Visualisation of electronic excited-state correlation in real space

2019-03-12T12:27:37Z (GMT) by Felix Plasser
A method for the visualisation of excited‐state electron correlation is introduced and shown to address two notorious problems in excited‐ state electronic structure theory, the analysis of excitonic correlation and the distinction between covalent and ionic wavefunction character. The method operates by representing the excited state in terms of electron and hole quasiparticles, fixing the hole on a fragment of the system and observing the resulting conditional electron density in real space. The application of this approach to oligothiophene, an exemplary conjugated polymer, illuminates excitonic correlation effects of its excited states in unprecedented clarity and detail. A study of naphthalene shows that the distinction between the ionic and covalent states of this molecule, which has so far only been achieved using elaborate valence‐bond theory protocols, arises naturally in terms of electron‐hole avoidance and enhanced overlap, respectively. More generally, the method is relevant for any excited state that cannot be described by a single electronic configuration.