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ABSTRACT

Current global business competition has resulted in significant challenges for
manufacturing and production sectors focused on shorter product lifecyc1es, more diverse
and customized products as well as cost pressures from competitors and customers. To
remain competitive, manufacturers, particularly in automotive industry, require the next
generation of manufacturing paradigms supporting flexible and reconfigurable production
systems that allow quick system changeovers for various types of products. In addition,
closer integration of shop floor and business systems is required as indicated by the
research efforts in investigating "Agile and Collaborative Manufacturing Systems" in
supporting the production unit throughout the manufacturing lifecycles.
The integration of a business enterprise with its shop-floor and lifecycle supply partners

is currently only achieved through complex proprietary solutions due to differences in
technology, particularly between automation and business systems. The situation is
further complicated by the diverse types of automation control devices employed.
Recently, the emerging technology of Service Oriented Architecture's (SOA's) and Web
Services (WS) has been demonstrated and proved successful in linking business
applications. The adoption of this Web Services approach at the automation level, that
would enable a seamless integration of business enterprise and a shop-floor system, is an
active research topic within the automotive domain. If successful, reconfigurable
automation systems formed by a network of collaborative autonomous and open control
platform in distributed, loosely coupled manufacturing environment can be realized
through a unifying platform of WS interfaces for devices communication.
The adoption of SOA-Web Services on embedded automation devices can be achieved

employing Device Profile for Web Services (DPWS) protocols which encapsulate device
control functionality as provided services (e.g. device I/O operation, device state
notification, device discovery) and business application interfaces into physical control
components of machining automation. This novel approach supports the possibility of
integrating pervasive enterprise applications through unifying Web Services interfaces
and neutral Simple Object Access Protocol (SOAP) message communication between
control systems and business applications over standard Ethernet-Local Area Networks
(LAN's). In addition, the re-configurability of the automation system is enhanced via the
utilisation of Web Services throughout an automated control, build, installation, test,
maintenance and reuse system lifecycle via device self-discovery provided by the DPWS
protocol.
The research presented in this thesis has investigated the research issues around the

design, implementation, evaluation and reconfiguration of Web Services-based
automation systems based upon a university automation test rig to show the feasibility
and performance of WS for industrial machine usage. The precise evaluation and analysis
of this proposed WS approach has been carried out as required by automotive supply
chain and end-user industrialists and agile automation research paradigms. For example
the assessment has been focused on quantification, qualification and comparison of
parameters such as: (i) I/O interval processing time, (ii) Ethernet communication and
reliability, (iii) business integration and (iv) process reconfiguration in contrast to
centralized Programmable Logic Controller (PLC)-based systems and distributed
LonWorks-based systems previously developed at MSI Research Institute,
Loughborough University.

Keywords: Component-Based Design; Device Profile for Web Services (DPWS); Distributed Control

System; Agile Manufacturing; Simple Object Access Protocol (SOAP); Mass Customization; Ethernet
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DEFINITIONS

Agent A representative agency that has the power or authority to act on
behalf of another. It is capable of perception, acting on its
environment, communicating and, eventually, of mobility in
accomplishing specific tasks such as assisting co-operators with
required process information for business planning systems.

Ir-~~~~----~------
This term used in this research is referred to the definition
described by wordreference.com that "the control of equipment
with advance technology involving electronic hardware;
automation replace human workers by machines". In this
research this term is used interchangeably with "control

Automation system

Client

system"

A computer or device as an event sink on the network that
requests or consumes the services or functions provided by the
server (see the server term below). In this research, the client
has a function of invoking (calling) the interested services to
perform the manufacturing functions in the control system.

Component An artifact that is one of the individual parts of which a
composite entity is made up; especially a part that can be
separated from or attached to a system. This thesis refers the
component term to a physical automation device which is
constituted by mechanical, control software and electrical
element in the automation system.

Enterprise

Flexible automation
system

High level
application

An entire business organization. In this thesis, it is implied
subsidiaries of business planning and management,
manufacturing execution control and production unit. i

I

D. Vera [116] has characterised flexible automation systems as
the system that has fixed machine control hardware but
programmable software to handle changes in work orders,
production schedules and tooling for several types of parts. In
general, this automation system is consisted of general purpose
computer numerically controlled machines (CNC) with
sophisticated control configuration changing system to process
multiple types of products.

In this thesis, this term is used to express the software
application designed for a specific task and used in the t

manufacturing execution and business level to control and
monitor the shop-floor production unit.
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Lean manufacturing

This term is referred from bridgefieldgroup.com that the system
which has function used to identify and plan demand and
materials, analyze resource availability and requirements and
schedule, release and report production. In this research, several
departments in associate with planning, controlling and
producing company products constitute manufacturing system.
Departments may be included production sections,
manufacturing supervisory and control, ERP, and etc.I~==============~~====='"============================~====~====~I
Its concept has combined the low unit costs of mass production
goods with differing individual product specifications. The
product variety is achieved through the use of components that
may be assembled in a number of different configurations in
order to satisfy the heterogeneity of all customers' preferences.
In the context of manufacturing for individual customization,
the processing systems need to employ a good degree of
flexibility and re-configurability in process alterations for
various types of products.Ir-~~~----~~--
The manufacture of goods in large quantities in the short period
of time with minimum cost, often using standardized designs
and assembly-line techniques. Its purpose is to produce more
per worker-hour, and to lower the labor cost of the end product.
This in turn allows the product to be sold for a lower cost. Mass
production technique is the idea of deploying skill workforces
responsible only for a certain task, e.g., one is in charge of
cutting, another is finishing, a third one is assembling, and so
on, to achieve a high level of throughput.

Manufacturing
system

Mass customisation

Mass production

Lean Manufacturing is an operational strategy oriented toward
achieving the shortest' possible cycle time, a high level of
throughput with a minimum of inventory by reducing waste
along production lines. The goal is to decrease the time between
a customer order and shipment, and it is designed to radically
improve profitability, customer satisfaction, and throughput
time.

Object-oriented The term that used for programming language in an agent-based
system where data carries with itself the "methods" or
"functions" used to handle that data. Its programming takes the
functional view of abstract manipulation rather than the logic
required to manipulate them, so object-oriented code is more
flexible and more organized and easier to write, read, and
change than traditional procedural code.

XIX



Reconfigurable
automation system

Open system In this research, the term of an open system is implied to the
automation aspect such that a system in which the components
and their composition are specified 10 a non-proprietary
environment, enabling manufacturing system to use these
standard components to build competitive systems. There are
three perspectives on open systems: portability - the degree to
which a system component can be used 10 vanous
environments, interoperability - the ability of individual
components to exchange information, and integration - the
consistency of the various human-machine interfaces between
an individual and all hardware and software in the system.

Ramp up time The term which is associated with the time taken for the process
to reach the normal production capability after process
modifications or new installations.

The automation system that is designed for rapid change in both
hardware (mechanical structure) and control software. The
system configuration can be rearranged (adding, removing and i
ordering) quickly by the modular design of control modules
(hardware/software) that can be reused and reconfigured rather
replaced for a new module.

Server A computer or device as an event source on the network that'
provides the services or functions. In this research, the server
means the producer unit that offers the function in relation to i
commanding the control system such as driving the machine
outputs or reading the sensors as requested or controlled by the
client (consumer). It is noted that the client and the server
function could be allocated on the single device to co-operate in
the peer-to-peer communication model in the distributed control
environment.

xx



CHAPTER 1

Introduction

The objective of this chapter is to provide an overview of the research and the scope of

the work in the area of future manufacturing paradigms enabled by the shift of mass

production systems toward mass customised systems. The preliminary research

questions based upon a new approach to agile automation systems are highlighted. The

scope of the research in contributing to process re-configurability, reusability and

integration capability based upon the key enabling technologies of Web Services (WS)

and Component-based (CB) design approaches within the automation domain is

presented.

1.1 Problem Definitions
In today's competitive global market where customer demands can fluctuate

dramatically and global competition has become intense, companies must respond

quickly and cost-effectively to market changes in order to maintain their competitive

advantage. As reported by A. Molina [1] the characteristics of the global markets for

many types of product have progressively changed towards meeting customer demand

for low-volume, high-quality, customised products. These factors have had an impact

on product lifecyc1es, development times, and production lead times all of which need

to be shorter. As a result of: (i) increasing number of product variants, (ii) increasing

mix of product types, (iii) decreasing batch sizes and (iv) decreasing product lifecycles,

a conventional mass production approach is no longer a viable manufacturing strategy

because it cannot effectively produce low-price products in an environment where the

demand fluctuates unpredictably [84].

Many enterprises are changing their manufacturing paradigms and systems toward more

flexible and adaptive approaches to improve efficiency and to support this trend

towards mass customization (I). The evolution has been from mass production (2),

beyond lean manufacturing (3), into agile manufacturing (4) [7].

1,2, and3- See termof use fordefinitions
4- SeeChapter3 fordefinitions
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Within the conceptual agile framework presented in [32], the agile manufacturing

system has been focused on the consideration of a wider perspective in which not only

the automation system, but also the business enterprise and the business architecture,

need to be included in the development process related to the shop-floor systems.

Manufacturers have to distribute intelligence and decision making authority as close to

the points of action, delivery, sales and even after-sales service as possible. To improve

their ability to respond, manufacturers need to share the design and production

information with their business partners.

However, within this integrated manufacturing-business perspective, traditional

manufacturing automation systems need to be evolved towards agile capabilities. These

systems are often constructed in a rigid, centralised, hierarchical and, in many cases,

proprietary manner [105]. It has been the case that the development of the automation

system typically follows a sequential design-implement-test lifecycle. In addition, the

reconfiguration of automation systems is currently a complex, time-consuming and

error-prone process. As a result, these factors have a direct impact, increasing the

process ramp-up time and leading to performance degradation when production needs

change. Specifically, current automation systems usually require experts to

(re)commission and maintain them due to the often complex and unstructured code and

the use of vendor specific technology [33]. It is therefore unproductive for industrialists

to implement highly customizable production capability within the current design of

manufacturing automation systems.

1.2 Research Motivation

The work of this research is based within the automotive industries with the Ford Motor

Company as the project collaborator in the UK. The automotive industry is a

competitive, risky and high investment domain [103]. Many automotive suppliers have

turned to mergers, acquisitions, and/or joint ventures in an effort to grow top-line

revenue, maintain market share, more effectively utilize assets and cost reduction in

order to remain competitive [g32].

Over the past years, there have been a number of research studies on flexible and

reconfigurable automation systems to support reducing product time to market as well
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as quickly increasing production capacity. At Loughborough University, a project

initiated by the Manufacturing Systems Integration (MSn Research Institute has

investigated a Component-Based Approach (CBA) for automation systems for

improved flexibility and re-configurability within the engine production lines at Ford.

The work has established a new engineering visualisation environment implemented

using the Virtual Reality Modelling Language (VRML), reusable control software

embedded within automation components and a Process Definition Environment (PDE)

in which automation components can be configured, simulated and deployed. The

project has contributed to the development of a truly concurrent engineering design

approach of manufacturing systems aiming to reduce developments cost in automation

systems and time to market of the new products.

The extension of previous developments adopting the CBA with standard Web

technologies would substantially benefit the end-users by supporting new "open"

standard way of automation design. Within the requirements of agile manufacturing, it

has been noted that automation systems are required to be more integrated with

business, suppliers and external machine builders systems to generate reliable and cost

effective solutions. Recently, an emerging Service-Orient Architecture (SOA) and Web

Services (WS) technology solutions have been widely researched to support business-

to-business integration as reported in [122]. These technologies have proved a success

in the e-business domain and they are becoming a standard approach to integration

supported by major software developers such as Microsoft and IBM. Research has now

been targeted on whether the technology can be applied in industrial sectors for

business to shop-floor application integration.

The adoption of a robust approach of implementing SOA's and WS is required for the

manufacturing system to meet the required performance from the end-users point of

view in term of response time, reliability, proof of agility and re-configurability. The

verification of these key requirements is necessary for the justification of this approach

as an open standard for the next generation of manufacturing automation. The research

outlined in this thesis is focussed on the integration of SOA's and Web Services

technology within the paradigm of CBA to determine whether enhanced capability of

the manufacturing system composed of embedded "web enabled" devices is evident
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.when compared to current manufacturing automation paradigms (i.e programmable

logic controller focused systems).

1.3 Research Questions

The research questions of this thesis that are expanded in following chapters can be

stated as:

1. What are the current manufacturing paradigms? Why do they no longer meet

industry expectations in the presence of globalised production characteristics?

(Refer to Chapter 2)

2. How can agile automation systems benefit manufacturers especially in terms of

design and manufacture cost savings as well as reducing production lead times?

(Refer to Chapter 3)

3. What are the key features of Agile Manufacturing Systems as well as the key

enablers that allow an effective solution for mass customisation? (Refer to

Chapter 3)

4. What are existing approaches towards agile manufacturing paradigms? (Refer to

Chapter 3)

5. What are current technologies using in distributed automation systems? (Refer

to Chapter 4)

6. What are the problems with current automation systems and specific

requirements' for agile automation from the perspective of automotive

manufacturers (i.e. the Ford Motor Company)? (Refer to Chapter 5)

7. What is the "state of the art" in control systems for agile manufacturing? (Refer

to Chapter 3, and 5)

8. How could SOA's / WS fit into an agile manufacturing context and be

implemented in an automation system? (Refer to Chapter 6, 7, and 8)

9. What are the network performance, deterministic communication and actual

input and output device response time in the WS approach relative to a PLC

control-based automation solution? (Refer to Chapter 9)

10.What is the degree of re-configurability, reusability as well as seamless

integration capability in relation to the agility of the manufacturing system? This

question leads to the design, implementation and evaluation of a university
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based measurement platform of WS- based automation. How can figures of

merit for these parameters be explicitly evaluated? (Refer to Chapter 9)

11.What is a suitable platform for the end users? What are the current control and

build practices that could be improved by the use of WS technologies? (Refer to

Chapter 5, and 6)

1.4 Research Focus
The movement toward agile and collaborative manufacturing has gained considerable

attention from many research institutions and organizations keen to explore and develop

a new manufacturing environment. Areas of research include the business enterprise

level, shop floor automation, warehousing and outsourced manufacturing.
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Figure 1-1: Research focus overview

As depicted in Figure 1-1, the primary aim of this thesis is to establish an innovative

approach through the component-based design of distributed intelligent automation

systems that is capable of supporting end-user requirements on system re-configurability

and to create an automation platform that supports business and production integration

to enable agile manufacturing systems throughout machine lifecycles. The primary

application focus of the work is in the automotive domain, and in particular with the
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Ford Motor Company Ltd. who is the primary industrial collaborator in this research.

Control and communication technologies have become more mature and sophisticated

and can currently be purchased as low cost, miniature, embedded devices. These

technologies open up a new opportunity for the design of next generation

manufacturing systems. Advanced embedded devices supporting TCP/IP networking

communication could enable the design and implementation of control devices with

greater interoperability between control devices, business and production support

systems.

A methodology based upon the exploitation of Web technologies (SOA-WS) will be

developed and evaluated with the aim of enhancing the lifecycle of manufacturing

systems focusing on the aspect of autonomous distributed control and the adoption of a

new paradigm for reconfigurable and reusable automation systems.

1.5 Organisation of the Thesis
The thesis is structured as follows:

Current Manufacturing Systems: Problems and Requirements

In Chapter 2, the literature relating to the trends, drivers of change and difficulties in

current global markets is reviewed. Traditional manufacturing systems are reviewed to

highlight the problem areas and the requirements of business and automation systems to

enable the next generation of agile integrated manufacturing systems to be developed.

Agile Manufacturing

In Chapter 3 agile manufacturing is presented as the key concept for the future

manufacturing approaches. The state of the art for enterprise integration and automation

design and build are reviewed in this Chapter.

Manufacturing Automation Technologies and Key Enablers for Agile Automation

In Chapter 4 the current automation technologies for manufacturing systems are

reviewed. The key enabling technologies both in software and hardware corresponding

to agile automation requirements in open, distributed, reconfigurable and reusable
control systems are detailed.
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Research Focus, Design and Objective

In Chapter 5 the related research in the area of distributed automation systems for agile

manufacturing is presented, including the novel framework of implementing Web

service technologies with component-based design framework on automation system.

The area of study and implementation is scoped on the research objective.

Design Methodology

In Chapter 6, a review and analysis of component-based approach is provided along

with the design methodology for SOA-WS control systems. In addition, the SOA and

WS concept are detailed and evaluated for the adoption of these technologies within the

CB framework.

Industrial Case Study

The industrial case study implementing a component-based design on a PLC-based

distributed control system and the implementation of Web Services on an embedded

system (PC-based) are discussed in Chapter 7.

Test Rig Implementation and Industrial Demonstration

The development of WS- based automation via integrated embedded control devices is

presented in Chapter 8, detailing the hardware and software architecture on the

microcontroller device type supporting TCP/IP communication and a real time

operating system RTOS. The industrial demonstration to illustrate the feasibility of

Web Services automation systems within real control applications, supporting

engineering tools and business integration as well as evaluation of system operation

within a live production system environment are detailed.

Evaluation and Discussion

In Chapter 9, the key evaluation of performance, design, re-configurability and

enterprise integration is assessed corresponding to the requirements of: (i) an agile

automation system and (ii) the end-user requirements.

Future Work

The conclusions and future work based upon the exploitation of Web Services in

industrial control systems are highlighted in Chapter 10.
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Manufacturing System Requirements and Trends

In this chapter, the drivers of change for agility-focused manufacturing paradigms are

reviewed. Current manufacturing approaches are detailed and associated problems

identified in order to highlight the requirements for next generation manufacturing

automation systems.

2.1 Problem Statement
The objective of this chapter is to identify the features and characteristics of mass

customisation in the global marketplace that have impacted on current manufacturing

systems. The following research questions are addressed to support the specification of a

new framework for the next generation manufacturing systems based upon the lifecycle

requirements of the manufacturing supply chain.

1. How does globalisation impact the business and manufacturing strategy in

automotive industry?

2. What are drivers of change that cause the manufacturing shift from mass

production system to mass customisation?

3. What are the lifecycle requirements of the manufacturing system to cope with

the highly competitive markets in the automotive sector?

4. What is the architecture and framework for the next generation manufacturing

system?

2.2 Drivers of Change in Automotive Manufacturing
Global market competition and price pressure is leading companies to leverage new

technologies to enhance their competitive advantage. They seek to differentiate their

overall offering in order to compete [2]. The characteristics of global markets have

been changed by the driver of customer satisfaction where greater choice of products

from a larger number of companies is demanded. These factors have forced product

variety to increase and batch size to decrease. In the automotive industry, reported

trends that are having a dramatic impact on traditional mass production are [4]:
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Global Competition

Many vehicle manufacturers face slow growing and saturated markets in their

home countries [103]. Beside this, vehicle markets have become much more

competitive by a growing number of firms selling cars in the mature markets

such as the US, Germany, and Japan [106].

There has been a wave of new assembly and supplier plant construction in low

wage economies and emerging markets such as China, India, Thailand,

Vietnam, Brazil, Mexico and Eastern Europe. The trend is further enforced by

host country requirements for local production and an effort by automotive

manufacturers to cut costs within the context of regional trade arrangements

such as the North American Free Trade Agreement (NAFTA) and the European

Union [g2S].

This shift in worldwide production of automobiles towards low-income

countries only partly reflects increased competitive pressure. New suppliers

such as China have expanded the production of automobiles for serving

protected local markets, while lacking international competitiveness. However,

several new suppliers, including Mexico, South Korea and Spain were quite

successful in penetrating world automobile markets [lOS].

Customised Products with Low Volume Production

The consumption level of people is increasing along with the high-speed

development of domestic economy. The number of medium income population

is growing increasingly and the competition in the mid-grade automotive market

has been intensified. Research has shown that the competition in the small car

domain will continue to become more and more competitive, because such cars

like the Masda C2, Chevrolet Aveo, Kia Rio have been targeted by a specific

consumer group, that is young, fashionable and individualized. Since the

economic power of the group is expanding quickly, its consuming capability and

preference are affecting the automotive market strongly [g29].

The current and the future of global market trends in car industries as reported

by Stephen Metzger [g30] are moving toward highly individualistic and diverse
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markets in term of production types and functions. As a result, car

manufacturers are focused on the ability, which quickly becomes a competitive

requirement, to satisfy individual consumer tastes and preferences. Thus, the

generic automotive market is comprised of a myriad of adaptations fitting the

personal needs of the consumer, rather than so-called standard models.

Vehicle manufacturers, when introducing new products or concepts, are

frequently uncertain of the precise market demand. The vehicle manufacturer

normally assumes an initial low volume production. When the product grows in

maturity the whole operation could be migrated seamlessly to the large volume

manufacture as a going concern. Alternatively, if volumes do not reach

expectation then the automation could be used to produce quite different

components [111].

Reduction of Product Time to Market

As reported by Graves [g31], the average age of each Japanese vehicle is

approximately two years, half that of their western competitors, and typically

500,000 vehicles are produced annually, compared with almost four times that

number in the US and Europe. This assumed flexibility in capacity of model

types and production volumes enables the Japanese producers not only to

exploit their production and sales strategies to compete with the increasingly

market demands of the world, but also to generate their own target customers in

the global market place. In the presence of automotive markets characterised by

rapidly changing technologies and innovations, it is important for car producers

not only to incorporate the latest vehicles and technologies but also to offer

products to customers in the shortest possible time.

Due to rapid changes in market demands in recent years, shortened product

cycle is inevitably becoming the prevailing trend. For example, in the

automotive industry, product life cycles has been shortened to 2-3 years as

compared to the average 4-9 years from 1965-2000 and 3-4 years in 2005 [g33].

Additionally, market requirements demand significantly shorter new product

realization cycles. Currently, it takes 24 months for the world's top automotive

manufacturers to develop a new car. The trend is for development time to be
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reduced to 12-18 months within the next five years [113] from 2004. However,

these figures do not include the time for the development of the new car

production line which normally takes 53 weeks [103] to complete.

It has been reported by P. R. Dean [3] that the mass production approach is not effective

for mass customization production due to the large variations of customized products.

Mass production was introduced in the later part of the 19th century during the

Industrial Revolution, to support high volumes of customer demand at minimum cost

(and minimum variety). The paradigm allowed manufacturers to produce more per

worker-hour and to lower the labour cost of the end product. Mass production was

successful because the market was characterised by stable demand, little product variety

and a few competitors who dominated the market. Manufacturers and companies simply

made profit by producing large batches of a product in order to minimise production

costs.

The cost of variety can be interpreted as the sum of all the costs of attempting to offer

customers variety with inflexible products that are produced in inflexible factories. This

cost includes the actual costs of customizing or configuring products, all the setup costs,

the costs of excessive numbers of parts, procedures, and processes, and the excessive

operations costs. Under the mass production paradigm this cost increases exponentially

with increasing marketed variety [g17].

Mass customisation is an emerging paradigm addressing the requirements of global

markets that combines low price with extensive variation and adaptation. Products have

to be manufactured at costs comparable with those items obtained by mass production

techniques. At the same time, these products have to be highly customized not only in

variety but also in parameters such as quantity and attributes [I]. There are many

researchers trying to enable mass customisation by defining manufacturing systems that

can respond quickly to changes of product types and customer demand. The details of

alternative manufacturing paradigms proposed to enable mass customisation will be

discussed later in section 2.4, focused around the next generation manufacturing

systems.
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However, in the following section, the traditional manufacturing architecture will be

reviewed to provide an understanding of why such a conventional manufacturing

architecture can no longer cope with these drivers of change in the global market. The

associated problems with current manufacturing and production systems will be also

highlighted.

2.3 Current Manufacturing Systems

Current manufacturing systems reviewed in this section will be focused on the system

architecture (see Figure 2-1: Intra-Enterprise Domain) and manufacturing product

lifecycle (see Figure 2-1: Lifecycle Domain) .
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Figure 2-1: Manufacturing System Structure and Production Process

2.3.1 Manufacturing System Architecture

Current machine control systems are categorized according to their physical

functionalities (e.g. programmable logic control, motion control, regulators) and are

programmed separately to execute sequences of commands as function primitives.
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Communication between the individual controllers is typically facilitated by a central

system in a hierarchical network. A typical automation hierarchy based on the standard

architecture ANSIIISA-95, shown in Figure 2-1 (Intra-Enterprise Domain), is described

as comprising a number of integrated levels as follows:

The Management level is concerned with the management of enterprise-level

finance, resource planning and distribution, workflow planning and order

management and fulfilment.

The Process control level has the primary task of the supervision of sites such

as SCADA (Supervisory Control And Data Acquisition) to monitor the

automation process control at the field level and also support process data

acquisition. In addition, quality management, order tracking, Manufacturing

Operations & Control, dispatching production, detail product scheduling and

reliability assurances are included at this level.

The Field level has been used to facilitate all tasks required for processing data

and directly influencing the process [12]. At the field level, programmable logic

controllers and microcontrollers are used. In addition the process can be

influenced using monitoring and operating consoles [13].

The Actuator-Sensor level is the lowest level of the pyramid hierarchy,

comprising components (i.e, sensors and actuators) that interact with physical

manufacturing environment to perform the tasks and to collect the data for the

higher level data monitoring and acquisition, (i.e. the field level, as detailed

above). The devices are connected to the higher control level through

communication lines such as fieldbuses or industrial networks. Due to timing

constraints that have to be strictly observed in an automation process, the

applications at the field level require cyclic transport functions that transmit

source information at regular intervals. The data representation must be as

compact as possible in order to reduce message transfer time on the bus [6].
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2.3.2 Lifecycle of Manufacturing System and Machine Design

Consumer products change frequently with lifecycles often measured in months rather

than years. Shorter product life is forcing ever-shorter production machinery

development cycles. Bringing products rapidly to market may only be possible through

compressing time-scales by concurrently engineering the product, the production

machinery and the manufacturing and distribution facilities [79].

Processls
Product Development Process

Machine Design and Build Process

Processes

(Simultaneous Engineering)

Mechanical
Installation

TimeElectrical

Control
Lo~c 42 months

Commissioning

53 weeks

Figure 2-2: Product Lifecycle and Machine Design& Build Process [103]

The engine product design and implementation process in typical automotive industries

takes approximately 42 months to complete [103]. The activities that support the

concurrent engineering of product, machine and process facility are illustrated in Figure

2-2. The process involves three major collaborators: the end-user (the automotive

production company), the machine builders and component suppliers (control

components). The process begins with the conceptualisation of the new engine type and

the determination of a set of product requirements and specifications, which are later

translated into the design of the product. In the current case, before the product design

is finalised, the end-user will contact the machine builder as well as the component

suppliers to provide the design and build the manufacturing system. The process of

machine design and build normally takes 53 weeks to complete with the machine

validation carried out at the machine builder's site. At each stage of the machine
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lifecyc1e the system is checked and closely monitored by engineers from the end-user to

guarantee that the system meets the required specification.

It is noted that full system operation and functional performance of the machinery is

carried out on completion at the machine builder's site. Additionally full system

validation is undertaken on the end user's site during installation and tuning post strip

down and shipping from the machine builder. The system is monitored constantly at the

installation stage by the machine builder to ensure that the machine meets the

production requirement of the end users [103]. It is important for the machine builder as

well as control suppliers to ensure that the system meets the end user requirements since

any subsequent changes, particularly late in the lifecycle, cause delays and increased

cost.

Product Lifecycle and Process Reconfiguration

A,B and C are the
product of the
same family

Develop Product C

Develop Product B

Develop Product A

Time

Figure 2-3: Product Lifecycle and Reconfiguration Process [79]

During the machine lifecycle as shown in Figure 2-3, production lines are subjected to

system re-configurations for new types of products. Since every product type change

results in a ramp up time to full production, there is a growing need for production

machinery to support re-configuration and re-configurability more efficiently in order to

maximise return on investment [79].
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2.3.3 Problem Identification

The set of problems and issues surrounding the current manufacturing architectures and

control systems have been derived from international projects and research

collaborators (e.g. Schneider Electric, Comau, SOCRADES (5), RIMACS (6) and SAP)

and the Ford Motor Company, UK. The common problems with traditional

manufacturing systems associated with the automation systems, Figure 2-4, can be

summarised as follows:
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Figure 2-4: Current Machine Build Process

Rigid Hierarchical System Structure

• This traditional design approach has major deficiencies when used as a basis for an

intelligent (reconfigurable) manufacturing control structure [9]. In a rigid,

hierarchical approach, system development typically occurs as a series of vertically

isolated activities [72]. It has been reported in [10] and [11] that the centralized and

sequential manufacturing planning, scheduling and control mechanisms are

increasingly being found insufficient for the current market environment due to a

lack of flexibility (e.g. the ability to respond in a time and cost efficient manner to

planned changes) and agility (e.g. the ability to respond in a time and cost efficient

manner to unplanned changes) in order to respond to changing production styles

and highly dynamic variations in production requirements.

5- Service-Oriented Cross-layer infrastructure for Distributed smart Embedded devices
6- Radically Innovative Mechatronics and Advanced Control Systems
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Deslzn of Automation Systems

• Experience-based design and implementation

Current automation systems are composed of diverse automation peripherals that

make the system very complex. Therefore, the process of designing and developing

automation systems is reliant upon the expertise of those who have participated in

previous similar projects [33]. A lot of effort is still required to build consistent

automation systems within the limited time available, even by the experts. The reuse

of hardware and software from existing designs by employing high level

development tools for example could potentially decrease the development time and

man power required to commission the system.

• Late verification of automation systems

The lack of engineering tools that are capable of supporting concurrent engineering

tasks throughout the lifecycle of manufacturing systems, especially in the design of

automation systems, means that the verification of systems cannot be undertaken

until the completion of all of the required elements (e.g. mechanical, electrical, fluid

elements and control software). If the control systems fail to support the desired

specification or errors are introduced into the system, this often will result in the

delay of starting production. New engineering environments are needed to support

concurrent automation systems design. The development of a component-based

design methodology (Chapter 6), supports the concurrent design of automation

systems by combining hardware and control software into an integrated automation

unit (component) in which the control software can be verified before the

completion of mechanical systems by simulation of embedded device states.

Control Systems

• Rigid manufacturing development with centralized control

On the shop floor, centralized manufacturing systems are not favored because they

involve expensive investment costs at the implementation stage. In addition, if the

product and manufacturing management systems are modified and the central

control unit has to be altered, the whole system needs to be changed because

devices or elements under the central control unit are reliant upon the central
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controller. This type of the system is also at risk of a single point failure that can

result in the whole system being inoperable.

• Lack of reusable and reconfigurable automation peripherals

Within current automation systems, the hardware is tightly coupled with the

centralized control software systems such as traditional PLC's. Reusability and re-

configurability are difficult to support and the whole system is usually replaced

when new designs are required. Changing types of hardware may also result in a

requirement for new control software. Supporting these changes is a time

consuming and error-prone process.

• Diversity and complexity of automation devices

Manufacturing systems are composed of various types of software applications such

as Human Machine Interfaces (HMI's), data monitoring systems, control systems,

gauges and data recording systems. Each unit has its own proprietary solution

provided by different vendors working on different operational platforms such that

Microsoft Windows, UNIX with serial communications, Ethernet, Fieldbus, or

Modbus communication mechanisms. This makes the automation system very

expensive and complex to maintain since it necessitates the fragmented use of

heterogeneous tools and experts with knowledge of diverse technologies.

Operation

• Lack of remote diagnostics and support

Due to a lack of remote support, end-users cannot get immediate support from

machine vendors when machines breakdown. The most cost effective option seems

to be the difficult task of solving the problem over the telephone. The major issue

with this is that engineers frequently do not have enough information about the

cause of the breakdown to support efficient recovery to production. In many cases, a

site visit is required which can be a problem when global support is required. In

addition to cost penalties, machines can be out of production for a long time waiting

for support. Down time can be significantly reduced if problems can be solved

remotely via e.g. online expert assistance.
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2.3.4 Manufacturing and Automation System Requirements

In section 2.3.3, the problems with current automation systems were identified as a set

of requirements for the next generation manufacturing automation systems. The

required attributes for advanced automotive manufacturing and automation systems are

as follows:

Seamless Business- Manufacturing Process Integration - Rapid appreciation

and preparation of functional and technological changes need to be appreciated

throughout the business and by investment personne1. It is desired that the system

can react to changes with less (or ideally without) effect on other processes within

the complete manufacturing system. ~

Rapid Design of the Automation System - There is a need for an approach to

allow the simultaneous system development of mechanical, electrical, fluid and

control units. It is required that these units are designed independently and yet

available in the common formats for the interest parties (mechanical, electrical,

fluid, controls engineers and machine vendors) in building the complete system.

Quick Response to Change in the Production Capacity - Re-configurability of

automation is the design requirement at the outset to enable support of rapid

changes in the structure of software and hardware as described by D. A. Vera

[116], to adjust production capacity and functi~nality in response to changing

demand.

A High Degree of Reuse - It is desired to reuse as many as possible of the

features (i.e. hardware, software design and engineering knowledge) of the

existing system within the new manufacturing automation system in order to save

time and cost of the development.

A More Consistent Integration Approach for Diagnostic and Maintenance

Support - Consistent integration approaches are required to minimize the process

downtime and the unnecessary waste. The integration effort and degree of

complexity of such systems need to be easier to integrate without incurring added
complexity.
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Visualisation and Simulation - The functional and behavioral capability of the

control system needs to be evaluated prior to installation in order to minimize

time lost due to late validation.

Non-Vendor Specific Platforms - Open platforms [43, 44] allow the

substitution of components with alternatives to improve capability, reliability or

performance. This would also benefit the end-users in terms of reducing

development costs and improving system flexibility and avoiding being "locked

into" particular technological solutions.

Fault Tolerance and Recovery - Fault tolerance and error recovery capabilities

enable systems to continue to operate efficiently in the event of the failure of

some components. This is a significant requirement for distributed automation

systems. A single failure should have a minimal impact on the rest of the system

functionality back up procedures to recover safely (i.e. roll-back, roll-forward)

need to be supported without interrupting the operation of other units.

Checkpoints should be implemented in the system to monitor constantly the

system operational state.

As highlighted in this section, these fundamental characteristics of automation

systems need to be considered as key enablers of the Next Generation Manufacturing

Systems (NGMS's) to enable mass customization. The key characteristic and the

emerging trends of manufacturing systems are highlighted in the following section.

2.4 The Next Generation Manufacturing System

As outlined by Francois Jammes, Harm Smit [9], the next generation manufacturing

systems of future manufacturing enterprises will be characterised by a need to adapt

to frequently changing market demands, time-to-market pressures, continuously

emerging new technologies and, above all, global competition. Therefore the future

manufacturing system must support global competitiveness, innovation, introduction

of new products and strong market responsiveness.
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However, traditional rigid sequential engineering methods are inappropriate in this

context as common problems detailed in sections 2.3. Furthermore the manufacturing

architecture and automation structure within the complete engineering process for

current production systems is inefficient and requires extensive human effort in terms

of time, cost, and expertise in developing desired future manufacturing systems [72].

In addition, it has been reported [9] that the cost of maintenance and adaptation costs

rises considerably for a non standard, obsolete and inflexible platform. This is due to

the difficulty of reconfiguring existing applications (i.e. processes) to a new

configuration, vendor specific hardware and software and tight integration between

equipment and manufacturing control systems.

To overcome the common problem with traditional manufacturing systems (section

2.3.3) and to meet the manufacturing requirements (section 2.3.4) enabled by mass

customisation, novel integrated business and manufacturing strategies are required.

The need for that new manufacturing environments that are capable of supporting

inherently multidisciplinary, parallel system engineering tasks has been discussed in

[72]. The realisation of appropriate engineering tools requires not only a broad

appreciation of mechatronics, manufacturing strategies, planning and operation, but

also a deep understanding of the required integration of communications, information

and advanced control functionality.

In relation to the above statement, agent-based agile manufacturing cells and Web-

based agile manufacturing frameworks [22, 29, 77 and 92] have been proposed as

possible solutions that could meet the challenges and requirements from various

industrial sectors. In addition these agile manufacturing frameworks have been

proposed with key characteristics (e.g. a neutral- platform system, reconfigurable and

reusable manufacturing systems, concurrent manufacturing and automation design,

and seamless business-shop floor integration) that can contribute to distributed

collaborative manufacturing teamwork at both the enterprise and plant levels in order

to support flexible and quickly adaptable manufacturing process capabilities.
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The Emergence of Collaborative Automation in Agile Manufacturing

The empirical study on an appropriate agile automation framework has been

carried out on research projects, e.g. RIMACS, SOCRADES, Business Driven

Automation (BDA) and discussed in collaborative manufacturing and

automation publications [2, 32, and 72]. This research has provided the

fundamental framework and the core background to the research outlined in

this thesis. A common framework for supporting the lifecycle of agile systems

is illustrated in Figure 2- 5.
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Figure 2-5: Collaborative and Agile Manufacturing Framework

The framework covers the business management, the build of the control

system and the production operation during the manufacturing lifecycle. The

collaborative automation system is embedded with the core functionality to

support the business and manufacturing functions as shown in the diagram.

The automation system is composed of Control System, Mechatronics and
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Communication capability required to support agile operation throughout the

lifecyc1e. However, as is the case with common frameworks, various

instantiations of solutions have been employed by different researchers. These

will be discussed in detail in Chapter 3.

In this chapter, the drivers of manufacturing paradigm shifts from mass production to

mass customisation have been discussed. Accommodation of these drivers has impact

on the requirements of future manufacturing automation systems that need to support

greater agility and be more cost effective in the presence of rapidly changing

environments. Traditional manufacturing and automation systems have been proven

to be inefficient. However, the author has addressed the problems and requirements

for the next generation manufacturing systems which require greater agility and

enhanced collaborative characteristics in three main areas: Communications,

Mechatronics, and Control systems. The collaborative and agile manufacturing

framework proposed in this chapter provides the precise view of the manufacturing

system integration architecture for this research toward an agile paradigm. In the next

chapter, the enablers for agile manufacturing will be reviewed as a key approach to

enable the next generation manufacturing automation systems. The details will be

focused on both enterprise and automation activities.
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Agile Manufacturing Paradigm

In the previous chapter, the need for greater agility in manufacturing has been

addressed with the definition of the specific requirements of automation to support

the next generation manufacturing capability. In this chapter, the details of agile

manufacturing approaches are discussed. The definition and the characteristics of the

facets of agility in manufacturing systems are identified. In addition, existing

solutions for agile manufacturing systems are assessed in terms of integration

platforms, implemented technologies, problems and limitations in each approach. In

comparison to these solutions, a platform for automation systems based upon a

Service-Oriented Architecture is proposed to address the limitations inherent in

existing approaches.

3.1 Problem Statement

There are various definitions of agility and key facets presented by different

researchers. It is important to determine the commonality in core concepts and enabling

technologies that can be applied in the research outlined in this thesis in the domain of

the automotive industry. This chapter aims to address the following questions:

1. What are the key characteristics of the agile manufacturing paradigm?

2. What are previous and current projects aim at developing agile manufacturing

platforms? How do these solutions address the needs and the requirements from

the end-user?

3. What features constitute an effective agile manufacturing integration framework

and enabling technologies that can meet end user requirements?

4. What are the features of the new approach that could potentially establish the

agile paradigm in the automotive automation domain?
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3.2 Overview of Agile Manufacturing

The concept of Agile Manufacturing Systems (AM) was first introduced in 1991 [119].

Since then, the concepts have been widely disseminated as embodying the essential

requirements for next generation and intelligent manufacturing systems.

Although agile manufacturing can be regarded as a relatively new automation paradigm

it is not well defined or understood. Agile manufacturing often is confused with lean

production, flexible manufacturing or Computer Integrated Manufacturing (CIM), but it

has a distinctly different meaning.

Common definitions of agile manufacturing are:

"Agile manufacturing as the ability to accomplish rapid changeover from the assembly

of one product to the assembly of another product. Rapid hardware changeover is made

possible through the use of robots, flexible part feeders, modular grippers and modular

assembly hardware" [85J

"The concept of agile manufacturing is also built around the synthesis of a number of

enterprises that each have some core skills or competencies which they bring to a joint

venturing operation, which is based on using each partners facilities and resources"

[64J

"A manufacturing system with extraordinary capabilities (Internal capabilities: hard

and soft technologies, human resources, educated management, information) to meet

the rapidly changing needs of the marketplace (speed, flexibility, customers,

competitors, suppliers, infrastructure, responsiveness)" [119J

These definitions reflect the various approaches towards agility in business, product,

production and entities of the manufacturing system to achieve a common goal of

coping with the rapid change of global markets driven by customer demand. As

reported by A. Gunasekaran [8], the concept of agility is at the heart of manufacturing

systems integration for supply chain companies aiming to perform collaborative tasks to

deal with unpredictable and rapid changes in both business and production systems.

Ideally this group of companies would "partner" to form an integrated enterprise
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supporting a range of the best available resources for the business opportunities of

interest.

To become agile, manufacturers have to distribute intelligence and decision making

authority as close to the points of delivery, sale and even after-sale service as possible.

To improve agility, they have to integrate the design and production information with

their business partners [77].

Agility is required, in many areas throughout the manufacturing lifecyc1e i.e. from the

business requirements definition stages in product design to the manufacturing and

reconfiguration production resources [4], [7] and [8].

The agility of these entities during the manufacturing system design lifecyc1e is

facilitated by the agility in management, people, organisation, production, system

design and marketing as shown in Figure 3-1. The multi-faceted nature of automation

and production systems agility is also depicted in Table 3-1.

The research outlined in this thesis is focused on the production and the systems

integration facets of agility. The aim is to develop flexible and reconfigurable

production lines enabling effective support of the variation of product types and

volumes in short lead times. Systems integration aspects have been focused on

production and business integration in order to utilise and share information with the

aim of reducing the cost and improving the throughput of the production system. This

will also improve business collaboration and support through effective database,

visualisation and monitoring systems integration.
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Figure 3-1: Agility and Interaction in Manufacturing System Design
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Table 3-1: Multi-Facet of Agility in Manufacturing [7]

Agility Facet Required Agile Characteristic

Management Distributed team work and project collaboration within and across companies to support change
through IT [8].

People Multi-skill and innovative total work force, the ability to hire and train people to the required
skill quickly [8].

Organisation Ability to synthesize new productive capabilities from expertise of people and physical facilities
regardless of their internal or external location [8].

Production Flexibilityl Re-configurability production systems to produce various goods and services to
customer orders in arbitrary lot sizes with shorter manufacturing's Iifccycle [72].

System Collaborative methodology in integrating various applications of suppliers, business processes
production and support for efficient manufacturing system in term of productivity and

Integration performance [2].

Marketing Customer enriching, individual combination of products and services [7].

In the following section, the key enablers of agile manufacturing with respect to

production and the systems integration issues are presented in detail.

3.3 Key Enablers of Agile Manufacturing
The model of key enablers for agile manufacturing systems, as shown in Figure 3-2, has

been studied and extended from [8] to fit the requirements of the next generation of

manufacturing systems as detailed in Chapter 2. Agile characteristics and key enablers

are focused on the production system and systems integration facets with the tifecycle

and intra-enterprise domains, respectively in this thesis. From the production system

perspective, the key agility feature is modularisation as well as change capability.

From the systems integration perspective, the key agility feature is focused on business

and manufacturing systems integration as well as information utilization to improve

performance and productivity.
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Agility facet:
System Integration

Agility facet:
Production

Intra·Enterprise
Domain

Figure 3-2: Conceptual Model of Key Enablers for Agile Manufacturing System

The details of these agility features are as follows:

1). Modularisation of Production Systems

Modularity is typically introduced into a manufacturing operation to increase the

flexibility of the operation both in terms of its range of functions and also its ability to

be easily reconfigured in the face of changing conditions [115]. Modularity almost

always leads to a distribution of functionality and also physical distribution [91].

Modularisation of production allows changes to be made to a few isolated functional

elements of the production without necessarily affecting the design of other elements

[59].

Modular production system design research has proposed solutions for both

reconfigurable mechanical structures and also control software applications enabling

quick changeovers in decentralized automation systems to improve flexibility and

adaptability of machine systems or production cells as presented in [72], [79], [115].

Key modularisation concepts are: i) distributed control of loosely coupled structures

and their functionalities (control software) and Ii) integration tools to support the re-

configuration process and design for reuse of the control system.
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Distributed Control Systems (DeS)

Distributed control systems support modularity by distributing the controllers

(control devices) throughout the system. Control devices are connected by networks

for communication. This allows the control functionality to be decomposed and

distributed into the individual control devices to match the required physical

modularity of a machine [79]. Modification of the control functionality of one

device should not affect the functionality of the others since devices are interlocked

using configuration data and internal the state variables. In this way, the

reconfiguration of the system is supported by reconfiguration rather than re-

programming of devices. This approach to DCS implementations at Loughborough

University has been reported for real industrial case studies in [11], [72], [73], [79].

Integration Tools for Flexible and ReconfigurabJe Automation Systems

The concept of modularisation applies to the design of modular machines where ad

hoc parts could be installed with minimal impact on the complete machine system.

This concept supports re-configurability where physical mechanical parts and their

control software can be changed without altering other system components. To

support the adoption of this modular decomposition of control systems, integrated

engineering tools are required for building, changing and managing machine

applications, for example, synchronization, and internal and external interlocking

between control devices.

2). Rapid Commissioning and Changeover Capability of Automation Systems

Manufacturers seeking more agility and flexibility of production systems have

increased the demands for an integrated engineering environment to support the

simultaneous design of the manufacturing system, especially from the control system

perspective. New engineering automation design approaches will need to support

concurrent design activities of those who are involved in various design activities

addressing machine structures, electrical components, fluid components and control

software. Central to the research in this thesis is that this requirement can be enabled by

a component-based design approach (detailed in Chapter 6). In addition, it is important

to be able to validate the design of the machine system (via for example simulation

tools) in early lifecycle stages in order to detect failures and deviations from

requirements and specifications as early (and hence economically) as possible.
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Hence the strategy to support rapid change capability is via the integration of individual

mechanical, electrical, and control components within concurrent development and

validation processes of manufacturing systems. The enabling concepts are:

Component-Based Architectures

In typical component-based architectures, components are made up of mechanical

units, internal state based control software, control interfaces and physical

representations i.e. "virtual" CAD drawings. Examples of the hierarchical

breakdown in terms of system-subsystems-modules-components-elements adopted in

this thesis are detailed in Chapter 6. The control components: (i) are responsible for

their own actions and (ii) monitor the necessary sequence and interlock conditions

of other components in the system in order to fulfill the overall application

requirements [79].

In the design of component-based systems, each component is considered as a

reusable entity for independent control configurations throughout the manufacturing

lifecyc1e. The component control software: (i) consists of the low-level logic (i.e.

actuation, sensing, interfacing), (ii) defines the devices behavior, (iii) is

encapsulated in the controller and (iv) is exposed to integrated engineering tools

through specific interfaces for building manufacturing applications.

Virtual Reality Modelling and Simulation Tools

In current systems, control verification can only be carried out during

commissioning phases when all the mechanical, electrical and control parts have

been integrated [103]. Revision and re-design at this stage results in the costly

delays for the project. In the current CB approach [116], the logic of the real control

application (i.e. embedded within the integrated components) can be evaluated via

simulation tools to provide the more reliable and accurate approach for the system

validation. The system validation can be carried out prior to the completion of the

design process; significantly earlier than within the current approaches. Any defects

/ deviations from specification can be determined early in the lifecycle and changed

quickly and cost effectively.
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3). Integrated Business-Production Information System

Various kinds of critical information can be found distributed at the various levels

within manufacturing enterprises i.e. at the business level and / or the shop floor (i.e.

barcodes, status of devices, production capability, quality metrics). This information

needs to be available to people or relevant systems whenever or wherever they need it

across the enterprise. There is a trend of increasing the intelligence of automation

devices at the shop floor level to enhance flexibility and re-configurability by increasing

information transparency and data mobility across heterogeneous platform systems

[45].

Information Sharin!!
In the collaborative working environment where the information is distributed and

shared across departments, the use of a shared ontology allows a better exchange of

infonnation among team members with similar interests and a better access to

infonnation. For example the industrial design engineer can use a sharing module to

elaborate on design documentation and detail new knowledge by integrating

existing documents and content descriptions [55], thus reducing the design life cycle

of products and machines. This approach is also applicable to other manufacturing

activities such the machine maintenance to support learning from the outcomes of

previous projects to avoid previous errors and to solve new problems [gI~].

Seamless Network Connection

To gain the maximum benefit from knowledge sharing, content needs to be

characterised in an explicit way so that others can access and understand the data.

Tools have been proposed that support information content descriptions indexed

with metadata and embedded annotations within documents or geographical

document zones for better content exploitation and sharing [55].

4). Information Retrieval and Utilisation

The current trends toward the application of increasingly sophisticated devices on the

shop floor are driving an approach for collaborative manufacturing where the

collection, dissemination and analysis of information about production operation is

recognised to be strategically as important, if not more important, than the physical

products produced [2]. It is important that information systems are organised in
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standard formats allowing other entities to understand and use the information

effectively [8]. With the high-speed data communication of Ethernet and Fieldbus

technologies, distributed devices at shop-floor level can be monitored, analysed in real-

time and configured or upgraded during run-time. This enables enterprises to become

more open, flexible, distributed and extensible with less cost. Shop floor information

can be utilised in many areas:

Diagnostic Systems

The data collection from low-level manufacturing devices, including a wide variety

of process and production data (such as temperatures, pressures, flow rates, and ID

tags), helps companies monitor and analyse the current plant performance in real-

time. The utilisation of data from any individual piece of equipment can be

collected via networked communication (e.g. Fieldbus and Ethernet TCP/IP). Using

these techniques, process downtime, parts degradation, faults and throughput can be

monitored, visualized and evaluated to determine plant asset performance and

support rapid deployment of recovery activities.

Process Optimisation

Advanced technology has been increasingly used in the manufacturing process as an

aid for operators in optimizing operations, the simulation of performance and

advanced process control. In addition plant managers need information systems

support for effective product planning and scheduling. Models, simulations, and

information generated by processes are beginning to be integrated and leveraged at

the enterprise level [17, 29, and 116]. In the current business environment, on time

delivery to customers and optimised process scheduling have become significant

drivers for companies. Equipment downtime resulting in late delivery adversely

affects customer satisfaction. The concept of running machines and field devices

has been changed from reactive run-to-fail maintenance to predictive and proactive

maintenance, aiming at near zero downtime [2]. _

Condition monitoring, implemented with intelligent devices, is under development

by many vendor companies aiming to provide solutions for data logging, process

monitoring and real-time, on-line device controls in many aspects of industrial

domains to improve efficiency and enhance production throughput by minimizing
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loss associated with the machine breakdown (e.g. SOCRADES, RIMACS EU

projects).

Visualization and IIMI

Human Machine Interfaces (HMI's) and Supervisory Control And Data Acquisition

(SCADA) systems are the traditional tools for providing control and performance

visualisation at the plant level. Currently these systems are the main human

interfaces typically transferring significant amounts of data to be converted into

information that is utilised by production management systems. In this aspect, there

is a trend toward more open process control systems, which allow data to be

collected freely from a variety of vendor equipment and prevents manufacturers

from being locked into proprietary solutions and ultimately increasing the plant

flexibility significantly.

3.4 Related Approaches toward Agile Manufacturing Systems
In this section, the general framework, existing research and solutions to enable agile

manufacturing systems in the Intra-Enterprise and Lifecyc1e domains (see section 3.3)
are discussed in terms of enabling technology and its limitations.

The dimension of manufacturing system designs that leads to the collaborative

enterprise perspective is illustrated in Figure 3-3. In the diagram internal

manufacturing, business processes (axis-I) and Inter-Enterprise connectivity (axis-3)

between local business and external business partners are represented. Manufacturing

plant, machine control vendors, and machine builders are linked throughout the

lifecyc1es of the manufacturing (axis-2) domain.

The collaborative enterprise model represents the general framework and integrated

technologies that are commonly used in the design of integrated manufacturing systems

within any business and engineering application. Note: the Inter-Enterprise domain

(axis-3) is not included in the discussion since this domain is outside of the scope of

author's research.
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Figure 3-3: Collaborative Enterprise Model (extended from [78])

In the Intra-Enterprise Domain, business applications, manufacturing execution systems

and other control applications are integrated into the manufacturing system through

middleware and interface concepts to support information retrieval from database

systems for use in higher level applications. Middleware is software specifically

designed to integrate disparate software applications in heterogeneous environments

[120, 45]. Networked communication is supported via standard office LANs at the

business level and Gateway proxies for shop floors with different network types (e.g.

Fieldbus, Industrial LAN).

Shop floor capability is the main focus of the research in this thesis i.e. automation

issues within the manufacturing lifecycle. Typically the design of automation systems

has followed the V-Model [78] starting from extracting requirements from end-users,
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component decomposition to address system complexity, evaluation and finally

component integration final solution prior to final test and delivery to end-users. Once

running, machine processes might go through the change over period for new product

types.

As the plant has to be part of the business system it is crucial to embed the ability to

support the key elements of agile manufacturing. It is necessary that: (i) all the plant

activities can be monitored, (ii) machine performance, downtime, and status can be

logged and (iii) relevant information sent to management teams, engineering teams and
machine builders.

Note: The realisation of system agility is not only via consideration of the monitoring

capability and integration of information, but also engineering environments and

technologies are needed (see Chapter 2) to support the manufacturing lifecycle in the

agile context. Existing solutions proposed to enable agile solutions in the manufacturing

domain are discussed in the following sections.

3.4.1 OSACA: The Open System Architecture for Controls within Automation

systems consortium has been working on open control architectures (Figure 3-4) based

on a client/server protocol using an objected-oriented architecture to develop an

independent modular software structure for open control systems [g34]. The group has

developed a communication system to support open data exchange between software

modules within control systems. The reference architecture defines which tasks are

performed and how tasks interact with each other. The OSACA platform supports

interoperability between different vendor solutions. This vendor-neutral capability is

implemented by the OSACA API (Application Programming Interface), which acts as

an interface between the application object and the underlying infrastructure in the form

of communication, operating system and electrical components. To enable the

flexibility of manufacturing systems in distributed control environments and the

interoperability among diverse vendor specific hardware types, the control application

is defined as an object (i.e. a device), which encapsulates logical control, motion control

and process control. Generic functionality is exposed and accessed through the object

interface. This gives vendors of control software the freedom to implement the software
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in their own fashion but solutions need to be complied with OSACA interface standard

for interoperability.
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Figure 3-4: OSACA Framework

From the business and the shop floor integration perspectives, the OSACA equivalent

middleware is implemented to integrate control level applications (server applications)

to the business systems (client applications). The client finds and invokes the services

through Common Object Model (COM), ASS (Application Services System) and

Microsoft Transaction Server (MTS) middleware layers [70]. The physical

communication can be made through LAN or gateway approaches if different networks

and protocols are used on the shop floor.

3.4.2 ope Foundation (Object Linking and Embedding (OLE) for Process Control):

The OPC foundation is a non-profit corporation and has established a set of standard

Microsoft OLE/COM interface protocols intended to foster greater interoperability

between automation applications,field systems and devices and business applications in
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the process control industry. OPC technology defines standard objects, methods and

properties for servers of real-time information in distributed process environments,

programmable logic controllers and smart field devices. OLE provides a mechanism to

provide data from a source and communicate the data to any client application in a

standard way. It allows components to be utilized by a custom program through

different sets of software drivers in the middleware stack as depicted in Figure 3-5.

From the interoperability perspective, developers can write software components in C

and C++ to encapsulate the intricacies of accessing data from a device, so that business

application developers can write applications to requests and utilise shop floor data

[g15].
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Figure 3-5: ope Framework

However, in the design of automation systems from the lifecycle perspective, there is

no well-structured approach from OPC to support flexibility and re-configurability.

These capabilities depend on the capabilities of vendors to implement this functionality

within the OPC framework.
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3.4.3 RIMACS (Radically Innovative Mechatronics and Advanced Control

Systems): RIMACS is a European FP6 project initiated in 2005. The consortium has

proposed a collaborative automation paradigm based on an autonomous and modular

component-based approach for flexible and agile manufacturing systems to enable mass

customization with reduced lead-time. The RIMACS approach considers the set of

production entities as a conglomerate of distributed, autonomous, intelligent and

reusable units, which operate as a set of collaborating entities at production runtime.

Each entity is typically constituted from hardware - mechatronics, control software and

embedded intelligence and provides common communication capabilities [91].

The production entities are referred to as Intelligent Autonomous Mechatronic

Components (IAMC) which comprise 3 units TEC>TEM>TEPS in a Russian doll

manner. The Embedded Components (TEC) i.e. control devices, mechanic parts, which

are, or can be part of, the Embedded Machines (tEM) i.e, machine subsystems

consisting of independent sub-components and computational units, which are, or can

be part of, the Embedded Production Systems (TEPS) i.e, overall machine systems or

production lines to represent abstract functionality of physical components. The desired

production process functionality is achieved by collaboration of these intelligent,

distributed production units. The business enterprise integration to shop floor

applications can be achieved through the RIMACS interface and middleware approach

for real-time and non real-time services as shown in Figure 3-6 for the Intra-Enterprise

Domain. The RIMACS stack contains various interfaces for suitable applications such

as Web services, Modbus, TCP/IP or specific API's in order to allow the

interoperability of different applications.

The project has demonstrated the implementation of IAMC with SOA and Web

Services as implemented in the Intra-Enterprise Domain to provide more business

integration and flexibility in control systems.

The modularisation of the production system requires the decomposition of the present

"controller-oriented structure" into functional modules with a "manufacturing-task-

oriented structure" These building blocks of the collaborative automation system, which

are built upon the SOA will present their functionalities and production operations as

Web Services in the building block network and form the desired production process by
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collaboration using the communication methods provided by Web technology [91]. An

additional module (Factory Cast HMI) is required to allow Web Services capability on

PLC controllers as shown in Figure 3-6 Lifecycle Domain.

Server application

I Client application(C.Java.IEC)

Common API

RT service Custom API
WS intertace interface QoS intertace
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SOAPIWSDL Modbus TCP/IP
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Figure 3-6: RIMACS Framework

3.4.4 Key Characteristics Summary

The summary of the system characteristic of OSACA, OPC and RIMACS frameworks

in terms of system design technology and conceptual approaches is shown in Table 3-2

below.

Table 3-2: OPC/OSACNRIMACS Key Characteristic Summaries

Characteristic OPC OSACA RIMACS

Control system objective Interoperability Interoperability Interoperability

Control system design Vendor specific solution Object-oriented design Service-oriented design

Middleware OPC OSACA RIMACS-SOA

Communication Approach RequesVResponse RequesVResponse RequesVResponse
Publish/Subscribe Publish/Subscribe

Support Network LAN/Fieldbus LAN/Field bus LAN/Modbus TCP/IP

RTOS " " "Business- Shop Floor ope gateway SERCOS gateway PLC gateway
connection
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3.5 Existing Approaches Limitation Analysis

The objective of this section is to illustrate the limitations of these existing approaches

on the requirements of agile manufacturing as determined previously (see Figure 3-2).

The analysis is based on:

• Openness and Interoperability among diverse enterprise and shop floor

applications

• The complexity of Intra-Enterprise integration with regards to middleware

technology, gateway approaches and communication protocols

• Flexibility and Re-configurability of the automation system

The common middleware architecture of the aforementioned approaches can be

outlined as in Figure 3-7 that provides

Disadvantage

Complexity added up
with various interfaces

Vendor lock-in solutions

Complexity added up
with various interfaces

Vendor specific tools
required for different

devices

Additional interface for
communication

Limited process/devices
interoperability

Business/Manufacturing applications:Client

LAN

Figure 3-7: Common Middleware Architecture
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a simplified version of the process of integrating distributed software applications using

middleware. In this case, the middleware enables the connection between business

applications (so called "client") and shop floor applications (so called "server") through

interfaces and gateway proxies (if required) via communication mediums such that

LAN and Fieldbus network.

Degree of Complexity

Based on current middleware solutions, diverse software applications on different

operating systems are integrated via middleware through specific API interfaces that

are compatible with source applications. The output from the middleware is another

set of interfaces that translate the message into desired formats in the meta-data

models where shop floor applications and business applications interoperate.

In this approach that the complexity of the integration problem is reduced to the

definition of new set of drivers and interfaces that are required to integrate new

applications into integrated systems.

In addition to the .middleware, communication networks allow interoperation

between applications. In fact, different types of network have been used in the shop

floor such that Fieldbus, Modbus, Industrial Ethernet [g20]. It generally the case

that the network at the automation system level is usually different from that at the

business level and additional gateways are hence required.

Vendor Dependant Solutions

Interoperability among different middleware vendors is another concern for the

development of an open platform. As reported by [121 and 122], each middleware

solution (e.g. Common Object Request Broker Architecture (CORBA), Java 2

Platform Enterprise Edition (J2EE), Distributed Component Object Model

(DCOM)) IS implemented with specific mechanisms and technology.

Interoperability is limited by the certified and approved compatibility within

specific middleware solutions. Therefore, business and automation applications are

limited to a number of solutions offered by vendors of the middleware.
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Figure 3-8: Web Services- based Automation Paradigm

As proposed on the SOCRADES project [86], to realise greater shop floor integration

capability, the automation level needs to inherit SOA-Web Services characteristics to

support higher level application integration. In addition, the flexibility and agility win

be enhanced by the implementation of Web Services on distributed control devices to

achieve loose coupling in the automation system. Other local run time and design time

applications can be seamlessly integrated through a single set of standard Web Services

interfaces. Furthermore these applications can be readily connected to the control

system and devices via standard office Ethernet LAN's.

In terms of the reconfiguration of the control system to support the manufacturing

system lifecycle, this research has proposed a novel framework of Web Services and

Component-based design approaches for manufacturing systems integrated with process

engineering tools supporting a "design for reuse" approach. Each mechanical part has a

defined Web Services functionality as an abstract layer.
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The low-level programming is encapsulated and exposed to control engineers and

machine builders through the Web Services interface. Each Web Services component is

managed by process engineering tools in the control system commissioning phases.

3.7 Assessment in Meeting Agility Requirements

In summary, the existing approaches and the proposed WS Automation solution

approach will be assessed against key agility features and the expected impact on key

enablers.

Table 3-3: Assessing the Achievement in Key Agility Features of Existing Approaches

Agility feature Key enabler Ivaluatlon OPC OSACA RIMACS WS
Automation

Modularlsatlon of Open control platform (Non vendor specific) V V V Vproduction system

CD Flexible/Reconfigurable automation ? V V V
Quick change over Well supported process engineering tool (HMI. ? ? ? V
automation system Simulation. Control Application Builder)

CD Component -based design ? V V V
Integrated business Seamless network connection ? ? V Vproduction IT

CD Well Integrated Information sharing ? ? V V
Information retrieval HMI system V V V V
and utilisation

0 Common Database and Diagnostic system ? ? ?

'"
The key features of agile manufacturing discussed in section 3.3, have been included in

Table 3-3 in order to allow comparison each of the solutions. Evaluation of the

approaches has been based on information and data reported in research publications.

However, where there is uncertainty where features cannot be justified conclusively due

to subjective opinions expressed in the articles they have been marked with a question

mark.

As indicated in Table 3-3, there are areas where existing solutions do not deliver agility

in the required areas. Most of the existing platforms are limited to open solutions from

specific providers. The middleware is generally composed of different sets of drivers

for each different application. Engineering tools, HMI's, and other integrated

applications need to be designed by compilation of specific sets of additional
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middleware interfaces that considerably increases the complexity and decreases the

modularity of the system.

In comparison, the proposed WS automation system supports every aspect of agile

system requirements as detailed in Table 3.3. The WS's are considered as a common

technology in terms of integration and building of control systems to allow the creation

of an overall homogenous platform. From the re-configurability perspective, the WS's

can be complemented with: (i) a component-based design approach, (ii) the integration

of process engineering and simulation tools and (iii) HMI systems to support increased

agility in the manufacturing system.

3.8 Conclusion
In the first three chapters of this thesis the need for a paradigm shift from mass

production systems to mass customisation capabilities due to characteristic changes

from customers and increase in the global competition has been outlined. Following a

review of traditional manufacturing systems, the reasons why this manufacturing

approach is not suitable for today's mass customisation requirements where

unpredictable changes in the customer demands and product specifications are the norm

has been detailed. As a result, companies and manufacturers need to seek a new

paradigm for their business strategies. Agile manufacturing, proposed as the next

generation manufacturing paradigm and a possible solution to the traditional

manufacturing limitations has been highlighted and its key enabling concepts presented.

In addition, the needs of industrialists in the automation domain that are required to

support agile manufacturing have been identified. The key details are summarized in

Table 3-4.

The state of the art for agile manufacturing and enabling technologies has been

reviewed from a study of selected projects that have reported a substantial impact on the

research area. Each approach has achieved a measure of agility based upon its own pre-

selected criteria. However each approach has limitations that have prevented full

realisation of the agile manufacturing paradigm. The common problem is the level of

interoperability between vendor specific technologies that contributes to the increased

degree of complexity in integrating different applications in both business and

manufacturing systems. In order to overcome this issue, the research in this thesis has
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proposed the radically new design of the control and manufacturing platform using

standard technology of a SOA and WS's as a neutral platform for business and

manufacturing process integration. The summary details are presented in Table 3-5.

Previous research has indicated that a SOA and WS' s can be readily utilized for

business level application integration. However, the role of WS and a service oriented

integration strategy in the manufacturing system, particularly in the real-time

distributed control automation systems, has not been defined as yet. One major

contribution of this research work is to outline the WS integration methodology for

business and control automation that enables the achievement of agility in the complete

manufacturing system and supply chain.

Table 3-4: Addressed Problems, Requirements and Key Agile Enablers Summary

Discussed in Chapter 2 Discussed in Chapter 3

Existing problems End-user requirements Key agile enablers

Manufacturing s:istem • Seamless business- manufacturing Refer to Table 3-3

• Rigid Hierarchical Structure process integration 0
Design of Automation S:istems • Rapid design of the automation Refer to Table 3-3

• Experience-based design and • Non-vendor specific platforms G)
implementation • Visualisation and Simulation

• Late verification of automation
systems

Control S:istems • Quick response to change in the Refer to Table 3-3

• Rigid manufacturing development production capacity CDwith centralized control • A high degree of reuse

• Lack of reusable and • A more consistent integration

reconfigurable automation approach for diagnostic and

peripherals maintenance support

• Diversity and complexity of
automation devices

Operation • Visualisation and Simulation Refer to Table 3-3

• Lack of remote diagnostics and • Fault tolerance and recovery 0support
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Table 3-5: Limitations, Requirements and Proposed SOA-WS Solution Summary

Current Approach The Needs Proposed

Limitation to Agility SOA-WS Solution

ComI1lexity: • Common and consistent interface • Common WS interface

• Required various sets of • Common network connection for devices and business

interface and gateway for applications integration

business and shop-floor • Ethernet network

integration connection

• Specific tools are required for

various control systems

Vendor SI1ecific Solution: • Open standard, interoperability • Standard SOA

• Vendor lock-in solution as integration middleware middleware

well as non-interoperable

middle ware

Rigid Structure of Automation • Describing component • WS interface for device

System: functionality as abstract interface descriptions and control

• Tight coupling between for a more loose coupling functions

devices to devices and

devices to business

applications
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Overview of Current Technology and Key Enablers for

Agile Manufacturing System

The features of agility and a novel approach for agile manufacturing based upon wS' s were

detailed in the last chapter. Using the collaborative automation system model as presented in

Chapter 3, the implementation of distributed control system architecture (including PLC

devices, the IEC 61131 standard and Network capabilities), distributed control applications

(e.g. the IEC61499 standard and LonWorks system), and middleware (e.g. CORBA and

SOA) are reviewed in this chapter to illustrate the capabilities of the current technology and

future trends towards the support of agile automation.

4.1 Problem Statement
There are various implementation technologies for production systems to support the

development of "agile solutions". However, it is imperative that suitable and effective

technologies are integrated to enable true agile manufacturing systems to be realised.

The research questions to be addressed are:

1. What are the architectures associated with the different types of distributed

control systems? Which approach is most suitable for the next generation of

manufacturing systems?

2. What types of networks are used in the industrial automation for control device

communication? What interoperability issues are there with the different types

of network?

3. What are architectures and technologies of the different types of middleware,

such as CORBA, DCOM and SOA? What are the main differences and

advantages/disadvantages between these?

4. Why has conventional middleware not been substantially used in manufacturing

automation systems?

4.2 Control System Architectures and Trends

As reported in [31], basic control architectures can be classified into four categories:

Centralized, True Hierarchical, Modified Hierarchical, and Heterarchical (see Figure 4-
1).
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The details of these 4 control architectures are summarized in Table 4-112/3/4,

Table 4-1 Centralised Control Architecture Description

• The centralized control architecture is the • The physical environment (e.g.
traditional design approach, found in older temperature, status of tooling devices and
manufacturing automation systems, work pieces) is monitored by sensors that

are connected to a single central control
unit for the entire machine / machine• Sensors, actuators and other physical

manipulators rely on a central processing
unit such as the PLC, responsible for
processing commands and making •
decisions for the automation systems,

systems or plant.

Centralised Control Architecture (see Figure 4-I/a)

The information from the sensors IS

gathered for data manipulation by the
central processing unit and transformed
into physical actions by feeding back the
commands to actuators.

SystemCharacteristics
With centralized processing process reconfiguration is complex, The systems are referred to
as rigid since the 110 is tightly coupled to the central computing unit. Any unforeseen
modifications to hardware and/or software are a tedious task to engineer, since all units need
to be reconfigured and re-evaluated one at a time, In addition, since several 1I0s are
dependent on a single host, if the host fails, the whole system fails, This is a major issue
from a reliability perspective, However, this the centralised control architecture provide the
fast 110 response since the controller communicates directly to the physical devices,

T bl 42 H'a e - ierarc rca on ro c lecture escnpnon
Hierarchical Control Architecture (see Figure 4-l/b)

• True hierarchical architectures have been • The nodes in the lower level perform the
widely used in manufacturing systems. tasks specified in the schedules and any

variance will be sensed and processed by
• The node in the upper level is responsible the upper nodes,
for job management and provides the
nodes in the lower level strict schedules to
follow,

System Characteristics
This true hierarchical architecture has the advantages of system stability and possible
performance optimization, but disadvantages include a slow response and lack of robustness,
Because pre-established fixed structure is utilised, extensibility and re-configurability are
difficult to achieve with true hierarchical systems and thus it is hard to incorporate
unforeseen changes into the system [32], In order to improve the ease of implementation,
debugging, testing, and maintenance, a reduction in the complexity of true hierarchical
architecture is required where a higher degree of modularity and a lower degree of coupling
between modules is provided [33],

hi 1C t 1Ar hit D 'f
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bl M dif a tn hi I C IAr h· DTa e 4-3: o I ie ierarc ica ontro c itecture escnptlOn
Modified Hierarchical Control Architecture (see Figure 4-lIc)

• The modified hierarchical control • To improve flexibility and overall
architecture was proposed to overcome performance, the control units at the same
the problems identified with true level of hierarchy can communicate with
hierarchical architectures. one another in a collaborative manner to

react to specific interferences .
• The processing units, such as PLCs, can
be distributed to machining stations to
provide local control to automation
devices.

SystemCharacteristics
However, this system is still restricted, with the main higher computing unit (i.e. the Master
controller) providing overall control and sequencing of operations. Hence the modified
hierarchical form inherits the disadvantages of proper hierarchical architecture, in terms of
rigidity and master/slave relationships.

Table 4-4 Heterogeneous Control Architecture Description

• This incorporates the advantages of
robustness, flexibility and re-
configurability. Failure of individual
control units does not impact system
performance, as both knowledge and
control algorithms are distributed f321.

Heterogeneous Control Architecture (see Figure 4-lId)

• There is no central controller in this
approach that delegates the control
autonomy to the local control unit / units.
The control units in this structure are
autonomous and intelligent enough to
execute their own manipulations, since the
processing units are encapsulated locally.

• The relationships between control units are
both cooperative and competitive: as more
intelligent devices are incorporated into
lower level devices, sensors and actuators
perform local operations, such as data
monitoring and local feedback control,
without relying on a master controller.

• Heterarchical architectures have gained
much attention in the development of the
next generation automation control
systems.

System Characteristic:
The design of automation systems should move towards heterarchical architecture, with
highly distributed and loosely coupled devices with low-level peer-to-peer communications
in real-time, in order to improve the agility and responsiveness of manufacturing automation
systems, as reported in [29]. However, there are drawbacks in adopting heterarchical
architectures [32]. The heterarchical control systems are unpredictable in terms of response
time and that global system performance optimization is very difficult to achieve. Other
authors have argued that heterarchical architectures could make systems more predictable by
using publish-subscribe communication.
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4.3 Programmable Logic Controllers

The Programmable Logic Controller (PLC) has been a part of manufacturing controls

technology since the 1970's, and has become the most common choice for the control

of automation systems. Traditionally, PLC's are mainly programmed by ladder logic

that was developed to mimic relay logic i.e. a graphical language representing an

electrical wiring diagram used for describing relay control schemes.

The operational principles ofPLC's are based on simple 1/0 logic. The words "TRUE"

and "FALSE" or "ON" and "OFF" are used to indicate the status of switches connected

to relays within the control system. The ladder logic in the PLC is actually a computer

program that the user can enter and change. Note that both of the input push buttons are

normally open, but the ladder logic inside the PLC normally has one open contact and

one closed. The ladder logic in the PLC does not need to match the inputs or outputs

(e.g. SW1 with B, SW2 with A, as in Figure 4-2).

Push Buttons

....J..... SW1
r-----1O

Power supply ....J..... SW2+----
PLe

PLC
Industrial Network

Input

..----------------~------PLC
Ladder
Logic

Normally Close Normally Open
Output

Process sensors/actuator

:1S\"~·
ACpot\'!l'

Figure 4-2: A basic PLC illustration
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There are drawbacks with employing traditional PLC's [33]. Ladder logic has a lack of

modularity that offers limited reusability of programming code and no support for

complex programming structures. Implementations require highly experienced

programmers for commissioning. To enhance traditional PLC programming techniques,

the IEC 61131-3 standards were developed as a common and open framework for PLC

software architectures. This was an attempt to encourage an open, interchangeable and

structured approach to the development of control software. The standard is defined

loosely enough so that. each PLC manufacturer is able to maintain their own look-and-

feel, but the core data representations are common.

The IEC 61131-3 standard encapsulates programs, function blocks and functions,

otherwise referred to as Program Organization Units (POU's). Standard functions

include instance ADD (addition), ABS (absolute), SIN and COS, and once users define
functions, they can be re-used. Function blocks are the software equivalent of Integrated

Circuits, (IC's), or black-boxes, representing a specialized control function. They can

contain data as well as functionality, so they can keep track of past events and states.

An example of a function block is a tuning control loop, or Proportional, Integral and

Derivative (PID) loop. Function blocks can be written in any of the IEC languages (see

later), and in some cases, even in C. The last element of the IEC 61131-3 standard is a

program which is identified as a network of functions and function blocks. After

declaring the data types, network variables, functions and function blocks that will be

used in the program, the overall operation of control systems is implemented by

programming the operational logic of the devices. The detailed implementation can be

seen in [44].

Instruction List(IL) Structured Text(ST) Function Block Diagram (FBD) Ladder Diagram(LD) Sequential Function Charts(SFC)

AND:n-c
LD A C=AAND NOTS

ST C

ABC

-1 f-Vl-<)-ANON B

Figure 4-3: Language constructs within the IEC 61131-3 Programming Standard
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The IEC 61131-3 can be constructed in any of the five language constructs defined

within reusable function blocks [43], as depicted in Figure 4-3

IL (Instruction List) - is effectively mnemonic programming.

ST (Structured Text) - is a very powerful high-level language with its roots in

Ada, Pascal and "C". It contains all the essential elements of a modem

programming language, including selection branches (IF-THEN-ELSE and CASE

OF) and iteration loops (FOR, WHILE and REPEAT), and these elements can also

be nested. It is excellent for use in the definition of complex function blocks, which

can be used within any of the other languages.

LD (Ladder Diagram) - is based on the graphical presentation of Relay Ladder

Logic.

FBD (Function Block Diagram) - A graphical dataflow programming method

very common in the process industry. Expresses the behavior of functions, function

blocks and programs as a set of interconnected graphical blocks, like those in

electronic circuit diagrams. Systems are represented in terms of the flow of signals

between processing elements.

SFC (Sequential Function Charts) - A graphical method for structuring

concurrent program. As illustrated in Figure 4-3, the flowline connects a step and a

transition. The transition is used as a condition to allow control to move to the next

step when a condition is met. At some point, there may be a desired action to be

performed at each step.
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4.4 Communication Networks

The control devices (controllers) communicate to other devices and the master

controller through the industrial network, in order to pass and exchange the control data
that will be executed on the controller in order to allow the physical 110 devices to

function. The fieldbus network system has been used in automation manufacturing for

many years, but Ethernet technology is fast becoming the standard for device

communication. In this section, the capability, standards, implementation technologies

and limitations of each fieldbus system and Ethernet is reviewed.

Although fieldbus technology has been around for many years, it is still not widely used

because of a lack of international fieldbus protocol standards, which would ensure

complete interchangeability and interoperability between different suppliers. Fieldbus is

specified and implemented according to the Open Systems Interconnection (OSI)

Reference Model, as discussed in section 4.4.2. However each fieldbus networking

solution is not standard i.e. some fieldbus technology is based on a three-layer model:

the physical layer, data-link layer and application layer, but other fieldbus technologies

are based on a four layer model: the same as above plus a network layer. There are

many types of fieldbus systems on the market and these are not directly interchangeable

and interoperable.

Standard Ethernet is designed around two layers of the OSI model (i.e. the physical

layer and a data-link layer) for compatibility and interoperability between computers.

Ethernet is widely used in office and home to connect different types of computers and

peripherals together, regardless of operating systems. It is foreseen that Ethernet may be

developed for industrial sectors for the purpose of device communication and plant

integration, through enterprises as demonstrated by [29], [92], [93], and many

companies are keen to adopt Ethernet in industrial sectors. In the following section,

fieldbuses will be compared with the emerging Ethernet technology for automation

systems.

4.4.1 Open Industrial Fieldbus Systems

Fieldbus is a communication standard that enables communications between field

devices and a master device such as a PLC. Currently, there are several types of

fieldbus standards available for communication between control devices. Traditionally,
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fieldbus provided users with proprietary solutions from specific vendors. However,

since the introduction of open, non-proprietary protocol standards, many fieldbus

providers have consistently developed technologies to offer manufacturing sectors, with

the new solution for open industrial bus systems. Details of fieldbus can be found in

[37,38], and a summary of common fieldbuses is shown in Table 4-5.

Table 4-5 Summary of Common Fieldbus Type Networks
Name Description Characteristics Company

Actuator sensor
interface (AS-i)

• A master/slave
open network. It is
simply designed
with a two-wire
untwisted,
unshielded cable,
which is used for
both
communication and
power supply.

• A master can take up Allen-Brandley
to 31 slaves

• Node addresses are
assigned either by
the master or
addressing units via
bus connection

• Capable of
connecting to serial
RS connections, and
Profibus via proper
interfaces.

Control Area
Network (CAN)

• A type of serial
bus data system for
multiple devices,
passing
information
between each other
with high-speed
data rates.

• A "non- destructive Bosch
bit-wise arbitration"
to access the bus, by
using the bus station
identifier to allow
higher priority to
gain access first.

DeviceNet • The design based
on CANs to
interconnect lower
level devices with
higher level
controllers.

• The cabling system
consists of 4
conductor cables
providing power
and data
communication.

• Master/slave Allen-Brandley
communication
either by strobe or
poll methods. It can
support up to 64
nodes, and as many
as 2048 devices.
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Interbus-S • An open device • Master/slave register Interbus-S Club
level network, shifting procedure
allowing a twisted • Addressing I/O
pair of fiber optic stations
cables connected automatically during
to each station. start up.

• Communication
buses are local
(ITL voltage) and
remote (RS-485
voltage).

Profibus • Is designed for • Master/slave with DIN 19245
communication Logical Token Ring, standard
between PLC and to allow each master
distributed low controller to
level devices on communicate with
the bus system. slave devices.

• There are three • Real devices
types of Profibus: (Communication
FMS (Field objects) are defined
messaging at the local object
specification), DP dictionary (source
(Distributed OD) during
processing), programming phase.
PA(Process
Automation).

• RS-485 voltage
standard for FMS,
DP and IEC 1158-
2 for PA.

DeviceNet • The design based • Master/slave Allen- Brandley
on CANs to communication
interconnect lower either by strobe or
level devices with poll methods. It can
higher level support up to 64
controllers. nodes, and as many

• The cabling system as 2048 devices.
consists of 4
conductor cables
providing power
and data
communication.

4.4.2 Industrial Ethernet Networks

There is a strong interest in developing internet technology for integrating automation

devices, due to the development of the distributed collaborative manufacturing systems.

The concept of Ethernet-based process control has been introduced in recent years to

propagate an open system communication standard and to enable the interchangeable

use of equipment from various manufacturers. Some work has been done on developing
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"Ethernet for Open Network Communication based on the IEEE 1451 standard" as

proposed in [39, 81 and g3].

Industrial Ethernet applies the Ethernet standards, developed for data communication,

to manufacturing control networks using IEEE standards-based equipment with the

intention that organisations can migrate factory operations from fieldbus systems to an

Ethernet environment [g20]. Industrial Ethernet technology tailored for control systems

can be represented by the seven layer OSI model in Figure 4-4.

Layer 1 Physical layer Electrical and mechanical definition of Ethernet
the system. It is concerned with Physical
transmitted raw data bits over a
communication channel.

Layer 2 Data link layer This is used to ensure reliable Ethernet
communications through the physical MAC
layer. Framing and error correction
format of data. This layer determines
the structure of data and frame/packet
size.

Layer 3 Network layer Optimum routing of message from one IP
network to another; controls the
operation of the subnet.

Layer 4 Transport layer Managing the flow of the message. It UDP, TCP
accepts data from the session layer and
passes it to the network layer.

Layer 5 Session layer Organization and synchronization of FTP, HTIP,
the data exchange. This layer is a SMTP,
user's interface to the network that SNMP,
user needs to negotiate in order to Telnet
establish a process connection on
another machine.

Layer 6 Presentation layer The layer performs data conversion
from one to another format for users,
rather than leaving the user to find the
solution.

Layer 7 Application layer This layer is for file transfer, message
exchange and network management.

Figure 4-4: Layers of the OSI Model for Industrial Ethernet
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The OSI model may be interpreted as a collection of entities situated at each of the

seven layers. A data (packet) starts at an upper layer, and passes down through each of

the layers. As the packet moves down, it is enclosed in a "protocol envelope", which

carries addressing and control information that advises the next layer down what to do

with the packet [37], as shown in Figure 4-5.

Sender Virtual connection Receiver

Layer 7· Application layer
Equivalent message

Layer 7· Application layer t
Llyer 6- Presentation layer

.. Equivalent message
Layer 6- Presentation layer t

Layer So Session layer Equivalent message. Layer So Sellion layer t
Layer 4- Transport Ilyer

Equivalent message
Layer 4- Transport layer t

tLayer ~ Network layor
Equivalent message

Layer ~ Network layer t
Layer 2· Data ink layer

i<I Equivalent message Layer 2· Data ink layer ti<I ~~ivalent m~~e.

t
Layer 1· Physical layer I I Layer 1· Physical layer

)

Application

I "",,'calion I LAYER5
U.. r·O... (Application)

TCP From. .(1460 Bltu Max.).

I Tep Heiidor ; Tep Oo ... _ I LAYER4- TCP
• (Port Numbers) I _'0' . (Transport Layer)

IP From. + (20 Byteo) •

I IP Header I IP 0011MIl I LAYER3-IP
(IP Add,. .... ) (N_ Lay .. )

Ethernet Fram. + (20 Byteo) •
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(Ethemot Add,. ... ) E_ 00II MIl . (Chock><.m). (D... LinkLay .. )+ (14 BytH) , (4 ByIIl)

r - --- - - -- -- - -- - - - -- -- -- -- - - --- - -I LAYER 1
I_ :~: T~ ~i~.:.~p~~. ~~ .."~": ~c , (Phytlcti Layer)t

Figure 4-5: OSI Messaging

Currently, there are a number of automation companies offering Industrial Ethernet

Network solutions and their control devices. The various adoptions of these Industrial

Ethernet Networks are summarized in Table 4-6 below.

Table 4-6: Industrial Ethernet Network Features
Name ProtocollN etwork Characteristics Standards

Modbus-TCP Modbus RTU protocol, Provided with Ethernet Modbus-RTU with
with a TCP Ethernet 10/100 Mbitls, up to standard IEEE 802.3
interface. Modbus protocol 1Gbitls. Multi master- Ethernet
defines the rules for slave architecture for
interpreting the data and distributed automation
message structure at and environment.
above session layer
(Modbus specific).

Ethernet Powerlink TCP/IP; UDP/IP Protocol Ethernet 100 Mbitls, Ethernet
with modification in the TCPIIP, a deterministic POWERLINK
data link layer for the real-time protocol for Standardization
deterministic of network standard Ethernet with a Group based on
with collision avoidance. RTOS mixed Polling- standard IEEE 802.3

and Time-slicing
mechanism.
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EtherCAT Using full-duplex Ethernet An open high- IEC 61158, IEC/PAS
physical layers, with the performance Ethernet- 62407, IEC 61784-3,
approach of one frame per based fieldbus system ISO 15745-4
node per cycle and (Ethernet 100 Mbitls ),
processing on-the-fly, in with master/slave
order to optimise the communication
network bandwidth and architecture between a
processing speed delay. controller and field
The EtherCAT ·protocol devices.
follows IEEE 802.3
standards and
inserted into

can be
UDPIIP

EtherNetlIP (CIP)
datagram.
TCP/IP; UDP/IP Protocol
with modification of OSI
model at session layer and
above, in order to
accommodate time-
critical control data and
message prioritization in
multiple communication
hierarchies.

Speed from 100 Mbitls OOVA EthernetlIP
up to I Gbitls. based on IEC 61158

standard
It may be configured to
operate m both a
master/slave and
distributed control
architecture, using peer-
to-peer communication.

PROFINET 110 TCPIUDP and IP for non-
timing critical data
exchange, and a prioritized
real-time channel (IEEE
802.1Q) on top of standard
Ethernet- data link layer
for timing critical
applications.

The protocol complies
with the standard office
Ethernet network.

PI International
based on IEC 61158
and IEC 61784

As reported in [39], implementation of Industrial Ethernet can be subdivided into three

concepts:

1.Encapsulation Technologies:

This is the extension of the application layer of existing fieldbus networks into

TCPIIP networks, by adding the data portions of Ethernet TCP/IP. The original

fieldbus networks are preserved.

(Developer: EthemetlIP, Foundation Fieldbus HSE, and Modbus-TCPIIP)

2. Gateway and Proxy:

The standard fieldbus networks are integrated into the Industrial Ethernet networks

through a hardware called gateway or proxy. This device is used as a translator, and

interprets the control message between fieldbus and Ethernet networks.

(Developer: ProfiNet and Interbus)



CHAPTER4: CommunicationNetworks 62

3. Interface for Distributed Automation (IDA):

This concept uses real-time middleware services provided by the Real-Time

Innovation Company, in order to accommodate communications between control

applications over Ethernet using real-time publish/subscribe (RTPS) architectures

that is built on top of User Datagram Protocols (UDP's), Internet Protocols (IP's)

and Ethernet.
(Developer:IDA Group- not baseduponan existingfieldbuses,unlike formertwo concepts)

The full details of these three protocol implementations could be found in [33, 39 - 42].

Although all these protocols use Ethernet, this does not mean they can automatically

communicate and interoperability is not guaranteed. The application layer (layer 7)

translates the incoming information into something the user can understand. Each

company does not have the same application layer since they typically develop their

own proprietary protocols at this level that does not interact with others [39]. In

addition, other layers may be also be modified and adjusted to suit their own design

specifications, such as real-time performance (see Table 4-6).

In recent years, there have been efforts in developing a new approach to Industrial

Ethernet in order to overcome the problems associated with the various designs of

protocols. The leading concept has been promoted by the IDA Group with support from

Schneider Automation and Jetter. This concept omits layer 7 (the application layer), as

this is where most vendors have developed their own designs and device compatibility.

New automation concepts are employed, with embedded communication features

compatible with the normal Ethernet. There is the strong potential for Ethernet to be

connected to those low-level intelligent devices that are able to perform through

Ethernet connectivity, in order to ease the commission of automation systems and to

enable the plant agility. Ethernet-based process control should propagate the open

system communication standard to enable equipment from various manufacturers to be

used interchangeably.
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4.4.3 Ethernet Standard

Ethernet is a family of frame-based computer networking technologies for local area

networks (LANs) and the name comes from the physical concept of the ether. It defines

a number of wiring and signaling standards for the physical layer, through the means of

network access at the Media Access Control (MAC) IData Link Layer (DLL), and a

common addressing format (http://en.wikipedia.orglwiki/Ethernet).

Historically, the network is referred to as a Carrier Sense Multiple Access / Collision

Detect (CSMAlCD) bus network type (see "Issues with Ethernet" section below), and it

is generally implemented as a 10 Mbps baseband coaxial network or twisted pair cable

(Cat 5). Recently, the speed of 100 Mbps has been introduced, and soon speeds of 1

Gbps will be commonly used for home and business purposes. TCP/IF is a protocol that

fits into the data frame area of the Ethernet frame, and the protocol regarding the

defining of the packet delivery system as "an unreliable (no guaranteed delivery), best

effort, connectionless packet delivery" [75]. The basic packet called an IF datagram is

shown in Figure 4-6.

o

IP Datagram header I IP Data array I
4 8 ~ 3

VERS I HLEN I servtce Type Total Length

Identification Flags I Fragment Offset

Time to live I Protocol Header Checksum

Source IP Address

Destination IP Address

IP Option

VERS A version of the protocol

HLEN Th. datagram h.ad.r I.ngth in 32 bit word.

Service Type This is merely a recommendation to the routing software
on the service required

Total Length Length of the datagram in byt.s (including th. header section)

Identification Each datagram must have a unique numb.r

Fragment Offsel Thi, specifies the offset of the data in the original datagram

Time to Live (TTL) As the datagram passe. through the networt<, Its time Is
decremented for each pais of each gateway or host

Protocol This specifies the protocol format for the data payload area

Header Checl<sum Complement the r.. ult of adding the IP header as a ,erie. of
16 bit Integers using on.'. complem.nt arithmetic

Source IP and The IP addresses of source and destination nodes
Destination IP
Addr .....

IP Option Option u.ed for control purpo ...

IP Header in bytes = (32 bits x 5)/8 = 160 bits (not included IP Option)/8 = 20 bytes

(Note: Packet size= Payload+ TCP Header + IP Header + Ethernet Header)

Figure 4-6: The Structure of an IP Datagram (from [75])

However, there are a number of practicalities that need to be considered before

migrating from the traditional fieldbus industrial network or Industrial Ethernet to

Ethernet TCP/IP communication. There are some fundamental problems with applying

Ethernet to industrial applications [39], as follows:
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1). Non Deterministic and Uncertain Real-time Performance

The fundamental access algorithm, CSMAJCD, cannot provide sufficiently consistent

latency for deterministic applications. Its mechanism is to see if the physical layer is

idle, then to begin transmitting, or back off and wait a random period of time before

retrying until the network is free to accept data packets [g7]. Delays are inevitable.

However, as the Ethernet speed becomes faster, up from 10 Mbitlsec - 100 Mbitlsec -

1Gbitlsec, non-deterministic behaviour become less of an issue since the bandwidth is

large enough to render delays irrelevant for all but the hardest real time applications

[g7]. In some industrial domains, where real-time performance is not crucial and critical

to safety, Ethernet could be utilized currently as a supporting technology for open and

flexible automation systems.

2). Delivery Speed Degrades with Loading Increases

As the Ethernet speed is significantly increased, this fundamental speed degradation as

loading increases becomes of less concern to system commissioners. In addition, there

is an extension to the standard, IEEE 802.1p, addressing this problem. This allows a

system designer to guarantee the fast delivery of critical data, by means of giving

priority to messages as in the real-time system [g8].

3). Security

This is the major issue of integrating industrial automation devices to the outside

environment through Internet Technology. The network could be targeted from

unauthorized users hacking into the system, and viruses could spread out to linked

companies and damage the whole system. Other protection, in addition to firewall port

80 (HTTP), would be necessary to secure links. End-to-End data encryption, a level and

class of authorization and the use of private servers to route the traffic are some of

feasible safeguards to allow only authorized users to log into the systems.

4). Durability

Using Ethernet creates the large overhead for 110 operations. Usually, most industrial

applications use small periodic data transfer, whereas Ethernet deals with large

aperiodic messages. Ethernet cables need to be able to work consistently under the

harsh industrial environment with high temperature and noise, unlike using in the

offices.
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4.5 Communication Architectures
In this section, the semantics behind the communication amongst intelligent control

units (nodes) are reviewed. Autonomous control devices could be distributed across

entire production machines and would be required to interact with one another through

the industrial network. The software applications need to exchange information.

Complex distributed applications require a more powerful communication model and

several types of software technologies (i.e. middleware - see section 4.7) have emerged

to meet this need [34]. The middleware communication architecture may comprise three

categories: Point-to-Point, Client-Server, and Publish-Subscribe.

4.5.1 Point-to-Point

A point-to-point connection is a dedicated one-to-one communication system that links

two systems or processes. The connection between two nodes consists of two packets

exclusively using the connection to communicate. On shared networks, all nodes listen

to signals on the cable from broadcasting nodes. However, when one node addresses

frames to another node and only that node receives the frames, essentially the two

nodes are engaged in point-to-point communications across the shared medium. This is

a simple and straightforward approach that gives high-bandwidth but does not scale

very well with many nodes.

4.5.2 Client-Server

Client-Server networks include servers (i.e. machines that store data) and clients (i.e.

machines that request data). The Client-server is fundamentally a many-to-one design

(i.e. one central server node and many client nodes) and this type of server works well

with centralized information systems such as databases, transaction processing systems,

and central file servers. However, if multiple nodes are also generating information,

client-server architectures require that all information be sent to the server for

subsequent redistribution to the clients, and such indirect client-to-client

communication is inefficient, particularly in a real-time environment. The central server

also adds an unknown delay to the system, as the receiving client does not know when

or if it has a message waiting [34]. In addition, the server can become a bottleneck and

presents a single point of failure. Multiple-server nets are possible, but they are very

cumbersome to set up, synchronize, manage, and reconnect when failures occur. The
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multiple-server resolves bottleneck and point-of-failure exposures, but unfortunately

increases inefficiencies and bandwidth consumption [35].

Client-Server architectures are often based on "object-centric" design. However, in

distributed real-time applications, the information that needs to be communicated is

quite often just data, rather than objects. Attempting to implement these "data-centric"

systems with a client-server communications model frequently leads to unnecessarily

complex system designs and a significantly degraded networking performance.

4.5.3 Publish-Subscribe

Publish-Subscribe architectures support one-to-many, many-to-one, many-to-many data-

distribution. Publish-Subscribe adds a data model to messaging, with publish-subscribe

nodes simply "subscribing" to data they need and "publishing" the information they

create. Messages logically pass directly between the communicating nodes, and this

fundamental communications model implies both: (i) discovery i.e. what data should be

sent and (ii) delivery i.e. when and where to send it.

Publish-Subscribe systems are good at distributing large quantities of time-critical

information quickly even in the presence of unreliable delivery mechanisms [34].

Publishers simply send data anonymously since they do not need any knowledge of the

number or network location of subscribers. Subscribers simply receive data

anonymously, without needing any knowledge of the number or network location of the

publisher [35].

Within the distributed automation system, distributed command and control systems

periodically send out data updates to controllers, loggers or other subscribers on the

network. Publish-Subscribe is a necessity for these systems since the data are

transmitted by the publishers to the subscribers when new data are produced. There is

no request and no polling. The nodes interact in a similar way to the Event-Driven

mode [36]. The advantages and disadvantages of each communication technologies is

summarized in Table 4-7.



CHAPTER 4: Communication Architectures 67

To conclude, publish-subscribe clearly offers advantages over point-to-point and client-

server for delivering data in distributed and real-time environments. Publish-subscribe

does not request traffic and the direct data transfer makes it much more efficient. In

contrast, the client-server architecture requires all the information, if it is being

generated at nodes, to be transferred to the server for later redistribution to clients. This

adds an unnecessary unknown delay to the system, problematical for a real-time

system; there needs to be control of the trade-off between reliable delivery and delivery

timing. It is the concern with a guarantee of reliable delivery that destroys timing

determinism, due to each retry taking up time.

T bl 47 S fC '1' Thnla e - ummaryo ommumca Ion ec o ogles
Type Communication Pros Cons Middleware

Point- • One-to-One • given high bandwidth • does not scale well • telephone
to-Point • simple straightforward beyond a few .TCP model

model nodes
Client- • Many-to-One • works well with data • irregular delay due • Client-
Server centric systems to indirect data Server

transmission
• a bottleneck and
presents a single
point of failure

• high bandwidth
loaded with too
many nodes

• unnecessarily
complex system
designs and
significantly
degraded
networking
performance
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Publish- • One-to-One • distributing large • response time .J2EE,
Subscribe • One-to-Many quantities of time- needs to be • NET,

• Many-to-One critical information considered in strict .SOA
quickly real-time

• mapping well with environments and
data distributed time constraints
environments because
the data flows directly
from source to sink
without requiring
intermediate servers.

• reliability and no
single point failure

• anonymous
communications
where publishers and
subscribers do not
need to know each
other's physical
network address

Core technologies required for building distributed automation systems have been

reviewed, and in general, automation systems are implemented from these standard

technologies in manufacturing systems. Despite concerns of achieving real-time

performance and security, Ethernet has gained much attention from researchers and

industrial network vendors looking to overcome integration problems, in order to

develop Ethernet TCP/IP for industrial automations. There is great potential to

implement Ethernet with intelligent embedded microcontroller devices and a real-time

publish/subscribe communication, to enable flexible and non-proprietary automation

systems for agile manufacturing. Further enabling technologies and implementation

approaches for distributed flexible automation systems are reviewed in the following

sections.
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4.6 A Distributed Automation System

The main focus of the author's research is the creation of future automation systems that

enable more open, agile, and flexible manufacturing paradigms. There has been

substantial ongoing research in the field of agent-based technology, service-orient

architectures and component-based design methodologies implemented with emerging

powerful network communications. Ethernet, Modbus, and Profibus form a backbone for

information exchange between intelligent devices and business planning level and a cost-

effective way to support the lifecycle of manufacturing systems.

In this section, the key enabling approaches and technologies will discussed to support

the author's research for the potential tool development in the field.

Event flow
(i.e. requesting state information)

Client Server

Event1 f----~---
Requesl I Action 3 !
Re nee

Event flow
(I.e. publishing state Information)

(Server)
Producer

(Client)
Consumer

Figure 4-7: RequestlResponse and Publish/Subscribe Data-Flows for a Distributed
Control System [71]

A general picture of a distributed automation system is depicted as in Figure 4-7. A node

(event sink and event source) represents a controller, a micro processor or an embedded

device which is distributed in the machine system to control its connected l/O devices

locally. As discussed in section 4.3, Publish-Subscribe applications are most suited for

distributed applications, with endpoint nodes that communicate with each other (peer-to-

peer communication) by sending and receiving data anonymously.
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• SOA- Web Services
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• RTOS • Win CE

(see section 4.4.1)
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• Embedded Ethernet Design
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(see section 4.6.2)
(see Chapter B- section B.2. 2)

Figure 4-8: Structure for a Distributed Control System [9], [71]

As shown in Figure 4-8, the structure of a distributed control system includes an

infrastructure layer that enables many different types of applications in the control nodes

to communicate with each other. These technologies are fundamental elements that have

been implemented in many research projects (see Chapter 5, section 5.3) in order to

enable open and distributed manufacturing systems. Details of each implemented

technology will be discussed later to highlight the suitable tools for the author's research.

In the following section, the author presents a concise background of distributed control

solutions from a previous study implementing the Lonworks system, and the potential

solution of emerging miniature embedded devices regarding this research.

4.6.1 LonWorks System with Fieldbus

LonWorks system, developed by Echelon Co-operation in the USA, is an open solution

for controlling distributed automation devices in home automation, industrial and

transportation control systems. Its philosophy is to utilize a control network with a peer-

to-peer communication (to allow intelligent devices to communicate directly to each
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other) to monitor sensors, control actuators, manage network operations, and provide

access to network data in a fully distributed manner.

The LonWorks protocol, also known as the LonTalk protocol and the ANSlIEIA 709.1,

was designed to enable highly reliable, peer-to-peer and hierarchical networking

(different networks interoperates via a gateway) among control devices manufactured by

different suppliers. Achieving interoperability among devices requires that the protocol

be implemented in an identical manner within all networked devices, and the

establishment of a reliable and consistent means of transmitting, broadcasting, and

receiving messages between and among LonTalk-based devices. The Neuron Chip and

Smart transceiver implementations of the protocol, combined with Echelon's physical

layer transceivers, provides a foundation for interoperability amongst devices.

To compose the LonWorks system, LonWorks Nodes (communication channel nodes)

are attached to the control network to establish communication with other nodes, and

each node has sensors/actuators connected to specific lIO channels. These are

responsible for computing the data obtained from the sensors and passing the output

command to activate actuators, according to the application programme loaded inside the

node memory. The implementation of the LonWorks control system can be found in

[33].

The heart of the node is the Neuron Chip C, and this includes three processors that

provide both communication and application processing capabilities. The device

manufacturer provides application codes to run on the Neuron Chip and lIO devices to

be connected to the Neuron Chip. The programming applications are written Neuron C,

based on ANSI C, and then this is complied into binary bits "0", "1", etc, as understood

by the Neuron Chip, and loaded into the node's memory.

The LonWorks system has developed a good high -Ievel programming environment on

Windows platform, to ease the building of networks. It has a generic network

management tool and easily usable GUI (Graphical User Interface) for project

administration, graphically visualized network variable binding, network variable

browsing and adaptation to user needs by writing device specific control plug-ins.
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It is the author's view that, even though the LonWorks system has developed control

networks in advance of the open system architecture, flexibility and interoperability of

other vendors, the proprietary nature of solutions is not fully resolved because devices

outside the LonWorks agreement, i.e. LonMark, may not comply with the standard

system due to the difference in the implemented protocol of bus systems, as discussed in

section 4.4. The solution to interoperability among vendors' devices lies in a single

control network standard like Ethernet. This should be introduced to free end-users from

a few suppliers, so that they are able to respond to changes quickly.

4.6.2 Embedded Modules with Ethernet

Recently, embedded microprocessors have been rapidly improved, in terms of small size,

low price, high processing speed, real-time performance and Ethernet connectivity, in

order to facilitate an open and seamless integration of automation systems. Currently,

there are some embedded solutions available on the market, such as NetSilicon

Microprocessors (ARMs microprocessor) and Rabbit Microprocessors (Rabbit core,

Dynamic C processing unit). These are capable of 10/1OOBased standard Ethernet

connection and contain a broad set of industry standard peripherals, such as UBS, 12C,

serial ports and an LCD controller. These embedded devices are designed to support

various types of OS platforms including e.g. Linux, RTOS, Win CE, and Win XP.

To conclude, the author has the novel idea of implementing this distributed control

system infrastructure with embedded devices, Ethernet networks, the SOAP architecture

and Web Services, publish-subscribe models and component-based design tools, in order

to simplify and enhance the performance of automation systems (the implemented

framework will be presented and discussed in Chapter 7).

The author appreciates the potential of these embedded devices as the solution for open,

flexible automation systems and ease of integration to higher control levels and ease of

installation, in order to reduce development time and enable agile manufacturing.

However, other distributed control infrastructures need to be chosen and developed as

appropriate so as to effectively support the integration of these smart embedded devices

in automation systems. The technologies for distributed automation systems will be

outlined, according to the structure for a distributed control system (Figure 4-8), in the

following sections:
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4.6.3 Distributed Control Applications

(I) rsc -61499 Standard

IEC-61499 standard was proposed for the application of function blocks in distributed

industrial-process measurement and control systems [51]. The developing standard of

IEC-61499 presents an approach for distributed process control systems, whose

components are function blocks. The control applications may be distributed among

devices of a system, with each of these applications using one or more resources: these

resources are defined as "containing one or more function blocks that may be activated

by one or more control flows" [80]. In distributed control domains, the coherence of the

actuation/sensing actions and the execution time of control loops are very important. The

information exchange between the resources is defined by the specification of event and

data variables: events are used to ensure the control flow of an application, and data

variables are updated when executing an algorithm, and can be associated to an event.

The arrival of a new event at the input of a function block launches the mechanism for

the execution of algorithms, based on the ECC invocation. The Event-Driven concept of

IEC 61499 is illustrated in Figure 4-9.

Output
variables

a) IEC- 61499 Basic Function Block (FB) b) Multiple Function Block
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Figure 4-9: Event-driven IEe 61499 Execution Controls [51]

Event-driven state machine control of an IEC 61499 execution is illustrated in Figure 4-

9. Basic function block types (as in Figure 4-9/a) are defined by declaring:

1. Execution Control Chart (ECC),

2. The algorithms, whose execution may be invoked by the ECC, are pre-defined

function block (FB) behavior with external (interlocking) and internal variable.

3. Internal Variables (Local state variable of sensors and actuators).

The basic function block may be used to build a more complex application, as depicted

in Figure 4-9/b. Figure 4-9/c shows details of the composite FB of the service interface

function block for the device network communication, with other services provided by

the resource's operating system and control algorithm performing 1/0 execution.

To compose the distributed system, in which devices may communicate with each other

over one or more communication links and may interface to controlled and processed

machines, applications should be distributed among one or more devices interconnected

by event connections and data connections, to form the integration of the distributed

system, as shown in Figure 4-9/d.

At present, there are a number of researchers implementing lEC 61499 function blocks

in the design of distributed control systems (DCS) with high level programming such as
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Java, C/C++ and XML [22,27] on fieldbus or Ethernet networks. The implementation of

function blocks has contributed to the improvement of reusability, re-configurability, and

interoperability among different vendors.

(II) COMPAG- Component-based Design Tools (5)

The COMPAG design methodology has been proposed at Loughborough University and

implemented in the real automation system on a Ford Test Rig at Loughborough and an

industrial test machine at Krause in Bremen, as reported in [73]. The concept of

component-based design methodology will be further developed in this project, with the

design of other engineering tools (software applications) to aid the machine

commissioning and installation.
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Figure 4-10: Functionalities ofa Component (adopted from [33])

The term "component", used throughout this research, is defined as the previous research

at MSI. The component is viewed as an autonomous unit consisting of the automation

devices (sensors and actuators), computing hardware (processor, memory,

communication interface, electronic interface) and control software (application

program, OS, and communication protocol) [11]. This definition of a component is

illustrated as in Figure 4-10/a). The adoption of this approach is presented in Chapter 6-

section 6.8.3.

5- COMPAG design tool, PDE (Process Definition Environment), is a tool which supports the design and
integration of the machine from a component library. The tool was developed by MSI research group for the
COMPAG project based on the component-based design approach
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In the development of automation systems, a system is built from sub-system units that

normally contain many components. Communication between components is event-

driven, in which the states of devices are defined as inter-connected logic related to other

devices. In addition, the states can be published to desired subscribe nodes as a network

variable, by sending/receiving event messages through the output and input network

variable interfaces (NYI, NYO), respectively shown in Figure 4-1Olb).

The behaviour of the component is represented by using finite state machines, F element. as

a set of functions of component states, transitions, and a combination of events. The

finite state machine for the element adopted by S.M. Lee [11] is as follows:

F element = f (X, u, E) [1]

Where F element = the output state of an element

X = the set of all states in the finite state machine

a. = the transition (eg. retracted to extending)

E = the set of events {E input (Ei), E output (Eo)}

f = the designed control function of machine components

E.g. Eo = Transfer arm state AND Part sensor state

Ei = Local Limit sensors of transfer arm units

a. = The transition state from retracted to extending

X = Other associated unit states

f = When {(XAND a) = = 1 OR (E = = On then action; discrete functions

This approach enables the generic operation of devices to be pre-programmed and

encapsulated in the component. The system operation can be configured by interlocking

the event condition of the control elements through its states and the states of other

elements, as specified in the function [1). The composed functionality of a component

has been developed to support the development of generic control functions of the

system, system installation and independent reconfiguration without any prior

knowledge of the application.
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In general terms, the component can physically be seen as the controller device, with its

own physical resource (sensors and actuators) and the control application to perform

manufacturing tasks. The functional constituent of such a component has the capability

to interface, in order to process applications such as device binding, simulation tools, on-

site and remote monitoring. This is achieved by manipulating the component data

obtained from output state variables of the encapsulated function entities. Furthermore,

the basic operation of devices may be pre-programmed by the component suppliers and

encapsulated into the component, in order to hide away the abstract functionalities and

complexity from users. This "black-box' implementation approach allows changes with

minimal disruption to the system [73].

In the building of a component-based automation system, the component has predefined

physical resources within the component boundary and is not accessible across

components i.e. the component is independent of other components [11]. This increases

the flexibility of the system as shown in Figure 4-1Olb) in which components with their

own applications (A, B, C) are distributed across the system and communicate via the

black board state.

4.7 Middleware Servers
With the adoption of distributed objects and the heterogeneous nature of computing

systems over the past few years, the middleware programming architecture has evolved

to provide support. Middleware is the key engine of development which that acts as the

glue to connect diverse computer systems. In the history of object-based programming,

Microsoft's Component Object Model (COM) and the Common Object Request Broker

Architecture (CORBA) from the Object Management Group (OMG) were two leading

distributed-object technologies that were widely used. A comparison of these two

middleware approaches can be found in [g4].

Extensive reviews on agent-based manufacturing, including the holonic approach

(section 4.8.1), have shown that most researchers favoured the CORBA middleware, due

to its wide use and acceptance. Therefore, in the literature review section, the CORBA

middleware will be compared with an emerging middleware technology of Service-

oriented architecture (SOA).



CHAPTER 4: Middleware Server 78

4.7.1 CORBA

The concise mechanism of the object-oriented invocation in CORBA is summarised in

this section, with full details to be found in [g4, g5]. CORBA can be conceptualized as a

communication bus for client-server objects, and, since CORBA is a three-tier

distributed objected mechanism, the terminology "Client-Server" is applied within the

context of a specific request, as in Figure 4-11.
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Figure 4-11: Three Tier e-Business Architecture [g4]

The first tier in the architecture is the presentation and interaction layer; for example, a

web browser or a client. The middle tier consists of the application logic, which can be

constructed from multiple components, such as web and application servers. The final

tier includes data repositories such as object-oriented databases. With the growing need

to integrate multiple heterogeneous systems in many areas, such as businesses and

manufacturing, CORBA is increasingly used as the platform for integrating distributed

objects [g4].

A client invokes a method on a server through the interface and object request broker

(ORB). Exported server interfaces must be specified in the CORBA standard Interface

Definition Language (IDL). IDL is part of the CORBA standard and permits interfaces to

objects to be defined, independent of an object's implementation. IDL is used as input to

an IDL compiler that produces source code. Source code can be compiled and linked

with an object implementation and its clients, which enable a program or object written

in one language communicate with another unknown programming language. IDL also

enables distributed applications to invoke operations transparently on remote networked

hosts. IDL files are similar to C header files, except for the actual code implementation
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(behind the IDL definitions) being located on a host remote to the caller (see [83, 87] for

details).

An IDL interface description is mapped, using IDL complier, to native language

bindings such as Java, C++ and others. This allows each programmer to write source

code independently in the most appropriate language [g5].

® Native Language Client

EVOke methods] compile

.~~:::;.___________________t.
server Side _,..

compile Server
Native Language
Implementation

3 tmplementabon
Repository

Figure 4-12: The CORBA Client/Server Invocation Methods [g5]

Central to the CORBA architecture is the Object Request Broker (ORB). The ORB

serves as an object bus that transparently handles all client-server interactions between

objects. The ORB is responsible for locating the object, establishing a communication

channel, invoking the request, and managing the reply on the behalf of the client [g4], as

shown in Figure 4-12. (Steps 8-9)

The details ofCORBA invocations as presented in "A COREA Primer", Segue [g5] are

Step 1: Identify an IDL interface

Step 2: An IDL compiler is used to generate a server stub, a client stub that gets linked to

a program wishing to invoke statically a server method through the associated

interface.

Step 3: Implement the server

Step 4: Compile the server program and link to a server stub to generate the executable

server program that can be invoked via a CORBA method
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Step 5: Register the server in the implementation repository.

Step 6: Server object method calls as if they are local.

Step 7: Compile the client program and link in the client stub

Step 8-9: ORB binding to the server object and obtain a reference for the client to invoke

the method call.

The CORBA developer group has attempted to advance CORBA components, so that

they seamlessly fit into the standard infrastructure provided by the web. There are some

deployments that use JavaBeans implemented with CORBA as the standard for

component objects, to enable an open and independent operating system.

The internet Inter-ORB Protocol cnOP) is the COBRA standard that guarantees

interoperability between ORB implementations, as well as allowing applications built

with different vendors' ORBs to communicate and share objects for distributed object

invocations.

4.7.2 SOA Middleware

SOAP is a protocol for the key Web Service standards, WSDL and UDDI (see Figure 4-

13) (Chapter 6- section 6.7.1). These are all based on the XML messaging format that is

used to send information from one application to another. SOAP allows the integration

of application-to-application transactions over the web. Unlike previous middleware

technologies (e.g., DCE, CORBA, DCOM, MOM), SOAP middleware is available on

any platform and it supports many programming languages.

Legacy
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Figure 4-13: SOA Client -Server Middleware Model
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SOAP defines a framework for message structure and a message processing model. It

does this by providing an XML-based messaging framework that is: 1) extensible, 2)

usable over a variety of underlying networking protocols and 3) independent of

programming models.

SOAP also defines a set of encoding rules for serializing data and a convention for

making remote procedure calls (RPC) [g1]. SOAP provides a rich and flexible

framework for defining higher-level application protocols that offer increased

interoperability in distributed, heterogeneous environments. The extensibility features

built into SOAP allow the various Web Services protocols to be integrated individually

and incrementally, as well as to be improved and versioned in isolation, without

affecting the rest of the protocol stack [9].

Service descnption
using WSDL ® .~ . ~-. Query response

,!p~ ... .... -<-. using WSDL

;l .: ""0-
-l' ;' SOAP ~ ®
~ ~ Messages )

-. ,/'

Response ®

WSDL Interface ~

J Service descriptions I 1
Operations J_

o Call/Invoke

Figure 4-14: Providing SOAP with XML, WSDL and UDDI in Web Service [49]

The mechanisms of SOAP, WSDL and UDD! are detailed below.

UDD! service registries enable two basic functions in the Web Services mode1. Firstly,

they allow application developers to find services and to develop code that relies on

those services. Secondly, they enable just-in-time integration of service components. In

UDDI, technical specifications like WSDL descriptions can be registered and then used

to qualify the registry description of a compliant service [g19].
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The Web Services provider registers its applications and links by subscribing them to

UDDI registry at the time of development. At the client site, the Web Services requester

can look up the services from providers by using WSDL file, in order to find out the

location of the service, the function calls, and how to access them. Web Services

mechanism relies on the SOAP message on HTTP protocol in this service invocation

method. The practical implementation of this WS model can be viewed in [88].

The SOAP protocol is XML-based and consists of three parts:

1)A SOAP envelope for describing the message content and how to process it:

The envelope element is always the root element of a SOAP message. This makes it easy

for applications to identify "SOAP messages" by simply looking at the name of the root

element. Applications can also determine the version of SOAP being used by inspecting

the envelope element's namespace name. The envelope element contains an optional

"header element", followed by a mandatory "body element", as shown in Chapter 9-

section 9.2.1 and Appendix C. This body element is a generic container in that it can

contain any number of elements from any namespace.

2) A set of encoding rules for expressing instances of application-defined data types:

The SOAP specification defines a set of encoding rules for exactly this purpose. The

SOAP encoding rules outline how to map commonly used data structures (like structs

and arrays) to a common XML format.

3) A convention for representing remote procedure calls and responses:

Although the SOAP specification has evolved away from objects, it still defines a

convention for encapsulating and exchanging RPC calls using the messaging framework

described above. Defining a standard way to map RPC calls to SOAP messages makes it

possible for the infrastructure to translate automatically between method invocations and

SOAP messages at runtime, without redesigning the code around the Web Services

platform [g6].

To conclude, SOAP defines a simple and extensible XML messaging framework that can

be used over multiple protocols with a variety of different programming models,

although the specification codifies how to use SOAP with HTTP and RPC invocations.
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SOAP also defines a complete processing model that outlines how messages are

processed as they travel through a path. In general, SOA middleware and SOAP message

processing can be affiliated with other development tools such that Microsoft .NET

Framework, Visual Studio.NET, C/C++ tools, Java, so as to support the development of

Web Services applications.

4.7.3 Debate: CORBA VS. SOA Middleware

It has been an ongoing debate as to which of these middleware technologies is better

suited for business-to-business and business-to-shop floor integration. Having studied

and reviewed a number of papers, there is no straightforward and convincing answer to

this question. Selection depends on opinions and experience. It is hard to justify the

answers, especially without a specific scope for comparison. In this respect, the author

has scoped the discussion by considering the relevant content to agility features required

in manufacturing systems, as addressed in Chapter 3. The assessment of both

middlewares is presented below.

Assessment of CORDA and SOA in the Requirement of Agile Manufacturing

Systems

(Q) Open standards and the pervasiveness of these middlewares in vendor solutions
SOA CORBA

[Advantages] ([g22]) [Advantages]
• SOA-WS are based on emerging standards, • Promotes interoperability
and SOAP, WSDL, UDDI, have achieved [Disadvantages I
broad acceptance in the industry. • Although CORBA has been implemented

• WSDL also fully supports transport on various platforms, the reality is that any
neutrality, as it allows separate solution built on these protocols will be
specifications of the abstract service dependent on a single vendor's
interfaces and their bindings for each implementation. In the case of CORBA,
specific transport protocol. every node in the application environment

• SOAP is the key to supporting a transport- would need to run the same ORB product
neutral infrastructure for the actual ([g21]).
production and consumption of messages,
as it supports binding to different
transports.

Points: For SOA and WS, heterogeneous applications running on different platforms are
allowed to interoperate through a consistent, well-defined interface.
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(QJ Requirements from an IT and Business perspective - widely distributed and highly
integrated. loosely coupled and yet manageable applications

SOA CORBA
[Advantages) [Disadvantages)
• SOA is mainly for integrating existing • With CORBA, the focus is on Object
systems in a decoupled way [g23]. Request Brokering. This results in tight

• The service interfaces are defined in WSDL coupling to well-defined interfaces, a
(which is itself an XML application), and broker infrastructure and multi-language
XML technologies can be applied to mappings. These types of coupling are
interrogate the service capabilities and needed for almost the same reasons as
integrate discovered functions such as Web Java-Interfaces for compile-time checking,
Services orchestrations. Web Services implementation hiding, richly typed
provide a semantically rich integration interface and easy client-programming
environment: they make it much easier to [g25].
build business process management • CORBA can be distributed with different
solutions that "orchestrate" multiple sets of interfaces if any prove too
business functions from disparate cumbersome for the task. It was difficult to
applications and allow the system to apply manage different versions of CORBA
"business rules" dynamically, e.g., for interfaces, and these interfaces consumed
content-based routing of messages. They excessive computing overheads [g26].
also provide semantic mappings between
multiple XML business documents in a
declarative fashion [g22].

Points: From this viewpoint, CORBA as 00 needs more effort to commission than SOA,
which provides consistent API's and homogeneous technology with loose coupling between
existing applications.

(Q) Integration of applications from business services and partners
SOA CORBA

Points: In regards to business programming, CORBA is best suited to tightly coupled
transactional systems requiring high security.

[Advantages) (g22)
• SOA will enable faster application
integration using the WS standard (WSDL,
UDDI and XML message types) and widely
used SOAP protocols compatible with
HTTP. WSDL also fully supports transport
neutrality, as it allows separate
specifications of the abstract service
interfaces and their bindings for each
specific transport protocol.

• SOAP is the key to supporting a transport-
neutral infrastructure for the actual
production and consumption of messages,
as it supports binding to different transports.

• The self-describing XML documents and
SOAP messages make it possible to build a
loosely coupled, document-style integration
environment.

[Advantages) ([96])
• The CORBA environment is best suited for

applications developed and controlled by
itself, in which all or most of the
programming language IS C, C++, or
Smalltalk.

• A bridge between the Java environment
and CORBA has been available for a
significant period of time.

• It is a mature technology that still has its
use in high-volume, highly secure, object-
oriented applications within an enterprise.

[Disadvantages]
• CORBA has failed on the Internet and it is

not used for public integration amongst
companies. Rather, CORBA is typically
used for communication among application
components developed by the same team,
but it is not used by companies to offer a
public remote API that anyone could utilize
[g23].
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SOA I CORBA
(Q) Cross-platform and cross-programming language interoperability

Points: Both CORBA and Web Services provide interoperability across programming
languages, operating systems, and hardware platforms.
[Advantages] [Disadvantages]
• Web Services are based on several • Regarding to interoperability, CORBA
(emerging and de facto) standard assumes that all interacting entities
technologies, primarily SOAP, WSDL, and conform to a standardized object model.
UDDI.

• SOAP-XML is neutral with respect to the
network access protocols, and so these data
types and service interfaces can be mapped
to different languages and middleware
interfaces, thereby providing
language/platform neutrality. Web Services
standardize the messages exchanged by the
interacting entities, which can then be
mapped to an arbitrary object model.

• WSDL also fully supports transport
neutrality as it allows separate
specifications of the abstract service
interfaces and their bindings for each
specific transport protocol [g221.

(0) Integrated middleware in embedded control devices
SOA CORBA

Points: As reported by Roy Bell [g27], CORBA is 3 times bigger than the SOA middleware on
the device, and about 6 times faster.
[Advantages] [Advantages]
• Smaller memory footprints • Faster processing speed
[Disadvantages] [Disadvantages]
• Slower processing speed, thus require more • CORBA is still a heavyweight solution for
powerful processor specifications many smaller embedded systems, since the

overhead of Cf+ was overcome by a
combination of careful use and cheaper
computing power _[g_2~]_.

(Q) Engineering tools and manufacturing application intf!E!ation
SOA I CORBA

Points: Regarding this point, there are no real advantages or disadvantages. Both middleware
integrations have been implemented in the same manner. CORBA uses IDL for the application
interface, whilst SOA uses WSDL.
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Overall, it has been addressed by Sayjay [g22] that CORBA is better suited for building

distributed applications in controlled environments. Such environments make it possible

to share a common object model among all distributed entities, there are no restrictions

on the granularity or volume of the communications between distributed entities, and

deployment is more or less permanent, so that the system may find a benefit in mapping

the network addresses directly to object references. However, the integration scenarios

described above require a loose coupling, where CORBA may not be the best fit.

The definition of SOA includes the usage of technologies such as WSDL, UDDI, SOAP

and XML technologies. With these technologies, developers can build applications in

business domains or automation domains for control devices, using these standards to

build components in the form of Web Services. In addition, Web Services semantics are

standardized in the form of message definitions and service interfaces, promoting a

wider variety of new applications [g22].

However, there are some concerns in implementing SOA and Web Services on the

automation systems including:

1. Methodology and reliability of discovering the required services (discussed in

Chapter6B)

2. Providing acceptable performance (discussed in Chapter 9)

3. Messaging reliability and missing packet recovery (discussed in Chapter 9)

4. Security (addressed future work)

5. Fault handling, in order to maintain the reliability of the transaction whenever the

service is unavailable due to changes or being closed (discussed in Chapter 9)

In this research, these issues need to be taken into consideration and resolved by

experimentation and investigation on the implemented industrial test rig.
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4.8 Agent-Based Manufacturing System
A distributed system consists of a number of components, which are loosely coupled

and capable of performing simple local operations, such as data conditioning and local

feedback controls without a master controller. The components are connected by some

sort of communication medium, such as fieldbus or Ethernet, and applications are

executed by using a number of processes in the different component systems. These

processes communicate and interact to achieve productive work within the application.

It is envisioned that by removing the need for a master controller and enabling local

computing and control capabilities within each intelligent device, there would be no

need to develop rigid conventional control programs.

There is considerable research proposing hypotheses in the domain of distributed open

control system design (i.e, [6], [12], [70], [84], [85], [118]). However, many approaches

are similar in concepts and key enabling technologies. In general, the key methodology

to enable such an environment can be broadly classified into two approaches:

1.) Object-Orientated architecture

2). Service-Orientated architecture and Web Services

4.8.1 Object-Orientated Architecture (OOA)

This approach was proposed as a new distributed manufacturing control paradigm,

presenting distributed structures based in autonomous and co-operative entities that

have the ability to respond promptly and correctly to external changes. This differs from

conventional approaches, in that there is an inherent capability to adapt to change

without external intervention [15]. The concept of this approach is centred around the

development of control software, based on a formal modelling of the entities involved

in a cell. Regarding interactions, the cell controller takes care of co-ordination and

synchronization issues, while individual objects are responsible for their own activities

[16].

A significant development in the object-oriented concept has attracted many research

consortiums and institutions. The Holonic approach, which is based on multi-agent

technology, has been presented as the best outcome of machine controls, shop floor
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controls, scheduling and planning, by means of autonomous, distributed decision

making smart entities called "holons ", These entities interact via co-operation protocols

within the manufacturing cell to perform their responsible tasks, in order to support the

runtime reconfiguration demanded by shop floors. A typical holonic framework is seen

in Figure 4-15.
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Figure 4-15: Holonic Framework via Mobile Agent (adopted from [17], [50])

The manufacturing cell (the so called "holon") consists of a number of individual

mobile agent units corresponding to specific functionalities in the physical

configuration. Each holon is a dynamic system with input, processor, output and a

controller. Structurally, a holon has:

a) A physical processing part that is associated with an item of shop-floor

machinery to process artifacts

b) An information processing part that handles knowledge management and

executes software algorithms pertaining to the holon's control system

specifications [18]. An example of the holon architecture can be seen in Figure

4-16
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After the substantial number of reviews regarding the practical implementation of the

Holonic design approach in the manufacturing control system design, many researchers

have adopted this approach in the domain of programming object-oriented software.

This has been implemented with standards of the emerging Function block-based

control lEe 6149, to enable flexible, reconfigurable automation systems. The practice

of using holonic manufacturing systems demonstrates how holons act autonomously

and co-operatively through the interaction of the software components inside its

software and mobile agents. This automatically produces function block applications

that implement the desired manufacturing service within the scope of the lEe 61499

architecture [18].

Figure 4-16: Holon Structure [19]

However, it is the author's point of view, and indeed other researchers such as Francois

Jammes and Harm Smit [9], that the Holonic approach has not made significant inroads

in manufacturing plants, due to a lack of widely accepted standards, proprietary

standards and complexities of the approach.
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4.9 Service-Oriented Architecture (SOA) and Web Services for

Manufacturing Systems

4.9.1 SOA Basic Definitions

There are many definitions of the concept of a service-oriented architecture (SOA).

Each definition differs considerably, as indicated below:

"A service-orientated architecture (SOA) is a set of architecture tenets for building
autonomous yet interoperable systems." [9}

"SOA can be defined as an architectural style promoting the concept of business-
aligned enterprise services as the fundamental unit of designing, building, and
composing enterprise business solutions. At its core, SOA is about factoring
functionality into shared, reusable services, and applications are built by assembling
those services into automated business processes. " [20}

"Service-oriented-architecture is a philosophy of design described as "the software
equivalent of Lego bricks, " where a toolset of mix-and-match units ("services ''), each
performing a well-defined task, can reside on different machines (including
geographically separated ones), ready to be used when needed. " [21}
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Figure 4-17: Business Ecosystems [gl]

As depicted in Figure 4-17, the service-orientated architecture in the global aspect may

be seen as integrated applications within the generic enterprise, in order to extend the

reach of businesses to partners and customers. This creates business efficiencies and

exposes companies to new sources of revenue.
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As reported In [gil, the adaptation of this technology would split the business

ecosystems into three tiers:

Tier1- Enterprise Application Integration

This is the starting point for most companies. It allows them to expose legacy

applications to business applications in heterogeneous environments, without having to

rewrite large amounts of applications code.

Tier2- Interoperability with Key Partners

Required to integrate the business in association with key partners. SOA has been

implemented because it allows for interoperability among applications across

communication mediums, such as the public Internet.

Tiers- Interoperability across Multiple Companies

Companies want to extend their computing out to more partners and customers, in order

to build business ecosystems.

4.9.2 Web Services: The SOA Connection

With regards to the concept of intra and inter-enterprise integration, the main question

is what available solutions can be effectively implemented in SOA to connect

ubiquitous services?

Considering the fundamental requirements of the industrial automation system and the

business enterprise integration (as outlined in Chapter 2, section 2.3.4), the evolution of

the device networking systems will pave the way for cost-effective communication

paradigms, down to the level of basic field devices like sensors and actuators. As a

consequence, the upcoming SOA and Web Services for manufacturing systems would

bring the following requirements and challenges [9]:

Interoperability: Automation system shall be implemented independent of any

vendor specific operating systems or programming languages, thus maximizing use

of resources.

Reduced complexity: Devices shall make the automation system simple and easy to

commission and diagnose by non-expert persons.
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Ease of installation and preparation: WS shall enable efficient plug-and-play

connecti vi ty.

Reusability: The design of WS enabled devices shall enable the programming code

to be reused at different architecture levels and in different devices.

Seamless integration: A device shall present a high-level management interface

(typically graphical) in order to facilitate configuration, monitoring, fault diagnosis

and maintenance.

In these sets of end-user requirements, as shown in Figure 4-18, the utilization of Web

Services within the manufacturing system should facilitate the integrated sets of

applications through the standard Web Services interface (discussed in Chapter 6B)

These will be used by various interested parties to support production throughout the

manufacturing lifecycle.

Based on this framework, the modularization of the production system depends on the

decomposition of the present "control-orientated structure" into function modules, with

a "manufacturing-task-orientated structure" [117]. At the automation level, the 110

states of the component (i.e. events variables) and the device functionality is exposed to

the manufacturing process as values and services, that can respectively be used and

managed by higher level applications. Dynamic service discovery and composition of

the manufacturing process tasks are achieved by Service orchestration engine (Chapter

8- section 8.5.2).
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As presented in [9], the core Web Services architecture required to achieve the above

requirements (i.e. the Devices Profile for Web Services (DPWS)) is shown in Figure 4-

19 and contains the following protocols and capabilities. The details of SOAP, UDDI

and WSDL were presented in section 4.7.2.

WS-Discovery WS-Eventing

WS-Addressing
WS-Metadata Exchange

WS-Policy
WS-Security

SOAP 1.2
WSDL 1.1, XML Schema

HTIPl.l
UDP

TCP

IPv4/IPv6

Figure 4-19: Devices Profile for Web Services (DPWS) Protocol Stack. [9]

XMLSchema

The XML Schema is the definition of the data formats constructed that allow

developers to create precise descriptions used for the message addressed to and

received from services [g13].

WS-Discovery

This defines a multicast protocol to search and locate plug-and-play discovery, the

so- called target service. In the context of Web Services protocol stack, a target

service is a device. In the search of the device, the primary mode of service

discovery is a multicast probe, in which devices matching the probe send a

confirmation/probe as an acknowledged response. Devices can also be localized by

name, through a protocol exchange. Once it has been discovered, a device exposes

the services it provides. Full details can be found in [23].

WS-Eventing

This mechanism for registering interest in events is needed in relation to the set of

Web Services regarding the receiving of messages. The specification defines a

protocol for one Web Services (called a "subscribe") to register interest (a
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"subscription") with another Web Services (an "event source") in receiving

messages about events ("notifications" or "event messages"). The subscriber may

manage the subscription by interacting with a Web Services ("subscription

manager") designated by the event source [24].

WS-Eventing is intended to enable the implementation of a range of applications,

from device-oriented to enterprise-scale publish-subscribe systems [9].

WS-Addressing

This mechanism provides transport-neutral methods for addressing Web Services

and messages. Specifically, this defines XML (Extensible Markup Language)

elements to identify Web Services endpoints and to secure end-to-end endpoint

identification in messages. This specification enables messaging systems to support

message transmission through networks which include processing nodes, such as

endpoint managers, firewalls, and gateways in a transport-neutral manner (i.e,

HTTP, SMTP, TCP, UDP) [25].

WS-Metadata Exchange

Web Services use metadata to describe what other endpoints are required (e.g.

description, schema, and policy) in order to interact with them, thus providing a

web service introspection mechanism. The interactions defined in the WS-Metadata

Exchange are intended for the retrieval of metadata only. They are not intended to

provide a general purpose query or retrieval mechanism for other types of data

associated with a service, such as state data, properties and attribute values [26].

WS-Policy

WS-Policy gives generic instructions of how senders and receivers can specify

their requirements and capabilities in the form of policy assertions [9].

WS-Security

WS-Security provides quality of protection through message integrity, message

confidentiality, and authentication. These mechanisms can be used to accommodate

a wide variety of security models and encryption technologies. WS-Security also

provides a general-purpose mechanism for associating security tokens with
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messages. No specific type of security token is required by WS-Security. It is

designed to be extensible, in order to support multiple security token formats. A

client might provide proof of identity and proof that they have a particular business

certification [g2].

The introduction of DPWS paves the way for the use of a unique technology base, via

Web Services, across the entire heterogeneous enterprise applications, from the sensors/

actuators level up into ERPIMES level [9]. However, the use of Web Services needs to

be carefully considered in the deterministic real-time performances of automation

systems and the security on the open network, as shown in the following section.

4.9.3 Web Services Consideration Issues

Although Web Services satisfy most of the manufacturing requirements, there are major

concerns in implementing Web Services based on SOA solutions, as follows:

a) Security: integrating business applications outside companies with partners and

customers over the internet requires secure connections that prevent hackers spam,

viruses, and unauthorized users gaining access to an operation terminal. Sufficient

tools need to be implemented effectively, in order to secure the system completely

in a cost effective way.

b) Reliability: Characteristics of internet technologies are time delays and uncertain

responses. Developers need to take this into account; how can they maintain the

integrity of transactions over the internet?

c) Performance: Every packet must be counted on sending and receiving data with

regards to the impact on performance degradation, as a result of overheads and

bandwidths by concurrent users using the network.

Initial solutions to some of the issues mentioned have been presented, but more detailed

solutions will be discussed throughout the course of this thesis.
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For example, the network connectivity can be secured by encrypting and decrypting

each data transmission, using private networks with access protection as a secure token

for remote login, as reported in [74]. In addition, the reliability and performance of

implementing Web Services for device synchronisation is another factor that needs to

be taken into consideration for connecting real-time communication between devices. If

the delay associated with Web Services message exchange is too long for a hard real-

time application, then the implementing of Web Services in this automation system

needs to be scoped accordingly. However, for the work undertaken in this thesis, further

investigation of the specification of device communications and time constraints was

carried out with the project collaborators, in order to identify the suitability of Web

Services as a low-level message exchanging for typical automotive automation systems.

4.10 Conclusion
The conceptual framework of agile manufacturing has been presented and the

manufacturing requirements in relation to the automotive domain have been addressed

from a survey of a primary collaborative car manufacturer, Ford. In addition, the

general needs of advanced control equipment and approaches to agile manufacturing

have been identified and chosen as appropriate, based on the reviews and discussions of

other researchers. Suitable technologies for the development of automation systems

have been selected, based upon the measures associated with the industrial requirements

and the needs of agile manufacturing. The constituent web-services technologies for

automation systems required to support the requirements of agile manufacturing are

illustrated in the Table below.

It is predicted that the development of Web Services, when combined with Ethernet

networking and other developing programming applications at all levels of the

manufacturing system (i.e, from business enterprises down to automation devices), can

result in a new way of building and integrating automation systems to higher control

levels.
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The derivation of distributed control technologies and paradigms IS summarised as

follows:

Table 4-8: Summary of Distributed Enabling Technologies Appraisal

Distributed enabling technologies A distributed paradigm Mlddleware Neiwor1dng A distributed application

Industrial requirements SOA OOA SOAP CORBA Ethemet Fieldbus IEC 6t499 CB design

Tools

A high degree of reusability (software/hardware) ~~ ~ ~~ ~ ~

A high degree of flexibility (software/hardware) ~ ~ ~

Seamless integration at enterprise level ~ ~ ~

Non-proprietary control solutions ~ ~ ~ ~

A distributed, heterogeneous control architecture ~~ ~ ~~ ~ ~ ~ ~~

An encapsulation and abstraction for re-configurability ~

Visual modelling and simulation prior to installation ~ ~~

Integrated support capabilities and expert assistance ~ ~ ~

Ease of installation and reconfiguration ~

Low development cost ? ? ? ? ~

Data logging and DiagnOSis ~~ ~ ~~ ~ ~ ~

Research implementation SDA SOAP Ethernet CB design tools

[J Not applicable to the industrial requirements

...J~ Advantage choice over ~ in the same category if both are marked

(Note that' 0' does not imply it does not meet the industrial requirements, but that it is less suitable in comparison)



CHAPTERS

Research Focus and Design

In this chapter, the problems and end-user requirements in the control system are

outlined. The discussion will also focus on state of the art literature derived from

relevant research works in automation platforms and business-shop floor integration.

The research objective and area of work are identified with regards to the SOA's web

services approach within distributed automation systems (see Chapter 4).

5.1 Problem Statement
The broad scope of the automotive manufacturing problem has been outlined and

discussed in detail in Chapter 1-3. However, this chapter is focused on the narrower

problem domain and set of requirements of the end user's (FORD Motor Company)

manufacturing systems, in relation to their production strategy and management. The

main research questions can be stated as follows:

1. What are the main obstacles that prevent the development and installation time

of the automotive powertrain production system being achieved within the

required time scale of 40-42 weeks?

2. Which state of the art agile manufacturing systems, implemented for real

industrial manufacturing applications, could contribute to the research focus?

5.2 Problem Definition and End-User Requirements

The current global market intense competition and manufacturing trends towards

mass customisation, driven by customer demand, were discussed in Chapter 2. These

conditions have forced manufacturers to produce various types of products for the

market in a shorter time-span. In the automotive sector, the usual development time

for the production machinery of car engines (i.e. powertrain) is about 53 weeks. End

users and competitive pressures are demanding that this be reduced to 40-42 weeks

[104]. Traditional manufacturing systems cannot deliver the required time to market,

for the reasons discussed in Chapter 2. The problems within the manufacturing

domain, and particularly for the automation control system can be summarised as:
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• Rigid control system structure with centralised control

• Lack ofre-usability and re-configurability in the control system

• Experience based design

• Lack of remote support and diagnostic systems

• Late verification and change after system design

• Lack of process simulation

The requirements of next generation manufacturing systems to support agility

concepts have been presented in Chapter 2. The key enablers for agile manufacturing

systems focused on automation systems have been reviewed and discussed in term of

technologies and limitations. The author has proposed the use of a Web Services-

based automation system which could better support the development of agile

manufacturing systems. However, the proposed solution also needs to encompass the

industrial requirements from the end-users in the automotive industry i.e. at the FORD

Company. The major industrial requirements that have been identified are:

• Remote expert assistance for fault diagnosis and troubleshooting I
maintenance support

• Data logging and monitoring

• Tools to support machine reconfigurations

• Data collection for business planning I plant to enterprise integration

• User friendly machine systems, with simple visual aids for operators

• Early evaluation and validation of control system design

• Low cost of automation design and build

• Ease of maintenance and upgrade

The summary of problems, requirements and key agile enablers can be seen 10

Chapter 3- section 3.8.

There is a large amount of previous research, from both the academic and industrial

perspectives, working on these requirements, such as the distributed control system,

the component-based design approach, business-process application integration and

the development of process engineering tools. The relevant background research is

outlined in the following section.



CHAPTER 5: Related Automation Research 100

5.3 Related Automation Research
The state of the art in the context of key enabling collaborative manufacturing

systems, using object-orientated approaches, agent-based technologies and service-

orientated architectures are outlined in this section. Ongoing projects are reviewed in

detail to highlight major achievements and major obstacles. Work from consortia and

organisations have provided a great deal of background knowledge in developing the

manufacturing system for the future summarised in the following:

ITEA SIRENA (collaborative project with Schneider Electric Company) proposed a

novel approach using Web Services, based on a SOA standard, to create an open,

flexible and agile environment with "plug-and-play" connectivity. This project

applied the XML-based Web Services paradigm for interconnecting distributed

heterogeneous applications through Ethernet TCP/IP, which demonstrated the

possibility of a universal, platform, and language-neutral connectivity. ITEA SIRENA

proposed the idea of building advanced functionality, embedded into devices, to

enable new distributed application paradigms based on self-reliant smart devices [9].

The PABADIS (Plant Automation Based on Distributed Systems) consortium was

interested in developing a dynamic structured design of automation systems by

implementing agent-based technologies to enhance the flexibility and re-

configurability of business enterprises and production sites. The main contribution of

PABADIS was centred on a methodology for establishing information streams

between office level and field level systems by using mobile software agents as the

communicators. The implementation framework was focused on developing loosely

coupled agents in the distributed environment. Integrated Manufacturing Execution

Systems (MES) were designed to facilitate the plant activities, composed of diverse

control system technologies such as HMI's, remote monitoring and motion control.

The PABADIS approach used XML message passing between plant agents and ERP

functionality for sending and receiving manufacturing orders. In addition, the project

has demonstrated a measure of flexibility at the automation level, with a simple

lookup service developed on JINI middleware for "Plug-and-Play" device discovery.

The full description of this approach can be found in [gI4].
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Tampere University in Finland, has continuously contributed to the development of

agent-based distributed automation, remote configuration, and wireless

communication in control systems mainly within the electronics-manufacturing

domain. With regards to agent-based research, the group has designed modular

structures of software agents and used generic XML formats for messages, in order to

simplify automation system flexibility and reusability. Their design framework

provides access to the data source used to create business processes (e.g. data analysis

functionality and modeling), and the group's area of expertise falls within the using of

wireless communication, bluetooth, WAP, and wireless LAN to support maintenance

and remote machine diagnostic systems.

The OMG (Object Management Group) has been progressively working on Data

Distributed Services (DDS) for Real-Time Systems Specification by developing

modem software standards, including CORBA and UML. The new DSS standard

[114] addresses the communication needs of real-time systems via a network

middleware that allows computer programs to communicate and readily exchange

information over the network, based on publish-subscribe technology. DDS achieves

flexibility and precision through the pervasive use of Quality of Services (QoS)

parameters, in which information flow between these nodes is specified. It has been

suggested by [71] that DDS is well suited for heterogeneous networks, as it handles

format conversion across operating systems, processor architectures and programming

languages, hence supporting interoperability amongst different distributed enterprises.

It also provides a state propagation model that allows nodes to update only when they

change state in the global data space. The OMG middleware platform is CORBA.

which includes the OMG IDL and the protocol nop, used for real-time systems with

both large applications or small embedded systems from various vendors.

Rockwell Automation (RA) has focused on developing a flexible and reconfigurable

distributed platform with plug-and-play automation systems. based on agent-based

technologies [41, 51]. The agent-based approach is implemented with real-time

control agents and information transfer (i.e. data from sensors, diagnostic

subsystems,) between agents implemented on PLC's (ControlLogix TM). The

developed platform follows object-oriented principles. in which agents are responsible

for local control of particular manufacturing equipment. These agents are
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implemented in object-orientated languages like C++ and Java. The group developed

the Autonomous Co-operative System (ACS) with C++ based agents that are executed

on the PLC's. The agent management is responsible for registration and services look

up, and ensures the transport of messages among agents. Recently, RA has considered

Java as an alternative to C++, due to the portability of Java programs between

different hardware platforms, operating systems and web-browsers [75]. This opens

up the chance of integrating more applications on the platform, including real-time

monitoring, process simulation, and device simulation.

The MSI Research Institute at Loughborough University has focused on the

lifecyc1e support of distributed automation systems by replacing centralised PLC

controllers with distributed control nodes (LonWork controllers) and a component-

based (CB) design approach, where the control functionality is embedded into the

component modules [123]. The finite state machines and CB design have been

implemented and evaluated in real industrial automation systems, in order to create

the design of generic and modular device components and determine industrial

feedback on performance and capability [72]. The implemented distributed

automation system has been conceived as a key approach towards an agile and

responsive manufacturing system. The work has contributed to an improvement in

flexibility, reusability and ease of use in the control domain. The COMPAG project

has also contributed to next generation distributed automation systems in improving

performance via improvements in visualization, remote support, diagnosis and HMI's.

Recently, the implementation of a service-orientated architecture (SOA) and Web

Services in automation systems have gained attention, promising enhanced support

for connectivity with high-level applications (e.g. for remote configuration and data

acquisition). In addition, object-orientated architectures have been intensively

researched with agent-based approaches and CORBA middleware, similar to the SOA

deployment. However, the object-orientated approach has not had a significant impact

in manufacturing, due to the complexity of its implementation and the diverse range

of tools that need to be supported ([9], [118]). Novel service focused solutions are

focused on the implementation of a SOA and Web Services with smart embedded

devices and the Ethernet network (used to replace proprietary fieldbus networks).
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In the author's opinion the success in the development of these approaches will

greatly benefit industry, in that businesses and processing entities will become more

integrated, adaptable and agile.

5.4 Research Objectives

The main objective of the research outlined in this thesis is the design,

implementation, test and critical evaluation of conceptual framework of Web Services

for the automotive domain. This framework has been proposed as the result of a

survey of requirements at Ford Motor Company in order to identify the needs of end

users of plant controllers and related business management applications.

Remote Expert
Assistant

Q) t--'J'MooI'-
E
~ Firewall

~--
Web services (SOAP/UDDIIWSDL) .....d ~ _ r.,

HTTP transport

Business system INDUSTRIAL TEST RIG

Web services
enabled controller

Manufacturing
control system

[_ ~b _,.",k.. CO~."'

&lrvII» KoJ>f*
·N.rr.8~~
. Po" 1'011)010
M.'I''''I

~r-UllCllon
. PfavidldSeflliot •

• ep.r.tlon (f:~.nd. Rill_OIl
. (_nlli .......'

• ()lH:fOf 8'1\00·S._S'I' •
• Oto_Ca ....oIA,pt>_.lOn

Rlog lukl

Reconfigurable component HMI operator console
based deSign

Design time IRuntime
3D process
visualisation

Figure 5-1: A Conceptual Model of the Test Rig used in this Thesis with Web

Services

As depicted in Figure 5- 1, the focus of this research is the development of a web-

services and component-based design methodology focused on an industrially

specified portable test rig located at the university. The purpose of this is to facilitate:
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(i) design, (ii) business and control application integration and (iii) lifecyc1e support

of automation systems in the agile manufacturing business.

The supporting research objectives have been defined as follows:

1) To design, specify, implement and test a service-oriented architecture and

Web Services within the design framework of component-based control

methodologies.

2) To build a modular automation platform that effectively facilitates other areas

of development, such as remote monitoring and support applications, data

acquisition and process planning.

3) To implement Web Services on embedded devices. In order to provide the set

of desired services, units needed to compose manufacturing tasks.

4) To implement Ethernet as the communication network used In control

systems.

5) To enhance integration of the automation into the manufacturing and business

domains via consistent Web Services interfaces.

6) To assess the suitability of adopting Web Services In distributed control

systems, based on soft real-time responses, re-configurability, flexibility and

integration within business and manufacturing control levels.

7) To ease control device installation through a device self-discovery approach

enabled by Web Services.

In this research, the university based automation test rig (referred to as the FORD-

FESTa rig) has been used as the test-bed for the research proof of concept and

industrial demonstrations. The control system of the test rig is scalable to real

machine applications, and is used by FORD to demonstrate the capability of novel

control systems prior to implementation on real powertrain assembly machines. It

enables a true demonstration of machine sequences and steps, with a machine

controller for processing (i.e, transferring, buffering, checking position and drilling)

vehicle parts. The result of this research on this rig is therefore considered applicable

to real manufacturing applications.
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5.4.1 The Area of Development and Novel Contributions

The general overview of the manufacturing system integration is shown in Figure 5-2

including a model framework implementing a SOA architecture with Web Services

technologies for both the enterprise entities and real-time control device levels. This

approach has the potential to have substantial benefits to many companies throughout

the lifecycle of their production systems. In addition, the local control functionality

and the device management information are collected and passed to the on-site

diagnostics server, which mimics the activities of maintenance engineers in accurately

monitoring, documenting, and analyzing the causes of machine breakdowns. All

diagnostic information i.e. device types, error codes, device status and fault symptoms

are stored in the local database and can be retrieved by local engineers or remote

expert assistants for the purposes of proactive and reactive maintenance.
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Figure 5-3: Peer-to-Peer Web Services Enabled Control System

Within this automation model, the Web Service codes are embedded into the devices

for object (or services) discovery and invocation, using peer-to-peer communication

architecture between devices (as depicted in Figure 5-3). In addition, the logical

component (i.e. device I/O configuration) is encapsulated within the low level

programming of the devices allowing developers to concentrate on the high level

system functionality and interactions between devices. The devices themselves are

acting as either a client or as a server, as every device has the functionality for

synchronisation (i.e. publishing and subscribing processing data).

In this research, the implementation of the service-orientated architecture utilising

Web Services and Ethernet TCP/IP network, within the component-based design

framework at Loughborough has made a novel contribution towards agile

collaborative manufacturing systems. After reviewing the literature and relevant

ongoing project consortia, the author has determined that there is a lack of research

regarding the combination of smart embedded devices and component-based designs

with Web Services technologies. An adaptation, extension and evaluation of these

technologies need to be further developed, as they are not mature enough to realise

the full benefits in the domain of automation and business systems. To summarise the

design of the research programme follows the structure outlined below:
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5.4.2 Research Design

1) Review the current technology regarding the design of distributed control

systems and integration frameworks with middleware technologies for agile

automation: limitations and subsequent solutions are outlined.

2) Develop a component based design methodology, in order to support the

design of Web Services based components and to derive the distributed control

system on the test rig system.

3) Develop the SOA enterprise integration framework, which involves the

adoption of WS in automation systems.

4) Commission the distributed control system test rig to conduct the experiment

on the component based design.

5) Outline control system specification and implement DPWS, RTOS and

TCPIIP stack on the embedded device, as per the industrial case study.

6) Conduct testing on control system performance regarding real time response

and cycle time, ease of system design, application integration and changes to

control system re-configurability. All of these evaluations are compared with

the standard commercial PLC system.

5.5 Conclusion
The general problems and requirements of manufacturing systems have been derived

from a review of the literature and previous MSI research group's case studies at the

Ford Motor Company. The state of the art in distributed automation systems and

enterprise integration within this domain has been studied in order to determine a

position on the key enabling technologies and limitations of implementing

approaches.

The concept of a Web Services- based framework, capable of connecting various

heterogeneous platforms and diverse equipments so that they may be integrated into a

unified system and interact in a co-operative way, has been outlined in this chapter.

The concept of utilising the Web Services protocol stack offers the potential for

manufacturing automation to evolve, enabling a new paradigm of open standard,

technology neutral and interoperability components from various device vendors. The



CHAPTER5: Conclusion 108

development of device descriptions, embedded into the component and the driving of

system intelligence down to the device level, ultimately offers the potential to

eliminate the need for system integrators to undertake low level programming. The

focus is on shifted towards building higher-level control applications and improving

efficiency.

It is a novel contribution by the author in proposing Web Services on the CB

automation system using standard embedded microprocessor controllers to effectively

improve manufacturing system agility (presented in Chapter 3). The aim of this work

is also to investigate the configurability, and re-usability of control systems and

seamless integration to business levels, thus enabling companies to become more

agile and collaborative.
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A Web Services Component-Based Automation Design

This chapter is divided into two parts:

The concept of the component-based (CB) software design methodology in support of the

COMPAG framework is discussed in Part I. The role of machine users, builders and

component suppliers is defined, based upon the design of reconfigurable automation systems

and the design methodology of a CB automation system for the power train assembly

machine is presented. The design is considered in accordance with the needs and required

performance of automation systems from an end user perspective and based upon a

requirements study with the Ford Motor Company Ltd. In order to utilise Web Services-

based component interaction the component-based (CB) design approach of previous

research needs to be redefined.

The concept of enterprise integration in a heterogeneous environment using Web Services is

explored in Part II. The key function of Web Services technology is captured and adopted

for building industrial control systems including control application integration. The selected

Web Services toolkit provides a lightweight code generation technique, designed for C/C++

embedded microcontrollers to enable XML Web Services-based device communication and

service discovery to be embedded in industrial control systems.

6.1 Problem Statement
This research is focused on the modular design of the control system, enabled by the

component-based (CB) design approach to allow reconfigurable and reusable automation

platforms, as one of the key requirements of agile automation (Chapter 3- section

3.2).The CB approach has previously been researched at MSI (via the COMPAG

project), and the objective of this research is to apply Web Services to the design of CB

automation, in order to enhance the degree of modularity and integration capability of the

automation devices. The research questions relating to the adoption of Web Services

within CB automation design are as follows:
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1. What is the design framework of a component-based approach to enable reusable

and reconfigurable automation systems? How do associated parties (i.e. machine

builders, component builders and end-users) interact to undertake component

design and reconfiguration?

2. How are modular designs achieved within the CB approach for automation

devices?

3. What are the issues with applying Web Services in the automation domain?

4. What is the most effective way of mapping the WS to component functionality?

Part 1- Distributed CB Automation Systems
Modularity is typically introduced into a manufacturing system to increase flexibility,

both in terms of functionality and also provide an ability to be easily reconfigured [115].

Within this context, modularity is focused on the intelligent, autonomous and loosely

coupled entities that are distributed throughout the subsystem. Modularity concepts can

be found in many related areas in manufacturing, for example: reconfigurable

manufacturing systems, agent-based manufacturing systems and holonic manufacturing

systems. All these have adopted the modular design approach, particularly within

automation systems, to increase the responsiveness of the manufacturing process to both

external and internal disruption.

A number of researchers, (see [72], [95], [100], and [115]), have developed modular

manufacturing production approaches, focusing on rapidly adaptable and reusable

machine systems to support their lifecycle needs. The automation system is dissected into

a set of mechatronic modules for the intended application domain. This approach aids the

modular decomposition / composition of the control system. In contrast to proprietary

object-orientated programming paradigms, this simplistic integration approach is

effective in supporting distributed application development, particularly suitable when

composing a set of distributed control functionalities to match the required physical

modularity of machines [72]. The basic concepts behind the CB software development

process are outline in the next section.
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6.2 Component-Based (CB) System Development
The basic idea in component based software development is to structure a desired system

around components, a well-defined component framework, interfaces and an appropriate

contract to ensure proper system construction and operation. It is reported by [110] that

the software component-based design contributes to increases in software productivity by

reducing the amount of effort needed to develop, update and maintain systems. Regarding

development of control applications in this research, the component-based software

engineering (CBSE) provides the development platform that facilitates an evolving

automation system during the manufacturing lifecycle.

In the following section, the framework and component software interfaces are outlined,

in order to enable system integration. The objective is to enable the development of

reusable control applications, considering not only the creation of components but also

the lifecycle management of such reusable software units as part of an evolving

automation system.

6.2.1 Component-based Construction Principles

In order to build software application systems from subsystems/components, such

components or subsystems must be integrated through well-defined infrastructures. This

infrastructure incorporates components from different sources to form the required

system [33]. The materials used in the construction of a component-based design can

vary widely in character, but may be classified into four main categories (i.e. Component,

Component framework, Interface and Contract) based on [g36] and [107] and shown in

Figure 6-1.
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Figure 6-1: The Component-based Design Principle

A component is a piece of software or software design with a well-defined interface

and hidden internals. The component is based on a concept that is recognisable and

of value for its user which may be another component, a software system or a

human user [g36]. It provides specific services to its environment across interfaces.

In the software engineering discipline, a component is a self-contained part or

subsystem that can be used as a reusable building block in the design of a larger

system or so-called "construction". A component may be integrated with other

components or users through its interface, which contains e.g. services, attributes,

events and times to show what the component can deliver [110]. In component-

based software engineering, a component package may contain lists of provided and

required interfaces, executable codes, validation codes and design documentation.

A component framework is a pre-built assembly platforrn of components, together

with the "logical glue" that binds them together. The framework is designed to be

extended. Frameworks are also defined as units for sharing and reusing

architectures i.e. a framework can be viewed as the reusable component and also the

platform for component integration.
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A framework offers an interface to other components and also has "plug-points", at

which other frameworks or components can join. A plug-point defines the roles and

development rules that a component or framework must conform to in order to

integrate. The component framework can also be seen as the execution platform that

facilitates components in running the application. For example, within the Visual

Basic (VB) development environment, applications are built by adding components

to an originally empty form. Here, the developer adds variants to component

behaviour through the VB programming language.

An interface defines the access points to components. To be precise, an interface is

a collection of operations used to specify the services of a component, and these

operations, or actions, are defined through a set of software codes that can

communicate with each other. Components can export or offer one or more

interfaces to other components, which use or import these interfaces. The

component that offers an interface is responsible for realising the action of that

interface, while the component that uses the action of an interface only needs to

know what the action achieves, not how it is achieved. In addition, a component

interface consists of a signature part describing the name of operations, together

with the parameters and types provided by a component and a behaviour part that

describes the components' behaviour [97, 98].

A contract is a construct for explicitly specifying interaction among objects.

Contracts formalise these collaborations and behaviour relationships. In component-

based software design, the contract can be classified into two categories [97]: the

first type of contract is a realisation contract, used during the design of the

component to describe the component specifications such as quality of service,

functionality, interaction methods and behaviours. This helps developers understand

components, in order to use them. The second type of contract is a usage contract.

Once the implementation of component specifications has been done, the usage

contract defines the interaction amongst components during run time execution.
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For the definition of these component software elements in the context of automation

systems, this research maps component software functionalities into automation terms

used by the control system. The component is considered as an encapsulated unit of

machine operation software, which contains the operational interface, the contract, and

the low level programming elements for actuator and sensor tasks. The control algorithms

are implemented in programming languages, such as IEe 61133 (Function block

diagram, structure text for example), C/C++, or JAVA, for the execution of l/O devices.

For the purpose of reusability as well as re-configurability, the component needs to be

implemented in a generic manner, so that it may be reused for building other components

without changing the internal control algorithms. A major benefit of the component-

based approach is that the developer does not need to have specific knowledge or

experience in dealing with an encapsulated low-level device program. Rather, a

knowledge of altering the behavior of the system through well-defined interfaces and

contracts, as illustrated in Figure 6-2, is employed.

Variable Variable
Input / ... Outputo Usage Contract

Command i .. : Command
Input ~ ~ Output

.. Encapsulated .'!!
~ Conuol ~
i Algorithms I
£ 1 T 0

Operation
Mode

Message

Figure 6-2: Automation Software Component Construction

In the control system, interaction between components is achieved through the

interlocking of the devices' state variables, in terms of the input and output interfaces

(see Figure 6-2). The interaction in this case is described by the usage contract. In

addition, the realisation contract is the unit used to define component behaviors and the

quality of device services (e.g. device parameters, I/O trigger delay time, memory

registers and task priorities). In the design of the control application on the component,
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device control logic in terms of lIO operations and state sequences are encapsulated and

exposed to component users through the component interface.

Based on the CBSE construction m the control system, this research proposes the

platform of the component integration to embody the novel development of the

component-based design approach for automation systems. As illustrated in Figure 6-3,

the component-based design framework in the automation domain shows the required

component functionalities that aim to facilitate the design and integration of

reconfigurable machine applications.
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compiled scftware to control
devices

) Compcnent scltware
debugging& compiling
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Figure 6-3: The Component-based Design Framework for Automation Systems

The CB design framework provides components with the platform to enable process

editor functionality, data storage for system data logging and the component library, an

interface to support manufacturing applications and control component design & build.

Within this framework, the component developer is able to create the new component

(software) and store it in the containment library for future (re)use. The control

components for device operations, as well as the supported application interfaces (e.g.
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HMI and Web Services integration), are debugged and downloaded to the target device

by the component user or the control system integrator. The control system integrator is

only concerned with building the control application through component interfaces that

allow the integration of components with other supported applications, such as 3D

modeling visualisation, HMI, and control configuration data for machine operations. This

machine application, built by the system integrator, can be saved and reused for later

changes in new machine configurations. The engineering roles associated with this design

and use of the component are detailed in section 6.2.2.

The aim of this research is to further develop the CB approach and to define how such

interaction between components is best implemented within a SOA utilizing Web

Services. Note: The implementation of Web Services. within a component-based

approach is presented in Part II of this chapter.

The following section will represent the component lifecycle development concept that

has been further developed for the management of control software in automation

systems.

6.2.2 Component-based Software Development Process and Lifecycle

Many models exist for software development processes and lifecyc1es, such as the

Waterfall, V model and iterative models such as the spiral model. Lifecyc1emodels may

be described by a set of phases or stages common to all lifecycles [99]. The generic

lifecycle of a component-based system can be shown at different phases, as depicted in

Figure 6-4.

Component
reconfiguration

Build, TeS1l1ld Release 1
-_····_·
Component
maintenance

Operation

Figure 6-4: A Generic Component-based Lifecycle (adopted from [9])
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Frequently, in the initial development phase, organisations perform the same activities

in each evolution cycle. Thus, an existing software product will evolve into the next

version by repeating the same sequence of phases. Regarding the process of component

implementation, existing software components may be reused to build new components.

These will be stored in a common data storage area, where they can be retrieved for

future use.

The relationship between component and control system design is illustrated in Figure 6-

5. A major development of the CB control system involves the retrieval of components

for system integration. This process follows a similar procedure but deals with more

integration units (e.g. hardware, HMI, high level engineering tool editor). Since the

components (i.e, device control software) are separated from other units such as

mechanical units, electrical wiring and 110 devices and controller modules, the process

of building the component and the control system progresses in a concurrent and

independent manner.

Figure 6-5: The Parallel Process of Component-based Development [99]

This parallel process development [9], allows component design and system development

to be carried out independently of each other. A new component may be built a adapting

a similar component, if available, and then adding to the component repository. This
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component database system bridges the process in which components are subjected to

searching and verifying, in the initiation of the system development process. Likewise,

the component being developed will be provided with the based component, as related to

requirements, by searching the component repository.

[ Framework H Components H Application

Framework
Developer

Component
Developer

Application
Developer End User

Figure 6-6: Various Developers and End User Roles in a Component-based Framework

(adopted from [107])

To support the concurrent design of component-based applications, all developers and

users can access the component assessment to search for and build components and

systems related to their roles and requirements as shown in the basic model in Figure 6-6.

The framework is provided by component builder tools. Component developers then

build new components and load them into the component project. The application

developer then customises these components, in order to produce a custom application as

expected by the end user. In this model, the CB application is developed concurrently

with new components (and the framework if required by the application / control system

integrator) and the complexity of the software component is hidden from the application

developer who only integrates these components to build the control system through a

well-defined component interface. In addition, the component developer is able to reuse

component code via constructs of the component development language, such as

inheritance, or templates provided by component building tools to develop new

components. The application developer employs the framework's meta-data mechanisms,
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provided by process engineering tools, to reuse components for building new machine

applications (for further discussion, see section 6.3).

6.2.3 Component-based Development Design Issues

In adopting component-based technology for manufacturing automation systems, careful

consideration needs to be given to the industrial systems requirements e.g. real time

performance, safety issues and operating environment.

In addition, the design of current component-based technologies for distributed

automation systems needs to be considered in the light of the constraints on automation

devices, particularly small embedded devices which could have limited processing unit

capacity and restrictions on communication bandwidth and memory space. To resolve

these issues in the context of automation systems, the concept of component-based

software needs to be redefined to fit into the automation domain, enabling real-time

system engineering technologies.

In the following section, a hierarchical structure for mechatronic systems is addressed,

and the development of component-based automation systems using the methodology of

composing encapsulated software components to form the machine operations is also

outlined.
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6.3 A Component-Based Design for Manufacturing Systems
The pervasive adoption of component-based software has benefited developers and users

by reducing development costs, system maintenance provision and the time taken to

market and the realisation of more reusable systems. However, in the automation domain,

the adoption of component-based approaches has been limited by the commonly-used

technology in the domain. This technology is largely based on ad-hoc software design

and manual coding techniques for control applications and has resulted in very limited

reuse. Additionally the process is extremely time consuming.

Previous research [33] on the COMPAG project at the MSI Research Institute proposed

the implementation of the reusable and reconfigurable control component (software) for

automation devices (see Chapter 4- section 4.6.3). It is important to note that the

adoption of Web Services to the automation domain inherits the proposed CB approach

for the design of control applications.

6.3.1 Encapsulated Industrial Component Based Systems

In CB manufacturing systems, machine functions are defined from prefabricated

components with known and validated properties. The system integrator does not need to

have any knowledge of the internal design and implementation ofthe components.

Each component in the automation system needs to possess functionalities to support the

production system effectively. The component functionality for the development of

control systems in this research has been established: (i) in response to the user

requirements obtained from the Ford Motor Company Ltd. (see section 6.4), and (ii)

published academic papers regarding the design of component-based automation systems

[95]. Components in automation systems can be viewed as:

• A Unit of Service Provision. A component encapsulates its manufacturing

function, defined during the component design process, and this service

functionality can be accessed through well-defined interfaces. The user does not

know the internal implementation, only the service it provides. For instance, a
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"feeder" actuator component could have only two encapsulated services: extend and

retract.

• A Unit for Validation. The operation of the component can be properly

evaluated prior to deployment. For example, simulation of the component in the

control application may be viewed with a virtual modelling tool. In this case, the

component needs to provide the modelling tool with the appropriate service i.e.

providing operating information (i.e. the device state information) and its interface.

• A Unit of Error Containment. All errors that occur inside a component must be

detected before the consequences of these errors propagate to other components in

the system [14]. Component developers must implement the unit of codes needed to

detect and handle the error internally.

• A Unit of Reuse. As a result of the generic design of component functionality,

other components in the system that provide the same service/function can re-use

generic function codes. For instance, in industrial programming (i.e. IEC 61131),

the control function block of one unit that provides simple extend and retract

functions may be used for another actuator component, as long as it is defined by

the same functionality.

• A Unit of Design and Maintenance. Machine system design comprises sub-

systems built from components that are independent of each other. Hence the

upgrade and maintenance of separate components in the sub-system has no direct

impact on the others. The management of the machine lifecyc1e is enhanced through

the reduction of time needed to deploy the system.

The implementation of these components is detailed later. In order to support the

development of a component-based approach for industrial control systems, the

framework supporting CB integration has been studied to identify the tasks of each

stakeholder in building. and integrating encapsulated components. Each individual
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stakeholder, such as the end-user, machine builder and component supplier, has their own

distinct role in the development of CB manufacturing systems, as shown in Figure 6-7.

End User ¥
Machine 1builder

Component
~supplier

Uses system I • Operating. Maintenance
• Reconfiguration

Composes • Composing machines
system • Control applications

(Machine sequencing)
• Visualisation systems. etc
• Upgrading

---- -
Builds • Physical devices

components • Encapsulated

W Software (Low level
device code)

- -

Figure 6-7: Stakeholder Roles Constituted in the COMPAG Project Framework

In the component-based design automation system, component suppliers (i.e. the

component developer), supply automation parts to the machine builder and may be

involved in training system developers on how to integrate components for required

control functionality. Component suppliers develop the encapsulated control functionality

and the low-level programming required by system integrators. Machine builders

perform the role of system integrator. Instead of developing a component from scratch,

the focus on developing applications for automation systems by configuring components

and logically coupling them, in order to create the required control functionality for the

end-user. The End-user operates, monitors and maintains the system. In the Iifecycle

management of the control system, upgrading may be performed by machine builders or

component developers, without any effects on the integrity of the system.

The implementation of the CB approach to support stakeholder roles, as described in this

section, has recently been developed for the FORD- FESTO test-rig assembly machine at

Loughborough University. The development of the components for the test-rig

considered the roles of component supplier, the machine builder and the end-user, and the

generic component function blocks (as done by the component supplier) for each control
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unit were developed. The components were later integrated to complete the automation

system, including the HMI (as specified by the machine builder). The end user operates

the system, as well as changing machine configurations. Details of the development are

presented in Chapter 7- case study 1.

6.3.2 Specification of a Component-based Automation System

The scope of component-based approaches for automation systems has been identified

for: (i) the design concepts and management (sections 6.2.1-6.2.2), (ii) the development

issues (section 6.2.3), and (iii) the required functionalities (section 6.3.1). The design

specification of the component-based system in this research, described later in this

chapter, includes the component design information (see section 6.4).

Machine systems are decomposed into subsystems, which are composed of modules

(components) and organised hierarchically when adopting the CB architecture. Each

module can be seen as a group of components, which contain elements at the atomic level

that describe the state of the manufacturing environment (i.e, sensors/ actuators).
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Figure 6-8: Component-based Machine Control Hierarchy
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In this research each module comprises mechanical components, electrical components,

logical control components, software components (e.g. 3D VRML modelling component)

and other ancillary components relating to the machine system, as shown in Figure 6-8.

In addition, the integration and configuration of these components is achieved with the

Process Definition Editor (PDE), part of an engineering toolkit which manages the

lifecycle of control systems.

In the design of component-based manufacturing systems with distributed control

devices, an automation system will be composed of three main units:

1) The physical control unit,

2) The control activity and

3) The control function block.
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Figure 6-9: Structure of the Distributed Component- based Automation System

The Physical Control Unit within the distributed automation system is composed of

control functions (elements), built from four broad classes: device control, process

control, operator control station and service control (machine safe guard), as

depicted in Figure 6-9.
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All elements within the control function unit interact by exchanging messages as

state variables (i.e. state transitions, positions, pressure) within various types of

distributed transactions, such as producer-consumer and client-server interactions.

Signals or state variables are exchanged through a suitable distributed

communication protocol, typically achieved via Ethernet or a suitable fieldbus.

The Control Activity is the defined activity that reacts to internal and external

events, in order to trigger such events. External events, such as input to the activity

unit are obtained from signals provided by sensors. The control function activity, as

shown in Figure 6-10/a, encapsulates the formal rules that define the output

reactions by invoking sets of low-level programmed function blocks.

In the design of discrete automation systems, the behaviour of the component is

defined by a set of transformational rules, invoked in response to the changes of

state of corresponding event-driven mechanisms within finite state machines.

The Control Function Block, shown in Figure 6-101b, contains information such as

input variables, output variables (through state variables) and internal variables.

Function blocks are used to specify the properties of a user defined function, such

as STARTO, STOPO, EXTENDO and RETRACTO, in a generic way that may be

used by other components. To form the state behavior of each component, function

blocks need to be connected in sequence, to define the relation of the input/output

state variables. This is normally done via variable reference (e.g. ejector_retracted

allocated to %mwllO.1 in the PLC memory) in the application tool, using pointers

to allocate the corresponding variables to the memory addresses at the time of

design.



CHAPTER 6: A Component-Based Design for Manufacturing Systems 126

Externalllnternal
state yariabln

External/Internal
state variables

a) The Control Activity

Activity blook

Input .Igna"'/

b) The Control Function Block

Figure 6-10: The State Transition Diagram in the Activi ty Function Block

6.3.3 The CB Control Design Model

In the design of the component-based automation system, components do not only exist

as software functions in the development environment. They also form an integrated part

of the mechatronic deployed system, where each component has a software-based logical

implementation and a physical integration unit. Component implementation is

encapsulated through a set of control elements that expose the abstracted control

behaviour through state transition diagrams. The interlocking nature of a component may

be implemented via this state transition diagram, in order to define control behaviour for

the system. The interlocks are designed and tested with the debugging tool and the high-

level logic simulation during design time. The control applications are then downloaded

to the runtime component.

In the design of component-based automation systems, a design pattern is categorised

into four different layers: (i) mechatronic layer, (ii) application layer, (iii) resource layer,

and (iv) mechanical process layer. Details of each layer are based on the composition and

specification of mechatronic modules, as depicted in Figure 6-11.
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Figure 6-11: A Component-based Design Model

At the top level, the mechatronic-Iayer is projected onto the three sub-layers: the system

application, the component resource and the mechanical process layer. In the design of

mechatronic systems machine subsystems are derived from the units of electrical,

mechanical and software components. These units, formed in the mechatronic-layer, are

derived from customer requirements (interpreted by product processing, cycle charts,

machine operations and specifications) and then mapped onto the required machine

operation.
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The application layer is used to form the controlling applications for system development

by building the state transition diagrams of components for the subsystems. The resource

layer defines the interconnection of components to constitute the logical connection of

the control system, and the final design space of the mechanical process layer is the

integration of mechatronic resources (physical, mechanical, and electronic parts and

controlling software), derived from previous layers to form the runtime manufacturing

environment.

6.4 Design Specification for Powertrain Assembly Machines

The design of CB automation machines must have a certain level of performance, in

order to meet the end-user requirements of the system, as defined in Table 6-1. The

derived requirements are based on the typical assembly machines at Ford, which contain

10 to 40 machine components and an average machine cycle time (6) of 30-35 seconds.

Typical components are clamps, motor drives, RF tag readers and separators. Individual

component l/O response time (see Chapter 9- section 9.2.3) needs to meet soft real-time

criteria under 30 ms. However, it may be noted that the design of a CB system in this

research is based on the embedded device, which needs to meet these machine timing

specifications as well as the additional requirements from the end users (e.g. process

description, reuse, reconfiguration, pre-programming, configurability, intelligence, ease

of build / use, high level representations, unified interfaces, cheaper than competition,

standardised technologies, effective solutions for reconfiguration, agility) detailed in

Table 6.1.

(6)- An average product processing time in each machining process derived from time of the input to
the next output stage .
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Table 6-1: FORD Requirements of the Component- based Automation System

Support for pre-

programming and

configurability of system

modules

Hide the complexity of low

level coding

DescriptionEnd-user requirements CB specification

Process description and Supports well defined machine

reuse of components to components and finite state

build and (re)configure transitions

machining systems

In the event-based automation system,

the component operation desires to

operate on the changing state of other

components defined in the device

interlock during design time. Building of

machine applications from well defined

components helps integrators directly

relate to the previous design and

resource for reuse.

Meeting the target

production cycle-time

and response time to

supported production

system

Real-time communication The response time of I/O devices needs

to meet the soft real time requirements

and hard real time conditions in critical

tasks, such as safety and alarm systems.

The implementation of RTOS (kernel

OS) at the device required for the Cll
system.

Low- level program of devices is pre-

fabricated and encapsulated in the

hardware components, ready to be

integrated by the application builder and

end users. They can then focus on

building and reconfiguring automation

from high- level control applications.
Smart component

modules for Immediate

and automated warning

system

Self error-diagnostic Diagnostic error checking routine need

to be designed and pre-built in the device

by the component builder for the end

user. The error diagnostic routine helps

the user in the automated monitoring of

the device for active maintenance.
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installation and use

Design simplicity, ease of Device discovery and

High level process

description with unified

application interface

Cost equivalent to or

cheaper than the current

control devices

initialisation

Exposure of abstract device

functionality

Embedded controller design

with light-weight memory

consumption and CPU

resource

Standardised technologies A unified and language -

and Interface for neutral framework

heterogeneous devices

Automatic device discovery and

installation to ease device installation

within the system. The eB development

platform needs to support the device

discovery and dynamically allocates the

port location for the device. There is no

requirement to amend the hard code

device programme for manual

installation.

Ease of integrating the manufacturing

system. The components will provide

basic instructions on how to activate the

interface for device communication and

interaction. It does not require custom

interfaces for every integrated

application.

The compiled binary code of the control

application, including RTOS and

protocol stack, should be compact for the

embedded device. The code should scale

effectively in kByte rather than MByte •

due to limited memory side of devices.

The component based design needs to

support the interoperable on various

devices. Low- level component coding is

in the form of chosen devices, but will
need to support interoperability and

interaction among different devices

through a unified interface (Web

Services interface).
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Effective solution to build

and re-configure

automation systems in the

Iifecycle, taking into

consideration cheap costs,

short development time,

and early error detection

High level machine

configuration using Process

Engineering Editor Tools that

support virtual engineering

and control logic simulation

In the design of machine applications

and operations, it is foreseen that the

current automation integration tools are

not the most easy to use in current

industrial practices. Control engineers

are still dealing with the logic,

sequencing and timing of components at

the base level of programming, and a

more user-friendly tool should be used in

the presence of complexity in the

commissioning production process.

Editor engineering tools in compliance

with the en design are needed, which

are capable of managing complexity

during their Iifecycle.

High degree of agility for Loosely coupled among other

system reconfiguration components
Regarding system reconfiguration,

changing one component in the software

or hardware units will not affect other

components. It is desirable to have the

device coupling defined through a more

flexible device interlocking approach.

6.5 The CB System Model

A UML class diagram of the CB system model as defined for this research is shown in

Figure 6-12. The diagram illustrates the activity of component actors operating in a
design time and runtime environment. These component actors are the required modules
needed to compose a flexible and reconfigurable automation system.

Each component has been implemented to support a lookup service for automatic device

discovery and initialisation, in association with the TCP/IPv4 port connection during the

design time. The component functionality, programmed in native code (i.e. C/C++ is the

language used in this project due to the wide support on embedded hardware), includes
each devices ID (i.e. TCP/IP and MAC address), execution commands, 110 port
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specification and operating interface in order to work with other actors. During design

time, the operation logic of the component (i.e. machine operation sequences, device

interlocking and contract parameters) is achieved with a high- level graphical drag- and-

drop tool. The operational logic then downloaded to the target component through an 110

mapping interface.

Lookup •• rvtee. 1/0 m.pplng Inl.<1_
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Figure 6-12: UML Class Diagram of the Component-based System Design

During runtime operation, the operator console controls the operating mode (i.e,

auto/manual), initialisation and resetting of the system. In the design of an event-based

asynchronous system, the RTOS is implemented in the embedded device at the kernel

level in order to provide task eventing, interruption and scheduling. It should be noted

that the use of scan-based mechanisms (such as PLC based automation systems) has

proved inefficient, due to high memory consumption and a lack of CPU resources on the

small device. The RTOS is utilised to handle the activated tasks when the state change

happens. Otherwise the embedded component is idle.
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The component state actor module serves as the broadcaster of the device information to

other interlocked devices and the HMI console monitors the system. The broadcaster

sends the state information via variables to other devices, in order to process the stage

change as an input resource for the consequential output actions. In some cases, a high

priority state (such as error or alarm) needs to be sent to the receiver in real time. In this

case the RTOS ensures that these messages are handled within the specified time frame.

Having discussed the CB automation framework from the design and management

perspectives of the component software architecture, the next part of the chapter is

focussed the orchestration of Web Services for the sequencing and synchronised

execution of a CB manufacturing process at the message passing level. Web Services

provide an open, standards-based approach for connecting applications enabling multi-

device co-operation and knowledge sharing, in order to create higher-level processes.

6.6 Part I Conclusion

The modular design of automation systems enabled by component-based design for

mechatronics modules has been discussed in this chapter. The construction of component

software integration has also been reviewed, in addition to its lifecycle development. The

concept of embedded automation devices has been presented, where functionality is

encapsulated into devices at the stage of commissioning components. With this, the

machine builder only needs to focus on integrating the system through a knowledge of its

required overall behaviour and what functionality the components provide. Knowledge of

how individual programs are managed at low-level device configurations is no longer

required. In addition, the requirements and provided functionalities of the CB design

approach have been addressed from end user perspectives on building and reconfiguring

the control system. In the next section, the core design, implemented technologies, and

integration approaches based on Web Services will be presented.
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The component-based automation system, as previously discussed, was conceived to

enable modular automation for agile manufacturing systems. Despite the development

of modular and reconfigurable manufacturing systems, the achievement of agile

manufacturing was only partially realised. The requirements of agile manufacturing

are centred on the close integration of manufacturing systems as part of the wider

business workflow, as discussed in Chapter 3. However, seamless integration between

high level applications and automation systems at the shop-floor level has not been

achieved, mainly due to shop-floor environments being composed of many different

independent automation systems, all using different technologies. This presents a real

challenge, in terms of legacy system integration that is often linked to further use of

proprietary integration technologies and solutions from different vendors. The

management of integration is thus made difficult, both horizontally (interoperating

among themselves) and vertically (in operation with higher level systems).

In order to aid integration and the development of a new generation of distributed

applications in the automation domain, this aim of this research is to develop a

technologically neutral platform for business and automation integration. This is

achieved by building on the technology commonly used in the integration of business

systems, namely Web Services technology, with the aim being to support enterprise

and factory floor integration via the creation and integration of a vendor-neutral

platform automation system.

Web Services implementations have been proposed in the building and medical

domains, in the context of device monitoring. However, no research has demonstrated

the real application of implementing Web Services on embedded control devices

within the CB design and TCP/IP networking in the discrete-machine operation. The

proposed Web Services solution regarding embedded devices will be applied to the

integration of control systems, especially for machine assembly lines. Therefore, this

work aims to demonstrate the feasibility of the proposed. Web Services solution in

component-based manufacturing systems, with the use of embedded devices to enable

reconfigurable automation systems.
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6.7 An Introduction to Web Services Enterprise Integration
As presented in section 6.3.2, the adoption of the component-based design for business

and automation systems aims to reduce the design and development time of both

business workflows and control systems, through the application of reusable software

components.

In terms of current component-based software development, companies are working

with different kinds of applications, which are based on different de-facto standard

technologies. This leads to difficulties in the integration of business processes and

applications. It has been' reported by Michael Stal [65] that the various component

software and object-orientated programming technologies used in Enterprise

Application Integration (EAI) have some limitations in terms of flexibility and agility.

This is because the available EAI solutions are proprietary, complex to use, and do not

interoperate well with each other. The reason for this is the heterogeneity caused by

differing standards in:

• Network technologies and devices

• Middleware solutions and communication paradigms

• Programming languages

• Interface technologies

• Data and document formats

Recently, SOA and Web Services (WS), used in common standard communications

such as HTTP and XML, have emerged as technologies that may be implemented to

integrate various types of middleware, in order to resolve the heterogeneity of these

different technologies.

Regarding the SOA, all software components are modelled as services. SOA and Web

Services approaches are similar to that of component-based software engineering, but a

major difference is that the focus of application design is shifted to composing services

invoked over a network. With the SOA approach, the designer is not building a

program, a functional unit for purpose/use only. Designers are building a service that

may be used in multiple business contexts that has a well-defined set of interfaces [76].
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Regarding the design of component-based automation systems in this research, SOA

and WS are implemented to facilitate the integration of control applications, using

components with well-defined interfaces. Web Services provide the service

descriptions (e.g. operation, state update, and error diagnosis service) for the

automation device. In this context, control applications are commissioned with these

services as the interface to the native program (C/C++) of control devices. The

adoption of SOA and WS for automation systems will be discussed later on in this

chapter.

Integrating existing component-based technology (i.e. object-orientated middleware)

into the web had not resolved interoperability problems [95], as a result of the

middleware not being implemented with the web in mind. Hence, such middleware

needed to be transformed in order to allow method requests seamlessly over HTTP.

In order to resolve such interoperability issues, Web Services adopted a targeted

Service-Orientated Architecture (SOA). It is common within the SOA to implement

service brokers (as in CORBA and DCOM middleware) using standard internet

protocols and platform neutral XML (Extensible Markup Language). As shown in

Figure 6-13, the service provider publishes available services to the service broker, and

this acts as an aid in searching the associated repositories. Clients or service requesters

find the provided services from the broker.

The details of the key SOA mechanisms, as shown in Figure 6-13, can be found in

Chapter 4- section 4.7.2
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Figure 6-13: A Basic Principle of SOA Architecture

As characteristic of Web Services in building, publishing and locating services over the

network, Web Services integration technology has design patterns or architectures

appropriate for event-driven, composite, and autonomous distribution of applications at

the business level. Regarding these design patterns, Web Services have some similar

functions (i.e. autonomous, distributed control systems and event-based tasks) to those

required in the automation domain. It is therefore anticipated that adopting Web

Services for manufacturing systems could reduce the complexity of distributed

automation systems and hence improve overall performance.

The following section will present the need for Web Services and where they fit into

the automation system.
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6.8 Automation System Integration Using Web Services

6.8.1 The Need for Web Services within the Automation Domain

Automation systems are becoming more complex, integrated and multi-functional, in

order to deal with the various needs of the production lifecycle, including purchase,

design, engineering, operation and the various control levels, ranging from the field

device layer to the ERP layer [101].

However, control systems lack considerable system integration capabilities. Several

machine modules, devices and communication systems are often left isolated, due to

differing implementation technologies and customised solutions as mentioned earlier.

As a consequence, Web Services have been proposed as the information model capable

of facilitating the integration of the various information hierarchies within automation

systems (i.e, devices, automation, manufacturing execution, asset management,

enterprise management and collaboration layers). In addition, the utilization of Web

Services within the automation system enables open standards (as in platform and

language-neutrality), which are technologically neutral, in order to provide

interoperability between diverse peripheral devices and different vendors. XML is used

as the standard regarding the means of automation device communication. There are

several ongoing projects [i.e, RIMACS, SOCRADES, SODA] and researches [83, 68,

60] implementing Web Services technologies, but the structure of the implementation

of Web Services for the reconfiguration of machine systems is still unclear. This

research aims to define the clear role of WS functionality within control systems and in

accordance with a component- based design approach.

The transformation of Web Services for the purposes of device operation will be

discussed next, in terms of requirements and ontologies.

6.8.2 Transformation of Web Services for cn Automation Systems

Web Services should have the capacity to achieve seamless automation integration and

the creation of flexible and agile manufacturing systems. The role of Web Services in

facilitating business and manufacturing tasks must be specified to scope development

areas and, in accordance with the requirements of future manufacturing systems, to

consider the design of automation systems in the areas (i.e. openness, re-
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configurability, performance, reliability, visualisation and data monitoring,

maintenance and integration to higher level business systems) as shown in the Table 6-

2.
Table 6-2: The Adoption of Web Services within Automation Systems

Requirement Web Services Provision
Open automation platform

Reconfigurable automation

systems

Methodology

• Non- vendor specific devices
• Unified interface for

interoperability between
different vendor devices

• Developing the XML
message as the standard
communication for devices.

• Distributed component-based
design

• State-transition machine
design

• UPnP and Device discovery

• Component functionality is
prefabricated and interfaced
to the Web Services defined
by WSDL standard.

• Web Services provide
dynamic device discovery
functionality.

Performance and Reliability • Response time between I/O in
inter-connected controllers,
under 30 ms in soft real-time
or under

• RTOS will be implemented in
the Web Services
development for a soft real-
time <al capability.

• Deterministic Web Services
communication at TCPIIP
stack

Visualisation and Data

monitoring

• HMI interface
• VRML

• Reliable state propagation
from Web Services using WS-
Eventing mechanism for
(near) real-time operation and
visualisation.

Maintenance

The integration to higher- • Seamless integration

level applications

• Support remote diagnostic

applications

• Data history logging

• Dynamic device meta-data for

• Web Services metadata
devices reports to the
monitoring system and
keeping log files for data
analysis.

• Web Services will provide
interface to the local and
remote data monitoring
system.

device lifecyc1e, health

monitoring and maintenance

routine

• Web Services interface
provided by WSDL for
enterprise and manufacturing
supervisory control
integration.

(a) In this constraint, the machine task is allowed to miss the deadline (i.e. input to output response time) for
sometimes,but it should not affect the robustnessof the machineoperationand synchronisationbetweenmachine
components
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Web Services Functionality in the CB applications

The encapsulated functionality of components, as identified in section 6.3, and the

user requirements outlined in section 6.4 form the specification for Web Services,

which will be consumed by other integrated applications at a higher level.

The Web Services element is implemented within the component, in order to

provide the automation system with

• A device execution service (details in Chapter 8- section 8.5.1)

• A communication service (details in Chapter 8- section 8.5.2 and 8.5.3)

• A device information and description service (details in Chapter 8- section

8.5.2 and 8.5.3)

• A device "plug-and-play" service (details in Chapter7- section 7.4.2)

The device execution service is directly related to the operation of the 110 device on

the component. The WS provides an interface for device operations, such as reading

sensors and executing actuators in response to requesters, which can be

manufacturing execution systems or business applications. The communication

service is concerned with device state propagation over the network to specific

addresses. This service enables device-device and device-business/manufacturing

support application communications. The device information and description service

is initialised during a device start up, and can be found, upon request from other

interested devices or applications, to provide information and services including part

name, serial number, programme version and network address. The device plug-and-

play service facilitates self-initialisation functionality during the control system

installation or start-up. Newly added or existing devices within the control system

autonomously announce themselves to other participating devices and applications,

when they start up.

6.8.3 Building of Control Applications

Having defined the device operations as the services of each component, the complete

machine operations and work flows are built from ontologies and service orchestration.

These ontologies are concerned with the orientation of process work flows described

from the service execution and message passing at the device level. The combination
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nd orientation of provided services will form the wider work process of manufacturing

ystems, and an example of such work is demonstrated in Figure 6-14.
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Figure 6-14: Service Orchestration Ontology

If the components (control devices) A, B, C, and D represent the physical modules of

the assembly system, they contain operating functionalities as services [S. , i = 1... n],

which will be used to build the control applications [Aj , j = 1... m]. The control

application term is used to manipulate the desire control objective, such as "eject a

dummy" and it is important to note that, in this research, the devices are encapsulated

with distinct services unique to the control system. For example, S: is only for control

device A, it cannot be included within other control. devices. Thus, the boundaries of

CB design are clear and complexities are easily managed. The control devices in the

machine are composed of single or multiple services, depending on the decomposition
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of the machine system. As shown in Figure 6-14, control device D provides four

services: table rotating (S5), part checking (S6), drilling (S,), and ejecting (S8).

Regarding CB-Web Services, if application 2 (A2) is to perform the dummy transfer

from PI to P2 (which matches the function S2 "Move_Upstream! Move_Downstream"

of the rotating arm of component B), then A2 is mapped directly to S2. There is an

interlock between the swivel drive and WpBuffer Sensor (Control device C) to avoid

the collision of double dummies in the event of the buffer on the conveyor being full.

Application 3 (A3) transfers the dummy from P2 to P3 and from P3 to P4, and it requires

the combination of the service S3(Motor "on/off') and S4 (Separator "extend/retract")

from component C, in addition to the interlock between separator (S4) and the

WpTable Sensor at the table, in order to confirm availability of the table place. In this

example, the basic rule of finite state applications within a service-oriented design may

be expressed in a simple form, as follows:

AD] .-, J -I...m [2]

[3]

[4]

[5]

[6]

s.; - f (e, ,ct> i ,Xi)J- ...n

Ei - {eOUh ein}

<l>i - {<l>i(K)}

Xi - {X}

Where

A = Applications

S = Provided services

<!> = Component transition states

<!> i (K) = Current component i transition state

E = Local event(s) and condition(s)

eOUhein= Output event(s) and input event(s)

m, n =Number of applications and services

j,i = Application and service ID

K= State ID

X = Interlocking elements
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The instance of built applications for the power train machine (i.e. a basic control

definition), can be written, as follows:

c {Si} where SI= f (£I, <t>1• XI)

c {S2} where S2= f (£2, <t>2.X2)

A [1]

A [2]

A [3] C {S3, S4} where S3= f (£3, <t>3.X3)

S4= f (£4, <t>4.X4)

A [4] c {Ss, S6, S7, Ss} where Ss= f (£5, <t>s. Xs)
S6= f (£6, <t>6.X6)

S7= f (£7, <t>7. X7)

S8= f (£8, <t>g.Xg)

A [3] - Moving a work piece from C to D = S3 (ON) X S4 (Extend)

S3 (Motor) = 13 (£3, <1>3(K), X3)

S4 (Separator) = f 4 (£4, <1>4(K), X4)

13 = (E3 (WpBuffer == On) AND <1>3 (Motor = stop) OR X3 (Separator == Extended j]

then Set the service S3= ON;

f 4 = (E4 (WpSeparator == On) AND <1>4 (Separator == Retracted) AND X4 (Table == set AND WpTable

== orn) then Set the service S4. = EXTEND;

This form of equation illustrates how the control application is built into a finite state

machine in order to compose the complete machine application. In the real machine

environment, this control sequence is more involved with the multiple interlocking of

states and transitions between devices, in addition to the impact of device operation

timing logic (i.e. time expired).

As mentioned earlier, the machine application is the combination of services formed by

trigger events and sets of conditions. The reconfiguration of the process, therefore, is

achieved via the alteration of the application design associated with the state behaviour

of the component, as represented by f (ej, <I:>j(K). X). To support flexibility and re-

configurability, user applications are composed by a process definition editor tool (i.e.
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the PDE software has been previously developed for the COMPAG project), which

provides a platform for finite state machine development and interlocking, with

graphical interfaces to the device service and the state machine. This tool replaces the

need for manual hard-coding of applications (i.e. manually-programmed control

logics). This research outlined in this thesis requires the definition of a Web Services

device interface to the PDE tool in order to support the translation of the tool's

graphical process workflow representations onto real control devices (details in 6.8.4).

6.8.4 Implementation and Enabling Technology

The technology and methodologies for the design of discrete automation systems

according to the CB approach and Web Services within embedded devices is presented

in this section. The main design process of the control application is involved in

creating the state transitions and control algorithms (as discussed in 6.8.3), Web

Services interfaces, I/O interfaces for physical 110s and integration with the RTOS

kernel, all of which support reconfigurable in automation systems. The implementation

model ofthese elements is shown in Figure 6-15.
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Figure 6-15: Component-based Web Services Implementation Model

It is important to note that, in this research, the target control device is an embedded

micro-processor utilising a CIC++ complier. In addition, the programming of all

modules (i.e. RTOS, Control application, TCP/IP stack, and Web Services) of the

control device is with C/C++ code.
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It has been noted that scan-based operating systems are not the most efficient way to

run an 1'0 "check and execute" command, especially for embedded devices. In this

research the RTOS is required, at the kernel level, to handle the event-driven

mechanisms of the control system, such as task scheduling, interrupt, idle, and multiple

interlocks.

The hard-coding of the device operation is generically programmed using C/C++ code

and stored in flash memory. Low-level programmes handle the 110 operations in

accordance with the higher-level command requests. The system integrator does not

need to rewrite this embedded code in order to build the system. The control

configuration (i.e. set of state behaviour functionality defined by interlocks) of devices

is created or altered within the PDE engineering tool. An interface is required: (i) to

interpret the state logic diagram of the PDE into C/C++ structure required for the

component, and (ii) map physical device 1I0s to the state variables used in the control

application.

The gSOAP toolkit is used for binding Web Services capabilities into the device. The

toolkit generates the embedded code from either WSDL or C header files, in order to

provide the device with the resource location, service description and communication

protocols required for the control operation (see section 6.9). A Tep/IP stack is also

needed, for the network communications to be ported onto the embedded device.

As shown in Figure 6-16, Web Services handle device discovery, service binding and

interface to the device control application. The state variables of devices are published

over the network in XML format, and are transformed into the C data type (and vice

versa) by the Web Services interface generated by the gSOAP toolkit during runtime.

External and local state variables are then passed to the control application of the

devices. Activation of the service is dependant on meeting the set of conditions defined

by logic and linked to the input gathered from the interfaces to 110 devices. It is noted

that the WS-CB design architecture proposed in this research aims to enable the Peer-

to-Peer (P2P) control systems. The details are presented in section 6.9.2-2.
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Figure 6-16: The Implementation of the WS-CB Automation System Design
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Although the gSOAP code generation technique IS widely adopted for Web Services

applications, the real-time use of the gSOAP tool on embedded devices within

automation systems in terms of performance, reliability and feasibility has not yet been

demonstrated in any research.

In the following sections, the implementation of the framework of Web Services in

devices binding and communication techniques using the gSOAP tool is developed and

discussed. The implemented methodology of developing Web Services and code

generation techniques for embedded control devices is also detailed.
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6.9 Web Services Design Approach for Distributed Embedded

Control Devices
The WS design methodology for embedded control devices is established in this

section with Ethernet connections allowing users to control and monitor the devices

specifically through their TCP/IP network address.

The use of microprocessors, as control devices for the future of automation systems,

can provide high levels of integration through a wired or wireless networks at little

cost. Communication between devices has been increasingly based on universal

multifaceted interfaces using standard TCP/IP protocols, and, recently, the SOA has

become the standard for data exchange between devices. The adoption of a SOA

using Web Services is already supported by many tools (e.g. Visual .Net Framework,

gSOAP, DPWS) and programming languages (e.g. Visual Basic, C/C++, Java), which
allow the methods of an object or the functions of a programming language to be

exported objects (component-based designs) as services [60].

Several solutions have been proposed, from both academics and industrially focused

projects (e.g. RIMACS [147], SERINA, [148], JINI [56], UPnP [69], [89], [83], [58]),

regarding the implementation of Web Services and SOA platforms on the different

types of automation device, embedded microcontrollers, PLC-based and PC-based

languages (e.g. C/C++, Java, Ladder). Although these researches have proposed Web

Services solutions within various approaches and technologies (e.g. JINI [56], UPnP

[69], DPWS [54]), most involve applying Web Services for the purpose of addressing

devices for monitoring and data access. At the time of writing, the author has not seen

any real practice in building a control application for machine operations based on the

Web Services architecture. Therefore, this research aims to demonstrate the feasibility

of using Web Services on embedded automation devices.

In the following section, the key integration technologies and architectures that

support Web Services automation infrastructures will be presented.
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6.9.1 Localisation and Standard Discovery Lookup

Regarding the design of control systems, the networked automation devices (meaning

the embedded controllers which are directly connected to the communication network

in this thesis) need to be located by an address, such as TCP/IP. This addressing

schema is required for device set up and communication between nodes, in order to

exchange state information.

There are two common ways of defining device localisation. The first is to use a Peer-

to-Peer (P2P) search and the second involves building up a central directory as the

device registry.

Peer-to-Peer (P2P)

The P2P mechanism is illustrated in Figure 6-17. Within the P2P environment,

the device is self-organised [94]. Controller nodes hold information about other

nodes, corresponding to their operation within the system through direct node

interaction. Interaction is done via the sending of a multicast message (probe) to

neighbouring devices, in order to find interested devices to work with (for

example, exchange message, invocation). Also, if the new device is installed

into a system, it propagates its specification and location, in order to let other

specific devices know how to collaborate and work with it. Within the P2P

network, nodes interact directly, rather than passing messages to the central

server like a client/server network type. A failure of one node would not cause

the failure of the whole system.
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Figure 6-17: P2P Search Procedure
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Central Directory Lookup

This is a typical client/server network mechanism. A central server is used to

store information regarding automation devices and each automation device has

to register its information to the server so that other nodes or remote client

applications can look them up in the directory. In this environment, device

interaction is reliant on the server organising communication, as illustrated in

Figure 6-18.
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Service/lease time'
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Network ~D .» ~ - Registration
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Automation Match ----
Device 3 Automation

response Device 2

Figure 6-18: Central Directory Lookup

Comparing these two methods, the P2P method does not scale well as the numbers of

nodes increase. Searching for target nodes may not be fast and accurate hence

response time performance will be compromised. However, the advantage is that

failure of one peer would not cause a failure of the whole network. In contrast, the

localisation of automation devices via a central directory has a fast and definitive

localisation [94]. With this method, however, the additional registration server adds

complexity to the system design and risk to the whole network's operational

functionality, should the server fail.

Implemented Approach

The author has reviewed a substantial amount of research proposing device

interaction and application to device integration, and feels that both of the above

approaches may be used in localisation. For device communication in the control

operation environment, it is suggested that the P2P approach is more suitable than the

central lookup. Devices can interact directly to each other without passing the

command and information through the central server. Regarding the integration of
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client applications, such as remote monitoring, data acquisition and modelling, the

central lookup is more suitable as the interface (proxy server).

6.9.2 Lightweight Code Development for Embedded Devices

In this section, the code generation techniques using the gSOAP toolkit will be

presented. The gSOAP toolkit has been chosen for deploying Web Services onto

embedded control devices because it brings two benefits. Its can be used to provide

portable code for the small memory footprint, low bandwidth, low processing ~ower

consumption on embedded micro-processor devices and its platform-neutral, SOAP-

XML based protocol is also language neutral. The gSOAP tool enables the integration

of legacy C/C++, fortran codes, embedded systems and real-time software into Web

Services, clients and peers that share communication resources and information with

other SOAP enabled applications across different platforms and language

environments [90]. This means that the application is built on programming constructs

that can inter-operate with another over a network, through the SOAP-XML methods

generated by the gSOAP tool.

The gSOAP tool effectively allows the runtime library to travel back and forth

between a SOAP message and the C/C++ formats for embedded C/C++ application

communication. Conceptually, the design of Web Services code generation by

gSOAP is reflected in Web Services communication within:

Transportation - at the lowest level of the model and handles HTTP

communication.

Packaging - provides the XML-based SOAP protocol which facilitates the

SOAP message in the Web Service environment, such as the RPC call

mechanisms, SOAP encoding styles and meta-data information. All these

functions are referred to as the SOAP envelope, header. and body.

Information - carries the XML-formatted SOAP message. This layer is used to

establish a SOAP RPC request-response message exchange, using stubs and

skeletons for encoding and decoding the invoked operation remotely (as shown

in Figure 6-19).

Service - this is considered as a WSDL-defined layer that abstracts the service

functionality and access mechanisms of Web Services.
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Discovery - deals with service registration and discovery through the UDDI

specifications.

Service
Requester

Service
Provider

~o~!~e~ensor/actuator Its-'.-' - - - J
< Respond to service (control appllcallon)
Invocation------- --

~
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/---- -........__

(

Client <,
Application j-_ T-_/

gSOAP
device binding
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SOAP/XML transport

TCP/UDP port

Figure 6-19: Remote Procedure Call in Device Binding

The Web Service communication and service binding mechanisms, including the

integration of service (server) and consumer (client) applications (as presented in

Figure 6-19), are implemented via generated RPC stubs and skeleton files included in

these applications. The routine involves transforming a C and C++ application to a

Web Services operation on the network, via SOAP/XML request and response (or

publish and subscribe) messages at runtime. In the case of control operations, a client

can invoke the service (i.e. read sensors or drive actuators) on the server through the

parsing of SOAP commands (i.e. a response is sent back to acknowledge the client).
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6.9.2-1 The gSOAP Stub and Skeleton Implementation

The development of Web Services clients and server applications at design time

(Development) and runtime (Deployment) is depicted in Figure 6-20 below:

Development Deployment

Defined services,
Name, Location,
Remote procedure

and data type
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file Service

, description
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Server application
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Figure 6-20: Design Time and Run Time of a Server and a Client (extended from

[52])

To start building the Web Service functionality of control devices, the control

component builder will need to define a header file that contains the service function

declaration, with parameters and data types for the automated code generation of the

stub and skeleton files by the gSOAP compiler. Alternatively, these files may be

obtained from the WSDL document description of the service, remote methods, and

the type of parameter data, as defined in the header files. The WSDL and header files

generate the same library files and both methods will be presented here.

The Web services functionality defined in the DPWS stack for the control device

(Chapter 4- section 4.9.2) is enabled by including the DPWS library in the DPWS-

gSOAP code generation package provided by Schneider Electric. It is noted that this

toot is an open development application which is freely distributed to any developers.
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The DPWS library is later used to build the client and server application. This

provides the functionality of meta-data devices, such as discovery, addressing, and

eventing, which are all used in the building of the control system (presented in the

following section). The RPC files are integrated with the DPWS runtime library,

building the server and client application used for control device operations (e.g.

sensor readings, executing actuators, and event message exchanges) over the network.

The service definition of the control device and the building of client-server

applications are discussed in the next section.

6.9.2-2 Building Control Functions in a Web Services Environment

In the development of Web Services code for automation systems, the gSOAP

compiler is used, in order to generate client and server communication modules (with

proxies and skeletons) in standard .h and .c files. These files are then ported into the

embedded controller development environment, in order to build the complete control

application.

To demonstrate the use of Web Services within the control device, a basic example of

building a Web Services and the client application is illustrated with pseudo codes in

Figure 6-21. Here, the services for turning ON and OFF (PowerState) a light by a

service reference name (SwitchPower) and states (PowerS tate) are identified with the

use of WSDL files. However, this WSDL file has been simplified to demonstrate its

usage with the gSOAP toolkit. The full WSDL description is presented in Chapter 8-

section 8.3. Having compiled the WSDL file, generated the .c and .h files, the

gSOAP, and DPWS runtime libraries are then linked with the service and client

applications. The standard functions used in the main application of clients and

servers are defined in the generated code and these functions (i.e. device metadata,

device lookup service, service invocation method) are programmed in the control

application.

The implemented codes of the WSDL file, the server and the client project for this

example can be found in the attached CD (..IWS Automation/Chapter 6).
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OFF, and reading the status of the light. These services are seen as the interface to the

local device input and output and can be remotely called by the client application.
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The client application, which is located in another device, finds the requested service

on the server, using namespace to search for the location (i.e. the IP address and port

number of the provided service). When the device and service have been located, the

client can interact with the specified device by invoking operations, such as turning

the light ON and OFF, by executing the dpws_send_lit_switch(parameters)

command.

In addition, an extension of the gSOAP Web Services development platform in

control applications is required for the control operation (i.e. machine operation),

where devices react to the state changes received from devices of other subsystems

(i.e. via device interlocking). The output command to the I/O device is derived

according to the control logic (Event-Condition-Action) design, as defined in the

control configuration (section 6.3.2). Thus, the design of Web Services automation

systems need to be captured and classified into the service functionality of the control

device entity. Within this research, the Web Service runtime architecture used on the

control device is defined as in Figure 6- 22 below:
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Figure 6-22: Web Services Compliant Control Device Architecture (in line with

DPWS)
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To enable the P2P model of the control system, the control device contains both client

and server capabilities. The client portion of the device is directly associated with

discovery services (i.e. WS-Discovery) and registration, in which the device is

connected to a network discovery service on other devices. In the case of an

automation system, the client acts as an event sink to receive the information (e.g.

state variables) from the server of different devices and pass the value to the local

server for the control application.

The server is associated with services definition (i.e. WS-Metadata Exchange) and the

locations provided for dynamic device discovery and access from clients. In addition,

the server provides the publish/subscribe services (i.e. WS-Eventing). In this respect,

the server allows clients from other devices to subscribe to the asynchronous message

exchange (e.g. state variables), produced by the state changes in the control operation.

The server is also included in the control application for VO device operations.

6.10 Part II: Conclusion

The methodology of applying Web Services to the component-based design

automation system has been described in this chapter. The WS provides functions for

hosting services on the control device, discovery methods, control application

execution, and event-notification services. The required functionalities of the control

device within the automation system, provided by the Web Services through device

(i.e, component) programming interface, configuration, and execution (i.e. service

invocation), have been outlined. The control application for machine operations and

processes is achieved via the service combination following finite state machine

execution (control logic) in an event-driven control system (see section 6.8.3). In

addition, the author has proposed the construction of Web Services-compliant

automation devices with the RTOS and Tep/IP software layer to enable a peer-to-

peer communication in the distributed control systems. In this research, the

implementation of Web Services on control devices aims to enable the creation of a

neutral platform, where devices from different vendors can interoperate via XML

message passing. System flexibility and re-configurability could be enhanced through

effective plug-and-play discovery and software interlocking mechanisms via the use

of remote procedure calls enabled by WS (see section 6.9.2-1).



CHAPTER 7

Implementation of CB-WS

The implementation of the CB design and Web Services approach in the distributed

automation system are outlined in this chapter. These design approaches were presented in

Chapter 6. Two separate case studies have been carried out in this research. The first has

involved a study of distributed component-based automation systems and the second a

study of Web Services-based automation devices. The first has involved looking at the

primary design work of the CB approach, based on the PLC-based system environment,

and the second has involved demonstrating the adoption of WS within the CB design

approach.

7.1 Problem Statement
The functionality of the university-based automation test rig control system, which is

deemed to be applicable to real industrial machinery and control applications

experienced by the Ford Motor Company, needs to be detailed in order to appreciate

the case studies discussed in this chapter. In addition the research questions to be

addressed in this chapter are based around the design of distributed control systems

utilising this test rig, as follows:

1. How is the test rig system broken down into components and elements?

2. How is encapsulated component functionality programmed and reused?

3. What scope of WS functionality is required for component design, operation

and communication?

4. Which available technologies may be used for assembling WS control

functionalities on the designed component?

7.2 Introduction
In the first case study on CB design, the concept of distributed automation systems is

implemented on the FORD-FESTa test rig. The aim is to demonstrate the CB

approach in practice and assess the feasibility of the distributed control system, based

on an event-driven approach. The test rig is a replica of FORD assembly machine

lines, implemented with a controller from Schneider Electric and a distributed 110

interface module connected to sensors and actuators. The control applications of the
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machine components are designed using the Unity ProXL engineering tool provided

by Schneider Electric. This tool supports the IEC- 61131 PCL programming language

standard for control applications. Regarding the design of reconfigurable and reusable

control applications, the control application of each component is implemented using

Function Block Diagrams (FBD). Using these constructs the internal control logic,

relating to lIO operations, can be readily reconfigured and reused for other

components.

The author has been responsible for building the FBD of components and the state

behaviour and interlocking of components for the control application of the test rig. In

addition to the CB control software, other developments were undertaken for the test

rig automation system, including:

• The integration of VRML simulations

• The development of control configurations and finite state machines with the

Process Editor Engineering Tool

• Operator console and monitoring via HMI screens

The second case study is the progression of the FORD test rig control system, to

supporting SOA and Web Services automation according to the methodologies

presented in Chapter 6, Part II. In the design experiment, the preliminary testing of

Web Services-based automation systems involved code generation for the automation

components and demonstration of the use of Web Services on a PC that simulates the

operation of real control application in the embedded automation device. In this

implementation, the gSOAP toolkit is used to generate the remote procedure call

(RPC) stubs and skeletons from the WSDL file, which are then used to define the

component description for the control application (see Chapter 6- section 6.3.2). Web

Services server and client applications are built, in order to show the message passing

of state variables and executed commands that simulate the real control environment.

In the communication process, TCPIUPD ports are used for client and server

components to interact using XML message transport. This interaction involves

device discovery, execution and message exchange. In addition, device operation,

such as actuator manipulation, is realised by the execution of additional dynamic

linked library (i.e. dll) files. For example these files support the interfaces that write

the commands to ports (e.g. RS232) on the service provider (server) where required.
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7.3 Case Study 1: Distributed Automation System (FORD-FESTO

Rig)
7.3.1 FORD-FESTO test rig specifications

The test rig system has been divided into four subsystems (i.e. units or stations): (i) a

distributed hopper unit, (ii) a buffer unit, (iii) a processing table unit, and (iv) a

handling arm unit, as shown in Figure 7-1. Each of these subsystems contains one or

more mechanical components that are connected to field devices (i.e. sensors and

actuators) through a distributed I/O module (such as an Ethernet interface I/O module

with specific TCP/IP addresses, as in Figure 7-2). These device components

communicate via the state variables within the finite state machine behaviour of the

complete system. The sequence of machine operations is defined by the interlocking

of components in the design phase (i.e. using the engineering application tool-Unity

ProXL). The control application of each component is then uploaded to a PLC

controller which is responsible for the real-time control of distributed the components

within the subsystems.

Ej~~l Cyllndcr

Distributed Hopper
Unit

Figure 7-1: The FORD-FESTO test rig platform
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Figure 7-2: Ethernet Interface lIO Module

In addition to the control system, an operator console (i.e. HMI screen) is required for

machine operation e.g. to set the operating mode (i.e. Auto/Manual), monitor alarms,

reset and system initialisation and monitoring of the component state progression. The

HMI control application has been implemented with the Vejio designer tool from

Schneider Electric, which enables customisation of the graphical control screen, as

shown in Figure 7-3.

Figure 7-3: HMI Operator Screen

The HMI functionality required for machine operation ha been detailed in able 7-1

below:
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Table 7-1 Test Rig HMI

HMI INTERFACE . FUNCTION

AUTO/MANUAL Operating mode of the test rig to manually

control or automatically run units

INITlALlSA TION Safely returns all devices to their initial positions,

ready for operation

ALARM Malfunctioning alert to the operator

RESET Releases the alarm and move devices to safety

state before the resumed operation

DEVICE STATUS INDICATOR Displays the status of devices on-screen, in

association with the state variables

The design and integration of the component-based system development is detailed in

the following section.

7.3.2 System Development and Integration

The architectural (i.e. Subsystem - Component - Element - State) decomposition of

the FORD-FESTO test rig is shown in Table 7-2 below:

Table 7-2: Decomposition of the Test Rig Assembly

Subsystem Component Element State
Station 1: Distribution_Hopper Eject_Cylinder Error

Distributed Retracted
Hopper Unit Move Extended

Extended
Move Retracted

Magazine Error
Magazine Empty
Magazine Full

Mag_Xfer_Ready Error
Magazine E.!!'pty
Magazine Full

Transfer_Arm Swivel_Drive Error
Downstream Position
Move Upstream
Upstream Position
Move Downstream

Vacuum Error
Orf
On
Eject

Gripper' Error
Not Gripped
Gripped
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Station 2: Conveyor Conveyor Error

Buffer Unit Off
On

Separator Error
Retracted
Move Extended
Extended
Move Retracted

Workpiece _Available Error
No Workpiece
Workpiece Available

Workpiece _at_Separator Error
No Workpiece
Workpiece Available

Workpiece _atConveyor _End Error
No Workpiece
Workpiece Available

Station 3: RotaryTable lndexing_ Rotary _Table Error

Processing Index Table in position
Table Unit Table Indexing

Ejector Error
Received WorkEiece
Eiect Workpiece

Workpiece _Available Error

No WorkEiece
Workpiece Available

Workpiece _Available _at_ Checking_ Error
Unit

No WorkEiece
Workpiece Available

Workpiece _At_Drilling_ Station Error
No WorkEiece
Workpiece Available

Component_ Checker Checking_Actuator Error
Actuator orr
Drill Hole OK
Drill Hole Fail

Drilling_ Unit Drill Error
Retracted
Move Extended
Extended
Move Retracted

Drill_ Spindle Error
Drill off
Drill On

Workpiece _Clamp Error
Unclamped
Clamped
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Station 4: Handling_Arm Arm Error

Handling Arm Downstream_Position

Unit Move Sort

Sort Position
Move_Upstream
Upstream Position
Move Downstream

Gripper_Extend _Cylinder Error
Retracted
Move Extended
Extended
Move Retracted

Gripper Error
Closed
Open

Workpiece_Is_Not_Black Error
Workpiece Is Not Black
Workpiece Is Black

Workpiece_Receptacle Error
No_Workpiece
Workpiece Available

7.3.2-1 Work Flow and Sequencing of the Test Rig System

The functionality of the test rig is representative of typical assembly line operations

used to assemble automotive engines. In the automotive process engine parts are

inserted to the main body of the engine blocks at each stage along the processing line.

In this test rig, the engine block is represented by a plastic workpiece that is processed

by a number of tasks such as transferring, buffering, slot checking, drilling and

sorting. The assembly sequence is as follows:

1. The workpiece (WP) or dummy is pushed from the magazine slot (hopper) by

the ejector and waits for the transfer arm to pick up and transfer it to the

conveyor.

2. Each WP is then conveyed to the separator, which will stop the WP going to

the processing table if a free slot is not available (i.e. if table is moving or

there is already a WP in the input slot).

3. The WP is released from the separator to the rotating processing table.

4. The processing table moves the WP to the component checker, which is used

to confirm that the work piece is positioned correctly before the drill operation

occurs. If not, the WP will skip the drill operation and raise an alarm to the

operator.
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5. After the component checker, if located correctly the WP is then transferred to

the drilling unit.

6. After drilling, the WP is then moved to the last stage of the indexed

processing table, the ejector. The ejector pushes the WP to the buffer of the

handling arm unit.

7. When the WP is located in the buffer, the handling arm grasps the part and

transfers it into the exit slot. There are two slots: one for black WP's and

another for coloured WP's. Colour differentiation is sensed by the gripper

element of the handling arm sensors.

The complete machine application, following the workflow of the WP via machine

sequences, is implemented by the state transition diagrams of each element associated

with the system components. Appropriate interlocks between elements provide the

correct synchronisation.

7.3.2-2 State Transition Diagrams

The component state behaviour is normally described by generic two-, four- and six-

state relationships of actuator and sensor functionality. An example of common state

transitions can be viewed in Figure 7-4 below:

[ Extend~ ~A.NO
WWkpMooe_hl(21 AND

""'LOown.Mr..,n

~.lI~ANO
WOf~o._""l)A.NO
NO_';.IW)f~2)ANO

""I'Y\...U()W • .."

HOl ... ~

l- Full 'J
J ~io.l"'l»_t~\.."'."fI1

Figure 7-4:Common four-state Transition Behaviour of the swivel Transfer Arm

Component
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Regarding the transfer arm component's state transitions, the arm has been

implemented with four states:

State: 0 = Error

State:

State:

State:

State:

1= Upstream

2 =Moving Downstream

3 = Downstream

4 =Moving Upstream

with the initial 'position at Upstream. The transfer arm transition from Upstream to

Downstream depends on meeting the condition of the work piece sensor

(Mag_Xfer_Ready: ON), and with the ejector state Extended in order to allow the

transfer arm to move. Likewise, the transition from Downstream to Upstream

requires the ejector state Retracted and the buffer condition (workpiece_availiable:

OFF) sensor of the conveyor component, in order to enable the action. The dynamic

states, such as moving upstream and moving downstream, are determined by the

internal logic of the transfer arm element, from its sensors and its previous state, in

order to track the moving direction. Full details of the state diagrams can be found in

Appendix A.

7.3.2-3 Component Software Development

With regards to the test rig transport and assembly subsystems, the control hardware

is of a standard design. Note: the similarity of the test rig to real machine architectures

and functionalities enables an appreciation by the end user of the substantial savings

that can be made if the design, development and implementation of the control

software for such components is encapsulated and reused [33].

Components in the CB design approach have been implemented with basic two-, four-

, or six- transition behaviours (see Table 7.2). These state transitions generally share

the same commonalities in operation, such as moving from one position to another

regardless of distance, axis and timing. Typical operations include "extend"; "retract";

"move upstream"; "move downstream"; "move sort"; "start: stop" and "on: off',

These operations are reusable by other components with the same required

functionality (and state progression i.e. numbers). For instance, the 4- state actuator of

the ejector element has the same state functionality (i.e, 2 static and 2 dynamic states)

as the 4-state swivel transfer arm. These states represent the movement of the output
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from one position to another regardless of axis and speed. The only differences

between these elements are the variable names relating to the 1'0 ports and sets of

interlocks and conditions that allow the action to occur.

In order to utilise the design of the reusable component-based automation system

within this project, generic FBD's (Function Block Diagrams) have been derived with

encapsulated low-level ladder logic programming, structured text (e.g. if_then_else,

AND/ OR functions) and standard function blocks (e.g. timing, delay, negate function

block). As these derived FBD's are implemented and tested, they are exported to the

machine library for future reuse. In addition the exposed functional structure of the

FBD has to be implemented in a standard format, so that other components can

comply with it. The design is shown in Figure 7-5.

Different components can reuse the previously implemented function blocks of other

components by altering the transition condition, and the input and output state

variables that are used for the interlocking without having to build the new function

block. In this way, substantial time is saved when "the system developer is

commissioning the machine system.

Component

-1_-,,-

• En.ble

• Component Compon.nt
,

• 11.1. Input SIIII. output 2

• "
• Component Driving

Inl.rtock output .-

• AutolM.nulll

. ~ R... t Error -

-.

Figure 7-5: Generic FBD Structure

The next stage of developing the CB test rig system is the sequencing of components

(via interlocking state variables) to commission the completed machine control

application corresponds to assigning the triggering events of each component, as

previously specified in the state transition behaviour. The complete reference control

programme of the test rig is given in Appendix B.
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7.4 Case Study 2: Web Services Device Control
An approach to the component-based design of embedded devices implemented

within the Web Services environment is described in this section. The gSOAP toolkit

is used to generate the remote procedure call (RPC) stubs and skeletons from the

component description (i.e. the WSDL file) for device binding and interaction. An

experiment evaluating control device interaction and execution (via manipulating 1'0

operation) in a request/response mode is carried out utilising the dynamic linked

library (DLL) files, which are located in the WS application. This control application

will be deployed in the client controller and SOAP message commands are

transmitted to the server application in order to perform the controller task.

7.4.1 Development Platform

The initialisation of Web Services on embedded devices requires the gSOAP compiler

and DPWS library to initiate component functionality. The DPWS protocol stack is

required for device binding and operation on the network. A gSOAP and DPWS code

library has been developed by Schneider Electric to support light-weight XML Web

Services that are suitable for real-time embedded devices.

The Schneider DPWS toolkit contains: (i) a WSDL parser (wsdI2h.exe) to convert

WSDL specifications into a gSOAP header file, (ii) a stub and skeleton generator and

(iii) a gSOAP runtime library file (stdsoap2.c and stdsoap2.h), to be linked with the

Web Services applications. In this research, the applications for embedded devices are

programmed in C and the additional DLL files are used to add extra integration

functionality for the C application. Visual studio .NET with a C/C++ compiler is used

as the preliminary testing platform to support the Web Services- client and server

applications. For example, the Web Services stub and skeleton source files of the

components and the DPWS runtime library are imported into the Visual Studio.NET

development project in order to implement the client and server application of the

component.

Regarding the server development for a component (i.e. a simple light bulb operation

in the case illustrated in Figure 7-6), the initialisation of the device (i.e, the light),

provided service (i.e. power on/oft), and service namespace and location is shown in
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Figure 7-6. These component descriptions are used to support interaction (i.e.

device/service lookup, subscription and invocation) with the client application.
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Figure 7-6: Visual Studio .NET Web Services Application Platform

(see the attached CD in ..\WS Automation\Chapter 7\dpws_project\dpwscore\samples\Home\server.c)

The component service (i.e. operation) of the control device is defined in the server

application through the DPWS interface (i.e. call function), as shown in Figure 7-7.

i::J i1 11 /Il~: ::~~~~:.~~~~:~:~: :~
19lnt _Jit_S.ltch(5truct dp'!' dP'5, enum lit_Po.erStote lit_Po.er)

(

struct .1mple_l1ght ' light· (struct simple_light "l dp,,_get_devlce_uoer_doto(dp.s);
lnt need_event ·(lit_Po.er !. llght->5totuo) ;
int 1;

Ilght->5tatU5 • lit_Power;
X • lit_Power;

II1It_Po.er: enum OH(O) : CH (1)11

I'-----!.ddltlonol dll call tUllctlon to wcltlng the value to a senol port'l
tnD11Seriai (X);
1,---------------------00 DLL---------------------------------------- --- 'I
return SOAP_OK;

q x

Figure 7-7: The Component Service

(see the attached CD in ..\WS Automation\Chapter 7\dpws roject\dpwscore\samples\Home\server.c)

As illustrated, the DPWS function _lit_Switch(argurnents) provides the interface to

the device operation for turning the light on and off, by passing the enurn argument of

lit_PowerState (On:Off), In this case, the DPWS acts as the interface to the

operationjnDliSerial(X), where X is the on/off switch command passed on the serial

port to simulate the output on and off operation,
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Figure 7-8: DPWS Client Initialisation

(see the attached CD in ..\WS Automation\Chapter 7\dpws_project\dpwscore\samples\Home\client.c)

On the client side application, the specific device and service lookup is initiated

(servEndPts = dpws_get_service(namespace argumentsn, in order to discover the

location and descriptions (i.e. Device Meta-data) through matching on the namespace

from dpws_LookUp(), as shown in Figure 7-8.

aervlndPt •• dpv8_get._"ervice ('dpvs, dev[ndPts [OJ , LIGHTING_NS, SWITCH_POVtR._ TYPE, 'nb~e[v!nc1Pt) I
/1 r nvckec tcr,
avltct\(co __ nd)
(

enum llt._PoverSt4t.e ac.ate;

case 00:
etatU!I • dpv8_"end_lit_,vitch('dpva,8e[vEndPt.8(Ol, llt_PawerState_ON) I

break;
caee 0":

atatus • dp"._seno_l1t_'vltcb(CCSp"., .ervtnctPt.C01, llt_Potllr:ltate_Or" I
break:

CQ·,:,e ST1TUS:
status. apvs_calt_ltt_OetStatU.3(,ap,,,, ,ervlndPt.(Ol, NULL,NULL,ntate"
pc int! ("OKKH eeee tt. \0", atat.e) ;
breakl

1/ cl~"nllp

dpvs_end(Capwa) ;

Figure 7-9: DPWS Client for Services Invocation

(see the attached CD in ..\WS Automation\Chapter 7\dpw _project\dpwscore\ amples\J-1ome\client.c)

As shown in Figure 7-9, the client application deploys the Web Services command

sending SOAP messages to execute the server application by mean of

dpws_send_lit_Switch(service endpoint reference and command arguments). A

response is then expected back from the device to report the current new state. The

dpws call command is transformed from this C structure to SOAP messages through
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gSOAP and the DPWS runtime library and it is sent over HTTP to the specific

endpoint reference of the server application.

In the next section, an illustration of the Web Services-client and server applications

of the light switch component is presented.

7.4.2 Web Sen' ices Applications

The implementation of the Web Services application, detailed above, has been

prototyped on three PC's to demonstrate communication and interaction scenarios for

110 device control. In the test scenario, PCI is running the server with the DLL

interface, jnDlISerial(X), in order to write the data ON and OFF to the connected

serial port. PC's 2 and 3 run the client applications, which tum the light ON and OFF

and gets the status of the light component from PC 1.

The implemented DLL (Dynamic-Link Library) project and source codes for a serial

port communication can be found in CD-ROM:

..\WS Automation\Chapter 7\DLLTest

Hosted services:

Service ID: http://www.schneider-electric.comIDPWS/2006/03rrrainingiLight

Address: http://192.168.0.1 :9876/cbc73bdd-46e3-11 dd-86a4-02004c4f4fSO

Initializing DPWS light devices ...

Device started

10: urn:uuid: 00012694-0000-1 000-8000-02004c4f4f50

Address: http://192.168.0.1 :9876/00012694-0000-1 000-8000-02004c4f4fSO

Figure 7-10: DPWS Components and Services Initialisation

During the component initialisation process, the device and service on the server

application are initialised with a Universally Unique IDentifier (UUID) on the

specific IP address, as shown in Figure 7-10. These UUID's are used as the endpoint

reference locations for any clients wanting to find the device running on the server

during the device and service look up for device binding and service invocation. In

http://www.schneider-electric.comIDPWS/2006/03rrrainingiLight
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the test, as shown in Figure 7-11, the server provides two clients (i.e. PC2 and PC3)

with the service required to control the light switch. The clients can invoke the

operations Llit _Switch (Power _On or Power_Off). and _lit _GetStatusO) on the

server side, via the DPWS SOAP message command, and the server then responds to

the commands.

Notifiy:
~ Power_ON

Local Area Networl< (SOAP Message.)-_
DLL

r IP address

(Action:
l dpwI_send_III_Swltch(Power_ON) ,

IP address
r L,
Action: j
dpws_s.nd_lit_Switch(Power_OFF)

Server
Clienl1 Client 2

PC 2 PC 3

PC 1

Figure 7-11: Web Services Test Scenario

In addition to the remote service invocation and communication, the execution of the

control application on the server (PC 1) has been implemented DDL, in order to

support control of the output devices. To demonstrate this, the DLL file was built with

Visual Studio C++, to enable the call function to write the control action message

through the RS232 serial port. The invocation of the DLL file on the server

corresponds to the received command from the client, in which its function's

attributes specify the light operation state as "ON" or "OFF".

The clients and the servers (operating on the PC's) were designed to interact in a

similar fashion to an automation system, where controllers exchange state information

and react according to state changes of interlocked devices. The behaviour of the

component on the control device is based on interlocked state transition behaviour ,
(as presented in Chapter 6- section 6.3.2). Note: propagation of device state changes

is enabled by peer communication using the Publish and Subscribe approach in this

research (Chapter 8- section 8.5.2).
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Adoption of Peer-to-Peer Automation Systems

In the design of an intelligent distributed automation system, the controller

device is required to act autonomously, according to changes of the interlocked

device in the event-driven based system. This behaviour has enabled the support

of Peer-to-Peer communication amongst intelligent devices within the control

system. Within the framework of a Peer-to-Peer control system (see Chapter 6-

section 6.9.2-2), both the server and the client components reside on a control

device. In this research, the external relationship between client and server is

defined such that the server acts as the event-source that publishes the state of

the device to the specified subscribers (any clients except the internal client).

Clients act as event-sinks that receive the published states from servers (i.e. any

servers except the client's own internal server). The internal relationship

between client and server is defined as the client gathering the present internal

and external 110 state information used by the state transition application

running on the client and interfacing to the local server which is driving the

output device. The client and server interaction architecture is illustrated in

Figure 7-12 below:

Local Area Network

IP address IP addressIP address

Figure 7-12: Client and Server Devices Interaction

The author has implemented a prototype of the DPWS client/server model as outlined

above. The sample source codes can be found in the attached CD:

..\WS Automation\Chapter 7\P2P\Dpws_ ClientServerModel.c.
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7.5 Conclusion

With regards to the design of the FORD-FESTO test rig, the CB design of the

automation system has been composed with the reusable software components, which

are mapped to the distributed physical devices (i.e. system components) of the test rig

to perform manufacturing tasks. The synchronisation between devices is performed by

the interlocks between components of subsystems, defined via state diagrams. The

state variable exchange for device interlocking and synchronisation is done via the

Ethernet I/O interface module and the operator control and monitoring systems of the

test rig system are implemented through the HMI console connected to the PLC

control system via TCP/IP.

The modification of machine control applications has been achieved by reconstructing

the synchronization (i.e. interlocks) between component function blocks. To enable

the re-configurability of software components within the control system, component

function blocks have been built and stored in editable forms, to be modified and re-

used later for other component designs. Component alteration may be required, to

change the variable names of specific 110ports for the new components.

In addition to the component-based design, the utilisation of Web Services offers the

means to evolve manufacturing automation towards an open standard, which is the

technologically-neutral automation integration platform that provides interoperability

between various device vendors via XML messages. With the Web Services

approach, device description is embedded into the component and exposed to the

higher management level with a homogeneous Web Services interface for seamless

integration.

Regarding the design of Web Services within this research, a clear disctinction of

functionality between the server and client applications for the control system has

been drawn. During runtime, the initialisation of the server application and broadcast

of discovery messages from the client application are used to establish the devices'

relationships for the control application and operation. This Web Services

initialisation of the client and the server are generated by the DPWS code of the
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component that is used to define component services and their location, using

initialized namespace and port types.

In addition to the process control and monitoring capability, Web Services may be

configured to collate and broadcast diagnostic and process information to assist

enterprise personnel. These may include maintenance engineers (who could use the

information to monitor, analyze, and document the information to schedule

maintenance work or examine machine failure modes for proactive and reactive

maintenance), or managers (who may examine machine throughput I uptime in order

to predict production volumes). The information may also help the machine builder in

providing remote expert assistance.

The next phase of the research is to implement Web Services on embedded

microprocessor devices within the component-based design approach on the FORD-

FESTO test rig to investigate the feasibility of Web Services control of real-time

embedded devices in terms of the performance and reliability of message passing

between control devices in under soft real-time constraints. The modularity of the

system also needs to be assessed as well as the degree ofre-configurability enabled by

the WS control architecture.
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Web Services Automation Rig Design and Implementation

The design framework of the CB approach and Web Services for control systems, which

were presented in Chapters 6 and 7, has been used to outline the design methodology for

embedded Web Services. In this Chapter, the implementation of embedded Web Services

on microprocessor devices will be presented. As in Chapter 7, the work has been

implemented and evaluated on FORD-FESTa test rig in order to demonstrate the

feasibility of the approach in a real industrial setting. The description of implemented

designs will include details of the controller hardware, software specification, design

tools, system operation and business system integration.

8.1 Problem Statement
The concept of Web Services for control functionality has been proposed in the

previous chapter. In a real industrial application, the implementation of Web Services

on the automation device (i.e. embedded microcontroller) needs to address the

hardware and software architectures of the real-time control system. Also, a feasible

design and implementation platform must be clearly outlined, along with the use case

scenarios in: (i) control system build arid (ii) manufacturing and business integration.

The following questions are to be addressed in this Chapter:

1. What is the embedded microprocessor operating system functionality needed

to meet the real-time performance requirements?

2. What is the WSDL description for the design of the component?

3. How is device state behaviour implemented on a WS control platform?

4. What are the WS implemented scenarios that demonstrate the performance of

the complete manufacturing system covering machine execution, operational

functionality and business integration?
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8.2 Test Rig Design Specification

8.2.1 Overview

The distributed control system on the FORD-FESTO test ng 1S designed as a

distribution of controller nodes which are instantiated as the software components

that interact to perform the manufacturing tasks. As illustrated in Figure 8-1, there are

four controller nodes responsible for the control tasks of each subsystem within the

test-rig. These prototype embedded microprocessor controller devices (i.e. referred to

as Field Terminal Block (FTB) modules) have been designed and provided for this

research by the Schneider Electric Company.

Each FTB has been designed to contain multiple components, classified by the

decomposition of the test rig, as defined in Chapter 7- section 7.3 .2. The test rig I/O

channels are connected to the FTB I/O connectors through the industrial standard I/O

module and each I/O module is only connected to local sensors and actuators of its

subsystem / station. There is no I/O cross connection between stations.

24 VDC

IP: 150.1.0.101 IP: 150.1.0.102 IP: 150.10.103 IP: 150.1.0.104
MAC: 0040AFOOO031 MAC: 0040AFOOOO32 MAC: 0040AFOOO033 MAC: 0040AFOOOO34

It-
\
\,,

\
\ wsCom
\ IP : 150.1.0.200
-, IProo.... ngln•• rtnoIOOIJ ;I~
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Figure 8-1: Web Services- based Automation System and Integration Platform
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For the control system network, each FTB is assigned with a unique static IF address

and MAC address, used solely for Web Services device communication through the

Ethernet-LAN network. Regarding system operation, the FTB devices when operating

as servers provide the DPWS control functionalities that are interfaced to the local

input and output of the FTB device. The execution of the DPWS on the four FTB's is

initiated by the Service Orchestration Engine (SOE), according to the defined state

transitions of components on the Web Services client applications. It is the application

integration model proposed in this research, which aims to enable seamless

application integration by embracing the WS interface and communication. As shown

in Figure 8-1, the DPWS interface implemented on FIB devices allows the process

HMI and the process engineering tool to interact directly with the control system via

standard WS interface. However, this research of WS automation system is an early

work. The full implementation of common SOA middleware for seamless WS

integration is on going work with the project collaborators. Therefore, for non-DPWS

enabled applications, integration can be achieved through an application interface via

TCPIIP connection. In this case, for example, the SAP application (see Figure 8-1) is

able to communicate with the control system via the application interface

implemented on the SOE.

8.2.2 Control Hardware Specification

FTB devices are embedded microprocessors (i.e. ARM 966E-based device CPU:

STR91 XF), with 512Kb flash memory and standard Ethernet communication. The

device is a standard piece of industrial equipment, with a ± 24 VDC power supply,

I/O lines and Ethernet link. Application programmes are debugged and downloaded to

the device flash memory through a jTAG probe connector (BDI 2000).
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Figure 8-2: Field Terminal Block (FTB) Hardware Module

As shown in Figure 8-2, the FTB hardware specifications state the following:

• Each device has 8 "connectors", configured as either input or

output. There are two I/O pins on each connector that form a

combination of 16 I/O lines (8-inputs and 8-outputs).

• There are 2 board power supply connectors: one for input and one

for output. It is the same above, in terms ofIJO line- power supply.

• There are 2 Ethernet connectors: daisy chain or star topology

• LED's indicate the activity each input and output channel

8.2.3 OS and Software Architecture
To support the development of real-time applications and T P/IP communications on

the control device, a portable RTOS (i.e. embOS) and Tep/I? stack (i.e. Nexgen) are

implemented on top of the standard functionality (i.e. VO operation), as provided by

the embedded hardware. Also, the incorporation of DPWS on the FTB device

provides an abstract software layer, in order to support interfaces to DPWS

applications, on the control hardware.
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DPWS Application

Figure 8-3: OS and Software Architecture on the FTB

As illustrated in Figure 8-3, at its lowest level, the FTB hardware layer deals with

low-level device configurations and operations, such as interrupt vectors, clocks,

timers, General Purpose Input-Output (GPIO) (i.e. reading and writing to l/O pins),

UART and serial port access. In the embedded system, the operation task is created

and managed by the RTOS layer, which is required to support real-time operations

such as task scheduling and task prioritisation.

The IP stack layer is implemented to support the TCP/IP communication a required

by the DPWS application. The IP and MAC address can be specifically et n the

FTB when the device is configured. The abstract layer is a common interface that

bridges the DPWS application task to the RT S and the IP tack layer. At the t p of

the protocol stack is the DPWS application layer where the deployment of the Web

Services occurs. From the design perspective, the DPW is created as a ta k with a

defined task priority which can be managed by the R OS.

All of these software layers have been implemented and d bugged u ing the

CodeWarrior development software in the ARM Realview Development uite. The

abstract, IP Stack and RTOS software layers are developed as a sub-project and then

ported into the main DPWS project (i.e. the DPWS application layer) f reach

component. In the developm nt of the control software (with the excepti n of the

DPWS application layer, which i specifically designed and implemented for each

component), the remaining layers remain the same for every developed component.

The design process for a DPWS component for embedded control devices is described

in the following section.
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8.3 DPWS Component Design with WSDL Description

The development of the DPWS for a component starts with defining the component

names, element names, element state variables and operations within the WSDL file.

This file is later used to generate the stubs and skeletons for developing the server and

client applications (physically located on the FTB's and PC respectively as presented

in Chapter 6B). It is to be noted that in the implementation of the FORD-FESTO test

rig, each component has its own WSDL script for the DPWS application. In the

control application development, each subsystem (i.e, station) has a corresponding

FTB as a container for the components. Hence, each FTB is responsible for the

operation of multiple components within the subsystem.

Each component contains the operations and device state variables of contained

elements. In the WSDL description, the WSDL file of one component defines all

element operations (i.e. execution command, element state publication), state variable

names, a device service name and location. The WSDL syntax provides a

grammatical structure and building block for XML documents adopting the following

structure:

<definition>

<type> <ltype>

<message><lmessage>

<portType><lportType>

<binding><lbinding>

<service><lservice>

<ldefinition>

The sample of the WSDL file can be view from the CD in the following directory:

..\WS Automation\Chapter 8\ sdHandlingArrn.wsdl

A description ofWSDL elements for the component (Handling Arm) is given below:
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1.0 Defining XML Version and Encoding style with Component Target Namespace

for contained elements

<?xml version="I.O" encoding="UTF-B"?>
<definitions name="sdI-JandlingArm"
targetNamespace=''http://www .soda-itea2.orgfDemonstratorlllandl ingArm"
xmlns:tns=''http://www.soda-itea2.orglOemonstratorlHandlingArm''
xm Ins :SOAP-ENV=''http://www .w3 .org/2003/0S/soap-envelope"
xm Ins :SOAP- ENC=''http://www.w3.orgl2003/0S/soap-encoding"
xm Ins :xsi=''http://www .w3 .orgl200 lIXMLSchema-instance"
xm Ins:xsd=''http://www .w3 .orgl200 llXMLSchema"
xmlns :wsa=''http://www.soda-itea2.orglDemonstrator/wsa.xsd''
xmlns:wdp=''http://www.soda-itea2.orgIDemonstrator/wdp.xsd''
xmlns:wse=''http://www.soda-itea2.orglDemonstrator/wse.xsd''
xmlns:hla=''http://www.soda-itea2.orglOemonstratorlliandlingArm"
xm Ins :SOAP=''http://schemas.xm Isoap.orglwsdl/soap 121"
xmlns:WSDL=''http://schemas.xmlsoap.orglwsdl/"
xmlns=''http://schemas.xmlsoap.orglwsdll''>

Note: An illustration of the generation of the unique target namespace where

XML elements and attributes refer to their definitions and declarations. This is

seen as a reference name (i.e. not an actual specific file location) added to each

element to distinguish the name from those similar elements on other components

[gll].

1.1 DPWS Elements, Sensor State Names and Invocation Commands in <Types>

<element narne=" Arm" type=-"hla:handlingArmStatus"/>
<element name="llandlingAction" type"""hJa:handlingArmAction"!>
<ltypes>

<types>
<import namespace=''http://www.w3.orgl2003/0Slsoap-encoding''/>
<simpleType name=rhandling Arm'Status''>
<restriction base=t'xsd.strlng">
<enumeration value=" ARM-ERROR"/>
<enumeration valuC"'''Downstream-Position"/>
<enumeration value"'''Move-Sort''/>
<enumeration value=t'Sort-Position'v>
<enumeration value-"Move-Upstream"/>
<enumeration value=t'Upstrearn-Positlon'">
<enumeration value-"Move-Downstrcam"/>
<lrestriction>
<lsimpleType>
<simpleType name="handlingArmAction">
<restriction base=txsd.string">
<enumeration value·"Move-Downstream"/>
<enumeration value='Move-Upsueam'v>
<enumeration value=t'Move-Sort'v>
<enumeration value=tStatus'">
<lrestriction>
<lsimpJeType>

Note: Variable (Arm) states and action (HandlingAction) names of the element

are defined with enumeration values by referring to hla:handlingArmStatus type

and hla:handlingArmAction type accordingly (see 1.2 below).

http://xmlns:tns=''http://www.soda-itea2.orglOemonstratorlHandlingArm''
http://:wsa=''http://www.soda-itea2.orglDemonstrator/wsa.xsd''
http://xmlns:wdp=''http://www.soda-itea2.orgIDemonstrator/wdp.xsd''
http://xmlns:wse=''http://www.soda-itea2.orglDemonstrator/wse.xsd''
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1.2 Request and Response message of each element, including sensors and actuators

in <message name>

<message name="handlingCmdRequest">
<part name="HandlingAction" element="hla:HandlingAction"!>
<lmessage>

<message name="handlingCmdResponse">
<part name="Arm" element="hla:Arm"/>
<lmessage>

Note: This message definition defines the SOAP xml message for input

(handlingCmdRequest) and output (handlingCmdResponse) messages of DPWS

call functions defined in the <portType> tags.

1.3 Defining the DPWS Web Services operation commands (e.g. service invocations,

state notifications) of each element in the component by <portType>

<portType name="handlingArm">
<operation name="handlingCmd">
<documentation>Service definition of function hla_handlingCmd</documcntation>
<input message="tns:handlingCmdRequest"!>
<output message"'''tns:handlingCmdResponse''!>
<loperation>
</portType>

Note: The portType tag is used to define the DPWS call function

(hla_handlingCmd) definition with the input and output message attributes. This

function is used in the client and server applications (see Section 8.5).

182

1.4 Defining the binding name of each previously defined <operation> to the

corresponding target namespace of the component in <binding name>

<binding name="sdllandlingArm" type=t'tns.handlingarm">
<SOAP:binding style="rpc" transport=''http://schemas.xmlsoap.orglsoaplhttp''!>
<operation namc="handlingCmd">
<SOAP:operationl>
<input>
<SOAP:body use="literal" namespace=vhttp./zwww.soda itea2.orglDemonstratorlllandlingArm"l>
<lin put>
<output>
<SOAP: bodyuse=" literal "namespace=vhttp.z/www.soda itca2.orglDcmonstratorlll andl ingArm "I>
<loutput>
<lopcration>

<lbinding>

http://namespace=vhttp./zwww.soda


CHAPTER 8: Design Tools 183

Note: The WSDL binding element provides the unique name for a particular

DPWS function for each operation hosted on the specific location in the control

system. Thus, the functions can be differentiated and unique on the same control

system or control device.

1.5 The service name of the component binding to the specific local host port
described in <service>

<service name="sdHandlingAnn">
<documentation>gSOAP 2.6.2 generated service definition<ldocumentation>
<port name="sdHandlingAnn" binding="tns:sdllandlingAnn">
<SOAP:address location=''http://1ocalhost: 80"I>
</port>
</service>

Note: This service element is a collection of ports defined in the <binding> tag

that exposes a particular binding name and address (port reference).

The descriptive details ofWSDL can be found in [57]. The building of the client and

server applications for the control system, using generated DPWS and gSOAP stub

and skeleton files is described in the next section.

8.4 Design Tools

8.4.1 SERVER-Multiple Services on the FrB

The Development Platform of the ARM Real View Development Suite (ARM-

RVDS), which has been used to build and deploy the DPWS-enabled components on

the FTB's, is illustrated in Figure 8-4.

The skeleton files, generated from the WSDL description by the DPWS-gSOAP

compiler toolkit for the DPWS server application, are imported into a project created

on the ARM- RVDS, together with the RTDS and TeP/IP stack (sub-projects for the

server application of each station). In addition, the DPWS project for the components

is uploaded to the FTB control devices for debugging and deployment of the

components' control applications through the jTAG probe provided for each FTB.
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As mentioned earlier, each station contains one or more components, and each

component is comprised of one or more elements (see Chapter 7- section 7.3.2). The

elements (i.e. actuators and sensors) of each component are encapsulated with Web

Services operations (i.e. commanding output actuators and reading input sensors)

performing corresponding device 110 tasks. The low-level device programming is

encapsulated and exposed to the clients as Web Services operations (i.e. DPWS

services call functions) as the interface on the server (see section 8.5.1- Figure 8.5).

The process of implementing the DPWS server components is outlined in the

following:

1. Define the DPWS component(s) scope and elements namespace (NS) for a

service location.

2. Create DPWS Tasks with assigned priority.

3. Initialise DPWS, and create multiple devices and services of a component for

the DPWS register.

4. Run the DPWS Server application.

5. Utilise DPWS service methods and interfaces for the component lias

operations.

The initialisation code of the control tasks, the DPWS applications and 110 interfaces

as implemented on the FORD-FESTO test rig servers can be found in Appendix D.

From the above discussions it can be appreciated that implementing embedded WS on

devices requires a significant amount of extra functionality to be associated with each

device on top of the basic state machine operation of individual devices. From the

memory perspective the compiled size of the RTOS and DPWS runtime library (i.e.

the software layers to support the control application presented in section 8.2.3) on the

FTB device have been derived as follows:
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FIB resou rees
The RTOS, TCP/IP stack, abstract layer and DPWS layer are located in the

FTB on board flash (ROM) memory (capacity: 512 Kbytes), using the

following memory resource:

LibC 22.7 Kb

EmbOS (RTOS) 19.4 Kb

Nexgen (TCP/IP) 85.2 Kb

Abstract Layer 4.8 Kb

DPWS Layer 239.2 Kb

371.3 Kb

(Resource: Schneider Electric)

However, a server (i.e, control) application for a single DPWS component, which

contains 1 actuator and 2-3 sensors, has a calculated memory footprint of 39.5 Kb.

Note: if there are three DPWS control components (i.e. server applications) on the

FTB controller, the memory consumed = 371.3+ (3x39.5) = 489.8 Kb in total, with

only 22.2 Kb remaining. In conclusion each FTB could hold up to 3 components with

the current flash memory capability.

8.S Industrial Demonstration
The FORD-FESTO test rig demonstration developed by the author has been

undertaken as part of the SOCRADES EU research project at the MSI,

Loughborough. This is the first industrial demonstration of the realisation of Web

Services in automation systems. The WS based control system as detailed above has

been integrated with business applications (e.g. SAPxMII - Manufacturing Integration

and Intelligence) and a broadcaster application (e.g. state propagation software that

provides integration with a distributed HMI console) for process monitoring and data

acquisition (see Chapter 9- section 9.5 for details).

It is important to note that the majority of author's research has contributed to the

development, evaluation and analysis of the WS embedded control system on the

FORD-FESTO test rig, including the collaborative work in interfacing the Web

Services enabled devices with external business I monitoring applications. The
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implementation details of the business and monitoring Web Services implementations

are outside of the scope of the author's research and will be published elsewhere.

The following sections provide the implementation details of the complete WS

implementation for the FORD-FESTO test rig, in order to demonstrate the full

working capability of the system.

8.5.1 Web Services- based Control System Integration

In order to achieve the requirements of agile automation systems as outlined in

Chapter 2, the aim of the Web Services system design is to develop the corresponding

tools and methods, in order to support the development of reconfigurable automation

systems and interoperable network-enabled manufacturing collaboration between

business, control and shop-floor systems.

As presented in Chapter 3, the adoption of Web Services at the device level benefits

the manufacturing system in terms of ease of system integration by allowing business

and process applications to be directly integrated to the distributed WS functionalities

defined at the device (i.e. component) level. The main reasons for adopting Web

Services at the device level in this research is not only the seamless integration

capability but also the perceived ease of design, analysis, deployment and re-

configurability of integrated automation systems.

In the design of reconfigurable WS-based automation systems, the design of software

components and the requirements of end-users to influence component

reconfiguration must be taken into consideration. As demonstrated by S.M. Lee in his

component-based (CB) design approach [33], 110 device code must be pre-

programmed and encapsulated within call functions whose interfaces are presented to

control builders as the means to instantiate device operations. System builders only

need concern themselves with commissioning the higher-level automation process by

defining device interlocks and sequences (i.e. device state logic conditions).
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Figure 8-5: Control Code for the DPWS nabled omponent
(For the programming details, please see the attached D in
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In the context of the CB approach, the WS functionality (i.e. the DPWS call function)

of device operations must be separated from low-level lIO device programming. In

addition, device TCPIIP stacks and operating system (RTDS) functionality on the

embedded controller devices must be hidden from the system integrators. The

reconfiguration of high-level automation processes (i.e. control applications) is

achieved by (re)-arrangement of device state logic conditions (i.e. employing a

Service Orchestration Engine- Section 8.5.2) for the new machine configuration.

Since the DPWS component configuration I functionality and the high-level

automation processes (i.e. state logic conditions) are separated from the low-level

device programming, changing the DPWS component configurations I functionalities

(e.g. component names, state names) and high-level automation processes will not

require the low-level 110programming to be reprogrammed. The research undertaken

to evaluate the impact of component reconfiguration(s) are presented in Chapter 9-

section 9.3.

In the implementation of test rig components, each element (i.e. sensors and

actuators) is enabled with WS functionalities (i.e. the ability to command actuators

and read sensors). These functionalities are interfaced to device input and output

channels through call functions (e.g., Ejector_ExtendO. Ejectorblotifyt) ) as shown in

Figure 8-5. Web Services encapsulate the low-level coding of operations, monitoring

and automated fault diagnosis utilities of the component and exposed the functionality

to high-level management software through a unifying interface supported by Web

Services interfaces (i.e. DPWS services).

The simplified DPWS code for the hopper component is illustrated in Figure 8.5, in

order to show the DPWS component fundamentals on the embedded controller

device. The elements of the hopper component (i.e. the ejector, the magazine sensor,

the magazine Xfer sensor) are grouped together to form the whole component. The

ejector has Web Services operations of extending and retracting as well as notifying

the element current state ("ExtendedIMoving RetractediRetractcdlMoving Extended")

and the two sensors provide the Web Services operation of identifying the workpiece

availability in the hopper unit ("Empty I Full"). The detailed representation of

component source code is given in Appendix D. In addition to the element state

notification, each element is also assigned an internal error state which presents a miss
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positioning situation diagnosed by defined sensor conditions in the 1'0 watchdog

routine (see section 8.5.3-2). This error state is used as a preliminary report presented

to higher control levels for diagnostics and maintenance through the Web Services

state notification.

In this research, the FORD-FESTO test rig has provided an opportunity to evaluate

the migration paths for the adoption of WS control systems for industrial automation.

The overall aim is to replace eventually the existing centralised PC and PLC-based

automation systems with systems composed of fully distributed embedded devices.

Whilst WS on the control devices have not been fully evaluated with regards to

reliability and performance, they fully support integration with other engineering

applications (e.g. HMI, business applications and control system design tools) used in

industry and it is considered a reasonable assumption that WS enabled devices will be

able to co-exist and operate alongside current PLC and PC control devices. Therefore,

the migration path for WS automation that has been initiated in this research with the

execution and decision making (based on state logic conditions) being initially

supported the PC and the PC acting as a service orchestration engine runnmg

distributed control applications provides a useful stepping stone towards fully

distributed heterogeneous WS based automation. In the current automation model the

PC based service orchestration engine acts as a client to a service on the FTB control

device for device operation. The details of the test rig operation and client-server

event interaction are presented in the following section.

8.5.2 Service Orchestration Engine

A typical feature of manufacturing systems is that several processes are composed and

executed in given sequences in order to create complex higher-level processes. This

pattern is repeated at several levels via the composition of field devices to create

machines, the composition of machines to create work celts and lines, and the

composition of work cells and lines to create manufacturing systems and factories

[14].

The composition of component sequences and synchronisations at the device (i.e.

component) level, referred to as "Service Orchestration ", determines the operation of

the complete machine application and must accurately reflect the process workflow.
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The Service Orchestration Engine is implemented within the application logic (i.e. the

machine finite state machine), and orchestrates the services on the components.

In the discrete event-based automation environment, the system is conceived as a

composition of interacting components, defined by means of state transition

conditions and interlocked variables among dependent devices. The role of the

process engineer is to manage the task of implementing the control logic code that

forms the real manufacturing operation i.e. the complete machine application. The

activity involves the translation of the process machining sequences (see Chapter 9-

section 9.3), to interlocks on corresponding embedded hardware devices.

The control communication architecture in this research is based on the Publish and

Subscribe approach to provide an event-driven architecture. This architecture is seen

as the best suited to automation systems with good performance and utilisation of the

network, especially on limited resource embedded devices (see section 8.4.1).
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As illustrated in Figure 8-6a, the service orchestration engine of Station 1 is

performed by client CI, designed to control two components (Sl-hopper, S2-transJer

arm). In order to achieve this communication, client CI subscribes, on start up, to the

required state information of components S1 and S2 on Station I and the interlocked

state of device S3 on Station 2. When any 110 states (i.e. sensors and actuators) on the

SI, S2, or S3 have changed, they are published for client CI to take appropriate

action, based on the state transition behaviour of the controlled element (i.e., the

ejector or transfer arm).

To improve system robustness and provide efficient event synchronisation, an

acknowledgment (ACK) of every transmitted message (tracked by the NumOrdcr

variable as shown in Appendix D 6.2) within a specific time frame (i.e. 50 ms) has

been implemented, in order to guarantee: (i) the event message and (ii) that the DPWS

function call has been received. If the acknowledgment message is not received, an

alarm will be raised and handled. In this case, the automatic halt utility and fail-safe

routine, implemented on the server and the client applications, will be activated to

suspend specific components and client execution control applications from further
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operations that may cause damage to the control system. Cause-Effect Investigations

and maintenance can then be carried out. In addition to fault detection, l/O device

miss-operation and error handling system is required for the safety of the control

system operation. This error-handling scenario is discussed in section 8.5.3-2.

The instance of the client and the server synchronisation model for the machine

application during "Start Up" and "Operation" is illustrated by the use case in Figure

8-6b.

The component operations and the service orchestration implemented on the servers

and clients, proceed in the following way:

Step O-Server applications of components start up. The controller operating

system (i.e. RTaS), hardware configurations (i.e. l/O channels, timer, IP

and MAC address) and DPWS of components initialised (see section

8.5.1- Figure 8.5).

Step l-The client application (e.g. CI) starts up. All required components

presented by server applications (e.g. St, S2 and S3) are located for the

state information and services invocation. In this case, the probe

message has been broadcast over a network and only the matched

component replies to the client with its location. The client then

subscribes to the specific components for state information and also

invokes the DPWS service to be run during the control session.

Step 2-Input or output channels on components change their states. Server

applications publish state information to subscribers as states update.

The client acknowledges publishers with a return ACK message.

Step 3-State information of the interlocking device is sent for the update on the

client application. The client acknowledges publishers with a return

ACK message.

Step 4-The control logic application on the client interacts with the operation on

the server based on state information and transformation conditions of

components.
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Step 5-The component state transition conditions have been met. The client

invokes the control operation on the server by sending the DPWS

message (i.e. a SOAP message) to execute the DPWS call function

running on the control device server.

The SOAP message regarding to the test rig operation can be found in Appendix C. It

is observed that the sequence of control tasks depends upon the current state of work

pieces, devices and interlocks, which need to meet the state transition conditions of

the component so that the DPWS client invokes the operation on the component.

Steps 2-5 will be run repeatedly through out a complete machine cycle. In this

implementation, the client logs the state of all elements in the components during the

operation in the log file which can be used for system analysis and maintenance. In

addition to the service orchestration, the component state and operating information

are broadcast to the higher-level control for process monitoring and business

management. Details of this business application integration are presented in the

following section.

8.5.3 Business Application Integration

Currently, intelligent shop-floor systems usmg distributed embedded devices

concentrate the programming of behaviour and intelligence on a handful of large

monolithic computing resources accompanied by large numbers of distributed

devices. Intelligence and behaviour are tailored and individual1y programmed for each

application [47, 48] and, within this manufacturing environment, it has been reported

by [46] that integration of an individual control system is achieved via the various sets

of interfaces and drivers required to connect to automation devices individually. As a

consequence, there is limited co-operation between the business and shop-floor levels,

due to a proliferation of inconsistent interfaces that prevent the integration of the

complete range of distributed automation devices. This research aims to create

improved co-operation between shop floor and business, through the use of WS-

enabled automation systems. It is envisaged that WS will improve the transparency of

the connection between back-end systems (ERP systems) and shop floor production.

A detailed discussion and evaluation is presented in Chapter 9- section 9.6.
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The business integration demonstration has been undertaken in collaboration with

SAP GmBH. The business application integration has been demonstrated with the

SAP's SAPxMII (Manufacturing Integration and Intelligence) application for shop-

floor activity monitoring and fault diagnosis. This business application has been

designed to allow business systems to obtain a real-time view of industrial processes,

supporting business activity monitoring, maintenance optimisation and overall

equipment effectiveness. In the evaluation, the test rig provides the SAPxMII

application with control device data (i.e. real-time device states), all work piece status,

the number of processing units and the machine operational and idle times for data

manipulation and analysis.

8.5.3-1 SAP xMII and \VS test rig Integration Platform

The SAP xMII provides functionality which allows users to collate data from multiple

systems via a simple Web browser interface. The software does not need to be

managed at the client site (i.e. the broadcaster in this case) and there is no requirement

for complex data warehousing or data models [45].

The SAP xMII application does not currently support the complete of DPWS

protocol, such as the discovery and eventing features reported by [47] and [45].

Hence, the SAP application was configured to interact with the FORD-FESTO test rig

using the service orchestration engine. The data within SAPxMII are populated from

the state publication utility in the service orchestration engine via a Tep/IP

connection. Likewise, the SAP application is able to invoke services on the FORD-

FESTO test rig through the service invocator on the service orchestration engine. In

the evaluation trials, the state publication and service invocator had direct

communication with the test rig via a DPWS interface that enabled them to subscribe

to the required devices' states and to invoke the operations on these devices. It is

noted that the DPWS interface of the service invocator and the state publication is

achieved by using the stub (client) files, generated from the WSDL definitions for the

component (see Chapter 6- section 6.9.2).
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Business integration through single Web Services interfaces is ongoing with the

project collaborators. Note: this research has implemented the integration of the

service orchestration engine and the SAP xMII application (as provided by the WS

application interface defined in Figure 8-7) using integration middleware enabled by

WS rather direct integration to the test rig via DPWS interface.

Integration Mlddleware

SAP xMII

.» Slrvlcl Invocation

z» Subseribed m.as.g.

FESTO· TEST RIG

FTB4FTB 2

Figure 8-7: Business Integration Scenario with the SAP xMlI application

It can be observed in Figure 8.7 that the middleware operates on two levels: (i) at the

device level interfaced to DPWS-enabled devices and (ii) at the application level

interfaced to Web Services applications. The functionality of the DPW interface are

represented by the DPWS protocol, (see hapter 4- section 4.9.2), and the

functionality of the WS interface has been tailored for the SAP integration. The

interface to SAP xMII has been developed as a service point for remote applications

to invoke services on and receive notifications of the performance of the ORD-

FESTO test rig. However, the implementation of the SOA middleware propo ed for

seamless integration is presented in Chapter 9- section 9.6. The integration

architecture has been modelled on the SO RAD S middleware rchitecture [45].
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8.5.3-2 The SAP xMII Process Monitoring and Error Diagnostic Application

In the business-test rig integration evaluation, the capture of process activities and

operational performance data has been demonstrated with the SAP xMII application,

which provides graphical visualisations of device data, the current status of work

piece information and machine performance data in real-time, as hown in Figure 8-8.
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Figure 8-8: SAP- Production Line Monitoring tility using AP xMTI

The operational status of the test rig is provided by the t t variabl det rmin d

from the logical state of local sensors. Based on the eventing communic ti n m del,

these variables are transmitted to the SAP applicati n via the br ad a tcr as a tate

change basis. The SAP application can be configured to extract sh p fl or dat int

useful business contexts, so that the end-user may obtain an appr priate bu in

oriented global view of the process.

The business and manufacturing management levels can hen e rea t accordingly and

in a timely fashion to plant-floor information (e.g. machine up/down time, pro ucti n

capacity, and current work in process (WIP)). In addition t the pr ess-m nit ring

evaluation detailed above, the FORD-F STO test rig has been implemented with a
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fault diagnosis and error handling support system that has been integrated with the

SAP SAP xMII application. A test scenario has been demonstrated in which a faulty

sensor of the transfer arm unit on station 4, where manual intervention cause the

sensor to fail occasionally to detect and stop the arm moving into the correct position.

This error resulted in the arm being slightly out of alignment with the work piece slot.

The test scenario is shown in Figure 8-9.
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Figure 8-9: Handling Arm . ault Diagnostic cst ccnario

(For the programming details of error diagno tic, please ec the attach din

.. \W Automation', hapter 8\Dpws_ crvcrStati n4.

Where this fault was injected into the system, the errors were I ggcd I cally 11 the

test rig. When the number of these errors reached 10, the error summary was r ported

to the SAP application via the state publi ation utility, in order to bring attenti n to

the error and enable appropriate action to be determined by personnel monitoring the

SAP application. The SAP application can halt the faulty unit by passing the w, top

command through the service invocator.
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8.6 Conclusion
The details of how the full implementation of the WS automation platform was

achieved on the FORD-FESTO test rig, demonstrating the full potential of using Web

Services technology in industry have been presented in this Chapter. Descriptions of

the hardware and software design platforms for the embedded controller, in particular

the FTB (ARM 9) device, have been outlined. This design platform is also generically

applicable to any other embedded devices.

The test rig integration and operational capabilities were presented by outlining the

steps involved in developing WS enabled devices along with the design of the WSDL

description for the gSOAP and DPWS toolkit code generator. Multiple components

on the FTB controller device were built with the ARM-RVDS toolkit, which

facilitates the debugging and downloading of DPWS applications and the low-level

device codes to the target devices. The test rig operation and execution are handled by

the service orchestration engine running on the PC, which performs the control

operations corresponding to designed component state behaviours and interlocks.

Integration with the SAPx MIl business application has been achieved via the service

execution engine. The SAP application extracts and aggregates process information

and transforms it into a business context for process visualisation. An approach to

shop floor integration has been proposed with the DPWS Device and Service

Application Interface utilised in the developed SOA Middleware. Direct

communication to devices is achieved via the DPWS interface, and the WS

application interface has been provided for non-DPWS enabled applications to allow

them to connect to the WS based control systems.
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Evaluation and Discussion

The implementation details of the Web Services-based automation system for the

industrial-based FORD-FESTO test rig were outlined in the previous chapter. In this

chapter, an analysis of the Web Services- based automation system approach will be

undertaken. Analysis and discussion is centred on an in-depth discussion of the machine

performance, in relation to the TCPIIP communication mechanisms, packet structure and

sizes and Web Services message delivery time. The requirements of agile automation

systems by the end-user, as defined in Chapter 6- section 6.4.2. are initially assessed by

determining the degree of reusability, re-configurability, and business integration of the

automation system.

9.1 Problem Statement
The implementation of the WS control approach has been demonstrated on the

FORD-FESTO test rig. The drivers of research require that the WS approach is also

assessed in terms of performance and suitability (i.e. support for agility) for adoption

by industry. The main research questions addressed throughout this chapter are:

1. The quantitative measures of Tep/IP network determinism, bandwidth and

utilisation capture the performance and reliability of the implemented control

system.

2. Does the WS performance, in terms of Ethernet packet speed and 110 response

time, meet the soft-real time (under 30 ms) requirement for the automotive

powertrain domain?

3. What is the relative cost and performance metric of the WS control system in

comparison with PLe based and LonWorks based control systems?

4. In the key evaluation areas for agile manufacturing, what is the degree of

reusability, reconfigurability and business integration in the implemented WS-

based control system in comparison with PLC based and Lonwork control

system?
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9.2 DP'VS Performance Analysis

9.2.1 DPWS- SOAP Message Structure

In order to determine the impact of the DPWS-SOAP protocol on system performance

a protocol analyser was employed. The protocol packet analyser used in this test was

the CoCoaPacketAnalyzer. This tool offers the ability to capture messages on a LAN

network and transform the packet from binary into both Hex form and a readable

format (i.e, the SOAP Message). For the purposes of the test, the

CoCoaPacketAnalyzer utility was installed on the PC, running the service

orchestration engine for the control operation. The analyser captures every DPWS

message coming into and leaving the PC (Network card) during the rig operation .

IP Header: 20 bytes

.,
Payload: 1460 (Max) SOAP Message

e

•
TCP{20 bytes)/UDP (8 bytes)

Header

,450003 e4 ()6 35 40 00 8008 c3 ae:960'·OO·c·g·:
:96010065 :

.-"~-""""""""" --_ -_ " --- _ .._- _ .
:0040 af 000031:; 00 1c 4293 Sf e4;08 00 •Ethemet Header: 14 bytes

Ethernet Packet (TCP): 1514 byte.
(Maximum)

• Source Port Destination Port Sequence No Acknowledge No -I
L-:..{04_80..;.:_)H:_·_11_5_2...I..-(:_26_9_.:9):_H._9_8_81--L_{",-fc_5c_e_a_8_;_3)H_·_4_23_3_94_77_7_9--L._{;__00_3_8...:.._.402)~. 3712~

• Source IP Address Destination IP Addreas
{9601 00C9)H. 150.1.0.201 {9601 00 65)H. 150.1.0.101

Destination MAC Address Source MAC Addreas
00408f000031 001c42935fe4•
Figure 9-1: Ethernet TCPIUDP Packet Structure

The captured packet in the TCP/IP structure (Chapter 4- section 4.4) is illustrated in

Figure 9-1. This packet is divided into 4 layers and the content of each layer conforms

to the TCP/IP standard. Firstly, the data or payload (see Figure 9.1- (4)) i.e, the SOAP

message (i.e, the XML based content), made up of source, destination port, sequence

and acknowledgement number (see Chapter 9- section 9.2.2) is represented at the

TCPIUDP layer (see Figure 9.1- (3)). The source and destination IP addresses are

then added to the message (see in Figure 9.1- (2)). The destination of the packet and
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source are located precisely through the means of the destination and source MAe

address, added at the final layer (see Figure 9.1- (1)) before the packet is transmitted.

It should be noted that the payload size has a maximum limit 1460 bytes and if the

data load exceeds this limit, then it needs to be split into 2 or more packets, in order to

fit into the Ethernet datagram.

The content of a SOAP message packet is in XML format which is decoded by the

receiver to extract the information into an approporiate format (e.g. gSOAP see

Chapter 6- section 6.9.2). With regards to the rig operation, the DPWS messages

comprise: discovery probe (via UDP); probe match reply (via UDP); request

metadata (via TCP); return metadata (via TCP); device status (via TCl'); service

invocation command (via TCl') and service acknowledgment (via 'I'Cl'). The full

description of these messages can be found in Appendix C.

The XML prologue <?xml version="J.O" encoding="UTF.S" ?> contains only an

XML declaration, specifying the XML version and the character encoding of the

XML message [gI6], whilst the SOAP envelope tag <SOAP-ENV:Envelope •••> in

the request and reply message of the device (component) specifies that the SOAP

messages' encoding styles follow the schema and relevant WS methods [g9] as

defined in the WSDL description. The SOAP envelope contains the SOAP header and

the SOAP body. The SOAP Header contains application-specific information

regarding the SOAP message [53] and, in this DPWS application, the header contains

the following elements:

<wsa:To> the destination (using a namespace or specific URI (7) )<lwsa:To>

<wsa:RelatesTo> the source (a namespace or specific URI) <lwsa:RelatesTo>

<wsa:Action>the action namespace <lwsa:Action>

<wsa:MessageID>the sent message ID using UUID schcma</wsa:MessageID>

The SOAP body is the content of the Web Services message. This encapsulates a

single method tag i.e. the name of the method call or the device state information of

the reply message as samples shown below.

7. Uniform Resource Identifier (URI) is a string of characters used to identify or name a resource on the Internet
(http:,llen,wikipedia,org/wikilURI). In the SOAP message obtained from this Web services implementation, the
URI IS a combination of IP address: Port/UUID (Please refer to Appendix C for examples).
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<arm:armCmd> the required action (the service name)</arm:armCmd>

<arm:armCmdResponse> the return content<larm:armCmdResponse>

The method tag is typically prefixed by the component target namespace (for

example, arm:, bit:, hop:) for the service name that ensures uniqueness. These details

are described in [g16].

The sending and responding probe message contains slightly different attributes than

the SOAP body of SOAP method calls (i.e. service invocations, reading device

states). The attribute elements are as follows:

<wsa: EndpointReference>

the endpoint reference using UUID (8)

<lwsa: EndpointReference>

< wsa:Scope> the device name < Iwsa:Scope>

< wsa:Type> the element name < Iwsa:Type>

<wsa:Xaddress>the device address created from IPlPortlMAC< wsa:Xaddress>

This SOAP message structure, predefined with the WSDL description, is encoded and

decoded by the stub and skeleton files on the implemented DPWS application, in

order to extract the required information into the format processed by the control

application.

The next section outlines the TCP/IP synchronisation approach for sending and

receiving SOAP messages during machine operation. The network performance is

also detailed.

9.2.2 Ethernet TCP/IP network communication

The DPWS communication in the FORD-FESTO test rig, based on the

publish/subscribe model, is required to perform two DPWS functions: (1) Service

invocation and (2) Event notification. The packet synchronisation details for these

DPWS functions are presented in Tables 9·1 and 9·2 respectively.

8· Universally Unique Identifier (UUID) is used to uniquely identify information which will never be
unintentionally duplicated by others for anything else. The UUID is formed by 32 hexadecimal digits, displayed in
S groups separated by hyphens. In this implementation, the UUID is based on the MAC address generation scheme
(Please refer to htll':lIen.wikipedia.org!wikilUniversally Unigue Identifier and Appendix C for examples)
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..\WS Automation\Chapter 9\Table 9.2 raw data.pcap)



CHAPTER 9: DPWS Performance Analysis 206

9.2.2-1 TCPIIP Communication Approach

Details of Ethernet packet synchronisation, as captured by the protocol analyzer

during the test-rig operation of the service invocation method, are presented in Table

9-1. The service orchestration engine running on the PC (Host A) calls the provided

service on the FTB (Host B) to operate the actuator. The synchronisation of sending

and receiving packets between Host A and Host B to achieve this service invocation

over the Ethernet network is represented by: (i) establishing the connection between

hosts by means of the three-way handshake approach [9] (Packet 788th _790th) and (ii)

sending and receiving the packets (Packet 791st_ 796th) as the mechanism provided by

the TCP byte oriented sequencing protocols [82].

First step: The Three-way Handshake

The three-way handshake mechanism [g38] is designed so that two systems

attempting to initiate a connection for communication can negotiate one

connection at a time independently of each other. The TCP 3-way handshake

is associated with the sequence and acknowledgment number of the message,

and assures that the message is transmitted and received in the correct order.

As illustrated in Table 9-1,

• Host A negotiates the connection with Host B by sending the packet

(packet 788th) with a TCP header, which is set Syn Flag = 1, a unique

sequence number (Seq No) and acknowledgement No. (Ack No) = 0 to

initiate the connection.

• Host B replies (packet 789th
) with the synchronised sequence (newly

generated Seq No) and acknowledgement number received from Host

A (Ack No (received) +1).

• Finally, host A sends the third packet (packet 790th) to host B with the

synchronised sequence: Seq No (sent) = Ack No (received) and

acknowledgment number: Ack No (sent) = Seq No (received) + 1 in

order to establish the connection.
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Second step: The TCP byte-orientated Sequencing Protocols

When connected,

• Host A starts transmitting the message (packet 7915t
) with the

Sequence and Acknowledgement numbers, to ensure that message

synchronisation is in the correct order (a record of the above numbers

are kept in the host, prior to receiving the acknowledgement back from

the receiver). After acknowledgment, the packets are discarded, and

with the TCP scheme, the sequence number of the next sent message

will feature the sequence number of the previously sent message plus

payload: Seq No (sent) = Seq No (received) + data load and

acknowledgement number remain the same: Ack No (sent) = Ack No

(received), as demonstrated in packet 790th_792nd.

• Having sent the message (packet 792nd), the sender negotiates the

termination of the one-way connection from Host A to Host B by

sending the next packet (packet 793rd), with the Fin Flag in the TCP

header set to 1. Host B acknowledges receipt of the packet (packet

792od
) and the request of the termination (packet 793rd) in one message

that reaches Host A. Host A keeps a record of the last sent message,

thus it knows the value of the next expected Seq and Ack No, of which

Seq No (sent) = Ack No (received) and Ack No (sent) = Seq No

(received) + 1. Re-transmission is required if the acknowledgment is

not received in time or not in the right sequence, before the previous

message from Host A is discarded. From packet 793rd onwards, the

connection from Host A to Host B is already terminated, but that from

Host B to Host A is still connected.

• Host B sends packet 794th to Host A, followed by a request of the

connection termination by packet 79Sth (Fin Flag =1).

• Host A replies to Host B with acknowledgement (packet 796th) of the

receipt packets and terminates the connection between Host B and A,

in order to free the connection for other hosts.

Further reference to TCl' communication may be found in [g37] and [82].
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It should be noted that the packet synchronisation in the state change notification

(Table 9-2) was achieved in the same manner as above.

9.2.2-2 Ethernet Packet Delivery Time and Deterministic

Based on the implemented WS control system, the protocol analyzer has been

installed to capture the network performance present on the network during the test-

rig operation. Within this WS environment, SOAP messages for DPWS operations

(i.e, state information, service call functions, discovery probe and metadata return) are

transmitted. SOAP messages range in size from 750 to 1514 (max) bytes and the

delivery time of one packet varies from 0.05 to 1 millisecond. During TCl'

transmission, there are 9 packets sent and received for one DPWS operation. These

packets are responsible for establishing the Tep connection (3-way handshake),

sending the SOAP message (a Tep byte - oriented sequencing protocols) and

connection termination (full-duplex mode (9».

Table 9-3: Network Performance Analysis and Comparison

LonWork Fieldbus [33] FTB lOBasedT Ethernet

Packet size 12.8 750-1514

(Bytes)

I/O interval reaction speed (c) 56.7-200 22-55

(ms) {see section 9.2.3)

Network bandwidth 4.01 495

(Knits/sec)

Network utilisation 5.13 % 8%

(%)

(e)- The time delay between the occurrence of an input event (signal) and the corresponding of an output event.

This time is not included mechanical and electrical time loss caused by mechatronic devices' stiffness and friction.

A comparison of the Ethernet network performance enabled by the FTB controller

and the LonWorks distributed control system [33] is shown in Table 9-3. The values

of the FTB test rig are averaged from 10 runs of the full operation. In this research,

the network bandwidth determines the speed of the network or throughput for data

transfer (Kbits/second) over the connection, whilst network utilisation (%) indicates

the current network traffic load. An ideal performance is indicated by a higher

network bandwidth and a lower network utilisation (lower traffic). As seen from the

9- Two directions of dataflow; Two directions of the connection from Host A to Host B and vice versa
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table, the large SOAP packet from the FTB controller results in a higher network

traffic rates in comparison to the LonWork fieldbus system. Both network rates are

considered normal if they are not over 50% after which performance starts to degrade

(via packet loss and collision). In terms of speed, as defined by the 110 response time

(i.e. 110 transaction time), the FTB control system has a faster response, although

considering the larger packet size of the SOAP message this is due to a substantially

higher network speed.

9.2.3 DP\VS Processing Time and Component 1/0 Interval Reaction Time

Regarding the DPWS processing time (i.e. parsing-encoding/marshalling and

decoding/de-marshalling) on the FTB device and the service orchestration engine (on

the PC), the millisecond and microsecond resolution timer functions were utilised on

both the FTB and the PC application respectively, in order to measure accurately the

time consumed by the DPWS functions. Note: the average value of the packet time

for the DPWS operation is presented in Appendix E. The analysis data in this test was

derived from approximately 900 packets accumulated from 10 experiments. Note that

the protocol analyzer used in this evaluation provides time accuracy to microsecond

resolution (the sample fragment codes can be viewed from the CD in the following

directory. ,,\WS Automation\Chapter 9\Stopwatch.c).

The full analysis of the DPWS functions is shown in Figure 9-2 which presents the

analysis of the 110 interval reaction (i.e. response) time for: (i) DPWS event

notification, (ii) orchestration logic processing and (iii) DPWS service invocation.

The ARM 966 embedded control device with CPU speed 96 MHz is capable of

processing the DPWS application in approximately 7 milliseconds for decoding and 2

millisecond for encoding SOAP messages. However, by taking into account the

packet delivery time of all messsages, local I/O processing, and the DPWS processing

time, the estimated event notification and the service invocation time associated with

the DPWS approach on the FTB device are 6.04 milliseconds and 13.08 milliseconds,

respectively (see Appendix E). In addition to IJO response time analysis, the

orchestration logic processing time on the PC (i.e. client applications) has been

captured for decoding notification messages, state condition scanning and encoding

for service invocation messages. Overall these processes take 11.94 milliseconds to

complete.
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DPWS notification time analysis

,jL---- 6.043ms -------;f

Input
change state

1.224
Network

2.693

Server (FTB)
encoding

Packet (4!_____

Packet
(1)·(3).
(5)·(6) Packet

SeNer & Client Specifications

Client: PC
Pentium 4, (1.7 G Hz) 512 Kb
RAM

Server: FTB
ARM 9 (96 MHz) 96 Kb RAM

Orchestration engine processing time analysis
---- -------11.943 ms--- - - ----- -

L 2.1833.992 5.768

Client (PC)
decoding

State
logic

scanning

DPWS service invocation time analysis

Client (PC)
encoding

OutputNetwork
13.083ms

response Network

1.781

I/O interaction time = Event notification time + Orchestration engine application +Service invocation time

Packet (8)·(9)

Figure 9-2: The DPWS Service Invocation and Notification Time Analysis

It should be noted that the DPWS and 110 interaction time have been measured for the

full test-rig operation of 4 distributed controller nodes comprising 10 components and

21 elements, As observed from Figures 9-2, the DPWS-enabled device is capable of

delivering the 110 interaction time in around 31.06 milliseconds (Note: 6.04 ms: the

DPWS event notification + 13.08 ms: the DPWS service invocation + 11.94 ms: the

orchestration engine processing). As a result based on the calculated 110 intervention

time, using the DPWS approach is 31.06 milliseconds just over the typical target 110

response time (under 30 ms as required by the end users). However, the WS approach

has the potential to achieve the target time with further improvements (discussed in

Chapter 10).
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9.3 Ease of Machine Re-configurability Assessment
As a requirement of agile automation systems, it is vitally important to be able to

reconfigure production machinery easily, with minimum time and cost penalties

during the machine lifecyc1e [86]. From the perspective of reconfigurable machine

engineering, the design of the machine modules (i.e, mechanical and control

components) must facilitate system reconfiguration in order to support new products.

AUrbani and S.P. Negri [102] have proposed a method to define a qualitative value

of modular machine re-configurability. The value takes into account ease of

modification, which is expressed by a number of required activities involved in

making changes and / or substituting modules (components) of the present control

system to implement new specifications. This proposed methodology has been used to

design and evaluate appropriate reconfigurable machinery to reduce investment costs

in the manufacturing lifecycles [102]. The methodology has been utilised to evaluate

the ease of machine re-configurability through all the activities required (i.e,

mechanical and software changes) as well as the effort to make the new machine

configurations.

The procedure and associated people involved in each step of machine

reconfiguration of production lines at FORD is summarised Figure 9-3. The process

of machine reconfiguration for a new product (Job 2) is presented by the engineering

tasks and associated engineering roles. During the reconfiguration phase, the system

engineer is involved in deriving the new system characteristics and identifying new

components, if required, for new control functionalities. Machine structures are then

changed to the new configuration by the process engineer. The control engineer also

builds required components from existing components and the control software is

verified prior to subsystem integration when the machine sequence, control

application and operator consoles are integrated. The verified subsystems are

assembled with other subsystems to form the complete machine application, and

complete system validation is carried out by the system engineer, to ensure that new

machine configuration is functioning correctly and that the performance meets

specifications prior to being delivered to the end user.
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In assessing the degree of re-configurability of automation systems, test scenarios

were determined to capture the activities involved in hardware and software

reconfiguration based on the Web Services-based automation system implemented on

the FORD-FESTO test rig. The tests assigned were to modify the process workflow

and add a new process unit. It is noted that the test scenarios represent real-life

activities in the reconfiguration examples occurring within FORD process lines. The

following three scenarios were set up for evaluation:

9.3.1 Modifying a Process Work Flow

The Test Scenario Description:

Removing the processing unit (station 3) from the current configuration to

bypass the assembled work piece directly to the handling unit

Configuration Steps for the \VS Design Approach:

1. Mechanically rearrange the station, removing the processing table station 3

and fixing the handling station 4 to station 2 (i.e. current configuration

station1l2/3/4, new configuration station 112/4)

2. Set the new interlocking pairs between the separator (i.e. station 2) and the

receptacle sensor (i.e. station 4) for the station synchronisation on the service

orchestration engine.

3. Validate the new configured system (i.e. Simulation, Console Debugging,

and Test Run)

4. Deploy

Note: On this Web Services-based test rig control system, there are no changes

on the 1'0 configuration (i.e. device programming) and control applications (i.e.

interface and DPWS call functions) on the controller. Only device interlocks

need to be modified for the new machine application.

Description of WS Component Reconfiguration:

This change is very common at FORD process lines. The modification in this

case was simple and thus imposed no major changes on the control software.

The component behaviour, implemented with Web Services on the controller,

remains unchanged. Only the old interlocks has been altered and replaced by the
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new ones within the service orchestration engine in order to form the new

machine specification. The modification of the control software in this test

scenario was completed in a couple of hours and the time taken in changing the

machine structure was dependent on the structure, size and fixing mechanism of

physical machinery.

PLC-Based Reconfie:uration Discussion:

In comparison with the PLC-based control system, changing the state transition

behaviour is achieved by reconfiguring the interlock between components and

the internal implementation of finite state machine behaviour of the component.

The required change is subtle because the interlocking variables are difficult to

trace throughout the application since there are linked to various points.

Consequently, this task of control reconfiguration has to be assigned to control

specialists, who have an understanding of the ladder logic program needed to

implement the changes.

9.3.2 Adding a Sensor Element

The test scenario description:

Adding a new sensor at the hopper downstream position to identify the work

piece colour, where a red one is allowed to pass through to the next step but

black ones are stopped at the unit

Confie:uration Steps for the WS Design Approach:

1. Install the new sensor element

2. Connect the sensor input lines to available channels of the 1'0 module

3. Add the sensor state into the existing hopper WSDL file description and

regenerate the stub and skeleton files

4. On the FTB device-Stationl project: add the DPWS control application

(DPWS initialisation and sensor event handler) for the new sensor interface to

device low-level programming by reusing the existing control application of

the existing sensor as reference

5. Debug the new component software and upload to the controller

6. On the PC- Client 1 project: define the new sensor state variables for the

DPWS sensor state SUbscriptionused by the hopper operation sequence.
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7. Add the new sensor sequence to the service orchestration engine application

for the new hopper control configuration

8. Compile the client service orchestration engine project

9. Validate the hopper component operation (Simulation, Console Debugging,

and Test Run)

10. Deploy

Note: The new sensor has the same number of states (WP_Black and

WP NotBlack), as the existing one.

Description of \VS Component Reconfi2uration:

In step 3 of adding the new sensor element, the Web Services interface (DPWS)

is implemented by simply adding the sensor state variables in the existing

hopper WSDL file and regenerating the new stub and skeleton files, which are

imported to the current project of the control device (i.e. the server application

of the station 1) and the service orchestration engine (i.e. the client 1

application). The Web Services functionality of the sensor is then programmed

and uploaded to the controller of the same station. In step 7, the new machine

sequence is implemented separately on the service orchestration engine by

defining a new set of interlocks for the hopper component, including the new

sensor functionality. In this test, there is no requirement to program the low-

level device code of the new sensor in step 4 if the interface to the DPWS call

function is previously implemented. The interface maps the sensor input

(channel) to the function operated by the DPWS state notification (see Chapter

8- section 8.5.1) in the control application on the FTB.

PLC-Based Reconfiguration Discussion:

Adding the new sensor element in the PLC-based system is achieved in the

similar manner to the WS control system where the machine builders deal with

creating the new element functionality as well as altering machine sequence.

However, the PLC-based system requires the application builders to work with

more technical detail to determine the specific lIO channels (connected to the

new sensor) and memory allocation referred by device state variables. The new

machine application is then changed by modifying the sequence in the ladder

logic or function block with the new element functionality. In this way of the
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process reconfiguration, any changes require careful attention and understanding

of control sequences in the machine application.

Note: The PLC-based control system development discussed in this research is

based on the implementation platform carried out by MSI Research Group at

Loughborough University. The current machine and control application has

been implemented by both ladder logic and FBD's.

9.3.3 Adding a New Component

The Test Scenario Description:

Adding another drill for a 2-stage bore hole of a different drill size on the work

piece

Configuration Steps for the WS Design Approach:

1. Install the new drill component

2. Connect the 110 lines (2-actuators of a drill spindle and an axis, 2-limit switch

sensors) to available channels of the 110module

3. Create the WSDL file description for the new drill component by reusing the

script from the existing drill and generate the stub and skeleton files

4. On the FTB device- Station 3 project: add the DPWS control application

(DPWS initialisation and all drill state event handlers and commands) for the

new drill sensor and actuator interfaces to device low-level programming by

reusing the existing control application source code of the existing drill as

reference

5. Debug the new component software and download to the controller

6. On the PC- Client 3 project: define the drill state variable (of sensors and

actuators) and the DPWS state subscription for the drill component

7. Add the new drill sequence to the service orchestration engine application for

the new control configuration of the station 3

8. Compile the client service orchestration engine project

9. Validate the drill component operation (Simulation, Console Debugging, and
Test Run)

10. Deploy



CHAPTER9: EaseofMachineRe-configurabilityAssessment 220

Note: The new drill component has the same 4-state behaviour and operation as

the existing one. Most of the code can be reused from the existing drill

component (see section 9.4- Table 9-6).

Description of WS Component Reconfiguration:

In step 3 of building the new drill component, the Web Services interface

(DPWS) for the drill was implemented by building the drill descriptions from

WSDL file and generating the stub and skeleton files, which are imported into

the current project of the control device (i.e. the server application of the station

3) and the service orchestration engine (i.e. client 3 application). The WSDL

description of the existing drill is fully re- used (re-configured) by the new one,

as they have the same functionality. Only the drill component names need to be

changed for the unique names in the control system. In step 4, the Web Service

functionality of the component is programmed and downloaded to the controller

of the same station, and in step 7 the new machine sequence is implemented

separately on the service orchestration engine by defining a new set of interlocks

for the drill component. As mentioned in the earlier test scenario, a component

user, such as a control engineer, does not need to be concerned with the 110 of

the device to modify the process configuration. This is because adding or

removing the component configuration on the controller devices will not pose

any changes and involve any programming to this level of the device.

PLC-Based Reconfiguration Discussion:

Adding a new component is achieved in the same manner as adding a new

element as discussed previously where the new component functionality and the

control sequence in the ladder logic and function block diagram are added.

Reconfiguration in this case is managed by reusing the existing drill function

block, but however, the difficulty of changing the logic inside the function block

module with the right variables and connecting the block to the right point in

form of the ladder logic for the right sequence is still an huge issue and requires

experience engineers for its successful implementation.
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It may be observed from these test scenarios that the component's internal

implementation is separate from the application specification corresponding to

machine tasks defined by Web Services applications. This allows the system

integrator/control builder to develop and verify the control application without having

to understand the complexity of the low-level implementation details. The application

is clearly organised and visualised at the higher "process" level. In this research,

system behaviour is defined through the components' state-transition conditions via

the state interlocks and this is kept separate from their low-level implementations. The

WS application regarding component operations is interfaced to the low-level device

operations using a call function as an interface. However, with the PLC-based system

(as presented in the case study 1 Chapter 7- section 7.3), the changing of the system

behaviour has to be made through the ladder logic program at the PLC code

programming level, both inside and outside of the component function block. Time

and close attention is required to ensure that all low-level implementations related to

the modification have been reviewed and changed.

With regards to the implementation of the WS based components, the reconfiguration

of production lines for different workflows, i.e. adding new elements and

components, is considered to be a relatively easy task as it occurs at the system level.

Modifying the process workflow and deploying the new system configuration only

takes a couple of hours. When compared with the PLC-based application, there are

significant differences. Although the reconfiguration of the PLC-based system

involves fewer steps than that of the WS based design approach (as shown in the

reconfiguration work flow in Figure 9-4b/4c, Figure 9-5b/5c and Figure 9-6b/6c), its

reconfiguration tasks require considerably more effort in identifying all the required

changes and ensuring that they are consistent, complete and correct. Also, these

changes require particular expertise in the specific types of the PLC employed within

the system.

Adding the new machine component and element, the control application in the WS

environment is developed by reusing the control code (i.e. DPWS component

initialisations and operations) of the existing components in the project. The

assessment of modularity and reusability of components is presented in the following

section.
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9.3.4 Comparison of Distributed WS-CB and Conventional Centralized PLC

Automation

Previous sections have presented the re-configurability of the distributed WS and PLC

based control systems. However, this section provides a concise comparison between

the implemented WS approach and a more conventional centralized PLC based

control system (Chapter 4- section 4.2). The discussion on advantages and

disadvantages of both approaches is based around the reconfiguration scenario (see

below), considering system performance, system design and cost. The construction of

the specific machine control system is based on the model of the FESTO test rig

(Chapter 7- section 7.3.1) as shown in Figure 9-7 and 9-8.

r-r--: -, Station 1 Station 2 Station 3 Station 4
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Figure 9-7: Distributed WS- based Control System
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Figure 9-8: Conventional Centralized PLC- based Control System
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System change scenario: The new controller is added to the control system in order

to reduce the work load of the controller on Station 3 by reassigning the table rotating

task to the new controller. In this example, it affects the function of 2 input sensors

(work piece interlocks) and 1 output actuator (indexing the table), which need to be

moved to the new controller.

Conventional Centralized PLC Control System (Figure 9-8)

System description: The controller functions are customised to specific machining

tasks. In this example, the machine system (divided into 4 stations) contains 2 PLCs,

each of them control 2 stations accordingly. All the input and output 110 lines are

directly connected to the specific PLC 110 channels as designed. However, for the

system interlocks, the hard-wires of INPUT are linked across the 2 PLCs for system

synchronisation.

System change description: The system is reconfigured as following

Software:

Moving wire 2 to 3; Moving wire 1, 7 to 4; Moving wire 5, 8 to 6

(PLC 2) Delete the indexing control program;

(PLC 3) Add the new indexing control program

Hardware:

Table 9-4: Conventional Centralized PLC Control System

Advantage Disadvantage

Point: Good performance with fast 1'0 response Point: Risk of a single-point failure

----------------------------------------------------------- -----.-------------------------------------------_ ...-.-----_ ..Reason: Direct (hard- wired) point to point Reason: Centralized control systems
communication
Point: Faster system boot-up time and controller Point: Time consuming and error prone process in
initialisation _~_~~~_i~~_~~~~~!!g~~~!i_<?~_________________________________
-Reaion:-N(;id~~ic-e-~~~fi-~~~ti~~-initIalization---- Reason: Complex wiring, rigid structure and tight
needed (i.e. Device Network IPI Metadata) coupling (hard-wired) interlock of a control system
Point: No expensive hardware and cheaper Point: Expensive to maintain (i.e. upgrade,
hardware costs _~_~i_~!~!l_'!t:l~_~}~h~_~¥~!~~________________________________
-Rea-son:-Basiccontroilerde~ces-------------------- Reason: Highly customised, vendor specific

solution, and complex wiring control system that is
required substantial effort to maintain

Point: Good system robustness Point: Expensive for system reconfiguration

Reason: Close point to point communication -R-eason:-Required- e~p~rt~-tc;rec~~-figure-(re:- --------
between controllers wiring, re-programming control software) the

complex and not well organised system
Point: Complex and fragmented application (i.e.
ERP, MES) inteS!ation to the shop-floor-_-.---------------- ------------------- ---------------------Reason: Customised automation system to certain
manufacturing tasks requires customised
application interfaces
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Decentralized WS-CB Control System (Figure 9-7)

System description: In the distributed control system, each of the controllers controls

one station accordingly. All the input and output I/O lines of each station are only

connected to the VO channel on the specific controller via its VO interface module.

There are no cross 110 connections between controllers.

System change description: The system is reconfigured as following

Hardware: Moving wire 1 to 4; Moving wire 2 to 3;

(FTB 3) Delete the indexing table control program

(FTB 5) Add the new indexing table control program

Table 9-5: Decentralized WS-CB Control System

Software:

Advantage Disadvantage

Point: Easier to reconfigure with lower labour Point: Expensive hardware
_~~!'_t~_(!~~~_!~~~_~~~~~I!!i.~g)____... ____.. ____... ______. _-------------------------------------------------------------Reason: (see Easier to maintain and upgrade) in Reason: More sophisticated controllers with
this case less time is required to change and integrated TCP/IP network functionality
debug the new configuration Suggestion: The system design cost could be

reduced with cheap and powerful embedded
micro-controllers in the future, and greater
softwarelhardware reuse.

.~.~~~~:_~~.!'i~~_~.~!l.~i~g!~:p~~~!.~~i_l~~~_.. __... ____.. -?~~~~:.~!<.?~~!_!~.~!~~.\}P... __. _._.______________. _______.
Reason: Loosely coupled distributed control Reason: Requires controller initialization (i.e,
allowing task distribution network, software component configurations)

Suggestion: Although the slow start will not
pose a major time loss to production,
improvement could be achieved with greater
processing speed and dedicated WS processors
(see Chapter 10 Future work),

_~_~~~~:_~~~!~~_~~_~~!~~~_i~~I?~~l?g[~~~________________?~!~~:_~!<.?~~_r_~P.~~~____________________. ________________
Reason: Well organised (separated component Reason: Time delay in the variable exchange on
software and clear hardware wiring structure) the network as well as data parsing
system; Engineers know exactly where to work I Suggestion: Faster network speeds and SOAP in I
on the control system (control programme and binary form (see Chapter 10 Future work)
110wiring changes)
Point: Simple system integration with only a Point: Possibility of data loss if network load is
_~i_I?gJ~_!lEPJ!~!l_tj~_l!_iE!~~f~~_t:P.~!_9~_".:!~~________________~~~~!~~~i~IJy.!~~_~!g~_(~~~~~!iI?s..!~~~~t.l!~~~)___________
Reason: The system is built within standard Reason: Open loop communication (dynamic plug
technologies (i.e, SOA,WS and Ethernet) where and play devices) in the distributed control system
various applications could be simultaneously Suggestion: Additional message
integrate to the shop-floor system without adding acknowledgement method and the separate
more interfaces (i.e. reduces complexity) network router could be employed for more

organised and scalable control systems.

_~_<!~~~:_~_~~~!~}y_,_~~~~~~_~i~_t:.t~_~~j!~________________
Reason: Beneficial software (component and
control application) reuse
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9.4 Component Modularity and Reusability Assessment

Modularity

Modular architectures are typically defined as having one-to-one mapping from

function elements in the function structure of the physical components. The modules

are useful for design reuse, as already-designed modules with well-defined interfaces

may be used again in other designs. This applies to both software and hardware

components and product change, upgrade and variety can be achieved by replacing or

adding a module in a system, without having to make changes to the overall

production platform [109].

It has been reported [112] that an appropriate level of granularity within the

component-based system architecture is important in order to support effective reuse

and reconfiguration. Appropriate modularity makes systems easier to build,

reconfigure, repair and manage. Good machine modularity is characterised by

minimal interaction between modules/stations (coupling) and maximum interaction

within modules/stations (cohesion). The coupling and cohesion terms are associated

with changeability, referred to as what changes can be accommodated and the number

of tasks involved. For example, regarding the modularity description outlined in [112]

the change of system operation within coupling modules would involve a

modification of the interaction between control nodes. However, changes at cohesion

level would only see changes within the node that involved less activity.

Regarding the development of the WS automation platform, a modular design has

been achieved, featuring 4 couplings (interlocks between stations) and 10 cohesions

(internal interaction within stations). The test rig supports the modular design, with

one-to-one control functions to physical components mapping. The more complex

designs of the test-rig system were formulated by defining the combination of

components services and interlocks at a high-level programming, rather than writing

application specific codes for the components at low-level device programming. In

this CB Web Services design approach, it is not only the control application which is

defined as the modular component. Additional services, such as state publication and

error diagnostics are also designed for modularity and are well organised in the

constitution of components. This approach enables the best practice for the effective
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reusing and reconfiguration of control, diagnostic, and maintenance software

components during the lifecycle.

Reusability

With regards to the assessment of control system reusability, [33] has estimated

component reusability at the subsystem level, based on measuring the number of

reused components for building / integrating a new control system approach

(generally carried out by the system integrator and the control builder) with the

support of engineering tools and component libraries. However, from the component

builder / supplier perspective (which involves the hardware device programming), the

evaluation of component reusability needs to measures the code reuse at the DPWS

application level for creating new components within the WS development platform.

Given the new component design, as previously demonstrated in the test scenario of

adding the new drill component (see section 9.3.3), conceiving a new component for

component users requires the commissioning of:

1) The WSDL description (to generated WS server stub and client skeleton files),

2) DPWS interfaces for device operations on the FTB project-server application.

In addition to commissioning a new component, component users need to orchestrate

the new control configuration for newly-required manufacturing tasks, as defined in

the client application via new sets of interlocks for the service orchestration.

How would code reuse be justified in this case? It should be noted that the analysis of

code reuse in this research has been considered via the process of "copy-paste" and a

variable name modification of existing code for new components. Within this work,

these modifications are normally carried out in the DPWS and component variable

initialisation and in standard utilities such as error diagnostic routines and heartbeat

systems. Reprogramming these items for a new component is a relatively easy task,

with the reused components having the same state behaviour and element names.

However, programming new lines of code is justified, taking into account the effort

required in programming reused code in some circumstances, such as creating the

new set of interlocks and building new interface call functions to the low-level device
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operations. These are seen as additional new programme lines, and these tasks require

careful attention in the design and involved specific control operation of devices.

Table 9-6: Adding the New DPWS Drill Component Scenario

Required software All codes New codes developed % reusable

element (Lines) (Lines) codes

1 -New codes

All codes

WSDL defmition 146 0 100%

Server application (FTB) 86 13 84.88 %

Client application 127 28 77.95 %
(Service orchestration

engine-PC)

Regarding component code reusability in building the new drill component with the

Web Services approach, shown in Table 9-6, WS call operations and drill state

variable names remain unchanged, thus the WSDL definition for the new drill

component has been slightly altered via a new component name for the unique Web

Services target namespace. The WSDL definition can therefore be reused with

confidence. For the drill operation of a second drill on the embedded device (FTB),

only the DPWS interface to the device operation (13 lines of codes) needs to be

written. Note that the component control logic for the low-level device functionality,

provided by the component builder, is encapsulated as "black box" and the I/O

already exists. Therefore there are no changes to the internal implementation of the

local controller application. On the client application, the 28 lines of device interlock

programming code have been added to support the new system operation.
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9.5 The Implementation with Process Engineering Tools

It is noted that this area of the author's research focuses on the development of a WS

automation platform and considers the integration of third party engineering tools (i.e,

control application builders, PDE toolkit), manufacturing applications (Le. 3D

simulation, HMI) and business applications (i.e. Process visualisation). The

development of these applications has been carried out by other researchers. In

conjunction with the development of process engineering tools for system

(re)configuration, the author's research has outlined the description of control

building and reconfiguration activities in detail. However, the WS approach of

process building and configuration involves a small level of complexity in coding and

debugging components and control applications (i.e. WSDU OPWS code generation

and embedded system design) but required skills for non-experts. Therefore, it is

important that this research outlines the effective strategy of building a control system

in this WS environment.

As end-users (i.e. the system integrator/ control builder) require ease of process

design and reconfiguration, the process engineering tools have a significant

contribution in accommodating the design, integration of the control system and

process reconfiguration by hiding the complexity of component programming and

minimising the level of manually coding tasks. As stated in the previous section on

component reusability, component users do not expect to have to deal with the manual

coding of component interlocks and state transition behaviours implemented on the

client application to create the machine application. It has been identified by this

research that the POE tool should provide the platform for configuring the

components, (e.g. device Web Services namespaces and the finite state machine

applications for manufacturing tasks). These component configurations can be saved

for later (re)use and reconfiguration for new machine applications. Given the POE

tool, it can be observed that the component reusability in the design for a new

machine is high. This is due to the modular design of the DPWS application in the

component, where a component requiring the same or similar functionality (i.e. via

component states, operations) can be readily reused.
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The platform of the WS-enabled device needs to be outlined in order to accommodate

the PDE tool development. The WS process engineering tools platform as detailed by

[46], encapsulates functionality covering control software editing and control code

generation, and is aimed at assisting control and process engineers to manage the task

of implementing control code for complex and large-scale systems. This is achieved

by:

a) Providing a direct translation of process production sequence information into

usable code, potentially in distributed form, at the embedded control hardware

level, and

b) Providing the means to maxmnse the re-use and re-configuration of the

control application.

The development of WS-based control components has to support a platform, in order

to accommodate process engineering tools in the development of new components

and the uploading of device runtime control applications and data configurations. An

architecture, as shown in Figure 9-9, has been derived in this research by considering

the extension of DPWS capability to support the integration of the control builder

applications and the PDE tool.
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The DPWS configuration and control application are built and deployed by the

control builder application and the deployment tool (in this case developed by

Schneider Electric) in a visual environment, rather than manually programming at the

low level of the control applications. This is achieved by compiling the device and

service resource management (via XML device description and device configuration

script files) in support of PLC open tool (Control Build Tool) onto the embedded

control device for building and (re)configuring the control system. At the time of

writing, ease of device interlocking (as implemented on the service orchestration

engine) aspects has not been fully realised, and thus at this stage, the gap can be filled

by the PDE tool to support the device interlocking for the control application (see

Chapter 6- Section 6.8.3) implemented by the service orchestration engine

application.

In addition to the dynamic deployment of DPWS components (see Chapter 8- section

8.5.1), the runtime (re) configuration of component control applications is achieved

via the WS-Management service [gI2]. Note: the WS-Management service is ongoing

work on the SOCRADES research project, and when completed this package will be

included in the DPWS standard, in order to support the management (i.e. editing) of

the component and its configuration on the embedded control devices (i.e. FTB's)

without recompiling the control application .
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Figure 9-10: MSI Developed Suite Engineering Tools

As demonstrated in Figure 9-10/a, the PDE tool is supports the control builder

functionality, which enables the generation of the XML script files for the runtime

control configuration. The PDE exports the component content (i.e. the component

configuration data and state transitions) in an XML format. Note that the current PDE

tool does not assist the development ofWS components and device configuration, but

rather contributes to the definition component sequences and manufacturing tasks. In

the early stages of developing the dynamic deployment of control applications, the

service orchestration engine was tested with the PDE tool. The engine reads the XML

script file generated by the PDE tool for device interlocks and sequences on the client

application (i.e. PC based application), therefore the reconfiguration of machine

sequences can be implemented via the reconfiguration using the PDE tool, without

any changes to the client application. In addition to process visualisation, the

prototype of HMI (Figure 9-1Olb)has been integrated with the WS control system, via

TCP/IP connection from the service orchestration engine to the broadcaster

application on the PDE tool, real-time monitoring of component states.
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9.6 Seamless Integration Assessment
The present manufacturing system architecture, reviewed in Chapter 2- section 2.3.1,

is categorised into different layers in a hierarchical network, from business to shop

floor automation system. By considering the integration infrastructure, it has been

observed by SAP Research [45] that the shop floor control level, i.e. MES, DCS and

Plant Historian systems, exist as a gateway between the enterprise and the shop floor.

These systems have to be tailored to individual groups of devices and protocols that

exist on the shop floor, and thus, in this type of integration environment, close

coupling with certain technologies between hierarchies are employed. This has

prevented the business levels of the enterprise from accessing the shop floor, in order

to gather information and interact with production lines.

Using the component-based design framework, with LonWorks and the PLC- based

systems, the integration of the control system with the business application requires a

communication protocol driver. This driver translates the device data into a specific

format, in compliance with integrated applications and the communication protocol

driver acts as a gateway between control devices and integrated applications, such as

HMl's, broadcasters, manufacturing and business applications. An example of a

gateway approach is the LonWorks -based system: the XLON-USB [g35] (Figure 9-

11) and Premium PLC-based systems use Monitor Pro XL specification [gI8] (Figure

9-12) as the communication protocol driver.

However, in the previous CB implementation of the LonWorks system test rig, the

XLON device was used to interface the broadcaster and HMI applications to

LonWorks nodes.
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1 Local communication (TCPfIP)
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Figure 9-11: XLON Communication Protocol Interface [g35]
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Figure 9-12: Monitor Pro PLC Communication Protocol Interface [gI8]

Integration within the environment as shown above is tailored to specific target

devices with different sets of device drivers. As illustrated in Figure 9-11, LONBUS

(a Fieldbus system) is connected to the LonWorks client application running on a PC

via XLON-USB which provides the Application Programming Interface (API) to

communication devices. During runtime, the client application broadcasts state
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information to the HMI application (i.e. HTML Web pages) for visualisation and

control via HTTP. Details of the LonWorks system implementation can be found in

[33].

In contrast, the implementation in this research into WS-based automation systems

aims to enable a non specific type of device driver interface for integration between

the automation and business systems. Integration to the control system is achieved

either via the TCP/IP connection (as presented in Chapter 8- section 8.5.3) or using

direct integration, achieved via the common DPWS interface (i.e. SOA device

middleware ).

In the latter case, the runtime device information required by the business level are

already implemented on the WS enabled device and provide rich device information

and live states to integrated applications throughout the manufacturing and enterprise

system. Also, state and error information from devices can be directly sourced to the

higher control application by means of the state subscription and publication, using

standard DPWS protocols via WS-Eventing.

Oevlc. & Application Mlddleware

Process Visualisation Production and Defined Functlonalltles
and Simulation BUSiness

Management Services

< r t >SOA Middleware bus

OPWS
Resource Composed Services

Management Remote HMI and
Application MonitOring Systom

Automation System

Figure 9-13: The SOA Middleware Integration Bus
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As illustrated in Figure 9-13 the integrated architecture is not layered in different

hierarchies but is indeed level. For seamless integration, Web Services on the devices

via DPWS provide direct communication through the device discovery service to

inter-connected applications for browsing device meta-data as well as invoking the

device services and resource management via the WS-Management service (section

9.5). The integration of third party applications is achieved via the common mediator

of SOA middleware. This allows more sophisticated application integration such as

business planning, machine vendors, production, maintenance section and control

systems. Also, the provision of SOA middleware has enabled direct integration to

automation devices through the standard WS interface. Therefore, the control

platform is not subject to increased complexity from several integrated applications,

with various interfaces for example MESIERP system integration.

9.7 Suitability of the WS Based Automation in Industry

liDs intervene time

The responsiveness of input and output reaction times between inter-connecting

controllers in production at the FORD motor company specifies that response time

must meet a soft real-time criterion under 30 milliseconds in order to meet the normal

performance of the machine assembly process. Following an analysis of the network

performance work in section 9.2.2 and even though Ethernet supports non-

deterministic communication, it has been proven that Ethernet based communication

via SOAP message exchanges, for the WS approach implemented in this thesis, has

closely matched the required timing criteria. The average response time of Web

Services interaction between IIOs has been estimated to be 31.06 milliseconds. The

test rig implementation has demonstrated the reliability of Ethernet message packets,

with the Tep/IP packet synchronisation and additional Web Services message

acknowledgment of the DPWS application ensuring that the DPWS message is sent

and received. This has guaranteed the overall effectiveness of the device

communication.
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DPWS Application and Embedded Controller Resources

Another factor to be considered is the size of the DPWS resource and memory usage

on the device, as this limits device capability and the number of DPWS components

that can be co-located on a single control device which affects control system

development costs. As detailed in Chapter 8-section 8.4.1, the DPWS library

consumed almost 50% (240k bytes) of the currently available disk (ROM) space

(S12k bytes): a significantly high figure. Regarding other resources, each controller

device can hold a maximum of three components which is reasonable for the

implementation outlined in this thesis since the application on each device only

performs the server task. The client task, e.g. the service execution, runs separately on

the PC. However, both the end-user and industrial machine automation suppliers

would prefer a fully-distributed control system, enabled by peer-to-peerautomation

devices (i.e. device to device interaction), rather than a PC-based orchestration and

centralised PLC- based control system. To satisfy these requirements, the embedded

control device needs a larger memory specification, in order to host both the DPWS

server and client application of (possibly) multiple components co-located on the

device. Increasing the memory specification on the embedded control device in order

to support the Web Services application is not a critical issue, as the price of memory

is reducing. Any increase in costs associated with upgrading memory sizes will not

pose a major increase in control system cost. Also, the cost of embedded devices is

much lower than the conventional PLC-based control systems.

Note: although the 512 Kbyte memory is sufficient to hold one component (with the

server and the client application in this implementation), the level of component

granularity needs to be taken into account, due to the trade-off between a degree of

coupling and cohesion that will affect the cost of the control system development. As

reported in [112], if the level of granularity is too fine, the integration cost is high but

development cost is low, and vice versa. The optimum level needs to be carefully

considered.

Hardware Cost within the Control System

A consideration of hardware costs within the control system involves addressing the

scalability of the WS based approach. In this case, the cost comparison between the

WS enabled device and the PLe (Schneider Electric Premium) -based automation
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system can be used to assess the feasibility of migrating to WS automation systems in

the future. Although the PLC products are varied, it is noted that the compare prices

of PLC's intend to assess on the standard and commercial use equipments in the

industry.

Table 9-7: FTB and PLC Cost Comparison

Case Control Control CPU Remote Total Cost

Architecture Hardware Unit 110

4 machine stations

1 Centralised PLC PLCx 1 1 4
£5,305 (I)

£825/unit £3480/unit £250/unit

2 Distributed FTB FTBx4 Included Included
£896 (g)

£224/unit - .
2 additional machine stations

3 Centralised PLC PLCx 1 1 2
£4,805

825/unit £3480/unit £250/unit

4 Distributed FTB FTBx2 Included Included
£448

224/unit . .
(f), (g). The calculated pnces (checked on February, 2009) are obtained from RS Component Supplier, Online
catalogue available from www.rs-components.co.uk

As detailed in Table 9-7, the cost of the FTB embedded device control system is much

lower than the PLC- based control system, as the FTB hardware itself is relatively

cheap. Also, a centralised PLC is designed to accommodate a large amount of 1I0's

(e.g. Modicon TSX premium PLC: 2048 discrete and 256 analog) it is generally the

case that full 110 capacity is never used. However, each of the distributed FTB

devices is designed to handle 110 functionality in smaller volumes, with 16 channels

for the distributed automation environment. This means that the FTB is more cost

efficient, in terms of capacity use/device, directly affecting the control system cost if

machine capacity or new functionalities are added to the existing system. For

example, if the end-user requires more process capacity by adding a new machine,

which has 2 new stations composed of 4 components, with 22 input and output

channels (c.f. the FORD·FESTO test rig), assuming that the end-user needs separate

hardware for the control system, the comparison of costs between adopting a PLC or

an FTB-based control system performing the same functionality is illustrated by cases

3 and 4 in Table 9-6 i.e. the cost for the new system within the centralised PLC

http://www.rs-components.co.uk
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system is about 10 times higher than the FTB- based control system. This shows that

the implemented WS approach is particularly cost efficient, is more scalable due to

the finer grain of cost paid per required function.

9.8 Fulfilling the End User Requirements within Agile Automation
This research has demonstrated the feasibility of adopting WS for automation systems

via an industrial test rig demonstration. The analysis work and the test scenarios have

shown that the WS-based automation approach is able to meet the requirements of

agile automation systems, and the WS approach as adopted in this research can be

exploited for the manufacturing systems within the following areas:

To Enable the Design of Reconfigurable Automation Systems:

Web Services complement component-based (CB) design approaches within the

DPWS via the encapsulation of low-level device programming. This allows the

control builder to alter the component and process configuration without having to

address low-level device control issues.

Enable the Design for Reuse:

In the generic design of the DPWS device, where the component is differentiated by

the target namespace, the incorporation of a new component into the system could

reuse the control .applications from common / similar components. Also, current

components can be reused as programming references, since the development of the

control systems within the WS approach is clearly defined and follows similar

patterns.

Enable Self-Contained Component Information:

The DPWS provides rich information about each component through the WS-

Metadata services initialised on each control device. Initialised information, such as

device names, firmware version, date of deployment and expiration can be obtained

by the DPWS client applications through device look up and discovery services. This

metadata information enables the use of process management and preventive

maintenance software to keep track and monitor the control system throughout its

lifecycle.
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Enable Process Visualisation and Data Monitoring:

The test rig automation system has been integrated with production and business

applications e.g. the SAP xMII application. Web Services provide the live state of the

components and work piece status. These data can be used to capture process activity

and to determine the process performance. Web-Services have been implemented with

diagnostic capability, in order to report automatically errors, such as actuator

malfunction and communications loss to the monitoring and execution control

systems.

Integrate 3D Machine Visualisation:

The process visualisation of the test rig on the Web Services platform is ongoing and

included in the PDE suite of engineering tools. At this stage, integration of 3D

modelling of the live process on the test rig have been prototyped as a demonstration

of capabilty, with the component state linked via UDP multicast from the service
orchestration engine to the PDE tool.

Enable Component Validation:

As work concerning the PDE is ongoing, the WS component validation of the device

operation has been undertaken on a simulator using an MS-DOS console. The client

projects for device operation and execution have been implemented in the Visual

Studio.Net platform on Windows, for debugging and testing.

Open Automation Platform:

The Web Services automation system utilises a SOAP-XML message exchange, as a

common communication that enables inter-operability between different vendor

devices implemented within the DPWS. In this research work, it has been established

that WS implementation within the DPWS standard can be ported to any embedded

microcontroller devices or PLC's within the compliant DPWS gateway, as the DPWS

application has been developed on the C/C++ standard to these control devices.

Adopt Local Data Logging and Historian Utility:

As the embedded device does not scale for saving data due to memory constraints, the

data record utility has been implemented on the integrated application running on the

PC. As the service orchestration engine directly interacts with the control system, the



CHAPTER 9: Fulfilling the End User Requirements within Agile Automation 240

data is captured into a logged file within the application. In this research, the data log

is implemented in the WS control system, and records the component state

information during runtime. This capability provides track record and data history, in

order to support effectively maintenance in the event of a machine breakdown.

Unifying Platform for Higher-Level ProductionlBusiness Application

Integration:

The DPWS device and the WS application interface provide a seamless application

integration platform, achieved by the unifying SOA middleware for all Web Services

enabled applications. This WS middleware eliminates the need for custom interfaces

tailored for specific control systems and integrated applications. However, further

development work, in collaboration with business application providers such as the

SAP Company, is required to enhance the seamless integration by directly integrating

their applications to the control device within the DPWS.

Distributed Autonomous Automation System:

The design of Web Services-based control devices supports the distribution of

component functionalities into local control devices. In the discrete-control system

design of the FORD-FESTO test rig, the distributed component reacts accordingly to

its environment, defined by the set of component state transitions and interlocks. The

implementation of the control system has been demonstrated on the test rig, and the

system performance has met the operational requirements of automation systems.

However, due to memory resource constraints on the embedded device, the decision

and execution making of the embedded device is done separately on the service

orchestration engine. Further research needs to be carried out on the implementation

of autonomous automation systems enabled by the peer-to-peer communication

approaches.
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9.9 Conclusion
The summary of all the evaluations of quantitative and qualitative measures, as

demonstrated in this research, are shown in the table below:

Control system PLC LonWorks FTB

Scalable system cost £££ ££ £
(Controllers, 110 modules)

Machine processing speed (I) 29.7 seconds N/A (h) 32.S seconds

Input to Output response time 9-11 ms(i) 57-200 ms(j) 22-55 ms(k)

Component (Software) reusability 'N ,N 'N
Seamless integration and complexity

-J -J -J-J
(Business- Shop floor applications)

System reliability -J-J -J-J -J

Control system development time -J -J -J-J

Ease of system reconfiguration -J -J-J ..J..J

Interoperability among different control -J ..J ..J..J

systems (Open platform) Required Required No additional

gateway/translator gateway/translator gateway/translator

...J..J Advantage choice over ...J in the same category

(h)- It is not applicable for a comparison due to the LonWork control system was implemented on the
different machine.

(i)-The value is obtained from [15] where the same PLC and remote I/O modules have been used.
(j)- The value is obtained from S.M. Lee dissertation [33].
(k)- The value is derived from the minimum and maximum response time boundary by the experiment as

presented in section 9.2.3.
(1)- Time to process the workpiece from the first to the last station

Analysis of the TCP/IP communication approach, in relation to message reliability

and the SOAP message structure (based on the component design) as the WS

communication between client and the service applications in the control system have

been detailed in this chapter. The responsiveness of interacting I/O has been measured

via a timing analysis of Network, DPWS processing and 110 processing. The

qualitative features of the control WS system have been assessed by their

performance, with respect to various parameters such as network bandwidth,

utilisation rate, machine cycle time and the cost of control hardware. The DPWS is

able to deliver the real-time capability of event interaction in around 0.031 seconds,

and the implemented WS control system is able to achieve a work piece processing
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time of 33 seconds (the PLC- based processing time is 30 seconds on the same

FORD-FESTO test rig with the same machine configuration). The cost of developing

the embedded control platform (e.g. the FTB controller) is substantially lower than the

PLC, and this is due to the combined module of the Ethernet communication

interface, in addition to the low market prices for embedded controllers.

Evaluation of the qualitative features ofWS were measured in terms of reusability, re-

configurability and business integration of the WS control system, and compared with

the PLC based and Lonwork systems. These are the key evaluation areas characterised

by agile manufacturing (Chapter 3). In this research, the WS automation system has

demonstrated a good level of re-configurablity and reusability, in terms of activity and

skills involved when compared with the PLC and LonWorks based control systems.

WS's also provides a better quality of process/shop floor system integration as

required by end-users to support collaborative manufacturing frameworks. Although

the implementation of WS on automation devices requires effort, in terms of

improving reliability, robustness and support tools for building a more user-friendly

control system, the evaluation undertaken in this thesis has shown that the WS

approach is indeed feasible and suitable to be adopted for the next generation of

competitive automation systems in the industrial domain.
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Conclusion and Future Work

This chapter concludes the author's research findings and details the contributions of

the proposed Web Services and component-based design approach for agile automation

systems. A summary of the core studies, research demonstrations and analysis results is

provided, in addition to research achievements and suggested future work.

10.1 Research Conclusion

The research has been focused on adopting a SOA and WS approach for automation

systems incorporating the component-based design approach previously developed at

the MSI Research Institute at Loughborough University. However, the author's

original work and novel contributions in extension and collaboration with the other

MSI work have been presented in Figure 10-1.
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Figure 10-1: The Author Original Work and Novel Contributions
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The details are summarized as follows:

10.1.1 Research Findings

An approach for the design and implementation of agile automation systems, with

respect to system reconfiguration and seamless business application integration has

been researched in this thesis. Reviews of reconfigurable manufacturing systems and

process-business integration have provided a useful references and a framework for

the conceptual design of WS based automation systems. The core strategy behind the

component-based design for the reconfigurable and reusable machine components,

has been identified and a focus on seamless connectivity and heterarachical enterprise

architectures adopted to support business integration with shop floor system.

10.1.2 Contribution to Knowledge

This research has proposed the novel idea of integrating the CB design approach with

WS, and the work has provided a clear structure of how to implement the WS

approach on the automation devices. The approach may be used as a core design

paradigm for future automation systems in similar domains. The research has

highlighted robust evidence of positive WS performance on embedded control device

platforms when compared with PLC and alternative distributed systems technology,

demonstrating the feasibility of adopting the SOA approach within manufacturing

systems.

In summary, this research has developed a unique design framework for WS enabled

control devices, which brings the component-based (CB) design approach and the

proposed SOA middleware (i.e. DPWS and WS application interface) technology into

the component constitution. The WS in this research utilise the CB approach in order

to facilitate the design of control applications for reconfigurable and reusable

manufacturing systems. This approach allows the decomposition of components and

their assembly into a loosely coupled system with SOAP-XML message exchange

formats utilised to generate the manufacturing application tasks.
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10.1.3 Implementation and Evaluation

The implementation of the WS based automation system has been conducted on an

industrial test rig for the purposes of demonstration and evaluation. The evaluation

research on the proposed WS control system has been carried out in detail, in order to

illustrate the knowledge and findings behind the Web Services approach in the

following areas: •

Ethernet Network Performance

The primary concerns of WS within the automation system i.e. the delivery of

robust timing performance and message reliability have been assessed. The

approach ofWS communication, in respect of the TCP/IP packet synchronisation,

has been identified, in addition to a SOAP text based structure within the DPWS

operation. Also, an analysis of the DPWS processing time has been undertaken,

using a protocol analyzer and set timers on the DPWS servers and client

applications. The results have demonstrated that the speed of the DPWS (110

response time 22-55 ms) on the selected embedded platform could be able to meet

the expectations of end-users (in particular, the FORD Company) in terms of soft

real time criteria and the required 110response time (under 30 ms).

Process Re-confif;:urability

The capability of WS based automation, in terms of reusability and re-

configurability, has been evaluated and compared with the conventional PLe

based system, in a number of industrial test scenarios. In this context, WS

facilitated the modular design of the component and the management of

dependencies between components (i.e. component interlocks) and state transition

conditions. The advantages of reconfiguration and parameterisation for process

adaptation have been explicitly demonstrated by' the test scenarios in Chapter 9-

section 9.3.
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Process Inte2ration

The contribution of WS towards seamless integration has been demonstrated and

assessed using the SAP xMII application and DPWS enabled middleware. This

middleware was implemented as the unifying interface that allows diverse

production and business supported applications to be connected throughout the

enterprise. As the research work has demonstrated in Chapter 8- section 8.5.3,

non-DPWS applications can be integrated into the WS based automation

environment, via a mediator that participates in both the WS application and

DPWS interface. A business application, such as SAP, can access the control

system information at mediator level, where it is enabled with the DPWS interface

to interact directly with the control devices.

Production Support System

WS-Metadata, initialised on WS enabled components, provides rich component

information regarding device names, software versions, manufacturer, starting

date, expected end of life. This information can be retrieved by the implemented

client DPWS applications for component monitoring and servicing applications

used in maintenance systems. In this research, the process monitoring (remote

HMI) and simulation (3D modelling) applications, both part of the PDE tool

development at MSI research group, have been tested in conjunction with the WS-

based automation system in order to provide visualisation of automation systems

for control application validation and control (Chapter 9- section 9.5). A proof-of-

concept data logging utility has also been implemented, to record the device

operating history. This can be used by maintenance staff for preliminary analysis

of machine capability.

10.2 Research Achievements
,

This research has contributed to the development and investigation of a new

automation methodology that incorporates the use of the Service Orient Architecture

and Web Services technologies (SOA-WS) to enhance the lifecycle of manufacturing

systems. The research work has been focused on the adoption of a WS based

automation paradigm for reconfigurable and reusable automation systems supporting

the seamless connection of the manufacturing automation and business systems.
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Evaluation research (in relation to the end-user requirements of agile automation) has

been carried out to determine quantitative parameters. The analysis work carried out

in this research have provided a clearer understanding of the WS automation approach

in addition to suitability of Ethernet communication mechanisms within the

automation research field.

The objectives of the research were achieved, regarding the industrial test rig

demonstration and evaluation, in the following areas:

• An innovative design approach for WS enabled control devices for the

industrial distributed control systems. The WS based automation systems

adopted in this research are radically different from conventional automation

systems, with an emphasis placed on the approach of building control

applications and the device consistent interfaces for higher level application

integration. The implementation of the WS-based component programming

allows low-level control hardware programming to be separated from building

and reconfiguring the machine application, and this approach significantly

reduces engineering effort, allowing engineers to focus their core

competencies at process focused web service level. Also, the complexity of

building control applications, in respect of device interaction and message

exchange, is managed by the DPWS functionality through unique device

namespace for resource allocation, discovery, and invocation.

• The novel development and implementation of the event-driven decentralised

control systems with DPWS enabled control devices. The research has

determined the communication specifications regarding message exchange

among components and distributed service orchestration applications. From a

business process workflow perspective, this research has proven the

implemented WS approach in its ability to control and manage production

lines from the process control level within the manufacturing system. From a

shop floor automation perspective, the demonstrated prototype has provided a

manufacturing platform for the migration path to fully distributed and peer-to-

peer automation systems, which will allow components to react autonomously

to the manufacturing environment.
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• The open automation platform effectively facilitates the ease of heterogeneous

application integration, such as remote monitoring, data acquisition and

business process planning applications. The provision of the DPWS and WS

application interface in the SOA middleware has enabled a consistent interface

for seamless integration between automation and other manufacturing

supported applications.

• Novel findings of the architecture and implementation of the WS based

automation system on embedded microprocessor devices with the office

standard Ethernet network have been discovered. For the deployment of Web

services to other automation and manufacturing applications, the software

platform implemented in this research can be directly applied to any other

general controller equipment that runs on C/C++ compilers.

• A formal experimental evaluation has been used to assess the feasibility of

using Web Services enabled control devices within industrial automation

systems, particularly the powertrain assembly of automotive automation. The

experimental and data analysis work of the WS based automation has

emphasised the Ethernet network communication approach, performance, and

speed and explicitly outlined and justified the adopting of Web Services within

the distributed control system.

• Ease of process design and reconfiguration. Although integration within the

process-engineering environment has not been demonstrated due to this being

outside the scope of this thesis, a machine and process reconfiguration

framework and strategy have been outlined. The research work provides a

common representation of the process reconfiguration procedure and reuse of

the WS software component. Also, the strategy for the dynamic deployment

framework through engineering tools has been provided, in order to support

the realisation of the integrated PDE tool and other control build applications.
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The summary of the results delivered by this research, in relation to the end user

requirements and key agile enablers addressed in Chapter 6 and Chapter 3

respectively, is presented in Table 10-1.

10.3 Future Work
This research has shown a promlsmg result for adopting WS based automation

systems, in order to achieve an agile automation system within the automotive

manufacturing sectors. However, research in this field is still in progress, and this can

be extended in various domains to enhance networking performance and maximise

usability within the process-engineering environment. As the result of the analysis
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work in this research, there are issues concerning the capability of WS that remain to

be investigated.

• Most of the time taken regarding DPWS communication is expensively

consumed by the DPWS parsing (i.e. encoding and decoding the SOAP DPWS

message- 20.76 ms). This is around 70% ofthe embedded lIO device response

time (31.08 ms) capability. This further limits performance significantly.

• Although the Web Service platform has demonstrated a fundamental ability to

support the ease of building and reconfiguring the machining process, it is

desirable, from the end-user point of view, to have a process engineering tool

with graphical user interface that fully supports integration of WS devices, in

order to avoid the low level coding of the WS application. Such tools are not

yet available.

• The realisation of fully distributed autonomous automation systems with WS

enabled control devices has not been fully developed and tested, due to

hardware constraints. In particular of the specification from the CPU and

sufficient memory at a suitable cost.

Related future work can be undertaken in the following areas:

Binary SOAP-based Message

SOAP messages use a text-based representation [67], as outlined in this research in

Chapter 9- section 9.2.1. As the format is ASCII text, there are associated costs of

conversion, from binary to ASCII and vice versa [62]. It is reported by [62], [66], and

[67] that the SOAP protocol (in a text-based format) has often been regarded as

relatively poor, requiring significant amounts of processor time and bandwidth in

comparison with the binary fixed format implemented in CORBA. There is ongoing

research and proposed solutions concerned with optimising the SOAP parsing speed,

particularly in the SOAP binary format. Some proposed solutions, such as Compact

XML tag [67], Byte Sequence Memorization! Pattern recognition [63], Table Driven

XML [66], and XML-binary Optimized Packaging [61] have shown promising results

in improving the SOAP message processing performance. However, these approaches

are based on the PC applications generally used in the business and Web application



CHAPTER 10: Future Works 251

domains. Adoption of these approaches or similar concepts within the automation

domain is still dependent on future research, in order to find the most suitable and

feasible approach for embedded control devices.

Implementation of a Peer-to-Peer DPWS-based Automation System

As the functions of the server and client have been scoped in the automation system,

the realisation of the Peer-to-Peer approach for autonomous control systems is

reflected by deploying the producer (server) and the consumer (client) onto the same

device. This enables direct interaction amongst distributed control devices, and the

architecture is presented in Chapter 6- section 6.9.2-2.

Integration of the PDE Suite tool and WS-Management Support

This research has illustrated the activities involved in component design, control

system build and reconfiguration and has provided the guidelines and a platform for

research work on process engineering tool integration at the MSI research institute. As

far as the WS enabled control devices are concerned, in relation to the process

engineering environment for building/validating the component logic and process

design and simulating the process runtime system, the design of the Web Services

control device needs to support this engineering environment. Thus, future works are

needed in the following areas:

• Process configuration: An interface between WS-Management, Control

builder application and the PDE tool is required for control data configuration

download. The control logic could then be uploaded via the XML control data

configuration format from the PDE, which that can be managed by the

embedded WS-Management functionality on the control device.

• Design time visualisation: For the accuracy of component validation, the logic

of WS component design (i.e. component states and state transition

conditions) is required to match the simulation logic running on the PDE tools.

This requires mapping between the DPWS component description (WSDL)

and the PDE tool simulator logic.
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• Runtime visualisation: This is conducted by the broadcaster application in the

PDE integrated tool. As presented in this research, work has been done on

integration of the broadcaster via the multicast state propagation from the

service execution engine. Future work could be the direct integration between

the broadcaster and DPWS-enabled control devices, via the DPWS interface,

for seamless connection.

System robustness and reliability

The further improvement on the system reliability regarding to lost messages and

error recovery needs to be addressed and managed. Additional message handling at

the application level is proved to be sufficient, but however, this adds extra messages

and complexity to the control system. In this case, the simultaneous event notification

based on multicast approach could potentially resolve this problem by reducing the

amount of messages and traffics on the network. However, this approach needs to

consider additional message guarantee of the multicast approach which is not include

in the standard Ethernet.

Implementation of the DPWS on other Generic Embedded Control Devices

This research has proven that Web Services can be deployed onto the standard

embedded microprocessor controller, in order to operate in the industrial

manufacturing task environment. Considering that the cost of the embedded device is

becoming cheaper (substantially cheaper than conventional devices such as the PLC),

the full exploitation of Web Services as an open automation platform on low-cost

embedded devices could yield significant savings within automation. Moreover, the

software platform in this work is applicable to other control platforms, as the

application on the embedded device contains the same functionality and concepts as

in the design of control automation. Although the results of a WS common platform

were delivered in this research, the integration of the DPWS within the various RTDS

and Tep/IF layers on different devices requires further investigation and
implementation studies.
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ApPENDIX A

FESTO- Test Rig State Transition Diagram

The following document shows the finite state machine behaviour of the FORD-

FESTO machine components implemented on the PLC and the Web services- based

control system. The diagram illustrates element states and transition conditions of the

components within the machine system. The state transitions are formulated by inputs

and outputs of field devices (sensors/actuators) as well as element timer. The style of

a diagram is presented in A.l figure. Element names, state variables, state ID and

transitions are followed the standard defined by the MSI research team.

A.I: State Transition Representation Diagram
ELEMENT

!randtion/
Feedback condition

The element state is defined by the co-operated sensors attached to elements; the state

is expressed according to the simple combination of sensor logics (1 or 0) defined in

the system. However, a more complex component contained 3 elements or more can

be simplified to a single element by the state combination as shown in A.S. The three

elements have been grouped together to form the combination of the 12-state element.

This approach makes the state transition condition to be simpler and more

manageable.

In associate with following state transition diagrams, some elements may contain

dynamic states (e.g. Move_Extended) as well as static states (e.g. Extended). The

state transition (ST) is a specific condition for the state change only from the static

state to either the dynamic or static state. The transition condition will never originate

from the dynamic state. The movement expressed by the dynamic state causes the

coupled sensors to automatically change their states, thus producing the feedback

signal along the transition.
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A.2: Hopper Component State Transition Diagrams
------.-------~---."1

CYLINDER ELEMENT

[ -~.·.-a.;a~na ~~pty_ 1
-~,- , ... _ ------

MAGAZINE xn:R Rl!ADY ELEMENT

! Magulna_Empty 1 I

+ Intern.l .en.or.
r-.dback

[--~~~"lna_FUII 2

----.-=-_:___]

i.

Int.rnal •• naoE'.
feedbaok

Intern.l ••n.ora
r.-dbacJt

It.te 'l'ranllition ConcU.t.ion

8T1 :(Mag8tata"Full)&&(MagX8tata"Emply)&&(EJaotor8lata •• Extandad)&&(AnnStata •• Downatraam)

8T2:(MagXStata •• Full)&&(EjaotorBlata"Ratraotad)&&(AnnStat ... Upatraam)

i Itat1on/cC!!!ponant, l/RO .... I LV-naTO RIT ItJG

A.3: Swivel Drive Component State Transition Diagrams

SWIVEL DRIVE ELEMENT

Azaltate Navatata

VaCllum_OIf I,
-L.- Internal •• n.or.

1 r_a ....

[~-~~~u~_on2\
._.._- -- T

Internal ••naor.
~ r..clbacJt

It.te 'Iran.it1on Concl1t1on

8T3:(EjaotorBtata-Extandad)&&(AnnStata_Upatraam)&&(WP1Stata_NoWorkplaoa)

ST4:(MaIlXSlata-Full)&&(EjaotorStata-Ratraotad)&&lAnnStat_Downat .. am)

W-n.I'l'O ft •., ate
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A.4: Conveyor Component State Transition Diagrams

CONVEYOR ELEMENT WORKPIECE AVAILABLE ELEMENT

BeltStat. WPlstate

I

-------------1

r~:~v:~i~l
I

--.-8T6
I,

Internal .anlor.
: feedback

\~:~i~~~~~::;l
- . -- .. "1-- --I:ternal •• nlor.

feedback

I

\! I 21l ~_-_-_-__-__-_-_Ir---On-f-o..Jr', •• collda

On

Stat. Transition Condition

ST6:«WP1Stat .... Workpl.c.Avallabl.)&&(B.ltStat •• -Off))

station/Componant: 2/COIIVEYOR I LU-FESTOTEST lUG

A.S: Separator Component State Transition Diagrams

SJ:PARATOR J:LJ:MJ:NT WOlUU'IECE AT SEPARATOR ELEMENT

WPUta ..
separator.tate

l~~PI:;:~II:;~]
________.._.__.__J Internal •• nlor.

f'eedbaok

-~------------- .-,

Retracted 1

_ITS

_.J Internal •• nlor.
feedback

Stat. Tranait10n Cond.it1on

8T1: (WP2Statl-WorkplloIAvallabll)&&(WP1TabIIStata-NoWorkpIIOI)&&(Tabl.Stata·ajnPolltlon)
&&(BlltStata-OIf)

at.at.ion/CO!!E0n.nt: 2/aJ:PMATOa
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A.6: Indexing Table Component State Transition Diagrams

ROTARY TABLE ELEMENT WOIUU'IECE AVAILABLE ELEMENT

'lobi.State WPlTablaState

-----1 :~2_1 I
._l._ Internal .en.or.

t_ack

\ Workpiece_Avaiiable I
I 2 I

'-- -'1 Internal aenlorl
f_ack

EJECTOR ELEMENT WORKPIECE AT CHEC~NG UNIT ELEMENT
WP20>eckerStata

I
V

I No Workpiece [II _ 1
"-------r---;n~;,al lenlou

-t_ack

[:O~~Tt~:::~~~J
Internal lenlora
t_ck

I Ejed_Wor1<piece 21
Internal .. n.or.
feedback

t _

WOIUU'IECE AT DRILLING UNIT ELEMENT
WP3DrillState

!
i

I Internal lenlore---r- faedback

\ WOr1<piece_AV8i1abl~ \

1 Internal ..... ore
~------- f_ack

State 'l'ranaition Condition

aT7: (WPlTablaStata-WorkpiaoaAvailabla) I I (WP2CheckarStata-WorkpiaoaAvailabla)
II (WP3DrillStata-WorkpiaoaAvailabla)

aTa: (OI.ckarSta_llatractad)" (DrillSta_llatractad)" (WPIIacaptaclaSta_NoWorkpiaca)

ST9:( (wp2Stata-WorkpiaoaAvailabla) ,,(wpl TabiaSta_oWorkpiaca))

1'1'10:(Tablalta_ablalnpoai tion)" (EjactorSta_llatractad) " (WPiIacaptac1.Sta_lIoWorkpiaca)

IItation/CO!!J?onlnt: 3/INDEXINCI IIOTARITABLI: w-nsTO TEST RIG
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A.7: Handling Arm Component State Transition Diagrams

GRInER EXTEND CYLINDER ELEMENT WORKPIECE RECEPTACLE ELEMENT

nlbt.

WORKPIECE IS NOT BLACK ELEMENT

wnlackltate

--I

GRIPPER ELEMENT

ARM ELEMENT

.tat. 'l'ran.1tion Condition

In ITA'l'Ii caGlIlIATIOII AND_In'IC* D~

~t.tion/coopon.nt , ./IWIDLlMG ......

---.-----.-------- ..------------.--.~-------------.-.- ...

LV-naTO ft." IUCI
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A.8: Handling Arm Component State Combination

HANDLING ARM COMPONENT STATE COMBINATION (statio state)

[ARK (3 atat.a) z GRIPPER (2 atat.a) x GRIPPER CYLINDER (2 atat.a) • 12 atat.a(atatic)1

I*-------------------Defininq Handlinq Arm Statea- 12 States + 1 Error States----------------*I
I/STATE 1

if«Arm&tat ...upatream) "(GripperCylStat ...Retracted) "(GripperStat .--open»
I Handlin'l"l;
)

I/STATE 2
if«Arm&tate--upatraam) "(GripperCylStat ...Extended) "(GripperStat e--opan»

Handling-2 ;
elae
I
)

IlsTATE 3
else if«ArmState--upatraam) "(GripparCylState--Extended) "(GripperSta t..-Cloaed»
I Handlin'l"3;
)

IlsTATE 4
elae
I
)

IlsTATE 5
ela.
(
)

IlsTATE 6
e1.e
I
)

IlsTATE ,
else if«ArmState--Downstream) "(GripperCylStat ...Extended) "(GripperStat.--ope n»
I Handling-' ;
)

IISTATr. 8

if«Arm&tate--upstraam) "(GripparCylState--Retraotad) "(GripperStat a--Closad»
Handling-4 ;

if«ArmState--Down.tream) "(GripperCylStata--Retraoted) "(GripperS tat..-Clo.ed)
Handlin'l"5;

if«ArmState--Down.tream) "(GripperCylStat ...ZXtended) "(GripperStat ...Clo.ed»
Handlin'l"6;

el.e
I
)

IlsTATE 9
al.a
I
)

IlsTATE 10
el.e
I
I

IlsTATB 11

if«ArmStat ... Down.tream) "(GripparCylStata-- Ratraotad) "(GripperBtata-- Open»
Handlin'l"8;

if«ArmState--Sort) "(GripperCylBt.te--Ratraotad) "(GripparStata --Clo.ed»
Handling-9 ;

if«Arm&tata--Sort) "(GripperCylState--Zxtendad) "(GripparStat.--clo aad»
Handlin'l"10;

el.a
I
I

//STATE 12
el.e if«ArmState--Sort) "(GripperCylStata--Retracted) "(GripperState--ope n»
I Handling-12;
)

IIERROR STATE 0

if«ArmState--Sort) "(GripperCylStata--Zxtandad) "(GripperState--Open»
Handling-11 ;

.1••
Handlin'l"O;

State Tran.ition Condition

STATE TRANSITION DIAGRAM

I
Station/Componant: '/HANDLING ARM LU-FESTO TEST RIG
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A.9: Handling Arm Component State Combination Transition Condition

LU-rESTO TEST RIG

HANDLING ARM COMPONENT STATE TRANSITION

I*---------------STATE TRANSITION CONDITION------------*/
if (Handlinq--8)
(1lGoto l(Initial Poaition)-HOve UPatream
)
el.e if(Handlinq--12)
(1lGoto l(Initial P08ition)-Move UPstream
)
el.e if((Handlinq--l) ,,(WPStat ...NoWorkpiece»
(//Standby for WP
)
.1•• if((Handling--l) 55(WPStat..-Workpi.ceAvailabl.»
(11Goto 2-Extended
)
.1•• if((Handlinq--2) "(WPStat...workpi.ceAvailabl.»
(1lGoto 3-Cloae Gripp.r
)
.ls. if(Handlinq--3)
(1lGoto 4-Retracted
)

.1•• if(Handlinq--4)
(

if (WPBlaakStat..-Blaok)
IIGoto 9-HOve Sort if Back. WP

(
)

.1•• if(WPBlaakStat ...NotBlack)
IIGoto 5-HOv. Downstream if BaCK WP
(

)
.1••
(

IIUnidentified workpiece!! ERROR at STATE'
)

I*wp Not Black Cycl. state 5 to 7*1
.he if(Handlinq--5)
(11Gote 6-Extend.d
)
.he if (Hancilinq--6)
(1lGoto 7-Open Gripper

GripperState - ClientTa.k(1,7) I

elae if (Hancilinq--7)
(1lGoto 8-Retracted

I*wp Black Cycl•• tate 9 to 11*1
.la. if (Hancilinq--9)
(1lGoto 10-Extended

.1•• if(Hancilinq--l0)
(1lGoto ii-Gripper Open

ela. if (Hancilinq--l1)
(1lGoto 12-Retracted

.1••
(1lError Reoover IIHandling - 0 (Normally at .ort)
IIStart error recover procedure:Restart to STATE-l(by Extended-Opan-Retracted-

HOveUpstream)
//********Recover done******* ••••• */I

State Tran.ition Condition

STATE TRANSITION DIAGRAM
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Test Rig PLC Function Block Control Application

The control programme for the rig operation is built using the function block diagram

(FBD) contains 110 operations, state transition conditions, network variables, and

communication and HMI interface of components. The control function in FBDs is

implemented with the structure text and sub function blocks which are enclosed inside

the main function block. The machine application is conceived by forming the

interaction among components in corresponding to the defined state transition

condition of components (Appendix A). In the PLC- based control system

implemented in the research, the machine application is commissioned via the PLC

ladder logic sequence and the function block of control elements for the machine

operation in both automatic and manual mode and the operator console.

The following function blocks contain the input and output state variables of sensors

and actuators which are assigned to specific 110 elements via the PLC system memory

allocation (e.g. %mw). These state variables are used by the state transition condition

of the element, which is encapsulated inside the function block, to perform the 110

operation task upon the current 110 state. In this implementation, the function block

has been built and saved into the PLC database which can be accessed for reuse by

other new components, provided the new state variables need to be modified.

In the PLC programming applications, the diagrams have been generally organised

into 3 units labelled by Status, Logic Control and Sequence Control. Status FBD

defines the state of elements by mean of converting 110 memory location (%mw),

which connected to the local sensors, to a global state variable used by the HMI

console and the PLC application. Logic Control FBD defines the control logic (finite

state transition condition) of components in associated with contained elements

(actuator and sensor states) and interlocking components. Sequence Control FBD is

used to control component timing, sequences and actuating the PLC output channels

after the component transition in Logic Control FBD is met.
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B.l: Hopper Component PLC Programming Application

\.(
\ I

I l Wo~~ece J IWo~p~ I I
at magazine allfansfer

iI
status MAGAZINE_STATUS ltatus MAG XFER_STATUS

\

On_o"_at....,. On_OI_,tltu. I
EN ENe EN ENO

\mag~"ln. -:r Im,_, •• ~
-il Input Stalu I- 8_Mag.zln. Input St.tu I- 8_M'ILXfor_R •• ~ \

I

\ j
'- '"

~Ejector logicJ FCI ...Ejld_Cylinder

control FC_EjeCI_C,_

EN ENol-

S.. Magazine I_MIQ... O_E""nd
' ___ Orivo

'_1'111... O_Renot -
._~_A_ble_"_ -

L__ r....

~ E~ctorlI8quel"C8
._E ...... C,.,_ - I_E~Cy"r conlfOl

'-- ,-- MAGAZINE ACTUATOR

._M&Q._X .... _RMdy 1_IAaLX"'_R.ody T",,_Po._AcI-1- Ell ENOr--1 t..._M .....

'-- e""nd CMputMP_.2

-1: Input_A Stllul I_Ejector

Rltract
_.1
-1: Input_B

inltlllJo.ltiQn

- Errot'_rlut

Title: FESTO- PLC FBD diagram Component: Hopper Element: EjectorlMagazine sensorl 1/1
Mag_Xfer_Ready sensor

By: M. Capers! P.Phaithoonbuathong
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B.2: Swivel Drive Component PLC Programming Application

(Iii. ~=S=W=iW=I==~I------:FC:'_~S=~=V~~~==O~------------------------~-----------------------------'\',
driwllogc FC_S~~_~O
control

i ====-__ ~EN ENO - !

I L~ \8_Eject_Cylinder _ Cylinder O_ExtendJ----,

\ iI
I

I
I
I

_10.41
Extend Act_Extonc4---------------; )- ,

%1mwlo.31
R.... ct AcI_R.... ctI--------------..; }-l

"'10L1ow,,,.. o.m

---";1 I
m~D..Jflllaon1-----11 I

l--.----trl~ro-"O-t-----------..-bU-~-.-_..-u'_':::J"

s_Workpi ... _Av.R.bl._Senlor- I_Workpi"'_ O_Ro,,"ct I~
AVlllble_Senlor

AuloTmlnuai-1 I LALrto_Mlnu.'

TRANSFER_ARM

Four_ltago_ACT

At_Extend

arm_Irror I
E"Of!---------{, }-I

\

\
!

Stalul - 8_S~aI_OrIv.At_Rotract

IIO~~:OII~~== ~EN

FCI_Vlcuum

----------------~IEN

VACUUM_PICKUP

Workpiece... ,laitu r- 8_Vacuum

Vaouum_ Control

ENC

Vlcuum ... V.C_O - %""'10.1

TP

S_~aI_OrIv. -
I 1WtY.1 «ive
- - O_V.cuum_OnI-- _J

ENO-

S_V.cuum - I_V.cuum

S_Ejecl_Cylindar - I_Ejocl_Cyllnder O_Eject-

AlrtoTmanuai1 rl--------lII_Au1o_Mlnu.1

FBI_7S

PT

I Wor1<piece
release

logic control
EN ENC r-

c1- --I,.,-O)l-ct_..P_arI _

E,..

1"'" ...-.- ..- ........ .C

Swiwlarm

'(.5 statuI

-11
I '(4
i

\

-1r GRIP _SENSOR
Wor1<pI8C8

\

glipped On_OlCltalue

.tatus
! EN ENO
i

-~_1wnltr •• m

-------II I IN

... -..- ..

I
)

T~OO"..
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-_.. ...J
Component: Swivel arm Element: Swivel drivel Drive sensorlI----------------------------~ Vacuum sensor

Title: FESTO- PLC FBD diagram

By: M. Capers! P.Phaithoonbuathong
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B.3: Buffer Conveyor Component PLC Programming Application

Conveyor I
logic control I

Fel Conveyor

Fe_Conveyor

ENCI-

I
WORKPIECE AVAILABLE WORKPIECE_SEPERATOR

! ---------11 ENOn-OfI-O"':NOr -1EN on-OfI-OIO::o i

L ::~__:n:_ :::_~_~~:~::~:::O~I~:":__%~~-1 ~~:~:~~~_~::j

S_Workpleco_Avlliable_Sonlor I_Workplace_Avllllble

S_Swlvl'_Driv.- I_Tr.n~fer_Ar O_Conveyo f--

Title: FESTO· PLC FBD diagram

---------------1 EN

I_Conveyor_End '_Conveyor_End

S_Rotarv_Toblo - I_Ro"'IY_Toblo

S_Conveyor- I_Conveyor
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I_Auto_M .... u.1

-------------------------------------------r-----_,IEN
1- --1l\%mw}II~-

Conveyor_On
~----II Run_Conveyor

II~~:~~II
~====~--------------------~EN

S_Workpl.c._Sep .....t.r

I Conveyor I
sequence
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CONVEYOR CONTROL

Conveyor_Control

ENCi-
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Separltor_Seq_Control

ENO-
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tr-------------~~r

Component: Buffer conveyor Element: Conveyorl Separator
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Workpiece at separator sensorBy: M. Capers! P.Phaithoonbuathong
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B.4-1: Processing Table Component PLC Programming Application

(
I Processing table

wor1<piece stale

--r~I~'_·O i"7~'_·' --1bUft.)~~-.--------

\ %mwO.' %"",1.0 _1.1
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I
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~.
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I
T .0
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T .1 cheokinlLuntt..
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IndeIJl .. _tmr

271

"_ ject

_12.1

Title: FESTO- PLC FBD diagram Component: Processing table Element: 1/2Indexing table/Ejector
Workpiece received at table sensorl
Workpiece at checking unit sensorl
Workpiece at drill unit sensorBy: M. Capers! P.Phaithoonbuathong
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B.4-2: Processing Table Component PLC Programming Application
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B.S: Checker Component PLC Programming Application
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B.6: Drill Component PLC Programming Application
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B.7-1: Handling Arm Component PLC Programming Application
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B.7-2: Handling Arm Component PLC Programming Application
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SOAP - XML Message Contents

The SOAP text- based message for Web Services state notifications and operations on

the implemented test rig is captured by the Tep/IP protocol analyser as demonstrated

in Chapter 9. In the implementation, four of the distributed embedded control devices

(FTB's) have been assigned with the static IP address (150.1.0.101 to 150.1.0.104),

MAC address (OO-40-AF-00-00-31to 00-40-AF-00-00-34) and Port number (9881 to

9884). A PC (running Service orchestration engine application to execute the services

on the control devices) has the static IP address: 150.1.0.201 and MAC address: 00-

lC-42-93-5F-E4. These values are referenced in the SOAP message to form the

unique message identification and address for sending and receiving SOAP messages

by the DPWS client and server application (Chapter 9- section 9.2.1). The captured

SOAP messages from the test rig operation (as outlined in Chapter 8- section 8.5.1

and 8.5.2) are shown as follows: '

C.l Multicast Probe Discovery Message (from PC to all FIB devices) - 650 bytes

<SOAP-ENV:Header>
<wsa:To>urn:schemas-xmlsoap-org:ws:2005:04:discovery</wsa:To>
<wsa:Action>http://schemas.xmlsoap.org/WsJ2005/04/discovery/Probe</Wsa:Action>
<wsa:MessageID>urn:uuid:aaad075a-3ebf-11 dd-96dO-001 c42935fe4</wsa:Messagel 0>

</SOAP-ENV:Header>

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV=''http://www.w3.orgI2003/05/soap-envelope"

xmlns:wsa=''http://schemas.xmlsoap.org/WsJ2004/08/addressing"
xmlns:wsd=''http://schemas.xmlsoap.org/WsJ2005/04/discovery''>

<SOAP-ENV:Body>
<wsd:Probe>

<wsd:Types xmlns:_O=''http://www.soda-itea2.org/Demonstrator/Hoppe~'> _o :Ejector</wsd:Types>
</wsd:Probe>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The client sends the probe message (attached with the corresponding location in

MessageID) over multicast protocol to look up the ejector element L0: Ejector) on
the network.
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C.2 Probe Match Reply Message (from matched FIB device to PC) - 1203 bytes

<SOAP-ENV:Body>
<wsd:ProbeMalches>

<wsd:ProbeMatch>
<wsa:EndpolnIReference>

<wsa:Address>um :uuld: 00002699-0000-1 000-BOOO-0040af000031 <lwsa:Address>
<iwsa:EndpointReference>

<SOAP-ENV:Enveiope xmlns:SOAP-ENV''''http://www.w3.orgl2003/05/soap-envelope"
xmlns:wsa="hllp:l/schemas.xmlsoap.orgiwsl2004/0B/addressingOO
xmlns:wsd="hllp:/lschemas.xmlsoap.orgiwsl2005/04/discovery"
xmlns:nsO''"http://www.soda-itea2.org/Demonstrator/Hopper"
xmlns:wdp ....hllp:llschemas.xmlsoap.orgiwsl2006/02/devpror>

<SOAP-ENV:Header> .
<wsa:To>hllp:lIschemas.xmlsoap.org/wsl2004/0B/addresslnglrolelanonymous<iwsa:To>
<wsa:Action>hllp:lIschemas.xmlsoap.orgiwsl2005/04/discovery/ProbeMatches<iwsa:Adion>
<wsa:MessageID>um:uuld: 13B14007-1 dd2-11 b2-bc3d-0040af000031 <lwsa:MessageID>
<wsa:RelalesTo>um:uuid:aaad075a-3ebf-11 dd-96dO-001c42935fe4<iwsa:RelatesTo>
<wsd:AppSequence MessageNumbe ...."4" Inslanceld·"O"I>

</SOAP-ENV:Header>

<wsd:Types>nsO:Ejedor wdp:Device<iwsd:Types>
<wsd:Scopes>Hopper<lwsd:Scopes>
<wsd:XAddrs>hllp:1I150.1.0.101 :9BB1/00002699-0000-1 000-BOOO-0040af000031 <lwsd:XAddrs>
<wsd:MeladataVersion>1<lwsd:MetadalaVersion>

<iwsd:ProbeMatch>
<iwsd:ProbeMalches>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The matched element replies the client with the probe match message contained

information on element type, component scope, and address (endpoint reference)

which are used by DPWS to retrieve component metadata and invoke services.

C.3 Subscribe Message (from PC to the FIB device) -1261 bytes

<SOAP-ENV:Body >
<wse:Subscribe>

<wse:Dellvery Mode.''http://schemas.xmlsoap.orglws/2004/0B/evenllnglDellveryModesiPush">
<wse:NoIifyTo>

<wsa:Address>http://150.1.0.201 :BB71/5b2d635B-e24f-11 dd-Bff 5-001 c42935fe4<lwsa:Address>
<iwse:NolifyTo>

<lwse:Delivery>
<wse:Expires>PT1 H<iwse:Explres>

<lwse:Subscribe>
<iSOAP-ENV:Body>

POST 113B 14001-1 dd2-11 b2-bc3d-0040af000031
HTTP/1.1 "Host: 150.1.0.1 01 :9BB1"User-Agent: gSOAP/2. 7"
Content-Type: applicatIOnlsoap+xml; charset"utf-B"Content-Length: 1013"Connection: ctose. ...

<?xml version""1.0" enco dinga"UTF-B"?>
< SOAP-ENV:Envelope

xmlns:SOAP-ENVa''http://www.w3.orgl2003/05/soap-envelope"
xmlns:wsa-''http://schemas.xmlsoap.org Iws/2004/0B/addressing"
xmlns:wsea"http://schemas.xmlsoap.orglwsI2004/0B/eventing"
xmlns:wsman-''http://schemas.dmtf.orgiwbemlwsman/1Iwsman.xsd''>

<SOAP-ENV:Header>
<wsa:To>http:// 150.1.0.101:9BB1/13B14001-1dd2-11b2-bc3d-0040afO 00031<lwsa:To>
<wsa:Action>http://schemas.xmlsoap.orgiwsl2004/0BI eventing/Subscri be<lwsa:Actlon>
<wsa:MessageID>ur n:uuid:5e140B7e- e24f-11dd-Bff5-001c42935fe4<1wsa :MessageID>
<wsa: ReplyTo> .

<wsa:Address>http://schemas.xmlsoap.orgl wsl2004/0B/addressing/roie/anony mous<lwsa:Address>
<iwsa:ReplyTo>

</SOAP-ENV:Header>

</SOAP-ENV: Envelope>

http://xmlns:wsa-''http://schemas.xmlsoap.org
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After the look up process, the client can subscribe (for 1 hour- PTIH parameter) to the

specific element for state changed notification which is sent to the specific address

given in the <wsa:Address> tag.

C.4 State Changed Notification Message (from the FIB device to PC) - 794 bytes

<SOAP-ENV:Header>
<wsa:To>http://150,1 ,0.201 :8873/158cb99e-693b-11 dd-8abd-001 c42935fe4<lwsa:To>
<wsa:Action>http://www,soda-itea2.org/Demonstrator/Ejector/ejector/ejtNotifyEvent<lwsa:Actlon>

</SOAP-ENV:Header>

POST 1158cb99e-693b-11 dd-8abd-001 c42935fe4
HTIP/1.1 ..Host:150.1.0,201 :8873 ..User-Agent: gSOAP/2.7 ..
Content-Type: applicationlsoap+xml; charset=utf-8 ..Content-Length: 546 ..Connection: close ....

<SOAP-ENV:Enveiope xmlns:SOAP-ENV.''http://www.w3.org/2003/05/soapenvelope"
xmlns:wsa ....http://schemas,xmlsoap,orglws/2004/08/addressing"
xmlns:ejtzHhttp://www,Ioda-itea2.org/Demonstrator/Ejecto('>

<SOAP-ENV:Body>
<ejt:NotifyElement>

<ejt:NotifyStatus>EXTENDEO</ejt:NotifyStatus>
<lejt:NotifyElement>

</SOAP-ENV: Body>

</SOAP-ENV:Envelope>

The changed state (EXTENDED) is sent to the subscriber on the service orchestration

engine addressed at SOAP envelope header <wsa:To> section.

C.S Service Invocation Message (from PC to the FIB .device) -1020 bytes

</SOAP-ENV:Envelope>

POST /13814002-1 dd2-11 b2-bc3d-0040af000032
HTIP/1, 1..Host:150.1.0.102:9882 ..User-Agent: gSOAP/2.7 ..
Content-Type: applicationlsoap+xml; charsel-utf-8 ..Conlenl-Lenglh: 773 ..Connectlon: close ....

<?xml version""1.0" encodlng,,"UTF-S"?>.
<SOAP-ENV:Envelopexmlns:SOAP-ENV."htlp:llwww.w3.org/2003/05/soap-envelope"

xmlns:wsa·"htlp:lIschemas.xmlsoap.org/ws/2004/08/addressing"
xmlns:blt·"htlp:/Iwww.lode-ltea2.org/Oemonstrator/Belt">

<SOAP-ENV:Header>
<wsa:To>hltp:1I150.1.0.1 02:9882113814002-1 dd2-11 b2-bc3d-0040af000032<lwsa:To>
<wsa:Action>hltp:/Iwww.sode-ilea2.orgIOemonstratorIBeltibeltiseparalorCmdRequest<lwsa:Action>
<wsa:MessageID> urn:uuid :41c616ba-3e 14-11dd-8430-00 1c42935fe4<lwsa: Messagel 0>
<wsa:ReplyTo><wsa:Address>hllp:/Ischemas.xmlsoap.orglwsl2004108/addresslng/rolelanonymous<lwsa:Address><lwsa:ReplyTo>

</SOAP-ENV:Header>

<SOAP-ENV:Body>
<blt:separatorCmd>

<bll:SeparalorAction>MoveEx1ended</blt:SeparatorAction>
</blt:separatorCmd>

</SOAP-ENV:Body>

The service orchestration engine invokes the (extend) service on the separator element

by sending the SOAP message with a command attribute- MoveExtended to separator

endpoint reference addressed at <wsa:To> tag.
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C.6 Service Acknowledge Message (from the FTB device to PC) - 808 bytes

<SOAP-ENV:Body>
<blt:separatorCmdResponse>

<blt:Separator>MoveExtended<lbltSeparator>
</blt:separatorCmdResponse>

<lSOAP-ENV:Body>

</SOAP-ENV:Envelope>

HTTP/1.1 200 OK ..Server: gSOAP/2.7 ..
Content-Type: application/soap+xml; charset=utf-8 ..Content-Length: 625 ..Connection: dose ....
<SOAP-ENV:Envelope xmlns:SOAP-ENV="htlp:/Iwww.w3.org/2003l05/soap-envelope"

xmlns:wsa=''http://schemas.xml soap.orglwsl2004/08/addressing"
xmlns:blt="htlp:/Iwww.soda-itea2.org/Demonstrator/Belf'>

<SOAP-ENV:Header>
<wsa:To>htlp:lIschemas.xmlsoap.orglwsl2004/08/addressing/rolelanonymous<lwsa:To>
<wsa:Action>http://www.soda-itea2.orglDemonstrator/BeltlbeltlseparatorCmdResponse<lwsa:Action>
<wsa: Relates To>um: uuid: 41c616ba-3e 14-11dd-8430-00 1c42935fe4<lwse: Relates To>

<lSOAP-ENV:Header>

The DPWS acknowledgement/response message is replied to the service invocator as

addressed at the <wsa:RelatesTo> tag to confirm the receipt of the message for the

device operation (MoveExtended). In this SOAP message, the reply address In

<wsa:RelatesTo> is a copy of <wsa:MessageID> obtained from the invocator.
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Web Services Application Programming

The language written in the DPWS client and the DPWS- FTB device (server)

operation including I/O execution, I/O timer, I/O state change report and diagnostic is

based on C. The programming workflow of the client and the server application is

schematically presented as follows:

D.l DPWS Server Application

1 0
r

r--------------j ® r: - r - _nJ_n; '~,---_---L-l -----Ll_
l Error h.ndltnD: I Control operaUona and I I 110 chlnge detect J CD® _-_---_.j 'execution routine

( ';= rS' 1__1_;_J] CO)

1-2: The server application loads the network configuration (JP and MAC Address)

and initialises control tasks for hosted components.

3-4: Then the DPWS components and the DPWS event handler for client

subscriptions are initialised and started on the control device.

5: Having completed the start-up process, the server application is waiting for a

connection to clients preceded by the client call or I/O tasks (state notification).

6-8: When device inputs or outputs change their states, this process calls the DPWS

event handler to publish the device states to the subscribers.
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9-10: The client application sets the connection to the server application for sending

the DPWS command. Then the application parses the received SOAP message

in order to initiate the specific DPWS call function interfaced to VO operations

on the control device.

11: Whilst the DPWS is running, the additional control tasks such as diagnostic

routine, writing a log file and setting control parameters, are operating.

D.2 DPWS client application

,0

f Tho O:WS .. rver
connection

1-2: The client application loads the network configuration (IP and MAC Address)

and initialises DPWS command and notification utility for hosted components.

3-4: The client looks up the device by the service endpoint reference for the

SUbscriptionprocess.

5-6: Having completed the start-up process, the client application is running the

service orchestration engine which is interface to the DPWS event notification

and service invocation. Then it is waiting for the connection from the server.

7: The client application (subscriber) receives the device state change notification

when device inputs or outputs change their states through the DPWS event

handler process.

8: The client application sends the DPWS command (SOAP message) in order to

initiate the DPWS call function on the control device.

9: Whilst the DPWS is running, the additional control tasks such as diagnostic

routine, writing a log file and setting control parameters, are operating.
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The following figures show the sample codes implemented on the client and server

application including DPWS configuration and component initialization, DPWS

lookup service and subscription, DPWS state notification and service invocation,

Service orchestration engine, and I/O state change detection and device operation.

Server Applications

D.3 DPWS Component Server Initialization
;. _'~H' 'M H·_H·~· H·H' HOII'I:' "& l'I. • COM 'It u N 'f.: N T ------------.---.- •.---- •.-'-/

I" cr eat.e In I!Ije~t"t devace elass carrying device lI\etadata .,
hOevHodel • dpw._cr •• te_dev1ce_llodel () 1

1•••• "Ejector";
DPWS SET STR ATT(hDeVHodel, DPWS PTR MODEL NAME, Ue)1
OPWS -SET -STR -ATT (hDevModel, DPWS- STR -MODEL-NUMBER, "ST-101 It);
DPWS- SET- STR - ATT (hDevModel, DPWS - STR - MODEL- URL, ''http://www •• chneider-electric.colD/SmartTrap/sT-lOl/tact.h •• t.htJnl'') I
OPWS -SET - STR - ATT (hDevModel, DPWS- STR -PRESENTATION URL, "index. html",; I/c)k!
11.• -. "Schn;ider Electric SA"j - - -
DPWS SET STR ATT(hDevHode1, DPWS PTR ~UFACTURER, Us) I
OPWS:SET:STR:ATT (hDevModel, OPWS:STR)WIDFACTURER_URL, "http://www.schneider-electric.com" ) I

I'" ceeet.e • ee rvdce class cllrryJng the ejectoJ: por:t type -r
hSerVClau • dpwa_cre.U_lervice_c1asa ();
opws ADD PTR ATT (hSerVC1 ••• , DPWS PTR PREFIXED TYPE, 'EjectorPortType) I
DPWS- ADD- PTR- ATT (hSerVCh,u, DPWS- PTR_WSDL, 'H~pperW.dl );
DPWS_ADD _ PTR_ATT(hServcl DPWS_ PTR- HANDLING FUNCTION, (con.t void*) 'hop_ •• rve_cequeat);

DPWS:SET:STR:AT'l' (hSerVCl.l OPWS:STR:IO. fturn'7.d.Hopper") I

,. Ro?\]'iater the ee rvt ce ch.ss to tne cevfee Clfl3..! "/
dpwa register service cla •• (hDevModel, hSerVCla •• ),
1* c;M.te " t;.kJ) .i.ni!lt:;n-::fI <)f t.he same <:111.'$$*1
hLaHopper • dpwa_cr •• te_deviclI(O, hOevt4od.ll, /* the id must be unique ln the physical lOCo.l eeva ce ....,
DPWS ADD PTR ATT thLaHopper, DPWS PTR TYPE, 'EjectorTypell
OPWS:SET:INT:AT'l'(hLaHopper, DPWS:INT:METADATA_VERSION, 1) I /* NO'l"E: $h()ul.<1 (:h.ln~le eVetytl.lOO .. c:tllll\!Jt! Oil tht! <ltIV1<:1I 1mll.!l(!tu Drit'19

Ul;p.t.a.dat.lt ·1
DPWS_ SET _ STR _ATT (hLaHopper, DPWS_ STR_ SCOPE, HOPPER_ SUFFIX _SCOPE );
1 •••• ftEj ector Serverft I

DPWS_SE'l'_STR_AT'l' (hLaHopper, DPWS PTR FRIENDLY NAME, US)I
DPWS_SET_STR_ATT(hLaHopp.r, DPWS-STR _ FIRMWARE-VERSION, "2 .1xxft);
DPWS_SET_STR_ATT(hLaHopper, OPWS-STR-SERIAL NUJ.mER, "5608000P)i
DPWS_SET_PTR_ATT(hLaHopper, DPWS:PTR:USER_DATA, 6EjectCyl1nderStatud}; 1* in$taMe cieVlce apecahc lntor;matl.on -/

dpw. _enable _ device (hit. Hopper) ; /" J:lupaI1!IS hl!llllo and activat~fJ the device ·1

BY: P. Phaithoonbuathong DPWS component server initialization

D.4 DPWS Event Subscription Handler

II S~rvlce endpoint used as an evtnt 50urcIO fot eV<!lot notltll;atl.On
dpw. client init (ieventO .dpws, NULL) I

DPWS:SET_PTR_ATT(hLaHopper. DPWS_PTR_USER_OATA, leventOl, /1 l.not.;anCft dev.l~e "p"cUlc .int~OJ·mclt.l.on
.ventO •• ndpointRe to • dpw. _get _ .ervice _ by_cla .. (hL.Hopp.r, hSerVC1 •• s),

BY: P. Phaithoonbuathong DPWS event subscription handler

D.5 DPWS Event Notification Service

1*-" - - - - - - - - - - - -" - - - - - - - - - ··nT'WSNOTU'l(;A1'lC)N~'---------'-------'--'--' ,

int dpwaArlllNotify(H.ndlinqAtmStatu.l)
I

.wi tch (HandlingArm8tatusl)
I
cue Downstream:
brei k~·ndlinqNoti tyElliment. handlingArIllS ta tu. • hll_ handl1ngArlllStatu. _ DownatreUl_ POlitionl

case Up.tre ... :

bre.k~andlin;NOti tyElement. handlingArmSt. tu. • hl._hlndlingAlmStatus _ Upstream _Po.1 tion:

ea •• Sort:
handl1ngNoUtyElelllent.handlingAraStatus • hl. handlinqAnaSt.tu. Sort PoslUon,

b:e.k, - - -
ca.e ARM ERROR:

handlingNotityElellent.handlingArta.St.tu •• hla handlinqAnDStatu. ARM ERROR,
break, - _ -

::~~;:o~;t'i_hl._handlinqNotitytvent ('eventO .dpwa, eventO. endpointRetO, 6handlinqNotityElflftlent I I

BY: P. Phaithoonbuathong I DPWS event notification service
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D.6 DPWS Component Provided Service

j~--, ••••.•_--._•.···----RA.:l~:.::::"t; Alt·: Ct::c.1 ('p'!!1·,,:-1;.)n 'Jt.1':' \.":'/ ..-- .. ------------- ..•.. - ..- •. ------- .. ---:
int _hla_handl1nqCllld (.truct dpw.· elpw••• n",. bh_bandl1n91.naAct1on hla_bandl1nqArllo\ctionEh •• ne , .uuct _hla_"' •• pon .. EhMnt ·hla_R •• pon .. EleJll.ntl
(

NlUlOrd.r++1
hl. R.Jpon .. Ele •• nt->Ord.rID' HumOr-d'rl
hll - R•• ultEl.llllnt.Ord.rID • hla Rupon •• tl.m.nt->Ord.rlDI
hla=R.. ult£l'III.nt ••llR.qu .. tSt.~ •• hla_R'quUUutu._ACKI
! /t-\tI!.,ilq., r'l,~fI:; vIIi 1I~1:r:':'W;'fI';'''f\!M:'\t

dpw._nOtity_bl,_handl1nqcadAck (,pStU .• ->dptf', p5tatl->.ndpointR.fO, 'hla_R .. "ltEl'Mntl I

twitch {hla_handlin9AnlActionEl._ntl
(

dd.ult I

ca .. Ill_ handl1nqArDAction Move OoWIUtn •• l

-Mov.AraIDown.tr O, -
!/F,~II\.;lt .::ii.ltt' .1.e-ci..';l., .. ,.ut
hla_lt .. ponl.Elelll..nt. ..>alloperationR.lult.St.at.ul • hla_Op4Irat.1C1n1'..lvlt.st.at.ul_DONEI
dpw._andl'pState">dpw1l,

cu. hob h.ndlin9Ar~tion )Iova Up.traalll.l
_ Mov.ArIllUplt.r ... (1;- _

: !!'c.... .",;lt. ,);:.,.~,;.~wlil'tjr;...rr."nt'.
hla_lt .. ponIlElalll.nt.·>allOpa rat. ionR .. ul tSt atu •• hla_ Cpa rat iClnR•• ultStatua _OQU:,
dpw._.nd (,pStau·>dpwa) I

Draakl

cu. hola_handlin9Arm.f\c:t1on_Hova_Sortl
MoVIArllSort ( ) I
: :Fe~"'1 Lt. a':l::\,)Wl~dqetten1;
hla_".lponll£la •• nt->allCparationR •• ultStatu •• hla_Cparat10nR •• 1.IltStatul_DCNt.1
dpw._and ('p5t.au->dpwll) I

I/Ttar"llt a:;;'!l(',wl,u:lqAlI'tllnt.
hla_R .. pon .. El ... nt->allOptitaticnl\ •• ultStatu •• bla_OpIntioftl\ •• ultStatu._FAIL1JkE1
dpwI_lnd ('pStau->dpw.),

BY: P. Phaithoonbuathong DPWS c:omponentprovided service

D.7 Component 1/0 Operation

trGPIO Set (8, rAts!), IIc:h4lnn~1 01'l UPlltr:f!.lnl po.,
trGPlo:s.tI9, TRUI) I IIchannel 1J9 Vuwl)streiW p,'"
J -Readl.ng- Arm input Ih!n6"r" J
d.

I

, ..- --- - - - ------- - -- - - ------DEV1CE I/o OPERATIOIl------------- -- --------.,
1nt Hov.ArmDown.tn .. ()
(

.en.orl·trG'IO Get (1) I IlclHmnel OJ At uprotream SetHWt

.en.or2-trGPIO _Get (2) I Ilchannel 02 At down.stuam. ecnr.or
)while , t (.en.orl •• rALSE'nn.or2··TRUE))'

I-arear. the J\RM wnen p06ition uach~dll
trGPlo_s.t(8, TRUll, Ihhannf!l oa Upatre.ilnl ):>.:..
trGPIO_S.t{9, TRUE)I lh:lItilUltll 09 DC)Wlltltrtl4m p''_'

BY: p, Phaithoonbuathong Component VO operation

return 0,



AppendixD: 285

D.S 1/0 State_Change __and Error Detection

11.-----oetactinQ 10 chang •• (CALLED FROMTHE MAIN I\OUTINE)----------·II

1nt IOSPY (void)
(

do
(
•• naorl-trGPIO Gat (1) I
•• naorZ-trGP:IO-Gat(2) ,
•• naor3-trGPIO -Gat (3) ,

II HANDLING ARK STATE

if C•• naoZ'1 __ rAloSE" •• naor2--TROE ••• naor3--rALSE)

(
HandlingArmStatu.l - Downatraaaal

.1 •• if (•• naorl __ TRuE, •• naorZ--rALSE" •• naorl--rALSE)

(

al •• if (•• naorl __ rALSE" •• naor2-I'ALSEIo •• naor3--TP.UE'

(

)
al •• if (•• naorl __ rALSE" •• naor2--rALoSE, •• naorl--FALSE)

(
if ( (HandlingArmStatu.l--Mova_Downatr •• m) I I (HandlingA.rmStatu.l--Mova_Sort) II

(HandllngArmStatual--Mov. Upatr •• m»

(Ilatill in moving atat.(pravioualy from thl. loop) 119nor•t -

)
al •• I/Start from at.tic pet.itietn
( Ilat Down.tra .. «diraceion-2)

it« (HandlinqArmStatu.l -- Down.tr.am)" (Diract1on--3})

HandlinQArmStaeual - Mov._sortl

.1 •• it «Handlin~ArJftStatu.l -- Down.traam) 6 (Diraction--l»
(

HandlinCj\lArmStatu.l - Nov._Up.traam,
l Ilat Sort (dir.ction-3)
.1•• it «Handlin~ArmStat\ul -- Sort' 6 (Direction--l»
(

HandlinCj\lArmStatual - Move_Up.eraaml
)
.l.a if ({Handlin9ArmStatu.l -- Sort) 6 (Diraction--2) )
(

HandlinvArmStatu.l - NOV. Down.tr.a.,
)I/at Up.tr.am(dir.ction-l) _
al •• it {(H.ndlinQlArmStatual -- Upatraam) 6 (Diraction-Z»

Handlin9ArmStatua1 - Move_Down.tr •• m,
a1 •• it ({HandlinqArmStatu.l -- up.tream16 (Diraction--ll)
(

H.ndlin~ArmSt.tu.l - ARM_&IU~.OR'

/1. &nter in9 Noti f ication-------------------------------------·II

if (Handli. n9ArmStatual 1- Pre_Handl inCj\lArmStatu.l)
(

Pr._Handl inQArmStatu.l-Handlinc;rArmStatu.ll
dpw.ArmNotify IHandlinqArmStatual),

,while (l),

return 0,

BY: P. Phaithoonbuathonll 110 alale change detection

Client Applications

D.9 DPWS Client Initialisation and DPWS Event Subscription

/I IWWS ,:l::i.unt :i.oit:.;.ali: ...ut cu
dpwII_init (),
dp",._clhnt_initUdpws, NULL)I

i I -----)0 8(19.1.n f!~VgN1'S .'I.nl,t.l.il1.:Ut!l
II 1nlt1al1zlt DPW5 $liIr ....er tvr ev*nt ,.ception
DPWS_SE1_INT_ATT(DPWSCOn_~EGISTAY_HANDLE,DPWS_INT_BOOT_SEQ.0) I
DPWS_SEt_INT_ATT(DPWSCOIlE_REGISTAY_HANDLE,DPWS_INT_HTTP_PORT,port),
DPWS_SET_PTR_ATT(DPWSCOAE_REGISTAY_HANOLE,DPWS_PTR_CALLBACK_HELLO,davice_join!nv) I

DPWS_SET_PTR_ATT(DPWSCORE_REGISTRY_HANDLE,DPWS_PTR_CALLBACK_BYE.devic._l •• vinv) t

hTkEndpcint - dpw. cr •• te endpoint I),
DP'WS_ADD_PT"_ATT(hTkEndpoint, DPWS_PTR_KANDLING_FUNCTIONrhop_hlndle_event)'

if (initServer (6Ullt.n dpwa)I (
tprintf(atde;~r ·Could not initiaUze DPW!.. rv.r ••• \n·),
exit(l) ,

)
tkEndpoin~ • dpw._q.t_loc ..l_.ndpo1nt_ut (dpwa_Vet_dehult_ •• rvic:._port (hTkEndpoint.) ) ,

if Iboots.rvarU,lht.n dpw.)) I
fprintf latd.rr. ·Could not boot. •• rver ••• 'ft·),
.xitll) I

II -< I:Iv1 EVENT.!. :U\l. tl. ..l.l ze

115~~n·11:"IIl1b:u:r:1pr.inn
invokationEPR • dpwa_v.t_d.fault_endpoint_r.ter.nc.( 'dpwl, •• rv!c.Proxy),
.ubacManav.c • dpw._.ndpoint_c.f_d.up(d.pw._event_.ub.c~ibe('dpw., 1nvok.t1onEPIt, tkEndpoint, NULL,NULL, 6durat1onl) I

I DPWS client initialization&: DPWS event lubseriptionBY: P_Phaithoonbuathong
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D.IODPWS Service Invocation

/"
DPWSClientTask function invoking server ices

286

int DPWSClientTask(int cm.dCommand)

I

it ICDldCommand-- 0)
command - MoveExtended;

switch (command)
~, HOPPER -----------//

case MoveExtended:
/I call Open Trap

it «status _ dpws_call_hop_ejectorcmd(&dpws, invokatlonEPR, NULL,
hop_ejectCylinderAction_MoveExtended, 'HopStateCmd» DPWS_OK)

D.12 Service Orchestration Engine (Finite State Machine)

\ -
Service orchestration engine

printf("\n<- EXTENDED COMMAND -----> "),
printf("\n Ejector Extend command response :"),
print! ("\n Number 10 : %d",ResponseElement.OrderID) J
PrintMessaqe (Response!lement. allOperationResultStatus) ,
Ilcommand responsed from a server: DONEor fAILURE

else

print! ("'n<- Communication ERRORwith Ejector "),

breakl

command-Idle~
dpws_release yroxy (serviceProxy) I
dpws_end (&dpws) ~

return 01
IIEnd ClientTask function

DPWS service invocation
BY: P. PhaithoonbuathonsL- -=- .__ L-- ..-------

D.ll DPWS Device and Service Discovery

II device lookup, discovery
device Proxies - dpws lookup ('dpws, SO HOPPER NS, HOPPER DEVICE TYPE, NULL, 'nbDevices} J
Ilservice endpoint r;rerence - - --
servieeProxies • dpws qet services (&dpws, devieeProxy, SO HOPPER NS, HOPPER_PORT_TYPE, .-nbservlc •• ),
I I invokation service-endpoint reterence --
invokationEPR • dpwS_get_detault_endpoint_reference ('dpws, service Proxy) ,

BY: P. Phaithoonbuathon8 DPWS device and service discovery

,. -------------------------------------"1
/" FINITE STATE TAANSITION "I

1"-----------------------------------------------------------------------------------------"'
int Main ()
{
do
(

IIEJECTOR ELEMENTEject tiP by Rotracting Cylinder
if «HagSt.te--Full)" (HagXState--Empty)" (EjectorSt.te--Extended)" (ArnlState--Downotream))

I
IIMove Retracted call ClientTask(l, 1),

- EjectorStat •• ClientTa.sk(l, 1), IIMoving Ejector

I
IISWIVEL DRIVE ELEMENTPick up WP by Moving Arm Downstream Cylinder

it' «HagXstate--Full)" (EjectorState--Retracted)" (ArmState--Downstream.»

I
IIMove arm to Maq call CllentTask(2, ~),

ArmState • CllentTaak(2,5), IIMoving Arm

I
Iwhile (1)

BY: P. Phaithoonbuathong
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Packet Analysis of DPWS Operations

The average packet received time analysis of a single DPWS operation (E.1- Service

invocation, E.2- Device state notification) is illustrated in the following tables. The

data has been captured by a packet sniffer running on the PC to analyze the packet

size and received time between the DPWS client (Host A- a PC) and server (Host B-

FTB) application.

E.1 Average Time Analysis of the DPWS Service Invocation with a Reply
Message

PlOkl! Dolo
at.. told

(lyIOIl (lyIOIl

In~ioIpockl!
r_YICIume

(mil
Seq No. Dilqr.. \

Aok No. PlIOkl!SYNohronluotlon (1oq,Aok)
) HOST A I HOSTB !

I I 71 0 I 0 0 HootAHnds. TCI'sync:tuoriZopacket 10 3878 I 0 lend I -----,.. HOltBreceivedthopacket hom Holt AJ
HoItBtolniUaII._ ~ 1+1<lei 10 stilt tho connoction

Timedillwonl-pocklll (m,' I_I

I, 2 Holt Brepll. HostAtoI_edge the I'" 3'77 ,__ 1+2Hnd HostBllpilesHOltAVoithNewSeqond I
eo 0 0.388 0,388 'equeJ! on the coMeOtion 8001 ~ V· ,ICY 1+30:- AcI<<Seq(Aj.'

li--,--+-eo-f--+I--l,-,'-e-+----+--H-OIt-,,- .. -neIII-AcI<-nowI-e-dge-to-HOI-tB-;-t--
38
-
77
---:7K~I"-e002--t:"nd ~ HootA'opiin with Seq<Acl<1::J1lind

o 0.727 lhIconnectionilestalJilhed O,Oataloac I -----,.. 1+5 ,_ Aclr*S8q(B).'
1-, ---+--f--+----+----+------------t--=w-==T-r~-t..Hnd 1+8 HootAsends • packolVOthSeq' Soq(Aj 'I

1 4 Ilei 815 1.1<18 0,033 HoItA_.S~ ..... ageIOHOII8 I 3877 eoo2 -----,.. 1+7 • dill 100d.ndth• ...,..Ack
81510111101 I _ • .,pectedIl¥8~1

I
··----t-----+;:.HoIt~:::;·A·:-,-e-:ndoonOChorpOCkitiOHoIi8.tritf·'f ~ .. nd 1+1 'HosiAienci.I**.. oIVOt.. hSIq'Soq(AI

5 eo 0 1.153 0.004 .:::==.II~~~~-:;I I 4482::V 5002 ---.. 1+8 "'" .dllI~""!=::t':;eAck

i e eo 0 Mnlage_ I "" '" I t+l0 ..
nd

HoItBoctcn~~HoItAvOth8eqo I
i 2,005 0,853 HostBlcknowledgaHostA, Oeg:I~ 4~g3 ,_l+l1~ AcI«A)Ind_8eq(A)+I:

I 7 HoilB , .. IiiMiidnO. 'OStiOnH-S-ru 1+12lind Thono".. '" • mll .. go l,omi ~oA
810 758 11.301 8,285 ..... age 10HOltAandconftrm the eD02 4583 ~ VOth1111Seq. Seq(B)'data Iold ond tilt

~-+_-+-_+---_+---_+___;,"'MOCI'on-l'omHOItAIOB 758 DllIlOIe I I,ICY 1+13 .. meAd<

I, • HOltIi .oneillI packettoHollAthot 1 ~ -V- 1+14Ie", HOII8linda • packet WIthSeq- Soq(BII
eo 0 11.307 0,005 ""I" .. t.. torminotlon01theconntctlon 8751., 4883 ~ • dtlaloodlndth .. lmtAck I

r' _-t __ t-_+- +- +- __ -i.h""'--~_BIOA " / ,ICY 1+15 • .,pectedt7tA I

I. 50 0 13,013 Mnlage,totIvod; '.'3 I< ',_ .. ndl+18 Mlllage,ooeIvld: ~AreplI1I8"'It>J
• 1.770 HostAlOknowledgaHostBlOterminltlthl _. 5758 ---.. 1+17 Seq<Acic(8)lnd_Soq(B).,

r--+----r---t------t-----tu===~~~~~~~IOA '1CY.t--- ~
! ":::'.:.:;~::...::~'!,~=B';III 1803 0 IlIndl+1•. , > Gone'lI.tl1lnewSeqlndHtAcl<-O i
~ _ .... __. ._. .. ..... ,-- _ _:;III=rt,-,lht.:=.;.,;newcc..:.TC.:..P...:con=--necti~on,,_--l.... ,,_ .. '-- __ ~ .._ . ___'

I ' •• kl! D.II Initio!pookl!
' •• kl! II.. load _.ed .....

(ljiIIl (lyIOIl (m"

E.2 Average Time Analysis of the DPWS State Change Notification
Dlag,.m

HostBsencll. TCPsynchronIz. ptcktl to llno I Holt Aror:olYedIII.pllCt<et homHostB10
HootAtoinitlat•• connoc:tIon 4001 ~' -----,.. 1+1 _tilt connection

r---t---+---~------t-------t-------------------+-----~~--~ ""'r-----------------~
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connection~omHostAto8 -- 1+17 Seq. Acic(AIandAck' 0M'iUQio.n4Irlctivt II cOl1lII.tOilWiii"bOa. . .. . -1- ---1

II connectIonl•• _d 10r Holt Aand B10 1001 lind
_the newrcp connection 1+11 " GIn.,ata the newSeqandIotAck-O

.- _.... . '- __ -l -'

0,402

10

80 0402

eo 0,728

7M 740 2,152

eo 2,155

10 3,341

158 114 5.045

eo U57

eo 5.042

I

11m.diflo,onI-poo_(mll
Ivon! IoqNo. AokNo. , .. ktl IYNOhtonlUUon (loq,Ac",

HOST 8 I HOSTA

0.005

0,012



ApPENDIXF

Publication Papers

1. P. Phaithoonbuathong, R. Harrison and C. S. Mcleod, "A Web Services Based

Automation Paradigm for Agile Manufacturing," EPSRC 4th International

Conference on Responsive Manufacturing (ICRM) on Agile Manufacturing

System organised, 2007, School of Mechanical, Materials and Manufacturing

Engineering, The University of Nottingham

2. P. Phaithoonbuathong, T. Kirkham, C. S. Mcleod, M. Capers, R. Harrison, R. P.

Monfared, "Adding Factory Floor Automation to Digital Ecosystems; tools,

technology and transformation," IEEE International Digital Ecosystems and

Technologies Conference (IEEE- DEST), February 2008

3. T. Kirkham, D. Savio, H. Smit, R. Harrison, R.P. Monfared, P.

Phaithoonbuathong, "SOA middleware and automation: Services, applications and

architectures," 6th IEEE International Conference on Industrial Informatics 2008,

(INDIN 2008. ), 13-16 Ju12008, Industrial Informatics, page 1419-1424 (2008)

4. P. Phaithoonbuathong, R. P. Monfared, T. Kirkham, R. Harrison, A.A West,

"Web Services- based Automation for the Control and Monitoring of Production

Systems," Paper has been accepted to International Journal of Computer

Integrated Manufacturing, 2009

5. Y.S. Park, T.D. Kirkham, P. Phaithoonbuathong, R. Harrison, "Implementation

Agile and Collaborative Automation using Web Service Orchestration," IEEE

International Symposium on Industrial Electronics (ISlE) Conference, July, 2009



[gl]

[g2]

[g3]

[g4]

[g5]

[g6]

[g7]

[g8)

[g9]

[gIO]

[gIl]

[gi2]

[g13]
[gI4]

[glS]

[gI6]

[g17]

[gI8]

[gI9]

ApPENDIXG

Website Reference

[g20]

"Global XML Web Service Architecture," Microsoft Corporation© Whitepaper,
October, 2001, from:
http://www.gotdotnet.com/team /XMLwebservices/
Global%20XML%20 Web%20Services %20Architecture%20 White%20Paper.doc
C. Kaler, "WS-Security," Microsoft Corporation, Inc, April 2002, from:
http://www-128.ibm.com/developerworksllibrarylws-securel
"Open Ethernet connectivity via ModbusffCP _ Product note," Honeywell Inc.
Online articles, from:
http://www.dcab.se/HC900/Manuals/hc900_modbus _tcp _interface.pdf
A. Vee, "Making Sense of the COM vs. CORBA Debate," SAGA software, 1999,
from: http://www.omg.org/news/whitepapers/index.htm
"a corba primer," Segue Software, Technical Whitepaper, from:
http://www. omg. orglnewslwhitepaperslseguecorba.pdj
A. Skonnard, "Understanding SOAP," Microsoft©, March 2003, from:
http://msdn.microsoft·comlwebserviceslwebservices/
S. Schneider, G.P. Castellote, and M. Hamilton, "Can Ethernet Be Real Time," Real-
Time Innovation (RTO Whitepaper, from: http://www.vmecritical.com/artic/elid?607
Dr. G. Turnbull, "Is Ethernet the answer to the Fieldbus Dilemma?," Online
Articles, from:
http://128.242.40.200Iartic/eslgeorge.asp?index=ieintro%2Etxt&title=Introducing
%20Indu
N. Quaine, "SOAP Basic 2: Web Services and the Service Web," Online articles,
from: http://www.soapuser.com/basics2.html
N. Matta, B. Eynard, L. Roucoules, and M. Lemercier, "Continuous capitalization of
design knowledge," Acacia Publication, France, from:
http://www-sop.inriafr/acaciaIWORKSHOPS/ECAI2002-0M/Actes/MaIta.pdf
A. Radiya and V. Dixit, "The basic of using XML Schema to define elements," mM
®, Online articles, August 2000, from:
http://www.ibm.com/developerworks/xmlllibrary/xml-schema
David Excoffier, Fabien Couble and Ludovic Mussier "WS-Management module for
DPWS stack- Technical Specifications," Soda- ITEA Project, December 2008, from:
http://www.soda- itea.orgIDocuments/objectsl fllel180018090.54
"XML Schema," W3C® Online articles, from: http://www.w3.orgIXML/Schema
"Revolutionising Plant Automation -The PABADIS Approach," PABADIS
Consortium Whitepaper, October 2001, from:
http://www.uni-magdeburg.deliaf!cvslpabadis/downloads/final_deliverable _6_3.pdf
"OPC Overview- OLE for process control," Emerson Process Management ©
Whitepaper, March 2007, from:
http://www.easydeltav.comlpdIWP_OPe_ Overview.pdf
N. Quaine, "SOAP Basic 3: SOAP Messages," Online articles, from:
http://www.soapuser.comlbasics 3.html
Dr D. M. Anderson, "The end of the line for mass production: No Time for Batches &
Queues," Online articles, 2003, from: www.build-to-order-consulting.com
"Monitor Pro supervision software," Telemecanique, Online articles,
http://www.idom.ruljiles/Schneider/lnjoIMonitor _Pro/Catalogues/Catalg_e.Pdf
F. Curbera, W.A. Nagy and S. Weerawarana, "Web Services: Why and How," mM
T.J. Watson Research Center, August, 2001, from:
http://www.research.ibm.comipeoplelblbthlOOWS2001 /nagy.pdf
"Industrial Ethernet: A Control Engineer's Guide," Cisco Systems Inc. Whitepaper,
2008, from:
http://www.cisco.com/web/strategy/docslmanujacturing/industrial_ ethernet.pdj .

http://www.gotdotnet.com/team
http://www-128.ibm.com/developerworksllibrarylws-securel
http://www.dcab.se/HC900/Manuals/hc900_modbus
http://www.omg.org/news/whitepapers/index.htm
http://www.vmecritical.com/artic/elid?607
http://www.soapuser.com/basics2.html
http://www-sop.inriafr/acaciaIWORKSHOPS/ECAI2002-0M/Actes/MaIta.pdf
http://www.ibm.com/developerworks/xmlllibrary/xml-schema
http://www.soda-
http://www.w3.orgIXML/Schema
http://www.uni-magdeburg.deliaf!cvslpabadis/downloads/final_deliverable
http://www.easydeltav.comlpdIWP_OPe_
http://www.soapuser.comlbasics
http://www.build-to-order-consulting.com
http://www.idom.ruljiles/Schneider/lnjoIMonitor
http://www.research.ibm.comipeoplelblbthlOOWS2001
http://www.cisco.com/web/strategy/docslmanujacturing/industrial_


[g21] D. Gisolfi, "Web services architect, Part 3: Is Web services the reincarnation of
CORBA?," IBM®, Online articles, 2001, from:
http://www.ibm.com/developerworks/webservices/librarylws-arc3/

[g22] S. Patil, "Integration Approaches: Web Services vs Distributed Component Models
PART II," IONA Technologies, Online articles, April 2003, from:
http://soa.sys-con.comlnode/39719

[g23] M. Henning, "Middleware Matter: Rise and Fall of CORBA," IONA Technologies,
Online Forum, June 2006, from: http://blogs.iona.com/vinoski/archives/000307.html

[g24] N. Murphy, "Introduction to CORBA for Embedded Systems," Online articles, from:
http://www.embedded.com

[g2S] M. Link, "SOA? CORBA?," Online forum, May 2007, from:
http://www.theserverside.com/news/thread. tss ?thread _id=45 613

[g26] T. Baer, "SOA in the Real World," CBR, Online articles, February, 2006, from:
http://www.cbronline.com/article_cbr.asp?guid=FC75BE31-C48E-45A5-A74F-
18A43F601727

[g27] R. M. Bell, "An SOA Alternative to CORBA," Ratheon Network Centric Systems
Whitepaper, June 2007, from:
www.omg.org/news/meetings/workshops/RT-2007/08-1_Bell.pdj

[g28] T. Sturgeon, "Globalization and Jobs in the Automotive Industry," the Alfred P.
Sloan Foundation research project, November 2000,
http://web.mit.edu/ipclpub/ications/pdjlOO-OI2.pdj

[g29] L. Tiezheng, "Global auto makers customize China products," China Economic Net,
2007, from: http://en.ce.cn/lnsight/200712/JO/t200712JO _13863417.shtml

[g30] S. Metzger, "Next Steps in the Small, Task-Oriented Vehicle Revolution,"
International Market Solutions, 2007, from:
http://www.iuvmag.comlarticles!jan07-3.htm

[g31] Professor A. P Graves, "Global Competition and the European Automobile Industry:
Opportunities and Challenges," Online articles, from:
http://imvp.mit.edu/papers/93/Graves/graves-l.pdj

[g32] D. Oetinger, "Automotive Supplier Excellence: Achieving Continuous Cost
Reduction," Oracle Whitepaper, October 2002, from:
http://www.oracle.com/industries/automotive/ AutomotiveSupplierExcellence(C 1422 3-
01).pdj

[g33] M. Holweg, and A. Greenwood, "Product Variety, Life Cycles, and Rate of
Innovation -Trends in the UK Automotive Industry," Lean Enterprise Research
Centre, Cardiff University, from:
http://www.3daycar.com/mainjrame/publicationsllibrary/ProductVariety.pdj

[g34] "Open System Architecture for Controls within Automation Systems," OSACA II
Final Report, April 1996, from: http://www.osaca.org/related_projects/osaca_2.htm

[g35] "XLON XLDV32.DLL Programmer's Guide," DH electronics, Online articles,
October 2005, from: http://www.dh-electronics.deleindex.htm

[g36] Prof. D.B. Rijsenbrij, "Component-based software development," Advance Solution
Development, Online articles, from:
http://home.hetnet.n[l-daanrijsenbrijlprogxlenglchapter8.htm

[g37] "TCP Connections," InetDaemon Enterprise, Online articles, from:
http://www.inetdaemon.com/tutoria[s/internetltcplconnections.shtm!

[g38] "TCP 3-way Handshake," InetDaemon Enterprise,Online articles, from:
http://www.inetdaemon.com/tutorials/internet/tcpI3- way _handshake.shtm!

http://www.ibm.com/developerworks/webservices/librarylws-arc3/
http://soa.sys-con.comlnode/39719
http://blogs.iona.com/vinoski/archives/000307.html
http://www.embedded.com
http://www.theserverside.com/news/thread.
http://www.cbronline.com/article_cbr.asp?guid=FC75BE31-C48E-45A5-A74F-
http://www.omg.org/news/meetings/workshops/RT-2007/08-1_Bell.pdj
http://web.mit.edu/ipclpub/ications/pdjlOO-OI2.pdj
http://en.ce.cn/lnsight/200712/JO/t200712JO
http://www.iuvmag.comlarticles!jan07-3.htm
http://imvp.mit.edu/papers/93/Graves/graves-l.pdj
http://www.oracle.com/industries/automotive/
http://www.3daycar.com/mainjrame/publicationsllibrary/ProductVariety.pdj
http://www.osaca.org/related_projects/osaca_2.htm
http://www.dh-electronics.deleindex.htm
http://www.inetdaemon.com/tutorials/internet/tcpI3-



