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ABSTRACT 

In this thesis, novel wavelet techniques are developed to improve parametrization of 

speech signals prior to classification. It is shown that non-linear operations carried out 

in the wavelet domain improve the performance of a speech classifier and consistently 

outperform classical Fourier methods. This is because of the localised nature of the 

wavelet, which captures correspondingly well-localised time-frequency features 

within the speech signal. Furthermore, by taking advantage of the approximation 

ability of wavelets, efficient representation of the non-stationarity inherent in speech 

can be achieved in a relatively small number of expansion coefficients. This is an 

attractive option when faced with the so-called 'Curse of Dimensionality' problem of 

multivariate classifiers such as Linear Discriminant Analysis (LDA) or Artificial 

Neural Networks (ANNs). Conventional time-frequency analysis methods such as the 

Discrete Fourier Transform either miss irregular signal structures and transients due to 

spectral smearing or require a large number of coefficients to represent such 

characteristics efficiently. Wavelet theory offers an alternative insight in the 

representation of these types of signals. 

As an extension to the standard wavelet transform, adaptive libraries of wavelet and 

cosine packets are introduced which increase the flexibility of the transform. This 

approach is observed to be yet more suitable for the highly variable nature of speech 

signals in that it results in a time-frequency sampled grid that is well adapted to 

irregularities and transients. They result in a corresponding reduction in the 

misclassification rate of the recognition system. However, this is necessarily at the 

expense of added computing time. 

Finally, a framework based on adaptive time-frequency libraries is developed which 

invokes the final classifier to choose the nature of the resolution for a given 

classification problem. The classifier then performs dimensionaIity reduction on the 

transformed signal by choosing the top few features based on their discriminant 



power. This approach is compared and contrasted to an existing discriminant wavelet 

feature extractor. 

The overall conclusions of the thesis are that wavelets and their relatives are capable 

of extracting useful features for speech classification problems. The use of adaptive 

wavelet transforms provides the flexibility within which powerful feature extractors 

can be designed for these types of application. 
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Chapter One 

Introduction 

Typical speech recognition systems are composed of several stages, of which two merit 

particular interest. The pre-processing stage where the raw speech data is appropriately 

conditioned for the subsequent module and the classifier which gives a likelihood 

measure to each speech frame it encounters. The classifier itself is fed by a 

parametrization stage whose purpose is to enhance recognition by simultaneously 

reducing the complexity and size of the data. This process is sometimes termed feature 

extraction, and aims to find the best subset of parameters for recognition. As Parsons 

points out in [9] - "an ideal set of features selected for recognition should meet the 

following criteria: 

a) Vary widely from class to class. 

b) Insensitive to extraneous variables (i.e. text, context, health and emotional state of 

talker, system transmission characteristics, etc. ). 

c) Stable over long periods of time. 

d) Frequently occurring. 

e) Easy to measure. 

f) Not correlated with other features. " 

In this thesis, alternative ways of extracting a set of such features satisfying some or all 

of the above requirements using wavelet methods will be examined. The performance of 

the feature set will be measured in terms of the overall error rate of the speech 

recognition system. 
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This chapter will first introduce speech parametrization methods and their various 

characteristics before briefly outlining the thesis itself. 

1.1 Historical Background on Parametrization Techniques for 

Speech Recognition Applications 

Approaches such as Linear Predictive Coding (LPC) [8] and the Windowed Fourier 

Transform [8] are widely used in speech processing. They are generally fast, robust and 

give rise to easily interpretable feature sets; one can easily extract formant or pitch 

information from a speech signal by observing the magnitude of its spectra. In the past, 

techniques used for parametrizing speech have been based upon criterion derived from a 

priori knowledge of the auditory system. The resultant assumptions are usually 

reasonable; for example, if me/-scale warping is applied to FFT (Fast Fourier 

Transform) coefficients [8], this has the effect of emphasising perceptually meaningful 

frequencies. A related but differing notion using the same LPC coefficients is known as 

PLP (Perceptual Linear Prediction) [1]. While the resulting features may contain 

discriminant information suitable for speech paramtrization, one or more of the 

following issues regarding the assumptions of these methods may come to mind: 

(i) The auditory system (human ear and brain) does not behave like a frequency 

spectrum. Even if one successfully models the frequency characteristics of the inner 

ear, little is known about subsequent processing in the brain. Furthermore, within the 

speech community it has been accepted e.g. [ID] that linear models are inappropriate 

for speech analysis. 

(ii) Fourier analysis is unable to give simultaneous time-frequency localisation of 

features. Fourier analysis provides an approximation of a given signal by using a 

weighted sum of building blocks or basis functions which are sine or cosine 

functions. As each term in the expansion has a particular frequency, a Fourier 

approximation gives information regarding the frequency of a signal. However, in its 

basic form, Fourier analysis gives no information about frequency behaviour over 

time. Thus it gives good estimates of global signal characteristics but disregards 

locally changing events. In the context of speech analysis where the signal does not 

remain stationary over long periods of time, one requires an analysis technique 

which takes account of the 'short-term' events. One such method is the Short-Time 
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Fourier Transform which performs local analysis by windowing the signal ID 

question, however this is not without its drawbacks e.g. spectral leakage. 

Bearing in mind these issues, one may turn to alternative methods which address one or 

both of the preceding problems. One such possibility is the wavelet transform which has 

found application in speech recognition to a limited extent but has made a much bigger 

impact in fields like image compression. It has some relation to Fourier methods in that 

real world functions are approximated using basis functions but these are wavelets 

instead of sines and cosines. Families of wavelets can be generated by dilating (i.e. 

altering the support of the function) and translating a single mother wavelet. They 

fundamentally differ from Fourier bases in that they are well-localised in both the time 

and frequency domains. In fact Daubechies [4] discovered a family of wavelet basis 

functions that were simultaneously (i) orthonormal, (ii) have compact support (i.e. zero 

outside a finite interval), and (iii) have a variable degree of smoothness that can be 

chosen. The wavelet transform (WT) of a signal thus carries information about the 

variation of frequency with time. 

A further advantage of wavelets is that a small number of wavelet coefficients can be 

used to approximate efficiently the discontinuities or irregularities often found in real 

world signals. Generally, in speech short term transitory events contain the most 

information [8] so a more compact, accurate representation is clearly desirable. Fourier 

and LPC-based methods tend to lose or average such features within the time window. 

The standard wavelet transform however, overcomes this shortcoming by analysing the 

signals in a similar way to an octave band filter bank (see Chapter 3 for details), in other 

words high frequency events are analysed using a window of compact time support 

whilst low frequency smooth sections, which are generally of longer duration, are 

analysed through a correspondingly longer analysis window. 

1.2 The Best-Basis Paradigm 

In recognising some of the difficulties encountered in representing highly variable 

speech signals to a classifier, one can easily realise the attraction of adaptively tiling the 

time-frequency (TF) plane. Windowed Fourier methods and wavelet transforms differ in 

the time-frequency sense; in that the windowed Fourier transform has a fixed window, 

while the window support of the WT varies logarithmically with frequency. Since the 
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standard wavelet transfonn is non-adaptive, the Best-Basis (BB) Paradigm [2] was 

developed as a generalisation of the wavelet transfonn which can tile the TF plane 

according to the infonnation content of the signal, infonnation in this case is in the 

Shannon-Entropy sense. Thus, the algorithm adaptively selects a set of basis functions 

suited to a particular problem by minimising some kind of criterion or cost function. The 

type of cost function depends on the final problem. Conceivably this could be 

compression, regression or classification. In the latter case, one would ideally desire an 

adaptive wavelet basis which maximises the distance (in some sense) between classes in 

the training set. Once the best set of subspaces has been chosen, one can perfonn 

"Dimensionality Reduction" by sorting the resulting set of coefficients, expanded in this 

basis according to their importance, again in tenns of the final problem. This step has the 

dual advantage of increasing the robustness of the classifier (if classification is the 

problem) by reducing the amount of superfluous or redundant infonnation in the speech 

signal, while increasing the training speed. Furthennore, if a good discriminant set of 

coefficients is chosen, further analysis by speech scientists or linguists may yield new 

insight into the characteristics of speech. 

The above discussions encompass the aims of this thesis; parametrization of speech 

signals using wavelets and their relatives to best fulfil the objectives of Parsons [9]. 

outlined above. Since the wavelet transfonn is conceptually similar to Fourier methods, 

future discussions and analysis are generally restricted to this analogy. 

1.3 Thesis Objectives 

Wavelet applications, although well developed in areas such as signal and image 

compression, have found relatively limited use in feature extraction and 

discrimination for speech or related tasks. Therefore this thesis has been concerned 

with the following: 

(i) To quantitatively compare the dyadic wavelet transfonn with short time 

Fourier methods in relation to misclassification perfonnance on different speech 

classification problems. This includes the assessment of the effects of using 

different types of wavelets and examining whether wavelets preserve the acoustic

phonetic attributes of speech signals. 
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(ii) To implement and compare the Best-Basis algorithm which, due to its 

adaptivity should improve the performance of the final classifier. Also, it IS 

relevant to decide whether the translation-invariance problem of wavelets is 

important for speech recognition applications. 

(iii) To develop a discriminant wavelet based feature extractor suitable for 

phoneme classification using the final classifier to choose the best set of features. 

(iv) To implement and compare this approach with existing discriminant schemes. 

1.4 Thesis Outline 

Chapter 2 briefly reviews the basics of wavelet theory and gives a literature review of 

where wavelets have found application in speech recognition. Most of this work is 

largely based on the standard WT, taking advantage of its multiresolutional properties to 

characterise transient events. Large scale application to different phonetic subclasses is 

somewhat lacking. Discriminant wavelet bases are also seen to have found limited use. 

In Chapter 3, the theory and properties of wavelets are described in detail, also Fourier 

and wavelet techniques are compared in their application to several common phoneme 

classification problems. 

In particular, the characteristics of the wavelet are noted which enable it to represent 

irregular signals and transients via their so called 'zooming property'. 

Chapter 4 applies the BB Paradigm. which adaptively tiles the time-frequency plane. In 

the experiments. the final expansion coefficients used for parametrization are obtained 

only with the aim of representing the most information in the speech signal in the fewest 

coordinates and so cannot strictly be viewed as feature extraction. Thus the costs used 

(and compared) are the same as those used in most compression applications. This 

should result in a more flexible characterisation of subtle acoustic events inherent in 

speech and the recognition performance is compared with the results obtained in Chapter 

3. The findings are analysed and the Best Basis approximation framework is compared 

with conventional linear techniques in this particular setting. Also considered in this 

chapter is the well-known translation invariance problem of discrete wavelet techniques. 

An algorithm known as Cycle Spinning [3]. originally designed to remove artefacts in 
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wavelet denoising, is applied to the speech datasets prior to training and classification. 

The overall effect on the final misclassification rate is examined. 

The BB Paradigm introduces two new types of basis function: wavelet packets and 

cosine packets, the characteristics of these are described in detail. 

In Chapter 5, a novel modification of the BB paradigm, known as the Local 

Discriminant Basis algorithm (LOB) which was designed for classification in [6], is 

applied to the speech datasets. There are two main stages in the LOB algorithm: 

(i) Build a class probability model based on the average energies of the member 

signals in each class. 

(ii) Search all subspaces to find a set which gives the maximum separation or 

distance between classes. 

In practice, the distance used by LOB to provide contrasts among a set of classes is 

quite different to the criterion which the classifier uses. A modification of the 

algorithm which uses the same distance measure as the classifier to select the most 

discriminant basis. This is seen to improve training performance (and prediction In 

certain cases) compared to LOB. 

Chapters 4 & 5 are expanded versions of publications [5], [6], [7] which are included in 

the Appendix. 
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Chapter Two 

Review of Wavelet Methods • In 

Speech Recognition 

2.1 Introduction 

Reliable speech recognition relies upon an efficient representation of the speech signal. 

Existing parametrization techniques such as Linear Predictive Coding (LPC) and the 

Windowed (or Short Time) Fourier Transform have many useful applications in speech 

processing and are well established in terms of theory and application. However, they 

have their drawbacks. For example, Fourier techniques lack good localisation of 

potentially relevant speech events due to the global nature of their basis functions. 

Furthermore, they incorporate assumptions regarding the speech signal such as quasi

stationarity which may affect performance. 

The Wavelet Transform is an altemati ve method that possesses a number of features 

which make it particularly suited to signal processing applications in general. Put 

simply, the Wavelet Transform has orthogonal basis functions which, as shown in 

Figure 2.1, are well-localised in both the time and frequency domain. Also this 

technique performs Multi-Resolutional Analysis (MRA) on a given signal; that is, it 
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vanishing moments. 

9 



can extract orthogonal sets of infonnation from a signal at several resolutions. 

This chapter provides a basic introduction to wavelets and reviews the relevant 

literature. 

2.2 Overview of the Wavelet Transform 

The wavelet transfonn may be thought of as an approximation method which uses the 

superposition of basis functions (or wavelets) to synthesise an arbitrary function. The 

relation to Fourier methods is as follows. In the Fourier transfonn, functions may be 

approximated by means of a series expansion with sinusoidal tenns of differing 

frequency. This gives rise to the notion of frequency analysis. 

The human auditory and perceptual system is not sensitive to frequency alone but also to 

the variation of frequency with time exhibited by most real world signals [9]. A logical 

extension to the Fourier Transfonn (FT) which takes this into consideration, is the Short 

Time Fourier Transfonn ( or STFT). The STFT introduces time dependence into the 

standard FT whilst retaining the linearity of the operation. In practice, this is achieved by 

mUltiplying the time domain signal with a sliding window through which the signal is 

'viewed' and the spectra extracted over all times. One limitation is that although global 

changes in signal behaviour are accounted for, local variations of duration less than the 

width of the window are averaged or smeared across the time-frame. This is commonly 

known as Spectral Leakage. Since it is known that less stable speech sounds, i.e. those 

with high transient characteristics carry a significant proportion of speech infonnation, 

this is clearly an undesirable effect. A further problem with the STFf is that it possesses 

constant relative bandwidth (denoted by N, the bandwidth of the window). The 

windowing function, once chosen, has bandwidth (window duration over frequency) and 

thus impulse response (window duration over time, denoted by M) which remain fixed 

over all time and frequency. These parameters are dependent upon each other since the 

response of this window, when drawn on the time-frequency plane, is a rectangle with 

constant area ( as shown in Chapter 3, Figure 3.1). The following inequality is known as 

the Heisenberg or Uncertainty principle from quantum mechanics which limits how 

small the area of these tilings can be. 

10 



• 

I 
At·l!,.I">

~ - 411" (2.1) 

From equation (2.1) it is clear that good time resolution can be achieved at the expense 

of frequency resolution and vice versa. Arbitrarily good resolution in both the time and 

frequency domains is not possible. Gabor in his original analysis in 1946 [39] suggested 

the use of Gaussian windows since they met the bound of equation (2.1) with equality. 

The wavelet transform on the other hand is an octave band decomposition of the phase 

plane, which uses the notion of time-scale analysis. The translation of frequency in the 

Fourier transform is replaced by dilation of the basis functions. It is this dilation and 

contraction that gives rise to the idea of scale. These basis functions, differ from the FT 

in that they are localised to some extent in both time (or space) and frequency (scale) as 

opposed to the sine/cosine basis functions of the Fourier transfonn which are completely 

global in time and completely localised in frequency. The properties of these approaches 

is considered in greater detail in Chapter 3. 

2.3 Review of Wavelets in Speech Recognition 

Wavelets have been used in areas such as formant extraction, [4], [17], [30], [23], 

signal representation, [5], [8], [14], [31], classification, [3], [13], [20], [21], [34], 

pitch extraction, references [11], [12], [19], [29], [35], [28], (45), detection of stop 

consonants, (23), (24) speaker identification and speaker authentication, (22), [27], 

(38). They have also been used in speech compression, [43] due mainly to their good 

approximation ability when applied to irregular signals. Articles of a more general 

nature relating to the work in this thesis can be found in [I], [4), [2], [6], (7), [10], 

[26], [33], [37], [43], (25), (43), [16], [32], [IS] wherein infonnation on both the 

fundamentals of wavelet theory and speech recognition as studied in this thesis are 

discussed. Work on modelling the auditory system has also been considered, [44], 

(36), (18), (39), (40), the motivation being that improved understanding of the 

philosophy underlying the human auditory and perceptual system should result in 

more authentic and therefore superior Automatic Speech Recognition systems 

(ASR's). 
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One of the earliest attempts to incorporate wavelets in a speech recognition system was 

carried out by Davenport et al [8] in which the Wavelet Transform was incorporated 

directly into the feature extraction stage of the system. In this case, the acoustic-phonetic 

characterisation of the speech signals (voicing and frication) was obtained from the 

energy characteristics of the wavelet subband decompositions. The authors used wavelet 

decomposition prior to classification by a neural network to select frequencies of interest 

for their particular problem - discrimination between phoneme subclasses using voicing 

and frication as the cue. They conclude that the most difficult classes to discriminate 

between were stops, and fricatives. 

The concept of decomposing a speech signal into a number of resolutional scales is 

appealing for it is this which gives the wavelet transform its zooming capability

allowing overall coarse views or, alternatively, giving the option of focussing on fine 

details of the signal, rather like studying an object with a microscope. However, this 

property is still subject to certain restrictions. Unlike the STFT where resolution is fixed 

over the whole time-scale plane wherein the Heisenberg inequality is an issue, the 

wavelet transform's resolutional rules are governed by 

N -=c 
/ 

(2.2) 

where c is a constant and/is the frequency. 

Although still requiring a trade-off between time and frequency resolution, equation 

(2.2) shows that there is good frequency resolution but poor time resolution at low 

frequencies, and vice-versa at high frequencies. This is demonstrated in the tiling 

configuration shown by Figure 3.2. 

It was these considerations that motivated the concept of Compound Wavelets, proposed 

by Favero [14], in which he discusses the desirability of controlling the time-bandwidth 

product specifically to enable a more accurate parametrization of speech signals for 

speech recognition. The benefits are twofold. First, there is an increase in speech 

recognition performance; second, there is an improvement in computational efficiency 

due to the reduction in the number of wavelet coefficients required by the process. 
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0' Alessandro et al [5], [6] uses a more descriptive approach based on linear acoustic 

theory to model un voiced speech sounds. Randomly generated wavelets are used as the 

formant filters in the speech model. The main disadvantage with this method is that once 

the wavelet coefficients have been calculated, the model cannot adapt to account for 

variability between speakers. Furthermore, the acoustic parameters of the unvoiced 

speech source have to be known a priori. 

2.3.1 Best-Basis Selection for Speech Processing 

Wickerhauser in [34], [36] developed the wavelet and cosine packet generalisation from 

which an application-dependant 'best basis' can be chosen from a library of orthonormal 

bases. This approach gives a degree of adaptability to the wavelet transform implying its 

suitability for highly variable signals like speech. Furthermore, if cosine packets are 

chosen as the basis, they themselves bear a distinct resemblance to bursts of sound, 

again suggesting their usefulness for the representation of speech signals. The "Best 

Basis method" was actually developed through the approach of entropy minimisation by 

Coifman et al [27]. Using this concept, Wesfried et al [5] introduced a speech 

representation based on the Adapted Local Trigonometric Transform. The window 

size into which the speech data is partitioned is performed automatically by the BB 

method; in fact the segmentation depends upon the spectrum it contains. The 

transitions between windows is thus shown by the authors to be suitable for 

segmentation into voiced-un voiced portions. A formant representation is introduced 

by locating and retaining the centres of mass for the highest-value peaks of the 

transform. From this, the local spectrum can be seen to represent the formants of the 

speech signal. 

2.3.2 Pitch Related Analysis 

Wavelet-based pitch analyses have been proposed by Kadambe et al [19], Evangelista 

[11], [12] Shelby et al [35], and Qiu et al [28]. The first of these reports a class of pitch 

detection algorithms which are event-based. The authors' approach attempts to 

determine the GCl (Glottal Closure Instant) as a cue using the multiresolutional 

properties of wavelets and then estimates the pitch for each sample within a particular 

segment. The advantages of this approach are that the method does not estimate the 

average pitch over the period; neither does it assume quasi-stationarity (i.e. short-term 
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events are better characterised using wavelets). Furthermore, the pitch detector works 

equally well for speech with either high or low pitch and is robust to noise compared to 

autocorrelation or cepstral - based pitch detectors which result in higher signal to noise 

ratios. 

Shelby et al [35] reiterate the need for accurate pitch detection in the recognition of tonal 

languages. Their method builds on the work of [19] where one of the main conclusions 

was that the GCI method showed promise for pitch period estimation of voiced 

segments. Their DWT (Discrete Wavelet Transform) algorithm uses a different energy 

method to locate the onset of an utterance. A comparison with the autocorrelation 

method using the same energy method for utterance onset detection is reported 

concluding that the DWT has comparable if not better performance. 

The wavelet transform is incorporated into a pitch detection system in [28] and [45], 

where a method is developed to estimate indirectly the pitch of a signal by first 

calculating its instantaneous frequency. For successful estimation of the IF, harmonics of 

the speech signal have to be largely attenuated. Instead of using a conventional time

varying filter for which a priori knowledge is required, a bank of bandpass filters of 

compact time domain support (wavelets) are incorporated into the system, which cover 

the complete range of pitch frequency. 

Evangelista [11] develops the Pitch Synchronous Wavelet Transform (PSWT) as an 

extension to the Multiplexed Wavelet Transform (MWT) [12], both designed using 

filter banks. The difference is that the PSWT takes into account variable pitch period. 

The PSWT reduces to the MWT when the pitch sequence is stationary. Suggested 

applications include uniquely cnaracterising the behaviour of voicedlunvoiced fricatives, 

occlusive unvoiced consonants, and vowels via the variation in pitch and time varying 

structure of the signals. 

The MWT is also suitable for representation of what the author terms pseudo-periodic 

signals, those which have pitch. These are a special class of signal which are oscillatory 

in nature yet have period to period variation i.e. exhibit non-stationarity. 

Applications suggested by the author include pitch tracking of speech signals, however 

the pitch itself must be approximated first using conventional methods. 
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What the above wavelet representations collectively provide is a multiresolutional 

analysis of fluctuation from periodic behaviour of the analysed signal. Intuitively this is 

useful in speech analysis since much of the information is contained in these variations. 

These representations need further work to render their true potential in speech. 

2.3.3 Wavelets in Speaker Identification and Authentication 

In order that humans may recognise individual speakers, they must first become familiar 

with the characteristics of a particular voice. The same is true for machines - the process 

of getting to know a particular speaker is referred to as training and consists of collecting 

data from utterances of people to be identified. Acoustic characteristics tend to vary 

between speakers - the main problem for standard speaker independent recognition 

systems. Moreover, automatic speaker identifiers try to exploit this variability to 

characterise individuals. The identification or classification itself (the testing phase), 

consists of comparing an unidentified utterance to the classifier and making the 

identification. Also, the manner in which speech features are presented to the classifier 

i.e. how parametrization is achieved, can significantly affect performance. Commonly 

used classification techniques for speaker identification are typical of those found in 

speech recognition systems. They include: Dynamic Time Warping, Hidden Markov 

Modelling, Vector Quantisation, Auto Regression and Neural Networks. See for more 

detail 0' Shaugnessy [26], Deller [9], or Soong et al [37]. 

2.4 The Ridge-Skeleton Algorithm 

Estimates of frequency and amplitude laws of non-stationary signals are useful for 

characterising important attributes of speech signals such as formants; resonant 

frequencies of the vocal tract for a given sound, usually voiced, and pitch; the 

fundamental frequency of a sound, again usually voiced. The wavelet transform 

provides the means of extracting instantaneous information by tracking and chaining 

together events across scales. This method is known as ridge and skeleton extraction. 

Delprat et al [30] implements such a scheme using Continuous Wavelet Transform 

(CWT) derived representations to extract instantaneous frequencies. The CWT is a two 

dimensional plot which is an .overcomplete (redundant) representation of the original 

signal. 
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Figure 2,2 Continuous wavelet transform of 'greas' from the word greasy analyzed using a Gaussian 

wavelet h via the relation CWT(r.a) =-};I f(l)h(,: r )dl where a is the scale (inversely proportional to 

frequency) and r is the translation; Top - Time domain signal; Centre - Continuous wavelet transform 
and; Bottom - Ridge extraction from the CWT by chaining the maxima modulus of the wavelet 

amplitudes. 

Using the stationary phase method of approximation, the dominant contributions to the 

wavelet transform are singled out. These are then assigned curves in the time-scale plane 

(ridges), which are extracted from the modulus maxima of the CWT. 

Figure 2.2 shows an example of how ridges may be extracted using the modulus 

maxima of the continuous wavelet transform for part of the word 'greasy'. Once the 
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maxima are identified as shown in the figure, they may be chained together to form a 

skeleton map. This may be pruned to keep only the strongest ridges from which 

instantaneous frequency or amplitude laws may be extracted. 

A possible restriction of this method lies in the fact that the ridge extraction algorithms 

are not exact for signals such as speech which have a high number of interacting 

components. 

Maes [22] reports success in extracting such features from speech signals using wavelet 

representations. The method involves transforming the speech signal into a subband 

decomposition. A 'squeezing' algorithm is then applied which monitors the temporal 

behaviour of each subband. 

Those contributions exhibiting similar temporal behaviour are recombined usmg a 

'fusion' algorithm, effectually building a profile of temporally important speech 

components. These principal components represent the form ants and pitch:- like the 

ridge-skeleton algorithm, they give information regarding phase and amplitude 

modulation characteristics of the speech signal. Proposed applications are speaker 

identification and word spotting. Furthermore, inherent linearity of the wavelet approach 

ensures robustness to noise although drawbacks due to resolving between closely spaced 

spectral peaks may occur at higher frequencies because of the worse spectral resolution 

of the standard wavelet transform. 

Considerable reduction in data and the ability to identify a speaker in the presence of 

noise and/or competing speakers (the cocktail party effect) was reported by Phan et al 

[27] using wavelet decompositions. A subband coding scheme resulted in a four octave 

multiresolution decomposition. To prepare the signal for recognition (in this case a 

template matching scheme), the four octaves were mapped onto a 4 by 64 element 

matrices, with each row representing a different octave. This format is suitable for the 

particular recognition scheme used. A 90% reduction in the data necessary for 

recognition was reported although recognition is considerably degraded at low signal to 

noise ratios. 

Kadambe et al. [21] diversified on previous work with Szu et al.[38], and developed a 

means of adaptively computing the wavelet transform for feature extraction problems. 
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The philosophy of the earlier work considered the use of the Adaptive Wavelet 

Transform (A WT) for classification rather than representation of signals and 

demonstrated the concept of adaptive wavelets and their applicability to speech. 

In the extension of [21], two such applications were considered; the identification of 

speakers and the classification of unvoiced phonemes. The system first modeled the 

phonemes using a Daubechies wavelet of order 3 and then attempted to identify a 

speaker by clustering all the phonemes belonging to the same speaker into one class. A 

feed-forward neural network architecture was used in the classification stage . 

The misclassification rate using this type of classifier was 11 %. The adaptive wavelet

based speaker identification system suggested previously in [38] was also considered 

further with the result that this method was able to identify a given speaker with zero 

error rate using a very short (one pitch period) segment of speech data. These results, 

however, were obtained using only three speakers. Further work in this area should 

consider a larger number of speakers. 

2.5 Summary 

In this chapter we have reviewed the major areas where wavelets and their variants have 

found use in speech representation and characterisation. It is generally seen that wavelets 

are useful tools with many parallels to Fourier methods, however they are able to 

characterise speech sounds in a richer way. It should be noted that this area is still 

relatively undeveloped in terms of application to larger speech datasets and in particular, 

there is little or no development of discriminant wavelet techniques for speech 

classification. The subsequent chapters will address some of these issues in two main 

ways 

(i) By providing comprehensive performance statistics of wavelet transforms cf 

STFT -deri ved parameters. 

(ii) Investigating discriminant wavelet methods that take advantage of the localised 

structures within speech. 
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The following chapter starts by describing wavelet transfonns and Fourier transfonns 

and indicates where and why the former may do better. It continues by investigating 

each techniques performance on several examples of real-world speech data . 
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Chapter Three 

Discrete Wavelet and Fourier 

Transforms for Phoneme Recognition 

3.1 Introduction 

This chapter begins by describing fundamental differences between the Fourier and wavelet 

transforms. In particular, the construction of frames, which govern the completeness, 

stability and redundancy of linear transforms are described for both cases. If one is 

interested in compression, then it can be shown that the wavelet coefficients are stable in 

that they converge and decay faster than equivalent Fourier expansions, and are thus a more 

compact way of representing signals. Non-linear operations carried out in the wavelet 

domain theoretically outperform Fourier methods in a least squares sense. It is shown that 

using anyone of a number of basis functions shown in Chapter 2, Figure 2.1, when applied 

to several quite different speech classification tasks, leads to significant improvement in 

misclassification rates compared to those associated with Fourier derived parameters. This is 

because in addition to being more efficient approximators, the wavelet transform tiles the 
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time-frequency plane in a non-uniform way. More specifically, the dyadic wavelet 

transform has tiling support commensurate with an octave band or constant Q filter bank 

decomposition (see Figure 3.3). The Short Time Fourier Transfonn (STFT) on the other 

hand, uses a window of fixed time-frequency resolution throughout the entire signal range. 

This indicates the suitability of wavelet methods for speech applications, since a crude 

model of the acoustical behaviour of the inner ear resolves events containing relatively low 

frequencies with longer duration time frames in contrast to short transient bursts of high 

frequency information which are analysed with a higher temporal resolution (see [4] for a 

general introduction to speech analysis). Wavelets have been used in speech recognition 

applications to date as described in the previous chapter; however, none to the authors 

knowledge, have considered the comparative performance of the standard Discrete Wavelet 

Transform (DWT), with a method as well established and widely used as the STFT. 

Furthermore, most of the applications of the DWT in speech recognition have been geared 

toward specific applications such as plosive detection (the presence of other non-transient 

speech phonemes in the context of other unrelated phonemes). In this study, the standard 

DWT is applied to various subcategories of speech and other issues are considered, i.e. the 

choice of basis function. Most applications postulate a suitable basis function based on a 

priori knowledge of the original signal e.g. [7]. While such an approach may be useful for 

representing a particular signal or class of signals, when one desires features suitable for 

classification, the best choice of basis function may not be so obvious. In this study, a 

number of common orthogonal wavelet basis functions are tried on each classification 

example. 

3.2 The Short Time Fourier Transform 

One of the most common methods of analysing non-stationary signals [3], is the STFT (also 

known as the Windowed Fourier Transform). It overcomes the limitations of its long-term 

counterpart by working on the assumption that if a window, short enough to preserve rapidly 

changing events in the signal, is chosen then Fourier analysis can be reliably performed. The 

STFT adds time dependence to the frequency analysis by computing the Fourier coefficients 

from translated (in time) versions of the window along the signal. The original method, 

proposed by Gabor [8] used a Gaussian window because it has optimal time-frequency 
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localisation properties, however it does not provide compact support and is known to result 

in unstable reconstruction. The type of windowing function used really depends on the 

application, and what is required of it. If one merely wishes to interpret reasonably well

localised signal features then reconstruction issues are not a problem and the Gaussian 

window may well be the best choice. If on the other hand there is some a priori knowledge 

of the signal i.e., if it were known to contain irregular or transient like features of interest, 

then a window of short-time width (impulse response) would constitute the best choice. 

Conversely, if the signal in question were well-behaved and smooth, with statistics which 

varied slowly over time, a longer width of window would suffice. Two problems arise in 

either circumstance. The first less obvious effect is known as the Heisenberg inequality 

principle. This states that the time-frequency bandwidth product is lower bounded, i.e. 

1 
M·N~-

41r 

Gabor specified the time-bandwidth product of his Gaussian to be 6t6f = 21r . 

(3.1) 

The relevance of this becomes clearer if the two-dimensional plot of time versus frequency 

is considered, i.e. the well known spectrogram, with time-frequency tiling as shown in 

Figure 3.1. 

fr~uency 
I - 6 

I 6 I 
E 

time 

Figure 3.1: Resolution of the time-frequency plane using the Windowed Fourier Transform. Note that this 

method can only resolve two impulses in time if they are at least M apart and two spectral peaks if they are 

more than I:;.f apart. 

In Figure 3.1, the interpretation of equation (3.1) relates to the area of the time-frequency 

blocks or atoms into which the t-/ plane is divided. This area is constant regardless of the 
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rectangular shape of these atoms. In other words, a well localised support in one dimension 

is at the expense of poorer resolution in the other. Thus good resolution is unattainable in 

both the dimensions of time and frequency. 

The second problem relates more to real-world signals where one might typically encounter 

signals containing highly non-stationary events, speech is a classic example, where elements 

such as transients (corresponding to stops and plosives) and well-behaved, almost stationary 

periodic sections (relating to voicings), silences, etc., are encountered. Ideally, in analysing 

such a signal, one would wish to choose a particular windowing function for each particular 

class of sound. The STFr does not allow this: the best window and resolution are chosen at 

the start of the analysis and from that point onwards, are fixed. In practice, this assumption 

of quasi-stationarity (assuming the signal statistics change slowly, if at all within the 

window) works well; parameters derived for speech recognition like Fourier derived cepstral 

coefficients or Fourier derived filter bank coefficients may reflect relatively old technology 

but they represent a well-understood methodology that, along with Linear Predictive Coding 

(LPC) techniques have evolved into some of the most popular parameterisation tools in 

speech recognition systems. However, inherent drawbacks exist. Equation (3.2) shows that 

the STFr can be considered as the inner product of the original signal x(t) with a 

modulated window function get) centred at t = l' . 

STFT(T,W) = If(t)g(t - T)e-;'" dt (3.2) 

One can easily restrict this expression to a discrete sublattice of the time frequency plane by 

choosing wo' To > 0 , and defining 

(3.3) 

where m and n are integers. Thus, the windowed Fourier transform coefficients can be 

computed as the inner product: 
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where ( ) denotes the inner product of g and x. 

In speech systems get) is almost exclusively a Hamming window because it has a low 

spectral leakage due to the high attenuation of its sidelobes although tends to blur in 

frequency because of the wider bandwidth of the main lobe. It is just a raised cosine 

function: 

gj =0.S4-0.46COS( 2nj ) 
(N -I) 

05.jSN 

=0 

(3.4) 

Otherwise 

An alternative interpretation of equation (3.2) can be considered as the projection of fit) onto 

a set of building blocks or basis functions. The resulting approximation then consists of a 

weighted series of translated basis functions that in the case of the STFr are just a set of 

modulated sinusoids possessing constant scale. From the speech analysis viewpoint, it is 

desirable to have a way of analysing the signals in a multiresolutional way. 

Another restriction is the limited choice of basis function inherent in the STFr. Fourier 

methods will most likely provide their best representation on those sections of the speech 

signal which bear the closest resemblance to the sinusoidal bases (g(t - T)e- i
",,) themselves. 

For signals as complex as speech, the STFf is unable to cope with the direct input of raw 

non-stationary speech and can provide only the best representation when the windowed data 

is smooth. This issue is discussed in more detail in Section 4.4. 

3.3 The Wavelet Transform 

There exist many good introductions to the Wavelet Transfonn, see for example (16) for a 

good introductory overview of the area or (13) for good tutorial software. In fact, it was not 

until relatively recently that many existing signal processing techniques such as subband 

coding, widely used in signal and image compression, pyramid algorithms in image 

processing, multiresolution in computer vision, and multi-grid methods in numerical 
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analysis were recognised as being unified within the single common framework of wavelet 

theory. 

The following discussions will focus on the relation of wavelets with the STFT since the 

Continuous Wavelet Transfonn (CWT), in particular, is conceptually rather similar. 

The CWT can be defined as follows: 

1 J (t-.) CWT(.,a) = Fa f(t)h -a- dt (3.5) 

Where h( t :') is a series of mother wavelets or analysing functions. In fact, the expression 

_I_h(t - ') in equation (3.5) fonns a family of shifted, scaled versions of the mother 
Fa a 

wavelet with r corresponding to the translate and a to the scale. It is worth noting that scale 

and frequency are interdependent, there being an inverse relationship between them. The 

concept of scale is worth keeping for the time being as it gives an insight into the important 

multi resolution properties of the wavelet transfonn. The two main differences from the 

STFf lie firstly in that the function h( t: ') is not restricted to being sinusoidal. It emerges 

that many other families of wavelet exist, each with a particular set of properties. A second 

difference can be seen from Figure 3.2, which is the wavelet analogue of Figure 3.1. 

t:===±::===±:===±:==-litm 
Figure 3.2: Tiling of the Time-Scale plane via the Wavelet Transform. Note the scaling property of the WT that 

causes the basis function support to grow exponentially with frequency. 
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The scaling factor a in equation (3.5) given by a = 4f ,implies that when/is large, scale is 
/ 

small. Furthermore the presence of a in h( t : 't) means that as the scale increases, the 

impulse response of h becomes spread out in time, hence taking only global signal features 

into account. Because the Heisenberg inequality principle still holds, one achieves good time 

resolution at low scale (high frequency) at the expense of frequency resolution and vice 

versa. 

3.3.1 Some Fundamental Wavelet Definitions 

Orthonormality :- Since the CWT given in equation (3.5) is essentially a mapping from 

one dimension to two, it is inherently overcomplete. Redundancy may be eliminated by 

sampling a and 't according to the tiling of the time-frequency plane shown in Figure 3.2, 

i.e. one sets a = a;;' and 't = nboa;;' , where n and m are integers. The resulting wavelets then 

become 

(3.6) 

with the added constraint that Jh(t)dt = O. It can be shown that the new h values sampled in 

this way are orthonormal bases of L 2 space. 

The new orthonormal sampled wavelet coefficients now become: 

(3.7) 

By analogy with equation (3.3) one can compare the similarity of the two types of basis 

functions. The sinusoidal terms in the Fourier case are modulated by a window get) to form 

the short time Fourier basis, whereas in (3.6), h forms the family of bases. It emerges that 

the respective bases of the Fourier and wavelet methods are related as being special cases of 

a common "Lie-group" ; Weyl-Heisenberg transforms in the first case and Affine transforms 

in the second. However, there do exist some important differences which, as shall be seen, 
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indicate the suitability of wavelets over Fourier methods for analysis of real world signals, 

acoustic or other. 

Frames [5] :- In the case of both classes of transform, one can define some restrictions that 

guarantee stability, that is, given the respective transform coefficients, bm.n and Cm.n, and the 

knowledge of the respective basis functions, it is required to define certain conditions within 

which the expansion will be constrained. If the discretisation parameters ao, and bo are 

known, it is possible to construct the bases hm•• such that they constitute a frame. More 

accurately, if frame bounds A and B are defined such that for a given basis hm.n then one can 

write 

(3.8) 
m., 

where Ilfll P 
=(]V(t)I

P 
dt)"P <+ 00, is the norm off 

If the frame bounds are such that A = B, then the sequence hm.n is said to form a tightframe, 

although it does not necessarily form a basis. If A = B = 1, then the frame forms an 

orthonormal basis. A frame of this type guarantees a unique representation of any given 

function in L2 space. The ratio BIA in general is a measure of transform redundancy - the 

closer to I, the faster the convergence. In the case of the STFf, one can achieve tight frames 

and an orthonormal basis simultaneously; however this gives rise to g's with poor resolution 

in frequency or time. If the orthonormality restriction is removed, localisation properties are 

much improved while tight frames are maintained. This is a result of the Balian-Low 

theorem (see [7] for details). The wavelet case turns out to be quite different, since the 

choice of h can be such that the set of functions shown in (3.6) automatically forms an 

orthonormal basis of L' OR) if ao is chosen to have the particular value of 2. 

Multiresolution [16], [17] :- An important characteristic of the wavelet transform is that it 

analyses the signal in question with constant relative bandwidth, i.e. the windows vary 

logarithmically in frequency over the time-frequency plane (Figure 3.2). This property 
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provides a multiresolutional analysis (MRA) of the signal over L' (~) or looked at another 

way, decomposes L2 (~) space into a chain of nested subspaces 

Resolution increasing -? 

···cV cV cv. cV cV c··· 2 1 0 -1 -2 (containment) (3.9) 

nVj = {D} (guarantees uniqueness) (3.10) 
jeZ 

(guarantees completeness) (3.11 ) 

Equation (3.1 D) can be interpreted as the intersection of all Vj is empty, equation (3.11) as 

the union of all "1 is dense i.e. a nested subspace. 

Also V.m --+ L' (~) as m--+ 00 (approximation approaches original signal as resolution 

increases) and has the property 

(scaling property) (3.12) 

Given such a set of nested subspaces "1, there exists another set of subspaces (or detail 

spaces)"'J which are the orthogonal complements of "1 in "1./. Thus "1./ can be written: 

(3.13) 

Hence "'J can be seen as containing the detail necessary to go from one resolution to the 

next. As a consequence, L2 (~) can be spanned by the direct sum of all added details: 

L'(~) =EBw 
jEZ J 

(3.14) 

The basic principle of MRA states that if there exists a scaling function which satisfies 

certain requirements, i.e. smoothness, continuity, and orthonormality, such that 

I/Jm.n (k) = 2-ml2l/J(2-m k - n), n=1,2 ... , m=D,I... (3.15) 
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forms an orthonormal basis for \1;, then "1, its orthogonal complement, is similarly spanned 

by the orthonormal basis 

If' (k) = T m/2 "'(2-m k - n) , n=1 ,2 ... ; m=<>,I... 
T m,n T 

(3.16) 

i.e. the wavelets in equation (3.16) are essentially the same as in equation (3.6). 

It is known from the scaling property (3.12) that any two subspaces, say Vo' Wo C V_I can be 

generated via integer translates of the scaling functions t/J(k) and t/J(2k) respectively. Given 

the scaling relation (3.12), there exists a sequence {gj} such that 

t/J(k) = ..fi"Lg/p(2k - m) (3.17) 
j 

This equation represents the principal association which determines the multiresolution 

hierarchy. 

Also since Wo C V_I ,the wavelet (3.16) must satisfy a similar equation: 

'f(k) = .fi"Lhjt/J(2k - m) 
j 

The filter sequences gj and hj are related by : 

(3.18) 

(3.19) 

where gj is known as the smoothing or scaling filter and hj the detail or wavelet filter. Note 

that in practice gj and hj are usually low and high pass filters which satisfy perfect 

reconstruction properties. Some other design impositions are applied to gj from which hi IS 

obtained by the relation (3.19). 

In terms of signal analysis, the concept of MRA can be summarised as follows: If one has an 

approximation to a given signal at a resolution corresponding to \'i then to go up a 

resolution, add "1 which contains the detail absent in the lower resolution. Due to the 
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"ladder property" of the "i, it follows that the collection of ('IF m •• ; rn, n E Z) forms an 

orthonormal basis of wavelets over L2 (!R) . See e.g. [3] for details. 

wl 
./ I 

wJ> wd 
'- ./ wj 

w? ....... ./ 

w~ ......... 
W3

0 

Figure 3.3: A decomposition of ",<?; the parent space is decomposed into mutually orthogonal subspaces 
using the Discrete Wavelet Transform where the depth J is 3. The final wavelet decomposition is achieved by 

collecting expansion coefficients present in the terminal nodes. 

Translation Invariance :- In pattern recognition applications, it is necessary to have a 

representation which is translation invariant. This means that the numerical descriptors used 

for a signal say f(t) should be the same as its shifted equivalent J(t-u) within the given 

translation u. Transformations like the STFf and the CWT preserve translation invariance 

but the convolution-subsampling inherent in the orthogonal or discrete wavelet transform 

destroy it. 

For example, the CWT given in (3.5) can be written as: 

I f (r-t) -CWT(r, a) = ..la f(t)h --;;- dt=f®h(r) (3.20) 

with h (t) = .); h( ~t ). It is therefore independent of translations, e.g. if f is shifted by an 

amount u, i.e. fu (t) = f (t - u) then the convolution of (3.20) will not be affected within u 

CWTu(r,a) = fu ®h(r) = CWT(r-u,a) (3.21 ) 

Forming a wavelet frame as described in Section (3.3.1) samples the wavelet transform 

uniformly over a dyadic grid. This removes the translation invariance of equation (3.20) as 
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long as the translation u is not equal to the sampling interval nbo• The wavelet frames of 

equation (3.6), i.e. 

sample the continuous wavelet transform according to this interval. With a change of 

variable r = nboa; and a = a; , n,m E Z , the DWT can be written 

(3.22) 

Once more translatingfby u i.e. f, = f(t - u) yields 

The interval at which the wavelet is sampled, a;bo if large compared with the signal 

frequency, may result in the coefficients (x,hm .• ) and (x, ,hm .• ) being significantly 

different. In the case of the orthogonal DWT, a;bo is at a maximum. The translation 

invariance of the transform is similarly increased. 

A number of methods exist ([4], [9] for example) to overcome this problem. Chapter 4 uses 

a variant of the 'spin-cycle' procedure suggested in [4] to try and remove sensitivity due to 

translations in the final classification stage. Essentially, the method performs a circulant shift 

on each of the Xi in the training and testing sets by -r, - r + I, .. . ,- I.1, ... , r with rE N , r < n 

where n is the dimension of x. This inevitably leads to an increase in the number of training 

and testing samples of 2. extra per signal. The classifier, which uses Linear Discriminant 

Analysis (LDA) in this case is trained and tested as usual and for each signal plus its shifted 

versions, a class assignment is thus obtained by taking the majority vote. An implementation 

of the translation invariant DWT was tried for the experiments discussed in this chapter, the 

improvement of which was found to be negligible for this particular application. This is 
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because the sampling interval 2;;' bo was relatively small compared to the signal frequency 

(16 Khz bandlimited speech). 

The Zoom Property of Wavelets [10],[15] :- A characteristic unique to the wavelet 

transform is the ability to characterise local signal regularity by the decay of the wavelet 

coefficient amplitude across scales. The Fourier transform, on the other hand can only 

indicate a function's unifonn regularity or smoothness. In other words, at high frequencies, 

regularity cannot be measured at a particular location. Lipschitz exponents [10] are the tool 

used to provide a measure of uniform regularity but in addition, can characterise the 

behaviour of the signal regularity at a given point (known as pointwise Lipschitz regularity). 

If one assumes thatftt) is m times continuously differentiable over an interval [v-h, v+hJ, 

thenj can be approximated by the Taylor polynomial 

(3.23) 

The resulting approximation error for (v - h) :s; t :s; (v + h) is 

(3.24) 

Definition (Lipschitz) [17]. 

• A functionjis pointwise Lipschitz a ~ 0 at v if for a constant C>O we have 

(3.25) 

• A function is uniformly Lipschitz a. over [a, b] if it satisfies (3.25) for all v E[a,b] with 

a constant C independent of v. 

The Lipschitz regularity has to do with the local differentiability of a function j in a 

neighbourhood. If j has a singularity at the point v i.e. it is no longer differentiable then the 

Lipschitz exponent a. characterises this behaviour. 
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The Lipschitz condition for the uniformly regular Fourier case [17] is as follows: 

First recall that the Fourier transform pair can be written as 

+00 

](w)= J fCt)e- jwr dt (3.26) 
-00 

(3.27) 

fit) is bounded and uniformly Lipschitz Cl over !R if: 

+00 

J I](W)I( 1 + Iwla )dW < + 00 

-00 

(3.28) 

If (0::; a < \), the Taylor expansion of (3.23) simply becomes the first term i.e. 

PvCt)=f(v). In this setting, with the Lipschitz regularity less than I, the function is 

actually discontinuous. If (3.28) and (3.25) are combined for this choice of Cl, one ends up 

with 

(3.29) 

Since (3.28) is satisfied, then C<oo for all choices of t and v, implying thatfis uniformly 

regular when seen through a Fourier basis. 

Thus the Fourier transform is unable to give information about local or irregular features 

from the rate of decay of its coefficients, typically faster than _1- . 
wa 

Wavelets on the other hand can provide this information in a multiresolutional way by 

indicating the rate of decay across scales. This decay can be directly related to the nature of 

regularity across and within a signal. Indeed it has been shown in [15] that the measurement 

of this decay is equivalent to magnifying the signals properties in the neighbourhood of 
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discontinuities as the scale decreases (frequency increases). The first point to note is that if a 

high measure of locality using Lipschitz a is required, one needs not just a narrow time 

window but also a wavelet with a large number of vanishing moments. These vanishing 

moments are an indicator of the degree to which a particular wavelet is able to approximate 

the differentiability of f To see this, the decay of the wavelet coefficients in (3.2) as the 

scale a decreases has to be considered. For the uniform case, one can measure a directly 

from the wavelet coefficients via the following upper bound if there exists S>O 

1 
a+-

IDWT(T,a)I:,;S a 2 

with a:'; n (the number of vanishing moments). 

(3.30) 

1 
a+-

This proves that DWT(T,a) decays faster than a 2 If the wavelet has vanishing 

moments n, the wavelet transform coefficients give no information about the Lipschitz 

regularity when a>n. 

To investigate the local regularity in the neighbourhood of a point v using the wavelet 

transform, it is best to consider a cone of influence about a singularity v on the time-scale 

plot where the majority of wavelet coefficients lie. It can be shown [15] that the cone of 

influence is related to the compact support of the wavelet, for example if the support of a 

wavelet is [-D, D] then in the time-frequency plane for a set of points (T, a), the cone of 

influence is defined as 

(3.33) 

where T is the translation factor of the wavelet. At large scales, this quantity becomes large 

and at finer scales the regularity is pointwise and well-defined. This is best seen in the 

scalewise wavelet transform of Figure 3.4, in particular near the singularities which clearly 

show the cone of influence bounding the high amplitude coefficients. 
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Figure 3.4. Large scales on these plots are those closest to zero; this is where localisation is worst, but increases 
as the scale becomes finer. Levelwise decay of the wavelet coefficients is given by log2 of the wavelet 

coefficients across scales. The Lipschitz regularity at each singularity can be calculated from the maximum of 
these slopes. 
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3.4 Results 

In this section, the OWT [equation (3.22)] is applied to several subclasses of speech data 

which will be described shortly. Basis functions, including those shown in Figure 2.1 were 

used to transform the respective datasets and the expansion coefficients containing 

approximately 90% of the signal energy were retained as recognition features. For 

comparative purposes, an identical operation was carried out on Short-Time Fourier 

Transform derived features and classification performance similarly obtained. The speech 

used was 16kHz sampled data extracted from dialect regions one and two of the TIMIT 

database [20] and included all speakers, both male and female. These dialect regions are 

geographically close, ORI corresponds to New England and OR2 to the Northern US. The 

total number of speakers in ORI was 49 of which 27% were female. In OR2 the total 

number of speakers was 102 of which 30% were female giving an overall number of 

speakers equal to 151 including 50 female speakers. The speech utterances of varying 

length, which numbered 1512 were extracted from the database and recursively searched to 

find all instances of each phone used in all its possible contexts. Since the speech was 

originally 16kHz bandlimited it was segmented into 32ms sections corresponding to 512 

samples per signal. 

In these experiments, a number of speech subcategories were chosen with which to evaluate 

OWT performance. The speech data chosen covers examples from the following speech 

subcategories:- vowels, semivowels, fricatives (both voiced and unvoiced), nasal, and 

plosive stops. Much of the work carried out to date on speech recognition using wavelets 

(see for example [I], [11], [12], [13]) have used speech data of between three and five 

classes, but classes were chosen from across possible categories instead of intra category. 

For example, the work described in [13] uses adaptive wavelets to classify an unvoiced 

fricative sound but only within the context of a voiced fricative and a plosive class. This 

work provides an evaluation of the OWT on the listed classification problems and compares 

its feature extraction ability with that of the STFT. No pre-processing was done on the 

speech samples prior to transformation and classification except via the well-known 

periodogram, commonly used in speech discrimination tasks [18]. 

42 



• 

• 

High 
lerl luwl 

lax! luhl 

lah! lowl 

lehl 

laol 
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Front Back 

Figure 3.5: Diagram showing distances between several vowel sounds according to the position of the tongue 
bulk. 

Example 3.1 Vowel sounds liyl,Jaa!, and laxI 

The first dataset contained the three vowels liy/, laa!, laxI corresponding (according to 

Figure 3.5) to front-, back-, and mid-voiced sounds. If the wavelet transform can efficiently 

preserve the discriminatory information of these vowels, classification performance should 

be quite high. Table 3.1 shows the misclassification rates using Linear Discriminant 

Analysis (LDA) as a classifier when trained using the best 64 expansion coefficients of the 

transform (section 5.3.2 provides a description of LDA as used throughout this thesis). 

Clearly the DWT features consistently out-perform STFT -derived parameters regardless of 

the type of basis function used with the best performance for this problem gained via the 3rd 

order Deslauriers-Dubuc interpolating wavelet. These wavelets are very symmetric making 

them suitable for applications like zero-crossing detection and are potentially shift invariant 

if the transform is redundant (see Donohos paper in [6] for further details). 

Since these phonemes are well separated in terms of the vowel triangle, this improvement 

would indicate that the transform has preserved the formant infonnation. The prediction 

performance confusion matrix for this example shows that /iy/ and laa! have higher 

confusion with each other than with laxI while of the two, laxI has higher confusion with 

laal. When compared with the STFT confusion matrix, one can see a similar trend on a 

greater scale. This could be due to difficulty the STFT has in resolving between the spectral 

peaks of Fl and F2 which for the phoneme laa! are typically close together compared to 

liy/. Since the speech samples were acquired across a large range of speakers (both male and 
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female), it is also probable that overlap has occurred due to the range of pitch and intonation 

likely to exist between speakers, particularly those of different gender. 

Example 3.2 Unvoiced plosives Ip/,/tJ/kl 

Plosives represent transient sounds generated-by the build up of compressed air by causing a 

total constriction at various points in the vocal tract: (i) At the lips-bilabial as in Ipl and fbI, 

(ii) At the tip of the tongue alveolar as in It! or Id!, or (iii) towards the back of the vocal tract 

velar, e.g. /k/ or Ig!. In the case of the unvoiced stops, typical examples of which are shown 

in Figure 3.7, there is a period of noisy frication after release due to the sudden turbulence of 

the released air. This period is followed by a more steady flow of air called aspiration which 

is still noisy but where some modulation is evident. These two events occur just before vocal 

fold movement is required for articulation of the next voiced sound and after a stop gap 

which occurs prior to release and frication. All of these features are evident in the time 

waveforms of Figure 3.7 and their corresponding multiresolutional representations derived 

via relation (3.9). Because of this property of wavelets, one would expect better performance 

in this instance compared with standard Fourier methods due to their better characterisation 

of transients, indeed a significant amount of work has been focused on enhanced 

representation of signals containing different kinds of singularities (see [14] for an example). 

In the present experiment, the worst overall misclassification rate was attributed to the top 

64 STFT-derived expansion coefficients, while the best, showing almost a 19% reduction in 

this figure was the DWT having a triangular interpolating mother wavelet. The DWT 

classification shows confusion particularly in distinguishing Ipl and /k/; however, overall 

improvement is marked when compared with the STFT confusion matrix (Table 3.2). 

Example 3.3 Nasal Stops Imf/nI/ng! 

These consonants are voiced and similar to vowels except the oral cavity is closed or 

partially closed while the nasal cavity is open. They are normally of weaker energy than 

vowels due to the inability of the nasal cavity to radiate sound. They can also, like the 

plosive stops be characterised by whether they are labial as in Im!, closure made at the lips, 

alveolar with the tip of the tongue resting just behind the top gum as in 1nl, or velar as in Ing! 

with the middle or back of the tongue resting on the soft palate. 
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The confusion matrices of Table 3.3 show an overall prediction misclassification rate of 

nearly 55% in the case of the STFf falling to around 46% in the case of the Deslauriers

Dubuc wavelet transform. This overall poor performance could probably be attributed to 

analogy with the human auditory system which itself has difficulty in discriminating these 

nasal sounds due to the presence of spectral nulls caused by antiresonances in the overall 

vocal system. The STFf confusion matrix shows even more misclassified Ing! phones as 1nl 

phones. Improvement could probably be gained in all cases by providing an active pre

emphasis processing stage to boost the overall energy of the nasals. 

Example 3.4 Unvoiced fricatives If I Ifl ,1sl 

The set of unvoiced fricatives are generated by creating a turbulent airflow at some point of 

constriction in the vocal tract. Labiodental as in If I causes the sound by creating frication 

between the top teeth and the lower lip. Forcing airflow between the top teeth and the tip of 

the tongue as in the 'th' sound of thing (IT/) is known as interdental and where articulation 

takes place between the tip of the tongue and the gum is called alveolar, an example of 

which is Isl as in sing. The main characteristic observable from Figure 3.9 is that the 

acoustic waveforms are generally noisy and of high frequency, although both If I and ITI 

have a more burst-like start which is well characterised in the MRA analysis directly 

beneath each plot. Perhaps it is this attribute that causes more If I and ITI sounds to become 

confused in the confusion tables of Table 3.4. The simpler Haar wavelet, normally the most 

suitable for describing discontinuous functions provides best perfonnance here contrary to 

the work carried out in [I3] which suggests that a noisy type of mother wavelet (in fact they 

use a Daubechies order 3 wavelet) should be used for noisy speech sounds exactly like 

these. Admittedly the Daubechies wavelet with 7 vanishing moments has comparable 

performance. Overall misclassification improvement compared with the STFf is around 

27%. 

Example 3.5 Voiced fricatives Ivl,ldh/,1zJ 

Voiced fricatives contain mixed excitation in that they include a voiced component in 

addition to the original frication. Otherwise the phonemes tested here; Iv/,ldh/,1zJ have a 

similar place of articulation to their unvoiced counterparts Ifl,lTI, Isl considered previously. 
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As one would expect, this results in an element of periodic modulation in the acoustical 

wavefonn, evident in Figure 3.10 particularly for Ivl and Idhl. The phone Iv is more 

noiselike in its acoustical content. On observation of the confusion matrices in Table 3.5 one 

sees higher confusion in both instances (wavelet and Fourier) whilst attempting to 

differentiate between Ivl and IdhI compared with Iv where least errors are made. The best 

overall perfonnance is gained by using the DWT with a 10 vanishing moment Coiflet 

wavelet which was around 18% cf. STFT 26%. 

Example 3.5 Semivowels Iwl, Iyl, /1/, Irl 

Semivowels are classified into either liquids: Iwl as in work and /1/ as in laugh, or glides: Iyl 

as in yoke, Irl as in rum. Glides have a transient fonnant transition that moves away from 

some target position. Compared to vowels, which spend much longer at a steady state 

position, glides spend more time in transit. Liquids are also similar to vowels but have a 

lower associated energy, Figure 3.11. Table 3.6 shows respective misclassification rates for 

this group with an improvement from 33.72% error in the case of the STFT to 24.33% in the 

case of the triangular interpolating wavelet. Of the four classes, Iwl and /1/ exhibit the largest 

amount of confusion while Iyl and Irl are relatively well-separated. 

Example 3.6 The stressed vowel set liyl, lih!, leh!, leyl, lae/, laa!, lawl, layl, Iah!, laol, loyl, 

lowl, luh!, luwl, lux!, ler/. 

In the final example, all sixteen of the stressed vowel set were used to assess the robustness 

of DWT features when applied to a larger range of classes. The results are shown in Table 

3.7 and 3.8 where we see a nearly 10% reduction in misclassification compared to the 

STFT. Note that the results from Table 3.1 were used to decide which wavelet filters were 

most suitable for vowels to infonn the choice of wavelet filter used here. The confusion 

matrix has been given a different fonnat here; diagonal elements representing testing 

perfonnance for each vowel while off diagonal elements indicate the Mahalanobis distances 

(as defined in equation (5.12) ) between the wavelet features of the respective classes. The 

distances can be seen to corroborate somewhat those indicated in Figure 3.5. 
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3.5 Discussion 

The following points arise from the experiments described above: 

(i) The wavelet transform is a good estimator of local signal attributes. Fourier methods are 

powerful tools for global measures but in speech signals, most of the information is carried 

in irregular signal structure and transitory features. In the wavelet transform, one can 

characterise local signal regularity by the decay of the wavelet coefficient amplitude across 

scales as described in Section 3.3.1. This is evidently a useful attribute for the representation 

of our signals. Section 3.3.1 also relates the vanishing moments of a basis function to the 

regularity of the signal; overall in the results it is seen that the basis functions with the higher 

vanishing moments do best in terms of classification and this factor is most likely achieved 

through more efficient extraction of localised time-frequency features. 

(ii) In particular, phonemes with transitory components are analysed well with wavelets of 

higher vanishing moments. This again has to do with the pointwise regularity of these 

signals; high amplitude wavelet coefficients existing within the cone of influence of 

transients provide a better representation when compared with Fourier methods. 

It should also be noted that undoubted improvement could be gained by using a more 

sophisticated e.g. non-linear regime, for classification instead of LDA. However the purpose 

of this chapter was to provide an indication of the efficacy of the wavelet features for a 

given application rather than gaining the highest performance per se. The only reason that 

using a different method of classification might be of interest would be to assess whether the 

resultant set of features were oblique, in other words would different class information 

would come to light if the same features were viewed through a different classifier? This is 

an issue considered further in Chapter 5. 

The results given here also motivate 'perceptual' wavelet schemes. We have tried a 

comparison between the classification results here and the mel-frequency derived cepstral 

coefficients widely used as parameterisation techniques in speech recognition systems and 

found them still to be inferior to that gained via the DWT. 
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3.6 Summary 

In this chapter the suitability of wavelet-derived features for phoneme classification have 

been considered and an overall improvement in perfonnance compared with the short-time 

Fourier transfonn (STFT) was gained. No a priori assumptions regarding the speech signals 

were made, the expansion coefficients for each transfonn were ranked according to their 

energy and about the top \0% selected as suitable features for recognition. Since a large 

selection of speakers were chosen (both male and female over more than one dialect region) 

it was possible to assess the relative robustness of the DWT across a range of common 

phoneme classification problems. It maintained a significant improvement over the STFT in 

all cases. This motivates further investigation into the method and its generalisations - this 

will be the topic of Chapter 4 in which adaptive multiresolutional wavelets are implemented 

and tried out on speech data. 
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MisClassifi-
Technique cation Rate 

(%) 

STFC Tr 16.48 

64 Pr 22.38 

Tr 9.40 
D6_64 

Pr 8.81 

Tr 10.10 
D7_64 

Pr 10.78 

Tr 10.34 
D8_64 

Pr 9.65 

Tr 9.16 
C6_64 

Pr 9.65 

Tr 9.27 
C8_64 

Pr 9.80 

Tr 9.70 
CIO_64 

Pr 9.52 

Tr 9.40 
Haar_64 

Pr 9.66 

Tr 9.10 
S6_64 

Pr 9.37 

Tr 9.39 
S7_64 

Pr 10.35 

Tr 10.10 
S8_64 

Pr 9.51 

Tr 9.10 
DD3_64 

Pr 7.55 

CDF_3, Tr 9.10 

9 Pr 9.37 

Tr 9;15 
Triangle 

Pr 7.69 

Table 3.1 Showing misclassification rate of 
standard OWT algorithm on the unvoiced 

plosives-fiy/, laa!, lax! and associated 
confusion matrices using the best of several 

possible basis functions (see Key). 

IY aa ax 
575 341 777 

IY aa ax 
249 128 338 

Frequencies at which phonemes occur in training (top) 
and testing (bottom) sels. 

Predicted Class 

'" iy aa ax 
~ 
0 IY 223 20 6 

<!) 

6 119 3 2 aa 
f-o 

ax 6 \3 319 

LDA Confusion Matrices for Testing dataset using 
DWT Coefficients derived via the third order 

Deslauriers-Oubuc Interpolating Wavelet. 

Predicted Class 

'" iy aa ax 
~ 
0 iy 177 58 14 
<!) 

40 70 18 2 aa 
f-o 

ax 10 20 308 

LOA Confusion Matrix for Testing datasets using the 
STFI". 

NB. For the basis functions abbreviations are: 
C = CoifIet; 

D = Daubechies; 
S = Symmlet; 

DD3-Deslauriers-Dubuc Interpolating wavelet order 3 
COF3_9=Cohen-Daubechies-Feauveau 

Biorthogonal Symmetric wavelet 
Triangle = Triangular Interpolating wavelet. 

In all other cases, the number immediately following 
the acronym is the number of Vanishing moments 
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Figure 3.6: Showing typical vowel sounds as used in Example 3.1. The plot directly below each time series shows the 
multiresolutional analysis of the signal with time (x-axis) versus scale (y-axis). Note that scale is inversely proportional to 

frequency and so high frequency (transitory) features correspond to low scales while the slowly varying low pass trends are 
encapsulated in the high scales, The scales are also mutually orthogonal as described in Section 3,3, L The STFT below the 
MRA plots is included for comparison. Note the averaging effect of the Heisenberg windows at the higher frequencies (er. 

lower scales). Although the S1FT provides the ability to track frequencies of interest in time, it is poor at representing 
transients or showing the behaviour of a feature across frequencies unlike the DWT. 
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MisClassifi-
Technique cation Rate 

(%) 

STFf_ Tr 39.16 
64 Pr 46.13 

Tr 32.25 
06 _64 

Pr 40.65 

Tr .31.21 
07 - 64 

39.35 Pr 
Tr- 30.58 

08 _64 
Pi' 

. 

42;58 

Tr 31.41 
C6_ 64 

Pr 42.10 

Tr 30.58 
C8_64 

Pr 39.03 

Tr 30.88 
CIO_ 64 

Pr 42.26 

Tr 31.00 
Haar_ 64 

Pr 43.23 ... 

Ti ""C31.73 
S6 _64 

40:00 Pr 

Tr 32;36 
S7 - 64 

Pr 
. 

39.68. 

Tr 32:36 
S8 - 64 

Pr 39.35 

Tr 29.53 
0D3 - 64 

Pr 38.71 

COF_3, Tr 29.95 

9 Pr 39.04 

Tr 29.11 
Triangle 

Pr >38 .• 06 ....... 

Table 3.2 Showing misclassification rate of 
standard OWT algorithm on the unvoiced 

plosives-/p/,/tJjkJ and associated confusion 
matrices using the best of several possible 

basis functions. 

p t k 
224 368 363 

p t k 
60 122 128 

Frequencies at which phonemes occur in training 
(top) and testing (bottom) sets. 

Predicted Class 

'" p t k 
~ 
0 P 39 7 14 ., 
2 t 20 80 22 

E-< 
k 36 19 73 

LOA Confusion Matrices for Testing dataset using 
OWT Coefficients derived via the Triangular 

interpolating Wavelet. 

Prediction Misclassification 

'" p t k 
~ 
0 P 33 12 15 ., 
2 t 14 80 28 

E-< 
k 30 43 54 

LOA Confusion Matrices for Testing datasets using 
the S1FT. 
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Figure 3.7: Showing the transitory unvoiced plosive sounds classified in Example 3.2. Note the good time 
localisation of the burst like features where white correspond to high positive amplitudes and black to large 

negative values. This is in contrast to the STFf plolS which shows this method is particularly poor at 
representing the local effects present in these types of phoneme. 
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MisClassific 

Technique cation Rate 
(%) 

STFT_ Tr 52.71 

64 Pr 54.76 

Tr 46 . .05 
06 64 - Pr 48.58 

Tr 44.43 
07 _64 

Pr 48.22 

Tr 41.8.0 
08 64 - Pr 46.4.0 

Tr. 45:r() ... .. 
C6_64 

Pr 
. ... 46,99 .. 

Tr 45,87 
C8 64 - Pr 48.73 

Tr 45.35 
CID_64 

Pr 48.29 

Tr 43.71 
Haar_ 64 

Pr 49.24 

Tr 46.59 
S6_ 64 

Pr 49.38 

Tr 
•• •• ~g;g .... 

S7_64 .. 
·Pi< ;, ..•..... ~fiicSbi>·· ...• 

;:,,,,-:~o,,". 

Tr ....... 45,~6 
S8~ 64 

·· •. :48(~6 
... 

. Pt. 

Tr 
; "1.98 

003_ 64 
,46.11 ... Pr 

COF_3. Tr 42.98 

9 Pr 46.4.0 

Tr 41.74 
Triangle 

Pr 46.55 

Table 3.3 Showing misclassification rate of 
standard DWT algorithm on the nasals
Imf,/nI'/ng! and associated confusion 

matrices using the best of several possible 
basis functions. 

m n ng 
1264 2.024 421 

m n ng 
SDI 7.08 166 

Frequencies at which phonemes occur in training 
(top) and testing (bottom) sets . 

m 

n 

ng 

Predicted Cl ass 
m 

314 

184 

31 

n 

118 

344 

52 

ng 

69 

18.0 

83 

LDA Confusion Matrices for the Testing dataset 
using DWT Coefficients derived via a third order 

Deslaurier·Dubuc Wavelet. 

'" ~ o 
" 2 

E-

53 

Prediction Misclassification 

m 

n 

ng 

m 

278 

135 

22 

n 

133 

273 

73 

ng 

9.0 

3.0.0 

71 

LDA Confusion Matrices for the Testing dataset 
using the STFf . 
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Figure 3.8: Time, MRA and STFT plots of the nasals sounds described in Example 3.3. Again the STFT 
captures global events but is unable to simultaneously describe the irregular, more dynamic structures 

compared with the DWT. 
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MisClassifi-
Technique cation Rate 

(%) 

STFC Tr 23.53 

64 Pr 2354 

Tr 17.69 
D6_64 

Pr \8.44 

Tr 17.82 
D7_64 

Pr 17.43 

Tr 17.38 
D8_64 

Pr 17.91 

Tr 17.76 
C6_64 

Pr 18.31 

Tr 17.54 
C8_64 

Pr 17.34 

Tr:. 17.85 
ClO~64 

Pr 17.95 

Tr 17.68 
Haac64 

Pr 17.25 

Tr 17.77 
S6_64 

Pr 18.39 

Tr 17.74 
S7_64 

Pr 17.64 

Tr 17.72 
S8_64 

Pr 17:6 

Tr : •... 17A8 
DD3_64 

Pr 18.04 

CDF_3. Tr ·1"1.77 
9 Pr 18.39 

Tr 17.33 
Triangle 

Pr 17.87 

Table 3.4 Showing misclassification rate of 
standard OWT algorithm on the unvoiced 

fricatives- /f/,ff/,/s! and associated 
confusion matrices using the best of several 

possible basis functions. 

f 
1416 

f 
583 

T 
416 

T 
107 

s 
4228 

s 
1583 

Frequencies at which phonemes occur in training 
(top) and testing (bottom) sets. 

Prediction Misclassification 
Vl f T s 
~ 
0 f 415 137 31 .., 

T 68 8 2 31 
f-o 

s 89 96 1398 

LOA Confusion Matrices for Testing dataset using 
OWT Coefficients derived via the basic Haar 

Wavelet. 

Prediction Misclassification 
Vl f T s 
~ 
0 f 327 226 30 .., 
2 T 52 51 4 

f-o 
s 138 85 1360 

LOA Confusion Matrices for Testing dataset using 
the STFT. 
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Figure 3.9 Showing time, MRA and STFf plots of three typical unvoiced fricatives as used in Example 3.4. 
Note that they are nearly all high frequency and noise-like in structure. This is exhibited in the lower scales 

which once more is difficult to see in the time-frequency STFf diagrams. 
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MisClassifi-
Technique cation Rate 

(%) 
STFf_ Tr 23.84 

64 Pr 26.18 

Tr 17.67· 
D6 64 - Pr .. 18.81 .. 

Tr 17.09 ... 
D7_ 64 

Pr 18A3 

Tr 16.75 
D8 64 - Pr 18.62 

Tr 17.09 
C6_64 

Pr 19.10 

Tr 16.92 
C8 - 64 

Pr 17.86 .. 

11.43 
. 

Tr 
CIO_ 64 

I-Pr 17:"17 ........... . 

Tr 17,53 : -. Haac 64 --Pr 18.24 

Tr 17.29 ....... 
S6_64 

..... 

Pr lK81 .: ... 

Tr .. . 16.44 
S7 - 64 

18.72 Pr 

Tr 16.41 
S8_ 64 

Pr 18.91 

Tr 16.75 
DD3_ 64 

Pr 18.81' 

CDF_3, Tr 16,68 

9 Pr 19:00 ; 
Tr_ .. -.lq23. . 

Triangle 
Pr 18;62 I' : ... 

Table 3.5 Showing misclassification rate of 
standard DWT algorithm on the voiced 

fricatives-/vl,ldhJ,IzI and associated 
confusion matrices using the best of several 

possible basis functions. 

v dh z 
705 520 1707 

v dh z 
264 170 624 

Frequencies at which phonemes occur in training 
(top) and testing (bottom) sets. 

Prediction Misclassification 

'" v dh z 
~ 
0 v 179 78 7 

'" dh 2 51 113 6 
..... 

z 18 23 583 

LDA Confusion Matrices for Testing dataset using 
DWT Coefficients derived via the Coiflet filter with 

lO vanishing moments (ClO). 

Prediction Misclassification 

'" v dh z 
~ 
0 v 132 117 15 

'" dh 2 68 92 10 
..... 

z 32 35 557 

LDA Confusion Matrices for Testing datasets using 
the SIFT . 
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Figure 3.10: Three typical voiced fricatives as used in Example 3.5. The voicing gives a periodic lower 
frequency element to the signal which is noticeable in the higher scales of the MRA plots. This effect is less 

visible in the STFf plots. 
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MisClassifi-
Technique cation Rate 

(%) 

STFC Tr 32.82 

64 Pr 33.73 

Tr 21.07 
06_64 

Pr .26.47 

Tr . 21.61 
07_64 

Pr 26.77 

Tr 21.36 
08 - 64 

Pr 27.54 

Tr 21.54 
C6_64 

Pr 26.47 

Tr 21.66 
C8 64 - Pr 26.77 

Tr 21.28 
C10_64 

Pr 26.47 

Tr 21.81 
Haac64 

Pr 2CU2 . 

Tr 21.50 
S6_64 

Pr 26.90 

S7~64 
ITr . 21.1p. 

Pr 25.58 

Tr 21.57 
S8 64 - Pr 27.25 

Tr 20.19 
0D3 64 - Pr 24.63 

COF_3, Tr 21.71 

9 Pr 26.72 

Tr 20;36 
Triangle 

Pr 24;33 

Table 3.6 Showing misclassification rate of 
standard OWT algorithm on the 

semivowels-/wl,lyl,lll,lrl and associated 
confusion matrices using the best of several 

possible basis functions. 

w 't. r 
801 314 1639 1461 

w 't. I r 
317 123 664 577 

Frequencies at which phonemes occur in training 
(top) and testing (bottom) sets. 

Prediction Misclassification 
w y I r 

'" ~ w 222 17 43 35 
U 

7 104 6 6 ., Y 
2 

Eo-< 86 32 476 70 

r 44 20 43 470 

LOA Confusion Matrices for Testing dataset using 
OWT Coefficients derived via the filter with 10 

vanishing moments (C 10). 

Prediction Misclassification 
w y I r 

'" ~ w 197 28 56 36 
U 

4 108 5 6 ., Y 
2 

Eo-< I 130 69 374 91 

r 43 47 52 435 

LOA Confusion Matrices for Testing datasets using 
the STFf. 
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Figure 3.11 (a) and (b): Four typical examples of liquids and glides as used in Example 3.5. Note the periodic 

structure although they do have characteristics that change in the long term. 
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- . 
.. . MisClassifi-

Technique catibnRate 
... ... (%) 

Tr 70;84 
STFf_64 

Pr 72.26 

Pr 61.18 
ODJ 64 -

Tr 62.21 

Table 3.7 Showing standard DWT algorithm overall misclassification on the 16 stressed vowels from dialect 
regions I and 2 of the TIMIT database using the DD3 wavelet. 
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Predicted Class (Mahalanobis derived distances off-diagonal. %error on diagonal) 

iy ih eh ey ae aa aw ay ab ao oy ow uh uw ux er 

iy 
37.63 3.58 10.99 3.81 12.88 21.41 19.27 15.99 15.12 20.69 12.48 14.71 8.87 7.89 2.04 15.20 

ih 
67.38 3.11 1.06 5.85 12.5 11.16 7.86 6.98 12.02 5.16 7.50 3.52 6.22 3.40 6.28 

eh 
73.78 3.44 1.35 5.35 4.68 2.15 2.40 6.34 2.69 4.75 4.72 10.05 10.04 5.03 

ey 
57.14 5.19 13.22 12.00 8.14 8.22 12.71 5.69 8.61 5.67 9.45 5.34 9.47 

ae 
61.69 4.70 4.10 1.46 3.90 6.98 4.76 7.17 8.51 13.98 12.89 9.38 

aa 
65.80 0.36 1.30 1.81 2.48 4.82 4.66 8.44 13.14 19.00 9.19 

aw 
79.82 1.16 1.60 2.56 4.62 4.29 7.71 11.98 17.21 8.83 

~ ay 

" 
80.95 1.64 4.02 3.73 4.92 7.05 12.34 14.49 7.54 

2 .... ab 
72.26 2.61 2.24 2.21 3.95 8.39 \3.07 5.44 

ao 
57.24 2.95 1.38 6.13 10.57 18.95 10.52 

oy 
91.87 1.23 2.59 6.47 10.83 5.56 

ow 
65.77 2.53 5.98 12.85 7.15 

uh 
79.77 2.90 6.46 4.75 

uw 
54.67 4.4 6.93 

ux 
50.81 10.00 

er 
40.22 

Table 3.8: Showing standard DWT algorithm misclassification on the 16 stressed vowels from dialect regions I 
and 2 of the TIMIT database using the DD3 wavelet The off-diagonal elements represent the Mahalanobis

derived distances from the top 64 wavelet features between classes that was used to calculate the final 
prediction rates. These can be seen to correspond well to Figure 3.4. For example liyl has the greatest distance 
from laa! both in terms of where it is articulated and its Mahalanobis distance (21.41). The same phone is seen 

to be close to lihl in both contexts also. 
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Chapter Four 

The Best Basis Algorithm 

Phoneme Classification 

4.1 Introduction 

for 

In order to provide a more flexible approach for representing the speech signals 

encountered in the previous chapter, our attention is turned to an adaptive wavelet 

modelling approach which uses the Best-Basis algorithm of Coifrnan and 

Wickerhauser [6]. This combines the advantages of using compactly-supported 

wavelet bases with the ability to select an adaptive tiling of the time-scale plane, 

providing a time-scale analysis dependent on the problem at hand. 

The dyadic wavelet transform described in Section 3.3 partitions the time frequency 

plane as shown in Figure 3.2. It was noted that this type of time-frequency 

decomposition is usually referred to as a constant-Q or octave band decomposition. 

While the Heisenberg inequality principle still holds, it is clear that a given signal is 

analysed such that the frequency is partitioned in dyadic intervals whose support 

decays logarithmically with the frequency. By generalising this concept, Coifman et 

al [9] have introduced new families of dyadic orthonormal wavelets called wavelet 
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packets which decompose the frequency axis arbitrarily. These packets are translated 

uniformly in time to ensure the entire time-frequency plane is covered. 

Orthonormal bases of L2(~) can also be constructed to do the opposite; i.e. basis 

functions can be constructed that partition the time axis in such a way as to guarantee 

that any disjoint interval on the real axis will be partitioned smoothly. These types of 

basis function essentially perform local Fourier analysis on the signal within the 

interval and include some signal values from the adjacent intervals. As a result, this 

type of transform is often termed the Local Trigonometric Transform. 

This chapter will also consider the addition of these two types of basis function to a 

fixed yet flexible set of functions referred to as a library with which to analyse the 

speech data. A library is said to consist of a number of dictionaries. These dictionaries 

consist of a collection of waveforms '1'1 such that the dictionary is given by 

D = ('1'1 : I Elt), where the possibilities for A are given below. Assuming our signals 

are of dyadic length n( =2'), where J is the maximum depth of decomposition, then a 

dictionary is said to be complete if it contains exactly n linearly independent wavelet 

bases. There will thus be a unique representation of a given signal in this dictionary. 

Typically the dictionaries used in this thesis are overcomplete or redundant and 

dynamic programming based searches are invoked to find the orthonormal 

representation of the signal. The parameter I signifies either: 

(i) Frequency. 

(ii) Time and scale jointly. 

(iii) Time and frequency jointly. 

In this chapter, the third case will be considered where the dictionaries are wavelet 

and trigonometric packet dictionaries. This follows the philosophy of the Best-Basis 

paradigm outlined in [6] and [15]. The thrust of subsequent work will be to adapt this 

paradigm for classification. 

Finally, the wavelet based feature extraction system will be outlined and its 

performance on phonetic classification problems similar to those described in the 

previous chapter given. 
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4.2 Why WaveletiTrigonometric Packets? 

The wavelet packet transform is a generalisation of the wavelet transform. For signals 

which are oscillatory in nature, such as speech, a transform like the DWT which 

partitions the frequency axis finely towards the lower frequencies may not be the most 

suitable choice. Furthermore, since speech signals vary so widely in nature, e.g. from 

the slowly varying, well behaved vowel sounds to the highly transitory plosive 

subclasses, a feature extractor capable of adapting its resolution and/or basis function 

accordingly would seem desirable. Some work has been done on applications in 

speech, e.g. [11] in which wavelet packet transforms were used to parameterise the 

audio signal prior to speech classification, or [17] in which suitable features were 

extracted for recognition purposes. In many cases, the aim of using wavelet or 

trigonometric packets is to achieve low bit-rate compression of speech signals for 

which these kind of techniques are well suited, e.g. [16]. Work which has used 

wavelet and trigonometric packets for feature extraction purposes such as in [11] 

seems to focus more on the direct substitution of this method into standard speech 

recognisers, however adaptation of the technique has concentrated more on real time 

implementation rather than on the extraction of suitable features for classificiation. 

This chapter concentrates on the quality of recognition features, and attempts to utilise 

the inherent flexibility of this method for phoneme classification. There are two main 

reasons for pursuing this approach. The first has to do with the two types of adaptivity 

in the transform; the selection of the basis function and the selection of the time

frequency tiling. The latter of these relates to a non-linear approximation, more 

suitable for signals that are not necessarily uniform or smooth, i.e. those that belong in 

Besov space. Wavelet packet approximations can be shown to yield superior results 

over conventional techniques e.g. Fourier and Karhunen-Loeve Transforms (KLT's), 

for these types of signals. Since Besov spaces are defined for signals that are 

piecewise smooth, they are generally considered a better model for real world signals 

such as speech than say Sobolev spaces which are spaces containing smoother signals. 

In fact the literal Russian translation of Besov means devilish. This concept is likely 

to be of use to speech processors who commonly encounter badly behaved complex 

signals which are usually (inefficiently) dealt with using techniques (Fourier, KLT) 

originally designed for Sobolev types of signal. 
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The second issue deals with how the best-basis is chosen. In the conventional best

basis paradigm, one chooses the best approximation from the wavelet/trigonometric 

packet table via some kind of cost function. This opens up a number of application

specific possibilities, for example if the aim is compression then least distortion in the 

Shannon entropy sense will be the final goal and, for example, a rate distortion 

measure could be used as a criterion for selection. Chapter 5 has incorporated 

recognition criterion into the selection rule to increase overall performance which in 

this case was the misclassification rate. 

The following two subsections define the two types of Time-Frequency dictionaries 

used in the experiments. 

4.2.1 Wavelet Packet Bases 

Section 3.3.1 defined a multiresolutional space V j which could be decomposed into a 

lower resolutional space V j+l plus a detail space Wj+l by splitting the orthogonal 

basis T j 12 rjJ (T j k - n) , n=1,2 ... of V j into two new orthogonal bases i.e. 

T(j+l)/2 rjJ (T(j+l) k - n), n=1,2 ... for Vj +1 

and 

n=1,2 ... for W j +1 

Instead of iterating the process only on the low frequency band as in the standard 

dyadic wavelet transform, it can be shown [9] that this result can be generalised to 

allow division of the high frequency bands, thus deriving new bases. This results in a 

binary tree as shown in Figure 4.1. Each subspace in the tree is indexed by its depth j 

and number of subspaces p directly below it. The two wavelet packet orthogonal 

bases at a parent node (j,p) are defined by 

(4.1) 
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and 

'l'lft(k) = ! g[nl'l'f~-2jn) (4.2) 
n;::~ 

Examples of wavelet packet bases derived from the Daubechies wavelet are shown in 

Figure 4.2. 

Figure 4.1: Binary tree showing the wavelet/trigonometric packet subspace decomposition. Once a 
signal is decomposed into a tree like this, the subspaces can pruned according to their cost, resulting in 

an orthonormal basis. 

The problem now is that this procedure results in an overcomplete basis. In fact in a 

2'-1 
full wavelet packet binary tree of depth J there are over 2 different orthonormal 

bases to choose from. The subsequent aim, following decomposition into this tree 

(this is sometimes called a packet table) is to select the basis best suited for the 

problem at hand. This procedure is described in more detail in Section 4.3. Typically, 

as in the "Best" Basis algorithm, this is done adaptively depending on the signal to 

minimise an additive cost function. A common example of such a cost is the Shannon 

Entropy, which, along with the importance of additivity will be defined in Section 4.3. 

Figure 4.3 illustrates the Best-Basis methodology on part of the word 'greasy'. Note 

the adaptive tiling of the time-frequency plane. 
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Figure 4.2: Some Wavelet Packets generated from the Daubechies 6 filter at the depthj = 3 of the 
binary tree. They are ranked in frequency order corresponding to their position in the binary tree. Note 

the much more oscillatory nature of Wavelet Packets compared to ordinary wavelets. 

71 



• 

a; 
:> -1 
Cl> 
-' 
c: -2 
o 
~ -3 
o 
a. 
E 
o 
g -5 
D 

-6 

-7 

0.8 

>-g 0.6 
Cl> 
:> 
0-
Cl> 
~ 

U. 

0.2 

0 

o 

0 

0 

Wavelet Packet Decomposition using the Daubechies 6 filter 

. . . , , ... , ..... , , ... , , , ... ,. ... . .. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Frequency 

Basis Tree: WP Best-Basis tree 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Frequency axis partition 

Time-Frequency plane: WP Helsenberg Boxes 

·H~II F ''1 't lJ 
U 

---'".nil' 
r;;o.-~.a;...-... - iiiiiia'-a'::J 

. i I 11'11 ... -. 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Time 

Figure 4.3 Illustrating Wavelet Packet decomposition on the 'grea' part of the word 'greasy'. 
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4.2.2 Lapped Orthogonal Transforms 

. It has already been seen that the wavelet packet transform, when used with a Best 

Basis search results in partitions of the frequency axis which are well adapted to the 

frequency content of the signal in that interval. Wavelet packets are thus very suitable 

for signals whose behaviour varies in frequency. If the function is more likely to be 

non-stationary, tben it may be more useful to have a conjugate of the wavelet packet, 

sometimes called a Block Transform which is capable of partitioning the time axis 

according to the spectra contained in each interval. One of the consequences of the 

Balian-Low theorem mentioned in Section 3.3.1, has to do with short-time methods 

such as the STFf which involve multiplication of the signal with a smooth window. 

This theorem states that for any '0 and wO, no smooth window exists of compact 

support such that equation (3.3) forms an orthonormal basis of L2(~). However, 

Coifman and Meyer [7] proved that it is possible to partition the time axis into disjoint 

intervals smoothly by constructing overlapping basis functions on each interval. 

These functions are essentially a sinusoid, modulated by a cut-off function which has 

particular properties e.g. it must be even and have vanishing derivatives at its end 

points. One such window is the 'bell' function: 

jJ !sin 2. (1 + sin 1f t) 
(t) = 4 

o 
if 

1 3 
I --<t<-

2 2 
otberwise 

(4.3) 

This window is composed of two even lapped projectors (half a window) which 

remove problems due to discontinuities encountered when using conventional 

orthogonal projectors which have more abrupt cut-offs. One projector is a raised 

smooth profile and the second is a decaying one. The window itself is generally 

defined on an interval; the method used in this thesis is exactly the same as the 

Discrete Cosine IV Transform [17] with the exception of this window function whose 

interval on the time axis is I = [a j' a j+l], such that the window interval is positive, 
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bounded i.e. a j+1 - a j > (j, and has a smooth cut-off, [1], [7]. The bell function, 

moreover, can be characterised by its cut-off response. 

(4.4) 

(a j+1 - r) ~ t ~ (a j+1 + r) 

elsewhere 

with 0 < r ~ (j . 

Via this window it is now possible to gain a new family of orthonormal bases by 

means of the following basis functions: 

(4.5) 

These functions are well localised in time. Also these functions have energy that is 

well-localised in the frequency domain. Figure 4.4 shows some examples of cosine 

packets in the time domain and Figure 4.5 illustrates the equivalent Best-Basis 

decomposition using cosine packets instead of the wavelet packets in Figure 4.3. Note 

that it is the time axis which is partitoned in this case. 

'P3.0 'P3.} 'P3.2 'P3.3 

0.1 

0 

-0.1 

100 200 300 100 200 300 100 200 300 100 200 300 

Figure 4.4 : Some Cosine Packets 
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In practice, this transform can be implemented by calculating the DCT-IV transform 

as usual after applying a preliminary folding step as described in (7). This folding step 

essentially causes the overlapping parts of the bell to be folded inside the interval. If 

one performs this operation on the original signal x(t) it becomes a series of disjoint 

signals, which, when the DCT -IV is applied, corresponds to taking the inner product: 

(x(t), rp j,k (t)) . 
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4.2.3 Translation Invariance 

Both Wavelet and Cosine Packet bases suffer from translation invariance similar to 

that exhibited by the DWT (Section 3.3.1). In both cases (i.e. wavelet and cosine 

packets), problems from the point of view of pattern recognition are likely to occur 

due to misalignment between signal features and basis function features although for 

subtly different reasons. While wavelet packet decompositions experience translation 

distortions for similar reasons to the DWT, the sine/cosine packet bases in equation 

(4.5) are sensitive to shifts in time. Methods, as mentioned in Section 3.3.1, also exist 

for wavelet and cosine packet transformations that can adjust for time and/or scale 

translations (see e.g. [3],[4],[8],[10] for various approaches and applications). 

As the following section will show, the idea of transforming a signal into a wavelet 

packet transform amounts to a redundant representation with a data structure 

conforming to a balanced binary tree. When searched and pruned using some kind of 

application-dependent cost function, the representation becomes orthonormal. Clearly, 

an orthogonal transform for perfect reconstruction is necessary, and also, 

computational complexity apart, if one knows a priori that a transform is orthogonal, 

this can allow further processing in this domain such as thresholding for compression 

or denoising without violating important signal structures. One might question the 

importance of orthonormality for uses in classification; indeed one of the main 

approaches for dealing with shift-invariance is to provide an oversampled 

representation which is no longer orthonormal. However, it should be noted that such 

redundant transformations necessarily render subsequent interpretation of the 

expansion coefficients more difficult. 

The effect of having two different wavelet transformations for the same signal within 

a time shift 'f as described in Section 3.3.1 is also true for wavelet packet transforms. 

This artifact adversely influences the cost function which is calculated at each node in 

the tree prior to pruning. 
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This in turn results in a different set of subspaces 'best bases' for the same signal. 

Figures 4.6 and 4.7 clearly show this effect. The same is also true for trigonometric 

transforms. 

The following set of experiments are based on the so-called 'spin-cycle' described in 

[8] which was originally developed for the purpose of providing translation-invariant 

denoising. In that setting, the problem of translation invariance manifested itself as a 

pseudo-Gibbs effect in the neighbourhood of discontinuities for wavelet-based 

denoising. In the case of wavelet and cosine packets, problems also arise in the region 

of segmentation points. Here are the steps modified slightly for the problem of 

classification: 

Choose a range of shifts H and circularly shift each signal in the training set by 

- h, - h + I, - h + 2, ... , -I, I, ... , h where h EH, resulting in a total of (2h+ I )*N(C) 

signals (where Ne) is the number of signals belonging to a class (c)), including the 

originals, for each class in both training dataset. Naturally, the (2h+ I) signals have the 

same class assignment as the original. As usual, the best-basis for each signal is built 

and a classifier is designed on the top k-features. The test set is then fed into the 

classifier to give the prediction performance of the problem. 

4.3 Selection of the 'Best- Basis' 

The organisation of the packet transform which is gained by recursively refining the 

input signal by segmentation of the time/frequency axis depending on whether 

trigonometric or wavelet packet transforms were used, results in a data-structure 

resembling a balanced binary tree. The standard dyadic wavelet basis used in Figure 

3.2 exhibits the time-frequency tiling gained by sampling the continuous version on a 

dyadic grid. If one were to desire a specific time-frequency tiling, i.e. one which was 

adapted to a particular signal (or signal class), this would correspond to an irregular 

sampling grid locally adapted to the sharpness in the signal variations. This can be 

achieved in practice by pruning the binary tree in a manner that will minimise (or 

maximise) a given cost function. The cost is highly dependent on the application. For 
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compression, a measure that minimises distortion, e.g. Shannon entropy, would be a 

good choice, for classification a cost functional that best reflects the distance 

., 
"0 

1500 

1000 

E 500 
C. 

~ 0 

-500 

o 

-10 
c ·co 

(!J 
;,.-20 
c. 
o 
~ 
w -30 

-40 

0.8 

;,. 
g 0.6 ., 
::J 

o 

eT e 0.4 
LL 

0.2 
~ 

o!!!.... 
0 

50 

0.1 

0 
0.1 

Original test signal 

100 150 200 250 300 350 400 
Time 

Basis Tree: WP Best-Basis tree 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 

, 

Frequency axis partition 
Time-Frequency plane: WP Helsenberg Boxes 

, , , 

I 0 Ill" .. m 

450 500 

0.9 

-

L ";.'-' 

~~::~- -' .. ,.==!'" . :-;:-. ., , .. " __ I, '~, • i' -

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Time 

Figure 4.6 : Illustration of shift invariance in the wavelet packet transform on the laaJ vowel sound. A 
different set of wavelet features are extracted from exactly the same signal that has undergone a time 

shift as shown in the next figure. 
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Figure 4.7 This plot shows the sensitivity of the wavelet packet transform on the signal in 4.6 after 
undergoing a 0.0625 ms time shift. One sees a quite different time·frequency structure. Note in 

particular the low frequency smooth tones corresponding to the underlying periodic structure of the 
vowel sound in FigA.6 are visibly reduced. 
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between the point clouds corresponding to different classes would be desirable. An 

example of this would be relative or cross-entropy. Here are some alternatives used in 

this chapter, first define p as a non-negative sequence P={Pi} where Li Pi = 1 

Entropy is then defined as 

H(p)=-LPi log2Pi (4.6) 

with the convention that O.lOg2(O)=O; 

Define the f based measure 

l(p) = [\P[[~ (4.7) 

i.e. the square of the 12 norm. Note that this measure can be extended for all IP space 

(with p;;, I). 

Define the logarithm of the energy as 

M(p)= :Dn(pi2 ) (4.8) 

All costs used in this chapter have the property of additivity which allows a fast 

search with computational complexity O(nlogn) for a wavelet packet dictionary and 

O(n[log2(n)]2) for a local trigonometric dictionary. This property is important 

because for a signal of dyadic length n, there exists a possible 2n/2 bases, i.e. the 

number of admissible choices of tree structure. To try and compute the best tree 

structure by straight comparison of all possible bases would cost about 

n2n/2 operations which is prohibitive. In order to overcome this, the fast search Best 

Basis algorithm used in these experiments was introduced by Coifman and 

Wickerhauser [6] which also guarantees an orthonormal basis. A description of this 

method now follows. 

First of all define .9 as an additive cost functional and D as the dictionary into which 

the signals are to be expanded. The technique first takes a single signal and projects it 

into the chosen dictioriary. The dictionary is then searched to minimise the chosen 
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cost function resulting in a collection of subspaces U f spanned by the best basis 

functions Af with (j,p)eA M where AM contains the indices of the M best 

subspaceslbasis vectors. Also define B f as the original set of basis functions 

belonging to the subspace U f. The best set of A f 's is found from the B f 's by 

evaluating the cost of a parent subspace or node and comparing it with its two 

children nodes. 

The algorithm is summarized as follows: 

(i) Initialise the best basis algorithm by deciding: (a) which dictionary (from a 

library) to use (i.e. to use wavelet packets or local trigonometric transforms); 

(b) what cost to use; (c) depth J::; logz(n) of tree into which the signals are 

decomposed. 

(ii) Expand signal x into chosen dictionary D obtaining a full packet table of 

expansion coefficients, {BJf x}o '<J 0< <zj-I. 
"'J- . -p-

(i ii) Set Af = Bf J J . 

(iv) Determine the best subspace A f for 0::; j::; J ,0 ~ p ::; 2 j - 1 via the following 

otherwise 

(v) Choose the top (k < n) features to train the classifier. 

The last step is the so-called feature selection stage in speech recognition and is of 

paramount importance to the problem. Even the selection as to how many of k

features should be chosen is difficult question and is generally chosen empirically. In 

this chapter a rule of thumb was empirically chosen of -10% of the total number of 

features available is used for training the data. The decision as to which features 

should be kept is based upon the expansion coefficients with the highest energy. 
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In Section 4.4 the regime described above is examined in the light of non-linear 

approximation and compared to classical linear methods which are seen to do best 

only under certain conditions. 

4.4 Linear and Non-Linear Approximations in Bases 

Section 3.3.1 examined the characterisation of function regularity in the Lipschitz 

sense. This was seen to encompass both global and local attributes of a function. 

In this section, the wavelet transform is related to standard linear approximation 

techniques; it is noted that linear and non-linear approximations rely on different 

signal properties. When the functions are uniformly smooth, they can be characterised 

by their Sobolev differentiability which depends as the name suggests, on their 

differentiability. Sobolev functions can be shown to result in almost identical 

performance whether wavelet or Fourier methods are chosen. The performance 

criterion used is based on the minimum approximation error. However, when the 

functions have non-linearities themselves, they are best characterised in Besov space, 

which can be thought of as a model encompassing functions of Lipschitz and Sobolev 

regularity. Non-linear wavelet methods involving adaptive basis selection can be 

shown to provide greater speed of convergence for functions lying in Besov spaces 

compared with equivalent linear techniques. 

4.4.1 The Linear Case 

If a signal is uniformly smooth over an interval [O,N] it may be precisely 

approximated by either a wavelet or Fourier basis. Fourier approximations are well 

suited to approximating uniformly smooth functions by using a partial sum of low 

frequency sinusoids. Measuring the local smoothness of a signal, furthermore, can be 

done by estimating the degree of its Sobolev differentiability. If J(O) represents the 

Fourier transform of J(t); the Plancherel formula can be used to show that energy is 

conserved by the Fourier transform up to a factor of 2lt 

+00 I +00 2 
J If(t)1 2 

dt = 21l J I](W)I dO) 
-00 -00 

83 



• 

This notion can be extended for fft), the first derivative of f(t) , for which the Fourier 

transform is iw ](w) .Plancherels formula proves thatfft) still lies in L2 space if 

+00 1+00 2 

J If' (t)12 
dt = 27r J Iw121] (W)I dw < + 00 

-00 -00 

(4.9) 

The functionfis said to be Sobolev differentiable if 

+00 21 12 J Iwl ] (w) dw < + 00 (4.10) 
-00 

As in Section 3.3.1, the decay of the expansion coefficients is a measure of the 

regularity; this decreases as (J) gets large, typically like ~. 
w 

In Section 3.3.1, it was seen that a function could be approximated by a Taylor series 

of polynomials. Likewise it can also be represented as a linear approximation. Taking 

an orthonormal basis of scaling functions B={~n}nEZ' one can view the linear 

approximation problem for wavelets as follows 

M-I 

fM = L(J'~n)~n (4.11) 
n=O 

The error of this approximation is thus 

(4.12) 

Since M is the number of basis vectors used in the approximation, it is desirable that 

the error liM decays rapidly toward zero as M ~OO. This depends on two factors: 

(i) The type of basis used; Fourier, wavelet, or other e.g. the Karhunen-Loeve 

transform. 

(ii) The nature of the signal. In the Fourier case, for example, a smooth signal will 

be well represented by the bottom few low frequency bases, whereas any localised 

irregularity such as a transient will require higher numbers of M to reduce li M ' 
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resulting in a slow decay. Truncation of the series, furthermore, leads to the 

appearance of Gibbs-like phenomena in the neighbourhood of discontinuities or other 

high frequency features. 

Localised Fourier approximations of functions that are Sobolev differentiable can be 

achieved via Short-Time-Fourier-Transform which mUltiplying f with a window 

function prior to Fourier analysis. Section 3.3.1 showed that due to the Balian -Low 

theorem one is unable to have Fourier bases of simultaneous compact support and 

orthonormality. However, Section 4.2.2 gives the cosine functions of equation (4.5) as 

a set of orthonormal basis functions with compact support: one could certainly use 

these in the place of STFT. This in turn would be equivalent to taking the DCT-IV of 

the signals. Under such conditions, the performance of a localised Fourier method 

would then depend on the local signal regularity within the window. 

Linear multiresolution approximations using wavelets amount to sampling on the grid 

of Figure 3.2. The accuracy in terms of mean square error approximation depends on 

the uniform smoothness of the signal. To derive the Sobolev differentiability m of a 

signal, a wavelet with enough vanishing moments q > m is required to sufficiently 

describe the signal. For linear approximations of Sobolev signals on an interval, 

f E L2 [0, N 1 the periodic orthogonalised DWT behaves in a very similar way to a 

Fourier approximation, (see [14] for details). However, Sobolev spaces are not good 

models for real world signals, a much better approach assumes they are piecewise 

smooth. Such functions belong to Besov spaces, described in the following section. 

4.4.2 The Non - Linear Case 

Besov spaces are the space of functions more appropriate for real world signals where 

transients followed by smoother sections are often encountered. It has been shown in 

[14] that uniformly smooth Sobolev and uniformly Lipschitz a belong to Besov 

spaces. Not only does it provide a good model for these functions but also for 

functions that contain a finite number of transients. Figure 3.4 showed that wavelet 

coefficients were large in the neighbourhood of singularities but that there were 

relatively few of them. Keeping all but the largest k<n is equivalent to constructing an 

adaptive time-frequency grid that is well-localised in the region of singularities. 
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Wavelet BB approximations are a refined version of the DWT which is still 

constrained to poor frequency resolution at high frequencies. Because the BB 

algorithm allows unconstrained tiling of the time-frequency plane with the Heisenberg 

boxes, it is a more adaptive non-linear approximation tool. Equation. (4.11) can now 

be written with the indices of the best M basis vectors contained in IM : 

IM = 'L(J,tPn)tPn (4.13) 
nE1M 

The error of this approximation is 

CM =111 - IM112= 'L1(J,tPnt (4.14) 
nE/M 

Therefore the linear approximation of equation (4.11) can be improved if the top (in 

the highest energy sense) M vectors are chosen according to the structures of 1 itself 

whether, using the BB algorithm, or by straightforward thresholding and ordering or 

by lastly using similar methods such as the matching pursuit [13]. The experimental 

section will attempt to ascertain under which circumstances, non-linear BB derived 

features provide improvement for the speech classification problems described in 

Chapter 3. 
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4.5 Results 

Figure 4.8 shows the structure of the wavelet based acoustic-phonetic feature 

extractor used in the pre-classification stage for these experiments. The library of 

bases contained both wavelet packets and smooth localised cosine packets. The first 

stage of the system chooses the most suitable dictionary for the problem at hand. This 

can be done very simply in practice by choosing the one which gives minimum 

misclassification rate amongst them [5]. In a real world phonetic classification 

system, one could employ some kind of detector prior to this stage which could 

characterise into broad categories the type of signal coming in, e.g. voicedlunvoiced 

and choose the best dictionary based on apriori knowledge of the following results. 

WP 

Input phonemes 

Best 
Basis 
search 

-.jClassifier 

Minimum 
Misclassification 1-.. rate:- 1--
Choose 
Dictionary 

Training phase 
decision 

Figure 4.8: Training phase of proposed wavelet-based phonetic classifier. The final classifier is used to 
select the best dictionary for the given problem. Subsequent testing phases utilise the same dictionary. 

The diagram illustrates the idea of choosing a dictionary of bases adaptively using the 

algorithm of Section 4.3. The choice of dictionary based on the least misclassification 

rate becomes part of the training phase for added flexibility. 

In the following set of experiments, the aim is to detennine the best dictionary for a 

given phoneme classification problem and to ascertain, furthennore the influence of 

the cost function used in basis selection on the final misclassification rate. 

Using wavelet and cosine packets dictionaries, the Best Basis algorithm was 

implemented as described in Section 4.3 and applied to the speech data described in 
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Section 3.4. A single application-dependent wavelet basis function was chosen driven 

by the findings of Section 3.4 and from the basis, wavelet packets were generated via 

the relations (4.1) and (4.2). The cosine packet transform on the other hand has just 

one choice of basis function as shown in Figure 4.4. The five different cost functions 

used were (i) the direct sum of the coefficients within a node (ii) the I1 measure of the 

subspace vector, equation (4.7), p=] (iii) the f measure at the node p=2, equation 

(4.7) (iv) the log of the energy, equation (4.8) Cv) the Coifman - Wickerhauser 

entropy, equation (4.6). 

4.6 Discussion 

Table 4.2 (a) shows the performance of the Best Basis methodology on the phonemes 

liy/, laa!, taxI of Example 3.1. The cosine packet transform with the 12 cost function 

provided the best misclassification rate (shown in bold) for this problem but does not , 
perform as well as the DWT with the Deslauriers-Dubuc interpolating wavelet (see 

Table 3.3). Since the signal types analysed are modulated, and periodic, they are 

better analysed by the cosine packet. One reason why the DWT may perform better in 

this instance could be due to the packet transforms being too adaptive for the given 

problem. In other words, the DWT analyses all signals according to the same 

subspace decomposition (see Figure 3.3). Ideally in fact, for the purposes of 

classification, one would wish for a subspace decomposition that instead was well 

adapted to the characteristics of each class. In theory the Best Basis algorithm 

provides a tool with which to achieve, at least in part, this end; however, real world 

signals tend to contain noise and artifacts which vary from signal to signal and from 

class to class. The cost function in these cases has been shown in [12) to become a 

random variable, resulting for some cases in widely differing tree decompositions of 

acoustically similar signals belonging to the same class. This will clearly affect 

recognition performance 

Table 4.3 shows the example of the plosive Ip/,/t/,!kJ sounds. Coiflet wavelet packets 

with 10 vanishing moments perform the best, improving on the standard dyadic C_IO 

wavelet in Table 3.2 by about 6%. The major difference between performing a non

linear ordering of coefficients using Best Basis derived expansion coefficients and 

standard discrete wavelet methods lies not in the adaptive choice of sampling grid 
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which in both cases will be well localised in the region of discontinuities. Indeed the 

expansion coefficients in either case will be large throughout the cone of influence of 

rapidly varying sections. The improvement in performance is most likely due to the 

increase in adaptivity in the appropriate regions of the time-frequency plane. Unlike 

the DWT which has poor frequency localisation in the region of high frequencies, the 

BB algorithm has no such restriction except that the Heisenberg inequality principle 

still holds. For this kind of adaptive feature localisation, the BB algorithm is evidently 

better representing the internal correlation structure of these kinds of signals which 

are less regular and smooth than the voiced vowel sounds of the previous example and 

therefore better modelled by Besov spaces. These two disparate classification 

examples are probably the best illustrators of the comparative performance of the 

DWT and BB methods and the findings agree well with formal linear and non-linear 

signal approximation theory in bases. The remainder of the classification tasks show 

little difference to the DWT case. The results are summarised in Table 4.1 with some 

of the main results from Section 3.4 included for comparison. Tables 4.4 through 

Table 4.7 are included for completeness and contain the more detailed findings. It is 

seen that cosine packets do best in 4 out of the 6 cases tested. This is because cosine 

bases are oscillating in nature themselves and are thus well-suited to representing 

acoustic signals of similar characteristics. It is interesting to note that the wavelet 

packets provide improvement over both the cosine packets and the standard DWT in 

the two most difficult examples:- Ipl, It!, IkI and Imf, 1nl, Ing! discrimination. 

Features enabling good classifier performance should provide good generalisation 

capabilities, giving low misclassification on unseen data also. The fact of relatively 

high misclassification in the training data of both these examples indicates the 

difficulty of the problem. Ultimately, the inherent flexibility of the wavelet packet 

approach in capturing the frequency structure of these signals via adaptive tiling is the 

likely cause of any improvement. 

Table 4.8 shows the effect of removing variance in the wavelet transform due to 

translations of the signal via the Spin Cycle method. The two differing cases of Ipl, It!, 

1kI, Table 4.8 (a) and liyl, laa!, laxl, Table 4.8 (b). It is seen that translation invariance 

only improves performance in the first case - this indicates that a feature for 

classification concerns the description of the transient rather than its position. For the 

more well-behaved type of signals in Table 4.8 (b), the Spin Cycle actually degrades 
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perfonnance slightly implying that positional infonnation is of some, but limited, 

importance for this problem. 

Finally, regarding the issue of cost functions, it emerges that I1 or entropy based costs 

are overall the safest choices for these kind of classification tasks. Indeed based on the 

work carried out in [2], time-varying structures are often best revealed by the I1 cost. 

Technique 

Problem 
DWT 

liyl, laa!, laxl Tr 9.10 

Pr 7.55 

Ipl, It!, /k/ Tr 30.88 

Pr 42.26 

Im!, 1nl, Ing! Tr 41.80 

Pr 46.40 

If I, /TI,JsI Tr 17.68 

.Pr 17.25 

Iv/; Idh/, /zl Tr 17.43 

Pr 17.77 

Iwl, Iyl, /I/,/rl Tr 20.36 

Pr 24.33 
.. 

(Tr - Trammg MlsclasslficatlOn Rate Error %) 
(Pr - Prediction Misclassification Rate Error %) 

BB 

8.50 

8.39 

33.51 

35.80 

41.36 

45.02 

16.83 

17.43 

16.47 

16.35 

21.99 

25.70 

Best 

Wavelet· Packet! 
Cost 

DD3 CP/f 

CIO CIO/log 

D8 D8/11 

Haar CPISum 

CIO CP/l1 

Triangle CP/l2 

Table 4.1 Summary of best performance between the discrete wavelet transform, the wavelet packet and 
the cosine packets. See Table 3.1 for a list of keys. All results were gained using the top 64 coefficients out 

of a possible 512. 

4.7 Summary 

In this chapter, the perfonnance of the Best Basis algorithm, originally designed for 

compression has been examined as a feature extractor for phonetic classification. The 

method chooses a suitable basis function and decomposes the time-frequency plane in 

an adaptive way. The top few coefficents (- 10% of total), ranked by their energy, 

were chosen as suitable features for recognition 

It is likely that the BB algorithm although providing a compact representation of the 

signals, is adapting extremely well to the internal structure of the speech. The 
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problems with this are potentially twofold. First, artifacts which in speech take the 

form of inter-speaker variation (e.g. rate at which a sound is uttered, variations in 

pitch, differing formant structures etc.). For this type of infonnation, one would 

ideally like to discard or at least de-emphasise it for the purposes of classification. 

Using efficient non-linear well-localised wavelet features certainly yields a good 

estimate of the correlation in the sound and using the BB approach, one now has a 

method of dealing adaptively with the variant nature of the speech itself by using 

relations of the orthogonal bases of Chapter 3, i.e. wavelet and cosine packets of 

which the cosine packet was seen to perform best overall in comparison to wavelet 

packets. These bases have well-localised time-frequency characteristics. However the 

BB approach may be adaptive in the wrong sense, features for discrimination should 

try and capture the probability structure of the classes as a whole and provide the 

classifier with a good, again small set of features designed specifically for 

classification. 

The final point regarding the lack of translational invariance exhibited by discrete 

wavelet methods concluded that this phenomenon was very much problem dependent. 

For example, if one is more concerned about the location of various features as 

information for recognition, the subtly different characterisations due to shift 

invariance are likely to matter little in the overall performance. 

In the following chapter, ways of building discriminant attributes into the Best Basis 

paradigm will be examined. 
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Technique 

Sum IP(p=l) 

StdBBon Tr 10.1 10.87 

D6_64 Pr 11.61 10.49 

StdBBon Tr 10.40 10.40 

CP_64 Pr 9.37 9.37 

.. 
(Tr - Training M.sclassIficauon Rate Error % J 
(Pr - Prediction Misclassification Rate Error % J 

Costs 

IP(p=2) 

21.91 

28.67 

8.5 

8.39 

(aJ 

Predicted Class 

iy aa 

on 

~ iy 221 22 0 
'" 2 

9 114 r- aa 

ax 6 12 

(bJ 

log Entropy 

10.57 10.28 

10.91 9.93 

30.12 10.4 

32.73 9.37 

ax 

6 

5 

320 

Table 4.2 Showing (aJ Standard Best Basis algorithm on /iy/,/aa/,/ax/ dataset using different costs and 
basis functions. Splitting depth J was chosen as 6 for both dictionaries.and (b) LDA Confusion Matrix 

for testing datasets using Best-Basis Coefficients derived via the Cosine Packet transform with an I' 
cost. 
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Technique 

Sum IP(p=l) 

. 

StdBBon Tr 31.52 32.25 

CIO_64 Pr 43.23 37.75 

StdBBon Tr 30.58 30.47 

CP_64 Pr 42.26 41.61 

.. 
CTr - TraInIng M.sclass.ficatlOn Rate Error %) 
CPr - Prediction Misclassification Rate Error %) 

Costs 

IP(p=2) 

32.57 

42.26 

35.18 

48.4 

Ca) 

Predicted Class 

p t 

'" ~ 35 6 0 P ., 
2 

f-< t 16 85 

k 34 15 

(b) 

log Entropy 

33.51 32.15 

35.80 38.06 

49.01 30.58 

61.94 42.26 

k 

19 

21 

79 

Table 4.3 Ca) Showing Standard Best Basis algorithm on Ip/,/t/,1kJ dataset using different costs and 
basis functions. Splitting Depth J was chosen to be 6. and Cb) LOA Confusion Matrices for the testing 

datasels using the Cl 0 wavelet packet with log-energy cost functional. The results show an overall 
improvement of around 6% compared to the best DWT result. 
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Technique . 

Sum IP(P=l) 

••• ..... . . 

StdBB()n Tr 41.87 41.36 

D8_64 Pr 45.82 45.02 

StdBBon Tr 45.00 44.73 

CP_64 Pr 47.78 47.70 

.. 
(Tr - Training MlsclassIficatIOn Rate Error %) 
(Pr - Prediction Misclassification Rate Error %) 

Costs 

.. 

IP(p=2) 

41.25 

45.60 

44.33 

46.47 

(a) 

Predicted Class 

m n 

'" ~ 328 III 0 m 

" 2 
f- n 187 348 

ng 33 53 

(b) 

. . 

I()g Entropy 

41.84 41.36 

46.33 46.33 

60.26 44.86 

62.62 47.49 

ng 

62 

173 

80 

Table 4.4 (a) Showing Standard Best Basis algorithm on ImI.lnI.lng! dataset using different costs and 
Basis functions.Splitting Depth J was chosen to be quite coarse at 4.for wavelet packets and 6 for 

cosine packets. and (b) LDA Confusion Matrices for the testing datasets using the D8 wavelet packet 
with an I' cost function. 
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Technique 
Sum IP(p=1) 

StdBBon Tr 17.84 17.67 

D7_64 Pr 18.08 17.86 

StdBBon Tr 16.83 18.00 

CP_64 Pr 17.43 17.91 

.. 
(Tr - Training M.sclass.ficatlOn Rate Error %) 
(Pr - Prediction Misclassification Rate Error %) 

Costs 

IP(p=2) 

17.99 

17.86 

26.47 

27.23 

(a) 

Predicted Class 

f T 

'" ~ f 399 149 0 
0) 

2 
E- T 31 68 

5 83 90 

(b) 

log Entropy 

17.92 17.44 

18.35 18.61 

37.64 16.83 

36.74 17.42 

s 

35 

8 

1410 

Table 4.5 (a) Showing Standard Best Basis algorithm on If I ,rrl,ls! dataset using different costs and 
Basis functions. Splitting Depth J was chosen to be fairly coarse at 4.for wavelet packets and 6 for 
cosine packets.and (b) LDA Confusion Matrices for the testing datasets using the cosine packet 

transform with the basic Sum cost function. 
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. 

Technique .. 

Sum IP(p=l) 

StdBBon Tr 18.55 18.21 

CIO_64 Pr 19.09 17.11 

StdBBon Tr 16.58 16.47 

CP_64 Pr 16.73 16.35 

.. 
CTr - TraInIng Mlsclasslficallon Rate Error %) 
CPr - Prediction Misclassification Rate Error %) 

Costs 

IP(p=2) 

20.26 

21.83 

21.86 

22.31 

Ca) 

Predicted Class 

v dh 

Vl 

~ 
195 61 0 v 

'" 2 
E- dh 51 110 

z 19 25 

Cb) 

log Entropy 

17.84 17.87 

18.71 17.39 

34.62 16.64 

35.35 16.63 

z 

8 

9 

580 

Table 4.6 Ca) Showing Standard Best Basis algorithm on Ivl ,1dhJ,IzI dataset using different costs and 
Basis functions. Splitting Depth J was chosen at 6.for both transforms and Cb) LDA Confusion Matrices 

for the testing datasets using the cosine packet transform with an 11 cost function. 
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Technique 
... Sum IP(p=\) 

StdBBon Tr 23.08 23.06 

S7_64 Pr 28.79 28.50 

StdBBon Tr 21.35 23.77 

CP_64 Pr 26.35 28.68 

.. 
(Tr - Trammg MlsclasslficatlOn Rate Error %) 
(Pr - Prediction Misclassification Rate Error %) 

Costs 

IP(p=2) 

41.87 

44.92 

21.99 

25.70 

(a) 

Predicted Class 

w y 

w 204 20 52 

y 4 113 3 

97 35 455 

r 41 18 41 

(b) 

log Entropy 

22.40 22.23 

28.26 28.20 

50.58 21.33 

54.73 25.94 

r 

41 

3 

77 

477 

Table 4.7 (a) Showing Standard Best Basis algorithm on Iwl,ly/,lll,lrl datasets using different costs and 
Basis functions.Splitting Depth J was chosen at 6.for both transforms.and (b) LDA Confusion Matrices 

for the testing datasets using the cosine packet transform with an I' cost function. 
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Technique 
3 4 

StdBBon Tr 32.91 33.30 
CIO_64u 

IlaSC Pr 37.96 37.57 
.. (Tr - Trammg MlSclassIficatlOn Rate Error %) 

(Pr - Prediction Misclassification Rate Error %) 

Technique 
3 4 

StdBBon Tr 10.53 10.69 
CP_64u 

IlaSC Pr 9.74 9.72 
.. 

(Tr - TramlOg Mlsclasslficallon Rate Error %) 
(Pr - Prediction Misclassification Rate Error %) 

-
Block Length 

5 6 7 8 

33.32 33.32 33.58 33.59 

37.80 37.80 37.51 37.14 

(a) 

Block Length 

5 6 7 8 

10.75 10.91 10.79 10.99 

9.93 10.19 10.19 10.23 

(b) 

Table 4.8 Illustration of the effect of the Spin-Cycle on (a) The Ip/./t!. fkI problem using the Coiflet 
filter with 10 vanishing moments and the I1 cost functional. It shows an improvement of 37.14% error 
on the prediction compared with 37.75% without translation invariance correction. (b) Is the liy/./aa/. 

taxi problem which indicates perhaps surprisingly a slight decrease in performance when Spin Cycle is 
used. The misclassification error rises to 9.72% compared with 9.37% before the procedure. 
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Chapter Five 

Discriminant Wavelet Bases and their 

Applications 

5.1 Introduction 

In this chapter, a new feature extraction methodology based on the Best-Basis algorithm [5] 

(the Local Discriminant Basis algorithm is examined, which has been designed specifically 

for the discrimination problem. The algorithm is modified by creating a closer tie between 

feature extraction and classification stages using a cost gained from the classifier from which 

to choose the best set of subspaces and subsequently, features. 

A training phase is involved during which the final classifier is invoked to associate a cost 

function (a proxy for misclassification) with a given resolution. The sub-spaces are then 

searched and pruned to provide a Wavelet Basis best suited to the classification problem. 

Comparative results are given of the two methods illustrating their relative performances 

using the differing subclasses of speech considered in Chapters 3 and 4. 

It has been seen in Chapters 3 and 4, that multi-resolution feature extraction is a useful way 

of representing non-stationary real world signals such as speech, see also [7], [13], [14]. 
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Coupled with integrated optimisation of the feature extraction and classification stages, the 

aim is to provide an overall improvement in recognition performance. This problem is 

particularly important because as modelling techniques have improved vastly in recent years, 

further gains in recognition accuracy are likely to come from the pre-processing stage. 

Wavelets and related techniques such as subband coding have been applied with considerable 

success to speech processing applications such as compression [18], [20], and to a more 

limited extent on feature extraction for speech recognition / classification [6], [11]. 

Their main advantages as seen in Chapters 3 and 4, are a somewhat richer multi resolution 

representations of the acoustic signal and the added flexibility of using one of a number of 

basis functions. Subsequent refinements that aim to efficiently model signal statistics by 

choosing the depth of resolution projection and amount of signal reduction adaptively [15] 

serve to improve accuracy of the model further. 

Learning from the training set the best set of subspaces in which to model the data, results in 

a discriminant basis set which will highlight, using the expansion coefficients of the wavelet 

transform (preferably just a few), the major differences between classes. If feature reduction 

is subsequently carried out, then the final classifier (LDA) is designed in lower dimensional 

space. Assuming the data is well modelled in the first place, then there are a number of 

advantages to this approach. Overall performance, instead of being worsened is improved 

since the number of coefficients needed for discrimination is typically less than that required 

for representation tasks. This crucial feature selection stage both increases robustness and 

accuracy of the final classifier as well as reducing costly training times. 

In this Chapter, an alternative implementation of this theoretical framework for phoneme 

classification problems is considered. 

5.2 Problem Definition 

In discriminant feature extraction, the aim is to project (somehow) signal classes onto the 

most statistically important components i.e. those which result in the best separability 

amongst the classes. Typically, the type of features extracted in this way give little insight to 
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the signals they are describing, however if chosen well, should increase the robustness of the 

classifier (e.g. see Figure 5.1). The questions one should ideally ask are (i) What optimality 

criterion should be used, i.e. how does one decide 'what's important'? 

(ii) Given a particular decomposition, what features should be used upon which to design the 

final classifier. 

With regard to (i) the criterion should relate to the particular problem, in other words, a 

measure of the separability between the signal classes should govern which projections are 

chosen. Point (ii) relates to the so-called 'Curse of dimensionality' encountered in statistical 

classification, i.e. how 'reduction of dimensionality' can be efficiently achieved for a given 

set of training classes. 

These issues are not new; they form the backbone of discriminant statistical feature 

extraction design issues, what this chapter will show is the applicability of wavelet based 

methodologies which involve the pruning/growing of the wavelet/cosine packet binary tree 

given a speech classification (rather than representation) problem. 

As in the case of the 18B (Join Best Basis) algorithm described in [19], analogies may also 

be drawn between this kind of approach and Principal Component Analysis (PCA) also 

known as the Karhunen-Loeve Transform (KLT) or looked at another way - Linear' 

Discriminant Analysis (LDA). In both cases, BB and PCA, the signal is first decomposed 

onto its eigenvectors and then approximated using the most 'statistically significant' portion 

by choosing the top few eigenvectors depending on the task. For data representation the KLT 

is generally used, while for classification the choice would be LDA. In essence, the methods 

described in this chapter aim to ease the task of methods such as LDA which can't deal too 

well with the direct input of high dimensionality input signals. The other main difference of 

the technique described here is that the top few vectors are chosen using a measure based on 

class separability. Furthermore, the basis functions are designed to give a concise 

representation and are able to analyse accurately the local time-frequency characteristics of 

the data - something LDA on its own is unable to do. 

The process of classification can be described more formally in terms of a signal space 

(where all signals in the training and testing sets exist) called X c \Rn. Here the 
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dimensionality of each signal is n. The second space contains a list of the class names or 

labels which are assigned to each member of a particular class prior to training. This shall be 

called T = {I,2, ... N} . Classification is then normally defined as a mapping between these two 

spaces. Feature extraction is then desirable for two main reasons: (i) As mentioned earlier, 

the 'Curse of Dimensionality' causes difficulty in accurately modelling a class due to 

redundancy and gives rise to larger computational costs depending on the classification 

method. (ii) Most real world signals like speech contain undesirable components which are 

unrelated to signal characteristics. These serve to confuse the classifier, reducing its ability to 

generalise; robustness of performance can be improved by a good feature extraction regime 

which excludes such components. To this end, afeature space :J c 9'lk; k S; n is set between 

the signal space and the class space such that a feature extractor f provides the map 

f : X --+:J and the final classifier g as providing the map g::J --+ T. In this chapter, the 

performance of the whole system will be measured by the overall misclassification rate. 

5.3 The Local Discriminant Basis Algorithm 

This section recaps on the pioneering work described in [15] in which the LDB algorithm is 

first constructed. Recall that in Chapter 4, the Best Basis Algorithm was designed mainly for 

signal compression but that these features, if applied to speech, could still be considered good 

features for recognition since they address at least one of the aims of parametrization outlined 

in Section 5.2; they reduce the dimensionality of the signal by retaining those vectors that 

maximise the information content, in the Shannon Entropy sense, of the signal. This should 

have the effect of at least ensuring the Best-Basis features are robust and compact but are 

they really suitable for decomposing large numbers of signals as in the training sets dealt 

with here? The main advantage of an LDB type construction is that only one overall basis 

tree is calculated based on a proxy for the probability distributions of each class: the so

called time-frequency energy map defined in the following section. The decision process 

affecting the pruning of this tree is, instead of Shannon Entropy, based upon the relative 

discriminatory power of each subspace i.e. how much worth, from the separability point of 

view, is gained by descending a level further down the tree? Not only, therefore, does the 

LDB use a more intuitive type of criterion for gaining classification features, but it works out 
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the Best Basis - in the discriminant sense - only once. All subsequent signals in training and 

testing classes are subject to exactly the same decomposition. There is, therefore, a fairly 

costly training phase during which LOB is calculated but after that, the cost of the transform 

is comparable to the conventional Oyadic Wavelet Transform and subsequently the Short

Time-Fourier Transform. 

Again, the LOB is capable of utilising a number of dictionaries of basis function, but in these 

experiments will be considered, as in Chapter 4 only the Wavelet and Cosine Packets. 

5.3.1 Cost Measures 

These cost functions, of which there are a number of diffent types, can be additive, in which 

case the pruning mechanism in Chapter 4 is fast, i.e O(LN)where L = [log 2 N]. All 

essentially provide a measure of 'energy concentration' of the signal in question. 

Definition 5.1. An additive cost function [JUfd from a sequence {x;} to ~ is said to be 

n 
additive if [JUfd(O)=O and (f'dd({x})= I,.9add (x;). 

;=1 

Definition 5.2. The inequality r(z)5, r(x,y) between vectors x,y E ~n and ZE ~2n is an 

additive information cost comparison if r(x,y) = (f'dd(xfJ7y) = ~d(x)+ (f'dd(y). 

There are a number of possibilities which the author discusses in [12] 

• Relative Entropy or Kullback-Leibler information: 

(5.1) 

where the following convention holds: log2(O) = -co, log2(xIO) = +<x> for x ~ O. This 

measure is asymmetrical which may be preferred in some applications. If symmetry is 

required, the Kullback divergence (Relative Entropy)should be used. 
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The more simple measure of 

• f distance 

l(p,q) = lIP - qll~ (5.3) 

i.e. the square of the 12 norm. Note that this measure can be extended for alllP space (p '" I). 

• Hellinger distance 

(5.4) 

The Hellinger distance and the first measure - Relative or Cross Entropy both belong to the 

Csiszar f-divergence class of dissimilarity measures (see [I] for a comprehensive review). 

which ultimately measure the distance between two probability distributions by considering 

the dispersion of their likelihood ratios. 

These discriminant measures are used to decide which nodes out of all the possible subspaces 

carry the most useful information and it is inferred from this criterion which branches of the 

balanced binary tree are kept/pruned. Clearly these cost functions operate on the comparison 

of children and parent sub-nodes but what quantity composes these vectors? They are not 

simply the wavelet/cosine packet decompositions. Such a quantity was' admissible in the 

previous chapter where expansion of signals in their own best bases was the aim. For the 

purposes of classification. a quantity that reflects the global characteristics of a given class is 

desirable. Possible quantities include the probability distribution function of a particular class 

which would be a useful criterion upon which to calculate the Discriminant Energy 

Concentration Measures (DECM). Another could invoke the use of Cumulative Distribution 

Functions (cdfs). as discussed in [4] where it is used due to its simplicity in computing 

empirically than the average Probability Distribution Function (pdj). The measure used in the 

original LDB is based on the mean of the class energies. called a Time-Frequency Energy 

(TFE) Map. 
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Definition 5.3. Let kYi t~ be a training set belonging to class y, Ny is total number of 

signals in class (y) training set. Then the Time Frequency Energy map of class y is a packet 

table of values indexed by the triplet lj, k, m). 

~ (y) 2 
L.,(w j,k,mXi ) 

TFE y(j,k .m) =.:...i =....:I-N:7Y-II--1-12-
LX?) 
i=1 2 

for j = 0, ... ,1, k = 0, .. . ,2 j -l, m = 0, ... ,2"-1_1 

(5.5) 

For a given class (y), TFEy is computed by the accumulation of the squares of the expansion 

coefficients for all signals in a class at each lj,k,m) in the packet table followed by 

normalisation by the total energy in the class. It should be noted that this normalisation is 

particularly important for real-world applications like speech classification where typically 

one is faced with significantly different numbers of signals per class. 

The cost measures, generically termed 9(), are then combined amongst y sequences to result 

in an overall discrepancy for a given subs pace. Definition 5.1, can be expanded to include 

any number of classes. e.g. for the two class case, definition (5.1) becomes ,'l'dd( (x, 

y})= L 9add 
(Xi, Yi)' Using the additivity of the 9(), equation (5.6) combines any number of 

classes into a single measure 

(5.6) 

Here is the final LDB algorithm used in the experiment. Assuming ~~k is the discriminant 

measure at a particular subnode, whether additive or not and let Dj.k represent the Best 

Discriminant Basis and Rj.k the fully expanded, redundant basis. Then 

(i) Choose to use either trigonometric dictionaries or Wavelet Packets for the transform. 
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(ii) Expand every signal in the training set into its wavelet packet table. 

(iii) Determine the set of most discriminant subspaces using a top down pruning 

methodology by testing the efficacy of each subspace for discrimination. 

the process is as follows 

set a temporary array :3 j,k = .9j ,k 

if :3 j,k ~:3 j+l,2k +:3 j+l,2k+l; Dj.k=Rj •k; else 

Dj,k=Dj+1,2kEl) Dj+1,2k+l and set :3 j,k =:3 j+l,2k +:3 j+l,2k+l 

(iv) Rank the expansion coefficients according to their discriminant power and from these 

select the top k :5 n features (where n = 2no is the dyadic length of the signal) for each 

signal in the training class to construct the final classifier. 

The LDB gained from step two is an orthonormal basis, also if the cost function is additive, 

this step will be fast. 

Step 4 is not crucial to the success of the algorithm since theoretically one can still design the 

classifier on all the features; however, if the dimensionality of the problem is reduced, this 

step will reduce the number of interfering components in the decomposition, making the 

class-specific features more robust. Computational training times will simultaneously be 

reduced. 

In practice, one can rank the expansion coefficients using a number of approaches: 

a) Find the discriminant validity of a particular basis function in the LDB expansion, for 

example invoke the original cost function .9(.) on the wavelet coefficients expanded in 

the new basis, 

b) Use Fisher's class separability index, as described in Section (5.3.2) to rank the 

coefficients. 
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5.3.2 Non-Additive Criteria 

As an extension to the above method, one can implement a non-additive cost whereby Step 3 

of the LDB can be modified as follows: 

Determine the set of most discriminant subs paces as before except: 

if :3 j,k ;:: :3 j+l,2k v:3 j+l,2k+l; Dj.k=Rj .k; else 

Dj.k=Dj+1.2ldll Dj+I.2k+1 and set :3 j,k = :3 j+l,2k v:3 j+l,2k+l 

i.e. the discriminant performance of a parent node with the union of its two children 

subnodes is instead considered. The selection scheme is thus rather different to the standard 

LDB with additive costs. In fact, if the cost function is the actual misclassification rate, then 

using the divide and conquer strategy described in Section 4.3, one is not guaranteed a basis 

2J - 1 
selection from the 2 possible bases that necessarily minimises the misclassification rate. 

This is because the classification error gained from the union of two subspaces that are 

individually best by themselves will not necessarily be smaller than the error of the union of 

two subspaces that are individually not best (see [9] for more information on this issue that 

arises generally in feature extraction based on misclassification errors). 

Instead of misclassification rate, these experiments introduce a different approach - they use 

a non-additive proxy for misclassification related to the Mahalanobis distance between 

classes. To consider this and its relationship to overall LDA classification, LDA shall be 

briefly reviewed [8]. 

One can write the sample mean of signals belonging to class Cc as 

(5.7) 

The between class scatter SB can be written as: 

C 
SB = L.7rc(m-mc )(m-mc )' (5.8) 

c;l 

109 



• 

7r:e is the prior probability of signal membership to a class, m is the total mean for all signals 

in the training classes and me is the total mean of all training signals belonging to a class c. A 

suitable estimate for the prior probability is Ne / N. The idea of LDA is to maximise a 

separability statistic between the classes, however the consideration of SB on its own is not a 

sufficient criterion. Maximising this may indeed give best separability between classes 

however overlap of the individual covariance matrices, the within class scatter - Sw of each 

class may still occur, see Figure 5.1. 

Figure 5.1 Showing importance of considering within class covariance or spread when maximising a 
separability criterion. The idea of LDA is to find a view of the data that best shows the difference between the 
training data classes. If SB alone is used, then as indicated in the figure, the data would become projected onto 
the XI axis because this gives the maximum for between class separation. For the purposes of discrimination, 

however, projection onto the x, axis is most desirable. This is only possible when within class spread is jointly 
considered. 

(5.9) 

If X = A' X denotes a linear transformation of the original training exponents, SB and Sw can 

- -just be written S B = A'S BA and Sw = A' Sw A. Fishers original linear discriminant which 

he developed in 1936 aimed to maximise the 'between to within' class variance ratio. This is 

achieved in practice by finding the ratio of the determinants of S B and Sw : 
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J(A)= A'SBA 
A'Sw A 

(5.10) 

Which requires solving the following eigenvaIue problem, the solution to which is found by 

forming the canonical variates of A 

(5.11) 

In this chapter, the Mahalanobis distance used to weight the discriminant power of a 

subspace is closely related to LOA. In fact it can be directly used as an alternative yet closely 

related evaluation of between and within class distance in LDA. This approach is followed 

here to try and provide a seamless link between best basis choice - feature extraction for best 

discrimination and final classification rate. 

The Mahalanobis distance tl7,j between two classes i andj is defined as: 

tl~ . = (rn· -rn ')L-1(rn' -rn .)1 
l,j I j I j (5.12) 

where L is called the pooled covariance matrix of all the training data: 

c 
L= 'i(Nc-I)Sc/(N-C) (5.13) 

c=l 

with Se equal to the within class scatter for class c, N is the total number of signals across 

classes, C is the number of classes. 

Naturally, the tl7,j are computed recursively on each subspace in the wavelet/cosine packet 

table. The final cost therefore, measures the goodness of training class separability of each 

subspace, and the final basis chosen will attempt to maximise this separation. This approach 

is related to that described in [15], where the Local Regression Bases for non-additive costs 

is developed. However, the final misclassification rate of an LOA classifier is used instead as 

a cost functional. The cost used here tl7,j' may constitute a closer measure of operating 
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system characteristics, i.e. class separation in the linear sense. It is further noted in [15] that 

LRB using LDA is seen to be slightly worse; furthermore, training times are considerably 

increased since LRB involves evaluating LDA at each of the (iJ+l) -J) subspaces which 

requires expensive eigenvalue O(nJ) calculations in addition to working out within and 

between class scatter. This results in a prohibitive training phase when dealing with large 

samples of real world signals as in the case of speech signals. Saito tests the efficacy of his 

algorithms using synthetic signals, or on seismic trace data - a somewhat different setting to 

the current work in which the number of training samples is typically low compared with 

signal dimensionality, which is generally high. 

Employing an LDA related cost function prior to subspace evaluation yields an approach 

linking feature extractor to the final classifier. This philosophy could similarly be extended to 

include any type of classifier, indeed it is easily shown that there exists a close relationship 

extending Fisher's discriminant criterion to the least squares criterion commonly used in 

training Artificial Neural Networks (ANNs), [2]. One could certainly use a measure based on 

ANNs instead of the Mahalanobis distance e.g. similar to [10]. Let us now look more closely 

at the relationship between using Mahalanobis distance compared with some existing cost 

measures. In [17], such measures have been categorised into four broad classes, see also [16]: 

(i) As in the original LDB, a measure based on the distance between the mean class 

energies. 

(ii) A measure based on differences among the pdfs of each class (implemented in [17]) . 

(iii) A measure based on differences amongst the cumulative distribution functions (cdf's) 

of each class [4]. 

(iv) A measure, derived at each subspace, based on the actual misclassification rate of the 

entire training set projected in that vector, similar to that examined in this section. 

Using (iv) is similar to LRB and is the nearest to using ilL. However (iv) is equivalent to 

evaluating the specific quantitative goal - misclassification rate and is thus more suitable for 

picking out bases that give the best distinction amongst classes instead of, as in standard 

LDB a proxy for class separability (the relative entropy). Furthermore, in original LDB, a 

distance measure which tries to separate amongst the energy of the wavelet coefficients may 
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not be the most suitable for discrimination as pointed out in [17]. Instead, the authors here 

use a Type (ii) measure although in practice a good pdf estimate is more difficult to obtain. 

They go on to invoke additive cost functionals as in the original LDB. A related method 

using the Matching pursuit instead of Best Basis (called the Discriminant pursuit) was used 

in [3] where the goal is similar to ours - improvement of LDA using a I-D form of Fishers 

criterion. 

5.4 Results 

In the following experiments, the first algorithm to be implemented was the standard Local 

Discriminant Basis algorithm (LDB), using an additive cost function of Relative Entropy. 

The best k ~ n features were chosen using the same criterion. This approach was compared 

with a configuration related to the Local Regression Basis algorithm ((LRB), which is 

essentially LDB with non-additive costs) using the Mahalanobis distance measure as a cost 

function and the expansion coefficients ranked, and signal dimension reduced according to 

this class separability criterion. In addition, for MLRB, a small non-linear thresholding to the 

subspace vectors prior to calculating this distance was applied (about 0.8 of the total number 

of coefficients present in parent and child nodes). The final classifier in all cases was LDA. 

Thus a closely related optimality criterion was used both in the evaluation of suitable features 

for class separability as in the final classification estimate. In the study, both wavelet and 

cosine packets were considered. In the latter case two wavelet packets were chosen that were 

empirically determined from Chapter 3 to give the best performance, namely the Daubechies 

filter of 6 vanishing moments and the Coiflet filter with 10 vanishing moments depending on 

the problem, see Table 5.1. 

The two phoneme classification problems analysed here are the well separated vowels laa/, 

laxl, liyl corresponding to the back, mid and front positions of the tongue during voicing 

were examined, although the other phoneme classification problems are included for 

completeness (Tables 5.2 and 5.3). The three unvoiced stops, Ipl, It!, /k/ were discriminated 

against one another to evaluate the performance of the two methods. In both cases, the 

phonemes were extracted from dialect regions 1 and 2 of the TIMIT database from all 

speakers both male and female to ensure a good statistical representation of each sound. The 
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speech datasets used were sampled at a rate of 16kHz; thus the 32ms window used, 

comprised of -512 samples. 

The results gained using the methods outlined plus a benchmark version of the STFf, are 

given in Table 5.1 through 5.3. 

Technique 
Error Rate Error Rate 

Problem 
(Training) (Testing) 

LOA on STFr64 16.48% 22.38% /iy/,/aaJ,/ax/ 

WP-
LOA on 8.74% 8.81% 

06 /iy/,/aaJ,/ax/ 
LOBuRE 

64 CP 8.62% 9.15% 

wp-
LOA on 8.51% 8.25% 

06 
LRBuMO /iy/,/aaJ,/ax/ 

64 CP 8.86% 9.02% 

LOA on STFr64 39.16% 46.13% /p/,ItI,fkI 

wp-
LOA on 32.15% 40.32% 

CID 
LOBuRE /p/,ItI,fkI 

64 CP 28.69% 41.94% 

wp 
LOA on 25.45% 39.68% 

CIO 
LRBuMO /p/,ltJ ,fkI 

64 CP 28.48% 40.65% 

Table 5.1: Misclassification rates of the feature extraction techniques when applied to two phoneme 
classification problems. Quantities in bold show the best overall classification rate achieved which in both 

studies was on top 64 coefficients with standard LOB on wavelet packets. LOA, STFr64, LDB64uRE indicate 
respectively, the type of final classifier used, top 64 Short-Time Fourier Transform gained from the whole 512, 

the top 64 expansion coefficients extracted using standard LOB with Relative Entropy as the cost function. 
LRBuM064 is the top 64 co-ordinates obtained using a non-additive Mahalanobis Distance measure. CP and 

WP indicate whether wavelet or cosine packets were used, where CID stands for the Coitlet wavelet packet with 
10 vanishing moments. 
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Technique 

LOA on STFr64 

LOA on WP-
LOBuRE 

08 
64 

LOA on WP-
LRBuMO 

08 
64 

LOA on STFf64 

LOA on 
WP-

LOBuRE 
S7 

64 

LOA on WP 
MLRBu 

S7 
M064 

Error Rate 
(Training) 

52.71% 

40.50% 

40.33% 

32.82% 

20.85% 

20.62% 

Error Rate 
(Testing) 

54.76% 

46.40% 

45.53% 

33.73% 

24.93% 

25.82% 

Problem 

ImI,InJ,IgI 

ImI,InJ ,1g1 

ImI,InJ,IgI 

Iwl,ly/,lIl,1rl 

Iwl,ly/,II/,1rl 

Iwl,ly/,II/,1rl 

Table 5.2: Misclassification rates of the feature extraction techniques when applied to the two phoneme 
classification problems of nasal stops and semivowels. Quantities in bold show the best overall classification 
rate achieved which in both studies was on top 64 coefficients with standard LOB on wavelet packets. LOA, 

STFf64, LOB64uRE indicate respectively, the type of final classifier used, top 64 Short-Time Fourier 
Transform gained from the whole 512, the top 64 expansion coefficients extracted using standard LOB with 
Relative Entropy as the cost function. LRBuM064 is the top 64 co-ordinates obtained using a non-additive 
Mahalanobis Distance measure. WP indicates that wavelet packets were used in the experiment, where 08 

stands for the eighth order Oaubechies wavelet packet and S7 for a seventh order Symmlet packet. 
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Technique 

LOA on STFf64 

LOA on wp-
LOBuRE 07,J 

64 =5 

LOA on CP,J 
MLRBu 

MD 64 =5 

LOA on STFf64 

LOA on wp-
LOBuRE CIQ 

64 

LOA on wp 
MLRBu CIQ 

M064 

Error Rate 
(Training) 

23.53% 

17.29% 

17.48% 

23.84% 

15.83% 

15.83% 

Error Rate 
(Testing) 

23.54% 

17.64% 

18.08% 

26.18% 

17.49% 

16.82% 

Problem 

If! .rr 1,/ si 

IfI ,rr 1,/ sI 

1f!.rrt,/sI 

Iv/,/dh/,/z/ 

Iv/,/dh/,/z/ 

Ivl,ldh/,1z/ 

Table 5.3: Misclassification rates of the feature extraction techniques when applied to the two phoneme 
classification problems of un voiced and voiced stops. Quantities in bold show the best overall classification rate 

achieved which in both studies was on top 64 coefficients with standard LOB on wavelet packets. LOA, 
STFT64, LOB64uRE indicate respectively, the type of final classifier used, top 64 Short-Time Fourier 

Transform gained from the whole 512, the top 64 expansion coefficients extracted using standard LOB with 
Relative Entropy as the cost function. LRBuM064 is the top 64 co-ordinates obtained using a non-additive 

Mahalanobis Distance measure. WP indicates where wavelet packets were used in the experiment, D7 stands 
for a Oaubechies order 7 wavelet and C IQ stands for the Coiflet wavelet packet with IQ vanishing moments. 

J=5 indicates the level of decomposition for the 1f/,/TI,IsI problem 
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5.5 Discussion 

The discussion will start by noting that the 'feature selection' rule used in both LDB and 

modified LRB was the same as the discriminant measure which determined the best-subspace 

itself in both cases. With regard to the best k < n, a commonly used rule of thumb of 

approximately 10% of the original signal dimensionality was chosen. 

The performance of the modified LRB algorithm was seen to outperform the original LOB 

algorithm for both cases examined (with this particular choice of k) and also in both cases, 

wavelet packets do best. The reader may also note that both the original LDB and modified 

LRB give results improving on those given for the liyl, laa!, laxl problem of Chapter 4; 

modified LRB in this case does as expected, namely it has successfully extracted a basis to 

maximise the relation of (5.12). This may be seen by examining training performance, which 

is a measure of how well the basis extracted linearly separates the signa\. The result of 8.51 % 

for modified LRB using wavelet packets is the best of all. The prediction performance of 

8.25% is also an improvement over standard LDB of around 9.8% reduction in 

misclassification rate. The fact that the misclassification rate is relatively low indicates that 

this problem is linearly separable. It therefore makes sense to apply modified LRB in this 

case (closeness of training and testing results indicates that good generalisation has been 

achieved in this method). 

In the case of the Ipl, It, /k/ sounds, however, prediction performance is slightly degraded 

compared to Chapter 4: Testing misclassification rates of 38.06% with StdBB using entropy 

compared with 39.68% with modified LRB using Mahalanobis distance although modified 

LRB still outperforms LDB contrary to the results reported for the original LRB in [IS]. 

However, a significant improvement is seen in this case when the training rates are 

considered: 32.15% for Best-Basis compared with 25.45% for modified LRB using 

Mahalanobis distance. Normally, it is desirable to have the difference between training and 

testing rates as small as possible since this signifies a classifier to have learnt well the 

features of a particular problem. One would also normally associate, for a difficult problem 

like this where generalisation is poor,'a jump in training performance as indicative of over-
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adaptation and consequently, it would be expected that the prediction perfonnance would fall 

correspondingly. However this has not occurred, indicating perhaps that the linear 

separability of the training features has certainly been much improved although 

generalisation is still difficult but without suffering an appreciable fall in prediction rates. 

Figure 5.2 compares the covariance matrices of the training data derived via LDA before and 

after feature extraction for the liyl, laa!, lax! problem. Before feature extraction and 

dimensionality reduction, they show little structure beyond noise except at low frequencies 

and are difficult to interpret. After implementing modified LRB using Mahalanobis costs, the 

variates are much less noisy, showing more low frequency structure. Most of the signal 

energy has been compacted into a top few co-ordinates on the diagonal - indicating these 

methods have extracted independent features suitable for classification. It is worth comparing 

original LDB for the same variates. Modified LRB can be seen as having improved 

diagonalisation of the covariance matrix (Figure 5.3). 

Figures 5.4 and 5.5 show the comparative perfonnance of the two methods as the value of k 

is varied. One can note in the case of Figure 5.4 that LDB does significantly better on a small 

number of features compared to MLRB whose perfonnance is best when k is around 10% of 

the total signal dimension. The training features for both classification problems are more 

independent when extracted via MLRB however, Figure 5.5 in particular shows that this is at 

the expense of worse generalisation capability compared with LOB. This could perhaps be 

overcome by gaining the subspace cost for MLRB using a validation data-set rather than the 

training data-set. 

The initial computational cost of LRB related methods are significantly greater than LDB 

due to the reasons mentioned in Section 5.1.2. However this is only a training cost and once a 

basis tree is worked out, all subsequent signal known to belong to that phonetic subclass can 

be decomposed in a comparably fast manner to standard Best Basis procedures. 

The type of system proposed has been shown to provide some improvement over standard 

LOB in certain situations. As a pre-processing technique to other standard classifiers e.g. 

(Hidden Markov Models) HMM's or ANN's it shows promise. 
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5.6 Summary 

This chapter introduced a new discriminant feature extractor which captures local signal 

attributes to enhance the performance of the final classifier. The algorithm which was called 

the Modified Local Regression Basis algorithm (MLRB) compared well with a related 

method which uses an additive cost function - the Local Discriminant Basis algorithm (LOB) 

and was seen to provide features that helped to diagonalise the covariance matrix of the 

training data. This was shown to be equivalent to obtaining more independent features and 

thus training misclassification performance for MLRB was appropriately decreased without 

much loss of generality by the classifier. Both discriminant techniques were also seen to give 

similar performance to the techniques examined in Chapters 3 and 4. 
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No. of Features 

(c) 
Figure 5.2 First three rows of covariance matrix 1: for the /iy/,/aaJ,/ax/ problem from (a) Original Euclidean 

bases (original signal) (b) Top 64 co-ordinates derived via the Daubechies wavelet with 6 vanishing moments 
and the modified LRB algorithm using the Mahalanobis distance measure and (c) The original LDB algorithm 
with a Daubechies 6 wavelet and Relative Entropy as the discriminant energy concentration measure. Note the 

noisiness of (a) compared with (b) and (c) where the discriminant energies are well packed into the top few 
coefficients. Note also the modified LRB algorithm in which significantly more energy is present in the first 

few co-ordinates. This, and the fact the matrix is better diagonalised results in superior overall training 
performance for this method although prediction performance is correspondingly decreased. 
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Figure 5.3 (a) Pooled covariance matrix of the training dala using the top k=64 mosl discriminant expansion 
coefficients.(b) Corresponding modified LRB matrix showing significantly higher concentration of energy 

along the diagonal. When this matrix is diagonalised. eqn.(5.l2) reduces to the square of the Euclidean distance. 
Problem is /p/,/tI,/kJ. 
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Figure 5.4 Misclassification rates of /iy/,/aaJ,/ax/ problem vs. number of discriminant features supplied to the 
classifier using LDB and MLRB respectively. MLRB outperforms LDB when around 10% of features are used, 

however LDB does significantly better when only -4% of features are used. 

123 



70.--------------------------------------------, 

60 

20 

- +- . Training Misclassiflcation (MLRB) 

----tr-- Training Misclassification(LDB) 

8 Testing Misclassiftcation (MLRB) 

- - x - . Testing Misclassiftcation(LDB) 

x 
·x 

10+-------~--------,_------~--------,_-------4 

o 20 40 60 80 100 
No. of Features 

Figure 5.5 Misclassification rates of Ip/,/tI,1kI problem vs. number of discriminant features supplied to the 
classifier using LOB and MLRB respectively. One can see higher adaptation to the training data using MLRB. 
This affects the generalisation of this method compared to LOB indicating a cenain amount of over adaptation 

has occurred. 
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CHAPTER SIX 

Conclusions 

6.1 Overview 

This thesis has explored different ways of evaluating recognition features in speech 

signals using wavelets and their relatives. There were three main experimental chapters 

each considering a different approach to utilising the properties of wavelets in the setting 

of phoneme classification. The evaluations carried out demonstrated the importance of 

understanding the mathematical properties of wavelets. Wavelets now compose a field of 

mathematics that is now quite mature and well-understood where it is widely recognised 

that in certain situations it makes better sense to use wavelets rather than conventional 

techniques. This could be due to a number of reasons. For example in compression of real 

world signals and images, wavelets provide well-localised time-frequency information, 

and can take advantage of the closely correlated internal structures that exist in real-world 

signals resulting in a more compact representation. Wavelets are therefore good 

descriptors in their ability to approximate, but when it comes to applications such as 
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feature extraction for speech classification where and why might they be seen to provide 

improvement? 

Chapter 3 saw the straightforward replacement of Fourier methods in the pre

classification stage of a speech recognition system by the standard dyadic wavelet 

transform. Overall, when the top -10% of signal features were chosen by ranking the 

squares of their respective expansion coefficients wavelets, they did significantly better 

than the STFf with some basis functions more able to provide good approximation than 

others. This was found to be explicable when one considered the Lipschitz regularity of 

the two methods from which it was subsequently recognised that the rate of decay of the 

wavelet transform was faster in the neighbourhood of high frequency events than Fourier 

techniques. This phenomena is related to the zooming property of wavelets which allows 

multiresolutional analysis of a signal. 

Chapter 4 considered the application of the Best-Basis algorithm originally designed for 

compression to the same set of problems. The Best Basis algorithm or more generally, the 

Best Basis paradigm extends the desirable attributes of wavelets to provide a framework 

which adapts according to the information content of the signal. It was noted that this 

property corresponded to an adaptive tiling of the time frequency plane where the 

Heisenberg windows were well adjusted to the spectra they contain. 

Chapter 5 saw the development of the Best Basis paradigm for classification. In this 

setting, it is known as the Local Discriminant Basis algorithm, and here it was applied to 

the problem of speech classification. This approach differs fundamentally from the 

techniques described in Chapters 3 and 4 in that characteristics of the signal classes are 

taken into account when calculating the Best Basis. It was noted that distance measures 

such as Relative Entropy or Hellinger distance may not be an optimal choice for this 

particular problem. This framework was modified by viewing classification and feature 

extraction as one process, in that the classification methods itself decides which features 

are supplied to it by modelling class densities at each subspace and calculating class 

distances based on the measure used in the final classifier. This new approach was seen to 
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improve overall operating system characteristics (misclassification rate) under certain 

conditions. 

The findings of this thesis can be summarised as follows. 

6.1.1 Dyadic Wavelet Transform 

o Reduces the misclassification rate on all phoneme classification problems 

examined - compared to Fourier techniques. 

o The type of wavelet basis used affects the perfonnance. Overall it was found that 

wavelets with a higher order of vanishing moments do better, due to the irregular 

nature of the speech signals. 

o The features derived via wavelets retain spectral infonnation such as fonnant 

frequencies. Distances derived from these features via LDA were seen to be directly 

related to differing points of articulation within the vocal tract, in the case of vowel 

sounds. 

o The DWT provided best improvement on those groups of speech signals which 

contained transitory components. This was related to the fact that wavelets can 

differentiate between global and pointwise signal regularity (Lipschitz). 

o Non-linear operations on wavelet features provide improvement over linear 

methods for speech classification problems. 

o Dyadic wavelet bases offer a convenient framework for decomposing signals 

according to their time-frequency content, however the localisation characteristics are 

fixed as follows: high frequency events have narrow time support with broad 

frequency support. For low frequency events the converse is true. The results in this 

chapter motivated investigation into adaptive time-frequency tilings as described in 

Chapter 4. 
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6.1.2 The Best Basis Algorithm 

o Overall improvement in misclassification rates compared with the DWT. 

o In addition to the type of wavelet basis used, an extra parameter needs to be chosen a 

priori:- the cost function. The most robust overall choice for the speech problems was 

seen to be an I' cost measure. This is a typical choice for improving robustness in real 

world datasets which typically contain outliers. 

o Additional robustness is related to translation InvarIance. The cycle-spinning 

algorithm was applied to our datasets to try and reduce this. Effectively, cycle spinning 

increases the numbers of samples in the training and testing datasets by producing 

circularly shifted versions of each signal. It provided some improvement in one of the 

two cases tried, indicating that some of the features used for recognition are, to some 

extent dependent on position. It was also noted that the number of spins required, or 

block size depended on the problem. 

o It was noted that for transitory types of signal, the BB algorithm outperforms the 

DWT quite significantly. Two classification problems were chosen for comparison, one 

which was approximately smooth - /iy/,/aaJ, and taxI and one which was more 

transitory in nature - Ip/,/t/,/k/. The BB approach improved prediction performance for 

the Ip/,/t/,/k/ problem and slightly worsened the liy/,/aaJ, and lax! case. Overall, in 5 out 

of the 6 classification examples tried, whether BB provided improvement or not, it was 

seen to have reduced the difference between training and testing performance. This 

indicated that the extra flexibility of the BB features were more easily learnt by the 

classifier. 

6.1.3 Discriminant Wavelet Methods 

Some of the variability within Best Basis searches mentioned in Chapter 4 is likely to 

have a bigger effect on real world problems like those investigated here, which contain 

large numbers of samples with random noise. This motivated an investigation into 

discriminant wavelet packet approaches where overall class structures could be modelled 
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and searched using wavelets and the Best Basis type searches. The LDB algorithm of 

Saito and Coifman was implemented and tested on the speech examples. The following 

was concluded: 

• LDB did better than standard BB approaches in some cases and slightly worse in 

others although results were comparable. It was decided that this could be due to two 

factors. First, LDB uses the so-called time-frequency energy map to represent classes. 

This may be problematic in certain situations. For example, if one were attempting to 

discriminate between two phase shifted sine waves, the TFE (Time-Frequency 

Energy) or mean of both will be zero. Second, the discriminant measure of a sub-node 

is taken as an approximation of class contrast (using Relative Entropy or some such 

similar measure) when what one really needs is a more direct class separability 

measure. 

• With this in mind, a new approach was developed where the Mahalanobis 

'Between to Within' class scatter was measured and used as a cost. It was recognised 

that this cost was non-additive and as such was similar to the LRB (Local Regression 

Basis) algorithm of Saito although the difference is that his algorithm uses the final 

regression (misclassification) training error whereas our approach still concentrates 

on distances amongst classes. 

• Modified LRB was seen to improve performance over LDB in 4 out of the 6 cases 

examined. This could be seen on examination of the pooled covariance matrix of the 

training data using modified LRB features; more of the discriminant training data 

energy was concentrated along the diagonal in fewer coefficients compared to LDB. 

However, this was only the case for k-I 0% of signal length n (the benchmark number 

of features commonly used in discrimination problems). When k was varied, it was 

seen that although MLRB did better on the training data, it had over-adapted to the 

problem. It was noted that gaining the MLRB cost from a validation data-set instead 

of the training data itself could provide a solution to this. 

• Modified LRB provided a closer relationship between feature extraction and 

classification stages compared to LDB. 
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6.2 Future Work 

Wavelet based feature extraction makes theoretical sense to implement in speech 

recognition systems. Which type of approach to choose really depends on the problem. 

This thesis demonstrated that wavelets can prove useful if standard parameterisation 

techniques are simply substituted for corresponding wavelet approaches. Furthermore, 

with careful development, the wavelet transform has been extended to become yet more 

adaptive, and using the Library of Bases (Best Basis) paradigm offers an even more 

flexible framework. To fully take advantage of this, one now has the possibility of using 

techniques like LDB and modified LRB to gain a better understanding of the nature of 

the phonemes. In other words, these kind of techniques can be thought of as being able to 

iteratively peel off irrelevant information for discrimination (in a multiresolutional way), 

hence simplifying the problem. This should yield a different view of speech via these 

new features and we should try to interpret them in the same way as (Linear Predictive 

Coding) LPC and FFT parameters. The Best Basis paradigm is thus a useful research tool 

for speech so how else could one improve its performance? Forging closer links between 

discriminant wavelet approaches and the final classifier is another option; the above 

techniques should be extended to encompass more sophisticated classifiers such as 

Artificial Neural Networks (ANNs) or Hidden Markov Models (HMMs). Furthermore, 

the scope of the wavelet techniques should still provide comparable improvement if 

fundamental block sizes are increased, say, from phoneme to word. Thus further 

improvement of the modified LRB and LDB features could include work toward 

obtaining synchronous features suitable for HMM's or Recurrent Neural Networks. 
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ABSTRACT 

In an effort lo provide a more efficient representation of the 
acoustical speech signal in the pre-classification stage of a speech 
recognition system, we consider the application of the Best-Basis 
Algorithm of Caifman and Wickerhauser. This combines the 
advantages of using a smooth, compactly-supported wavelet basis 
with an adaptive time-scale analysis dependent on the problem at 
hand. 
We start by briefly reviewing areas within speech recognition 
where the Wavelet Transform has been applied with some success, 
Examples include pitch detection, formant tracking, phoneme 
classification. Finally, our wavelet based feature extraction system 
is described and its performance on a simple phonetic 
classification problem given. 

1. INTRODUCTION 
Speech recognition systems generally carry out some kind of 
classification/recognition based upon speech features which are 
usually obtained via time-frequency representations such as Short 
Time Fourier Transforms (SlFTs) or Linear Predictive Coding 
(LPC) techniques. In some respects, these methods may not be 
suitable for representing speech; they assume signal stationarity 
within a given time frame and may therefore lack the ability to 
analyse localised events accurately. Furthermore, the LPC 
approach assumes a particular linear (all-pole) model of speech 
production which strictly speaking is not the case, 
Other approaches based on Cohens general class of time-frequency 
distributions such as the Cone-Kernel and Choi-WilIiams methods 
have also found use in speech recognition applications but have 
the drawback of introducing unwanted cross-terms into the 
representation, 

The Wavelet Transform overcomes some of these 
limitations; it can provide a constant-Q analysis of a given signal 
by projection onto a set of basis functions that are scale variant 
with frequency, Each wavelet is a shifted scaled version of an 
original or mother wavelet. These families are usually orthogonal 
to one another, important since this yields computational 
efficiency and ease of numerical implementation. Other factors 
influencing the choice of Wavelet Transforms over conventional 
methods include their ability to capture localised features. Also, 
developments aimed at generalisation such as the Best-Basis 
Paradigm of Coifman and Wickerhauser [1] make for more 
flexible and useful representations, 
We consider the possibility of providing a unified wavelet-based 
feature extraction tool, one designed to contend optimally with the 
acoustical characterisics particular to speech, in the most 
computationally efficient manner. 
The indications are that the Wavelet Transform and its variants are 
useful in speech recognition due to their good feature localisation 

but furthermore because more accurate (non-linear) speech 
production models can be assumed [2]. The adaptive nature of 
some existing techniques results in a reduction of error due to 
inter/intra speaker variation. 
We shall begin by defining the wavelet transform. 

2. WAVELETS AND SPEECH 

2.1 The Discrete Wavelet Transform 
The basic wavelet function If/(t} can be written 

I (1- r) 
'lfr.lJ = .r;; 'If -a- (1) 

The Continuous Wavelet Transform is then defined as 

X(r.a)= .[,; Jx(t)II',(,:r)dl (2) 

where 'I'(t) is known as the analysing wavelet or prototype 

function. Typically. these continuous wavelet functions are 
overcomplete and therefore do not form a true orthonormal basis. 
Redundancy may be eliminated by appropriately sampling the 
wavelet on a dyadic lattice, Le. in a manner that reflects the tiling 
of the time-frequency plane as in figure I. An orthononnal basis of 
compactly supported wavelets can then be obtained to 

span L2 (9i) (the space of all finite energy signals) by shifting 

and dilating the wavelet function !fICt) i.e. 

(3) 

where n=1.2 • ... represents the scale and m=O,l. ... the time 
shift. Note that the scaling factor a is here chosen as 2 in order that 
the frequency axis is decomposed in octaves. Now if one chooses a 
suitable wavelet, a true orthonormal basis will be obtained. This 
results in a multiresolutional analysis of a given signal over 

L2 (9i) , yielding a time -scale decomposition similar to that 

exhibited in Figure I, For further details on MRA, the reader is 
referred to the work of Mallat [31. 

f 

Figure 1: Tiling of time-frequency plane via the wavelet 
Transform. 



2.2 Pitch and Formant Extraction using 
Wavelet Analysis 
Kadambe & Boudreaux-Bartels [4] have used the multiresolutional 
properties of wavelets to propose an event -based pitch-detection 
system. Their method works by detecting the Glottal Closure 
Instant (GCI) and determines the pitch for each sample within a 
particular speech segment. This approach is particularly suitable 
for noisy speech. 
Evangelista [5] has developed a 'Pitch-Synchronous' wavelet 
representation using a modified version of the QMF (Quadrature 
Mirror Filter) multiplexed filter bank outlined in [6]. Using the 
MRA properties of wavelets, the pitch-synchronous wavelet 
transform (PSWT) can be used for pitch tracking once the pitch 
has been extracted using conventional methods. Unique 
characterisation of speech events such as fricatives and occlusive 
unvoiced consonants may thus be achieved via the variation in the 
pitch of the signal. 
Maes [7] reports success in the extraction of pitch and fonnants 
from speech. The speech signal is first decomposed into its 
subbands using the wavelet transform and the temporal behaviour 
of the speech in each subband is monitored using a 'squeezing' 
algorithm. Those components exhibiting similar temporal 
behaviour are then recombined and the resulting principle 
components represent the pitch and formant characteristics of the 
speech signal. 
In [11]. Wesfried introduces a speech representation based on the 
Adapted Local Trigonometric Transfonn. The window size into 
which the data is partitioned is dependent upon the spectrum it 
contains, and the transitions between windows is seen to be 
suitable for segmentation into voiced-un voiced portions. A 
formant representaion is also introduced by carrying out the 
following compression: locating and retaining the centres of mass 
for the highest-value peaks of the transform. From this, the local 
spectrum is said to represent the formant of the speech signal. 

2.3 Phoneme and Speaker Classification using 
Adaptive Wavelets 
The adaptive wavelet transform and the concept of the super 
wavelet were developed as an alternative to existing wavelet 
representation schemes (8]. Given a wavelet function of the form 
shown in (2), the idea is to iteratively find the translation and 
dilation parameters, T and a respectively such that some 
application-dependent energy function is minimised. With respect 
to the classification problem, a set of wavelet coefficients would 
normally be estimated to represent certain features of a given 
signal. Classification can then be performed by using the feature 
set as the input to a neural net classifier. The adaptive wavelet 
based classifier is given as 

v(n) = IT(u.) = 1t. w, t x. (t)~(' ::')] (4) 

where v(n) is the output for the nth training vector Xn(l) and 
a(z) = 1I[I+exp(-z)]. For two classes, wl,ak,',t can be 

optimised by minimising the energy function in the least squares 
sense (see eq 5), In [2] then, two classification examples are 
considered with application to speech; classification of unvoiced 
phonemes and speaker identification, 

N 2 

E=+~)d.-v.) (5) 
n=J 

The system first models the phonemes using a mother wavelet 
similar to Figure 2 (used because of its noise-like 
characteristics)only of order 3 and then presents the wavelet 
features to a 2 layer feed-forward neural network, Speaker i.d, is 
similarly achieved only using a Morlet wavelet to model the 
phonemes since these are voiced and hence semi-periodic and 
smooth, The classifier then attempts to identify a speaker by 
clustering the associated utterances into one class. Results reported 
are very high accuracy, although exhaustive testing on a larger 
database will be needed to evaluate the method more accurately. 

time 

Figure 2: Daubechies Wavelet of order 4. This type of wavelet is 
used in Kadambe's unvoiced sounds classifier because of its 
suitability for modelling high frequency noise-like signals. 

3. THE BEST-BASIS ALGORITHM 
A generalisation of the Wavelet Transform originally designed for 
signal compression is the Best-basis algorithm first described in 
[1]. The idea is to do transform coding on a signal by choosing a 
wavelet basis which is best suited for the given problem, resulting 
in an adaptive time-scale analysis. In particular, two possibilities 
are proposed, the smooth local trigonometric transforms which 
essentially performs local Fourier analysis On the signal, and its 
frequency domain conjugate, the wavelet packet which similarly 
partitions the frequency axis smoothly. Since these transforms 
operate on recursively partitioned intervals on the respective axis, 
the bases whether wavelet packet or local trigonometric are said to 
form a library of orrhonormal bases. If these bases are ordered by 
refinement, they form a tree which can be efficiently searched to 
result in only those coefficients which contain the most 
information. 

I v time 

Figure 3: An example of a modulated smooth trigonometric 
packet. A localised sine dictionary, for example, would consist of a 
number of scaled, oscillatory versions of these. 

In summary, the aim is to extract the maximum information or 
features from our signal by projection onto a co-ordinate system or 
basis function in which that signal is best (most efficiently) 
represented. What is meant by efficiency really depends on the 
final object. If compression is required, then the most efficient 
basis will be the one wherein most of the information is contained 
in just a few coefficients. On the other hand if we are interested in 
classification, a basis which most uniquely represents a given class 



of signal in the presence of other known classes will be most 
desirable. 

Figure 4 shows the structure of the wavelet based acoustic
phonetic feature extractor used in the pre-classification stage. Our 
library of basis contained just two dictionaries, wavelet packets 
and smooth localised cosine packets, although others are certainly 
possible. Thus the first stage of the system is to choose the most 
suitable of these for the problem at hand. This is done in practice 
by simply picking the one which gives minimum entropy among 
them [IOJ. 

3.1 Experimental 

11-1 O,h" H D'~:.~:~" I·: 
Input phoneme 

Best 
Basis 

Min 
Entropy, 

~ Choose _ 
Dictionary • ~ 

W avelct Fcaturcs to 
Classifier 

Figure 4: Wavelet-based feature extractor. 

After Kadambe et al [2] who implement phonetic modelling and 
classification using adaptive wavelets, we use for training the 
voiced phoneme IdJ as in had, and the two unvoiced phonemes Is! 
as in ask and Iv as in was, These phonemes were extracted from a 
single male speaker in the TIMIT database. Each signal was low
pass filtered to resemble 8Khz band-limited telephone speech. The 
training features for the two layer feed-forward neural network 
were then obtained via the best-basis paradigm. A dictionary was 
chosen from our library of possible bases for each phoneme, 
dependent on which provided the minimum of a specified cost 
function, in this case entropy. As it turned out, the LCf (Local 
Cosine Transfonn) dictionary was selected for the voiced phoneme 
Id} since these set of functions are smooth and most suitable for 
representing oscillatory signals. The Is! and Iv phonemes which 
correspond to different types of noise were best represented in 
(ems of the wavelet packet with basis functions similar to Figure 
2, i.e. a Daubechies wavelet of order 4. A fast search, (Le. 

O(n[lognjP) where p=O,1,2 depending on the basis type) was 

then perfonned in a binary tree similar to that of Figure 5. 
The wavelet features of the training vectors obtained using this 
method are shown in Figure 6(a), (b), and (c) along with the 
original signals decimated to a length of 1024 samples. A 
restriction, in fact, of this method is that it requires a dyadic length 
which is a power of 2. To reduce the dimensionality of the training 
vectors, each signal was segmented into 4 equal parts. Similarly to 
Kadambe et al [2], we added Gaussian noise with u = 0.1 
independently to the first segment of each phoneme to give an 
extra ten training vectors for each class, Thus we obtained a total 
of 42 training vectors all normalised to unit nonn, The neural 
network classifier had 5 nodes in its hidden layer after empirically 
determining that this number gave sufficient classification. When 

the classifier was tested on the training data it gave 100% accuracy 
with a 90% confidence threshold, 

x. x, 

I;b g'b 

gh, ::, I hb.: hh, 

Figure 5: Best-Basis wavelet approximations organise themselves 
into a binary tree. 

The next stage was to test the trained network on unseen data. We 
used the same kind of phonemes from the same speaker but uttered 
under different context,ldJ as in dark, Is! as in struggle, and Iv as 
in Herb's (see Figure 7). Overall classification was again 100% 
but with a lower confidence level, about 60%. 

4. EVALUATION 
The acoustic-phonetic feature extraction method described here 
takes advantage of the adaptive time-frequency localisation 
characteristics of the Best-Basis method to efficiently represent 
perceptually relevant acoustical events. That the features extracted 
are suitable for classification tasks has been illustrated by means of 
a simple training and test set consisting of those signal features 
contained in the wavelet coefficients. The results at this stage are 
promising and warrant the testing of this method on a larger 
database of speech data. It is interesting to note the structural 
similarities between the transformed data sets in Figures 6(0 and 
7(a) of the contextually different phonemes Izl used in the training 
and test phonemes respectively. The Is! and IdI phonemes exhibit 
a similar characterisitic. 
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Figure 6 (a)-(c): Original training signal. (d)-(I) Transform of 
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Figure 7: Wavelet Transforms of test data. Note the correlation 
between transforms of contextually different phonemes. 
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ABSTRACT 

Reduction of signal dimensionality in the pre-classification stage of classification systems is 
usually done via one of many classical parameter extraction methods, for example Linear 
Predictive modelling or Fourier analysis. Many of these methods concentrate on the best possible 
signal representation and help the subsequent classification stage only in that they have 
effectively compressed (according to a particular criterion) the signal thus requiring less training 
samples. 
In this paper, we consider the situation where the classification is helped in the feature extraction 
stage by supplying it with good discriminative features obtained by transformation onto a 
coordinate system consisting of a collection of orthonormal functions that are well localised in 
both time and frequency and then choosing the most suitable of these for the problem at hand. 

1. INTRODUCTION 
Conventional feature extraction mechanisms 
have typically been derived through 
modelling of the signal eg (LPC) or via its 
analysis e.g.(Fourier methods). The wavelet 
transform which has been recently 
developed is closely related to Fourier 
techniques but has some important 
fundamental differences. The two most 
obvious advantages are the ability of the 
WT to provide a multiresolutional analysis 
(MRA), unlike the Short Time Fourier 
Transform which assumes signal stationarity 
within its fixed time-frames, thus possibly 
missing important localised speech events of 
importance in the subsequent recognition 
stage. The second major difference of the 
WT is that the basis functions can be one of 
a number that can equally be used according 
to the problem at hand. These basis 
functions, or analysing functions are derived 
from a single mother wavelet and together 
will form an orthonormal basis of the 1"2 
space. 
Typically, the continuous wavelet transform 
is overcomplete and therefore does not form 

a true orthonormal basis. Redundancy may 
be eliminated by appropriately sampling the 
wavelet on a dyadic lattice, i.e. in a manner 
that reflects the tiling of the time-frequency 
plane as shown in Figure 1. An orthonormal 
basis of compactly supported wavelets can 

then be obtained to span e (\R) , (the space 

of all finite energy signals) by shifting and 
dilating the wavelet function If/(t) i.e. 

If/,,,,(k) = 2-,121f/(2-,12 k-mb,) (3) 

where n= 1 ,2, . . . represents the scale and 
m=O, 1, . .. the time shift. Note that the 
scaling factor a is here chosen as 2 in order 
that the frequency axis is decomposed in 
octaves. Now if one chooses a suitable 
wavelet, a true orthonormal basis will be 
obtained. This results in a multiresolutional 
analysis of a given signal over 1"2 space, 
yielding a time -scale decomposition similar 
to that exhibited in Figure 1. For further 
details on MRA, the reader is referred to the 
work of Mallat [3]. 
In this paper, we apply the wavelet 
transform in the context of the Best-Basis 
paradigm to the problem of signal 
classification. 
Discriminative Feature extraction is 
achieved via the Local Discriminant Basis 



algorithm outlined in Section 2.2. The 
emerging basis (chosen from a library of 
bases) is the one that is best suited in the 
discriminant sense for the given problem 
and provides a set of Wavelet coefficients or 
coordinates that best highlight the 
differences between classes. The resulting 
set of features are then used to design a 
classifier, in our case a three-layer feed
forward neural-network upon which the 
efficacy of our new feature set is examined. 
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Figure 1: Tiling of time-frequency plane 
via the Wavelet Transform. 

2. THE BEST-BASIS 
PARADIGM AND A LIBRARY 

OF BASES. 

A generalisation of the Wavelet Transform 
originally designed for signal compression 
is the Best-basis algorithm first described in 
[I]. The idea is to do transform coding on a 
signal by choosing a wavelet basis which is 
best suited for the gi ven problem, resulting 
in an adaptive time-scale analysis. In 
particular, two possibilities are proposed, 
the smooth local trigonometric transforms 
which essentially performs local Fourier 
analysis on the signal, and its frequency 
domain conjugate, the wavelet packet which 
similarly partitions the frequency axis 
smoothly. Since these transforms operate on 
recursively partitioned intervals on the 
respective axis, the bases whether wavelet 
packet or local trigonometric are said to 
form a library of orthonormal bases. If 
these bases are ordered by refinement, they 
form a tree which can be efficiently 
searched to result in only those coefficients 
which contain the most information. 

I ~~ 
mlV time 

Figure 3: An example of a modulated 
smooth trigonometric packet. A localised 
sine dictionary, for example, would consist 
of a number of scaled, oscillatory versions 
of these. 

In summary, the aim is to extract the 
maximum information or features from our 
signal by projection onto a co-ordinate 
system or basis function in which that signal 
is best (most efficiently) represented. What 
is meant by efficiency really depends on the 
final object. If compression is required, then 
the most efficient basis will be the one 
wherein most of the information is 
contained in just a few coefficients. On the 
other hand if we are interested In 

classification, a basis which most uniquely 
represents a given class of signal in the 
presence of other known classes will be 
most desirable. 

'. " 
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Figure 2: Best-Basis wavelet 
approximations organise themselves into a 
binary tree. 

2.1 Cost Functions 
The criteria used to choose the best basis via 
a search through the binary tree really 
depends on the application. Eg. For signal 
compression the goal is really a quest for 
minimum distortion and so the Shannon 
Entropy is a natural choice. 

For the classification problem a number of 
measures exist see eg (4) for more detail. 



Several have been suggested for use with 
the LOB (5) the most important of which 
include 
• Relative Entropy or Kullback- Leibler 

divergence: 

D(p,q) = 2>, \Og(%) (4) 
, 

where the following convention holds: 
10g(0) = ---«J, log(x I 0) = -too for x>=O; 
the more simple measure of 
• 1"2 distance: 

D(p, q) = I~ - qll~ 
i.e. the square of the 1"2 norm. Note that this 
measure can be extended for all l"p space 
(p>=l). 
• Hellinger distance: 

D(p, q) = L ( .J p(i) -.J q(i) )' 

The discriminant measure is used to discern 
which the nodes in our subs pace carry the 
highest discriminative information and is 
therefore instrumental in the Best-Basis 
selection. The next question is what quantity 
should we provide to our D(.) (based on the 
Wavelet Transform) that carries all 
information necessary to characterise and 
thus discriminate amongst a collection of 
classes. 

2.2 The Local Discriminant Basis 
Algorithm 

In the original Best-Basis Algorithm first 
proposed in (I), the Shannon entropy is the 
measure used to search through a Wavelet 
Packet table similar to that shown in Figure 
2. Since our problem is that of 
classification, we require a measure per 
class, based on the time-frequency 
dictionary that will act as a good indicator 
regarding the time-frequency properties of 
a given class. In the original LOB described 
in (6), a time frequency energy map is 
defined as a possible quantity: 

Ne 

"(w. x te))' 
~ j.k.m, 

TFE ,'~-'~~------
(j,k.m) = - Ne 

LI~:e)ll~ 
jcl 

where Nc is the number of training samples 
per class, j, k, m form a table with j = 0, ... , 
J representing depth, k = 0, ... , i - 1, the 
box index at a particular depth m = 0, .... 
2""-j - 1, the coefficient index within a given 
packet. The resulting distributions per class 
are then discerned between by comparing 
them in a pairwise manner using any of the 
measures in 2.1. The 'Best' Basis is selected 
by searching the discriminant space and 
choosing those subspaces (k of them) that 
contain the maximum amount of 
information (6). A Feature Compression 
stage can be subsequently carried out which 
chooses the top q ( < k ) most discriminant 
vectors. 

3. EXAMPLES. 

3.1 Triangular Waveform 
Classification 

To examine the effectiveness of the LOB 
for extracting time-frequency features, we 
apply it to a three class triangular waveform 
problem, similar to that examined in (7). 
The three classes are generated according to 

x, (i) = uh, (i) + (1- u)h,(i) + &(i) Class I 

x, (i) = uh, (i) + (1- u)1t., (i) + &(i) Class2 

X3 (i) = uh, (i) + (1- U )h3 (i) + &(i) Class3 
where i = 1,2, ... , 32, u is a uniform rv on 
(0,1) and &( i) is a noise term of normal 

distribution. 
Training samples of 500 observations per 
class were generated and test samples of 
300 per class. Figure 3 shows five random 
examples from each class. 
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Figure 3: Waveform Data 

Time-Frequency wavelet packet tables were 
generated using the 6-tap Coiflet wavelet 
packet and cosine packet tables using the 
smooth local trigonometric function, 
examples of both are shown in Figure 4. 

Cosine Packet 
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• 
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Figure 4: Some Basis Functions 

In these experiments, we used all LDB 
features for classification and compared the 
performance of the technique using the three 
distance measures outlined in section (2.1). 
For a classifier we used a three layer ANN 
with three nodes in its hidden layer although 
we remark that other conventional 
classifiers such as CART (Classification and 
Regression Trees)or LDA (Linear 
Discriminant Analysis) may also be used. 
Table I summarizes these where we notice 
that LDB features derived via the Cosine 
Packet transform perform the overall best. 
The IA2 and relative entropy distance 
measure perform comparably well on both 
dictionaries with the Hellinger measure 
doing slightly worse. We finally note that 

the LDB vectors looked similar to the h· and 
their derivatives. J 

Technique Error Rate Error Rate Distance 
(Training) (Testing) % Measure 

% 
ANN on STD 20.36 22.20 -

ANN on WP 14.7 15.12 IA2 
(LDB32) 

ANN on WP 15.33 16.23 Hellinger 
(LDB32) 

ANN on WP 14.47 15.66 Relative 
(LDB32) Entrooy 

ANN on CP 12.27 14.12 IA2 
(LDB32) 

ANNonCP 15.13 16.14 Hellinger 
(LDB32) 

ANNonCP 12.73 13.89 Relative 
(LDB32) Entropy 

4. Conclusions 

In this paper we tested the LDB theory 
developed tn (6) to a three class triangular 
waveform problem. Three main factors 
emerged: 

• 

• 

• 

We looked at the effect of using 
different distance criteria upon the final 
misclassification rate, Hellinger was 
seen to perform marginally worse 
overall although the choice of distance 
measure is likely to be highly dependent 
upon the given problem. 
Two dictionaries of basis functions 
were used and we saw that the Cosine 
Packet wavelet resulted in an overall 
decrease in misclassification rate. This 
is probably due to the ep 'picking out' 
the temporal differences apparent 
amongst the classes. 
The type of subsequent classification is 
also critical. A simple two layer feed
forward neural network gave 
significantly worse performance on the 
LDB features in all cases except when 
tested on the standard Euclidean co
ordinates. Saito et al in (5) reports a 
similar depreciation in classification 



when using CART as a classifier for 
geophysical signals and attributes this to 
the obliqueness of the LOB features; i.e. 
they must be combined linearly to 
reduce misclassification rates. 
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. ABSTRACT 

In this paper, a new feature extraction methodology based on 
Wavelet Transforms is examined, which unlike some 
conventional parameterisation techniques, is flexible enough 
to cope with the broadly differing characteristics of typical 
speech signals. A training phase is involved during which the 
final classifier is invoked to associate a cost function (8 
proxy for misclassification) with a given resolution. The sub 
spaces are then searched and pruned to provide a Wavelet 
Basis best suited to the classification problem. Comparative 
results are given illustrating some improvement over the 
Short-Time Faurier Transform using two differing subclasses 
of speech. 

1.1 INTRODUCTION 

Multi-scale feature extraction is an attractive option when 
representing non-stationary real world signals such as 
speech. Coupled with integrated optimisation of the feature 
extraction and classification stages the aim is to provide an 
overall improvement in recognition performance. The 
problem is relevant because as modelling techniques have 
become vastly improved in recent years, further gains in 
recognition accuracy are likely to come from the 
preprocessing stage. 

Wavelets and related techniques like subband coding have 
been applied with considerable success to speech processing 
applications such as compression [3],[4], and to a more 
limited extent on feature extraction for speech recognition I 
c1assificatian [5],[61. 
Their main advantages are a somewhat richer multiresolution 
representation of the acoustic signal and the flexibility to use 
one of a number of basis functions. Subsequent refinements 
that aim to efficiently model signal statistics by choosing the 
depth of projection and amount of signal reduction 
adaptively [I] serve to improve accuracy of the model 
further. 

Learning from the training set the best set of subspaces in 
which to model the data, results in a discriminant basis set 
which will highlight using the expansion coefficients of the 
wavelet transform (preferably just a few) the major 
differences between classes. If feature reduction is 
subsequently carried out, then the final classifier is designed 
in lower dimensional space. Assuming the data is well 
modelled in the first place, then there is a better chance of the 
classes being well separated by the classifier. 

In this paper, we propose an implementation of this 
theoretical framework for tackling phoneme classification 
problems. The method is outlined in the next section. 

2.1 Method 

Let us first define the Discrete or Dyadic Wavelet Transform. 
The wavelet transform can be developed from a number of 
existing theories, here we will consider the extension of the 
DWT from its continuous counterpart; the CWT since this is 
intuitively similar to the Short Time Fourier Transform. The 
basic analysing or mother wavelet is given by: 

a -1/2 het - r/ a) where r and a are time shift and scale 

respectively. This shifted scaled set of functions forms an 
arthanarmal family if sampled apprapriately see [7] far 
further details of this. The h(t) furthermore, satisfy a number 
of constraints to enable them to be wavelets. For example, 
most well designed wavelets have compact support both in 
time and frequency enabling good feature localisation in the 
respective domains. Wavelet regulariry, vanishing moments 
and orthogonality are design parameters which influence 
factors such as reconstruction fidelity, degree of compression 
achievable, or type of signal most suitable for decomposition 
in that wavelet basis. A wealth of literature exists on this 
subject see [7], [81, [91 for details. 

m b m If we take a = aO and T = n OaO ,where n and m are 

the discretisation integers on the dyadic grid, the resulting 
wavelets then become 

hm,n(t) = aom/2h(aomt - nbO) (I) 

with the added canstraint that J h(t)dt = O. 
The discrete wavelet transform is just a projection of a given 
signal onto these analysing functions: 

Cm,nU) = (hm,n'x) (2) 

The algorithm used in the following experiments is 
connected to the Loca1 Discriminant Bases (1] developed for 
classification as a direct extension of the original Best-Basis 
algorithm (2]. The LDB uses dictionaries of Wavelet Packets 
and Local Cosine Transforms, which will be defined shortly, 
to form a library from which the best basis dictionary may be 
chosen using, as criterion, one of a number of cost functions. 
These cost functions, of which there are a number of 
differing types, are generally additive, but all essentia1ly 
provide a measure of 'energy concentration' of the vector. 



Definition: An additive cost function guM from a sequence 

(X;l1O \R isaddilivei/9{O)=Oand 

9{{x;})= L (xi)' 

In LOB, the cost function used is relative entropy which 
should be a good measure of the power of discrimination of 
each subspace. If we consider a simple two class case, where 

P= {Pi If=l. q= {qi I;!,l are two normalised energy 

distributions of signals belonging to class I and class 2 
respectively. The Relative Entropy is then given as : 

n p. 
RE(p,q) '" LPilog-' (3) 

i=1 qi 

Typically one first computes an estimate of the class 
probabilities by calculating a time-frequency energy map for 
each signal class from the Wavelet packet I Cosine packet 
transforms. 

Definition: The Wavelet/Cosine Packet Transfonn is a 
generalisation 0/ the standard discrete wavelet transfonn 
given in (2}.1/ the signal subspace is given as nj.J: ie the 
coarsest resolution, then each node is split recursively in a 
manner similar to the D\¥T to form a binary tree of 
subnodes. If j is the depth and k the subspace number (either 

Oar J), theftrs! level will have two subspaces, '7+J,k and 

1'2j+J,k+J.The next will have four and the jh 2. In total 

2'-1 
there will be 2 possible subnodes in the tree and the 
issue is to extract a non redundant signal representation by 
assigning criterion such as Relative entropy to each node 
and pruning/growing a tree to maximise this measure. 

The DWT on the other hand is iterated only on the Low Pass 
part of its decomposition and is such that a non-redundant 
representation is guaranteed. Wavelet Packets, on the other 
hand, have the advantage of covering signal space entirely 
and provide an unfixed resolution tiling of the time
frequency plane although the Heisenberg inequality principle 
still of course holds. However they are overcomplete and 
require some kind of pruning if orthogonality is to be 
achieved. This search will be fast if the cost function is 
additive. 
Local Trigonometric Transforms or Sine/Cosine Packet 
Transforms are exactl y analogous to the WP transform 
except that they partition the time instead of the frequency 
axis smoothly. 

Here is the LDB algorithm used in the experiment. Assume 

<l>j,k is the discriminant measure, whether additive or not, let 

Dj.k represent the Best Discriminant Basis and Rj ., the fully 
expanded, redundant basis: 

0) Choose to use either trigonometric dictionaries or 
Wavelet Packets for the transform. 

I) Expand every signal in the training set into its wavelet 
packet table. 

2) Determine the set of most discriminant subspaces using 
a top down pruning methodology by testing the efficacy 
of each subspace for discrimination. 

else 

i.e. set a temporary array :3 j,k = <l> j,k 

if :3 j,k ~ :3 j+I,2k v:3 j+I,2k+l; Dj.k=Rj.k; 

D j•k=Dj+l.2kE!) Dj+l.2k+l and set 

:3 j,k = :3 j+I,2k v:3 j+I,2k+1 

3) Rank the expansion coefficients according to their 
discriminant power and from these select the top 

k :5 n features (where n = 2no 
is the dyadic length 

of the signal) for each signal in the training class to 
construct the final classifier. 

The LOB gained from step two is an orthonormal basis, also 
if the cost function is additive. this step will be fast. 
Step 3 isn't necessary since we can still design the classifier 
on all the features, however if the dimensionality of the 
problem is reduced, this step will reduce the number of 
interfering components in the decomposition, making the 
class-specific features more robust. Computational training 
times will simultaneously be reduced. In practice one can 
rank the expansion coefficients by a) Finding the 
discriminant validity of a panicular basis function in the 
LDB expansion. b) Use Fishers class separability index to 
rank the coefficients. 

Results 

In the following experiments, the above algorithm was 
implemented using the standard LDB configuration: an 
additive cost function of Relative Entropy and the best

k :s; n chosen using the same criterion. 

This approach was compared with a configuration using 
non-additive costs; a proxy for LDA-derived 
misclassification rate was used and the expansion 
coefficients ranked using Fishers class separability criterion. 
In addition in this case, we applied a small non-linear 
thresholding to the subspace vectors prior to calculating the 
misclassification rate. The final classifier in both cases was 
LDA thus in case 2 the same optimaJity criterion was used 
both in the evaluation of suitable features for class 
separability' as for the final classification estimate. The 
wavelet used in all cases was the Daubechies 6th order 
wavelet. 

The phoneme classification problems broached dealt two 
extreme cases: first, three well behaved (in the statistical 
sense), well separated vowels aa,ax,iy corresponding to the 
back, mid and front positions of the tongue during voicing 
were examined. Secondly, the three un voiced stops, p,t,k 
were discriminated against one another. In both cases, the 



phonemes were extracted from dialect region I of the Timit 
database from all speakers both male and female to ensure a 
good statistical representation of each sound. The speech 
datasets used were sampled at a rate of 16Khz, thus the 32ms 
window, which we assumed, was composed of -512 
samples. 
The results gained using the methods outlined plus a 
benchmark version of the SlFf, commonly used in speech 
parameterisation are given in Table 1. 

Technique 
Error Rate Error Rate 

Problem 
(Trainin~) (Testin2) 

LDA on 
STFf64 9.39% 10.35% iax 

LDA on 
LDB60 8.53% 9.40% iax 

LDA on 
LDBuLDA60 9.2% 10.1% iax 

LDA on 
STFf64 33.51 % 43.87% ptk 

LDA on 
LDB60 31.41% 39.68% ptk 

LDA on 
LDBuLDA60 30.68% 42.58% ptk 

Table 1: Misclassification rates of the feature extraction 
techniques when applied to two phoneme classification 
problems. LDA.STFf64.LDB60 indicate the type of final 
classifier used, 64 short-time fourier transform gained from 
whole 512 via decimation, the top 60 expansion coefficients 
extracted using standard LDB.LDBuLDA60 is the top 60 
coordinates obtained using LDA-derived optimality criterion. 

CONCLUSIONS 

With regard to the number of features chosen, approximately 
10% of the original signal dimensionality was used. The 
performance of the wavelet methods was noticeably better 
than the STFT. The initial computational cost of the Wavelet 
Packet related methods is always going to be greater since 
there is a significant cost in the pruning part of the algorithm 
not present in FT methods - especially if LDA is used at this 
stage. However this is only a training cost, once a basis tree 
is worked out, all subsequent signal known to belong to a 
broad phonetic subclass can be decomposed in a comparably 
fast manner. It should also be emphasised, in particular for 
the ptk experiment that this is a difficult classification 
problem, we ourselves would generally use context and 
higher level knowledge to characterise these. The type of 
system proposed has been shown to provide some 
improvement over a standard widely used parameterisation 
technique in two situations, it is likely 10 be of robustly 
similar performance in other recognition scenarios. As a 
preprocessing technique to standard modelling conventions 
e.g. HMM it certainly shows some promise. It is likely 
anyway that a better recogniser would highlight 
improvements between Wavelet over Founer 
decompositions, it has been noted in [10] that LDB derived 
features appeared "oblique" in a sense and this is borne out 
in some of our other experiments where the true 

multiresolutional advantages of wavelet appeared mueh 
superior. Better performance could also be had by using 
some standard preprocessing of which none was done here 
since for the purposes of comparison this was irrelevant. 
With regard to the decrease in performance between standard 
LDS and LDB using an LDA-derived non-additive cost, we 
felt was perhaps due to non-linear relations within the 
training set not being exploited. Instead of using LDA. in 
future we will try a neural network to provide a cost and 
incorporate this seamlessly into the whole design. 
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