‘ 

region; hence they can be employed for the approximation of the frictional excitation 

which is the ultimate objective of the tribological analysis.  
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4.3.3.1 One dimensional analysis 

The first approach maintains the assumption that the lubricant entrainment takes 

place along the minor axis of contact ellipse (Figure 4.4). A similar assumption has 

been adopted by Xu and Kahraman (2007). By this means the velocity components 

of both gear surfaces along y - direction will be neglected and only the x - 

components will be taken into account. 

The implemented method is purely analytical and is attributed to Grubin and Ertel 

(1949). The main concept is the introduction of a reduced pressure:  

 

 peq 



 1
1

  (4.25) 

 

Thus the problem can be treated in a pseudo-isoviscous manner in the following 

form of Reynolds equation: 
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
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 
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h

hh
U

dx

dq c      (4.26) 

The high load carrying capacity was attributed to the shape deformation of the 

mating surfaces. The pressure is therefore maximised on a wide region of the 

contact area around the centre of the footprint, forcing the reduced pressure gradient 

dxdq  to be equal to zero according to equation (4.25). Consequently, from 

equation (4.26) the film thickness will be equal to ch , forming a nearly parallel profile 

(denoted by 0h )  as evidenced by experimental observations (Gohar, 2001). The oil 

film in the inlet region is defined by a superposition of the parallel and the elastic 

deformation: 
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  )()( 0 xhhxh s   
(4.27) 

The second term in the above equation can be approximated by an expression 

derived from elasto-statics; substitution in equation (4.26) and integration while 

assuming fully flooded inlet conditions leads to the following estimation of the parallel 

film thickness (Gohar, 2001): 
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The reduced elastic modulus rE  is: 
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Where: 1E , 2E  are the Young‘s moduli of the contacting bodies and 1 , 2  are the 

corresponding Poisson‘s ratios. 

The effect of gear geometry is described by the equivalent radius of curvature zxR  

along the sliding direction. The parameter   is a correction factor appended to the 

original Grubin‘s formula by Gohar (2001) to take into account the side leakage from 

an elliptical conjunction: 
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(4.29) 

Some important assumptions need to be discussed. The lubricant film evaluation 

described by eq.(4.28) is derived by a form of Reynolds equation by considering 

Newtonian fluid behaviour. However, this expression can also approximate non 

Newtonian flow (Gohar, 2001); yet the difference in lubricant behaviour will be 

introduced by the calculation of the frictional force. Additionally, the considered 
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simplified form of Reynolds equation does not include the effect of surface texture; 

this effect will be introduced again in the calculation of boundary friction by 

implementing the formulation of Greenwood and Tripp (1970). It is also important to 

mention that the analytical solution attributed to Grubin implies fully flooded inlet 

conditions, meaning that the pressure inlet lies far enough from the centre of the 

contact (Gohar and Rahnejat, 2008). 

The one-dimensional lubricant entrainment cancels the kinematic effect of the y - 

velocity component. As a result, the entraining velocity present in the film thickness 

estimation formula will be calculated as follows (Vaishya and Singh, 2001b): 

 
 gxgfrpxpfr rrU  

,,,,
2

1
             (4.30) 

4.3.3.2 Two dimensional analysis 

The analysis previously described implies that the lubricant entrainment is taking 

place along the minor axis of the contact ellipse. Nonetheless, this approximation is 

not valid for hypoid transmissions. The orientation of the contact ellipse with respect 

to the lubricant entrainment can be determined from TCA.  

A typical representation of the contact zone size and its orientation can be seen in 

Figure 4.16. The graphs are drawn for three different torque values with respect to 

the engagement cycle for 50Nm of input torque. The axes are non-dimensional with 

respect to the maximum value of the major axis for NmTp 50 . The lubricant 

entrainment motion is in the X- direction. It is clear that only the size of the contact 

area is sensitive to input torque whereas its orientation remains unaffected. 

Furthermore the assumption that lubricant entrainment takes place along the X-axis 

is questionable; therefore a two dimensional formulation is required for determining 

the oil film magnitude. 

Yet, no analytical expressions similar to equation (4.28) can be found for the two 

dimensional problem; alternatively extrapolated expressions will be used. These 

formulae are derived from numerical solutions assuming isothermal fully flooded inlet 

conditions. During regression analysis, a variety of ellipticity ratios and entraining 
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angles have been investigated but just a few values of rolling speeds. The variables 

used herein are in the form of non-dimensional groups associated with load, velocity, 

lubricant and material properties.  
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Figure 4.16- Orientation of the contact ellipse during the engagement cycle; (a) 
eng 8/1 , 

(b) 
eng 8/2 , (c) 

eng 8/3 , (d) 
eng 8/4 , (e) 

eng 8/4 , (e) 
eng 8/5 , (f) 

eng 8/6 , (g) 
eng 8/7 , (h) 

eng 8/8 . Lubricant entrainment is taking place on X- 

direction.   50Nm, 100Nm, , 300Nm  

An approximation of the central film thickness under two dimensional flow conditions 

has been proposed by Chittenden et al (1985):  

 

     







































3/2

073.0*49.0*68.0* 23.1exp131.4
e

s
eeecen

R

R
WGUH  (4.31) 

In the above equation, eR  and sR are the orthogonal radii of curvature of the bodies 

in parallel and vertical directions with respect to entraining velocity
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The dimensionless groups are defined as follows: 
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The lubricant entraining motion takes place at an angle 1  to the minor axis of the 

contact ellipse (Figure 4.4); hence: 
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The following formula yields the minimum value of the lubricant film at the point 

where the contact pressure spike occurs (Mostofi and Gohar, 1982):  
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The dimensionless groups are defined with the following set of equations: 
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Despite the fact that the previous expression derives the minimum value of film 

thickness, it can be used for the purposes of this study; for current operating 

conditions, minimum and central film magnitudes are very close. In this case the 

lubricant flow is at an angle 1 
 
relative to the y –axis (major axis of the contact 

ellipse); therefore: 
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The entraining velocity in this case is defined as the mean value of the individual 

surface velocities: 
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   2)()(2)()(

2

1 gpgp uuU    

The main parameters taking part in the calculation of the film thickness are 

presented in Table 4.3. 

Table 4.3- Variables used in film thickness expressions 

Variable Physical  Meaning 

q  reduced pressure 

p  pressure  

ch
 
or mh  Film thickness at maximum pressure 

0h  Film thickness in the parallel region 

  Pressure viscosity coefficient 

rE  Reduced elastic modulus 

0                lubricant viscosity at inlet   

  Side leakage factor 

eR  Radius of curvature parallel to the 
entraining velocity 

sR  Radius of curvature normal to the 
entraining velocity 

1   Entraining angle with respect to y-axis 

eU , eW , eG cenH  Dimensionless Groups (Chittenden et al, 
1985) 

*U ,
*W ,

*G ,
*
mh  Dimensionless Groups (Mostofi and 

Gohar, 1982) 

  1
2
11 EK   Parameter (Chittenden et al, 1985) 

 045.0cos0865.0 1
2  m  Parameter (Mostofi and Gohar, 1982) 
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 1
2cos0875.0649.0  n      Parameter (Mostofi and Gohar, 1982) 

axis

axis
p

a

b
e *

 
      Ellipticity ratio 

 

The above extrapolated equations rely on regression analysis of numerical results; 

hence their accuracy is optimized at certain range of the dimensional groups. 

Nonetheless, they represent a useful tool for modelling the effect of two dimensional 

flow without adding excessive complexity to the mathematical formulation. A 

combination of pure analytical treatment (Grubin, 1949) and extrapolated formulae 

(Mostofi and Gohar, 1982; Chittenden et al, 1985) can yield useful conclusions on 

the boundaries of film thickness during an engagement cycle. It should also be noted 

that all the film thickness predictions assume isothermal conditions. As a result, the 

predicted film has been proved to be overestimated compared to experimental 

investigations due to the reduction in the inlet lubricant viscosity appointed to shear 

heating. Thus a thermal correction factor )(   is applied to the isothermally 

predicted lubricant film (Gohar, 2001): 

 00 hh T  

548.0*182.01

1

L
  

In the above expression )( *L  is a constant depending on entraining velocity, a 

constant derived by Houpert (1985), lubricant inlet viscosity and thermal conductivity.  

4.3.4 Effect of Temperature and Pressure 

Besides the effect of heat generation in the lubricant film thickness due to the 

change of inlet viscosity, equally important is the effective viscosity inside the 

conjuction leading to the calculation of friction. The dependence of effective lubricant 

viscosity on the combined influence of temperature and pressure can be estimated 

by using the equation proposed by Houpert (1985): 
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The above expression conveys the value of the effective viscosity e  due to 

temperature rise from a reference temperature 0  (usually at inlet) to a current 

temperature e . Constants Z  and 0S  are independent of temperature and 

pressure: 
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The prediction of temperature rise in an EHD contact is based on the energy 

conservation principle. In a two dimensional form, it can be expressed as follows 

(Gohar, 2001): 
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 (4.39) 

On the left hand side of the above equation, the first term expresses the 

compressive heating caused by the pressure gradient while the second term 

represents the viscous heating. The remaining terms appearing at the right hand 

side are associated to the convection cooling, expressing the heat carried away 

along the x-direction of the lubricant and conduction cooling along the film thickness. 

The validity of neglecting the convection term can be checked by considering the 

contribution of each of the above terms separately. This approach (Gohar and 

Rahnejat, 2008) leads to the definition of Peclet number, expressing the quotient of 

convected to conducted heat: 
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The effect of convection can be overlooked if Peclet number is proven to be low

)1( Pe . In this case: 
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The parameters used in lubricant rheological properties and energy balance 

equations are shown in Table 4.4. 

Table 4.4- Parameters in lubricant rheology-energy balance equation 

Variable Physical  Meaning 

e  Effective viscosity at temperature e  

)(Ke   Current lubricant temperature 

)(0 K   Reference (inlet) temperature 

Z , 0S  Constants 

  Thermo-viscous coefficient 

  Coefficient of thermal expansion 

                Lubricant density 

pC  Specific heat 

k  Thermal conductivity 

Pe  Peclet number 
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4.3.4.1 Newtonian treatment 

The individual terms appearing in the simplified energy equation (4.41) can be 

integrated separately and eventually yield an analytical expression for the 

temperature rise inside the conjunction. The formulation presented in this section is 

based on an individual consideration of the various contributions while implying 

isoviscous conditions across the film thickness (Figure 4.3). 

Initially, the conductive cooling is considered for a lubricant column of width dx  and 

height h . The temperature gradient at a certain position x  is assumed to vary 

linearly (Gohar and Rahnejat, 2008) with a rate of 
h


. Integration of the conduction 

quantity with respect to z  yields the corresponding heat flow: 
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Furthermore, if a linear temperature rise is imposed along the conjunction ( x  

direction), 

axisa
x





 ;   being the maximum temperature rise. If eq.(4.42) is 

integrated with respect to x : 
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Likewise, if a linear pressure gradient is assumed along x direction, 

axisa

p

x

p max

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 , 

double integration of the compressive heating term with respect to x  and z : 
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(4.44) 

Moreover, under Newtonian conditions: 
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the viscous heating term with respect to  x  and z : 
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(4.45) 

All individual integrations resulting into equations (4.43) - (4.45) can be combined 

with equation (4.41) to derive an approximate analytical expression of the maximum 

temperature rise inside the conduction: 
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Since   ie , 
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The above expression defines the rise in the lubricant temperature with respect to 

inlet conditions. It is clear that the temperature rise is a function of the film thickness 

and effective viscosity in the parallel region. As a result, an iterative process needs 

to be established by imposing initially a temperature rise guess. The lubricant 

effective viscosity needs to be adjusted based on current temperature and pressure 

conditions with a simultaneous calculation of film thickness. For the last calculation, 

effective viscosity is only adjusted towards temperature. This is due to the fact that 

the film thickness formulae include implicitly the pressure-viscosity adjustment in the 
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form of reduced pressure gradient, 
dx

dq
. The next step involves the comparison of 

the imposed temperature rise to the one predicted by equation (4.47). The process 

will be repeated until convergence of the two temperature values is achieved.  

It should also be noted that equation (4.47) is an approximate formula. It is based on 

individual integrations of all the heat transfer contributions; furthermore it relies on an 

isoviscous hypothesis across the lubricant film ( z -direction). These assumptions lack 

accuracy; however an analytical estimation of the lubricant temperature can be 

derived. The same expression has been used by De la Cruz et al (2012) for 

accessing the thermal effects of lightly loaded EHL conjunctions in manual 

automotive transmission systems. 

4.3.4.2 Non Newtonian rheological model 

Under piezovicous EHL conditions, Newtonian treatment results often in unrealistic 

estimation of friction. This is due to the high values of encountered pressure under 

high contact loads, pushing the lubricant effective viscosity into high orders of 

magnitude (Gohar and Rahnejat, 2008). For this reason, an alternative rheological 

model needs to be established, to address this behaviour.    

Thin films formed in gear teeth pair conjunctions are often subject to thermal non-

Newtonian shear. This behaviour is determined by a limiting shear stress, first 

defined by Eyring (1936). Johnson and Greenwood (1980) showed that in the flat 

parallel region of a thin elasto-hydrodynamic film the dominant mechanism giving 

rise to contact temperature is viscous shear at the effective viscosity of the lubricant: 
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(4.48) 

Because of the thin dimension of the film, any variation in the Eyring shear stress 0  

across the film may be neglected. The heat generated through shear is conducted 

away through the bounding surfaces in contact (Gohar and Rahnejat, 2008; Johnson 

and Greenwood, 1980), thus the energy equation becomes:  
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To simplify the problem, some assumptions are adopted. Both bounding surfaces 

are assumed to act as perfect conductors of heat; thus, emitting away from the 

conjunction the same amount of energy. This implies that they will remain on the 

temperature of the bulk oil inlet. Indeed Crook (1961) has shown that only a trivial 

error is introduced by this approximation. Additionally, all the properties inside the 

conjunction ),,,,( **
0 aK  are characterized by their mean values along the x

direction. Using these assumptions, the original set of equations derived by Johnson 

and Greenwood (1980), are given in the following form (Gohar, 2001):   
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The various parameter groups appearing in the above expression are yielded by:  
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The sliding velocity U  is obtained from equation

   
(4.12) whereas the surface 

lubricant viscosity s  is defined at inlet temperature and mean pressure. The 

   2)()(2)()( gpgp uuU  
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governing equation 

 

(4.50) can be solved in an iterative manner, using an initial 

guess value of temperature rise 0  e . This yields the effective temperature 

and viscosity based on equations (4.38) and

 

(4.41). Note that the viscosity term in 

film thickness formulae is adjusted for temperature only, similar to the discussion of 

the Newtonian case. 

4.3.5 Calculation of viscous and boundary friction 

The surfaces of gear flanks are rough and the thickness of lubricant film may be 

insufficient to guard against asperity pair interactions. Typical values of composite 

root mean square roughness  qR  vary from m4.0  to m3.2 , depending on the 

method of finishing (Gohar, 2001). Then, the Stribeck oil film parameter 

qR

h
  can 

be obtained at any instant for each pair of interacting gear teeth flanks. The surface 

roughness of gear flanks is assumed to be represented by a Gaussian distribution 

according to the roughness parameter  . Then, the asperity area of contact is 

obtained as (Teodorescu et al, 2003): 

 
    2

22 AFAa    (4.55)  

     

The statistical function )(2 F  is defined according to the formula: 

 

 








 dsesF s 2/2

2

2

2

1
)(      (4.56) 

Figure 4.17 shows a polynomial fit of the above function with respect to the Stribeck 

oil film parameter  . 
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Figure 4.17- Function representing statistical asperity distribution 

The contribution due to viscous friction is obtained as: 

 
 av AAF    

(4.57) 

For Newtonian treatment, the shear stress in the parallel region is mainly due to 

shear effect rather than the pressure gradient (Gohar, 2001). Therefore, the shear 

stress is yielded by: 

 0h

U

z

u
e







 

  

(4.58) 

Alternatively, for an Eyring fluid, equation (4.48) will be used. The boundary friction is 

obtained as in (Greenwood and Tripp, 1970): 

 aab mPAF  0   
(4.59) 

In the above equation, m  is the pressure coefficient of the boundary shear strength 

(0.17 for steel on steel contact) (Theodorescu et al). The overall friction force is the 

sum of these two individual components of friction:  
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 bvfr FFF    (4.60) 

Finally, the coefficient of friction   is defined as the quotient of the total friction force 

at each flank to the corresponding dynamic mesh force:  

 W

FF bv 
  

(4.61) 

It should be stressed that any temperature rise in the contact due to localised flash 

temperature of asperity pair interactions is assumed to have a negligible effect on 

the bulk lubricant effective viscosity. 

A comment should be made with regard to the sense of friction force. The sign of 

friction force (and corresponding torque) is governed by the sign of the relative 

sliding velocity (Vaishya and Singh, 2003; Kar and Mohanty, 2007). If the latter is 

negative, friction opposes the pinion motion and assists the motion of the gear. The 

situation is reversed for the case of positive sliding velocity. Nevertheless, even 

though the friction torque on a pinion flank during an instant of the meshing cycle 

might be positive, the total friction torque exerted by all teeth pairs in contact, is 

always negative. The opposite applies for the gear member. The energy deficit 

induced by the generation of friction can be calculated from the algebraic sum of the 

power incurred from the frictional moments: 

 
  

i i
gifrgifrgpifrpifrpdeficit FrFrP ,,,,


 

 

 (4.62) 

4.4 - Synopsis  

This Chapter discussed the theory behind the inclusion of lubrication in the dynamic 

model. The modelling approach treated friction as an additional torsional excitation 

inducing further nonlinearities to the gear pair formulation. 

Definition of friction guided the analysis through a series of elaborate steps; 

understanding the kinematics, deriving the necessary contact properties, determining 

the magnitude of the lubricant film, coupling with energy balance and temperature 
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rise and establishing more reliable rheological models. Throughout this process a 

necessary amount of simplifications was introduced so that analytical expressions 

can be implemented and efficiency in the computational power can be maintained. 
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Chapter 5 - Dynamic Response Analysis 

5.1 - Introduction 

The theoretical background describing the dynamics of a hypoid gear pair will be 

applied throughout this chapter, aiming at simulating numerically the power 

transmission behaviour under sets of typical vehicle operating conditions. 

Dry conditions will be maintained and the derived results will be compared to the 

output of existing dynamic models. Observations will be made regarding the 

nonlinear nature of the system by identifying the regions of multiple solutions 

associated with contact loss and noise generation. After assessing the dynamic 

response over steady state cruising, the dynamic model will be expanded to coasting 

conditions.  

The dynamic model investigated in this chapter is in accordance to the assumptions 

adopted previously in this thesis (Chapter 3). The current study is restricted to a 

torsional double–DOF model in order to capture the basic characteristics of the 

dynamic teeth mesh force. 

5.2 - Solution methodology   

The general problem is characterized by second order differential equations with 

nonlinearities (effect of backlash), varying coefficients (change of contact properties 

in hypoid transmissions) and complex forcing (static transmission error and angular 

velocity related external torques).  

A multitude of solutions has been proposed for the treatment of simpler cases. 

Comparin and Singh (1989) solved the nonlinear problem with constant coefficients 

and the inclusion of only external forcing by using the Harmonic Balance Method 

(HBM) and numerical integration. Kahraman and Singh (1989) addressed the case 

of internal excitation in the form of kinematic transmission error and commented on 

the importance of initial conditions in successfully producing frequency response 

spectra. The mutual effect of backlash nonlinearity and time varying parameters was 

investigated by Padmanabhan and Singh (1995), by a combination of harmonic 

balance and shooting methods. Natsiavas et al (2000) matched perturbation 



109 

 

schemes to piecewise linear treatment techniques; hence restricting the problem to 

the solution of algebraic expressions. The Finite Element Method has also been 

used by Parker et al (2000) to define the gear pair dynamic response.  

The nonlinearities associated to expressing the mesh stiffness and internal forcing in 

terms of pinion angle as well as the dependence of the resisting torque on the gear 

angular velocity have been examined by Theodossiades and Natsiavas (2001a, 

2001b). Derivation of the periodic solutions in the traditional form of frequency 

response spectra was accomplished by numerical continuation techniques through 

the implementation of the solution continuation method (Doedel, 1981).  

The inclusion of friction inside the gear dynamics induces additional complexities. 

Additional time varying parameters are introduced inside the equations of motion 

(Kar and Mohanty, 2006); the frictional torque nonlinearities have been discussed in 

the previous chapter. If the effect of oscillations in the angular velocities is neglected, 

the dynamic response and stability of the system can be studied through a 

combination of state transition matrix and Floquet theory (Vaishya and Singh, 

2001a). However, if the sliding velocity perturbation is considered, an alternative 

methodology needs to be sought. Due the multiple harmonic terms involved, the 

potential application of harmonic balance method is proven to be inefficient (Vaishya 

and Singh, 2001b). Analytical treatment has been possible for the case of Coulomb 

friction models (Velex and Sainsot, 2002; Liu and Parker, 2009). Nevertheless, 

numerical integration has been favoured, with the 4th-5th order Runge-Kutta algorithm 

being one of the implemented methodologies (He et al, 2007).  

When considering mechanical models of hypoid transmissions, the level of difficulty 

escalates. The number of time (angle) dependent parameters increase as the 

variation of the contact point inflicts a fluctuation of the equivalent contact radii (Eq. 

3.36). Wang et al (2007) applied a numerical solution methodology to the problem, 

by using the Runge-Kutta (Strogatz, 2001) technique. Their analysis was based on 

hypothesis of a slow variation of the contact radii, enabling the reduction of the order 

of the system to a single DOF. This results in a positive definite system which can 

always achieve dynamic balance if the external forcing ratio is proportional to the 

gear ratio. 



110 

 

 

Figure 5.1- Flowchart of the fundamental mechanical model 

Nevertheless, the reduction of the order of the system is an approximation which can 

yield significant deviations in the simulation process (Peng, 2010). This fact will be 

proven by comparing the simplified model (Wang et al, 2007) and the model 

proposed by this thesis. It will be shown that a change of variables can indeed be 
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implemented so that the response of the system can be expressed by a single 

quantity. However, the order of the system will be increased yielding a third order 

differential equation while the previous state variables are given as implicit functions 

of the new variable. This technique will be applied for determining the periodic 

solutions of the system with the solution continuation method by employing software 

AUTO (Doedel, 1981). 

Furthermore, in order to overcome dynamic balance issues, the resisting torque 

needs to be related to the instantaneous angular velocity of the axle (Eq. 3.8) based 

on the formulation of Theodossiades and Natsiavas (2001a; 2001b). Considering the 

effect of friction as an additional source of nonlinearity, the analytical treatment of the 

problem becomes a challenge.  

The simulation data presented hereby address the pair of dynamic models presented 

in Chapters 3 and 4. Their relation has been well identified in the preceding 

discussion. The fundamental mechanical model which can be short-termed as ―dry‖ 

due to lack of tribological effects employs the DASSL subroutine integration scheme 

(Petzold, 1983). The source code is written in FORTRAN programming language 

and is preferred due to its high computational efficiency. The lubricated model which 

in fact is an extension of the ―dry‖ case is solved by using the Runge-Kutta method 

implemented by MATLAB ode45 in-built solver. Despite being less efficient than a 

FORTRAN code, MATLAB has the advantage of matrix manipulation and availability 

of additional library functions able to solve systems of nonlinear algebraic equations 

inherent in the tribological consideration (Eq. 4.50).   

5.3 - Fundamental Dynamic Model       

The importance of the fundamental dynamic model lies on its definition; it presents 

the structure on which the tribological analysis is deployed. Inarguably, excluding the 

frictional excitation, the modelling principle is the same. Furthermore, the ―dry‖ case 

is the platform for importing the new features of the current modelling approach; 

definition of dynamic transmission error as a time integral and dependence of the 

resistive torque on the angular velocity of the axle. Hence, the fundamental model 

can also be acknowledged as a means of validation and comparison to the existing 

formulations. 
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The computational algorithm is illustrated in Figure 5.1. It involves two internal loops; 

the first one (i-counter) is related to the integration time, whereas the second (j-

counter) to the computational time, measuring the number of iterations needed to 

achieve convergence of the state variables. Both the absolute and relative 

convergence tolerances are set equal to 
0810*1 

 so as to ensure the accuracy and 

computational efficiency of the time integration. Convergence criteria might seem 

tight, nevertheless unavoidable given the strong nonlinearities inherent in the 

problem. 

The mesh properties include the variant mesh stiffness, the contact radii and the 

internal excitation induced by the kinematic transmission error. The derivation 

procedure has been explained in Chapter 3 where analytical expressions have been 

derived to represent the numerical output. A Fourier series approximation in the form 

of (Eq. 2.36) has been proven to be adequate (Figure 3.12). The aforementioned 

quantities are defined with respect to the state variable of pinion angle rather that the 

integration time. This is favourable since the TCA is conducted quasi-statically hence 

the concept of time has a different meaning. Furthermore, using the pinion angle as 

independent variable permits the embracement of nonlinearities associated with its 

oscillatory nature (Theodossiades and Natsiavas, 2001a).    

The numerical algorithm is launched by a set of initial conditions based on the driving 

conditions. When considering steady state cruising, the angular velocity of the axle 

can be addressed explicitly to the nominal vehicle speed. The later in turn defines 

the nominal input torque (Eq. 3.8). Due to the inherent connection of axle (crown 

gear) angular velocity and external forcing, it is reasonable to anticipate that the 

system will settle into the same state, regardless of the initially imposed angular 

velocity. The extent of this claim needs to be proven by the upcoming computational 

analysis. The system is also expected to exhibit parametric resonances and multiple 

solutions as a consequence of intrinsic parameter variation and nonlinear 

characteristics. The construction of frequency–response diagrams will be numerically 

achieved by conducting speed sweeps; numerical integration results at a certain 

vehicle speed will be used as the initial conditions for the next vehicle speed point. 

Therefore, an additional loop will be added to the flowchart presented in Figure 5.1 

overlapping the iteration of the integration time. 
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5.3.1 Initial Results – model capabilities under steady state cruising 

The main objective of the fundamental dynamic model is to simulate the motion of 

the differential gear pair under realistic operating conditions. The importance of such 

an analysis is associated to the correlation of the system dynamics with unwanted 

resonance phenomena. The latter can induce significant amplification of the dynamic 

mesh force leading to noise emission, classified as structure borne axle gear whine 

(Lee, 2007). This behaviour is encountered under a variety of vehicle running 

conditions; steady state cruising is the first to be examined.     

Based on experimental work, axle noise has been reported under highway cruising 

for certain vehicle speed range (Yoon et al, 2011). Therefore, it is reasonable to 

select a low transmission ratio for the purposes of the current investigation. Indeed, 

this work is focused on a light truck (FORD Transit Connect Van); by assuming 

cruising conditions with the third gear engaged, transmission ratio is set to 1:1. 

Furthermore, by imposing a cruising velocity, the magnitude of the nominal 

resistance torque can be defined through equation (3.8). The main system 

parameters are defined in Table 5.1. 

Figure 5.2 shows the dynamic response time histories of the gear pair under the 

equilibrium conditions discussed in section 3.2.2. The initial conditions are chosen in 

a way that the relative distance of the two gear members is equal to half backlash. 

Additionally, initial angular velocities are defined by the kinematic expression relating 

the vehicle speed and the axle angular velocity:  

 gr    (5.1) 

Numerical integration takes place on a time window equal to 20000 meshing periods. 

Choosing such a significant integration window may seem unusual; however this 

selection is necessary for comparison purposes as will be seen in section 5.3.3. 

Steady state is usually achieved for less than 200 mesh periods. The dynamic 

response is recorded for the last 100 meshing periods, on a time increment equal to 

1/250 of the meshing period. Both angular velocities oscillate about their mean value 

which represents the rigid body rotation. The dynamic mesh force is always positive 
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indicating that the gear flanks stay always in contact. This is also illustrated by the 

dynamic transmission error which typically represents the dynamic response of 

geared systems. Its magnitude stays always above the boundary level of m75 , 

namely the half backlash value defining contact loss conditions.  

 

 

Figure 5.2- Response Characteristics of the gear pair: (a) pinion angular ; (b) gear angular 

velocity; (c) dynamic mesh force; (d) dynamic transmission error 

The response charactertics imply that steady state conditions have been reached. 

This is supported by the phase plots shown in Figure 5.3(a); only a single stable 

periodic orbit is visible in the phase space. Validation evidence for the numerical 

formulation can be derived from the energy balance equation. The instantaneous 
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total energy of the system is expressed as a sum of the instantaneous kinetic and 

mesh energy of the gear pair. The latter is equal to the work done by the dynamic 

mesh force which is essentially an non conservative term due to the variation in the 

mesh stiffness: 

Table 5.1- Definition of system parameters 

Variable Numerical value 

pI ; moment of 

inertia-pinion 

13892.6e-06
2mkg   

gI ; moment of 

inertia-gear 

288735.4e-06
2mkg   

c ; mesh damping 
coefficient 

5.839e+03 mNs /  

r ; tyre dynamic 
radius  

m320.0  

m ; vehicle mass kg3000
 

g ; gravitational 

acceleration 

2/810.9 sm  

f ; coefficient of 

rolling resistance               

008.0  

a ; ascent angle 00  

wc ; aerodynamic 

drag coefficient 

15.1  

A ; vehicle frontal 
area 

2662.2 m  

 ; air density 3/2.1 mkg
 

 ; vehicle speed kph4.62  
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The energy dissipated by the mesh damping element is given by: 

 




0

2)( dsxcE md 
  

(5.3) 

The input energy is the sum of the initial energy supplied by the initial conditions and 

the non conservative work done by the external torque loading: 

 

 dsTTEE ggpptotalinput  



0

)0()( 
  

(5.4) 

Eventually, the instantaneous energy balance will be: 

 
)()()(  dinputtotal EEE 
  

(5.5) 

The ratio between the two sides of  equation (5.5) is presented in Figure 5.3b. It 

follows that  the energy balance is satisfied for every time increment; hence the 

numerical algorithm seems to be functioning properly. The non conservative nature 

of the mesh force is depicted in Figure 5.3c, showing a constant increase of the work 

done. Figure 5.3d shows the mesh force – deflection diagram forming a closed area 

expressing the work done over a meshing cycle.  

The spectral content of the dynamic response is of great importance since noise 

emission is associated to the frequency characteristics of the mesh force (Hirasaka 

et al; Lee, 2007). The various frequency contributions in the dynamic response will 

be identified by applying the Fast Fourier Transform (FFT).  Figure 5.4 shows the 

FFT analysis of the dynamic mesh force. The mesh frequency has the most 

prevalent contribution inside the time history, followed by its 2nd and 3rd harmonic. All 

the above plots are derived by imposing a vehicle speed of 62.4 kph . This 
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corresponds to an input torque of 87 Nm , a pinion  rotational velocity of 1497 RPM  

and a fundamental mesh frequency of 324 Hz . 

 

 

Figure 5.3- (a) Phase plots; (b) Energy ratio; (c) Non conservative work; (d) Mesh force over 

deflection 

The basic principle of the Fourier Transform is the correlation of a given signal with a 

set of harmonic functions over a certain frequency range; the MATLAB function fft is 

used for this purpose. The algorithm leads to a series of Complex terms whose 

amplitude is depicted in Figure 5.4. Practically, this amplitude expresses the amount 

of the energy corresponding to each frequency.  
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Figure 5.4- FFT of dynamic mesh force time history 

5.3.2 Dynamic transmission error in integral form  

After presenting the characteristics of the dynamic response of the gear pair and 

providing validation evidence, the discussion will be shifted toward the crucial factors 

introduced by the fundamental mechanical model.  

The first novel property is a direct consequence of equation (3.5); the dynamic 

transmission error representing the relative displacement of the gear pair is given by 

an integral equation instead of the typical expression of (3.17). This definition is due 

to the variation of contact radii over a meshing cycle; the latter are functions of the 

instantaneous pinion angle based on TCA (Eq. (3.36)). This feature is a distinct 

peculiarity of hypoid transmissions, affecting considerably the dynamic behaviour. 

This effect will be addressed subsequently. The primary concern of this section are 

the arising stability issues. The operating conditions remain similar to the ones 

discussed in the previous section.  

The expression (3.5) if differentiated yields: 

)()()( pgpgppp eRRx      (5.6) 

In fact, a non-holonomic constraint is introduced in the dynamic system, requiring an 

additional numerical integration. In hypoid gear models introduced before, the 
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simplified equation of (3.17) was employed. By neglecting partially the variation of 

the contact radii (Wang et al, 2007), the constraint was transformed in an 

integretable form. This approach was followed by a system reduction to a single 

degree of freedom mechanical oscillator by achieving positive definiteness. 

However, if the simplified expression is used in the generic double degree of 

freedom system, stability problems are caused.  
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Figure 5.5- Illustration of stability issues: (a) pinion angular velocity, (b) dynamic mesh force, 

(c) phase plots, (d) energy balance;  integral form ,  simplified form  

Figure 5.5 illustrates the appearance of unbounded solutions associated to the 

improper definition of dynamic transmission error. The simplified equation (3.17) 

inflicts an exponential growth in the dynamic response, even from the initial stages of 

integration; the dynamic flow deviates rapidly from the initial conditions. On the 

contrary, application of equation (3.5) yields smooth steady state response 

characteristics while the dynamics are attracted by a single periodic orbit.  The 

energy balance ratio shows a steep increase in the energy level of the system 

violating the energy conservation principle. This implies that equation (3.17) is not 

compatible with the mathematical formulation of the system. Therefore, equation 

(3.7) or (5.6) in differentiated form, are the ones which properly account for the 

system behaviour. 

5.3.3 The dependence of external torque to the axle angular velocity 

After observing the mathematical consistency of the proposed definition of dynamic 

transmission error, another aspect of the fundamental mechanical model is going to 

be stressed. This involves the dependence of the resistive torque on the axle angular 

velocity, leading to an expression of the following form: 

 

2

10 gg CCT    (5.7) 

In the above equation, constant 341.750 C  is related to the rolling resistance 

whereas 
3

1 10*019.6 C  to the aerodynamic drag. The importance lies in the 

establishment of dynamic equilibrium.  

Figure 5.6 shows a time history comparison of the angular velocities using two 

different expressions for the resistive torque. Operating conditions remain identical to 

the previous sections. The first case employs equation (5.7) letting the torque 

applied at the gear to follow the instantaneous variation of its angular velocity. The 

second case uses a constant torque value related to the mean value of the angular 

velocity. The results correspond to an integration time from 1100 to 1120 meshing 
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periods. Angular velocities seem to diverge in terms of magnitude and phase, the 

ones corresponding to constant resisting torque experience a slow reduction of their 

mean value. However in Figure 5.7, the dynamic mesh force is almost identical and 

the phase plots coincide almost into the same periodic orbit.  

Figure 5.8 shows the gear angular velocities when the integration time is increased 

above 100000 periods. This is done to indicate the differences in the observed 

system output. When the resistive torque is a function of angular velocity, dynamic 

response is independent of the integration time, hence supporting the claim of 

established steady state conditions. On the other hand, a constant resistive torque 

inflicts a drop in the angular velocities magnitude by almost 35% in terms of their 

mean value indicating a lack of dynamic equilibrium.  

The dynamic mesh force and the phase plot shown in Figure 5.9 are consistent with 

the above findings. A constant resistive torque causes a reduction both in magnitude 

and in the oscillating part of the contact load. For a meshing period, the trajectories 

on the phase space deviate from the picture of Figure 5.7; the absence of a closed 

curve suggests a change in the frequency characteristics of the response. On the 

contrary, for variable resistive torque the phase portrait is unchangeable.   

The difference in the spectral content of the two cases is presented in Figure 5.10. 

For variant torque, the amplitude and harmonics of the mesh force are unaffected by 

the integration time if the comparison with Figure 5.4 is made. Nonetheless, the 

picture is totally contradictory if the resistive torque is kept constant. An overall drop 

in the energy level of the signal is observed, along with the appearance of irregular 

frequencies. This phenomenon is attributed to a deceleration of the rigid body 

rotation seen in Figure 5.8 when the resistive torque is independent of the angular 

velocity. As a result the meshing frequency is shifted to lower values, deviating from 

the nominal mesh orders. The non periodic nature of the dynamic response under 

constant resitive torque is visualized in Figure 5.11 showing the corresponding 

Poincare maps.  
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Figure 5.6-  Angular velocities of gear members at 1100-1120 meshing periods: (a) pinion, (b) 

gear; velocity dependent torque ,   velocity independent torque 

 

Figure 5.7- (a) Dynamic mesh force and (b) phase plots at 1100-1120 meshing periods; 

velocity dependent torque,   velocity independent torque 
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Figure 5.8- Angular velocities of gear members at 100100-100120 meshing periods: (a) pinion, 

(b) gear; velocity dependent torque ,   velocity independent torque 

 

Figure 5.9- (a) Dynamic mesh force and (b) phase plots at 100100-100120 meshing periods; 

velocity dependent torque,   velocity independent torque 
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Figure 5.10- FFT of the dynamic mesh force at 100100-100120 periods: (a) variant (b) constant 

resistive torque  

 

Figure 5.11- Poincare maps: (a) variant (b) constant resistive torque 

It is obvious that equation 
 

  (5.7) is crucial for achieving 

dynamic balance. Due to the classification of the system as semi-definite (Rao, 

2004) and the simultaneous variation of the contact radii, a dynamic equilibrium 

cannot be reached with constant applied torques. Therefore, a dependence of the 

resistive torque on the instantaneous angular velocity of the axle solves this problem 

and also matches the physical requirements of the problem (Theodossiades and 

Natsiavas, 2001a).  

2

10 gg CCT 
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5.3.4 The effect of initial velocities 

It was proved that the proposed methodology eliminates the appearance of 

unbounded solutions and concurrently brings the system to a dynamic equilibrium. 

However, the effect of the initial velocities has been defined yet. For this reason, 

investigation on whether the system settles to the same steady state will be 

conducted.   

As already mentioned in section 5.3.1, there is a direct relation between vehicle 

speed, axle angular velocity and resistive torque based on current operation 

conditions.  The arising question is whether the dynamic response is affected if the 

above relation is violated. An inquiry into this matter will be accomplished by setting 

the input loading based on the imposed vehicle cruising speed and on the same time 

exciting the system from different angular velocities. Initial rotations are taken again 

equal to zero while assuming that the relative displacement is at the mid-backlash 

position. If the above statements are quantified: 
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ggppp     (5.8) 

In the above expression, n is the ratio between the initial and nominal pinion angular 

velocity 0p . The latter is connected to the imposed vehicle cruising speed in terms 

of: 

 
rR
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p

g

p




0

0

0     (5.9) 

Eventually, two competing factors coexist; the operating conditions defining the input 

loading and the initial velocities setting the primal state of the system. 
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Figure 5.12- (a) Pinion (b) Gear angular velocity for initial angular velocities below the nominal; 

  0n , 5.0n    1n  

Figure 5.12 shows the angular velocities time histories for the initial 200 meshing 

periods, when their initial values are below the nominal. It is clear that regardless of 

the starting point, all the time histories converge after an elapsed time of 120 

meshing periods. After this transient interval, the dominant steady state corresponds 

to the one defined by the nominal initial conditions. This fact is also clear in Figure 

5.14a depicting the analogous dynamic transmission error. Again the resulting 

relative gear displacement is concurrent for the three initial cases examined, apart 

from a phase difference due to the difference in the variation of contact properties.  

Different principles apply to initial velocities greater than the nominal one, as 

illustrated in Figure 5.13. In this instance, the different transients converge on the 

same steady state again; however the latter is different to the nominal steady state. 

The fluctuation around the mean angular velocity is much greater resulting to a 

proportional effect in the dynamic transmission error seen in Figure 5.14b. There is a 

considerable deviation in the extreme amplitude values; in excess, the minimum 

drops under the backlash threshold, leading to contact loss between the mating 

flanks.    
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Figure 5.13- (a) Pinion (b) Gear angular velocity for initial angular velocities above the nominal; 

2n  ,   5.1n  ,    1n    

 

Figure 5.14- Dynamic transmission error for initial angular velocities (a) below the nominal; 

0n ,  5.0n ,  1n , (b) above the nominal; 2n ,   5.1n , 

 1n   

An important conclusion can be drawn from the above consideration. In essence, 

there seem to be two dominant steady state conditions depending on the level of the 
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input angular velocities. The nominal one seems to attract the dynamics of all the 

initial conditions below or equal to its angular velocity level. Additionally, if this level 

is exceeded, another steady state of higher vibration amplitude is likely to prevail. 

This behaviour necessitates a more thorough insight into the effect of the complete 

vector of initial conditions. In either case, the important aspect is yielded by the 

influence of the operating conditions in the dynamic response. The two converging 

solutions are a consequence of the defined external loading, highlighting the 

importance of equation (3.8).  

5.3.5 Detection of gear teeth separation (vibro-impacts) 

It was indicated that the gear pair dynamics are governed by regimes of multiple 

solutions, depending of the value of input angular velocities. This is in accordance to 

previous works where multiple responses were realised on the grounds of backlash 

nonlinearity.   

In section 5.3.2, definition of the dynamic transmission through an integral equation 

due to varying contact radii resulted into the introduction of the additional differential 

equation   (5.6). Thus, the number of 

necessary initial conditions for proper definition of the problem needs to entail this 

new variable. By this means, the construction of frequency – response diagrams is 

possible via the implementation of speed sweeps. This procedure involves varying 

the mesh frequency, beginning from low values and gradually increasing covering 

the whole operational range. Current numerical integration should export its solution 

as initial condition for the one to follow. This process is reversed, starting from the 

higher boundary and incrementally reducing the meshing frequency level. 

Furthermore, by exploiting the direct connection between operating conditions (given 

by the vehicle speed), the gear pair nominal angular velocities and the meshing 

frequency defined explicitly in section 3.2.1, a different x-abscissa can be chosen. 

Namely, the vehicle speed can be used instead of the meshing frequency, yielding a 

more illustrative perception of the vehicle state. 

)()()( pgpgppp eRRx   
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Figure 5.15- Response Spectra: (a) Maximum, (b) Minimum Amplitude, (c) Number of single 

sided impacts, (d) Elastic Energy per 100 cycles; speed * increasing, ■ decreasing 

The speed sweeps are depicted in the graphs of Figure 5.15. All quantities are 

characterized by jump phenomena, inflicted by the occurrence of multiple solution 

regimes for a vehicle speed region from 59 to 94kph. Dimensionless dynamic 

transmission error shown in Figure 5.15(a)-(b), suggests the existence of two distinct 

response branches. The first one is derived when the system is accelerated from low 

initial angular velocities. Mesh between the gears is constant since the minimum 

amplitude never drops below the half backlash threshold. When the vehicle cruising 
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speed approaches the vicinity of 94kph, the jump to the higher amplitude branch is 

realized. From this point and onwards, the system response is governed by contact 

loss and a resonant behavior seen by the extreme values of maximum amplitude. 

The second branch, generated if the integration sequence is commenced from the 

upper boundary of operating conditions, is projected leftwards until the second jump 

at a cruising speed of 59kph. 

Therefore, the nonlinear nature of the system is contributing to the parametric 

resonances instigated by the variation of contact parameters in order to yield a 

complex dynamic response. Similar conclusions have been yielded by previous 

studies on hypoid gear pairs (Wang et al, 2007). Nonetheless, in those systems, 

multiple solutions and contact loss was only realized under lightly loaded conditions. 

Additionally, the resonance was due to a match between the meshing and natural 

torsional frequency of the system. In this case, impact phenomena between the 

mating flanks are developed under high loading conditions as well ( Nm29581 ). 

Furthermore, the dependence of meshing stiffness on input torque (Figure 3.11) 

results into a variation of the natural torsional frequency.  

The overall region of single sided impacts and aggravated dynamic response is 

extended from 59 to 131kph, covering a vast proportion of the operating range. In 

Chapter 2, the correlation of the above factors to gear whine noise has been 

discussed. From vehicle testing results related to commercial vans similar to the 

case study presented here, it was shown that gear whine noise is critical in speed 

ranges from 130 to 80kph during deceleration (Yoon et al, 2011) and 60 to 120kph 

during acceleration (Lee, 2005).  Moreover, the noise frequency range stated by 

previous investigations (Hirasaka et al, 1991; Lee and Kocer, 2007; Lee, 2005) 

varies from 200-1200Hz depending on the case. Current model predicts tooth 

separation and resonant behavior for a meshing frequency range from 308 to 681Hz 

lying within the values presented in literature.  
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Figure 5.16- Response at 78kph, constant mesh conditions; (a) Dynamic transmission error, 

(b) Phase portrait, (c) Dynamic mesh force, (d) FFT of dynamic mesh force 

Figure 5.15c shows the number of single sided impacts taking place within 100 

meshing periods. It is clear that once the contact loss is ignited, the number of 

impacts remains constant for the whole response range, implying a periodical 

repetition following the mesh frequency. This fact is in accordance with the 

experimental data found in literature correlating noise with the mesh frequency. 

Another interesting aspect of the obtained speed sweeps is the change of sign in the 

elastic energy plot in Figure 5.15d. The jump points are defined by a change in the 
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nature of elastic energy; branch switching is related to lower energy levels in the 

system since the elastic energy is now contributing towards overall energy loss. 

 

 

Figure 5.17- Response at 78kph, contact loss conditions; (a) Dynamic transmission error, (b) 

Phase portrait, (c) Dynamic mesh force, (d) FFT of dynamic mesh force 

An overview of the dynamic response exhibited by the system under constant mesh 

is illustrated in Figure 5.16. Vehicle cruising speed is at 78kph corresponding to an 

input torque of 121.3Nm. The time history of dynamic transmission error confirms the 

findings of the spectra shown in Figure 5.15. The mesh between the flanks is 
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maintained throughout the steady state condition. In the phase portrait a single 

stable periodic orbit exists while the mesh force is always positive validating the lack 

of separation instances. Its spectral content seen in Figure 5.16d shows the 

dominant presence of fundamental mesh harmonic, whereas the contribution of 

higher harmonics is trivial. 

Figure 5.17 shows the dynamic response of the corresponding operational point 

lying on the upper branch. The differences are clear in every aspect. The maximum 

amplitude of the dynamic transmission error is increased by almost 36% compared 

to the previous case while the minimum is reduced by almost 87.5%. The half 

backlash line is crossed periodically twice at every meshing period, yielding a single 

sided impact during this time increment. The phase portrait is described by a single 

periodic orbit as well; however the extreme values of both state variables are 

considerably increased. The mesh force time history shows the anticipated 

discontinuities under contact loss conditions together with a highly resonant 

behaviour revealed by the tripling of its maximum amplitude compared to the 

previous case. It is now in the form of a series of finite pulses, resembling a 

repetition of a Dirac function. The effect of the altered nature of the dynamic mesh 

force can be considerable if transferred by the gear bearing assembly to the other 

structural components of the vehicle. The chance of exciting high frequency modes 

is realistic as seen by the spectral content of Figure 5.17d. In this case, the first 

mesh order seems to share its dominant role together with the second harmonic, 

showing that the elastic energy is now shifted to higher frequency contents.     

5.3.6 Comparison to previous hypoid gear pair models 

The advantages for the proposed modelling formulation have been discussed, 

focusing on the elimination of unbounded solutions, achievement of dynamic balance 

and robustness on the alteration of the initial conditions. In this section, a 

comparison to a previously presented methodology (Wang et al, 2007) will be made. 

This is based on the assumption that the variation of contact radii is adequately slow 

so that their time derivatives can be neglected. Therefore by differentiating twice the 

expression yielding the dynamic transmission error (Eq. (3.17)), it follows that: 
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(5.10) 

The above expression allows the reduction to a single DOF system. In the current 

modelling approach, two degrees of freedom need to be sustained due to the 

dependence of the resistive torque on the gear angular velocity. By employing a 

change of variables through setting ppp Ru   and ggg Ru 
 
while utilizing the 

approximation of Wang et al (2007) yields: 

 ppp Ru  
  

(5.11) 

 ggg Ru  
  

(5.12) 

 
)( pgp euux  
  

(5.13) 

If the above expressions are used in compliance with the initial equations of motion 

(3.1), (3.2) and (3.6), the formulation of Wang et al (2007) can be expanded to a two-

DOF system.  

The dynamic response after Wang et al (2007) is shown in Figure 5.18. The results 

of the original single DOF system corroborate to the expanded two-DOF system. 

Thus the latter can be regarded equivalent to the formulation of Wang et al (2007), 

enabling an effective comparison to the methodology proposed in this thesis, so that 

potential differences are conveyed.  

The response spectra comparison shown in Figure 5.19 indicates a significant 

difference between the simplified approach relying on equations (5.11)-(5.13) and 

the methodology introduced in this thesis. The aforementioned simplifications result 

in the elimination of the nonlinear properties of the system while the upper and lower 

boundaries of the dynamic response are equally affected. Regions of multiple 

solutions no longer exist; hence, the realization of jumps of the dynamic flow is now 

impossible. The contact between the gear flanks is steadily maintained throughout 

the whole operational range without the existence of single sided impacts (Figure 

5.19(b)-(c)).       
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Figure 5.18- Dynamic transmission error after Wang et al (2007): (a) maximum (b) minimum 

amplitude; * single DOF, ▲ double DOF 

The resonant behaviour is less pronounced and it only concerns a small peak 

around the vehicle speed of 110kph compared to the broadband resonance 

predicted by the current model (59-131kph). The only region of relative compliance 

between the two cases seems to be at low cruising speeds, up to 50kph. This is 

justified as the corresponding gear angular velocities and mesh frequency (Eq.(5.9)) 

will result into a slow variation of the contact radii granting the feasibility of the 

approximations involved in the simplified model. Nevertheless, for higher vehicle 

speeds the derivatives of the contact radii will be considerable quantities, weakening 

the implementation of equations (5.11), (5.13). Apparently there is a limit for adopting 

this level of simplification. 

Time histories and phase portraits are depicted in Figure 5.20. The graphs 

correspond to the operating point discussed in the previous section, namely a 

cruising speed of 78kph and a pinion input torque of 121.3Nm. The duality of 

solutions representing the current methodology is in contrast with a single steady 

state solution yielded by the approximation of Wang et al (2007). The difference to 

the lower branch solution is notable in the phase space as well; a totally different 

dynamic response is derived.  
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Figure 5.19- Comparison of response characteristics: : (a) Maximum, (b) Minimum Amplitude, 

(c) Number of single sided impacts, (d) Elastic Energy per 100 cycles; current 

methodology,    Wang et al (2007)  
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Figure 5.20- (a) Time history of dynamic transmission error and (b) phase portrait at cruising 

speed of 78kph, input torque of 121.3Nm; current methodology  upper branch,  

lower branch,  Wang et al (2007)  

In general, the current methodology is expected to promote a more realistic 

representation of the physical system, since it preserves its nonlinear properties in a 

broadband range of operating conditions. This behaviour is in accordance to the 

reported literature (Chapter 2) where noise issues related to improper mesh were 

reported for broadband frequency regions. On the contrary, the simplifications stated 

by Wang et al (2007) do not predict any separation effects, neither any significant 

resonance behaviour. The significance of the variation of the contact radii is thus 

stressed as the main dissimilarity between the two approaches. Their variation while 

related to the intrinsic characteristics of hypoid transmissions, introduces a 

substantial dynamic effect which is impossible to be captured by the previous gear 

pair models. In essence, as illustrated in Figure 5.21, the assumptions of Wang et al 

(2007) are similar to regarding the contact radii as constant as if the gear pairs were 

on a parallel axis configuration. The compared response spectra show significant 

matching hence providing additional evidence on the potential of the current 

modelling formulation over the previous simplified models, to capture a detailed 

dynamic behaviour.    
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Figure 5.21- Comparison of response spectra: (a) maximum, (b) minimum amplitude; ▲Wang 

et al (2007), ■constant contact radii  

5.3.7 Family of periodic solutions – stability and parametric studies 

The numerical integration of the equations of motion revealed the existence of two 

main response branches governed by different solution types and jump phenomena. 

Nonetheless, as shown by Kahraman and Singh (1990), the numerical simulations 

are incapable of yielding the complete picture of such dynamical systems. The initial 

conditions are a crucial factor settling the system to different domains of attraction 

and response regimes; therefore there is always the possibility of failing to identify a 

solution branch when following the speed sweep technique described previously. 

The entire branches of periodic motions along with the stability characteristics will be 

obtained by employing a numerical continuation methodology (Doedel, 1981).  

The application of the above methodology requires the representation of the system 

by a single variable through the disappearance of the rigid body rotations. Only the 

principles of this transformation will be mentioned in this section. The complete 

derivation will be provided in the Appendix. The aim of this process is the substitution 

of rotations p , g  with the dynamic transmission error x . Initially, from equations 

(3.3) and (3.4): 
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 xxhpp  ,   (5.14) 

 
 xxhgg  ,

  
(5.15)                  

By differentiating equation (5.6):  

)()()()()( pgpggpgpppppp eRRRRx        (5.16) 

Equations (5.6) and (5.16) combined with equations (5.14), (5.15) can be solved 

simultaneously to yield angular velocities p , g as functions of x , x . Hence all the 

derivatives of the gear rotations can be expressed with respect to the transmission 

error and its derivatives.  

The solution of the original dynamic system requires the differentiation of equation 

(5.16) and subsequent substitution of the rotation derivatives to the new variable x . 

Thus, the transformation results into a third order differential equation of a single 

variable related to the relative motion of the gear pair. Since the angular rotations of 

the gear wheels are now absent from the system description, the mesh properties 

need to be given in terms of time and mesh frequency rather than the pinion angle. 

This change introduces only a marginal difference on the steady state dynamic 

response.  

Numerical continuation is enforced in order to define the family of periodic solutions. 

The results are presented in the form of frequency response diagrams; however the 

vehicle speed is used again as the independent variable in accordance with the 

analysis of the previous sections. The branches of stable/unstable solutions are 

illustrated by solid/dashed curves respectively.     
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Figure 5.22- Effect of mesh damping coefficient on periodic motions, maximum amplitude: (a) 

c= 1.9130e+003 Ns/m (b) c= 2.8695e+003 Ns/m (c) 5.7390e+003 Ns/m (d) 1.1478e+004 Ns/m; 

  stable branch,   unstable branch 

The first set of response diagrams (Figure 5.22-Figure 5.23) depict the effect of 

mesh damping on the periodic motions under nominal system parameters. Case (c) 

is the closest to the numerical results analysed in the previous sections. The form of 

the response curve confirms previous numerical integration findings. A no-impact 

(NI) solution branch ( bx  ) evolves at the left hand side of the graph whose 

amplitude is maximized around 94kph. In the same range of vehicle speeds a single 

sided impact (SSI) ( bx  ) branch co-exists, exhibiting a near softening behaviour. 

Likewise, stability is lost under deceleration at 57kph.The decrease of the damping 

coefficient has a multiple effect on the response characteristics. Primarily, the 
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minimum amplitude increases significantly together with the length of the SSI 

branch, shifting its stability loss at a lower velocity. At the same time, a third solution 

branch appears characterised by double sided impact (DSI) phenomena ( bx  ), 

followed by a hardening behaviour. Multiple response regimes coexist on a broad 

range of cruising speeds, enabling the potential of jump phenomena between all 

three solution types. These results are consistent to previous studies of parallel axis 

gear pairs (Theodossiades and Natsiavas, 2000).  

 

 

Figure 5.23- Effect of mesh damping coefficient on periodic motions, minimum amplitude: (a) 

c= 1.9130e+003 Ns/m (b) c= 2.8695e+003 Ns/m (c) 5.7390e+003 Ns/m (d) 1.1478e+004 Ns/m; 

 stable branch, branch with unstable solutions 

The contribution of an out of phase mesh stiffness variation with respect to the static 

transmission error is shown in Figure 5.24. The mesh damping coefficient is selected 

equal to that of case of Figure 5.22(b) while the other system properties remain 
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unaltered. Additionally, a harmonic fluctuation of the mesh stiffness is imposed with 

respect to its mean value. A single sinusoidal term is being used; the variation 

parameter 
*
1sk  present in the graphs expresses the normalised amplitude of this 

fundamental mesh harmonic with respect to the mean contact stiffness. A simple 

calculation yields the phase of the fundamental harmonic of static transmission error 

equal to 9639.0 . Therefore, positive 
*
1sk  values will cause an out of phase 

variation of the mesh stiffness with respect to the static transmission error.  For the 

given conditions, an increase in the value of 
*
1sk  inflicts a rise in the reached extreme 

amplitudes while triggering DSI solution branches.  

Opposite conclusions are drawn from Figure 5.25, displaying the in phase stiffness – 

transmission error variation. In this case, negative 
*
1sk  values cause the 

disappearance of the DSI branch. Furthermore, the amplitude of the in phase 

stiffness harmonic is counter proportional to the magnitude of the minimum 

amplitude reached by the system. The region of coexisting solution branches 

declines considerably and both bifurcation points move to the right side of the graph; 

hence suppressing the regions of SSI. Similar observations have been reported in 

previous parametric studies on gear pairs (Theodossiades and Natsiavas, 2000) and 

piecewise nonlinear time varying oscillators (Ma and Kahraman, 2005). 

The response spectra of Figure 5.26 demonstrate the influence of contact radii 

variation. The mesh stiffness is again represented by the fundamental mesh 

harmonic, setting 1.0*
1 sk , while the remaining system parameters correspond to 

the nominal case. The normalized contact radii variation 
*

1,, sgpR  is supposed to follow 

a sinusoidal form while being equal for both gear wheels. By this configuration, 

positive 
*

1,, sgpR  values imply that contact radii and mesh stiffness are in phase. At 

the same time both quantities are in opposite phase with the static transmission 

error. An increase in the variation amplitude of the contact radii induces an 

aggravated dynamic response, enhancing the effect of stiffness variation. Regions of 

multiple solutions expand significantly, whereas the bifurcation points are displaced 

to lower vehicle speed levels. Superharmonic resonances are also activated and 
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loss of stability is observed on those branches for increased levels of contact radii 

variation.  

 

Figure 5.24- Effect of out of phase stiffness variation: (a) maximum (b) minimum amplitude; 

  stable branch,  branch with unstable solutions 

 

Figure 5.25- Effect of in phase stiffness variation: (a) maximum (b) minimum amplitude; 

   stable branch,   branch with unstable solutions 
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Figure 5.26- Effect of contact radii variation: (a) maximum (b) minimum amplitude 

 stable branch,    branch with unstable solutions 

Another time varying parameter which tends to affect the dynamic response is the 

kinematic transmission error. In the nominal case, it is given as a periodic function in 

the form of Fourier series. It was already shown that the phase of the mesh order 

harmonic is crucial when interacting with the mesh stiffness. Figure 5.27 has been 

produced for different amplitude values 
*
1se
 
of the sinusoidal fundamental harmonic. 

The other Fourier coefficients are set to zero, whereas constant meshing stiffness is 

assumed, since the aim is to investigate the interaction between the variations of 

contact radii and static transmission error. The fundamental harmonic term of contact 

radii )( *
1,, sgpR

 
is set equal to 0.1, whereas the higher harmonics ( 1;*

,, iR sigp ) equal 

to zero. The rest of system parameters maintain their nominal values.      

The previous consideration implies that both varying mesh properties (contact radii 

and static transmission error) are in phase with each other. The thick curve indicates 

the case where no variation of the transmission error is accounted, namely

0**  sjcj ee , for every j term of the Fourier series. Increase of the static 

transmission error variation magnitude causes a gradual annihilation of the nonlinear 

characteristics. Maximum amplitudes experience a significant drop; bifurcation points 
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approach each other shrinking the region of multiple solutions. For an extreme value 

of  
*
1se  the system response becomes practically linear and maximum amplitude is 

reduced by almost 20%. Therefore, it can be claimed that the two varying quantities 

tend to cancel each other when applied in phase. 

 

Figure 5.27- Effect of the kinematic transmission error, in phase case: (a) maximum (b) 

minimum amplitude;   stable branch,   unstable branch 

The case of a phase discrepancy is presented in Figure 5.28. In this instance, a 

phase difference of 2/  (compared to the previous case) is imposed on the static 

transmission error by keeping only the first cosine term 
*
1ce . The thick curve depicts 

again the case of no variation. A rise in its magnitude seems to aid the system in 

retaining its nonlinear characteristics. The overall difference in the observed 

amplitudes can be treated as trivial; so is the expansion of the SSI region from the 

relocation of the bifurcation points. Nonetheless, the opposing mechanism 

encountered during in phase conditions is gradually eliminated and the contact radii 

variation is the dominant factor in the response diagrams.     
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Figure 5.28- Effect of kinematic transmission error, 2/  phase difference: (a) maximum (b) 

minimum amplitude;  stable branch,  unstable branch 

 

Figure 5.29- Effect of second mesh stiffness harmonic: (a) maximum (b) minimum amplitude;  

 stable branch,  unstable branch 

Figure 5.29 represents the response spectra under the influence of the second 

stiffness harmonic. The time varying parameters are in phase, with 1.0*
1 sk , 

1.0*
1,, sgpR , 5.0*

1 se . The remaining properties are in accordance to the previous 
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set of parametric investigations while no other higher order harmonics are 

considered. For low levels of the second mesh stiffness harmonic, the major 

contribution is concentrated on the superharmonic resonance (42~49kph). However, 

while 055.0*
2 sk

 
no SSI impacts are realized in this region.   A gradual rise of 

*
2sk  

ignites a parametric resonance at nmesh  2 , illustrated by the generation of the 

DSI branch and the amplification of the response magnitude in this vicinity. This 

parametric resonance enhances the effect of the primary resonance induced by the 

first mesh harmonics. For 055.0*
2 sk SSI solutions appear at the superharmonic 

region aggravating the overall response characteristics. 

 

Figure 5.30- Effect of second radii variation harmonic: (a) maximum (b) minimum amplitude; 

 stable branch,  unstable branch 

The second harmonic term of the contact radii variation introduces analogous 

consequences as shown in Figure 5.30. In this instance: 15.0*
1 sk ,  1.0*

1,, sgpR , 

5.0*
1 se , whereas the higher harmonic terms are neglected except for 

*
2,, sgpR . An 

increase in its amplitude has a dual effect on primary and superharmonic 

resonances triggering DSI and SSI type solutions respectively. Nevertheless, this 

high order harmonic term is less influential compared to the one appointed in the 

fluctuation of mesh stiffness. 
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In the final stage of the parametric studies, the effect of the second harmonic term 

*
2se  of the static transmission error is investigated. Only the fundamental mesh 

harmonics of all the contact parameters are considered as obtained by TCA; with the 

exception of 
*
1sk
 
which is set equal to 0.1.The above consideration is depicted in 

Figure 5.31, with the view concentrated at the region of superharmonic resonances. 

Indeed, the influence of 
*
2se  on the primary resonance is marginal. A rise in its 

amplitude instigates SSI motion types in the vicinity of nmesh  2 .   

 

Figure 5.31- Effect of second static transmission error harmonic: (a) maximum (b) minimum 

amplitude;  stable branch,  unstable branch 

As a synopsis, the overall bifurcation analysis revealed a series of valuable 

conclusions. A complex behaviour is realised, affected by the various parameters 

inherent in the system. Initially, for low mesh damping values, double sided impact 

solution branches become possible. All the fluctuating system parameters contribute 

to the qualitative characteristics of the dynamic response. Mesh stiffness and contact 

radii when in phase tend to aggravate the system dynamics, promoting higher 

response amplitudes and DSI motions over a wide range of operational vehicle 

speeds and potentially raising considerable noise radiation issues. The reverse 

effect is observed when a simultaneous in-phase static transmission error 

mechanism is introduced, which smoothens the nonlinear behaviour and alleviates 
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the maximum response amplitudes. A phase shift yields contradictory 

consequences.  Higher order harmonics of mesh stiffness and contact radii influence 

both the primary and the superharmonic resonance, whereas the effect of static 

transmission error is restricted at low vehicle speeds. All the above observations 

should be taken into account when designing a hypoid transmission. In 

contemporary mechanisms, the static transmission error is introduced as a design 

parameter. The contact geometry arising from the cutting tools affects the contact 

radii variation. The mesh stiffness variation is a consequence of the total contact 

ratio. Therefore, from a design perspective, it could be practically possible to 

introduce the above mechanisms to the design of such a system.  

5.3.8 Transient conditions 

The final part of the dynamic analysis concerns the transient problem. Until now, all 

the discussion was on the basis of dynamic balance; in this section the investigation 

will be expanded to cover the case when the resisting torque is greater than the input 

one (the vehicle is coasting). The various reports of gear whine noise under coasting 

conditions highlight the importance of this analysis.  

The occurrence of coasting is connected to the violation of the dynamic equilibrium; 

the external loadings on each side of the differential do not cancel, therefore the 

acceleration term in equation (3.8) cannot be dropped. Input torque reduces to 

15~20% of the maximum possible engine supply following a throttle release. The 

system is hence decelerated since the resisting torque overcomes the input. In order 

to simulate these conditions, the system is initially brought to steady state cruising 

conditions. After a certain time has elapsed (200 mesh periods), the input torque is 

dropped at 20% of the maximum engine supply. The resistive torque is yielded by 

the complete form of equation (3.8), including the inertial term expressing the 

resistance due to vehicle acceleration. These conditions are maintained for 200 

mesh periods until the external loading takes its nominal value, leading the system 

again to dynamic equilibrium (Figure 5.32(a)). 
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Figure 5.32- Angular velocities under coasting conditions: normal view, (a) pinion; (b) gear, 

detailed view, (c) pinion; (d) gear, SSI , DSI 

Time histories of the angular velocities are shown in Figure 5.32, corresponding to 

different sets of initial conditions. The latter are selected so as to indicate the 

existence of different solution types. After allowing the system to settle on steady 

state cruising (input torque of 246 Nm , vehicle cruising speed of 118.56kph), 

coasting conditions are imposed revealed by the response discontinuities at 200t . 

The instance defining the breach of dynamic equilibrium is crucial for the system 

dynamics, defining the initial state used as input for the transient. Therefore, the 

problem is regarded as an initial value, as multiple transient solutions can be derived 

Initial steady state 

Transient conditions 

Final steady state 
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from a global steady state motion. Another rupture is observed at the point where the 

equilibrium is re-established; both transients gradually reach the initial steady state 

condition.  

A more detailed view of the response time histories in Figure 5.32(c) depicts a 

significant difference between the two transients. The divergence is both in terms of 

amplitude and frequency; the aggravated case seems two oscillate slower with a 

frequency ratio of almost 2:3. Another important notice is the deceleration of both 

gear components. Finally, by observing Figure 5.32(d), it is implied that the crown 

gear motion is dominated only by the rigid body rotation whereas the oscillating 

component is not visible. 

 
 

Figure 5.33- Angular accelerations under coasting conditions: (a) pinion; (b) gear,   SSI ,  

DSI 

Figure 5.33 depicts the corresponding angular accelerations. For the pinion, the 

acceleration level during steady state and transient conditions is within the same 

order of magnitude. On the other hand, for the crown gear the difference is within 

orders of magnitude. This is due to the acceleration term present in equation (3.8), 

defining the overall resisting torque. This quantity can be expanded with the aid of 

equation (3.9), thus yielding an equivalent inertia term aI , which should be added to 

the differential unit inertia gI (eq. (3.4)). Hence, aI  can be defined as follows: 
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Figure 5.34- Dynamic response time histories under coasting conditions: normal view, (a) 

mesh force; (b) dynamic transmission error, detailed view, (c) mesh force; (d) dynamic 

transmission error,  SSI,   DSI 

 Ra JmrI  2

  
(5.17) 

It should be noted that m  represents the vehicle mass and RJ  corresponds to the 

road wheels inertia. Acknowledging that aI  is almost three orders of magnitude 



153 

 

greater than gI , the excessive difference in the crown gear acceleration between 

steady state and transient motions is justified. 

 

Figure 5.35- Phase plots: (a) Double Sided Impact (b) Single Sided Impact motion 

The time histories of mesh force and dynamic transmission error are illustrated in 

Figure 5.34. Both quantities are naturally related to the relative displacement of the 

gear teeth. Clearly, under coasting, the relative motion is characterized by a shift in 

the extreme oscillating positions. This change, depending on the initial conditions, 

can switch the sign of the mesh force and induce double-sided impacts between the 

mating flanks. The phase plots of Figure 5.35 show how the initial steady state can 

generate two completely different motions by starting from different initial conditions; 

these are defined by the dynamic balance break point.     

 The spectral content of the dynamic mesh force (Figure 5.34(c)) is shown in Figure 

5.36. Apart from the mesh order contribution present in both signals, a clear 

influence of the subharmonic frequencies can be identified. However, different 

frequency components are present in each case. It is also important to examine the 

time-frequency characteristics of the two motions. This is accomplished by 

employing the wavelet transform (WT), a windowing technique capable of analysing 

not stationary signals. WT conducts a multi-resolution analysis with respect to both 

time and frequency, revealing more information than the FFT spectra. The MATLAB 
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subroutine cwtft is utilised for the purposes of the analysis, yielding the temporal 

evolution of the frequency content of each signal. 

 

Figure 5.36- FFT of the dynamic mesh force: (a) Double Sided Impact (b) Single Sided Impact 

motion 

The wavelet transform results applied to the angular acceleration of the pinion are 

seen in Figure 5.37 - Figure 5.38. The graphs depict the amplitude of the WT with 

respect to frequency (y-axis) and time (x-axis). High amplitude intensity is denoted 

by red contours, whereas the blue ones correspond to low amplitude regions. Purple 

lines are indicating the frequency level of certain mesh orders. The examination of 

the instantaneous frequency components implies that in both cases the mesh order 

is dominating during conditions of dynamic equilibrium, while a small contribution of 

the super harmonics is also evident. Under the occurrence of coasting, the frequency 

undergoes a transition to mesh order sub harmonics, followed by disappearance of 

the mesh order. The new governing frequency is highly dependent on the type of 

solution; the 1:3 and 2:3 mesh order sub harmonics are dominant under DSI motions 

whereas the 1:2 governs the dynamic response when SSI are realised.    
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Figure 5.37- Wavelet analysis of pinion acceleration, DSI case 

 

Figure 5.38- Wavelet analysis of pinion acceleration, SSI case 

The possibility of DSI motions is a crucial factor for the generation of gear noise 

(Lee, 2007). Hence, the preceding analysis needs to be expanded to the whole 

operational range of the vehicle speed, in order to address the severity of this 

phenomenon. Vehicle speed - response diagrams are constructed by performing 

speed sweeps. Coasting conditions are applied at different stages of a meshing 

period within the initial steady state motion. The need of accounting all the possible 
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initial states of the transient response requires the trial of 100 different initial 

conditions arising from the steady state motion. The individual dynamic responses 

generated by these initial conditions are recorded and compared in terms of 

maximum double-sided impact events. The results corresponding to the worst case 

scenario at each vehicle speed are presented in Figure 5.39. 

 

 

Figure 5.39- Response Spectra for coasting conditions: (a) Maximum, (b) Minimum Amplitude, 

(c) Number of double sided (d) Elastic Energy per 100 cycles 

Only the acceleration case is illustrated, since in this case the difference between 

ascending and descending velocities is only marginal. A vehicle speed region 
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extending from 90 to 131kph presents double-sided impact phenomena, as seen in 

Figure 5.39(b). Nonetheless, the number of the double sided impacts becomes 

significant around a vehicle speed of 120kph (Figure 5.38(c)). From this point and 

onwards, DSI appear at a considerable rate, as already shown in the response time 

histories of Figure 5.34 and was also witnessed by the frequency content of the 

motion. In this vehicle speed range, maximum and minimum amplitudes reach their 

extreme values, indicating that the mating flanks suffer from severe separation. 

To summarize, it was shown that besides the DSI solution branches encountered 

under steady state cruising, similar solutions are possible when the dynamic balance 

is violated. Under these circumstances, the resisting torque is now driving the 

system, causing a deceleration of both gears. The dynamic response observed 

during coasting is highly sensitive to the initial conditions, namely the time instance 

of the throttle release. Under certain conditions, the dynamics of the relative motion 

will settle to a double-sided impact motion which can induce considerable noise 

issues. Realization of such a motion is accompanied to a frequency shifting to 1:3 

and 2:3 of the mesh order sub harmonics. These phenomena appear on a broad 

region of vehicle speeds, yet they are more pronounced on higher velocity scales.      

5.4 - Synopsis 

In this chapter, the dynamics of the gear pair were presented on the basis of the 

theoretical background developed in Chapter 3. The contribution of friction was 

neglected, focusing on identifying the capabilities of the proposed mechanical model. 

The inherent considerations were explained and their effect on the dynamic 

response was illustrated. Beginning from steady state cruising, the importance of 

multiple solutions and jump phenomena was highlighted. The study of periodic 

solutions proved the possibility of more aggravated dynamic response, induced by 

double-sided impacts. A thorough parametric investigation was conducted to verify 

the importance of the system parameters when such behaviour is realised. Similar 

phenomena were encountered under coasting conditions. Therefore the system 

possesses a tendency of exhibiting violent behaviour on a significant part of its 

operating range, hence promoting NVH issues. 
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Chapter 6 - Tribodynamic Analysis 

6.1 - Introduction 

In the previous chapter, the numerical results were yielded by assuming frictionless 

contact conditions. The lubrication characteristics were neglected focusing on the 

prediction of the various types of motions arising from the dynamic problem. Indeed, 

such an approximation is valid since the effect of friction on the torsional dynamics 

has been shown to be marginal. 

Nonetheless, friction can affect the off line of action dynamics if lateral degrees of 

freedom are considered, whereas it is the main element associated with the 

transmission efficiency. Furthermore, a tribological analysis can yield an insight into 

the film thickness magnitude and the temperature rise inside the transmission; 

important factors for the design of a differential unit.  

In this chapter, simulation of the multi-scale physics of the problem will be attempted 

by coupling dynamics and tribology. Correlation with respect to published material 

will be presented for validation purposes. 

6.2 - Computational Algorithm 

The computational algorithm solving the dynamics was presented in section 5.3, 

whereas the corresponding flowchart in Figure 5.1. Evaluation of the lubrication 

properties requires the inclusion of an additional subroutine addressing the EHL 

regime of lubrication. By this means, coupling of the different scales of the problem 

on a multi-physics level is achieved. 

Properties obtained from the dynamic analysis such as the mesh force and the 

angular velocity are affecting the formation of the film thickness as seen in section 

4.3.3. It was also observed in the preceding chapter that these variables exhibit a 

considerable change in their magnitude following the acceleration or deceleration of 

the vehicle due to resonance.  At the same time, the relative sliding of the mating 

flanks induces friction caused by both surface asperities and viscous shear. Friction 

affects the system dynamics by introducing an additional excitation, setting a further 

link between dynamics and tribology.   
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Figure 6.1- EHL subroutine for Grubin type solution 

The maximum temperature rise inside the differential is also of great importance for 

designers. The film thickness is affected by inlet viscosity, which is a function of the 

corresponding temperature rise; hence a thermal correction factor is applied to 
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accommodate this change in the lubricant properties. The viscous shear rate results 

into heat generation which is transferred to the mating surfaces mainly though 

conduction, since the thin film size under EHL conditions (typically below m2 ) 

renders the convective terms insignificant. The corresponding temperature rise 

needs to be calculated, since it will influence the effective lubricant viscosity and thus 

the magnitude of friction.   

The computational procedure employed in the tribological analysis is presented in 

Figure 6.1. It involves the engagement process of an individual gear pair under non 

Newtonian regime of lubrication by employing Grubin‘s equation to compute the 

lubricant film thickness. The same formulation is implemented under two dimensional 

flows, by using the appropriate expressions for kinematics and film thickness. 

Eventually the output of the EHL subroutine is inserted in the equations of motion in 

the form of the overall frictional torque, providing the second link in this tribo-dynamic 

approach. 

It should be noted that the EHL routine is not iterative; it just requires the solution of 

the nonlinear equation (4.50). In this case, the dynamics of the problem are 

addressed by the Runge-Kutta algorithm, inherent in ode45 MATLAB solver. The 

latter is preferred as a programming interface due to its built in subroutines which 

can be used to solve nonlinear algebraic equations. Nevertheless, this comes at the 

expense of the numerical efficiency, increasing considerably the necessary 

computational time. 

6.3 -  Load and film thickness variation under non Newtonian 

isothermal conditions     

The consideration of isothermal conditions is the first step of the tribological analysis. 

During this stage, the lubrication conditions governing the hypoid gear mesh will be 

identified. At the same time, the variation of the fundamental lubrication properties 

along a complete meshing cycle will be illustrated. The latter will form the basis of 

comparison when assessing the heat generation effect. The simulation results 

presented in this section correspond to the set of system parameters presented in 

the previous chapter (Table 5.1). The only difference is observed in the vehicle 
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cruising speed, which is equal to 59.28kph, resulting to an input torque of 81.07 Nm  

and a pinion rotational velocity of 1423 RPM . This nominal case will be used 

frequently for a set of simulations throughout this chapter. The graphs, unless 

specified differently will address the aforementioned conditions. The main lubricant 

properties are seen in Table 6.1, whereas the roughness of each individual gear 

surface is given by the root mean square (RMS) value which is taken equal ton

m5.0 .    

Table 6.1- Lubricant fluid properties 

Property Numerical value 

Kinematic viscosity at C0100 (cSt) 16.7 

Kinematic viscosity at C040 (cSt) 109.1 

0 ; Dynamic viscosity at C0100 (Pa s) 0.0145 

0 ; Dynamic viscosity at C040 (Pa s) 
0.09483 

Density )/( 3mkg  870 

Thermal conductivity at C0100 (W/mK) 0.1077 

Thermal conductivity at C040 (W/mK) 0.1121 

0 ; pressure viscosity coefficient )( 1Pa  
910*4.14 

 

 ; temperature viscosity coefficient )( 1K  0.0217 

0 ; Eyring stress (MPa) 5 
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The tribological status of the gear contact is characterised by the dual effect of 

lubrication and traction regimes. The former defines the severity of the local 

deformations in the formation of the lubricant film whereas the latter influences the 

rheological properties of the fluid demonstrating potential deviation from the 

traditional Newtonian treatment. 

 

Figure 6.2- Lubrication regime chart; boundaries (black lines) and meshing cycle (blue line) 

The boundaries separating the different lubrication regimes are illustrated in the form 

of two dimensional charts, expressed with respect to dimensional groups related to 

load, speed and material properties. An algorithm for constructing such diagrams is 

provided by Gohar (2001), by employing extrapolated formulae (Chittenden et al, 

1985) for the film thickness estimation under point contact conditions. A typical 

lubrication regime chart is shown in Figure 6.2. The dimensionless quantities acting 

as ordinate and abscissa are defined in Table 6.2.  

If the elastic deformation of the solid surfaces is significant (trivial) the lubrication 

region is termed elastic (rigid). Furthermore, if the lubricant fluid viscosity is affected 
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(unaffected) by pressure, then the area is classified as piezoviscous (isoviscous). 

The blue curve in figure 6.2 represents a complete meshing cycle under isothermal 

conditions when the inlet lubricant temperature is equal to C040 . It is clear that the 

lubrication regime falls mainly into the piezoviscous elastic (EHL) region whereas 

another fragment lies inside the isoviscous rigid (hydrodynamic).      

Table 6.2- Dimensionless Group definition 

Dimensionless Group Definition 
*U  

zxr RE

U0  

*G  rE  

*W  

2
zxr RE

W
 

 

Figure 6.3- Traction map for high viscosity mineral oil (after Evans and Johnson, 1986); non 

Newtonian boundary (red curve  ), viscoelastic boundary (green curve  ) and 

meshing cycle (blue curve  ).   
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Figure 6.4- Shear stress under Newtonian consideration 

The traction map is demonstrated in Figure 6.3. The background is attributed to 

Evans and Johnson (1986), corresponding to the case of a high viscosity mineral oil. 

It is obvious that the boundary curves governing the transition towards Eyring and 

viscoelastic regions are close to the ones predicted for the hypoid transmission oil. 

The latter are represented by the red and green curve respectively, derived from the 

analytical expressions of Evans and Johnson (1986). A set of points describing a 

complete meshing cycle is again placed on the graph forming the blue curve; it can 

be noted that it lies almost entirely in the Eyring region. Additional evidence on the 

traction regime is presented in Figure 6.4. The shear stress under Newtonian 

conditions is depicted for the same conditions as previously. It is noted that the 

Eyring stress limit is exceeded throughout the engagement cycle. Therefore, a 

nonlinear model needs to be applied to address modified lubricant rheology, based 

on the analysis of Johnson and Greenwood (1980).   

The load and film thickness variations along a meshing cycle are shown in Figure 

6.5(a) for a two dimensional lubricant flow (Chittenden et al, 1986). The flank load is 

obviously influenced by the dynamic effects during the cycle. At the same time the 

film thickness remains almost constant in the first half of the cycle, insensitive to the 

contact load variation which is a typical characteristic of the EHL regime. The size of 

the lubricant film is mainly attributed to the entraining velocity and the radius of 

curvature along this direction as suggested in equation (4.31). These quantities, 
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illustrated in Figure 6.5(b), exhibit an almost linear variation within the engagement 

cycle; their gradient being opposite in sign. It seems that these two competing 

factors ―cancel out‖, resulting in an almost constant value for the lubricant film.  

 

Figure 6.5- Tribological properties for two dimensional flow (Chittenden et al, 1986) at inlet 

lubricant temperature Cin
040 ; (a)  Load )(W ,   central film thickness )( 0h , (b) 

 entraining velocity )(U ,   radius of curvature along the entrainment direction 

)( eR  

Figure 6.6 (a) shows the comparison of the film thickness estimation between 

another two dimensional solution (Mostofi and Gohar, 1982) and Grubin (1949). The 

latter assumes that the flow is along the minor axis of the contact ellipse, hence 

neglecting considerable portion of the lubricant entrainment. This fact is reflected in 

the magnitude of the two solutions, with the two dimensional being almost double in 

magnitude; although the pattern along the meshing cycle is almost identical. 

Observation of the entraining velocities in Figure 6.6(b) reveals the importance of the 
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flow along the major axis direction. It is obvious that it represents the major 

contribution of the overall entraining velocity.  

 

Figure 6.6- Comparison of (a) film thickness and (b) entraining velocities for inlet lubricant 

temperature Cin
040 ; Mostofi and Gohar (1982),  Grubin (1949) 

6.4 - Friction and gear pair efficiency  

A graphical representation of the viscous friction force can be seen in Figure 6.7(a). 

In general it follows the fluctuation of the contact load; however its amplitude is one 

to two orders of magnitude smaller. Another observation is the absence of pure 

rolling conditions, since the relative sliding motion never changes direction as seen 

in Figure 6.8. Hence, the sign of friction is maintained constant throughout the 

engagement cycle.  

The shear rate governing viscous frictional force is depicted in Figure 6.7(b). 

Throughout the engagement cycle, viscous shear is mainly affected by the lubricant 

film, therefore the higher rate under one-dimensional flow; the thinner films yielded 

by Grubin type solution result into higher shear rates and friction magnitudes. 

Nevertheless, the difference in force is not proportional to the shear rate since the 

lubricant rheology is nonlinear and follows the Eyring regime (equation (4.48)).  
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Figure 6.7--(a) Viscous friction force, (b) shear rate during an engagement cycle; 

Chittenden et al (1986),  Mostofi and Gohar (1982),  Grubin (1949) 

 

Figure 6.8- Sliding velocity; two dimensional,  one dimensional flow 
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Figure 6.9- (a) Boundary friction force, (b) friction coefficient;  Chittenden et al (1986), 

 Mostofi and Gohar (1982),  Grubin (1949) 

The film size is crucial for asperity contact and generation of boundary friction. As 

illustrated in Figure 6.9(a), only the Grubin type solution predicts such a case, owed 

to the fact that the combined root mean square roughness  qR  is equal to 0.71 m . 

This value is always less than the minimum film value encountered in two-

dimensional flows. The combined effect of viscous shear and asperity interaction is 

reflected in Figure 6.9(b), where the Grubin assumption renders the highest friction 

coefficient values. The two dimensional cases are ranked inversely with respect to 

the film thickness. The frictional torque at the pinion follows the same rule in terms of 

magnitude (Figure 6.10 (a)); nonetheless the latter is trivial compared to the input. If 

the contribution of all the flanks is summed up and the damping losses are also 

accounted for, the overall gear pair efficiency can be computed (Figure 6.10 (b)). 

The losses are mainly dominated by the friction magnitude, since the relative sliding 

speed becomes constant after the first quarter of the meshing cycle (Figure 6.8).  
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Figure 6.10-- a) Pinion frictional torque and (b) overall gear pair efficiency;  Chittenden et 

al (1986)  Mostofi and Gohar (1982),  Grubin (1949) 

6.5 - Heat balance 

The excessive relative sliding motion between the mating flanks causes a 

considerable heat generation in the lubricant film, which is dissipated on the 

boundary surfaces. Knowledge of the temperature rise is crucial, since it can affect 

the effective lubricant viscosity value, which in turn determines the level of frictional 

forces. Figure 6.11(a) displays the temperature fluctuation of the lubricant fluid under 

the following main assumptions: (i) the lubricant inlet temperature remains constant 

and equal to C040 , hence no heat is accumulated during its recirculation and (ii) the 

heating of the metallic gear surfaces is neglected based on the work of Crook 

(1961).   

 This pattern is almost identical for all cases and is predominantly influenced by the 

contact load which alters the lubricant viscosity. In addition, the relative sliding speed 

plays an important role, as well as the kinematics for the estimation of the film 

thickness; the latter is corrected proportionally to the entraining velocity (Gohar, 

2001) to accommodate the change of inlet viscosity due to the shear effect (Figure 

6.11(b)). Indeed, the film thickness magnitude differences between isothermal and 

thermal conditions are more pronounced in the two dimensional solution types in 

accordance to faster oil entrainment. 
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Figure 6.11- (a) Temperature and (b) film thickenss distribution across an engagement cycle 

Cin
040 ;   Chittenden et al (1986)  Mostofi and Gohar (1982),  Grubin 

(1949) 

Figure 6.12(a) shows the variation of friction coefficient which is reduced compared 

to the isothermal case. The temperature rise induces a drop in the lubricant effective 

viscosity, pushing the overall friction to lower levels (Figure 6.13). The same effect 

can be seen it the representation of the transmission efficiency in Figure 6.12(b) 

whose fluctuation is shifted to a higher threshold.  

 The impact of increasing the inlet lubricant temperature on the tribological properties 

is visualized in Figure 6.14 - Figure 6.17 by applying a Chittenden type solution. The 

temperature rise in the engagement cycle tends to decrease significantly (by almost 

75% in the midpoint vicinity) when the inlet lubricant is heated up to C0100  (Figure 

6.14(a)). The simultaneous drop in the inlet viscosity yields considerably lower 

magnitudes of film thickness (Figure 6.14(b) shows a noticeable reduction of nearly 

66%). Normally this results into an increased shear rate, almost triple in magnitude 

compared to the previous inlet temperature indicated by Figure 6.15(a). 

0 0.2 0.4 0.6 0.8 1
40

42

44

46

48

50

52

54

56

normalised engagement cycle

T
e
m

p
e
ra

tu
re

 (
0
C

)

(a)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

normalised engagement cycle

F
il

m
 t

h
ic

k
n

e
s
s
 (

m

)

(b)



171 

 

 

Figure 6.12- (a) Coefficient of friction and (b) overall gear pair efficiency Cin
040 ;   

Chittenden et al (1986)  Mostofi and Gohar (1982),  Grubin (1949) 

 

Figure 6.13- Dynamic viscosity for Chittenden solution; thermal analysis,  

isothermal conditions  
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friction coefficient exhibits an increase of almost 30%. Consequently, the 

transmission efficiency is pushed towards lower levels (Figure 6.17(b)).          

 

Figure 6.14- Effect of inlet lubricant temperature on (a) temperature rise (b) film thickness; 

Cin
040 ,   Cin

0100  

 
 

Figure 6.15- (a) Shear rate and (b) viscous friction comparison; Cin
040 ,   

Cin
0100  
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Figure 6.16- Friction distribution ( Cin
0100 ); overall, viscous,  boundary 

 

Figure 6.17- Effect of inlet lubricant temperature on (a) friction coefficient (b) transmission 

efficiency, Cin
040 , Chittenden type solution; Cin

040 ,   Cin
0100  
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the considerable difference in the peak load value at the midpoint of the flank. The 

effect on the film thickness is depicted in Figure 6.18(b), illustrating only a small 

fluctuation around the quasi-static value. The deviation is more pronounced when 

considering the lubricant temperature (Figure 6.19(a)) whereas the friction coefficient 

seems to possess better convergence between the two cases (Figure 6.19(b)). In 

general, for the imposed operating conditions, the dynamic effects influence mainly 

the lubricant properties depending on contact pressure; the underlying tribological 

characteristics are affected accordingly. On the other hand, the film thickness is 

affected mainly by the contact kinematics; therefore, in the current case, the velocity 

oscillating components are not significant enough to impose any major transient 

behaviour.    

 Another important factor arising in the coupling of tribo-dynamics is the effect of 

teeth separation. In the previous chapter, it was observed that over a vast operation 

range the system dynamic behaviour is characterized by contact loss and teeth 

separation phenomena. Such a case will be simulated in the following set of graphs, 

corresponding to pinion rotation of 2246 RPM , input torque of 163.27 Nm  and a 

cruising speed of 93.6kph while the inlet lubricant temperature is kept equal to 

C040 . The encountered improper mesh induces discontinuities in the dynamic 

response; essentially it affects the variation of the tribological properties. Figure 

6.20(a) presents the distribution of contact load and film thickness. The former 

behaves in a manner similar to the total dynamic mesh force, in accordance to the 

findings of the previous chapter. Similarly, the film thickness history is shifting from 

typical EHL values when the gears are in mesh to the size of available clearance 

when contact is breached. This combined effect of zero loading capacity and 

extreme thick lubricant film would inflict instantaneous changes in the lubrication 

regime towards hydrodynamic conditions. The contact load is now applied in the 

form of an impulse, releasing impact energy on the flank, which is dissipated by the 

relative torsional motion. The thin lubricant film possesses only marginal damping 

capacity. Furthermore, the pressure gradients around the discontinuity points are 

amplified, resulting to sound wave propagation (Figure 6.21).  
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Figure 6.18- (a) Contact Load and (b) film thickness; dynamic analysis,  quasi-

static analysis  

 
 

Figure 6.19- (a) Temperature and (b) friction coefficient; dynamic analysis,  quasi-

static analysis  
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Figure 6.20- Separation effects, Chittenden solution, Cin
040 ; (a) flank contact load, 

 film thickness, (b)  friction force,  transmission efficiency 

 

Figure 6.21- Mean contact pressure along the engagement cycle, Chittenden solution 
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contact area due to the extreme loading. It acts as an impulse excitation normal to 

the line of action, as shown in Figure 6.20(b); hence its effect on the lateral dynamics 

should be investigated. Despite the load and friction impulses, the possibility of 

thermal shocks is also possible. The temperature distribution (not depicted) follows a 

similar pattern, reaching peak values over 80 C0
. Thus, such excessive temperature 

gradients can ignite undesirable heat flows towards the bounding surfaces. The 

mechanical efficiency is also affected, turning to lower levels due to the increased 

friction, although the latter is not applied for the majority of the engagement cycle. 

This is identical of the high energy absorption during the frictional impulses.    

The previous results, showing a strong dependence of the tribological picture based 

on the individual operating conditions, render the need for a scan of the whole 

operational speed range. The results are presented in the familiar spectral form, 

usually by plotting extreme or mean values of the tribological properties during an 

engagement cycle. The variation of the flank contact load depicted in Figure 6.22(a) 

follows the pattern of the dynamic transmission error derived in a previous chapter. 

The minimum value of central film thickness is mainly influenced by the entraining 

motion shown in  

Figure 6.23(a). However, due to the extreme discontinuity of the contact load at the 

vicinity of the bifurcation points, the lubricant film undergoes a small jump in those 

regions. Therefore, the oil film magnitude is insensitive to flank load within an 

engagement cycle, yet reflects the separation effect. A similar behaviour is observed 

for the maximum temperature rise ( 

Figure 6.23(b)) where the two branches now resemble to the ones of the contact 

loadFigure 6.24(a) shows the representation of the mean friction coefficient. In this 

case higher values are encountered during constant mesh rather than under 

separation, since in the last case the friction mechanism is idle for a vast portion of 

the engagement cycle. Nevertheless, the overall frictional effect induced by all the 

mating flanks yields a decrease on the efficiency during separation shown in Figure 

6.24(b).  
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Figure 6.22- Effect of cruising speed for Chittenden solution, Cin
040 : (a) maximum flank 

load and (b) minimum value of central lubricant film; acceleration,  deceleration 

 

Figure 6.23- Effect of cruising speed for Chittenden solution, Cin
040 : (a) maximum 

entraining velocity and (b) maximum temperature rise; acceleration,  deceleration 
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which is always perpendicular to the line of action of the mesh force. As a result, the 

0 50 100 150
0

0.5

1

1.5

2

x 10
4

vehicle cruising speed (kph)

C
o

n
ta

c
t 

lo
a
d

 o
n

 f
la

n
k
 (

N
)

(a)

0 50 100 150
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

vehicle cruising speed (kph)

F
il

m
 t

h
ic

k
n

e
s
s
 (

m

)

(b)

0 50 100 150
40

50

60

70

80

90

100

110

120

vehicle cruising speed (kph)

T
e
m

p
e
ra

tu
re

 (
0
C

)

(b)

0 50 100 150
2

3

4

5

6

7

8

9

10

11

vehicle cruising speed (kph)

U
 (

m
/s

)

(a)



179 

 

torsional motion is only affected by the generated frictional torque found to be 

insignificant compared to the input loading (Figure 6.10(a)). A graph of the time 

series of the nominal case seen in Figure 6.26 confirms the trivial effect of sliding 

friction on the relative torsional motion. A dimensionless version of the dynamic 

transmission error is used as abscissa, indicating that the two responses are nearly 

identical besides an occurring phase difference.   

 

 

Figure 6.24- Effect of cruising speed for Chittenden solution, Cin
040 : (a) mean friction 

coefficient and (b) mean efficiency; acceleration,  deceleration 

 

Figure 6.25- Response spectra comparison between dry and lubricated case: (a) acceleration 

and (b) deceleration; lubricated,   dry model   
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Figure 6.26- Time histories comparison between dry and lubricated case for nominal case: (a) 

acceleration (b) deceleration; lubricated,   dry model   

6.7 - Model Validation 

As a means of validation, the friction coefficient over the operational range is 

correlated to two expressions available in the literature: (i) Evans and Johnson 

(1986) and (ii) Kolinvand and Kahraman (2010). Both expressions compute the 

frictional properties under Eyring regime of traction. The results are presented in 

Figure 6.27.   

 

Figure 6.27- Mean friction coefficient; (a) acceleration (b) deceleration; current model 

(Chittenden solution),  Kolinvand and Kahraman (2010),  Evans&Johnson (1986) 
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The overall pattern looks similar. Under acceleration (Figure 6.27(a)) the friction 

coefficient for the current model and case (i) exhibit a smooth fluctuation until the 

beginning of the impact region, where a local maximum is reached. Case (ii) follows 

a more abrupt fluctuation; however all solutions undergo a sharp change when the 

dynamics switch to the upper branch. After this point, the friction coefficient 

increases continuously until the end of the operational range. The difference in 

magnitude is considerable between case (iii) and the other solutions. This fact can 

be attributed to the different application (roller), lubricant characteristics and the 

domain of validity of the underlying equation. However, the other two cases, 

corresponding to the same application and lubricant (hypoid transmission) differ only 

by almost a fixed offset. An explanation could be found in the method used by 

Kolinvand and Kahraman (2010) which neglects the side leakage, underestimating 

the entraining velocity magnitude. This results into thinner films, higher shear rates 

and friction forces.  Figure 6.28 - showing the distribution along an engagement 

cycle - confirms the above observation in the spatial domain. 

 

Figure 6.28- Friction coefficient over an engagement cycle;   current model (Chittenden 

solution),  Kolinvand and Kahraman (2010),  Evans and Johnson (1986) 
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properties and friction force were derived, showing the difference between one and 

two dimensional flows. A thermal analysis yielded the temperature rise during the 

engagement procedure, which affects the oil film size and transmission efficiency. 

The increase of inlet lubricant temperature was shown to be extremely important, 

resulting into further shrinking of the lubricant film, accompanied by significant 

asperity interaction.  

The dynamic interaction showed strong dependence of the tribological 

characteristics on the operating conditions, resulting in the appearance of 

considerable discontinuities. Eventually, the torsional motion was regarded as 

insensitive to friction whereas the model was validated against previously published 

studies. 
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Chapter 7 - The Concept of Targeted Energy Transfer 

7.1 - Introduction 

The previous chapter investigated the dynamic response of the hypoid gear pair. 

During steady state cruising, the system behaviour was characterized by resonant 

conditions; at the same time, teeth contact loss inflicted single sided impacts 

between the mating flanks. Under coasting conditions, namely a sudden decline of 

the input torque due to throttle release, the system exhibited transient response 

associated with aggravated impact phenomena on both sides of the gear surface.  

In this chapter, a passive control of the aforementioned phenomena will be 

attempted based on the concept of Targeted Energy Transfer (TET). The treatment 

will be focused on the design of a nonlinear dynamic absorber capable of absorbing 

energy from the main system in an irreversible manner. Parametric studies will be 

conducted to select the optimum design properties and the mechanism behind 

energy absorption will be analysed. Since friction was proven to have insignificant 

influence on the torsional dynamics, dry conditions will be assumed for the 

simplification of the numerical formulation. The implementation of such a mechanism 

is related with a broadband efficiency at and around resonance conditions, 

complying with the problem requirements witnessed in the analysis of Chapter 5. 

7.2 - Dynamic Model 

The modelling approach will be based on the fundamental mechanical model 

presented in Figures 3.1 - 3.2. The necessary addition will be a form of a Nonlinear 

Energy Sink (NES), as characterized by Gendelman et al (2001). The proposed 

configuration is shown in Figure 7.1; the NES is attached to the axle shaft by a 

coupling element comprising a torsional spring )( tk
 
and an additional damping 

element )( tc , where the unwanted energy will be dissipated. The essential nonlinear 

behaviour is introduced through the cubic nonlinearity of the torsional stiffness. The 

coupling between the main system (gear pair) and the NES is supposed to be weak 

based on previous numerical and experimental studies (Jiang et al, 2003). 
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The free body diagram of the NES is presented in Figure 7.2. The NES rotating 

motion is opposed by elastic and damping forces, induced by the coupling effect; at 

the same time the corresponding reaction forces are transmitted to the gear through 

the axle shaft and result into a pair of internal excitation torques.  

 

Figure 7.1- The Nonlinear Energy Sink (NES) configuration 

The equations of motion are a variation of equations (3.1) – (3.9); equation (3.2) 

needs to be modified to reflect the effect of the nonlinear coupling and an additional 

expression describing the NES dynamics will be included.  

Hence: 



185 

 

 
          pgpmppmpppp TxfkRxcRI        (7.1) 

 

         

)( 3 ucuk

TxfkRxcRI

tt

ggpmpgmpggg













  

(7.2) 

 guttu IucukuI    )( 3

   
(7.3) 

In the above expressions the change of variables 
gsu    has been applied so 

that the relative rotational motion can be conveyed. The inertia of the NES 

attachment is taken as a fraction of the inertia of the differential axle. Thus:  

 gu II  
   

(7.4) 

 

Figure 7.2: Free Body Diagram of the NES 

The problem is essentially an optimization issue; an optimum NES structure must be 

identified by quantifying its parameters. For this reason it is essential to review the 

resonance and impact phenomena observed in the dynamic response of the primary 

system. 
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7.3 - Steady state resonance 

7.3.1 Problem definition 

The first case of unwanted motions is observed under steady state cruising 

conditions. In this case, an amplification of the system response is noticed due to 

parametric resonance; this is a consequence of the variation of system parameters 

with respect to the angular position (eq. (3.1) - (3.2)) and hence implicitly with time.  

The response curve is illustrated in Figure 7.3. There is a region of single sided 

impacts between the mating flanks, associated with aggravated dynamic response. 

Areas of multiple solutions also appear due to the backlash nonlinearity (equation 

(3.6)). The analysis of a typical case is illustrated in Figure 7.4 corresponding to a 

cruising speed of kph99  and input torque of Nm182 ; the arrow in the top of Figure 

7.3 indicates the corresponding point in the response spectrum. 

It can be seen that the dynamic transmission error yields single sided collisions; 

periodic loss of contact occurs when the dimensionless quantity drops below unity. 

To overcome this issue, an NES attachment is introduced, following the configuration 

of the previous section. These types of devices have been studied previously in 

problems primarily involving lateral degrees of freedom and their efficiency has been 

well established. For impulsively excited systems, the main concept involves an 

irreversible energy transaction between the main structure and the NES. The 

occurrence or not of this energy exchange mechanism depends on the energy 

threshold induced by the external excitation (Vakakis, 2001). The targeted energy 

transfer in harmonically excited systems has been studied both for grounded (Jiang 

et al, 2003) and ungrounded nonlinear attachments (Gendelman et al, 2008). These 

applications were considering primary systems with linear characteristics. The TET 

in spur gear mechanisms was investigated by Scagliarini et al (2009) while 

considering only the parametric excitation; it was found that quasi-periodic response 

regimes could render significant vibration alleviation for high inertia levels of the 

attachment. In the current case the gear pair system is essentially a nonlinear 

system, excited both parametrically and externally due to the inherent harmonic 

terms. Furthermore, due to the variation of mesh position, the region of excessive 

vibrations is extended beyond the narrowband area of the fundamental resonance; 
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yielding the ability of NES to act as a broadband passive energy absorber extremely 

convenient for the purpose of alleviating the unwanted steady state peak amplitudes.   
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Figure 7.3:  Cruising speed – Maximum Response spectra; ■single sided impacts 

(decelerating), ● single sided impacts (accelerating), ▲no impacts (decelerating), ▼ no 

impacts (accelerating) 

 

Figure 7.4- Dynamic Response for 
kph99

 and 
NmTp 182

 without NES: (a) dynamic 

transmission error; (b) relative velocity; (c) phase plot 
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7.3.2 Parametric studies 

There are two main parameters affecting the performance of the NES; the inertial 

ratio )(  and the nonlinear stiffness )( tk . If the main system was linear with time-

invariant coefficients, the methodology presented by Starovetsy and Gendelman 

(2007) could be applied to locate the regions of optimised efficiency. However, the 

essential different characteristics of the current equations of motion indicate the 

employment of a formulation similar to that in Lee et al (2007). Although the latter 

involves transient phenomena of aeroelastic instabilities, it provides a systematic 

approach for treating the problem of successfully tuning the NES. Therefore, a series 

of numerical simulations is conducted while ensuring that sufficient time has elapsed 

for steady state response to evolve. Since broadband vibration attenuation is 

required, the whole area of multiple solutions needs to be scanned. Due to the 

nonlinear character of the primary system, accelerating and decelerating conditions 

will be accounted for by conducting speed sweeps. Therefore, the initial conditions 

are set based on the discussion of Chapter 5, yet currently including the NES as 

well.     

Figure 7.5 shows the obtained parametric study results for the accelerating case. 

The criteria (a) and (b) are normalised (%) with respect to the original system without 

the presence of an NES, representing respectively the maximum reached amplitude 

and the number of single sided impacts between the mating flanks due to separation 

effects. The remaining quantities are related to the energy level of the system, 

expressing the work done by the mesh force and the energy damped at the NES 

over 100 meshing cycles. It can be seen that for accelerating conditions the NES has 

either no positive influence or either negative influence on the dynamics of the main 

system. Nevertheless, this should be not a discouraging fact in the first place; by 

observing the response spectra of Figure 7.3, it is obvious that aggravated dynamic 

response becomes an issue for nearly as much as 1/3 of the acceleration region.  
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Figure 7.5- Steady state response properties for accelerating conditions (59-120kph); (a) 

maximum amplitude, (b) total number of single sided impacts, (c) work of mesh force, (d) 

energy damped at NES  

Figure 7.6 illustrates the behaviour of the system under decelerating conditions. In 

this case, criteria (a), (b) and (c) seem to converge in terms of their minima in a 

certain region of the parametric map. In particular, these borders are defined by the 

following expressions:  

23.01.0  , 
313312 /104808.1/10932.5 radNmkradNm t       (7.5) 

There seems to be a reduction in the peak amplitude, the number of single sided 

impacts and the work of mesh force in this area. It is therefore implied that the NES 

has a positive yet not extremely pronounced influence on alleviating the unwanted 

resonant motions in broadband decelerating conditions.  

The contour plots presented in the previous figure summarize the NES performance 

in a wide set of cruising velocities. To identify the detailed picture, response spectra 

are constructed based on an optimum value derived by a minimum single sided 

impact number requirement compared to the case where no NES is attached. 
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Identification of this optimum couple of NES parameters is accomplished by 

employing an optimisation procedure based on genetic algorithms (Rahmani, 2008). 

After setting the parameter boundaries identical to those of , 

     (7.5), extensive numerical 

simulations are conducted within the area of interest. The sequence of selecting the 

next set of NES parameters in order to achieve convergence in terms of the 

minimum value is governed by the genetic algorithm.  

 

Figure 7.6- Steady state response properties for decelerating conditions (140-60kph); (a) 

maximum amplitude, (b) total number of single sided impacts, (c) work of mesh force, (d) 

energy damped at NES 

7.3.3 Overview of the energy transfer mechanism  

Figure 7.7 depicts the spectral behaviour of the main system when the 

aforementioned optimum set of NES parameters is considered ( 181.0 ;

313 /100411.1 radNmkt  ). The main benefit in terms of the total number of 

perceived impacts (Figure 7.7(a)) is restricted near the bifurcation region, where the 

system seems to jump on the low amplitude branch (Figure 7.7(b)) on an earlier 

stage when the NES is attached. Similar behaviour was observed during the 

23.01.0 

313312 /104808.1/10932.5 radNmkradNm t 
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parametric studies performed in section 5.3.7 by changing the inherent parameters 

of system. Attaching the NES shows similar potential in terms of vibration control. 

Additionally, the peak to peak amplitude is reduced in the vicinity of 100kph cruising 

speed. The overall NES influence is concentrated in these two aforementioned 

regions.       

The time series of the dynamic response are illustrated in Figure 7.8. The first 

section (a) shows the difference in the magnitude of transmission error with and 

without the NES attachment. Both motions are of the same frequency content and 

nearly in phase; however there is a notable difference in their magnitude both in 

terms of maximum and peak to peak values. It seems that the NES forces the 

system to settle in its lower branch. Similar steady state response behaviours have 

been presented in the work of Gendelman et al (2008), representing one of the main 

attractors of a linear system connected to a NES under periodic forcing. 

Nevertheless, the underlying mechanism needs to be addressed properly before 

reaching definite conclusions. The above findings should be treated as indications. 

Usually, steady state motions dominate away from the primary resonance (87kph) 

which is in accordance with the current operating condition at the onset of backward 

jumps. Hence, a qualitative similarity should be noted It is true that the effect of the 

current configuration is limited, constrained only to almost  ¼ of the overall area of 

interest. Nonetheless, it poses a starting point of potential further investigation. 

The incurring energy exchanges derived numerically are important for understanding 

the TET concept. The instantaneous total energy of the system is the sum of the 

instantaneous kinetic and potential energies of the main system and the NES, 

including the non-conservative work of the mesh force: 
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The energy dissipated by the mesh damping of the main system and the one of the 

NES is yielded by:  
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Figure 7.7- Response characteristics of the primary system ( 181.0 ;

313 /100411.1 radNmkt  ): (a) number of impacts (b) dimensionless peak to peak amplitude;  

without NES,  with NES 

 

Figure 7.8- Time series of the dynamic response at 62.4kph under vibration attenuation 

conditions ( 181.0 ; 313 /100411.1 radNmkt  ): (a) Dynamic transmission error (primary 

system), (b) NES relative motion; without NES,   with NES  
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Figure 7.9- (a) Instantaneous energy exchanges between modes, (b) input energy distribution 

for effective vibration attenuation at 62.4kph 
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The input energy is the sum of the initial energy input (initial conditions), the external 

forces and the non-conservative work of the mesh force: 
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Eventually, the instantaneous energy balance will be: 
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The energy exchange between the main system and the NES is seen in Figure 

7.9(a). The majority of the total energy is restrained at the gear pair; this picture is 

analogous to the third suppression mechanism in transient aeroelastic instabilities 

(Lee et al, 2007) where the energy balancing is taking place in a long term basis.  

Nevertheless, the energy distribution of Figure 7.9(b) showing a small difference in 

the amount of dissipated energy between the two dampers is not highly indicative of 

controlled irreversible energy transfer. In order to confirm such behaviour, a case 

where the NES fails to comply with the criterion of impact minimisation is considered 

( 214.0 ;
313 /102388.1 radNmkt  ). The number of impacts‘ spectrum in Figure 

7.10(a) shows that indeed the NES attachment has no favourable influence on the 

flank separation range. The bifurcation point moves slightly towards the left side, 

hence extending the single sided impact region. The amplitude plot in Figure 7.10(b) 

confirms the previous findings, since no significant gain can be observed near the 

jump vicinity. The time series at 62.4kph (Figure 7.11) illustrate that the dynamic 

transmission error is now insensitive to the NES presence. The modal energy 

exchange of Figure 7.12(a) is similar to the previous case; however the energy 

distribution shows that the vast amount of input energy is dissipated at the mesh 

damper.  

This is an extremely important finding suggesting that the energy confined at the 

gear pair is leading to high vibration amplitudes; thus severe separation effects. This 

is in contrast to the previous almost equal dissipative capacity of the NES damper. It 

is reasonable to correlate the difference in the dynamic response of the two cases to 

the previous fact. Lower vibration amplitudes and constant mesh conditions are 

perceived when the NES damper absorbs an increased amount of input energy. It is 

therefore reasonable to anticipate that an energy transfer mechanism instigated by 

proper NES tuning is responsible for such phenomena.   
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Figure 7.10- Response characteristics of the primary system ( 214.0 ;

313 /102388.1 radNmkt  ): (a) number of impacts (b) dimensionless peak to peak amplitude; 

   without NES,   with NES 

Besides the previous low amplitude steady-state response, another important 

attractor exists. It evokes a quasi-periodic set of motions characterised by a 

modulation of the vibration amplitude, resembling relaxation type oscillations 

(Gendelman et al, 2008). This response regime has been identified in previous 

works where NES attachments were integrated upon linear systems with periodic 

forcing; it was found to be related to efficient TET. It is mostly present in the 

proximity of the fundamental resonance and its appearance is sensitive to the initial 

conditions (Starovetsky and Gendelman, 2008). A potential occurrence of similar 

response regimes in the present case would increase the prospects of a possible 

application.     
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Figure 7.11- Time series of dynamic response at 62.4kph under ineffective vibration 

attenuation conditions ( 214.0 ; 313 /102388.1 radNmkt  ): (a) Dynamic transmission 

error (primary system) (b) NES relative motion;  without NES,    with NES 

The existence of strongly modulated responses (SMR) is investigated by applying 

the same genetic optimisation algorithm (Rahmani, 2008); however, different initial 

conditions are used for the NES attachment. In this case the NES is considered to 

be stationary in the beginning of each speed sweep. This implies an engagement 

mechanism capable of coupling and decoupling the main system and the nonlinear 

attachment. The current concern is focused on the appearance of additional 

response regimes connected to TET and not the practical implementation of the 

mechanism in a real gear pair system. The number of single sided impacts is again 

selected as a criterion and a range of vehicle speed around 115kph is considered.  
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Figure 7.12- - (a) Instantaneous energy exchanges between modes, (b) input energy 

distribution for ineffective vibration attenuation at 62.4kph 

 

Figure 7.13- Response characteristics of the primary system ( 31.0 ;

312 /10429.6 radNmkt  ) for 
guu   )0(,0)0( : (a) number of impacts (b) dimensionless 

peak to peak amplitude;    without NES,   with NES 
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Figure 7.13 shows the response spectra for an optimum case ( 31.0 ;

312 /10429.6 radNmkt  ).The number of impacts depicted in section (a) is now 

affected at the speed area of interest while the positive effects near the bifurcation 

point are also maintained. Positive influence is also seen in the peak to peak 

amplitude. 

 

Figure 7.14-Time series of the dynamic response at 106.8kph, quasi-periodic response regime 

( 31.0 ; 312 /10429.6 radNmkt  ): (a) Dynamic transmission error (primary system) (b) 

NES relative motion;  without NES,    with NES 

Figure 7.14 shows the time series of the dynamic response at a cruising speed of 

106.8kph. This corresponds to a local minimum of Figure 7.13(a) and a local 

maximum of Figure 7.10(b). The dynamic transmission error in this case Figure 7.10 

is not a steady-state function; it rather exhibits a beating behaviour. The same 

applies for the nonlinear attachment. These motions are similar to the ones 

described in the analysis of Gendelman et al (2008) and Starovetsky and 

Gendelman (2008) when a linear primary system was considered. The favourable 

effect of these types of motions can be observed in Figure 7.15. The modal energy 

exchange shows a reduced energy level of the primary system which is now clearly 
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transferred to the NES. This is confirmed by Figure 7.15(b), where the majority of 

input energy gets dissipated in the nonlinear attachment while a reduced portion 

remains in the primary system. This fact implies the presence of an efficient 

mechanism setting an energy flow path towards the NES. This effect is reflected in 

the dynamic response where the single sided impacts are suppressed by almost 2/3. 

Although the maximum peak to peak amplitude might be slightly increased, the 

number of overall peaks is significantly reduced, indicating a lower energy content of 

the primary system. Therefore, any NES design able to undergo strongly modulated 

responses could be crucial towards achieving effective vibration alleviation.  

 

Figure 7.15- (a) Instantaneous energy exchanges between modes, (b) input energy distribution 

for quasi-periodic response at 106.8kph 

7.4 - Breach of dynamic equilibrium 

In Chapter 5, it was seen that high amplitude oscillations can be encountered when 

the external excitations are unbalanced. Simulations of a throttle release case 

indicated a deceleration of the rigid body rotation while the relative torsional mode 

settles to a periodic motion around a different equilibrium point. The type of this 

motion is significantly affected by the initial conditions at the onset of equilibrium 
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breach. The worst case scenario revealed the potential of repetitive double sided 

impacts instigating highly pronounced vibro-impact phenomena. This section will 

investigate the prospect of employing nonlinear attachment for accommodating the 

previous unwanted behaviour. 

In previous analytical studies of TET, the efficiency of NES as vibration absorbers 

under transient conditions was related to an 1:1 internal resonance between the 

primary structure and the NES (Vakakis and Gendelman, 2001). These observations 

were confirmed by subsequent experimental studies (McFarland et al, 2005). For the 

current system, a violation of the balance of the external forces will cause the 

dynamic response to undergo a sudden transient before settling to the 

aforementioned periodic motion. The capability of the NES to effectively absorb 

energy during this transient short period could prove significant for the final exhibited 

periodic response. 

In Chapter 5 was shown that for a certain cruising speed, the dynamic response after 

the throttle release depends strongly on the initial conditions at the release instant; 

the latter arise from the prior periodic motion. Therefore a number of initial conditions 

should be tried before assessing the efficiency and robustness of a NES design. A 

simultaneous cruising velocity sweep will yield the worst case scenario for the whole 

range of operating conditions. Such a procedure requires a significant amount of 

computational time. In order to constrain the number of simulations, the optimisation 

algorithm (Rahmani, 2008) is used for the same range of parameters as in the case 

of steady state cruising. Minimisation of the number of double sided impacts is 

demanded, taking the worst case scenario of 100 different initial conditions. As for 

the initial state of the nonlinear absorber, it is supposed to rotate with the crown gear 

shaft at all times.          

Figure 7.16 shows the time series of the dynamic response when suppression of 

double sided impact phenomena is achieved. The vehicle cruising speed is set at 

112.3kph while the throttle is released at 200.12 meshing periods. It should be noted 

that prior to this time instance, additional 10000 meshing periods have elapsed to 

ensure steady state conditions have been achieved. Equilibrium conditions are re-

established after 400 meshing periods. Section (a) comparing the response of the 

main system with and without NES shows that double sided impacts are no longer 
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realised. The NES affects the primary system response initially during steady state 

reducing the peak to peak amplitude. This reduction might be crucial since it affects 

the initial conditions at the onset of coasting in accordance with the findings of 

Chapter 5.   

 

Figure 7.16- Time series of dynamic response at 112.3kph under effective vibration attenuation 

conditions ( 149.0 ; 312 /10506.5 radNmkt   ): (a) Dynamic transmission error (primary 

system) (b) NES relative motion;   without NES,     with NES 

Figure 7.17 depicts the dynamic response under ineffective suppression of double 

sided impacts under the same conditions of Figure 7.16. The NES inertia ratio is 

almost identical whereas the nonlinear stiffness is reduced to a lower level. As seen 

in Figure 7.17(a) the NES has no influence on the dynamic response of the primary 

system at any stage of the motion. As a result, the relative torsion settles to periodic 

solution characterised by DSI as already seen in Chapter 5. Correlation of the 

relative motion of the NES under the two cases (Figures 7.16(b)-7.17(b)) shows a 

different qualitative behaviour. Under suppression of DSI (Figure 7.16(b)), the NES 

relative motion is almost triple in magnitude before the breach point. Moreover, it is 

continuous both in frequency and amplitude before and after that critical point; 
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oscillations exhibit a higher number of cycles compared to Figure 7.17(b). On the 

other hand, when the suppression mechanism is idle the NES relative motion 

undergoes a discontinuity at the breach point; its amplitude almost doubles. The 

response is followed by a finite, small number of oscillations until they finally fade. 

 
 
 

Figure 7.17- Time series of dynamic response at 112.3kph under ineffective vibration 

attenuation conditions ( 15.0 ; 312 /10542.1 radNmkt  ): (a) Dynamic transmission error 

(primary system) (b) NES relative motion;    without NES,    with NES 

Interesting observations can be drawn from the wavelet analysis of the dynamic 

responses. Figure 7.18 shows the wavelet analysis of the relative velocity of the 

primary system under DSI suppression. The picture is similar to Figure 5.37 showing 

a frequency contribution of almost ½ mesh order during the suppression stage. The 

relative NES motion is analysed in Figure 7.19 where it can be seen that its 

instantaneous frequency undergoes a smooth transition from the 1st to ½ mesh 

harmonic before its oscillations start to fade. 
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Figure 7.18- Wavelet analysis of the relative torsional velocity, DSI suppresion 

 

Figure 7.19- Wavelet analysis of the NES relative motion, DSI suppresion 
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Figure 7.20- Wavelet analysis of the relative torsional velocity, no DSI suppresion 

 

 

Figure 7.21- Wavelet analysis of the NES relative motion, no DSI suppression 

Figure 7.20 illustrates the case of no DSI suppression for the main system; the latter 

now settles in a periodic motion governed by 1/3 and 2/3 mesh sub harmonics in 

accordance to the findings of Chapter 5. The frequency content of the NES relative 
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motion in this case undergoes a jump as seen in Figure 7.21; shifting impulsively 

from the 1st mesh order to the vicinity of the 1/3 mesh sub harmonic after the 

equilibrium breach. Therefore, the significant difference in the frequency 

characteristics of the NES signal is the discontinuity before and after the throttle 

release point which has been spotted in the time series of Figures 7.16(b)-7.17(b). 

An efficient NES is related to its ability to form a frequency bridge between the two 

different types of motion realised at the primary system before (mesh order) and 

after (mesh sub harnonics) the change in external excitation. A smooth frequency 

transition of the NES relative response triggers a DSI alleviation mechanism 

whereas a sudden jump from the mesh harmonic to a sub harmonic motion produces 

to viable gain.     

 

Figure 7.22- Number of double sided impacts over the vehicle speed operating range;  

without NES,     with NES 

Eventually, the arising question is whether the preceding NES design is robust, 

concerning the whole range of operating speed. The answer is given by constructing 

a spectrum plot depicting the maximum number of double sided impacts for every 

speed of interest with and without NES presence. Figure 7.22 shows that there is a 

remarkable robustness in the suppression mechanism. Although the region of 

concern for DSI motions is quite narrowband, the NES can achieve almost complete 

suppression for the considered excitation conditions.   
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7.5 - Synopsis 

The behavior of a nonlinear attachment as a method for controlling the torsional 

vibrations of hypoid transmissions has been investigated. These devices named 

nonlinear energy sinks (NES) have been already applied mostly in linear systems to 

achieve broadband transfer of unwanted energy. The nonlinear characteristics of the 

current system cause a broadband resonant behavior of the steady state motion. 

Furthermore, under violation of equilibrium of external forces the system dynamic 

response is associated to double sided impact phenomena.  

NES designs showed some potential both under steady state and transient 

conditions. In the former case, response regimes (periodic and SMR) related to 

irreversible TET were identified and correlated to existing analytical studies. 

Numerical simulations showed a considerable gain under certain operating 

conditions. Treatment of transient DSI motions was also granted possible through a 

nonlinear attachment. The suppression mechanism was related to the formation of a 

frequency bridge from the NES; in a sense coupling the different type of motions 

exhibited by the main system before and after the equilibrium breach.  

It should be noted that this is just a preliminary study aiming at highlighting the 

feasibility of such a design. The design is not fully optimized, nor the mechanism 

properly understood. The current chapter can only be regarded only in an indicative 

manner, showing the opportunities arising from NES implementation. A more 

rigorous analysis is required to gain an in depth understanding of such complex 

phenomena.     
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Chapter 8 - Overall conclusions, contribution to knowledge 

and suggestions for future work 

8.1 - Overall conclusions 

A new modeling approach was implemented in the investigation of hypoid gear 

torsional dynamics. The major difference lies in expressing the dynamic transmission 

error in integral form yielding a set of integral-differential equations that govern the 

motion of a hypoid transmission.  Numerical simulations conveyed the existence of 

stable, steady state solutions compared to unbounded responses rendered by 

previous methodologies. Furthermore, the analysis was applied on a realistic 

combination of operating conditions (loading and rotational speed) corresponding to 

a commercial vehicle exhibiting axle whine issues. The importance of expressing the 

resistive torque in terms of the angular velocity of the differential was highlighted, 

towards achieving dynamic equilibrium conditions. 

The model showed robustness in the variation of initial angular velocities of the gear 

members. However, a region of multiple solutions characterized by proper and 

improper mesh was identified. The former case is defined by constant mesh with the 

fundamental mesh order contributing vastly in the spectral content of the dynamic 

response; the latter by separation and vibro-impacts between the mating flanks while 

higher mesh orders become more prominent. This behavior inherent in a broadband 

vicinity of the vehicle speed – dynamic response spectrum was not observed in 

previous studies. In that instance, the multiple solution regions were confined to a 

narrowband area around the fundamental resonance and were realized only under 

lightly loaded and heavily damped cases. 

The family of periodic solutions was computed by employing the numerical 

continuation method. A bifurcation analysis revealed the existence of multiple 

solutions, stable and unstable branches. Parametric studies showed the effect of 

various design parameters. Reduction of mesh damping contributed in the 

generation of a third solution branch characterized by double sided impacts and 

severe vibro-impact phenomena. Additionally, aggravated dynamic response is 

induced when the variations of mesh stiffness and contact radii are in phase and out 
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of phase with the kinematic transmission error. The broadband region of multiple 

solutions can be mainly attributed to the varying mesh point given quantified with the 

variation of contact radii. Higher order harmonics of the mesh properties have a dual 

effect both on the fundamental and on the superharmonic resonance. These findings 

are crucial for a designer of a differential system. 

Analysis of the dynamic response under dynamic unbalance of the external 

excitations illustrated the existence of another type of double sided solutions. The 

latter are realized under coasting when the input torque is insufficient to 

counterbalance the resistive; for instance under a sudden release of the throttle. The 

dynamic response characteristics are greatly affected by the initial conditions at the 

ignition of the dynamic unbalance. Different frequency content is attributed to each 

type of possible solutions. Overall the double sided impacts are constrained at a 

narrowband region of the upper range of cruising speeds; nonetheless its severity 

cannot be overlooked.  

A combined tribo-dynamic analysis conveyed that the torsional dynamics are almost 

insensitive to the friction generated by the relative sliding motion of the gear flanks. 

Nevertheless, the various properties defining the tribological conjunction are affected 

by the dynamics of the system due to the abrupt change in contact pressure 

affecting the lubricant characteristics and in the velocity magnitude of the gear 

flanks; these phenomena are triggered by the resonant behavior of the gear motion.   

Introduction of a nonlinear dynamic absorber aiming at alleviating the torsional 

vibration level indicated a possible potential both under steady state and transient 

conditions. Response regimes correlated in literature to Targeted Energy Transfer 

were successfully identified. The effects of NES application were more prominent 

under coasting conditions, showing a deal of greater robustness, by causing almost 

complete elimination of DSI. Under steady state conditions the result was less 

pronounced; however there are large margins for further optimization considering the 

nature of the problem requiring broadband vibration isolation. 

8.2 - Novelty – Validation 

The novelty of the current work can be summarized in the development of a 

modeling approach which considers interacting disciplines related to hypoid gear 



210 

 

unique geometry and vehicle operating conditions. In specific, the geometric 

influence is quantified mainly in a varying form of contact radii resulting in a non 

holonomic constraint which defines the dynamic transmission error. The non 

integratable form of the latter was retained in the dynamic representation of the 

system yielding an enriched behavior. The operating conditions of the vehicle were 

included in the calculation through a resisting torque dependent on the 

instantaneous angular velocity. The usual nonlinearities arising in the harmonic form 

of kinematic transmission error and mesh stiffness were also accounted for. 

Additionaly, the dependence of the mean stiffness value on the external torque was 

included. Except for depicting the time histories under certain operating conditions, 

analysis was expanded to study the family of periodic solutions which has not been 

accomplished before for such level of complexity. Therefore, from a dynamics point 

of view the system was analyzed in depth.The tribological aspects of the problem 

were also considered by including the effect of friction as an internal excitation 

between the gear members. This formulation, even if it does not solve the fully 

transient problem is one of the first studies to investigate the effect of friction in the 

dynamics response and vice versa.  

Experimental validation was not realized directly, however the findings of this study 

showed a significant qualitative correlation to previously published experimental 

works. Noise and peak magnitudes of acceleration received by transducers, lie 

within the operating vehicle speeds predicted by the current model. These regions 

are characterized by single or double sided impacts between the meshing gear 

flanks. In terms of the tribological analysis, results show agreement with the 

extrapolated equations produced by previous studies.    

8.3 - Achievements of aims and objectives 

The specific aims and objectives defined in Section 1.2 have been accomplished as 

follows: 

I. An enhanced dynamic model was created by applying a suitable definition of 

the dynamic transmission error. A more enriched broadband nonlinear dynamic 

behaviour was captured compared to previously developed formulations while 

realistic operation conditions were considered. 



211 

 

II. The family of periodic solutions was successfully computed after employing a 

mathematical manipulation of the original equations of motion. Parametric studies 

rendered the effect of the main mesh parameters on the system dynamics. 

III. A tribo-dynamic analysis was performed by coupling the global deflections 

and loads predicted by the dynamic model to the local flank contact problem.  

IV. The dynamic response analysis revealed the existence of broadband single-

sided and double-sided vibro-impacts, associated to aggravated vibration 

amplitudes. Numerical simulations on the effect of NES attachments revealed some 

potential, limited for the time being. 

8.4 - Contributions to knowledge 

There have been previous attempts to model the dynamic behavior of hypoid 

transmissions. However, the definition of the dynamic transmission error with its 

traditional form was not sufficient to derive realistic stable solutions. Therefore, 

simplifications of doubtful content were adopted. As a result, the existing models 

failed to predict the aggravated dynamic response encountered in experimental 

studies. Vibro-impact phenomena were only confined to narrow band frequency 

regions either to lightly loaded and highly damped cases. However, the current 

methodology has achieved to address the above shortcomings. A realistic 

formulation of the equations of motion combined to the inclusion of operating 

conditions based resistive torque showed the potential of separation effects under 

heavily loaded conditions. Analysis was enriched by the computation of the family of 

periodic solutions and their stability characteristics. The latter showed that by 

carefully designing the gear pair characteristics, the vibration severity can be 

addressed up to a certain extent. 

A combined tribodynamic analysis, coupling the global dynamic effect to the relative 

motion of the individual mating flanks was yielded possible. This forms another 

important contribution towards the prediction of tribological properties, such as film 

thickness, friction coefficient and temperature rise on complex gear surfaces. The 

anticipation of marginal effect of frictional torque on the torsional motion was 

confirmed. Yet, the tribological properties exhibited a significant variation with 
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respect to the vehicle cruising speed; discontinuities and existence of different 

branches can be identified. 

Vibration isolation by means of nonlinear attachments was proven to be of significant 

potential both under steady state and transient conditions. Response regimes 

reported in previous studies of linear primary systems were also identified in current 

case where the primary system possesses inherent nonlinearities. The governing 

mechanism of energy exchange was found to be dependent on the parameters of 

the attachment, defining regions of optimised behaviour. The benefits on the 

dynamics are more profound in transient conditions; nevertheless the overall picture 

shows promise for future work. 

8.5 - Critical assessment of current work and suggestions for future 

work  

I. Only the torsional degrees of freedom of the gear pair have been considered. 

Therefore, the lateral motions of the supporting shafts interacting with the 

surrounding bearings are overlooked. However, a more realistic approach would 

require the contribution of other system parameters both in lateral and in torsional 

motion. Future expansion of the present methodology on a multi-parametric dynamic 

approach could yield more realistic results and shed light into the various modal 

interactions with the rest of the driveline. Application of the Finite Element Method 

with coordinate reduction could be an effective method of analysis. Investigation of 

parametric resonances and noise generation modeling are some additional 

suggestions for possible future work.  

II. The gear mesh characteristics derived by TCA are assumed to be identical 

under quasi-static and dynamic conditions. Additionally, the gear mesh is 

concentrated on a single point when solving the dynamic problem. The effect of 

torque on the mesh teeth stiffness has been addressed; however the influence on 

the contact radii was not examined. Such an attempt could identify any further 

complexities in the dynamic response of the system. 

III. The tribodynamic approach was entirely analytical. No discretisation of the 

contact zone was attempted, since it would require excessive computational time. 
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The thermal analysis also ignored the heating on the mating solid surfaces, which 

was reasonably justified by previous works. Convection terms were also neglected 

due to the thin films encountered and the mean temperature rise was predicted. The 

inlet temperature of the lubricant was taken equal to the bulk one, overlooking any 

possible preheating effects. A more elaborate thermal model should investigate the 

validity of these assumptions. 

IV. The investigation of a Non Linear Energy Sink (NES) as a palliative method 

for addressing vibro-impact problems in hypoid transmissions was only attempted on 

a proof of concept level. Further analysis is required both on numerical optimisation 

and also on understanding the energy exchanging mechanism. Such complex 

phenomena need to be examined thoroughly before reaching concrete conclusions.    
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Appendix 

The notation followed in the Appendix is consistent to Chapter 5. The main objective 

is the representation of the system with a single variable, in the form of the dynamic 

transmission error )(x . The corresponding differential equation is in the form of 

equation     (5.16):    

 
eRRRRx ggggpppp   

 

Therefore, all the quantities involving angular rotations and their derivarives need to 

be replaced by functions of )(x  and its derivatives. 

From equations 
 

 

 (3.3) and 
 

 

 (3.4) respectively, the angular accelerations can be expressed in terms of the 

dynamic transmission error: 
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In the above expression, 1a  is a constant arising from the definition of angular 

velocity dependent resistive torque 

   (3.8)). The next 

step is to repeat the same process for the angular velocities. In this case equations 

  (5.6

    (5.16) can be 

treated as a system with angular velocities as uknowns: 
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 ggpp RRex                 (A.3) 
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Combination of equations (A.2), (A.3) and (A.4) will yield the angular velocities with 

respect to )(x  and its derivatives: 
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while the angular velocity of the gear is yielded by the ensuing quadratic algebraic 

equation: 
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Eventually solution of (A.6) renders a pair of solutions of which only the positive has 

a physical meaning: 
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Until now, through expressions (A.1), (A.2), (A.5) and (A.7), the angular velocities 

and accelerations can be substituted in terms of )(x  and its derivatives. However, 

solution of the dynamic problem requires the differentiation of equation (5.16). The 

new equation will be integrated numerically while substituting all the terms involving 

angular rotations with respect to dynamic transmission error: 

 ggppggppggpp RRRRRRx    22   (A.8) 

In the above formula the third derivatives of the angular rotations can be yielded by 

differentiating expressions (A.1) and (A.2). All the other terms are complex functions 

of )(x ; hence implicit substitution can be employed to solve numerically the 

differential equation. Comparison of solutions verifies the equivalence of the two 

approaches. 


