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Abstract

The exciton size of the lowest singlet excited state in a diverse set of organic π-

conjugated polymers is studied and found to be a universal, system-independent quan-

tity of approximately 7 Å in the single chain picture. With time-dependent density

functional theory (TDDFT), its value as well as the overall description of the exciton

is almost exclusively governed by the amount of non-local orbital exchange. This is

traced back to the lack of the Coulomb attraction between the electron and hole quasi-

particles in pure TDDFT, which is reintroduced only with the admixture of non-local

orbital exchange.
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Quantum-chemical methods applied on modern computer architectures allow to inves-

tigate excited states of ever larger molecules.1–3 Despite the rapid developments on the

computational side, the tools to analyze excited-state properties of these large systems are

in practice often limited to a visual inspection of frontier orbitals. As an example, for a

π → π∗ excitation it seems at first sufficient to analyze the highest occupied (HOMO) and

the lowest unoccupied molecular orbitals (LUMO) as they usually represent large parts of

the excitation process. In extended π-systems, however, electron-hole correlation effects gain

substantial importance and the assumption underlying MO theory that the excited electron

is decoupled from the excitation hole is no longer true.4 Moreover, it becomes crucial to

adopt a picture of coupled electron-hole pairs i.e. excitons, a concept which is central to the

description of excited states in solid-state physics.5,6

In the following, evidence is provided for the necessity to move to a correlated electron-

hole description to investigate excitons in the context of quantum-chemical calculations of

large molecular systems.4,7,8 Specifically, the onset of excitonic properties is studied for π-

conjugated systems of varying size to illustrate how excitonic effects emerge. This aspect is

of high importance in the discussion of localization effects in finite π-systems, a topic that

is intensely debated.9–13 While previous work was focused on a qualitative rationalization of

excitonic effects,14–17 a quantitative perspective is adopted here which allows to decompose

excitonic effects in large conjugated π-systems on different levels. Furthermore, a hierarchy

of exchange-correlation (xc) functionals is investigated in terms of their ability to describe

excitonic properties, i.e. the electron-hole interaction, which turns out to crucially depend

on the amount of non-local orbital exchange.

In linear-response time-dependent density functional theory (TDDFT),1,3 Casida’s pseudo-

eigenvalue equation is solved

A B

B∗ A∗


X

Y

 = ω

1 0

0 −1


X

Y

 , (1)
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where ω is the excitation energy, and X and Y are the excitation and de-excitation ampli-

tudes. The elements of the A matrix in the case of a hybrid functional are given as

Aia,jb = δijδab(εa − εi) + (ia|jb)− cHF(ij|ab) + (1− cHF)(ia|fxc|jb), (2)

and the elements of the B matrix possess a similar structure with permuted indices. The

indices i, j and a, b pertain to occupied and virtual orbitals, respectively. The εi and εa values

denote the orbital energies, cHF marks the fraction of non-local orbital exchange, and fxc

is the xc-kernel of the employed functional. To connect this equation to the quasi-particle

picture,18 we relabel the occupied orbitals involved as ”hole” and the virtual orbitals as

”electron”. In this picture, the second term in Eq. (2) (ia|jb), which is the response of (i.e.

originates from) the Coulomb interaction in DFT takes the form of an exchange repulsion

between the electron and hole. The third term cHF(ij|ab), the response of the non-local

exchange interaction takes the form of a Coulomb attraction. Hence, in TDDFT cHF can be

interpreted as charge screening parameter, c.f. Ref. 19. In the case of cHF = 1 the electron-

hole pair experiences the full Coulomb attraction, while it is screened for lower values and

disappears for cHF = 0. The fourth term depends specifically on the functional and has

no such simple interpretation. If range-separated functionals are used, Eq. (2) becomes

somewhat more involved. In a nutshell, the more non-local orbital exchange is employed,

the stronger becomes the electron-hole Coulomb attraction.

A new perspective on the results of Eq. (1) can be obtained employing exciton analy-

sis.7,8,20,21 For this purpose, an effective exciton wavefunction is constructed using the exci-

tation and de-excitation amplitudes

χexc(rh, re) =
occ∑
i

virt∑
a

[
Xiaφi(rh)φa(re) + Yiaφa(rh)φi(re)

]
. (3)

φi and φa refer to occupied and virtual molecular orbitals, respectively, and rh and re are

the coordinates of the electron and hole quasi-particles.4 To characterize excitons, the ex-
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pectation value of an operator Ô can be evaluated as

〈Ô〉 =
〈χexc|Ô|χexc〉
〈χexc|χexc〉

. (4)

To measure the spatial extent of the hole generated during excitation, the hole size is com-

puted as

σh =
√
〈r2h〉 − 〈rh〉2. (5)

The exciton size depends on the joint electron-hole position, and is analyzed as the root-

mean-square (rms) electron-hole distance

dexc =
√
〈|re − rh|2〉. (6)

Furthermore, linear electron-hole correlation effects are investigated employing a correlation

coefficient similar to Pearson correlation as

Reh =
COV(rh, re)

σhσe
(7)

with the covariance defined as

COV(rh, re) = 〈rh · re〉 − 〈rh〉 · 〈re〉. (8)

Reh ranges from −1 to +1, where negative values correspond to anti-correlation, i.e. a dy-

namical avoidance of electron and hole in space, 0 indicates no linear electron-hole correlation

(which is the standard assumption in the MO-based picture), and positive values correspond

to a joint electron-hole movement, i.e. exciton formation. To rationalize excitonic effects,

the exciton wavefunction can be decomposed as

χexc(rh, re) ≈ φhe(rhe)φCM(R), (9)
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where φhe(rhe) describes the intrinsic electron-hole structure, which is similar to a hydrogen

atom but with different effective masses, and φCM(R) describes the center-of-mass (CM)

movement of the neutral exciton within the molecular potential.22,23 To visualize the de-

composed exciton wavefunction in terms of the joint electron-hole distribution in space we

employ so-called electron-hole correlation plots (cf. Refs. 7,22,24). The probability of an

electron being promoted from one molecular site to another is encoded in grey scale.

All calculations are performed with Q-Chem 4.3.25 For the TDDFT calculations, the ge-

ometries are optimized in the corresponding ground state for each functional using Alrichs’

SV(P) basis set.26 Seven functionals are selected with different amounts of non-local orbital

exchange (NLX): (a) PBE27 as representative of local generalized-gradient-approximation-

type functionals without non-local orbital exchange; (b) three different global hybrid func-

tionals including: B3LYP (21%),28,29 PBE0 (25%),30 and M06-2X (54%);31 (c) three different

long-range corrected (LRC) functionals CAM-B3LYP (19−65%),32 ωPBE (0−100%),33 and

ωB97 (0−100%)34 (fraction of NLX in parenthesis). For the configuration interaction singles

(CIS) calculations, the geometries are optimized at the Hartree Fock (HF) level of theory and

for the algebraic-diagrammatic construction for the polarization propagator (ADC(2)) cal-

culations,35–37 the geometries are optimized with ωB97. Conjugation lengths are determined

by measuring the distance of the outermost atoms for each system for the B3LYP-optimized

geometry and are presented in the supporting information. This quantity is not a unique

measure for the extent of the π-system, nevertheless it is accurate enough for a rough esti-

mate for the HOMO and LUMO sizes, since they are in all cases completely delocalized over

the entire molecules. Electron-hole correlation plots are created using TheoDORE 1.1.438

with fragments representing individual phenyl rings as defined in Fig. 1 in the supporting

information.

In the following, the first excited state of a set of prototypical, large π-conjugated

molecules is investigated employing exciton analysis. These π-systems are the fullerene

C60, and oligomers of polythiophene (T), poly(para phenylene vinylene) (PPV), ladder-type
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poly(para phenylene) (LPPP) and poly(benzimidazo-benzophenanthroline) (BBL) as shown

in Fig. 1.
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Figure 1: Conjugated systems investigated in this work: (a) C60, (b) polythiophene (n =
4, 6, 8) (c) 4TB, (d) poly(para phenylene vinylene) (n = 3, 5, 7), (e) ladder-type poly(para
phenylene) (n = 1− 4, 6, 8), (f) benzimidazo-benzophenanthroline polymer (n = 3− 6).39

In Fig. 2 (a) the exciton size for all molecules is plotted against the conjugation length.

The first remarkable observation is a uniform exciton size scaling (i.e. the growth of exci-

ton size with the conjugation length, cf. Refs 40,41). This uniform scaling is surprisingly

independent from the molecular details of this diverse set of π-conjugated oligomers. How-

ever, large differences are observed between the computational methods. While with PBE

(0% NLX) the exciton sizes increase linearly with values of about half of the conjugation

lengths, for all other functionals which include non-local orbital exchange, dexc converges to

functional-dependent values for long chains. For B3LYP (21% NLX), a maximum of approx.

13.0 Å is found, while for PBE0 (25% NLX) dexc converges against 11.5 Å. With 54% of non-

local orbital exchange included, the exciton size with M06-2X is about 7.5 Å, and 7.0 Å for

the long-range corrected CAM-B3LYP (19−65% NLX). For the LRC functionals ωPBE and

ωB97, which admix up to 100 % non-local orbital exchange at large electron-electron sepa-

rations, the exciton size converges to 5 Å. To put these results into perspective, the exciton

sizes are calculated with the ab initio methods CIS and ADC(2). The CIS exciton sizes mark

a lower limit below the LRC functionals with a maximum of 5.0 Å, while ADC(2) closely

resembles CAM-B3LYP with 7.0 Å. For semi-empirical methods, an even lower exciton size

of 4 Å is found for ladder-type para phenylene oligomers.15 Generally, the results confirm

the exciton size trends of Refs 41–44. As opposed to Ref. 40, we do not find an indefinite
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linear increase in dexc, but the exciton size quickly levels off. Seemingly, experimental and

our theoretical findings disagree, however, their relation is complex, if not even unclear. For

example, it remains ambiguous how to determine exciton sizes from experiment and the

approach used in Ref. 40 is still under debate. In addition, effects of dielectric screening

are not included in our theoretical study. As a consequence, our results represent polymer

chains at the boundaries rather than in the bulk. To address these obvious discrepancies,

dielectric screening needs to be taken into account in future theoretical efforts. In conclusion,

the asymptotic exciton size limit in TDDFT depends almost exclusively on the amount of

non-local orbital exchange included in the functional. This nicely falls into place considering

that this value determines the strength of the Coulomb interaction between the electron and

hole, cf. Eq. (2).

The results for the hole sizes σh are shown in Fig. 2 (b). The electron sizes behave

analogously (see Fig. 2 of SI). In contrast to the exciton sizes (dexc), the electron and hole

sizes increase linearly for all functionals. This leads us to the question of how to rationalize

the discrepancy between dexc and σh? For this purpose, it is instructive to examine the

linear correlation between electron and hole (Reh) plotted in Fig. 2 (c). For the pure GGA

functional PBE, the values for the correlation coefficients are negative throughout all systems

investigated. This indicates that the electron and hole quasi-particles dynamically avoid each

other in space, which is rather typical for charge-transfer states than for bound excitons.4,20

For all other functionals that include non-local orbital exchange, the electron-hole correlation

coefficients are positive. This corresponds to a correlated motion of electron and hole in

space, i.e. exciton formation. For the two hybrid functionals B3LYP and PBE0, the electron-

hole correlation grows linearly with the system size with maxima for the largest conjugated

system of 0.65 (B3LYP) and 0.72 (PBE0). For all LRC functionals and M06-2X, there

is a strong increase between 5 to 40 Å, after which the value is already close to 1. The

CAM-B3LYP results again closely resemble the ADC(2) results. These trends illustrate how

exciton formation emerges for medium to large sized systems. A key message of the results
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Figure 2: (a) Exciton size (dexc, Å), (b) hole size (σh, Å), and (c) correlation coefficient Reh

plotted against conjugation length for the first excited singlet state of each system.
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is that the resulting apparent exciton structure can be manipulated from anti-correlated

electron-hole pairs to strongly bound excitons just by tuning the cHF parameter in Eq. (2).

For comparison to the full TDDFT computations reported above, the Tamm-Dancoff

Approximation45 has been employed to calculate exciton properties for the three functionals

PBE, PBE0, and ωPBE. While the excitation energies of TDDFT and TDA results agree

at least up to 0.001 eV, the exciton sizes and correlation coefficients stand in reasonable

agreement throughout the whole data set, cf. Fig. 3 of SI. In conclusion, the neglect of the

de-excitation amplitude Y and of the B matrix in Eq. (1) only introduces minor differences

in exciton properties.

To further analyze the connection between the correlation coefficient Reh, the exciton

size dexc and the hole size σh, it is worth to examine their mathematical dependencies. The

exciton size can be rewritten as20

dexc =
√
dh→e + σ2

h + σ2
e − 2× COV(rh, re). (10)

In the case of extended π-conjugated polymers, we can assume that the vectorial electron-

hole distance dh→e is approx. zero, and that electron and hole sizes are approx. the same

(σh ≈ σe). Considering this, Eq. (10) can be simplified to obtain

dexc ≈ σh
√

2(1−Reh). (11)

Eq. (11) allows to predict that for an uncorrelated electon-hole pair the exciton size amounts

to
√

2σh, and that it can vary between the values of 0 and 2σh in the cases of positive or

negative correlation, respectively. Revisiting Fig. 2, these trends are reproduced as e.g. in

the case of PBE, the exciton size is always above
√

2σh, whereas it is always below this value

for all other functionals.

To highlight the connection between the values of Reh and the excitonic structure, exciton

wavefunctions for the 8LPPP oligomer are visualized in terms of electron-hole correlation
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Figure 3: Electron-hole correlation plots and correlation coefficients Reh of the first excited
state of 8LPPP calculated using various functionals. The main diagonal going from the lower
left to the upper right element represents the probability of an electron being locally excited
within one site while promotion between different sites is indicated as off-diagonal elements.

plots7,24,42 for all xc-functionals, shown in Fig. 3 . For the PBE functional, the elements on

the main diagonal (going from lower left to upper right) indicate a probability of almost zero,

while the off-diagonal elements show a broad distribution of charge transfer between molec-

ular sites in various distances. This pattern highlights the charge-transfer character of the

excited state,8,21,22 which coincides with a negative correlation coefficient of −0.31. On the

contrary, for all the other functionals with positive Reh values, the electron-hole correlation

plots are dominated by mainly local excitations and charge transfer between neighboring

sites. The latter can be attributed to short-range electron-hole repulsion.6 These patterns

correspond to Wannier-type excitons, for which the intrinsic structure of the electron-hole

pair is hydrogenic (for more details see Ref. 22). The off-diagonal width in the electron-hole

correlation plots represents the average electron-hole distance (i.e. exciton size), and is con-

trolled by the amount of non-local orbital exchange employed in the respective xc-functional

in analogy to the values of dexc and Reh.

This decomposition of the exciton wavefunction into an intrinsic part (shown as off-

diagonal width of the electron-hole distribution) and an extrinsic part (distribution of the

neutral exciton within the molecular potential parallel to main diagonal) allows to rationalize
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the connection between the exciton and MO pictures, cf. Eq. (9). The delocalization of the

joint electron-hole pair over the molecular potential generates a non-zero probability for

the exciton to be located anywhere in the entire system. This translates into completely

delocalized MOs, which themselves, however, are not capable to highlight the underlying

exciton structure dominating the excited-state character. At this point it becomes clear why

it is misleading to interpret excited states as weakly bound Wannier excitons with large sizes

by arguing that the HOMO and LUMO are delocalized over the entire molecule. An exciton

can simply not be characterized in the MO picture. To reveal its intrinsic structure, it is

imperative to move to a correlated electron-hole representation.

In summary, exciton properties of the energetically lowest singlet excited states of a set

of extended π-conjugated molecules were investigated with TDDFT in combination with a

hierarchy of xc-functionals as well as the ab initio methods CIS and ADC(2). With the

latter, the exciton size converges against 7 Å in the single chain picture, i.e. in the ab-

sence of dielectric screening. In general, the convergence of the exciton size is found to be

system-independent, but essentially governed by the amount of non-local orbital exchange

in TDDFT. This effect is traced back to the electron-hole correlation which is influenced

by the functional-dependent Coulomb attraction between the electron and hole quasipar-

ticles. The problem of pure TDDFT to describe excited states in extended π-conjugated

systems14,46–50 hence originates from the inability to describe bound excitonic states. Fu-

ture work will be dedicated to go beyond the single chain picture, i.e. accounting

for inhomogenious environments, geometrical distortions and polaron formation.

Acknowledgement

S.A.M. acknowledges funding of the Heidelberg Graduate School of Mathematical and Com-

putational Methods for the Sciences (HGS MathComp) and Landesgraduiertenförderung
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(8) Bäppler, S. A.; Plasser, F.; Wormit, M.; Dreuw, A. Exciton Analysis of Many-body

Wave Functions: Bridging the Gap Between the Quasiparticle and Molecular Orbital

Pictures. Phys. Rev. A 2014, 90, 052521.
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