Versatile Routes to Selenoether Functionalised Tertiary Phosphines

Tom J. Cunningham, Mark R. J. Elsegood, Paul F. Kelly, Martin B. Smith*^a and Paul M. Staniland

Received (in XXX, XXX) 1st January 2007, Accepted 1st January 2007 First published on the web 1st January 2007 DOI: 10.1039/b000000x

⁵ New selenoether functionalised tertiary phosphines, based on aryl (2a, 2b) or alkyl (4) backbones, have been synthesised and characterised. *P*,*Se*-chelation has been achieved upon complexation to square-planar Pt^{II} (3a) or Pd^{II} (3b) metal centres. For 3a and 3b, weak non covalent M····Se contacts
 ¹⁰ were established using single crystal X-ray crystallography.

Tertiary phosphines continue to remain an integral tool in the design and synthesis of new metal based complexes. Hybrid tertiary phosphines, bearing additional donor atoms such as ¹⁵ oxygen, have frequently been described as hemilabile by virtue of the soft/hard donor atom combination.¹ Considerable recent interest has focused on mixed P,O- and P,S-ligands for their fascinating coordination chemistry,² including water-soluble macrocyclic complexes using a weak-link approach,³ and ²⁰ catalytic applications.⁴ Tertiary phosphines with an additional

selenium donor centre have been very poorly developed in comparison to their lighter Group 16 counterparts.⁵ In contrast, numerous tertiary phosphine selenides (R₃P=Se) have been documented⁶ and there has been much recent interest in ²⁵ phosphorus-selenium chemistry *e.g.* Woollins' reagent.⁷

We⁸, and others⁹ have been interested in exploiting the favourable stereoelectronic, solubility and crystalline properties of the 6-phospha-2,4,8-trioxa-1,3,5,7-tetramethyladamantyl cage group in the synthesis of new phosphine ligands. Herein we

³⁰ describe the synthesis of a new, air-stable, selenoether phosphine containing this diamondoid group, along with two further selenoether phosphines and their square-planar dichloropalladium and platinum(II) complexes.

Scheme 1

^a Department of Chemistry, Loughborough University, Loughborough, UK LE11 3TU. Fax: +44 1509 223925; Tel: +44 1509 222553; E-mail: m.b.smith@lboro.ac.uk

⁴⁰ † Electronic Supplementary Information (ESI) available: [Experimental procedures, spectroscopic data and additional X-ray figures]. See DOI: 10.1039/b000000x/

The synthetic procedure to the new selenoether modified phosphines 2a and 2b was achieved using standard methodology 45 (Scheme 1). Following a known procedure for accessing bromophosphine 1a,10 reaction of the parent cage phosphine, AdPH, with 1-bromo-2-iodobenzene in dimethylacetamide (DMA) under standard P-C coupling conditions afforded 1b in good yield (55%) as an air-stable crystalline solid.[†] One 50 noticeable difference in the preparation of 1b, opposed to 1a, was the considerably shorter reaction time to proceed to completion (typically 2 d for 1b; 5 d for 1a). In the ${}^{31}P{}^{1}H$ NMR spectrum of **1b** a single phosphorus resonance was observed at $\delta(P)$ –29.6 ppm, some 25 ppm upfield with respect to $1a [\delta(P) - 4.9 \text{ ppm}]$. 55 Reaction of either 1a or 1b with PhSeH and KOH, in DMA, for 5 d at ca. 160 °C afforded 2a or 2b in reasonable yields (53% and 40% respectively). ³¹P{¹H} NMR spectroscopy of **2a** and **2b** showed single phosphorus resonances at $\delta(P) - 10.0$ [³J(PSe) 139 Hz] and $\delta(P) - 34.6 \text{ ppm} [^{3}J(PSe) 201 \text{ Hz}]$ respectively.

⁵⁰ Crystals of **2b**, suitable for X-ray crystallography, were grown by vapour diffusion of Et_2O into a $CDCl_3$ solution.[‡] The molecular structure (Fig. 1) of **2b** revealed crystallisation of a single enantiomer and confirmed the *ortho* arrangement of the bulky chiral phosphaadamantyl cage and selenoether group.

65 Metric parameters are broadly as anticipated and the transannular P(1)...Se(1) separation [3.230 Å] suggests *cis*-co-ordination to metal centres should be feasible. To the best of our knowledge we believe this structure determination represents the first example of a functionalised selenoether tertiary phosphine.

Fig. 1 Molecular structure of **2b**. All C–H hydrogen atoms are omitted for clarity. Selected bond distances (Å) and angles (deg): 75 C(1)–Se(1) 1.919(3), Se(1)–C(7) 1.925(3), C(8)–P(1) 1.844(3); C(1)–Se(1)–C(7) 102.41(14), Se(1)–C(7)–C(8) 119.7(2), C(13)–P(1)–C(16) 92.40(14).

To demonstrate the co-ordination potential of **2a** and **2b**, ⁸⁰ reaction of 1 equiv. of each ligand with either PtCl₂(cod) (cod = cycloocta-1,5-diene) or PdCl₂(PhCN)₂ in CH₂Cl₂ at ambient temperature afforded the dichlorometal(II) complexes **3a** and **3b** in good yields. Crystals of **3a** and **3b** were grown by vapour diffusion of diethyl ether into either a $CDCl_3/(CH_3)_2SO$ or CH_2Cl_2 solution (Fig. 2).[‡] In both cases, P,Se-chelation is clearly evident with P(1)–M(1)–Se(1) bond angles of 90.28(3) and 87.902(12)°. Furthermore the M(1)–Se(1) bond lengths [Pt(1)–Se(1) 2.3561(5)

- ⁵ for **2a**; Pd(1)–Se(1) 2.3656(2) for **2b**] are consistent with selenoether coordination.¹¹ The M(1)–Se(1)–C(7)–C(8)–P(1) five-membered rings are essentially coplanar to within ± 0.046 Å (for **3a**) and ± 0.104 Å (for **3b**). The interplanar angles for **3a** and **3b**, as defined by the Se(1)/C(7)/C(8)/P(1) *vs*. Se(1)/M(1)/P(1)
- ¹⁰ planes, are 4.9° and 11.4° respectively indicating marginal folding along the P(1)...Se(1) vector. In addition, there is a clear change in dihedral angle between the phenyl/phenylene rings attached to Se(1) as a function of chelation. In the free ligand **2a**, the dihedral angle is 54.1° which expands to 87.0° (for **3a**) and 82.1° (for **3b**).
- ¹⁵ As a consequence, weak non covalent $M(1)\cdots$ Se(1) intermolecular contacts [Pt(1) \cdots Se(1) 3.709 Å for **3a**; Pd(1) \cdots Se(1) 3.787 Å for **3b**] link adjacent molecules into dimer pairs.¹² Although not shown in Fig. 2, additional Se(1) \cdots Cl(1A) interactions are present (3.445 Å for **3a**; 3.679 Å for **3b**). In the
- ²⁰ case of **3a** this distance is significantly less than the sum of the van der Waals radii for Se and Cl atoms (3.65 Å).¹³

²⁵ Fig. 2 Molecular structures of (a) 3a and (b) 3b. All C–H hydrogen atoms are omitted for clarity. For complex 3b the CH₂Cl₂ solvate has been removed. Selected bond distances (Å) and angles (deg) for 3a Pt(1)–P(1) 2.2094(11), Pt(1)–Se(1) 2.3561(5), Pt(1)–Cl(1) 2.3668(11), Pt(1)–Cl(2) 2.3142(11);
³⁰ P(1)–Pt(1)–Se(1) 90.28(3), P(1)–Pt(1)–Cl(2) 91.89(4), Se(1)–Pt(1)–Cl(1) 85.94(3), Cl(1)–Pt(1)–Cl(2) 92.04(4). For 3b: Pd(1)–P(1) 2.2615(4), Pd(1)–Se(1) 2.3656(2), Pd(1)–Cl(1) 2.3506(4), Pd(1)–Cl(2) 2.3180(5); P(1)–Pd(1)–Se(1) 87.902(12), P(1)–Pd(1)–Cl(2) 98.800(17), Se(1)–Pd(1)–Cl(1) 84.577(14), Structures Cl(1)–Pd(1)–Cl(2) 88.709(18).

Having successfully demonstrated the preparation of aryl based selenoether phosphines, we also found the ease by which an alkyl backboned selenoether phosphine can be readily

- ⁴⁰ obtained. Using an AIBN radical initiated hydroselenation,¹⁴ reaction of Ph₂PCH=CH₂ with PhSeH afforded solid **4** (Scheme 2) regioselectively which has been characterised $[\delta(P) 15.4]$.¹⁵ Reaction of the anti-Markovnikov product **4** with PdCl₂(cod) gave the five-membered chelate complex **5** displaying the
- $_{45}$ expected spectroscopic and analytical properties. The significant downfield shift in the $^{31}P\{^{1}H\}$ NMR spectrum of **5** [$\delta(P)$ 62.3

ppm] is fully consistent with coordination of both P and Se donor atoms to a single Pd(II) metal centre.

In summary, we have shown how established synthetic routes can be used to access, hitherto unknown, selenoether modified ⁵⁵ tertiary phosphines and demonstrated their ease of P,Se-chelation at soft metal centres. Further coordination studies are in progress and results from these will be reported in due course.

Acknowledgements

We would like to thank the EPSRC and Loughborough University for funding (PMS). Johnson Matthey are gratefully acknowledged for the generous loan of precious metal salts.

Notes and References

- 65 † See ESI for synthetic details and characterising data for all new compounds.
- ‡ Crystal data: For **2b**, $C_{22}H_{25}O_3PSe: M_r = 447.35$, orthorhombic, space group $P2_12_12_1$, a = 8.1752(5) Å, b = 10.1189(6) Å, c =24.5004(14) Å, V = 2026.8(2) Å³, T = 150(2) K, Z = 4, μ (Mo-K_{α}) $_{70} = 0.71073$ Å, 17792 data measured, 4890 unique ($R_{int} = 0.0366$), $d_{\text{calc}} = 1.466 \text{ g cm}^{-3}, R1 = 0.0391 \text{ (for 4049 data with } I > 2\sigma(I)\text{)},$ wR2 = 0.0858 (all data), and 248 parameters. CCDC xxxxxx. For **3a**, C₂₄H₁₉Cl₂PPtSe: $M_r = 683.31$, monoclinic, space group $P2_1/n$, a = 11.2539(7) Å, b = 13.4809(8) Å, c = 14.7665(9) Å, $\beta =$ 75 101.0079(10)°, V = 2199.0(2) Å³, T = 150(2) K, Z = 4, μ (Mo-K_{α}) = 0.71073 Å, 19234 data measured, 5350 unique ($R_{int} = 0.0357$), $d_{\text{calc}} = 2.064 \text{ g cm}^{-3}, R1 = 0.0276 \text{ (for 4130 data with } I > 2\sigma(I)\text{)},$ wR2 = 0.0557 (all data), and 262 parameters. CCDC xxxxxx. For **3b**, $C_{22}H_{25}Cl_2O_3PPdSe \cdot CH_2Cl_2$: $M_r = 709.58$, triclinic, space ⁸⁰ group P 1, a = 11.0639(5) Å, b = 11.0640(5) Å, c = 11.7858(5)Å, $\alpha = 89.7421(7)^{\circ}$, $\beta = 76.3793(7)^{\circ}$, $\gamma = 68.4046(6)^{\circ}$, V =1298.32(10) Å³, T = 150(2) K, Z = 2, μ (Mo-K_a) = 0.71073 Å, 11577 data measured, 6012 unique ($R_{int} = 0.0110$), $d_{calc} = 1.815$ g cm^{-3} , R1 = 0.0188 (for 5490 data with $I > 2\sigma(I)$), wR2 = 0.046485 (all data), and 302 parameters. CCDC xxxxxx. All three structures were determined routinely.
- N. C. Gianneschi, M. S. Masar III and C. A. Mirkin, Acc. Chem. Res., 2005, 38, 825.
- 90 2 (a) P. A. Ulmann, C. A. Mirkin, A. G. DiPasquale, L. M. Liable-Sands and A. L. Rheingold, *Organometallics*, 2009, 28, 1068; (b) C. G. Oliveri, P. A. Ulmann, M. J. Wiester and C. A. Mirkin, *Acc. Chem. Res.*, 2008, 41, 1618; (c) C. G. Oliveri, S. T. Nguyen and C. A. Mirkin, *Inorg. Chem.*, 2008, 47, 2755; (d) A.-M. Valean, S. Gómez-Ruiz, P. Lönnecke, I. Silaghi-Dumitrescu, L. Silaghi-Dumitrescu and

E. Hey-Hawkins, *New J. Chem.*, 2009, **33**, 1771; (e) T.-W. Chiou and W.-F. Liaw, *Inorg. Chem.*, 2008, **47**, 7908.

- 3 M. J. Wiester and C. A. Mirkin, Inorg. Chem., 2009, 48, 8054.
- 4 (a) L. Diab, M. Gouygou, E. Manoury, P. Kalck and M. Urrutigoïty, *Tetrahedron Lett.*, 2008, 49, 5186; (b) A. Dervisi, D. Koursarou, L.-I. Ooi, P. N. Horton and M. B. Hursthouse, *Dalton Trans.*, 2006, 5717; (c) G. L. Moxham, H. E. Randell-Sly, S. K. Brayshaw, R. L. Woodward, A. S. Weller and M. C. Willis, *Angew. Chem. Int. Ed.*, 2006, 45, 7618; (d) R. Malacea, J.-C. Daran, S. B. Duckett, J. P.
- Dunne, C. Godard, E. Manoury, R. Poli and A. C. Whitwood, *Dalton Trans.*, 2006, 3350; (e) J. R. Dilworth, C. A. Maresca von Beckh W. and S. I. Pascu, *Dalton Trans.*, 2005, 2151.
- (a) D. K. Dutta, J. D. Woollins, A. M. Z. Slawin, D. Konwar, M. Sharma, P. Bhattacharyya and S. M. Aucott, J. Orgaomet. Chem., 2006, 691, 1229; (b) J. E. Aguado, S. Canales, M. C. Gimeno, P. G. Jones, A. Laguna and M. D. Villacampa, Dalton Trans., 2005, 3005; (c) S. E. Durran, M. R. J. Elsegood and M. B. Smith, New J. Chem., 2002, 26, 1402; (d) J. Laube, S. Jäger and C. Thöne, Eur. J. Inorg. Chem., 2001, 1983; (e) E. G. Hope, T. Kemmitt and W. Levason, J.
- 20 Chem. Soc., Perkin Trans., 1987, 487; (f) S. K. Harbron, S. J. Higgins, E. G. Hope, T. Kemmitt and W. Levason, *Inorg. Chim. Acta*, 1987, **130**, 43; (g) G. Dyer and D. W. Meek, *J. Am. Chem. Soc.*, 1967, **89**, 3983.
- 6 (a) V. Cadierno, J. Díez, J. García-Álvarez and J. Gimeno, *Dalton Trans.*, 2010, **39**, 941; (b) C. Kling, H. Ott, G. Schwab and D. Stalke, *Organometallics*, 2008, **27**, 5038.
- 7 (a) G. Hua and J. D. Woollins, Angew. Chem. Int. Ed., 2009, 48, 1368; (b) G. Hua, Y. Li, A. M. Z. Slawin and J. D. Woollins, Angew. Chem. Int. Ed., 2008, 47, 2857; (c) P. Kilian, S. Parveen, A. M.
- Fuller, A. M. Z. Slawin and J. D. Woollins, *Dalton Trans.*, 2008, 1908.
- 8 (a) T. J. Cunningham, M. R. J. Elsegood, P. F. Kelly, M. B. Smith and P. M. Staniland, *Eur. J. Inorg. Chem.*, 2008, 2326; (b) G. M. Brown, M. R. J. Elsegood, A. J. Lake, N. M. Sanchez-Ballester, M. B. Smith,
 ³⁵ T. S. Varley and K. Blann, *Eur. J. Inorg. Chem.*, 2007, 1405.
- (a) J. Hopewell, P. Jankowski, C. L. McMullin, A. G. Orpen and P. G. Pringle, *Chem. Commun.*, 2010, **46**, 100; (b) J. H. Downing, J. Floure, K. Heslop, M. F. Haddow, J. Hopewell, M. Lusi, H. Phetmung, A. G. Orpen, P. G. Pringle, R. I. Pugh and D. Zambrano-Williams,
- Organometallics, 2008, 27, 3216.
 P. Machnitzki, T. Nickel, O. Stelzer and C. Landgrafe, *Eur. J. Inorg. Chem.*, 1998, 1029.
- (a) L. Vigo, M. Risto, E. M. Jahr, T. Bajorek, R. Oilunkaniemi, R. S. Laitinen, M. Lahtinen and M. Ahlgrén, *Cryst. Growth Des.*, 2006, 6,
- 5 2376; (b) N. R. Champness, W. Levason, J. R. Quirk, G. Reid and C. S. Frampton, *Polyhedron*, 1995, **14**, 2753.
- 12 M. D. Milton, J. D. Singh and R. J. Butcher, *Phosphorus, Sulfur and Silicon*, 2001, 169, 153.
- 13 A. Bondi, J. Phys. Chem., 1964, 68, 441.
- ⁵⁰ 14 (a) B. A. Trofimov, N. K. Gusarova, S. N. Arbuzova, N. I. Ivanova, A. V. Artem'ev, P. A. Volkov, I. A. Ushakov, S. F. Malysheva and V. A. Kuimov, *J. Organomet. Chem.*, 2009, **694**, 677; (b) N. K. Gusarova, N. A. Chernysheva, S. V. Yas'ko, T. I. Kazantseva, I. A. Ushakov and B. A. Trofimov, *Synthesis*, 2008, 2743.
- 55 15 For a recent alternative synthesis of 4 see: A. M. Spokoyny, M. S. Rosen, P. A. Ulmann, C. Stern and C. A. Mirkin, *Inorg. Chem.*, 2010, 49, 1577.