Loughborough
University

v

This item is held in Loughborough University’s Institutional Repository
(https://dspace.lboro.ac.uk/) and was harvested from the British Library’s
EThOS service (http://www.ethos.bl.uk/). It is made available under the
following Creative Commons Licence conditions.

@creative
commons

C O M O N §

Attribution-NonCommercial-NoDerivs 2.5

You are free:

e to copy, distribute, display, and perform the worlk

Under the following conditions:

Attribution. vou must attribute the worl: in the manner specified by
the author or licensar,

Moncommercial. ¥ou may not use this work for commercial purposes,

Mo Derivative Works. vou may not alter, transform, or build upan
this waorl:,

« For any reuse or distribution, vou must make clear to others the license terms of
this worls:,

o Anvy of these conditions can be waived if yvou get permission from the copyright
holder,

Your fair use and other rights are in no way affected by the above.

This 15 a human-readable summary of the Legal Code (the full license].

DisclaimerI:l._'I

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

WEB SERVICE CONTROL OF COMPONENT- BASED
AGILE MANUFACTURING SYSTEMS

A Doctoral Thesis Submitted in Partial Fulfilment of the Requirements
for the Award of Doctor of Philosophy of
Loughborough University

By
Punnuluk Phaithoonbuathong

10 June, 2009

Wolfson School of Mechanical and Manufacturing Engineering
Loughborough Universify
United Kingdom
© Punnuluk Phaithoonbuathong 2009

To my wife and best friend — Aornsuda Wongwattanarat.

ACKNOWLEDGEMENTS

I would like to thank my supervisors Dr. Robert Harrison and Dr. Andrew West for
their great support. Their guidance, encouragement, cooperation and interest have
helped me tremendously throughout the time of my study.

My sincere appreciation and thank also go to all my colleagues in the MSI Research
Team of Mechanical and Manufacturing Engineering at Loughborough University

who contributed to this study. I am gratefully inspired by their skills experiences and
professionalism.

I would also like to especially acknowledge the support of the Ford Motor Company
Limited, the EU FP7 SOCRADES and the EPSRC, IMCRC, GAIN and BDA projects
and their collaborators in enabling various aspects of this research.

Most significantly, I wish to thank my family and friends for their sacrifice, love and
support in which they never fail to grant me.

Finally, special thanks to my wife who is my eternal supporter. Nobody else could be
more proud in my achievement than her.

ABSTRACT

Current global business competition has resulted in significant challenges for
manufacturing and production sectors focused on shorter product lifecycles, more diverse
and customized products as well as cost pressures from competitors and customers. To
remain competitive, manufacturers, particularly in automotive industry, require the next
generation of manufacturing paradigms supporting flexible and reconfigurable production
systems that allow quick system changeovers for various types of products. In addition,
closer integration of shop floor and business systems is required as indicated by the
research efforts in investigating “Agile and Collaborative Manufacturing Systems” in
supporting the production unit throughout the manufacturing lifecycles.

The integration of a business enterprise with its shop-floor and lifecycle supply partners
is currently only achieved through complex proprietary solutions due to differences in
technology, particularly between automation and business systems. The situation is
further complicated by the diverse types of automation control devices employed.
Recently, the emerging technology of Service Oriented Architecture’s (SOA’s) and Web
Services (WS) has been demonstrated and proved successful in linking business
applications. The adoption of this Web Services approach at the automation level, that
would enable a seamless integration of business enterprise and a shop-floor system, is an
active research topic within the automotive domain. If successful, reconfigurable
automation systems formed by a network of collaborative autonomous and open control
platform in distributed, loosely coupled manufacturing environment can be realized
through a unifying platform of WS interfaces for devices communication.

The adoption of SOA-Web Services on embedded automation devices can be achieved
employing Device Profile for Web Services (DPWS) protocols which encapsulate device
control functionality as provided services (e.g. device I/O operation, device state
notification, device discovery) and business application interfaces into physical control
components of machining automation. This novel approach supports the possibility of
integrating pervasive enterprise applications through unifying Web Services interfaces
and neutral Simple Object Access Protocol (SOAP) message communication between
control systems and business applications over standard Ethernet-Local Area Networks
(LAN’s). In addition, the re-configurability of the automation system is enhanced via the
utilisation of Web Services throughout an automated control, build, installation, test,
maintenance and reuse system lifecycle via device self-discovery provided by the DPWS
protocol.

The research presented in this thesis has investigated the research issues around the
design, implementation, evaluation and reconfiguration of Web Services-based
automation systems based upon a university automation test rig to show the feasibility
and performance of WS for industrial machine usage. The precise evaluation and analysis
of this proposed WS approach has been carried out as required by automotive supply
chain and end-user industrialists and agile automation research paradigms. For example
the assessment has been focused on quantification, qualification and comparison of
parameters such as: (i) /O interval processing time, (ii) Ethernet communication and
reliability, (iii) business integration and (iv) process reconfiguration in contrast to
centralized Programmable Logic Controller (PLC)-based systems and distributed

LonWorks-based systems previously developed at MSI Research Institute,
Loughborough University.

Keywords: Component-Based Design; Device Profile for Web Services (DPWS); Distributed Control
System; Agile Manufacturing; Simple Object Access Protocol (SOAP); Mass Customization; Ethernet

v

TABLE OF CONTENTS

ABSTRACT i, v
TABLE OF CONTENTS .. oo e eeeeeeee e es e reeeeeee s s see e s eee e e e e een. vi
ST OF FIGURES & TABLES e Xii
ABBREVIATION xvi
DEFINITIONS oo eeeeeeeeeeeeeeeee oo e e e eeeeeseeeeeeeeeeeeeeeeseseeee s ee e xviii
CHAPTER 1 INTRODUCTION
LLPROBLEM DEFINITIONS e 1
L2 RESEARCH MOTIVATION e
L3 RESEARCH QUESTIONS e 4
LARESEARCH FOCUS et eeeeeeeeeeeeeeeeemeseeeesseseesees s eeesemeeessee s 5
1.5 ORGANISATION OF THE THESIS ... oo esees s 6
CHAPTER 2 MANUFACTURING SYSTEM REQUIREMENTS AND TRENDS
21 PROBLEM STATEMENT e ee e ees e ee e, 8
2.2 DRIVERS OF CHANGE IN AUTOMOTIVE MANUFACTURING 8
2.3 CURRENT MANUFACTURING SYSTEMS oo 12
2.3.1 Manufacturing system architecture ..., 13
2.3.2 Lifecycle of manufacturing system and machine design~~~ 14
2.3.3 Problem identification . _____............cccoooooeooeoeeeeeeeeees oo 16
2.3.4 Manufacturing and automation system requirements______.._._...._ 19
2.4 THE NEXT GENERATION MANUFACTURING SYSTEM . 20
CHAPTER 3 AGILE MANUFACTURING PARADIGM
3.1 PROBLEM STATEMENT . e 24
3.2 OVERVIEW OF AGILEMANUFACTURING ...~~~ 25

3.3KEY ENABLERS OF AGILE MANUFACTURING ____.©. .~~~ 28
3.4 RELATED APPROACHES TOWARD AGILE MANUFACTURING SYSTEMS

vi

3.4.2 OPC FOUNAAtON .. _..........ocmmeeeeereeeeeemeesemseseemseeseeeesessensssesss s ssearesesessenessenesneans 37
BAIRIMAGS | eeeeeeeeeeeeeeeer e eeeeeesesessemsesesses s eeemeees e eeesneeeeemsaesseensannasanes 39
3.4.4 Key Characteristic SUMIarY o eeeeeeeeereeereees s neans 40
3.5 EXISTING APPROACHES LIMITATION ANALY SIS e 41
3.6 PROPOSED SOLUTION ON WEB SERVICES BASED AUTOMATION ... 43
3.7 ASSESSMENT IN MEETING AGILITY REQUIREMENTS 45
3.8 CONCLUSION 46

CHAPTER 4 OVERVIEW OF CURRENT TECHNOLOGY AND KEY ENABLERS FOR
AGILE MANUFACTURING SYSTEM

4.1 PROBLEM STATEMENT e e eeeeee st esene 49
4,2 CONTROL SYSTEM ARCHITECTURES AND TRENDS il 49
4.3 PROGRAMMABLE LOGIC CONT ROLLE RS i 53
4.4 COMMUNICATION NETWORKS ||\ eesesseseseesoeeeeseeesenmeenns 56
* 4.4.1 Open industrial Fieldbus systems ... 56
4.4.2 Industrial Ethernet NEtWOTKSccceereereeieertriinerensteesessenes e ssesesesessssesssenene: 58

4.4.3 Ethernet Standardocccooimiiieeeeeeemeeeeeeseseeueness s eeme e eeeeeses et neeene 63

4.5 COMMUNICATION ARCHITECTURESoooooemeeceecnemeeeeeeeeeeeseee e 65
A5 1 POINt-L0-POINt et e e e eeeee e e e e s e mseeeee e eesneae 65

B.5.2 CHENE-SCIVET, ... o ooooeeereeeeeessemeeeesesesassesssassessssssesssasnsssessmsessnsmeesenenetasasessoenenses! 65

4.5.3 Publish=-SubSCriDeottt s een 66

4.6 ADISTRIBUTED AUTOMATION SY STEM e 69
4.6.1 LonWorks system with Fieldbus_ocooomimiiiieeeeeeeeeeeeeeeeeeeeeee 70

4.6.2 Embedded Modules with Ethernet 72

4.6.3 Distributed Control Applicationsccoooueeeemeoeeoeeeeeeeeeeeoeeeeee 73

4.7 MIDDLEWARE SERVER . et 77
ATTCORBA oottt e s seesemeeeesessess s e e 78

4.7.2 SOAMIAAIEWATEooooeeeeeeeieeceeeee et e 80

4.7.3 DEBATE: CORBA VS. SOA Middleware,___.._....... 83

4.8 AGENT-BASED MANUFACTURING SYSTEM ... 87
4.8.1 Object-Oriented Architecture 87

vii

4.9 SERVICE-ORIENTED ARCHITECTURE (SOA) AND WEB SERVICES FOR

MANUFACTURING SYSTEM oo ee e 90
4.9.1 SOA Basic definitions . ..o eeee s eneenne 90
4.9.2 Web Services-the SOA connection e 91
4.9.3 Web services consideration iSSUES ..o 95
R LR G 0), (6} 518103 (0)\ [T 96

CHAPTER 5 RESEARCH FOCUS AND DESIGN

5.1 PROBLEM STATEMENT e i 98
5.2 PROBLEM DEFINITION AND END-USER REQUIREMENTS o 98
5.3 RELATED AUTOMATION RESEARCHES i, 100
5.4 RESEARCH OBJECTIVES ... seeseesesasses s eeenssesnesnes 103

5.4.1 The area of development and novel contributions________._.. . o 105

5.42Research DESIBN. ... oooeoeeceeeeeeeeeeeeeeeee e e s e s se s seens s neneen 107
5.5 CONCLUSION et eee s esessae s e nesesssesssassesete s sesaeeeememesssnsasassnans 107

CHAPTER 6 A WEB SERVICES COMPONENT-BASED AUTOMATION DESIGN
6.1 PROBLEM STATEMENT 109

PART I- DISTRIBUTED CB AUTOMATION SYSTEM

6.2 COMPONENT-BASED (CB) SYSTEM DEVELOPMENT . e, 111
6.2.1 Component-based construction prinCipleso.ooovioioeeeeeeeeeenn, 111
6.2.2 Component-based software development process and lifecycle 116
6.2.3 Component-based development designissues_____._.._._ . 119
6.3 A COMPONENT-BASED DESIGN FOR MANUFACTURING SYSTEMS ... 120
6.3.1 Encapsulated Industrial Component Based Systems ... 120
6.3.2 Specification of a component-based automationsystem ...~ 123
6.3.3 The CB control design model ._._..........ocoommmiormeeeeeceeeeeeees e, 126
6.4 DESIGN SPECIFICATION FOR POWERTRAIN ASSEMBLY MACHINES .. 128
6.5 THE CB SYSTEMMODEL | reieenemennesieeeeseeeees s eeeeeeeeeeesss s 131
6.6 PART TCONCLUSION (it eeese s 133
PART II- WEB SERVICES-BASEDAUTOMATION SYSTEM
6.7 AN INTRODUCTION TO WEB SERVICES ENTERPRISE INTEGRATION 135

.................

vili

6.8 AUTOMATION SYSTEMS INTEGRATION USING WEB SERVICES 138

6.8.1 The Need for Web Services within the Automation Domain______ 138
6.8.2 Transformation of Web Services for CB automation systems . 138
6.8.3 Building of control applications 140
6.8.4 Implementation and enabling technology - e, 144

6.9 WEB SERVICES DESIGN APPROACH FOR DISTRIBUTED EMBEDDED CONTROL
1) 2 () S OO 147
6.9.1 Localisation and Standard Discovery Lookup . e, 148
6.9.2 Lightweight code development for embedded devices 150
6.9.2-1 The gSOAP Stub and Skeleton implementation 152
6.9.2-2 Building control functions in a Web Services environment_______ 153
6. J0 PART ITCONCLUSION oo e ee oo meenes 156

CHAPTER 7 IMPLEMENTATION OF CB-WS

T PROBLEM STATEMENT e eeee e eeeees e s e s s eseseseas e e e 157
T2INTRODUCTION, e eete e eee e emeeetesemeeeeeesesseseasemsesessamenns 157
7.3 CASE STUDY 1: DISTRIBUTED AUTOMATION SYSTEM (FORD-FESTO RIG)__ 159
7.3.1 FORD-FESTO test rig specifiCationsooooeeoeeeeeeeeeeeeeeeeeeeeeeeeeeee 159
7.3.2 System development and integration ____...............cooomreeemeeeeeee e, 161
7.3.2-1 Work flow and Sequencing of the testrigsystem____,___...._....... ... 163
7.3.2-2 State transition diagrams, . e 164
7.3.2-3 Component software development_ . . 165
7.4 CASE STUDY 2- WEB SERVICES DEVICECONTROL 167
7.4.1 Development platform e 167
7.4.2 Web Services appliCations..............c..coeeumeerecaemeunmrueeteeseeeteeeesesses e ee e eeeeesess e 170
TS CONCLUSION |t eeteees et sssresee s ses st esse e sesesemsesessseese s e sssee 173

CHAPTER 8 WEB SERVICES AUTOMATION RIG DESIGN AND IMPLEMENTATION

8.1 PROBLEM STATEMENT

"" 175

8.2 TEST RIG DESIGNED SPECIFICATION, . e
82N OVEIVIEW oo 176

8.2.2 Control hardware specification,___________ 177

£.2.3 08 and Software architecture,_______

8.3 DPWS COMPONENT DESIGN WITH WSDL DESCRIPTION.______________ 180

ix

. 183
8.4.1 SERVER- Multiple servicesonthe FTB . . e 183
8.5 INDUSTRIAL DEMON S T R AT ON e e e e eereva e s aaaanns 186
8.5.1 Web services- based control system integration 187
8.5.2 Services Orchestration ENGINe ... oo oo eeeemeeeene s 190
8.5.3 Business Application Integration e nnnn 194
8.5.3-1 SAP xMII and WS test rig Integration Platform 195
8.5.3-2 The SAP xMII process monitoring and error diagnostic application____197
8.8 CONCLUSION o ooeeeeeeeeeeeteeessssssesssesssasarsnnesasessesesmesssessnensnesssennnensaenaessasantenns 199
CHAPTER 9 EVALUATION AND DISCUSSION
9.1 PROBLEM STATEMENTottt seseemenstes e e s s e nasacmcnsss 200
9.2 DPWS PERFORMANCE ANALYSIS | . oooeoeeeeeeeeemereeeeeeeessensesns s ssnssssesseeas 201
9.2.1 DPWS- SOAP MeSSAZE SIUCTUIEooeeoeeememreeeeememecmemeceeeeeeeeeosmecsasmseensnnes 201
9.2.2 Ethernet TCP/IP network communication ___...........co.oocoremeeercrnranreeeseeseseeseeees 203
9.2.2-1 TCP/IP communication approach 206
9.2.2-2 Ethernet packet delivery time and deterministic 208
9.2.3 DPWS processing time and Component /O interval reactiontime ... 209
9.3 EASE OF MACHINE RECONFIGURABILITY ASSESSMENT, ol 211
9.3.1 Modifying a process WOrK floW.cocuorecerecmcruremreeemereeeene e seesemecesecssesecann 216
9.3.2 Adding @ SENSOr €leMENt________._..ioimeieeceeereeeeemcseeeeseseseensesassenssasenseesemaraeans 217
9.3.3 Adding @ NEW COMPONEN .o iooiieeeeeeeeeececteseesaesemesemseescmsaseemnmessasaen 219
9.3.4 Comparison of Distributed WS-CB and Conventional Centralized PLC
AUIOMALON__________.\ooooeeieeeeseescmcessemseemsenasersersseseassessessssses et snasssesmsses et aseranen 222
9.4 COMPONENT MODULARLITY AND REUSABILITY ASSESSMENT 225
9.5 THE IMPLEMENTATION WITH PROCESS ENGINEERING TOOLS 228
9.6 SEAMLESS INTEGRATION ASSESSMENT e 232
9,7 SUITABILITY OF THE WS BASED AUTOMATION ININDUSTRY . . . 235
9.8 FULFILLING THE END USER REQUIREMENTS WITHIN AGILE AUTOMATION___ 238
9.9 CONCLUSION __........ooeeereeeteeeeeeressesesessessssesssessessssss s eessessasessmseesessaseasessesesssasea, 241
CHAPTER 10 CONCLUSION AND FUTURE WORKS
10.1 RESEARCH CONCLUSION e 243
10.1.1 Rescarch findings..._________ 244

10.1.3 Implementation and Evaluation, ... e 245

10.2 RESEARCH ACHEIVEMEN T S e et 246
103 FUTURE WORKS ettt s e en e e e 249
REFERENCE | .eeeeecteeeieeemeeenesassassesesmseessesas s assenesassssnmseesssesanasassemerasesassesssaes 253
APPENDIX A THE TEST RIG STATE TRANSITION DIAGRAM et 260
APPENDIX B THE TEST RIG FUNCTION BLOCK CONTROL PROGRAMME _______ ... 267
APPENDIX C WEB SERVICES- ARM9 DEVELOPMENT PLATFORM . 2717
APPENDIX D WEB SERVICES APPLICATIONPROGRAMMING 281
APPENDIX E PACKET ANALYSIS OF DPWS OPERATIONS] 287
APPENDIX F PUBLICATION PAPER e 288
APPENDIX G WEBSITE REFERENCE 289

xi

Figure 1-1
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 3-1
Figure 3-2

Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 4-1
Figure 4-2
Figure 4-3

Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7

Figure 4-8

Figure 4-9

Figure 4-10
Figure 4-11
Figure 4-12
Figure 4-13
Figure 4-14
Figure 4-15
Figure 4-16

LIST OF FIGURES

Research focus overview 5
Manufacturing System Structure and Production Process__ 12
Product Lifecycle and Machine Design& Build Process_ 14
Product Lifecycle and Reconfiguration Process_ e 15
Current Machine Build Process__________ 16
Collaborative and Agile Manufacturing Framework 22
Agility and Interaction in Manufacturing System Design______ 27
Conceptual Model of Key Enablers for Agile Mahufacturing

SYSCIIL o oo 29
Collaborative EnterpriseModel~ 35
OSACA Framework, ... e 37
OPC Framework e 38
RIMAGS Framework,coooormveeeeeoeeemeeeeeeeeeoeeeeeeeeeeeeemees e 40
Common Middleware Architecture ...~ 41
Web Services- based Automation Paradigm .. 44
Basic Control Architectures_ ... 50
Abasic PLCllustrations ..o 53
Language constructs within the IEC 61131-3 Programming

Standard e 54
Layer of the OSTmodeloo.oooooeeeeeeeeee 59
OSIMESSAZINGeoeeeeeeeeeeevemseeer oo eeeemsees oo 60
The Structure of an IP Datagram 63
Request/Response and Publish/Subscribe Data-Flows for a
Distributed Control System.__________._.......ooooooeoe 69
Structure for a Distributed Control System .~~~ 70
Event-driven IEC 61499 ExecutionControls~ 74
Functionalities of a Component,____....... 75
Three Tier e-Business Architecture, .~~~ 78
The CORBA Client/Server Invocation Methods 79
SOA Client -Server MiddlewareModel ...~~~ 80
Providing SOAP with XML, WSDL and UDDI in Web Service___81
Holonic Framework via Mobile Agent 88
Holon Structure 89

Figure 4-17
Figure 4-18
Figure 4-19
Figure 5-1

Figure 5-2
Figure 5-3
Figure 6-1
Figure 6-2
Figure 6-3

Figure 6-4
Figure 6-5
Figure 6-6

Figure 6-7

Figure 6-8

Figure 6-9

Figure 6-10
Figure 6-11
Figure 6-12
Figure 6-13
Figure 6-14
Figure 6-15
Figure 6-16
Figure 6-17
Figure 6-18
Figure 6-19
Figure 6-20
Figure 6-21
Figure 6-22
Figure 7-1

Figure 7-2

Figure 7-3

Business ECOSYStemS o 90
SOA Web Services Structure in Manufacturing Systems___ 92
Devices Profile for Web Services (DPWS) Protocol Stack. 93
A Conceptual Model of the Test Rig used in this Thesis with
WED S OTVICES e 103
SOA-Web Services Integration Framework 105
Peer-to-Peer Web Services Enabled Control System_ ... 106
The Component-based Design Principle____. 112
Automation Software Component Construction______ 114
The Component-based Design Framework for Automation
SYSEBINS oo eeseeeeeeeeesesseeesese e se e s e s 115
A Generic Component-based Lifecyele . 116
The Parallel Process of Component-based Development___ .. 117
Various Developers and End User Roles in a Component-based
CFramework e 118
Stakeholder Roles Constituted in the COMPAG Project
Framework 122
Component-based Machine Control Hierarchy_ ... 123
Structure of the Distributed Component- based Automation System124
The State Transition Diagram in the Activity Function Block_ . 126
A Component-based DesignModel ... 127
UML Class Diagram of the Component-based System Design . 132
A Basic Principle of SOA Architecture ... 137
Service Orchestration Ontology. oo 141
Component-based Web Services Implementation Model 144
The Implementation of the WS-CB Automation System Design_____ 146
P2P Search Procedure ..o 148
Central Directory Lookup.o 149
Remote Procedure Call in Device Binding______ ... 151
Design Time and Run Time of a ServerandaClient_ 152
Web Services- a Client and Server Project Implementation_ 154
Web Services Compliant Control Device Architecture 155
The FORD-FESTO testrigplatform ...~ 159
Ethernet Interface /OModule ...~~~ 160
HMI Operator Screen. 160

Figure 7-4

Figure 7-5
Figure 7-6
Figure 7-7
Figure 7-8
Figure 7-9
Figure 7-10
Figure 7-11
Figure 7-12
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 8-6
Figure 8-7
Figure 8-8
Figure 8-9
Figure 9-1
Figure 9-2
Figure 9-3
Figure 9-4
Figure 9-5
Figure 9-6
Figure 9-7
Figure 9-8
Figure 9-9
Figure 9-10
Figure 9-11
Figure 9-12
Figure 9-13
Figure 10-1

Common four-state Transition Behaviour of the swivel Transfer Arm

COMPONENE oo eeee s eee s seee s 164
Generic FBD StruCtUIe e 166
Visual Studio .NET Web Services Application Platform . 168
SerVICE NaMICSPACE e 168
DPWS Client Initialisation, e 169
DPWS Client for Services Invocation ... 169
DPWS Components and Services Initialisation_______ 170
Web Services Test Scenario e 171
Client and Server Devices Interaction 172

Web Services- based Automation System and Integration Platform 176

Field Terminal Block (FTB) Hardware Module . . . 178
OS and Software Architectureonthe FTB____ 179
ARM Real View Development Suite (ARM-RVDS) . 184
Control codes of the DPWS enabled component .. . 188
Distributed Web Services-based Control System ... 192
Business Integration Scenario with the SAP xMII application .. 196
SAP- Production Line Monitoring Utility using SAP xMII___ 197
Handling Arm Fault Diagnostic Test Scenario______........ 198
Ethernet TCP/UDP Packet Structure, ..., 201
The DPWS Service Invocation and Notification Time Analysis 210
Process Reconfiguration Workflow,__ 212
Workflow Alteration: Station 1/2/3/4> 1/2/4 . . 213
Adding a Sensor in the Hopper Component ... 214
Adding a New Drill Component, 215
Distributed WS- based Control System 222
Conventional Centralized PLC- based Control System_____ 222

Automation System Development and Reconfiguration Framework 229

MSI Developed Suite Engineering Tools 231
XLON Communication Protocol Interface . 233
Monitor Pro PLC Communication Protocol Interface 233
The SOA Middleware IntegrationBus____ 234
The Author Original Work and Novel Contributions 243

Xiv

Table 3-1
Table 3-2
Table 3-3

Table 3-4

Table 3-5

Table 4-1
Table 4-2
Table 4-3
_ Table 4-4
Table 4-5
Table 4-6
Table 4-7
Table 4-8
Table 6-1
Table 6-2
Table 7-1
Table 7-2
Table 9-1

Table 9-2

Table 9-3
Table 9-4
Table 9-5
Table 9-6
Table 9-7
Table 10-1

LIST OF TABLES

Multi-Facet of Agility in Manufacturing_______ 28
OPC/OSACA/RIMACS Key Characteristic Summaries_____ 40
Assessing the Achievement in Key Agility Features of Existing
APPIOACHES (..ot et s 45
Addressed Problems, Requirements and Key Agile Enablers

Summary .. e 47
Limitations, Requirements and Proposed SOA-WS Solution

SUMMATY || __....oooreereeeereeeeeeeereeeeeeeessssessssssmsesssssssssnnssesssssssssssssessessesssee 48
Centralised Control Architecture Description ... 51
Hierarchipal Control Architecture Description 51
Modified Hierarchical Control Architecture Description_____ 52
Heterogeneous Control Architecture Description_____.... 52
Summary of Common Fieldbus Type Networks ... 57
Industrial Ethernet Network Features 60
Summary of Communication Technologies 67
Summary of Distributed Enabling Technologies Appraisal .. 97
FORD Requirements of the Component- based Automation System129
The Adoption of Web Services within Automation Systems 139
Test RIGHMI oo eeseen 161
Decomposition of the Test Rig Assembly 161

DPWS Sever Operation Invocation- Ethernet TCP/IP Network

Communication e 204

DPWS Server State Notification- Ethernet TCP/IP Network

CommumiCation 205
Network Performance Analysis and Comparison____. 207
Conventional Centralized PLC Control System___ ... 223
Decentralized WS-CB Control System ...~ 224
Adding the New DPWS Drill Component Scenario_______ 227
FTB and PLC Cost Comparison_______........__ 237
The Research Implementation Summary, .~ 249

Xv

ABBREVIATIONS

AM - Aglle Manufacturmg

ANSi " Amerrcan Natronal Standards Instltute T
ASS | : Appllcatlon Serv1ces System

CBA Component-Based Approach —
CB-MAS N Component- Based Manufacturmg System

CGI Common Gateway Interface "*W
CcCoOM Common Object Model

COMPAG Component Based Paradlém for Aglle Automation
CORBA Common Object Request Broker Architecture
CSMA/CD Carrier Sense'MultiplerActron/Collision Detection
DCOM Distributed Corrlponent Object Model

DCS Dtstributed Control System

DPWS | bevices .Provﬁle for Web Services

EIA Electronic Industries Alliance

ERP Enterprlse Resource P)lanningv

FCS Frame Check Sequence

GUI Graphic User Interface

HTTP Hypertext Transfer Protocol

IDL — Interfacc Definition Language

IEC Intematlonal Electrotechmcal Comm1ssxon

I.lO’P W Internet Inter-ORB Protocol

IP Internet Protocol

MAC‘ B Media Access Ccntrcl |

MES Manufacturing Execution System

MIME 1

Multipurpose Internet Mail Extensions

xvi

MOM

' Message-Oriented Middleware

MTS _ Mlcrosoﬁ Transactlon Server

NGMS | The Next Generatlon Manufacturmg Systent
OLE | Object Lmkmg and Embeddmg

OODBMS | Object-Oriented Database Management Systems
ooP | Object-Oriented Programming

ORB Obvje‘ct”R‘equest Btoker N

OSI Open Sststem Interconnection

PDE Ptocess I;ef.lnition Environr.nent]

PLC Programmable Logic Controller
RDBMS | v Relational- Database Managentent Systent
RTOS |RealTimeOperatingSystem
SMTP Sitnple Mail Transfer Protocol |

SNTP Si‘mple Networkv Time Protocol

SOA B FHI Serv1ce-0r1ent Archltecture

SOAP — | Simple Object Access Protocol

TCP Transrrussxon Control Protocol

UDDI | Universal Description, Dlscovery, and Integ‘ratnton B
UML Unified Modelling Language

UPD { User Datagram Protocol

Ukl Unifot'tn Reeource Identifier

URN Uniform Resource‘N‘axne |

UuID | Universally Unique Identxﬁer

VRML Virtual Reality Modellmg Language

WS Web Serv1ces |

WSDL Web Serv1ces Descrlptxon Language” |

XML Extensible Markup Language |

Xvii

DEFINITIONS

Agent

| behalf of another. It is capable of perception, acting on its |

| required process information for business planning systems. !

A representative agency that has the power or authority to act on

environment, communicating and, eventually, of mobility in.
accomplishing specific tasks such as assisting co-operators with |

Automation system

| automation replace human workers by machines”.

system

This term used in this research is referred to the definition
described by wordreference.com that “the control of equipment !
with advance technology involving electronic hardware;
In this
used interchangeably with “control :

research this term is

Client

A computer or dev1ce as an event smk on the network that
requests or consumes the services or functions provided by the
server (see the server term below). In this research, the chent
has a function of invoking (calling) the interested services to
perform the manufacturmg functlons in the control system. g

Component

1 An artifact that is one of the individual parts of which a'

| separated from or attached to a system. This thesis refers the‘

;
composite entity is made up; especially a part that can be

component term to a physical automation device which is!
constituted by mechanical, control software and electncal
element in the automation system.

Enterprise

An entire business organization. In this thesis, it is impliedt
subsidiariess of business planning and management,

manufactunng executlon control and productlon unit. t

Flexible automation
system

| multiple types of products

D. Vera [116] has characterised flexible automation systems as |
the system that has fixed machine control hardware but
programmable software to handle changes in work orders, |
production schedules and toohng for several types of parts. In
general, this automation system is consisted of general purpose
computer numerically controlled machines (CNC) with'
sophisticated control configuration changing system to process

i

High level
application

| monitor the shop- floor productlon unrt

In this thesis, this term is used to express the software
application designed for a specific task and used in the‘
manufactunng execution and business level to control and

Xviit

Lean manufacturing

| Lean Manufacturing is an operational strategy oriented toward |
| throughput with a minimum of inventory by reducing waste |

| a customer order and shipment, and it is designed to radically |

: tlme

achieving the shortest’ possible cycle time, a high level of!
along production lines. The goal is to decrease the time between

improve profitability, customer satisfaction, and throughput

é

Manufacturing
system

| This term is referred from rzdgetieldgroug com that the system
| which has function used to identify and plan demand and

| materials, analyze resource availability and requirements and |
| schedule, release and report production. In this research, several .

| Departments may be included production sections,

departments in associate with planning, controlling and|
producing company products constitute manufacturing system.

manufactunng superv1sory and control ERP and etc f

Mass customisation

| In the context of manufacturing for individual customization, |
{the processing systems need to employ a good degree of

Its concept has combined the low unit costs of mass productlon
goods with differing individual product specifications. The
product variety is achieved through the use of components that |
may be assembled in a number of different configurations in:
order to satisfy the heterogeneity of all customers' preferences. !

ﬂex1b111ty and re-configurability in process alterations for
various types of products.

Mass production

The manufacture of goods in large quantltles in the short period |
of time with minimum cost, often using standardized designs '
and assembly-line techniques. Its purpose is to produce more :
per worker-hour, and to lower the labor cost of the end product

This in turn allows the product to be sold for a lower cost. Mass |
production technique is the idea of deploying skill workforces |
responsible only for a certain task, e.g., one is in charge of
cutting, another is finishing, a third one is assembling, and 50
on, to achleve a hlgh level of throughput

Object-oriented

| change than tradrtlonal procedural code.

The term that used for programmmg language in an agent-based | j
system where data carries with itself the "methods" or
"functions" used to handle that data. Its programming takes thea
functional view of abstract manipulation rather than the logic |
required to manipulate them, so obJect-onented code is more |
flexible and more organized and easier to write, read, and

Xix

Open system

automation aspect such that a system in which the components |

| environment, enabling manufacturing system to use these
|lwhich a system component can be used in various'

| consistency of the various human-machine interfaces between

In this research, the term of an open system is implied to the |
and their composition are specified in a non-proprictary

standard components to build competitive systems. There are '
three perspectives on open systems: portability - the degree to |

environments, interoperability - the ability of individual
components to exchange information, and integration - the

an individual and all hardware and software in the system.

Ramp up time

The term which is associated with the time taken for the process | ;’
to reach the normal production capability after process

modlﬁcatlons Or new 1nstallat10ns

Reconfigurable
automation system

The automation system that is de51gned for rapld change in both
hardware (mechanical structure) and control software. The !
system configuration can be rearranged (adding, removing and !
ordering) quickly by the modular design of control modules
(hardware/software) that can be reused and reconfigured rather ;
replaced for a new module.

Server

| A computer or device as an event source on the network that

provides the services or functions. In this research, the server -
means the producer unit that offers the function in relation to |
commanding the control system such as driving the machine ;
outputs or reading the sensors as requested or controlled by the |
client (consumer). It is noted that the client and the server:
function could be allocated on the single device to co-operate in |
the peer-to-peer communication model in the distributed control
environment.

XX

CHAPTER 1

Introduction

The objective of this chapter is to provide an overview of the research and the scope of
the work in the area of future manufacturing paradigms enabled by the shift of mass
production systems toward mass customised systems. The preliminary research
questions based upon a new approach to agile automation systems are highlighted. The
scope of the research in contributing to process re-configurability, reusability and
integration capability based upon the key enabling technologies of Web Services (WS)

and Component-based (CB) design approaches within the automation domain is

presented.

1.1 Problem Definitions

In today’s competitive global market where customer demands can fluctuate
dramatically and global competition has become intense, companies must respond
quickly and cost-effectively to market changes in order to maintain their competitive
advantage. As reported by A. Molina [1] the characteristics of the global markets for
many types of product have progressively changed towards meeting customer demand
for low-volume, high-quality, customised products. These factors have had an impact
on product lifecycles, development times, and production lead times all of which need
to be shorter. As a result of: (i) increasing number of product variants, (ii) increasing
mix of product types, (iii) decreasing batch sizes and (iv) decreasing product lifecycles,
a conventional mass production approach is no longer a viable manufacturing strategy
because it cannot effectively produce low-price products in an environment where the

demand fluctuates unpredictably [84].

Many enterprises are changing their manufacturing paradigms and systems toward more
flexible and adaptive approaches to improve efficiency and to support this trend
towards mass customization (', The evolution has been from mass production @,

beyond lean manufacturing @), into agile manufacturing [7].

1, 2, and 3- Sce term of use for definitions
4- See Chapter 3 for definitions

CHAPTER 1: Research Motivation 2

Within the conceptual agile framework presented in [32], the agile manufacturing
system has been focused on the consideration of a wider perspective in which not only
the automation system, but also the business enterprise and the business architecture,
need to be included in the development process related to the shop-floor systems.
Manufacturers have to distribute intelligence and decision making authority as close to
the points of action, delivery, sales and even after-sales service as possible. To improve

their ability to respond, manufacturers need to share the design and production

information with their business partners.

However, within this integrated manufacturing-business perspective, traditional
manufacturing automation systems need to be evolved towards agile capabilities. These
systems are often constructed in a rigid, centralised, hierarchical and, in many cases,
proprietary manner [105]. It has been the case that the development of the automation
system typically follows a sequential design-implement-test lifecycle. In addition, the
reconfiguration of automation systems is currently a complex, time-consuming and
error-prone process. As a result, these factors have a direct impact, increasing the
process ramp-up time and leading to performance degradation when production needs
change. Specifically, current automation systems usually require experts to
(re)commission and maintain them due to the often complex and unstructured code and
the use of vendor specific technology [33]. It is therefore unproductive for industrialists
to implement highly customizable production capability within the current design of

manufacturing automation systems.

1.2 Research Motivation

The work of this research is based within the automotive industries with the Ford Motor
Company as the project collaborator in the UK. The automotive industry is a
competitive, risky and high investment domain [103}. Many automotive suppliers have
turned to mergers, acquisitions, and/or joint ventures in an effort to grow top-line

revenue, maintain market share, more effectively utilize assets and cost reduction in

order to remain competitive [g32].

Over the past years, there have been a number of research studies on flexible and

reconfigurable automation systems to support reducing product time to market as well

CHAPTER 1: Research Motivation ' 3

as quickly increasing production capacity. At Loughborough University, a project
initiated by the Manufacturing Systems Integration (MSI) Research Institute has
investigated a Component-Based Approach (CBA) for automation systems for

improved flexibility and re-configurability within the engine production lines at Ford.

The work has established a new engineering visualisation environment implemented
using the Virtual Reality Modelling Language (VRML), reusable control software
embedded within automation components and a Process Definition Environment (PDE)
in which automation components can be configured, simulated and deployed. The
project has contributed to the development of a truly concurrent engineering design

approach of manufacturing systems aiming to reduce developments cost in automation

systems and time to market of the new products.

The extension of previous developments adopting the CBA with standard Web
technologies would substahtially benefit the end-users by supporting new ‘“‘open”
standard way of automation design. Within the requirements of agile manufacturing, it
has been noted that automation systems are required to be more integrated with
business, suppliers and external machine builders systems to generate reliable and cost
effective solutions. Recently, an emerging Service-Orient Architecture (SOA) and Web
Services (WS) technology solutions have been widely researched to support business-
to-business integration as reported in [122]. These technologies have proved a success
in the e-business domain and they are becoming a standard approach to integration
supported by major software developers such as Microsoft and IBM. Research has now
been targeted on whether the technology can be applied in industrial sectors for

business to shop-floor application integration.

The'adoption of a robust approach of implementing SOA’s and WS is required for the
manufacturing system to meet the required performance from the end-users point of
view in term of response time, reliability, proof of agility and re-configurability. The
verification of these key requirements is necessary for the justification of this approach
as an open standard for the next generation of manufacturing automation. The research
outlined in this thesis is focussed on the integration of SOA’s and Web Services
technology within the paradigm of CBA to determine whether enhanced capability of

the manufacturing system composed of embedded “web enabled” devices is evident

CHAPTER 1: Research Questions 4

‘when compared to current manufacturing automation paradigms (i.e programmable

logic controller focused systems).

1.3 Research Questions

The research questions of this thesis that are expanded in following chapters can be

stated as:

1. What are the current manufacturing paradigms? Why do they no longer meet
industry expectations in the presence of globalised production characteristics?
(Refer to Chapter 2) .

2. How can agile automation systems benefit manufacturers especially in terms of
design and manufacture cost savings as well as reducing production lead times?
(Refer to Chapter 3)

3. What are the key features of Agile Manufacturing Systems as well as the key
enablers that allow an effective solution for mass customisation? (Refer to
Chapter 3)

4. What are existing approaches towards agile manufacturing paradigms? (Refer to
Chapter 3)

5. What are current technologies using in distributed automation systems? (Refer
to Chapter 4)

6. What are the problems with current automation systems and specific

.requirements' for agile automation from the perspective of automotive
manufacturers (i.e. the Ford Motor Company)? (Refer to Chapter 5)

7. What is the “state of the art” in control systems for agile manufacturing? (Refer
to Chapter 3, and 5)

8. How could SOA’s / WS fit into an agile manufacturing context and be
implemented in an automation system? (Refer to Chapter 6, 7, and 8)

9. What are the network performance, deterministic communication and actual
input and output device response time in the WS approach relative to a PLC
control-based automation solution? (Refer to Chapter 9)

10. What is the degree of re-configurability, reusability as well as seamless
integration capability in relation to the agility of the manufacturing system? This

question leads to the design, implementation and evaluation of a university

CHAPTER 1: Research Focus 5

based measurement platform of WS- based automation. How can figures of
merit for these parameters be explicitly evaluated? (Refer to Chapter 9)
11. What is a suitable platform for the end users? What are the current control and

build practices that could be improved by the use of WS technologies? (Refer to
Chapter 5, and 6)

14 Research Focus

The movement toward agile and collaborative manufacturing has gained considerable
attention from many research institutions and organizations keen to explore and develop
a new manufacturing environment. Areas of research include the business enterprise

level, shop floor automation, warehousing and outsourced manufacturing.

| Aglle automation system ‘

and

<+

4 Open and Interoperable l
control platform

f Rigid to control function !
changes Limitation of hardware and
‘ Experience-based design l / software reusablity ‘
Limitation of business N Lack of production support !
g ! integration \ l
§ ! Current automation system ‘
s Non-consistent
Bl ston » spphcation interfece !
s External drivers of change for t
l mass customisation l
I....___._.._._...__ '________.._.“._“’_‘
Self-rakiant intelligent control |
I device design for distributed Reconfiguration system
automation system '\ l
g l T !
* !
| ——p Component-based design l
g l Design forreuse < i Innovative approach for framework .

} 30 VRML P Tools B and Process
' control integration {

Figure 1-1: Research focus overview

As depicted in Figure 1-1, the primary aim of this thesis is to establish an innovative
approach through the component-based design of distributed intelligent automation
systems that is capable of supporting end-user requirements on system re-configurability
and to create an automation platform that supports business and production integration
to enable agile manufacturing systems throughout machine lifecycles. The primary

application focus of the work is in the automotive domain, and in particular with the

CHAPTER 1: Organisation of the Thesis 6

Ford Motor Company Ltd. who is the primary industrial collaborator in this research.
Control and communication technologies have become more mature and sophisticated
and can currently be purchased as low cost, miniature, embedded devices. These
technologies open up a new opportunity for the design of next generation
manufacturing systems. Advanced embedded devices supporting TCP/IP networking
communication could enable the design and implementation of control devices with

greater interoperability between control devices, business and production support

systems.

A methodology based upon the exploitation of Web technologies (SOA-WS) will be
developed and evaluated with the aim of enhancing the lifecycle of manufacturing
systems focusing on the aspect of autonomous distributed control and the adoption of a

new paradigm for reconfigurable and reusable automation systems.

1.5 Organisation of the Thesis

The thesis is structured as follows:

Current Manufacturing Systems: Problems and Requirgmehts

In Chapter 2, the literature relating to the trends, drivers of change and difficulties in
current global markets is reviewed. Traditional manufacturing systems are reviewed to
highlight the problem areas and the requirements of business and automation systems to

enable the next generation of agile integrated manufacturing systems to be developed.

Agile Manufacturing
In Chapter 3 agile manufacturing is presented as the key concépt for the future

manufacturing approaches. The state of the art for enterprise integration and automation

design and build are reviewed in this Chapter.

Manufacturing Automation Technologies and Key Enablers for Agile Automation
In Chapter 4 the current automation technologies for manufacturing systems are
reviewed. The key enabling technologies both in software and hardware corresponding

to agile automation requirements in open, distributed, reconfigurable and reusable
control systems are detailed.

CHAPTER 1: Organisation of the Thesis 7

Research Focus, Design and Objective

In Chapter 5 the related research in the area of distributed automation systems for agile
manufacturing is presented, including the novel framework of implementing Web
service technologies with component-based design framework on automation system.

The area of study and implementation is scoped on the research objective.

Design Methodology
In Chapter 6, a review and analysis of component-based approach is provided along
with the design methodology for SOA-WS control systems. In addition, the SOA and

WS concept are detailed and evaluated for the adoption of these technologies within the

CB framework.

Industrial Case Study
The industrial case study implementing a component-based design on a PLC-based

distributed control system and the implementation of Web Services on an embedded

system (PC-based) are discussed in Chapter 7.

Test Rig Implementation and Industrial Demonstration

The development of WS- based automation via integrated embedded control devices is
presented in Chapter 8, detailing the hardware and software architecture on the
microcontroller device type supporting TCP/IP communication and a real time
operating system RTOS. The industrial demonstration to illustrate the feasibility of
Web Services automation systems within real control applications, supporting
engineering tools and business integration as well as evaluation of system operation

within a live production system environment are detailed.

Evaluation and Discussion
In Chapter 9, the key evaluation of performance, design, re-configurability and

enterprise integration is assessed corresponding to the requirements of: (i) an agile

automation system and (ii) the end-user requirements.

Future Work

The conclusions and future work based upon the exploitation of Web Services in

industrial control systems are highlighted in Chapter 10.

CHAPTER 2

Manufacturing System Requirements and Trends

In this chapter, the drivers of change for agility-focused manufacturing paradigms are
reviewed. Current manufacturing approaches are detailed and associated problems
identified in order to highlight the requirements for next generation manufacturing

automation systems.

2.1 Problem Statement
The objective of this chapter is to identify the features and characteristics of mass
customisation in the global marketplace that have impacted on current manufacturing
systems. The following research questions are addressed to support the specification of a
new framework for the next generation manufacturing systems based upon the lifecycle
requirements of the manufacturing supply chain.
1. How does globalisation impact the business and manufacturing strategy in
automotive industry?
2. What are drivers of change that cause the manufacturing shift from mass
production system to mass customisation?
3. What are the lifecycle requirements of the manufacturing system to cope with
the highly competitive markets in the automotive sector?
4. What is the architecture and framework for the next generation manufacturing

system?

2.2 Drivers of Change in Automotive Manufacturing

Global market competition and price pressure is leading companies to leverage new
technologies to enhance their competitive advantage. They seek to differentiate their
overall offering in order to compete [2]. The characteristics of global markets have
been changed by the driver of customer satisfaction where greater choice of products
from a larger number of companies is demanded. These factors have forced product
variety to increase and batch size to decrease. In the automotive industry, reported

trends that are having a dramatic impact on traditional mass production are [4]:

CHAPTER 2: Drivers of Change in Automotive Manufacturing 9

Global Competition
Many vehicle manufacturers face slow growing and saturated markets in their
home countries [103]. Beside this, vehicle markets have become much more

competitive by a growing number of firms selling cars in the mature markets

such as the US, Germany, and Japan [106].

There has been a wave of new assembly and supplier plant construction in low
wage economies and emerging markets such as China, India, Thailand,
Vietnam, Brazil, Mexico and Eastern Europe. The trend is further enforced by
host country requirements for local production and an effort by automotive
manufacturers to cut costs within the context of regional trade arrangements
such as the North American Free Trade Agreement (NAFTA) and the European
Union [g28].

This shift in worldwide production of automobiles towards low-income
countries only partly reflects increased competitive pressure. New suppliers
such as China have expanded the production of automobiles for serving
protected local markets, while lacking international competitiveness. However,
several new suppliers, including Mexico, South Korea and Spain were quite

successful in penetrating world automobile markets [108].

Customised Products with Low Volume Production

The consumption level of people is increasing along with the high-speed
development of domestic economy. The number of medium income population
is growing increasingly and the competition in the mid-grade automotive market
has been intensified. Research has shown that the competition in the small car
domain will continue to become more and more competitive, because such cars
like the Masda C2, Chevrolet Aveo, Kia Rio have been targeted by a specific
consumer group, that is young, fashionable and individualized. Since the

economic power of the group is expanding quickly, its consuming capability and

preference are affecting the automotive market strongly [g29].

The current and the future of global market trends in car industries as reported

by Stephen Metzger [g30] are moving toward highly individualistic and diverse

CHAPTER 2: Drivers of Change in Automotive Manufacturing 10

markets in term of production types and functions. As a result, car
manufacturers are focused on the ability, which quickly becomes a competitive
requirement, to satisfy individual consumer tastes and preferences. Thus, the
generic automotive market is comprised of a myriad of adaptations fitting the

personal needs of the consumer, rather than so-called standard models.

Vehicle manufacturers, when introducing new products or concepts, are
frequently uncertain of the precise market demand. The vehicle manufacturer
normally assumes an initial low volume production. When the product grows in
maturity the whole operation could be migrated seamlessly to the large volume
manufacture as a going concern. Altemnatively, if volumes do not reach
expectation then the automation could be used to produce quite different

components [111].

Reduction of Product Time to Market

As reported by Graves [g31], the average age of each Japanese vehicle is
approximately two years, half that of their western competitors, and typically
500,000 vehicles are produced annually, compared with almost four times that
number in the US and Europe. This assumed flexibility in capacity of model
types and production volumes enables the Japanese producers not only to
exploit their production and sales strategies to compete with the increasingly
market demands of the world, but also to generate their own target customeré in
the global market place. In the presence of automotive markets characterised by
rapidly changing technologies and innovations, it is important for car producers
not only to incorporate the latest vehicles and technologies but also to offer

products to customers in the shortest possible time.

Due to rapid changes in market demands in recent years, shortened product
cycle is inevitably becoming the prevailing trend. For example, in the
automotive industry, product life cycles has been shortened to 2—3 years as
compared to the average 4-9 years from 1965-2000 and 3-4 years in 2005 [g33].
Additionally, market requirements demand significantly shorter new product
realization cycles. Currently, it takes 24 months for the world’s top automotive

manufacturers to develop a new car. The trend is for development time to be

CHAPTER 2: Drivers of Change in Automotive Manufacturing 11

reduced to 12-18 months within the next five years [113] from 2004. However,
these figures do not include the time for the development of the new car

production line which normally takes 53 weeks [103] to complete.

It has been reported by P. R. Dean [3] that the mass production approach is not effective
for mass customization production due to the large variations of customized products.
Mass production was introduced in the later part of the 19™ century during the
Industrial Revolution, to support high volumes of customer demand at minimum cost
(and minimum variety). The paradigm allowed manufacturers to produce more per
worker-hour and to lower the labour cost of the end product. Mass production was
successful because the market was characterised by stable demand, little product variety
and a few competitors who dominated the market. Manufacturers and companies simply

made profit by producing large batches of a product in order to minimise production

Costs.

The cost of variety can be interpreted as the sum of all the costs of attempting to offer
customers variety with inflexible products that are produced in inflexible factories. This
cost includes the actual coéts of customizing or configuring products, all the setup costs,
the costs of excessive numbers of parts, procedures, and processes, and the excessive
operations costs. Under the mass production paradigm this cost increases eprnentially

with increasing marketed variety [g17].

Mass customisation is an emerging paradigm addressing the requirements of global
markets that combines low price with extensive variation and adaptation. Products have
to be manufactured at costs comparable with those items obtained By mass production
techniques. At the same time, these products have to be highly customized not only in
variety but also in parameters such as quantity and attributes [1]. There are many
researchers trying to enable mass customisation by defining manufacturing systems that
can respond quickly to changes of product types and customer demand. The details of
alternative manufacturing paradigms proposed to enable mass customisation will be

discussed later in section 2.4, focused around the next generation manufacturing
systems.

CHAPTER 2: Current Manufacturing System 12

However, in the following section, the traditional manufacturing architecture will be
reviewed to provide an understanding of why such a conventional manufacturing
architecture can no longer cope with these drivers of change in the global market. The

associated problems with current manufacturing and production systems will be also
highlighted.

2.3 Current Manufacturing Systems

Current manufacturing systems reviewed in this section will be focused on the system

architecture (see Figure 2-1: Intra-Enterprise Domain) and manufacturing product

lifecycle (see Figure 2-1: Lifecycle Domain).

|\ A ——— Planning Anllym Evnlsuhon
|1 e I' %3
Business | Manag. s
Business |

Process fil L e Intranet

' er-Enurpriu

Process . { I] s
e Bo)l 2% e[
A Process bus
End-users) Supply-Chains| = T ngmm Mo"m,,,,.9 f.|n,,n o
Lifecycle | Field lev ':;]
Domain | Fieldbus 1 ¥

Measured {} || Influence
- values HI values &)I

Share data

Wu representation
Process definition

{ ~Component data (Machine
Endusers -Application logic SR
\ -Project management | Bukders
~Multimedia & Video

conference
Requirements
Process Engineering Machine Design&
Product Engineering Implementaton

Cantol Controllers

‘ Vendors Sensors
Actuators

Figure 2-1: Manufacturing System Structure and Production Process

2.3.1 Manufacturing System Architecture

Current machine control systems are categorized according to their physical
functionalities (e.g. programmable logic control, motion control, regulators) and are

programmed separately to execute sequences of commands as function primitives.

CHAPTER 2: Current Manufacturing System 13

Communication between the individual controllers is typically facilitated by a central
system in a hierarchical network. A typical automation hierarchy based on the standard
architecture ANSI/ISA-9S, shown in Figure 2-1 (Intra-Enterprise Domain), is described

as comprising a number of integrated levels as follows:

The Management level is concerned with the management of enterprise-level
finance, resource planning and distribution, workflow planning and order

management and fulfilment.

The Process control level has the primary task of the supervision of sites such
as SCADA (Supervisory Control And Data Acquisition) to monitor the
automation process control at the field level and also support process data
acquisition. In addition, quality management, order tracking, Manufacturing
Operations & Control, dispatching production, detail product scheduling and

reliability assurances are included at this level.

The Field level has been used to facilitate all tasks required for processing data
and directly influencing the process [12]. At the field level, programmable logic
controllers and microcontrollers are used. In addition the process can be

influenced using monitoring and operating consoles [13].

The Actuator-Sensor level is the lowest level of the pyramid hierarchy,
comprising components (i.e. sensors and actuators) that interact with physical
manufacturing environment to perform the tasks and to collect the data for the
higher level data monitoring and acquisition, (i.e. the field level, as detailed
above). The devices are connected to the higher control levél through
communication lines such as fieldbuses or industrial networks. Due to timing
constraints that have to be strictly observed in an automation process, the
applications at the field level require cyclic transport functions that transmit
source information at regular intervals. The data representation must be as

compact as possible in order to reduce message transfer time on the bus [6].

CHAPTER 2: Current Manufacturing System 14

2.3.2 Lifecycle of Manufacturing System and Machine Design

Consumer products change frequently with lifecycles often measured in months rather
than years. Shorter product life is forcing ever-shorter production machinery
development cycles. Bringing products rapidly to market may only be possible through
compressing time-scales by concurrently engineering the product, the production

machinery and the manufacturing and distribution facilities [79].

Product Development Process
Processes

s
|

Product Requirement

L T .
| [

Product Design

Job 1

Machine Design and Build Process -
lﬂ \
| Machine Design&Buid |

Processes
4 (Simultaneous Engineering)

SE |

)
{

1

|

]

g
Ve

! v 4

| Concept : | [

' ‘ Py : o \ Installation
Mechanical | | | b

3 ; ‘
| Electrical : it T
[Control | ‘

| Logic

»
42 months

Job 1

RS |
| Commissioning

Ship |

- \l o Y 3
1 Infta!laﬂon Time
——

53 weeks

Figure 2-2: Product Lifecycle and Machine Design& Build Process [103]

The engine product design and implementation process in typical automotive industries
takes approximately 42 months to complete [103]. The activities that support the
concurrent engineering of product, machine and process facility are illustrated in Figure
2-2. The process involves three major collaborators: the end-user (the automotive
production company), the machine builders and component suppliers (control
components). The process begins with the conceptualisation of the new engine type and
the determination of a set of product requirements and specifications, which are later
translated into the design of the product. In the current case, before the product design
is finalised, the end-user will contact the machine builder as well as the component
suppliers to provide the design and build the manufacturing system. The process of
machine design and build normally takes 53 weeks to complete with the machine

validation carried out at the machine builder’s site. At each stage of the machine

CHAPTER 2: Current Manufacturing System 15

lifecycle the system is checked and closely monitored by engineers from the end-user to

guarantee that the system meets the required specification.

It is noted that full system operation and functional performance of the machinery is
carried out on completion at the machine builder’s site. Additionally full system
validation is undertaken on the end user’s site during installation and tuning post strip
down and shipping from the machine builder. The system is monitored constantly at the
installation stage by the machine builder to ensure that the machine meets the
production requirement of the end users [103]. It is important for the machine builder as
well as control suppliers to ensure that the system meets the end user requirements since

any subsequent changes, particularly late in the lifecycle, cause delays and increased

cost.

Product Lifecycle and Process Reconfiguration

Develop Product C 1
A.B and C are the \ P |

product of the
same family L Develop Product B ‘

Develop Product A
L p Rfg = Reconfiguration

i
i
— |

Time

Figure 2-3: Product Lifecycle and Reconfiguration Process [79]

During the machine lifecycle as shown in Figure 2-3, production lines are subjected to
system re-configurations for new types of products. Since every product type change
results in a ramp up time to full production, there is a growing need for production

machinery to support re-configuration and re-configurability more efficiently in order to

maximise return on investment [79].

CHAPTER 2: Current Manufacturing System 16

2.3.3 Problem Identification

The set of problems and issues surrounding the current manufacturing architectures and
control systems have been derived from international projects and research
collaborators (e.g. Schneider Electric, Comau, SOCRADES ®) RIMACS © and SAP)
and the Ford Motor Company, UK. The common problems with traditional
manufacturing systems associated with the automation systems, Figure 2-4, can be

summarised as follows:

Deosign&Build

v

Translation: Information, o L]
Interpret required function, F
Customer resource &
Requirement -

Mechanical

P)
! ' [r 1/0, function
R JT“J‘M. . Mapping .
-y £\ O\ |
g %) |
A 1 ,,'~"L*' |
ok T Pt et
1o
Operation logic Electrical & A
e Control [
[v
Experience based . \‘ .

design control logic& . 4
application ~

Device interlock
and,
specialized HMI
Diagnostic system

A
irpT T |
S 3 pmlong | ‘
i £
interface
HMI e
System

Figure 2-4: Current Machine Build Process

Rigid Hierarchical System Structure

e This traditional design approach has major deficiencies when used as a basis for an
intelligent (reconfigurable) manufacturing control structure [9]. In a rigid,
hierarchical approach, system development typically occurs as a series of vertically
isolated activities [72]. It has been reported in [10] and [11] that the centralized and
sequential manufacturing planning, scheduling and control mechanisms are
increasingly being found insufficient for the current market environment due to a
lack of flexibility (e.g. the ability to respond in a time and cost efficient manner to
planned changes) and agility (e.g. the ability to respond in a time and cost efficient

manner to unplanned changes) in order to respond to changing production styles

and highly dynamic variations in production requirements.

5- Service-Oriented Cross-layer infrastructure for Distributed smart Embedded devices
6- Radically Innovative Mechatronics and Advanced Control Systems

CHAPTER 2: Current Manufacturing System : 17

Design of Automation Systems

o Experience-based design and implementation

Current automation systems are composed of diverse automation peripherals that
make the system very complex. Therefore, the process of designing and developing
automation systems is reliant upon the expertise of those who have participated in
previous similar projects [33]. A lot of effort is still required to build consistent
automation systems within the limited time available, even by the experts. The reuse
of hardware and software from existing designs by employing high level
development tools for example could potentially decrease the development time and

man power required to commission the system.

Late verification of automation systems

The lack of engineering tools that are capable of supporting concurrent engineering
tasks throughout the lifecycle of manufacturing systems, especially in the design of
automation systems, means that the verification of systems cannot be undertaken
until the completion of all of the required elements (e.g. mechanical, electrical, fluid
elements and control software). If the control systems fail to support the desired
specification or errors are introduced into the system, this often will result in the
delay of starting production. New engineering environments are needed to support
concurrent automation systems design. The development of a component-based
design methodology (Chapter 6), supports the concurrent design of automation
systems by combining hardware and control software into an integrated automation
unit (component) in which the control software can be verified before the

completion of mechanical systems by simulation of embedded device states.

Control Systems

Rigid manufacturing development with centralized control

On the shop floor, centralized manufacturing systems are not favored because they
involve expensive investment costs at the implementation stage. In addition, if the
product and manufacturing management systems are modified and the central
control unit has to be altered, the whole system needs to be changed because

devices or elements under the central control unit are reliant upon the central

CHAPTER 2: Current Manufacturing System 18

controller. This type of the system is also at risk of a single point failure that can

result in the whole system being inoperable.

e Lack of reusable and reconfigurable automation peripherals
Within current automation systems, the hardware is tightly coupled with the
centralized control software systems such as traditional PLC’s. Reusability and re-
configurability are difficult to support and the whole system is usually replaced
when new designs are required. Changing types of hardware may also result in a
requirement for new control software. Supporting these changes is a time

consuming and error-prone process.

e Diversity and complexity of automation devices _
Manufacturing systems are composed of various types of software applications such
as Human Machine Interfaces (HMI’s), data monitoring systems, control systems,
gauges and data recording systems. Each unit has its own proprietary solution
provided by different vendors working on different operational platforms such that
Microsoft Windows, UNIX with serial communications, Ethernet, Fieldbus, or
Modbus communication mechanisms. This makes the automation system very
expensive and complex to maintain since it necessitates the fragmented use of

heterogeneous tools and experts with knowledge of diverse technologies.

Operation

o Lack of remote diagnostics and support
Due to a lack of remote support, end-users cannot get immediate support from
machine vendors when machines breakdown. The most cost effective option seems
to be the difficult task of solving the problem over the telephone. The major issue
with this is that engineers frequently do not have enough information about the
cause of the breakdown to support efficient recovery to production. In many cases, a
site visit is required which can be a problem when global support is required. In
addition to cost penalties, machines can be out of production for a long time waiting

for support. Down time can be significantly reduced if problems can be solved
remotely via e.g. online expert assistance.

CHAPTER 2: Current Manufacturing System 19

2.3.4 Manufacturing and Automation System Requirements

In section 2.3.3, the problems with current automation systems were identified as a set
of requirements for the next generation manufacturing automation systems. The
required attributes for advanced automotive manufacturing and automation systems are .

as follows:

Seamless Business- Manufacturing Process Integration — Rapid appreciation
and preparation of functional and technological changes need to be appreciated
throughout the business and by investment personnel. It is desired that the system
can react to changes with less (or ideally without) effect on other processes within

the complete manufacturing system. -

Rapid Design of the Automation System — There is a need for an approach to
allow the simultaneous system development of mechanical, electrical, fluid and
control units. It is required that these units are designed independently and yet
available in the common formats for the interest parties (mechanical, electrical,

fluid, controls engineers and machine vendors) in building the complete system.

Quick Response to Change in the Production Capacity — Re-configurability of
automation is the design requirement at the outset to enable support of rapid
changes in the structure of software and hardware as described by D. A. Vera
[116], to adjust production capacity and functionality in response to changing

demand.

A High Degree of Reuse — It is desired to reuse as many as possible of the
features (i.e. hardware, software design and engineering knowledge) of the

existing system within the new manufacturing automation system in order to save

time and cost of the development.

A More Consistent Integration Approach for Diagnostic and Maintenance
Support — Consistent integration approaches are required to minimize the process
downtime and the unnecessary waste. The integration effort and degree of

complexity of such systems need to be easier to integrate without incurring added
complexity.

CHAPTER 2: The Next Generation Manufacturing System | 20

Visualisation and Simulation — The functional and behavioral capability of the
control system needs to be evaluated prior to installation in order to minimize

time lost due to late validation.

Non-Vendor Specific Platforms — Open platforms [43, 44] allow the
substitution of components with alternatives to improve capability, reliability or
performance. This would also benefit the end-users in terms of reducing
development costs and improving system flexibility and avoiding being “locked

into” particular technological solutions.

Fault Tolerance and Recovery — Fault tolerance and error recovery capabilities
enable systems to continue to operate efficiently in the event of the failure of
some components, This is a significant requirement for distributed automation
systems. A single failure should have a minimal impact on the rest of the system
functionality back up procedures to recover safely (i.e. roll-back, roll-forward)
need to be supported without interrupting the operation of other units.
Checkpoints should be implemented in the system to monitor constantly the

system operational state.

As highlighted in this section, these fundamental characteristics of automation
systems need to be considered as key enablers of the Next Generation Manufacturing
Systems (NGMS’s) to enable mass customization. The key characteristic and the

emerging trends of manufacturing systems are highlighted in the following section.

2.4 The Next Generation Manufacturing System

As outlined by Frangois Jammes, Harm Smit [9], the next generation manufacturing
systems of future manufacturing enterprises will be characterised by a need to adapt
to frequently changing market demands, time-to-market pressures, continuously
emerging new technologies and, above all, global competition. Therefore the future

manufacturing system must support global competitiveness, innovation, introduction

of new products and strong market responsiveness.

CHAPTER 2: The Next Generation Manufacturing System 21

However, traditional rigid sequential engineering methods are inappropriate in this
context as common problems detailed in sections 2.3. Furthermore the manufacturing
architecture and automation structure within the complete engineering process for
current production systems is inefficient and requires extensive human effort in terms
of time, cost, and expertise in devéloping desired future manufacturing systems {72].
In addition, it has been reported [9] that the cost of maintenance and adaptation costs
rises considerably for a non standard, obsolete and inflexible platform. This is due to
the difficulty of reconfiguring existing applications (i.e. processes) to a new
configuration, vendor specific hardware and software and tight integration between

equipment and manufacturing control systems.

To overcome the common problem with traditional manufacturing systems (section
2.3.3) and to meet the manufacturing requirements (section 2.3.4) enabled by mass
customisation, novel integrated business and manufacturing strategies are required.
The need for that new manufacturing enyironments that are capable of supporting
inherently multidisciplinary, parallel system engineering tasks has been discussed in
[72]. The realisation of appropriate engineering tools requires not only a broad
appreciation of mechatronics, manufacturing strategies, planning and operation, but

also a deep understanding of the required integration of communications, information

and advanced control functionality.

In relation to the above statement, agent-based agile manufacturing cells and Web-
based agile manufacturing frameworks [22, 29, 77 and 92] have been proposed as
possible solutions that could meet the challenges and requirements from various
industrial sectors. In addition these agile manufacturing frameworks have been
proposed with key characteristics (e.g. a neutral- platform system, reconfigurable and
reusable manufacturing systems, concurrent manufacturing and automation design,
and seamless business-shop floor integration) that can contribute to distributed
collaborative manufacturing teamwork at both the enterprise and plant levels in order

to support flexible and quickly adaptable manufacturing process capabilities.

CHAPTER 2: The Next Generation Manufacturing System 22

The Emergence of Collaborative Automation in Agile Manufacturing

The empirical study on an appropriate agile automation framework has been
carried out on research projects, e.g. RIMACS, SOCRADES, Business Driven
Automation (BDA) and discussed in collaborative manufacturing and
automation publications [2, 32, and 72]. This research has provided the
fundamental framework and the core background to the research outlined in

this thesis. A common framework for supporting the lifecycle of agile systems

Product planning
Process planning
Business

-

e
‘ Control development / "
Equipment development . ¥ Op-ornonm
Upgrading/installaton = econfigura
W

Start up/Ramp up
" %D
Machine builders

. o » o End-users
' é . (st it i
$ — ¥ 28
%

is illustrated in Figure 2- 5.

Production

machine

Communicatiom

? What is an efficient
integration framework and
enabling technology
within this context of agile
manufacturing system?

Figure 2-5: Collaborative and Agile Manufacturing Framework

The framework covers the business management, the build of the control
system and the production operation during the manufacturing lifecycle. The
collaborative automation system is embedded with the core functionality to
support the business and manufacturing functions as shown in the diagram.

The automation system is composed of Control System, Mechatronics and

CHAPTER 2: The Next Generation Manufacturing System 23

Communication capability required to support agile operation throughout the
lifecycle. However, as is the case with common frameworks, various
instantiations of solutions have been employed by different researchers. These

will be discussed in detail in Chapter 3.

In this chapter, the drivers of manufacturing paradigm shifts from mass production to
mass customisation have been discussed. Accommodation of these drivers has impact
on the requirements of future manufacturing automation systems that need to support
greater agility and be more cost effective in the presence of rapidly changing
environments. Traditional manufacturing and automation systems have been proven
to be inefficient. However, the author has addressed the problems and requirements
for the next generation manufacturing systems which require greater agility and
enhanced collaborative characteristics in three main areas: Communications,
Mechatronics, and Control systems. The collaborative and agile manufacturing
framework proposed in this chapter provides the precise view of the manufacturing
system integration architecture for this research toward an agile paradigm. In the next
chapter, the enablers for agile manufacturing will be reviewed as a key approach to
enable the next generation manufacturing automation systems. The details will be

focused on both enterprise and automation activities.

CHAPTER 3
Agile Manufacturing Paradigm

In the previous chapter, the need for greater agility in manufacturing has been
addressed with the definition of the specific requirements of automation to support
the next generation manufacturing capability. In this chapter, the details of agile
manufacturing approaches are discussed. The definition and the characteristics of the
facets of agility in manufacturing systems are identified. In addition, existing
solutions for agile manufacturing systems are assessed in terms of integration
platforms, implemented technologies, problems and limitations in each approach. In
comparison to these solutions, a platform for automation systems based upon a
Service-Oriented Architecture is proposed to address the limitations inherent in

existing approaches.

3.1 Problem Statement

There are various definitions of agility and key facets presented by different
researchers. It is important to determine the commonality in core concepts and enabling
technologies that can be applied in the research outlined in this thesis in the domain of

the automotive industry. This chapter aims to address the following questions:

1. What are the key characteristics of the agile manufacturing paradigm?

2. What are previous and current projects aim at developing agile manufacturing
platforms? How do these solutions address the needs and the requirements from
the end-user?

3. What features constitute an effective agile manufacturing integration framework
and enabling technologies that can meet end user requirements?

4. What are the features of the new approach that could potentially establish the

agile paradigm in the automotive automation domain?

CHAPTER 3: Overview of Agile Manufacturing ‘ 25

3.2 Overview of Agile Manufacturing
The concept of Agile Manufacturing Systems (AM) was first introduced in 1991 [119].

Since then, the concepts have been widely disseminated as embodying the essential

requirements for next generation and intelligent manufacturing systems.

Although agile manufacturing can be regarded as a relatively new automation paradigm
it is not well defined or understood. Agile manufacturing often is confused with lean
production, flexible manufacturing or Computer Integrated Manufacturing (CIM), but it

has a distinctly different meaning.

Common definitions of agile manufacturing are:

“Agile manufacturing as the ability to accomplish rapid changeover from the assembly
of one product to the assembly of another product. Rapid hardware changeover is made
possible through the use of robots, flexible part feeders, modular grippers and modular
assembly hardware” [85]

“The concept of agile manufacturing is also built around the synthesis of a number of
enterprises that each have some core skills or competencies which they bring to a joint

venturing operation, which is based on using each partners facilities and resources”

[64]

“A manufacturing system with extraordinary capabilities (Internal capabilities: hard
and soft technologies, human resources, educated management, information) to meet

the rapidl.y changing needs of the marketplace (speed, flexibility, customers,

competitors, suppliers, infrastructure, responsiveness)” [119]

These definitions reflect the various approaches towards agility in business, product,
production and entities of the manufacturing system to achieve a common goal of
coping with the rapid change of global markets driven by customer demand. As
reported by A. Gunasekaran [8], the concept of agility is at the heart of manufacturing
systems integration for supply chain companies aiming to perform collaborative tasks to
deal with unpredictable and rapid changes in both business and production systems.

Ideally this group of companies would “partner” to form an integrated enterprise

CHAPTER 3: Overview of Agile Manufacturing 26

supporting a range of the best available resources for the business opportunities of

interest.

To become agile, manufacturers have to distribute intelligence and decision making
authority as close to the points of delivery, sale and even after-sale service as possible.

To improve agility, they have to integrate the design and production information with

their business partners [77].

Agility is required, in many areas throughout the manufacturing lifecycle i.e. from the
business requirements definition stages in product design to the manufacturing and

reconfiguration production resources [4], [7] and [8].

The agility of these entities during the manufacturing system design lifecycle is
facilitated by the agility in management, people, organisation, production, system
design and marketing as shown in Figure 3-1. The multi-faceted nature of automation

and production systems agility is also depicted in Table 3-1.

The research outlined in this thesis is focused on the production and the systems
integration facets of agility. The aim is to develop flexible and reconfigurable
production lines enabling effective support of the variation of product types and
volumes in short lead times. Systems integration aspects have been focused on
production and business integration in order to utilise and share information with the
aim of reducing the cost and improving the throughput of the production system. This
will also improve business collaboration and support through effective database,

visualisation and monitoring systems integration.

27

CHAPTER 3: Overview of Agile Manufacturing

jooey A116Y

N

Jenew o}
awn ‘ubisap Jo 109 [ejo) Buikuap) e

ssanddns pue Bunaxew
yum pajesbajul juawdojaasp
pnpoid aAnesado-0) ©
Bugsa) pue
6udAjojord ‘Aiquasse ped
pue ubisep WvD/AVD ®

ABajens pue
Ayunpoddo ssauisng ay)
Joj UORNIOS puB SPaAU
feas ay} Burssaippy o

: aAnpadssad ubisap
| pue juawasnbai sias(e
H Spaau ssauisng e

uonoanpoid

uonesadQ

uonepijeA

uoneinwis
‘6uiun] ‘dn jasg

ubisaqg wajsAs

¢ -

Bunaxiew

A

»_nEommm wn
‘uoneoyoads
ubisap jonpoid

uonewolny

Al

INH *
swajsAs Buuojuop

-5/00) uonesljddy
‘uoneoyeds suiyoepy

JOpuUaA aulyoep

aouewopad palinbas
pue spaau Jawoisny

v
ubisaq jJonpoid

I

si9)|ddng

[euele

sjuswalsnbas pue

i uoneoyoads PNpaid

MIIAIBA0 Jaug

wun

y

siapjoyayels

Axejdwog uonoesayu|

Figure 3-1: Agility and Interaction in Manufacturing System Design

CHAPTER 3: Key Enablers of Agile Manufacturing 28

Table 3-1: Multi-Facet of Agility in Manufacturing [7]

Agility Facet Required Agile Characteristic
Management Distributed team work and project collaboration within and across companies to support change
through IT [8].
P Multi-skill and innovative total work force, the ability to hire and train people to the required
eople o
skill quickly [8].
Oreanisation Ability to synthesize new productive capabilities from expertise of people and physical facilities
& regardless of their internal or external location [8].
Producti Flexibility/ Re-configurability production systems to produce various goods and services to
uction customer orders in arbitrary lot sizes with shorter manufacturing’s lifecycle [72].
Svystem Collaborative methodology in integrating various applications of suppliers, business processes
I); ti production and support for efficient manufacturing system in term of productivity and
ntegration performance [2].
Marketing Customer enriching, individual combination of products and services [7].

In the following section, the key enablers of agile manufacturing with respect to

production and the systems integration issues are presented in detail.

3.3 Key Enablers of Agile Manufacturing
The model of key enablers for agile manufacturing systems, as shown in Figure 3-2, has - -
been studied and extended from [8] to fit the requirements of the next generation of
manufacturing systems as detailed in Chapter 2. Agile characteristics and key enablers
are focused on thej)roduction system and systems integration facets with the lifecycle
and intra-enterprise domains, respectively in this thesis. From the production system
perspective, the key agility feature is modularisation as well as change capability.
From the systems integration perspective, the key agility feature is focused on business

and manufacturing systems integration as well as information utilization to improve

performance and productivity.

CHAPTER 3: Key Enablers of Agile Manufacturing 29

—

W

Agility facet: Agility facet:
Production System Integration

Lifecycle Intra-Enterprise

Domain Domain
Integrated Business-
Modularisation of Production
Production system Information
Distributed control Seamless System
system Network connection Yy

Integration tools
for Flexibie/
Reconfigurable

Information sharing

Agil nufi rin
Quick Response Manufacturing
Customised Production

N
9
o
[}
g
1)
a>f Improved Productivity and Quality

X
VRMUSimulation
tools
Rapid

and changeover h
capability

Jojqeus Aay|

Process optimisation,
Diagnostic system

HMI

Information Retrieval
And Utilisation

Figure 3-2: Conceptual Model of Key Enablers for Agile Manufacturing System
The details of these agility features are as follows:

1). Modularisation of Production Systems

Modularity is typically introduced into a manufacturing operation to increase the
flexibility of the operation both in terms of its range of functions and also its ability to
be easily reconfigured in the face of changing conditions [115]. Modularity almost
always leads to a distribution of functionality and also physical distribution [91].
Modularisation of production allows changes to be made to a few isolated functional

elements of the production without necessarily affecting the design of other elements
[59].

Modular production system design research has proposed solutions for both
reconfigurable mechanical structures and also control software applications enabling
quick changeovers in decentralized automation systems to improve flexibility and
adaptability of machine systems or production cells as presented in [72], [79], [115].
Key modularisation concepts are: i) distributed control of loosely coupled structures

and their functionalities (control software) and ii) integration tools to support the re-

configuration process and design for reuse of the control system.

CHAPTER 3: Key Enablers of Agile Manufacturing 30

Distributed Control Systems (DCS)

Distributed control systems support modularity by distributing the controllers
(control devices) throughout the system. Control devices are connected by networks
for communication. This allows the control functionality to be decomposed and
distributed into the individual control devices to match the required physical
modularity of a machine [79]. Modification of the control functionality of one
device should not affect the functionality of the others since devices are interlocked
using configuration data and internal the state variables. In this way, the
reconfiguration of the system is supported by reconfiguration rather than re-
programming of devices. This approach to DCS implementations at Loughborough

University has been reported for real industrial case studies in [11], [72], [73], [79].

Integration Tools for Flexible and Reconfigurable Automation Systems

The concept of modularisation applies to the design of modular machines where ad
hoc parts could be installed with minimal impact on the complete machine system.
This concept supports re-configurability where physical mechanical parts and their
control software can be changed without altering other system components. To
support the adoption of this modular decomposition of control systems, integrated
engineering tools are required for building, changing and managing machine

applications, for example, synchronization, and internal and external interlocking

between control devices.

2). Rapid Commissioning and Changeover Capability of Automation Systems

Manufacturers seeking more agility and flexibility of production systems have
increased the demands for an integrated engineering environment to support the
simultaneous design of the manufacturing system, especially from the control system
perspective. New engineering automation design approaches will need to support
concurrent design activities of those who are involved in various design activities
addressing machine structures, electrical components, fluid components and control
software. Central to the research in this thesis is that this requirement can be enabled by
a component-based design approach (detailed in Chapter 6). In addition, it is important
to be able to validate the design of the machine system (via for example simulation
tools) in early lifecycle stages in order to detect failures and deviations from

requirements and specifications as early (and hence economically) as possible.

CHAPTER 3: Key Enablers of Agile Manufacturing 31

Hence the strategy to support rapid change capability is via the integration of individual
mechanical, electrical, and control components within concurrent development and

validation processes of manufacturing systems. The enabling concepts are:

Component-Based Architectures

In typical component-based architectures, components are made up of mechanical
units, internal state based control software, control interfaces and physical
representations i.e. “virtual” CAD drawings. Examples of the hierarchical
breakdown in terms of system-subsystems-modules-components-elements adopted in
this thesis are detailed in Chapter 6. The control components: (i) are responsible for
their own actions andv(ii) monitor the necessary sequence and interlock conditions

of other components in the system in order to fulfill the overall application

requirements [79].

In the design of component-based systems, each component is considered as a
reusable entity for independent control configurations throughout the manufacturing
lifecycle. The component control software: (i) consists of the low-level logic (i.e.
actuatidn, sensing, iriterfacing), (i1) defines the devices behavior, (iii) is
encapsulated in the controller and (iv) is exposed to integrated engineering tools

through specific interfaces for building manufacturing applications.

Virtual Reality Modelling and Simulation Tools

In current systems, control verification can only be carried out during
commissioning phases when all the mechanical, electrical and control parts have
been integrated [103]. Revision and re-design at this stage results in the costly
delays for the project. In the current CB approach [116], the logic of the real control
application (i.e. embedded within the integrated components) can be evaluated via
simulation tools to provide the more reliable and accurate approach for the system
validation. The system validation can be carried out prior to the completion of the
design process; significantly earlier than within the current approaches. Any defects

/ deviations from specification can be determined early in the lifecycle and changed
quickly and cost effectively.

CHAPTER 3: Key Enablers of Agile Manufacturing 32

3). Integrated Business-Production Information System

Various kinds of critical information can be found distributed at the various levels
within manufacturing enterprises i.e. at the business level and / or the shop floor (i.e.
barcodes, status of devices, production capability, quality metrics). This information
needs to be available to people or relevant systems whenever or wherever they need it
across the enterprise. There is a trend of increasing the intelligence of automation
devices at the shop floor level to enhance flexibility and re-configurability by increasing

information transparency and data mobility across heterogeneous platform systems
[45].

Information Sharing

In the collaborative working environment where the information is distributed and
shared across departments, the use of a shared ontology allows a better exchange of
information among team members with similar interests and a better access to
information. For example the industrial design engineer can use a sharing module to
claborate on design documentation and detail new knowledge by integrating
existing documents and content descriptions [55], thus reducing the design life cycle
of products and machines. This approach is also applicable to other manufacturing
activities such the machine maintenance to support learning from the outcomes of

previous projects to avoid previous errors and to solve new problems [g10].

Seamless Network Connection

To gain the maxim\im benefit from knowledge sharing, content needs to be
characterised in an explicit way so that others can access and understand the data.
Tools have been proposed that support information content descriptions indexed
with metadata and embedded annotations within documents or geographical

document zones for better content exploitation and sharing [55].

4). Information Retrieval and Utilisation

The current trends toward the application of increasingly sophisticated devices on the
shop floor are driving an approach for collaborative manufacturing where the
collection, dissemination and analysis of information about production operation is
recognised to be strategically as important, if not more important, than the physical

products produced [2]. It is important that information systems are organised in

CHAPTER 3: Key Enablers of Agile Manufacturing 33

standard formats allowing other entities to understand and use the information
effectively [8]. With the high-speed data communication of Ethernet and Fieldbus
technologies, distributed devices at shop-floor level can be monitored, analysed in real-
time and configured or upgraded during run-time. This enables enterprises to become

more open, flexible, distributed and extensible with less cost. Shop floor information

can be utilised in many areas:

Diagnostic Systems

The data collection from low-level manufacturing devices, including a wide variety
of process and production data (such as temperatures, pressures, flow rates, and ID
tags), helps companies monitor and analyse the current plant performance in real-
time. The utilisation of data from any individual piece of equipment can be
collected via networked communication (e.g. Fieldbus and Ethernet TCP/IP). Using
these techniques, process downtime, parts degradation, faults and throughput can be
monitored, visualized and evaluated to determine plant asset performance and

support rapid deployment of recovery activities.

Process Optimisation

Advanced technology has been increasingly used in the manufacturing process as an
aid for operators in optimizing operations, the simulation of performance and
advanced process control. In addition plant managers need information systems
support for effective product planning and scheduling. Models, simulations, and
information generated by processes are beginning to be integrated and leveraged at
the enterprise level [17, 29, and 116]. In the current business environment, on time
delivery to customers and optimised process scheduling have become significant
drivers for companies. Equipment downtime resulting in late delivery adversely
affects customer satisfaction. The concept of running machines and field devices
has been changed from reactive run-to-fail maintenance to predictive and proactive

maintenance, aiming at near zero downtime [2].

Condition monitoring, implemented with intelligent devices, is under development
by many vendor companies aiming to provide solutions for data logging, process
monitoring and real-time, on-line device controls in many aspects of industrial

domains to improve efficiency and enhance production throughput by minimizing

CHAPTER 3: Related Approaches toward Agile Manufacturing Systems 34

loss associated with the machine breakdown (e.g. SOCRADES, RIMACS EU
projects).

Visualization and HMI

Human Machine Interfaces (HMI’s) and Supervisory Control And Data Acquisition
(SCADA) systems are the traditional tools for providing control and performance
visualisation at the plant level. Currently these systems are the main human
interfaces typically transferring significant amounts of data to be converted into
information that is utilised by production management systems. In this aspect, there
is a trend toward more open process control systems, which allow data to be
collected freely from a variety of vendor equipment and prevents manufacturers

from being locked into proprietary solutions and ultimately increasing the plant

flexibility significantly.

3.4 Related Approaches toward Agile Manufacturing Systems
In this section, the general framework, existing research and solutions to enable agile

manufacturing systems in the Intra-Enterprise and Lifecycle domains (see section 3.3)

are discussed in terms of enabling technology and its limitations.

The dimension of manufacturing system designs that leads to the collaborative
enterprise perspective is illustrated in Figure 3-3. In the diagram internal
manufacturing, business processes (axis-1) and Inter-Enterprise connectivity (axis-3)
between local business and external business partners are represented. Manufacturing

plant, machine control vendors, and machine builders are linked throughout the

lifecycles of the manufacturing (axis-2) domain.

The collaborative enterprise model represents the general framework and integrated
technologies that are commonly used in the design of integrated manufacturing systems
within any business and engineering application. Note: the Inter-Enterprise domain

(axis-3) is not included in the discussion since this domain is outside of the scope of
author’s research.

CHAPTER 3: Related Approaches toward Agile Manufacturing Systems 35

Business

ERP Application

Axis-1 i ' ““‘ I I LAN I
‘ Application Interface

Business

Business
Process

Axis-3 1
Business

' intra-EnterprIse

d Middleware
Domain

Inter-Enterprise
Domain

Application Interface
{ LAN

|
End-users Supply-Chains i g Metar-fiaqta mod:elg L
Axis-2 . Lifecycle | e !
Domai
= Gateway
' | | l Industrial standard network
\ ‘1 | T : - : T
Partners Automation (I g * :
< NG) \ » ey, vy, v,
Shop Floor e
. Shop Floor
Planning Dismantle B Commissioning
and ship and Capability
Study One good
/ Realize / pragUat A
] ,/
Specification / Try out / Part Sample
/ k] Warrant
/
St i / \
Simultaneous | \ / | Buldat / Job 1 and
Engineering | \ / Vendor / Launch
S) N
| Simultaneous |\ Machine ‘ Lesson
| Engineering | Design / } Learned

Figure 3-3: Collaborative Enterprise Model (extended from [78])

In the Intra-Enterprise Domain, business applications, manufacturing execution systems
and other control applications are integrated into the manufacturing system through
middleware and interface concepts to support information retrieval from database
systems for use in higher level applications. Middleware is software specifically
designed to integrate disparate software applications in heterogeneous environments
[120, 45]. Networked communication is supported via standard office LANs at the

business level and Gateway proxies for shop floors with different network types (e.g.
Fieldbus, Industrial LAN).

Shop floor capability is the main focus of the research in this thesis i.e. automation
issues within the manufacturing lifecycle. Typically the design of automation systems

has followed the V-Model [78] starting from extracting requirements from end-users,

CHAPTER 3: Related Approaches toward Agile Manufacturing Systems 36

component decomposition to address system complexity, evaluation and finally
component integration final solution prior to final test and delivery to end-users. Once
running, machine processes might go through the change over period for new product

types.

As the plant has to be part of the business system it is crucial to embed the ability to
support the key elements of agile manufacturing. It is necessary that: (i) all the plant
activities can be monitored, (ii) machine performance, downtime, and status can be

logged and (iii) relevant information sent to management teams, engineering teams and
machine builders.

Note: The realisation of system agility is not only via consideration of the monitoring
capability and integration of information, but also engineering environments and
technologies are needed (see Chapter 2) to support the manufacturing lifecycle in the

agile context. Existing solutions proposed to enable agile solutions in the manufacturing

domain are discussed in the following sections.

3.4.1 OSACA: The Open System Architecture for Controls within Automation
systems consortium has been working on open control architectures (Figure 3-4) based
on a client/server protocol using an objected-oriented architecture to develop an
independent modular software structure for open control systems [g34]. The group has
developed a communication system to support open data exchange between software
modules within control systems. The reference architecture defines which tasks are
performed and how tasks interact with each other. The OSACA platfo.rm supports
interoperability between different vendor solutions. This vendor-neutral capability is
implemented by the OSACA API (Application Programming Interface), which acts as
an interface between the application object and the underlying infrastructure in the form
of communication, operating system and electrical components. To enable the
flexibility of manufacturing systems in distributed control environments and the
interoperability among diverse vendor specific hardware types, the control application
is defined as an object (i.e. a device), which encapsulates logical control, motion control
and process control. Generic functionality is exposed and accessed through the object

interface. This gives vendors of control software the freedom to implement the software

CHAPTER 3: Related Approaches toward Agile Manufacturing Systems 37

in their own fashion but solutions need to be complied with OSACA interface standard

for interoperability.

client T server :
appncatlon 3 application . Business
e _ e - Al _____ 3 Business Business

Process -
E Intra<Enterprise

\ o Domain

ﬁ :] @ %@bmn

% = 2 > WY 1]

ariable objects

sbjact pvohcuor\ % r‘*'] l» i g 1
deletion - mc }oc!l

; Supply-Chains

End-users
-

Lifecycle
Domain

K2

"o

assembly &
dissssembly

&

Automation
v

Shop Floor

=

application
specific - -
code Communication Object Process
. mapping "
Eommumcanon Object Name string to identify the SCO
il Description semantic
\ OOM Class class used to register at the COM
OSACA Standard Opetatng aysiem 4 Action all actions the module reacts to
interface 2% i r"—'[— T‘ _I__l
Cotindk SiatSusita - 4“ Action| Descr. | InPar. | OutPar
N T \ States all possible states of the process
\\ [Name [Descr | Allowed Actions |
|| state Machine
N

Figure 3-4: OSACA Framework

From the business and the shop floor integration perspectives, the OSACA equivalent
middleware is implemented to integrate control level applications (server applications)
to the business systems (client applications). The client finds and invokes the services
through Common Object Model (COM), ASS (Application Services System) and
Microsoft Transaction Server (MTS) middleware layers [70]. The physical

communication can be made through LAN or gateway approaches if different networks

and protocols are used on the shop floor.

3.4.2 OPC Foundation (Object Linking and Embedding (OLE) for Process Control):
The OPC foundation is a non-profit corporation and has established a set of standard
Microsoft OLE/COM interface protocols intended to foster greater interoperability

between automation applications, field systems and devices and business applications in

CHAPTER 3: Related Approaches toward Agile Manufacturing Systems 38

the process control industry. OPC technology defines standard objects, methods and

properties for servers of real-time information in distributed process environments,

programmable logic controllers and smart field devices. OLE provides a mechanism to

provide data from a source and communicate the data to any client application in a

standard way. It allows components to be utilized by a custom program through

different sets of software drivers in the middleware stack as depicted in Figure 3-5.

From the interoperability perspective, developers can write software components in C

and C++ to encapsulate the intricacies of accessing data from a device, so that business

application developers can write applications to requests and utilise shop floor data

[g15].

OoPC

OPC UA Client Implementation

Business
Process

Business ? \ Business

OPC UA API (not standardized)

Intra- Enterprise

Interface

Microsoft Microsoft

WSE 2.0

[B:8

i Supply- Chains

Microsoft Microsoft
WSE* 2.0 WCF**

F | Java {ANSICnack

l Java | ANSI C stack

OPC UA API (not standardized)

OPC UA Server Implementation

RIS

Fnu Source rol!l Source l I Data Source

* Web Services Enhancements (WSE)
** Windows Communication Foundation (WCF)

g
1
$ End- users
g Lifecycle
. ’ %o Domain
b
e \
o Automation
j Shop Floor
v
A
e TR
[RS] [’ - [
e o, e SRS, iy UGN s ey
e ————— - - - . l_.\

OPC control
vendor choices

Figure 3-5: OPC Framework

However, in the design of automation systems from the lifecycle perspective, there is

no well-structured approach from OPC to support flexibility and re-configurability.

These capabilities depend on the capabilities of vendors to implement this functionality
within the OPC framework.

CHAPTER 3: Related Approaches toward Agile Manufacturing Systems 39

3.43 RIMACS (Radically Innovative Mechatronics and Advanced Control
Systems): RIMACS is a European FP6 project initiated in 2005. The consortium has
proposed a collaborative automation paradigm based on an autonomous and modular
component-based approach for flexible and agile manufacturing systems to enable mass
customization with reduced lead-time. The RIMACS approach considers the set of
production entities as a conglomerate of distributed, autonomous, intelligent and
reusable units, which operate as a set of collaborating entities at production runtime.
Each entity is typically constituted from hardware - mechatronics, control software and

embedded intelligence and provides common communication capabilities [91].

'The production entities are referred to as Intelligent Autonomous Mechatronic
Components (IAMC) which comprise 3 units TEC>TEM>TEPS in a Russian doll
manner. The Embedded Components (TEC) i.e. control devices, mechanic parts, which
are, or can be part of, the Embedded Machines (TEM) i.e. machine subsystems
consisting of independent sub-components and computational units, which are, or can
be part of, the Embedded Production Systems (TEPS) i.e. overall machine systems or
production lines to represent abstract functionality of physical components. The desired
production process functionality is achieved by collaboration of these intelligent,
distributed production units. The business enterprise integration to shop floor
applications can be achieved through the RIMACS interface and middleware approach
for re.al-timc and non real-time services as shown in Figure 3-6 for the Intra-Enterprise
Domain. The RIMACS stack contains various interfaces for suitable applications such
as Web services, Modbus, TCP/IP or specific API’'s in order to allow the

interoperability of different applications.

The project has demonstrated the implementation of IAMC with SOA and Web

Services as implemented in the Intra-Enterprise Domain to provide more business

integration and flexibility in control systems.

The modularisation of the production system requires the decomposition of the present
“controller-oriented structure” into functional modules with a “manufacturing-task-
oriented structure” These building blocks of the collaborative automation system, which
are built upon the SOA will present their functionalities and production operations as

Web Services in the building block network and form the desired production process by

CHAPTER 3: Related Approaches toward Agile Manufacturing Systems

40

collaboration using the communication methods provided by Web technology [91]. An

additional module (Factory Cast HMI) is required to allow Web Services capability on

PLC controllers as shown in Figure 3-6 Lifecycle Domain.

Server application 8 .
(C.Java,IEC) J Client application
B Comn;on APIi
Custom AP|
| RT service .
WS interface | insrface QoS interface
DPWS

SOAPWSDL | Modbus TCP/IP
HTTP \
TCPIUDP
P

Custom
QoS Protocol
| management Stack

Communication (Ethernet)

RIMACS

Business

Business
Process

Pl

IAMC UNIT
po——

Building function

Ethernet

Figure 3-6: RIMACS Framework

3.4.4 Key Characteristics Summary

The summary of the system characteristic of OSACA, OPC and RIMACS frameworks

in terms of system design technology and conceptual approaches is shown in Table 3-2

below.

Table 3-2: OPC/OSACA/RIMACS Key Characteristic Summaries

Business
Intra-Enterprise

4

T,

wtomation
Lo

Shop Floor

Characteristic

OPC

OSACA

RIMACS

Control system objective

Interoperability

Interoperability

Interoperability

Control system design Vendor specific solution Object-oriented design Service-oriented design
Middleware OPC OSACA RIMACS-SOA
Communication Approach Request/Response Request/Response Request/Response
Publish/Subscribe Publish/Subscribe
Support Network LAN/Fieldbus LAN/Fieldbus LAN/Modbus TCP/IP
RTOS \j \j \j
Business- Shop Floor OPC gateway SERCOS gateway PLC gateway
connection

SEPLC

Supply-Chains

Lifecycle
Domain

IAMC

CHAPTER 3: Existing Approaches Limitation Analysis 41

3.5 Existing Approaches Limitation Analysis
The objective of this section is to illustrate the limitations of these existing approaches

on the requirements of agile manufacturing as determined previously (see Figure 3-2).

The analysis is based on:

e Openness and Interoperability among diverse enterprise and shop floor

applications

e The complexity of Intra-Enterprise integration with regards to middleware
technology, gateway approaches and communication protocols

e Flexibility and Re-configurability of the automation system

The common middleware architecture of the aforementioned approaches can be

outlined as in Figure 3-7 that provides

Business/Manufacturing applications:Client

floor automation

Fieldbus/CAN/ModBUSY Industrial Ethernet

Remote
ERP MES Expert
Disadvantage Assistant Needs
API for ERP AP| for MES API for REA
Complexity added up 3 3 3
with various interfaces LAN Common and
3 3 consistent interface
Client ERP Client MES Client REA
AP API AP z
- \] begs ¢
Vendor lock-in solutions | f = stang$rd "
Middleware el AR R RLE ON
k)) various platform
3 =) Y,
Complexity added up Server ERP Server MES Server REA Common and
with various interfaces A:" AP :‘P' consistent interface
o ' LAN
: =) T
Vendor specific tools Meta-data model apd Application NG Verdor spadific
required for different integration
devices i \ L
i (Vendor specific)
[
At issice § Ty — Gateway Seamless connection/
itional interface for vacemsesn | : ; !
dormminication Direct integration to shop

N
Limited process/devices
interoperability)

Shop floor system: Server

Figure 3-7: Common Middleware Architecture

CHAPTER 3: Existing Approaches Limitation Analysis 42

a simplified version of the process of integrating distributed software applications using
middleware. In this case, the middleware enables the connection between business
applications (so called “client”) and shop floor applications (so called “server’) through

interfaces and gateway proxies (if required) via communication mediums such that
LAN and Fieldbus network.

Degree of Complexity _
Based on current middleware solutions, diverse software applications on different
operating systems are integrated via middleware through specific API interfaces that
are compatible with source applications. The output from the middleware is another
set of interfaces that translate the message into desired formats in the meta-data

models where shop floor applications and business applications interoperate.

In this approach that the complexity of the integration problem is reduced to the
definition of new set of drivers and interfaces that are required to integrate new

applications into integrated systems.

In addition to the middleware, communication networks allow interoperation
between applications. In fact, different types of network have been used in the shop
floor such that Fieldbus, Modbus, Industrial Ethernet [g20]. It generally the case
that the network at the automation system level is usually different from that at the

business level and additional gateways are hence required.

Vendor Dependant Solutions

Interoperability among different middleware vendors is another concern for the
development of an open platform. As reported by [121 and 122], each middleware
solution (e.g. Common Object Request Broker Architecture (CORBA), Java 2
Platform Enterprise Edition (J2EE), Distributed Component Object Model
(DCOM)) is implemented with specific mechanisms and technology.
Interoperability is limited by the certified and approved compatibility within
spéciﬁc middleware solutions. Therefore, business and automation applications are

limited to a number of solutions offered by vendors of the middleware.

CHAPTER 3: Proposed Solution on Web Services Based Automation 44

Business/Manufacturing applications:Client

Business
ERP mes || Remote Intre Goterprise
Assistant Domain
t t t LAN Ethernet Network
‘ Common interface Web Services interface

Open standard and
Interoperability on

"L Lifecycle
Domain

Supply Chains

various platform with SOA M idd|eware L

wide support applications

interf: 5 <
[it Web Services interface

LAN Ethernet Network

S
I‘, T ; f \

; { et Ll T Busi]
Application | ;:g‘::: ; 3D design and
Shop floor system: Server design tools ; application l simulation tools

Collaborative
Automation

Sho;; Floor

Seamless connectivity
with office standard
Ethernet

ws ws WS DPWS
Protocol

Proposed solution / »
i i Peer-to-f eeri i I i
Web Service Component based Design WS ws ws WS
Approach for
Distributed Control System P et cadiad); Sduid

Figure 3-8: Web Services- based Automation Paradigm

As proposed on the SOCRADES project [86], to realise greater shop floor integration
capability, the automation level needs to inherit SOA-Web Services characteristics to
support higher level application integration. In addition, the flexibility and agility will
be enhanced by the implementation of Web Services on distributed control devices to
achieve loose coupling in the automation system. Other local run time and design time
applications can be seamlessly integrated through a single set of standard Web Services
interfaces. Furthermore these applications can be readily connected to the control

system and devices via standard office Ethernet LAN’s,

In terms of the reconfiguration of the control system to support the manufacturing
system lifecycle, this research has proposed a novel framework of Web Services and
Component-based design approaches for manufacturing systems integrated with process

engineering tools supporting a “design for reuse” approach. Each mechanical part has a

defined Web Services functionality as an abstract layer.

CHAPTER 3: Assessment in Meeting Agility Requirements 45

The low-level programming is encapsulated and exposed to control engineers and
machine builders through the Web Services interface. Each Web Services component is

managed by process engineering tools in the control system commissioning phases.

3.7 Assessment in Meeting Agility Requirements

In summary, the existing approaches and the proposed WS Automation solution

approach will be assessed against key agility features and the expected impact on key

enablers.

Table 3-3: Assessing the Achievement in Key Agility Features of Existing Approaches

Agiity feature Key snabler evaluation oPC OSACA | RIMACS | tWS "

utomation
Modularisation of Open control platform (Non vendor specific) ‘I ‘l
production system

@ Flexible/Reconfigurable automation ? \j ‘/ .\]
Quick change over Weill supported process engineering tool (HMI, ? ? ? ‘l
automation system Simulation, Control Application Builder)

@ Component -based design v ? \/ \I \l
Integrated business Seamless network connection ? ? '\l \/
production IT

@ Well Integrated information sharing ? 2 \l \]
Information retrieval HMI system ‘/ \/ \I
and utilisation

@ Common Database and Diagnostic system ” ? ? v

The key features of agile manufacturing discussed in section 3.3, have been included in
Table 3-3 in order to allow comparison each of the solutions. Evaluation of the
approaches has been based on information and data reported in research publications.
However, where there is uncertainty where features cannot be justified conclusively due

to subjective opinions expressed in the articles they have been marked with a question

mark.

As indicated in Table 3-3, there are areas where existing solutions do not deliver agility
in the required areas. Most of the existing platforms are limited to open solutions from
specific providers. The middleware is generally composed of different sets of drivers
for each different application. Engineering tools, HMTI’s, and other integrated

applications need to be designed by compilation of specific sets of additional

CHAPTER 3: Conclusion 46

middleware interfaces that considerably increases the complexity and decreases the

modularity of the system.

In comparison, the proposed WS automation systém supports every aspect of agile
system requirements as detailed in Table 3.3. The WS’s are considered as a common
technology in terms of integration and building of control systems to allow the creation
of an overall homogenous platform. From the re-configurability perspective, the WS’s
can be complemented with: (i) a component-based design approach, (ii) the integration

of process engineering and simulation tools and (iii) HMI systems to support increased

agility in the manufacturing system.

3.8 Conclusion

In the first three chapters of this thesis the need for a paradigm shift from mass
production systems to mass customisation capabilities due to characteristic changes
from customers and increase in the global competition has been outlined. Following a
review of traditional manufacturing systems, the reasons why this manufacturing
approach is not suitable for today’s mass customisation requirements where
unpredictable changes in the customer demands and product specifications are the norm
has been detailed. As a result, companies and manufacturers need to seek a new
paradigm for their business strategies. Agile manufacturing, proposed as the next
generation manufacturing paradigm and a possible solution to the traditional
manufacturing limitations has been highlighted and its key enabling concepts presented.
In addition, the needs of industrialists in the automation domain that are required to

support agile manufacturing have been identified. The key details are summarized in
Table 3-4.

The state of the art for agile manufacturing and enabling technologies has been
reviewed from a study of sclected projects that have reported a substantial impact on the
research area. Each approach has achieved a measure of agility based upon its own pre-
selected criteria. However each approach has limitations that have prevented full
realisation of the agile manufacturing paradigm. The common problem is the level of
interoperability between vendor specific technologies that contributes to the increased
degree of complexity in integrating different applications in both business and

manufacturing systems. In order to overcome this issue, the research in this thesis has

CHAPTER 3: Conclusion 47

proposed the radically new design of the control and manufacturing platform using
standard technology of a SOA and WS’s as a neutral platform for business and

manufacturing process integration. The summary details are presented in Table 3-5.

Previous research has indicated that a SOA and WS’s can be readily utilized for
business level application integration. However, the role of WS and a service oriented
integration strategy in the manufacturing system, particularly in the real-time
distributed control automation systems, has not been defined as yet. One major
contribution of this research work is to outline the WS integration methodology for
business and control automation that enables the achievement of agility in the complete

manufacturing system and supply chain.

Table 3-4: Addressed Problems, Requirements and Key Agile Enablers Summary

Discussed in Chapter 2 Discussed in Chapter 3
Existing problems End-user requirements Key agile enablers
Manufacturing system o Seamless business- manufacturing Refer to Table 3-3
e Rigid Hierarchical Structure process integration @
Design of Automation Systems ¢ Rapid design of the automation Refer to Table 3-3
e Experience-based design and ¢ Non-vendor specific platforms '
implementation ¢ Visualisation and Simulation @

e Late verification of automation

systems
Control Systems o Quick response to change in the Refer to Table 3-3
¢ Rigid manufacturing development production capacity @

with centralized control * A high degree of reuse
o Lack of reusable and o A more consistent integration

reconfigurable automation approach for diagnostic and

peripherals maintenance support

» Diversity and complexity of

automation devices

Operation) _Visualisation and Simulation Refer to Table 3-3
e Lack of remote diagnosticsand | ® Fault tolerance and recovery @

support

CHAPTER 3: Conclusion

48

Table 3-5: Limitations, Requirements and Proposed SOA-WS Solution Summary

Current Approach
Limitation to Agility

The Needs

Proposed
SOA-WS Solution

Complexity:

o Required various sets of
interface and gateway for
business and shop-floor
integration

o Specific tools are required for

various control systems

Common and consistent interface

Common network connection

Common WS interface
for devices and business
applications integration
Ethernet network

connection

Vendor Specific Solution:
e Vendor lock-in solution as
well as non-interoperable

middleware

Open standard, interoperability

integration middleware

Standard SOA

middleware

Rigid Structure _of Automation

System:

o Tight coupling between
devices to devices and
devices to business

applications

Describing component
functionality as abstract interface

for a more loose coupling

WS interface for device
descriptions and control

functions

CHAPTER 4

Overview of Current Technology and Key Enablers for

Agile Manufacturing System

The features of agility and a novel approach for agile manufacturing based upon WS’s were
detailed in the last chapter. Using the collaborative automation system model as presented in
Chapter 3, the implementation of distributed control system architecture (including PLC
devices, the IEC 61131 standard and Network capabilities), distributed control applications
(e.g. the IEC61499 standard and LonWorks system), and middleware (e.g. CORBA and
SOA) are reviewed in this chapter to illustrate the capabilities of the current technology and

future trends towards the support of agile automation.

4.1 Problem Statement

There are various implementation technologies for production systems to support the
development of “agile solutions”. However, it is imperative that suitable and effective

technologies are integrated to enable true agile manufacturing systems to be realised.

The research questions to be addressed are:

1. What are the architectures associated with the different types of distributed
control systems? Which approach is most suitable for the next generation of
manufacturing systems?

2. What types of networks are used in the industrial automation for control device
communication? What interoperability issues are there with the different types
of network?

3. What are architectures and technologies of the different types of middleware,
such as CORBA, DCOM and SOA? What are the main differences and

advantages/disadvantages between these?

4. Why has conventional middleware not been substantially used in manufacturing

automation systems?

4.2 Control System Architectures and Trends

As reported in [31], basic control architectures can be classified into four categories:

Centralized, True Hierarchical, Modified Hierarchical, and Heterarchical (see Figure 4-

1).

50

CHAPTER 4: Control System Architectures and Trends

S2INJOAIYIIY [0NU0)) diseq :[-p 2an31]

2IN1093IYA1Y [0u0)) Snoauadoldey (p 2INIAYIIY [01JU0)) [BIIYIIRISIH PAYIPON (9

¥O1d O7d J81seiN

3
i I

G

zoTd anels wﬁ. :
X H* ra
F)"f :
[A7y

kO7d SAEIS

o
Fpad) iy

2INJO)IYDIY [01JU0)) [BIIYIIRIAIH (q 914 JoIsEN 2IN}OR)IYIIY [0NU0D) Pasienua) (e

_Ww...aﬂ - OTdUBN _
7 - RN e
iy

1071d 3nejg

¢O1d SRe[S

CHAPTER 4: Control System Architectures and Trends

51

The details of these 4 control architectures are summarized in Table 4-1/2/3/4.

Table 4-1: Centralised Control Architecture Description

Centralised Control Architecture (see Figure 4-1/a)

e The centralized control architecture is the
traditional design approach, found in older
manufacturing automation systems.

e Sensors, actuators and other physical
manipulators rely on a central processing

o The

physical environment (e.g.
temperature, status of tooling devices and
work pieces) is monitored by sensors that
are connected to a single central control
unit for the entire machine / machine
systems or plant.

unit such as the PLC, responsible for
processing commands and making | ¢ The information from the sensors is
decisions for the automation systems. gathered for data manipulation by the
central processing unit and transformed

into physical actions by feeding back the
commands to actuators.

System Characteristics

With centralized processing process reconfiguration is complex. The systems are referred to
as rigid since the I/O is tightly coupled to the central computing unit. Any unforeseen
modifications to hardware and/or software are a tedious task to engineer, since all units need
to be reconfigured and re-evaluated one at a time. In addition, since several I/Os are
dependent on a single host, if the host fails, the whole system fails. This is a major issue
from a reliability perspective. However, this the centralised control architecture provide the
fast I/O response since the controller communicates directly to the physical devices.

Table 4-2: Hierarchical Control Architecture Description

Hierarchical Control Architecture (see Figure 4-1/b)
e True hierarchical architectures have been | ¢ The nodes in the lower level perform the
widely used in manufacturing systems. tasks specified in the schedules and any

variance will be sensed and processed by
the upper nodes.

e The node in the upper level is responsible
for job management and provides the
nodes in the lower level strict schedules to
follow.

System Characteristics

This true hierarchical architecture has the advantages of system stability and possible
performance optimization, but disadvantages include a slow response and lack of robustness.
Because pre-established fixed structure is utilised, extensibility and re-configurability are
difficult to achieve with true hierarchical systems and thus it is hard to incorporate
unforeseen changes into the system [32]. In order to improve the ease of implementation,
debugging, testing, and maintenance, a reduction in the complexity of true hierarchical

architecture is required where a higher degree of modularity and a lower degree of coupling
between modules is provided [33].

CHAPTER 4: Control System Architectures and Trends 52

Table 4-3: Modified Hierarchical Control Architecture Description
Modified Hierarchical Control Architecture (see Figure 4-1/c)

e The modified hierarchical control { ¢ To improve flexibility and overall
architecture was proposed to overcome performance, the control units at the same
the problems identified with true level of hierarchy can communicate with
hierarchical architectures. one another in a collaborative manner to

react to specific interferences.

e The processing units, such as PLCs, can
be distributed to machining stations to
provide local control to automation
devices.

System Characteristics

However, this system is still restricted, with the main higher computing unit (i.e. the Master

controller) providing overall control and sequencing of operations. Hence the modified

hierarchical form inherits the disadvantages of proper hierarchical architecture, in terms of
rigidity and master/slave relationships.

Table 4-4: Heterogeneous Control Architecture Description
Heterogeneous Control Architecture (see Figure 4-1/d)

e Heterarchical architectures have gained

much attention in the development of the

next generation automation control
systems.

e The relationships between control units are
both cooperative and competitive: as more
intelligent devices are incorporated into
lower level devices, sensors and actuators
perform local operations, such as data

e There is no central controller in this
approach that delegates the control
autonomy to the local control unit / units,
The control units in this structure are
autonomous and intelligent enough to
execute their own manipulations, since the
processing units are encapsulated locally.

monitoring and local feedback control,
without relying on a master controller.

This incorporates the advantages of
robustness, flexibility and re-
configurability. Failure of individual
control units does not impact system

performance, as both knowledge and
control algorithms are distributed [32].

System Characteristic:

The design of automation systems should move towards heterarchical architecture, with
highly distributed and loosely coupled devices with low-level peer-to-peer communications
in real-time, in order to improve the agility and responsiveness of manufacturing automation
systems, as reported in [29]. However, there are drawbacks in adopting heterarchical
architectures [32]. The heterarchical control systems are unpredictable in terms of response
time and that global system performance optimization is very difficult to achieve. Other

authors have argued that heterarchical architectures could make systems more predictable by
using publish-subscribe communication.

CHAPTER 4: Programmable Logic Controllers 53

4.3 Programmable Logic Controllers

The Programmable Logic Controller (PLC) has been a part of manufacturing controls
technology since the 1970’s, and has become the most common choice for the control
of automation systems. Traditionally, PLC’s are mainly programmed by ladder logic
that was developed to mimic relay logic i.e. a graphical language representing an

electrical wiring diagram used for describing relay control schemes.

The operational principles of PLC’s are based on simple 1/0 logic. The words “TRUE”
and “FALSE” or “ON” and “OFF” are used to indicate the status of switches connected
to relays within the control system. The ladder logic in the PLC is actually a computer
program that the user can enter and change. Note that both of the input push buttons are
normally open, but the ladder logic inside the PLC normally has one open contact and
one closed. The ladder logic in the PLC does not need to match the inputs or outputs

(e.g. SW1 with B, SW2 with A, as in Figure 4-2).

Push Buttons

L. Swi
Power supply . Sw2
.1
+24 V|
]
Com.

Industrial Network

PLC
Relay coils PLC o i i‘h“f E’I
Input = -
R ® e |

CUON R R R
Ladder LV || e T I l
Logic R L - |

Normally Close Normally Open ii : Q &' w
Output $

Process sensors/actuator
i ¢
115Veg
AC powar

Figure 4-2: A basic PLC illustration

CHAPTER 4: Programmable Logic Controllers 54

There are drawbacks with employing traditional PLC’s [33]. Ladder logic has a lack of
modularity that offers limited reusability of programming code and no support for
complex programming structures. Implementations require highly experienced
programmers for commissioning. To enhance traditional PLC programming techniques,
the IEC 61131-3 standards were developed as a common and open framework for PLC
software architectures. This was an attempt to encourage an open, interchangeable and
structured approach to the development of control software. The standard is defined
loosely enough so that each PLC manufacturer is able to maintain their own look-and-

feel, but the core data representations are common.

The IEC 61131-3 standard encapsulates programs, function blocks and functions,
otherwise referred to as Program Organization Units (POU’s). Standard functions
include instance ADD (addition), ABS (absolute), SIN and COS, and once users define
functions, they can be re-used. Function blocks are the software equivalent of Integrated'
Circuits, (IC’s), or black-boxes, representing a specialized control function. They can
contain data as well as functionality, so they can keep track of past events and states.
An example of a function block is a tuning control loop, or Proportional, Integral and
Derivative (PID) loop. Function blocks can be written in any of the IEC languages (see
later), and in some cases, even in C. The last element of _the IEC 61131-3 standard is a
program which is identified as a network of functions and function blocks. After
declaring the data types, network variables, functions and function blocks that will be
used in the program, the overall operation of control systems is implemented by

programming the operational logic of the devices. The detailed implementation can be

seen in [44].

Instruction List(IL) Structured Text(ST) Function Block Diagram (FBD) Ladder Diagram(LD) Sequential Function Charts(SFC)

D A C=A AND NOTB AND A B ¢

ANDN B A ¢ ==
ST ¢ 8

Transition 2

Figure 4-3: Language constructs within the IEC 61131-3 Programming Standard

CHAPTER 4: Programmable Logic Controllers 55

The IEC 61131-3 can be constructed in any of the five language constructs defined
within reusable function blocks [43], as depicted in Figure 4-3

IL (Instruction List) - is effectively mnemonic programming.

ST (Structured Text) - is a very powerful high-level language with its roots in
Ada, Pascal and “C”. It contains all the essential elements of a modem
programming language, including selection branches (IF-THEN-ELSE and CASE
OF) and iteration loops (FOR, WHILE and REPEAT), and these elements can also

be nested. It is excellent for use in the definition of complex function blocks, which

can be used within any of the other languages.

LD (Ladder Diagram) - is based on the graphical presentation of Relay Ladder
Logic.

FBD (Function Block Diagram) - A graphical dataflow programming method
very common in the process industry. Expresses the behavior of functions, function
blocks and programs as a set of interconnected graphical blocks, like those in

electronic circuit diagrams. Systems are represented in terms of the flow of signals

between processing elements.

SFC (Sequential Function Charts) - A graphical method for structuring
concurrent program. As illustrated in Figure 4-3, the flowline connects a step and a
transition. The transition is used as a condition to allow control to move to the next

step when a condition is met. At some point, there may be a desired action to be

performed at each step.

CHAPTER 4: Communication Networks 56

4.4 Communication Networks

The control devices (controllers) communicate to other devices and the master
controller through the industrial network, in order to pass and exchange the control data
that will be executed on the controller in order to allow the physical I/O devices to
function. The fieldbus network system has been used in automation manufacturing for
many years, but Ethernet technology is fast becoming the standard for device
communication. In this section, the capability, standards, implementation technologies

and limitations of each fieldbus system and Ethernet is reviewed.

Although fieldbus technology has been around for many years, it is still not widely used
because of a lack of international fieldbus protocol standards, which would ensure
complete interchangeability and interoperability between different suppliers. Fieldbus is
specified and implemented according fo the Open Systems Interconnection (OSI)
Reference Model, as discussed in section 4.4.2. However each fieldbus networking
solution is not standard i.e. some fieldbus technology is based on a three-layer model:
the physical layer, data-link layer and application layer, but other fieldbus technologies
are based on a four layer model: the same as above plus a network layer. There are

many types of fieldbus systems on the market and these are not dire.ctly interchangeable
and interoperable.

Standard Ethernet is designed around two layers of the OSI model (i.e. the physical
layer and a data-link layer) for compatibility and interoperability between computers.
Ethernet is widely used in office and home to connect different types of computers and
peripherals together, regardless of operating systems. It is foreseen that Ethernet may be
developed for industrial sectors for the purpose of device communication and plant
integration, through enterprises as demonstrated by [29], [92], [93], and many
companies are keen to adopt Ethernet in industrial sectors. In the following section,

fieldbuses will be compared with the emerging Ethernet technology for automation

systems.

4.4.1 Open Industrial Fieldbus Systems

Fieldbus is a communication standard that enables communications between field
devices and a master device such as a PLC. Currently, there are several types of

fieldbus standards available for communication between control devices. Traditionally,

CHAPTER 4: Communication Networks 57

fieldbus provided users with proprietary solutions from specific vendors. However,
since the introduction of open, non-proprietary protocol standards, many fieldbus
providers have consistently developed technologies to offer manufacturing sectors, with
the new solution for open industrial bus systems. Details of fieldbus can be found in

[37, 38], and a summary of common fieldbuses is shown in Table 4-5.

Table 4-5: Summary of Common Fieldbus Type Networks

Name Description Characteristics Company
Actuator sensor * A master/slave | ® A master can take up | Allen-Brandley
interface (AS-1) open network. It is [to 31 slaves

simply designed | ¢ Node addresses are
with a two-wire | assigned either by
untwisted, the master or
unshielded cable, | addressing units via
which is used for | bus connection
both e Capable of
communication and | connecting to serial
power supply. RS connections, and
Profibus via proper
interfaces.

Control Area ¢ A type of serial ® A “non- destructive | Bosch

Network (CAN) bus data system for bit-wise arbitration”
multiple devices, to access the bus, by
passing using the bus station
information identifier to allow
between each other | higher priority to
with high-speed gain access first.
data rates.

DeviceNet The design based Master/slave Allen-Brandley
on CANs to communication
interconnect lower either by strobe or
level devices with poll methods. It can
higher level support up to 64
controllers. nodes, and as many
The cabling system | as 2048 devices.
consists of 4
conductor cables
providing power
and data
communication,

CHAPTER 4: Communication Networks

58

Interbus-S An open device o Master/slave register | Interbus-S Club
level network, shifting procedure
allowing a twisted | ¢ Addressing (0]
pair of fiber optic stations
cables connected automatically during
to each station. start up.

Communication
buses are local
(TTL voltage) and
remote (RS-485
voltage).

Profibus Is designed for ¢ Master/slave with | DIN 19245
communication Logical Token Ring, | standard
between PLC and to allow each master
distributed low controller to
level devices on communicate with
the bus system. slave devices.

There are three e Real devices
types of Profibus: (Communication
FMS (Field objects) are defined
messaging at the local object
specification), DP dictionary (source
(Distributed OD) during
processing), programming phase.
PA(Process

Automation).

RS-485 voltage

standard for FMS,

DP and IEC 1158-

2 for PA.

DeviceNet The design based | ¢ Master/slave Allen-Brandley
on CANs to communication
interconnect lower cither by strobe or
level devices with poll methods. It can
higher level support up to 64
controllers. nodes, and as many
The cabling system | as 2048 devices.
consists of 4
conductor cables
providing power
and data
communication.

4.4.2 Industrihl Ethernet Networks

There is a strong interest in developing internet technology for integrating automation
devices, due to the development of the distributed collaborative manufacturing systems.
The concept of Ethernet-based process control has been introduced in recent years to
propagate an open system communication standard and to enable the interchangeable

use of equipment from various manufacturers. Some work has been done on developing

CHAPTER 4: Communication Networks 59

“Ethernet for Open Network Communication based on the IEEE 1451 standard” as
proposed in [39, 81 and g3].

Industrial Ethernet applies the Ethernet standards, developed for data communication,
to manufacturing control networks using IEEE standards-based equipment with the
intention that organisations can migrate factory operations from fieldbus systems to an
Ethernet environment [g20]. Industrial Ethernet technology tailored for control systems

can be represented by the seven layer OSI model in Figure 4-4.

Layer 1 Physical layer Electrical and mechanical definition of | Ethernet
the system. It is concerned with | Physical
transmitted raw data bits over a
communication channel.

Layer 2 Data link layer This is used to ensure reliable | Ethernet
communications through the physical | MAC
layer. Framing and error correction
format of data. This layer determines
the structure of data and frame/packet
size.

Layer 3 Network layer Optimum routing of message from one | IP
network to another; controls the
operation of the subnet.

Layer 4 Transport layer Managing the flow of the message. It | UDP, TCP

accepts data from the session layer and
passes it to the network layer.

Layer 5 Session layer Organization and synchronization of | FTP, HTTP,
the data exchange. This layer is a | SMTP,
user’s interface to the network that | SNMP,

user needs to negotiate in order to | Telnet
establish a process connection on
another machine.)
Layer 6 Presentation layer | The layer performs data conversion
from one to another format for users,
rather than leaving the user to find the
solution,

Layer 7 Application layer | This layer is for file transfer, message
exchange and network management.

Figure 4-4: Layers of the OSI Model for Industrial Ethernet

CHAPTER 4: Communication Networks

60

The OSI model may be interpreted as a collection of entities situated at each of the

seven layers. A data (packet) starts at an upper layer, and passes down through each of

the layers. As the packet moves down, it is enclosed in a “protocol envelope”, which

carries addressing and control information that advises the next layer down what to do

with the packet [37], as shown in Figure 4-5.

Virtual connection

Layer 3- Network layer

Sender Receiver
T Equivalent message -

Layer 7- App layer Layer 7- Application layer
Layer 6- P tion layer |4 Equivalent message Layer 6- P ion layer
Layer 5- Session layer Equivalent meseage, Layer 5 Session layer
Equivalent message
Layer 4- Transport layer Layer 4- Transport layer

Equivalent message

Layer 2- Data link layer

Layer 3- Network layer

Equivalent m:
 Equiva essage

Layer 1- Physical layer

Layer 2- Data link layer

, Equivalent message |

Layer 1- Physical layer

Application

Applicaton
User-Oata

1460 Bytes Max.
{ 4 ’V

TCPFrame ¥

LAYER §
{Appiication)

TCP Header |

(PortNumpers) | TCP Dsta Amay |

LAYER 4 TCP
{Transport Layer)

1P Frame ‘ @0 8ytes)

|
v

P Header
(IP Addresses)

IP Dats Array

LAYER 3 1P
(Network Layer) -

Ethernet Frame ‘ @0 Byes)

Ethemet Header
{Ethemnet Addresses)

FCS LAYER 2- Ethernet
(Checisum)| (Data Link Layer}

y (Bpey

Figure 4-5: OSI Messaging

Currently, there are a number of automation companies offering Industrial Ethernet

Network solutions and their control devices. The various adoptions of these Industrial

Ethernet Networks are summarized in Table 4-6 below.

Table 4-6: Industrial Ethernet Network Features

Name

Protocol/Network

Characteristics

Standards

Modbus-TCP

Modbus RTU protocol,
with a TCP Ethernet
interface. Modbus protocol
defines the rules for
interpreting the data and
message structure at and
above session layer
(Modbus specific).

Provided with Ethernet
10/100 Mbit/s, up to
1Gbit/s. Multi master-
slave architecture for
distributed automation
environment.

Modbus-RTU with
standard IEEE 802.3
Ethernet

Ethernet Powerlink

TCP/IP; UDP/IP Protocol
with modification in the
data link layer for the
deterministic of network
with co!lision avoidance.

Ethernet 100 Mbit/s,
TCP/IP, a deterministic
real-time protocol for
standard Ethernet with a
RTOS mixed Polling-
and Time-slicing
mechanism.

Ethernet
POWERLINK
Standardization
Group based on
standard IEEE 802.3

CHAPTER 4: Communication Networks

61

EtherCAT

Using full-duplex Ethemet | An open high- | IEC 61158, IEC/PAS
physical layers, with the | performance Ethernet- | 62407, IEC 61784-3,
approach of one frame per | based fieldbus system | ISO 15745-4
node per cycle and | (Ethernet 100 Mbits),
processing on-the-fly, in | with master/slave
order to optimise the | communication
network bandwidth and | architecture between a
processing speed delay. | controller and field
The EtherCAT protocol | devices.
follows IEEE §02.3
standards and can be
inserted into UDP/IP
' datagram.

EtherNet/IP (CIP) TCP/IP; UDP/IP Protocol | Speed from 100 Mbit/s | ODVA Ethernet/IP
with modification of OSI | up to 1 Gbit/s. based on IEC 61158
model at session layer and standard
above, in order to| It may be configured to
accommodate time- | operate in both a
critical control data and | master/slave and
message prioritization in | distributed control
multiple communication | architecture, using peer-
hierarchies. to-peer communication.

PROFINET /O TCP/UDP and IP for non- | The protocol complies | PI International
timing critical data | with the standard office | based on IEC 61158
exchange, and a prioritized | Ethernet network. and IEC 61784
real-time channel (IEEE
802.1Q) on top of standard
Ethernet- data link layer
for timing critical
applications.

As reported in [39], implementation of Industrial Ethernet can be subdivided into three

concepts:

1. Encapsulation Technologies:

This is the extension of the application layer of existing ficldbus networks into

TCP/IP networks, by adding the data portions of Ethernet TCP/IP. The original
fieldbus networks are preserved.

(Developer: Ethernet/IP, Foundation Fieldbus HSE, and Modbus-TCP/IP)
2. Gateway and Proxyﬁ

The standard fieldbus networks are integrated into the Industrial Ethernet networks

through a hardware called gateway or proxy. This device is used as a translator, and

interprets the control message between fieldbus and Ethernet networks.
(Developer: ProfiNet and Interbus)

CHAPTER 4: Communication Networks 62

3. Interface for Distributed Automation (IDA):
This concept uses real-time middleware services provided by the Real-Time
Innovation Company, in order to accommodate communications between control
applications over Ethernet using real-time publish/subscribe (RTPS) architectures

that is built on top of User Datagram Protocols (UDP’s), Internet Protocols (IP’s)
and Ethernet.

(Developer: IDA Group - not based upon an existing fieldbuses, unlike former two concepts)

The full details of these three protocol implementations could be found in [33, 39 - 42].

Although all these protocols use Ethernet, this does not mean they can automatically
communicate and interoperability is not guaranteed. The application layer (layer 7)
translates the incoming information into something the user can understand. Each
company does not have the same application layer since they typically develop their
own proprietary protocols at this level that does not interact with others [39]. In
addition, other layers may be also be modified and adjusted to suit their own design

specifications, such as real-time performance (see Table 4-6).

In recent years, there have been efforts in developing a new approach to Industrial
Ethernet in order to overcome the problems associated with the various designs of
protocols. The leading concept has been promoted by the IDA Group with support from
Schneider Automation and Jetter. This concept omits layer 7 (the application layer), as
this is where most vendors have developed their own designs and device compatibility.
New automation concepts are employed, with embedded communication features
compatible with the normal Ethernet. There is the strong potential for Ethernet to be
connected to those low-level intelligent devices that are able to perform through
Ethernet connectivity, in order to ease the commission of automation systems and to
enable the plant agility. Ethernet-based process control should propagate the open

system communication standard to enable equipment from various manufacturers to be

used interchangeably.

CHAPTER 4: Communication Networks 63

4.4.3 Ethernet Standard

Ethernet is a family of frame-based computer networking technologies for local area
networks (LANs) and the name comes from the physical concept of the ether. It defines
a number of wiring and signaling standards for the physical layer, through the means of
network access at the Media Access Control (MAC) /Data Link Layer (DLL), and a

common addressing format (http://en.wikipedia.org/wiki/Ethernet).

Historically, the network is referred to as a Carrier Sense Multiple Access / Collision
Detect (CSMA/CD) bus network type (see “Issues with Ethernet” section below), and it
is generally implemented as a 10 Mbps baseband coaxial network or twisted pair cable
(Cat 5). Recently, the speed of 100 Mbps has been introduced, and soon speeds of 1
Gbps will be commonly used for home and business purposes. TCP/IP is a protocol that
fits into the data frame area of the Ethernet frame, and the protocol regarding the
defining of the packet delivery system as “an unreliable (no guaranteed delivery), best

effort, connectionless packet delivery” [75]. The basic packet called an IP datagram is

shown in Figure 4-6.

VERS | Aversion of the protocol
HLEN The datagram header length in 32 bit words
Service Type This is merely a recommendation to the routing software
‘ i on the service required
IP Datagram header IP Data arr: | % 5
[VD. 0 1L Rt ,.y E | Total Length Length of the datagram in by\u (lndudmg the header ucllon)
‘ & Identification Eleh dllagrum must have a unique numbcr
8 - - "
0 ‘, L - - 1619 24 - 31 Frlqmon! Offset This specifies the offset of the data in the original datagram
1 VERS HLEN | Service Type Total Lengm ' e — -
{ | ! | ‘ Time to Live (TTL) | As the datagram passes through the network, its time is
Identification Flnqs | Fmgmenl Offset | ‘ decremented for each pass of each gateway or host
i Time to live ; Protocol Hendcr Checksum | { Protocol This specifies the protocol format for the data payload area
Source |p Address ‘ | Header Checksum Complement the result of adding the IP header as a series of
’ i 16 bit integers using one's complement arithmetic
Destination IP Address | l s T X ok S
| | Source IP and The IP addresses of source and destination nodes
Destination IP
IP 0 i
‘ ik Lok s 1 Addrnus
IP Opuon Opﬂon uud lor nonuol purposes

IP Header in bytes = (32 bits x 5)/8 = 160 bits (not included IP Option)/8 = 20 bytes

(Note: Packet size= Payload+ TCP Header + IP Header + Ethernet Header)

Figure 4-6: The Structure of an IP Datagram (from [75])

However, there are a number of practicalities that need to be considered before
migrating from the traditional fieldbus industrial network or Industrial Ethernet to

Ethernet TCP/IP communication. There are some fundamental problems with applying
Ethernet to industrial applications [39], as follows:

CHAPTER 4: Communication Networks . 64

1). Non Deterministic and Uncertain Real-time Performance

The fundamental access algorithm, CSMA/CD, cannot provide sufficiently consistent
latency for deterministic applications. Its mechanism is to see if the physical layer is
idle, then to begin transmitting, or back off and wait a random period of time before
retrying until the network is free to accept data packets fg7]. Delays are inevitable.
However, as the Ethernet speed becomes faster, up from 10 Mbit/sec - 100 Mbit/sec -
1Gbit/sec, non-deterministic behaviour become less of an issue since the bandwidth is
large enough to render delays irrelevant for all but the hardest real time applications
[g7]. In some industrial domains, where real-time performance is not crucial and critical
to safety, Ethernet could be utilized currently as a supporting technology for open and
flexible automation systems.

2). Delivery Speed Degrades with Loading Increases

As the Ethernet speed is significantly increased, this fundamental speed degradation as
loading increases becomes of less concern to system commissioners. In addition, there
is an extension to the standard, IEEE 802.1p, addressing this problem. This allows a
system designer to guarantee the fast delivery of critical data, by means of giving
priority to messages as in the real-time system [g8].

3). Security

This is the major issue of integrating industrial automation devices to the outside
environment through Internet Technology. The network could be targeted from
unauthorized users hacking into the system, and viruses could spread out to linked
companies and damage the whole system. Other protection, in addition to firewall port
80 (HTTP), would be necessary to secure links. End-to-End data encryption, a level and
class of authorization and the use of private servers to route the traffic are some of
feasible safeguards to allow only authorized users to log into the systems.

4). Durability '

Using Ethernet creates the large overhead for I/O operations. Usually, most industrial
applications use small periodic data transfer, whereas Ethernet deals with large
aperiodic messages. Ethernet cables need to be able to work consistently under the

harsh industrial environment with high temperature and noise, unlike using in the
offices.

CHAPTER 4: Communication Architectures 65

4.5 Communication Architectures

In this section, the semantics behind the communication amongst intelligent control
units (nodes) are reviewed. Autonomous control devices could be distributed across
entire production machines and would be required to interact with one another through
the industrial network. The software applications need to exchange information.
Complex distributed applications require a more powerful communication model and
several types of software technologies (i.e. middleware - see section 4.7) have emerged
to meet this need [34]. The middleware communication architecture may comprise three

categories: Point-to-Point, Client-Server, and Publish-Subscribe.

4.5.1 Point—tb-Point

A point-to-point connection is a dedicated one-to-one communication system that links
two systems or processes. The connection between two nodes consists of two packets
exclusively using the connection to communicate. On shared networks, all nodes listen
to signals on the cable from broadcasting nodes. However, when one node addresses
frames to another node and only that node receives the frames, essentially the two
nodes are engaged in point-to-point communications across the shared medium. This is

a simple and straightforward approach that gives high-bandwidth but does not scale
very well with many nodes.

4.5.2 Client-Server

Client-Server networks include servers (i.e. machines that store data) and clients (i.e.
machines that request data). The Client-server is fundamentally a many-to-one design
(i.e. one central server node and many client nodes) and this type of server works well
with centralized information systems such as databases, transaction processing systems,
and central file servers. However, if multiple nodes are also generating information,
client-server architectures require that all information be sent to the server for
subsequent redistribution to the clients, and such indirect client-to-client
communication is inefficient, particularly in a real-time environment. The central server
also adds an unknown delay to the system, as the receiving client does not know when
or if it has a message waiting [34]. In addition, the server can become a bottleneck and
presents a single point of failure. Multiple-server nets are possible, but they are very

cumbersome to set up, synchronize, manage, and reconnect when failures occur. The

CHAPTER 4: Communication Architectures 66

multiple-server resolves bottleneck and point-of-failure exposures, but unfortunately

increases inefficiencies and bandwidth consumption [35].

Client-Server architectures are often based on “object-centric” design. However, in
distributed real-time applications, the information that needs to be communicated is
quite often just data, rather than objects. Attempting to implement these “data-centric”
systems with a client-server communications model frequently leads to unnecessarily

complex system designs and a significantly degraded networking performance.

4.5.3 Publish-Subscribe

Publish-Subscribe architectures support one-to-many, many-to-one, many-to-many data-
distribution. Publish-Subscribe adds a data model to messaging, with publish-subscribe
nodes simply “subscribing” to data they need and “publishing” the information they
create. Messages logically pass directly between the communicating nodes, and this
fundamental communications model implies both: (i) discovery i.e. what data should be

sent and (ii) delivery i.e. when and where to send it.

Publish-Subscribe systems are good at distributing large quantities of time-critical
information quickly even in the presence of unreliable delivery mechanisms [34].
Publishers simply send data anonymously since they do not need any knowledge of the
number or network location of subscribers. Subscribers simply receive data

anonymously, without needing any knowledge of the number or network location of the
publisher [35].

Within the distributed automation system, distributed command and control systems
periodically send out data updates to controllers, loggers or other subscribers on the
network. Publish-Subscribe is a necessity for these systems since the data are
transmitted by the publishers to the subscribers when new data are produced. There is
no request and no polling. The nodes interact in a similar way to the Event-Driven

mode [36]. The advantages and disadvantages of each communication technologies is

summarized in Table 4-7.

CHAPTER 4: Communication Architectures

67

To conclude, publish-subscribe clearly offers advantages over point-to-point and client-

server for delivering data in distributed and real-time environments. Publish-subscribe

does not request traffic and the direct data transfer makes it much more efficient. In

contrast, the client-server architecture requires all the information, if it is being

generated at nodes, to be transferred to the server for later redistribution to clients. This

adds an unnecessary unknown delay to the system, problematical for a real-time

system; there needs to be control of the trade-off between reliable delivery and delivery

timing. It is the concern with a guarantee of reliable delivery that destroys timing

determinism, due to each retry taking up time.

‘Table 4-7: Summary of Communication Technologies

Type

Communication

Pros

Cons

Middleware

Point-
to-Point

¢ One-to-One

e given high bandwidth

e simple straightforward

model

¢ does not scale well
beyond a few
nodes

e telephone
¢ TCP model

Client-

Server

¢ Many-to-One

o works well with data
centric systems

e irregular delay due
to indirect data
transmission

e a bottleneck and
presents a single
point of failure

¢ high bandwidth
loaded with too
many nodes

e unnecessarily
complex system
designs and
significantly
degraded
networking
performance

¢ Client-
Server

CHAPTER 4: Communication Architectures

quickly

¢ mapping well with
data distributed
environments because
the data flows directly
from source to sink
without requiring
intermediate servers.

¢ reliability and no
single point failure

¢ anonymous
communications
where publishers and
subscribers do not
need to know each
other’s physical
network address

real-time
environments and
time constraints

68
Publish- | e One-to-One | e distributing large e response time e J2EE,
Subscribe | e One-to-Many | quantities of time- needs to be ¢ NET,
¢ Many-to-One critical information considered in strict | « SOA

Core technologies required for building distributed automation systems have been
reviewed, and in general, automation systems are implemented from these standard
technologies in manufacturing systems. Despite concerns of achieving real-time
performance and security, Ethernet has gained much attention from researchers and
industrial network vendors looking to overcome integration problems, in order to
develop Ethernet TCP/IP for industrial automations. There is great potential to
implement Ethernet with intelligent embedded microcontroller devices and a real-time
publish/subscribe communication, to enable flexible and non-proprietary automation
systems for agile manufacturing. Further enabling technologies and implementation

approaches for distributed flexible automation systems are reviewed in the following

sections.

CHAPTER 4: A Distributed Automation System 69

4.6 A Distributed Automation System

The main focus of the author’s research is the creation of future automation systems that
enable more open, agile, and flexible manufacturing paradigms. There has been
substantial ongoing research in the field of agent-based technology, service-orient
architectures and component-based design methodologies implemented with emerging
powerful network communications. Ethernet, Modbus, and Profibus form a backbone for
information exchange between intelligent devices and business planning level and a cost-

effective way to support the lifecycle of manufacturing systems.

In this section, the key enabling approaches and technologies will discussed to support

the author’s research for the potential tool development in the field.

Event flow

Event flow
(1.e. requesting state information)

(i.e. publishing state information)

(Server) (Client)
Client Server Producer Consumer
Subscribe
= t 1
il 1 Event 1
Request o [Action1 | Publish
Reponse b
g po! (i.e. reading 1/0) | Action1 |
~ ~_ (i.e. processing
—~— ~ /O logic)
Event 2 Event 2
Re. Publigh
dest 2 | Action2 | t T
Reponse Action 2
<
-~ —~ ~ ~
Event 3 Event 3
R o R Publis
*quest " | Action3 | 2 »f
Reponse [Action 3
e

Figure 4-7: Request/Response and Publish/Subscribe Data-Flows for a Distributed
Control System [71]

A general picture of a distributed automation system is depicted as in Figure 4-7. A node
(event sink and event source) represents a controller, a micro processor or an embedded
device which is distributed in the machine system to control its connected I/O devices
locally. As discussed in section 4.3, Publish-Subscribe applications are most suited for
distributed applications, with endpoint nodes that communicate with each other (peer-to-

peer communication) by sending and receiving data anonymously.

CHAPTER 4: A Distributed Automation System 70

[] =Publish/Data write

Pub
Node 1 Node 2 |

= Subscribe/Data read

lI lT | -
= == = =
Pub Sub it S Networks Node | = A distributed control device
Sub iT Pub Sub l] Pub
IS 1 [r " [r . m n
System architecture

\ Node 3 | | Node 4 |
{

[Implemented Technologies]

S ——

[Practical works)
(see section 4.6.3- 1) = |[EC-61499

‘ g]
ction 4.6.3- 1l » COMPAG design § g
{Fee goct)) tools (Component- Applications !
based design g § ’
approach) 1 Publish/Sut Req o
(see section 4.7.1) = CORBA (Object- 7 [2]
oriented architecture) Middleware § IS
(see section 4.7.2) u SOA- Web Services a 3
|] s
[o g
| |
(see Chapter 8- w UNIX = Solaris ‘ 0s || TCP/NP, UDP stack g \ |
gochonecd) =RTOS =Win CE [AR
; 5| |5]
|
‘ § | &
(see section 4.4.1) s Fieldbuses [Communication medium | € ‘ [é |
(see section 4.4.2) = Ethernet S| |a|
7
(see section 4.6.1) Controller | |2
(see section 4.6.2) - [Hardware | l E ‘\
(see Chapter 8- section 8.2.2) L | <

(see section 4.6.2)

e » Embedded Ethernet Design
» COMPAG project

(see section 4.6.1)

Figure 4-8: Structure for a Distributed Control System [9], [71]

As shown in Figure 4-8, the structure of a distributed control system includes an
infrastructure layer that enables many different types of applications in the control nodes
to communicate with each other. These technologies are fundamental elements that have
been implemented in many research projects (see Chapter 5, section 5.3) in order to
enable open and distributed manufacturing systems. Details of each implemented

technology will be discussed later to highlight the suitable tools for the author’s research.

In the following section, the author presents a concise background of distributed control
solutions from a previous study implementing the Lonworks system, and the potential

solution of emerging miniature embedded devices regarding this research.

4.6.1 LonWorks System with Fieldbus
LonWorks system, developed by Echelon Co-operation in the USA, is an open solution
for controlling distributed automation devices in home automation, industrial and

transportation control systems. Its philosophy is to utilize a control network with a peer-

to-peer communication (to allow intelligent devices to communicate directly to each

CHAPTER 4: A Distributed Automation System 71

other) to monitor sensors, control actuators, manage network operations, and provide

access to network data in a fully distributed manner.

The LonWorks protocol, also known as the LonTalk protocol and the ANSI/EIA 709.1,
was designed to enable highly reliable, peer-to-peer and hierarchical networking
(different networks interoperates via a gateway) among control devices manufactured by
different suppliers. Achieving interoperability among devices requires that the protocol
be implemented in an identical manner within all networked devices, and the
establishment of a reliable and consistent means of transmitting, broadcasting, and
receiving messages between and among LonTalk-based devices. The Neuron Chip and
Smart transceiver implementations of the protocol, combined with Echelon’s physical

layer transceivers, provides a foundation for interoperability amongst devices.

To compose the LonWorks system, LonWorks Nodes (communication channel nodes)
are attached to the control network to establish communication with other nodes, and
each node has sensors/actuators connected to specific I/O channels. These are
responsible for computing the data obtained from the sensors and passing the output
command to activate actuators, according to the application programme loaded inside the

node memory. The implementation of the LonWorks control system can be found in
[33].

The heart of the node is the Neuron Chip C, and this includes three processors that
provide both communication and application processing capabilities. The device
manufacturer provides application codes to run on the Neuron Chip and /O devices to
be connected to the Neuron Chip. The programming applications are written Neuron C,
based on ANSI C, and then this is complied into binary bits “0”, “1”, etc, as understood
by the Neuron Chip, and loaded into the node’s memory.

The LonWorks system has developed a good high —level programming environment on
Windows platform, to ease the building of networks. It has a generic network
management tool and easily usable GUI (Graphical User Inierface) for project

administration, graphically visualized network variable binding, network variable

browsing and adaptation to user needs by writing device specific control plug-ins.

CHAPTER 4: A Distributed Automation System 72

It is the author’s view that, even though the LonWorks system has developed control
networks in advance of the open system architecture, flexibility and interoperability of
other vendors, the proprietary nature of solutions is not fully resolved because devices
outside the LonWorks agreement, i.e. LonMark, may not comply with the standard
system due to the difference in the implemented protocol of bus systems, as discussed in
section 4.4. The solution to interoperability among vendors’ devices lies in a single
control network standard like Ethernet. This should be introduced to free end-users from

a few suppliers, so that they are able to respond to changes quickly.

4.6.2 Embedded Modules with Ethernet

Recently, embedded microprocessors have been rapidly improved, in terms of small size,
low price, high procéssing speed, real-time performance and Ethernet connectivity, in
order to facilitate an open and seamless integration of automation systems. Currently,
there are some embedded solutions aQailable on the market, such as NetSilicon
Microprocessors (ARMs microprocessor) and Rabbit Microprocessors (Rabbit core,
Dynamic C processing unit). These are capable of 10/100B:;1sed standard Ethernet
connection and contain a broad set of industry standard peripherals, such as UBS, 12C,
serial ports and an LCD controller. These embedded devices are designed to support

various types of OS platforms including e.g. Linux, RTOS, Win CEF, and Win XP.

To conclude, the author has the novel idea of implementing this distributed control
system infrastructure with embedded devices, Ethernet networks, the SOAP architecture
and Web Services, publish-subscribe models and component-based design tools, in order

to simplify and enhance the performance of automation systems (the implemented

framework will be presented and discussed in Chapter 7).

The author appreciates the potential of these embedded devices as the solution for open,
flexible automation systems and ease of integration to higher control levels and ease of
installation, in order to reduce de\}elopment time and enable agile manufacturing,
However, other distributed control infrastructures need to be chosen and developed as
appropriate so as to effectively support the integration of these smart embedded devices
in automation systems. The technologies for distributed automation systems will be

outlined, according to the structure for a distributed control system (Figure 4-8), in the
following sections:

CHAPTER 4: A Distributed Automation System : 73

4.6.3 Distributed Control Applications

() IEC -61499 Standard

IEC-61499 standard was proposed for the application of function blocks in distributed
industrial-process measurement and control systems [51]. The developing standard of
IEC-61499 presents an approach for distributed process control systems, whose
components are function blocks. The control applications may be distributed among
devices of a system, with each of these applicati'ons using one or more resources: these
resources are defined as “containing one or more function blocks that may be activated
by one or more control flows” [80]. In distributed control domains, the coherence of the
actuation/sensing actions and the execution time of control loops are very important. The
information exchange between the resources is defined by the specification of event and
data variables: events are used to ensure the control flow of an application, and data
variables are updated when executing an algorithm, and can be associated to an event.
The arrival of a new event at the input of a function block launches the mechanism for

the execution of algorithms, based on the ECC invocation. The Event-Driven concept of
IEC 61499 is illustrated in Figure 4-9.

Event Inputs Event Outputs L_—‘.l
— xecution

> — "—'
—_— Control 3 —
Chart
1 -

—
FB81
" ——— 1]
nanl » Output
variables Algorithms —_ u &e’
B .y Varia re2 b
internal L ‘IW
Variables FB83 "]:
|

T

a) IEC- 61499 Basic Function Block (FB) b) Multiple Function Block

CHAPTER 4: A Distributed Automation System 74

N e ST eem—— S = r

(L 3 Communication Interface 4 T T FB FB T FB
My S (e R R o i e |

Communication Mapping

t
I\ \. Network
T
|

I
—_— |
Local Application T S
Events ‘ | \ \
‘ ‘, I I)
Data ; ! e \
| | |
} :%: Agarthm '}':c.:‘ 1 | ‘t—; I‘ ‘ ll_—jm \\' ('h__:l
: r Block Block { ComeBotne l Came;rue \“ C&(T\FD;IKG
. i | [Applcation A | ! | \
LSRN Process\Mapping | | | A] ;\‘ ‘
LT ~ Process Interface AL ene i ‘ ‘ Applcation 8 |
| [‘ - i

Scheduling Function

Controller 1 | Controller 2 | | Controller 3

¢) Composite FB and Process Interface d) IEC Integration of the Distributed System
Figure 4-9: Event-driven IEC 61499 Execution Controls [51]

Event-driven state machine control of an IEC 61499 execution is illustrated in Figure 4-

9. Basic function block types (as in Figure 4-9/a) are defined by declaring:

1. Execution Control Chart (ECC),
2. The algorithms, whose execution may be invoked by the ECC, are pre-defined
function block (FB) behavior with external (interlocking) and internal variable.

3. Internal Variables (Local state variable of sensors and actuators).

The basic function block may be used to build a more complex application, as depicted
in Figure 4-9/b. Figure 4-9/c shows details of the composite FB of the service interface
function block for the device network communication, with other services provided by

the resource’s operating system and control algorithm performing I/O execution.

To compose the distributed system, in which devices may communicate with each other
over one or more communication links and may interface to controlled and processed
machines, applications should be distributed among one or more devices interconnected
by event connections and data connections, to form the integration of the distributed

system, as shown in Figure 4-9/d.

At present, there are a number of researchers implementing IEC 61499 function blocks

in the design of distributed control systems (DCS) with high level programming such as

CHAPTER 4: A Distributed Automation System 75

Java, C/C++ and XML [22, 27] on fieldbus or Ethernet networks. The implementation of
function blocks has contributed to the improvement of reusability, re-configurability, and

interoperability among different vendors.

(1) COMPAG- Component-based Design Tools

The COMPAG design methodology has been proposed at Loughborough University and
implemented in the real automation system on a Ford Test Rig at Loughborough and an
industrial test machine at Krause in Bremen, as reported in [73]. The concept of
component-based design methodology will be further developed in this project, with the

design of other engineering tools (software applications) to aid the machine

commissioning and installation.

Network Interface Management | | |
| Blackboard state

| ; 55 ST AR 58D €3 R AT Y R T A | |
| = | List of runtime
- Device Status ¢} | > ‘ | v‘:n:bln @
Device Device Management e \ [. configuration data
configuration | Identification I- | > [‘

Network

[ackboard state
3 Control Functions, 19 E"°" State B NVO =L nwo =D
Subscribe | | (PID Loop, Faut Signals i - = =
Event State (x) Discrete sequencing) ~ StateF m-w?'i = ‘ ‘ ‘
o risble | | J
= e e O
Data Operation 6 ik o 1‘ | I wo |
X o f1 Sets of interlocking 1 T > | 4 > r >
oo {14 The transition state and devi ({1 [¢ | | ‘
E O {1 Local events operation o::!u ‘ '\ ‘\é'u"';::: | | Aeoutonn | | | O it
(within component) | | |
I ' | | (NVO) ; Conroller 1| | conoter2 ‘
a) Constitution of a Component b) Component Network Variables

Figure 4-10: Functionalities of a Component (adopted from [33])

The term “component”, used throughout this research, is defined as the previous research
at MSI. The component is viewed as an autonomous unit consisting of the automation
devices (sensors and actuators), computing hardware (processor, memory,
communication interface, electronic interface) and control software (application
program, OS, and communication protocol) [11]. This definition of a component is

illustrated as in Figure 4-10/a). The adoption of this approach is presented in Chapter 6-
section 6.8.3.

5- COMPAG design tool, PDE (Process Definition Environment), is a tool which supports the design and

integration of the machine from a component library. The tool was developed by MSI research group for the
COMPAG project based on the component-based design approach SN

CHAPTER 4. A Distributed Automation System 76

In the development of automation systems, a system is built from sub-system units that
normally contain many components. Communication between components is event-
driven, in which the states of devices are defined as inter-connected logic related to other
devices. In addition, the states can be published to desired subscribe nodes as a network
variable, by sending/receiving event messages through the output and input network

variable interfaces (NVI, NVO), respectively shown in Figure 4-10/b).

The behaviour of the component is represented by using finite state machines, F ¢jement, as
a set of functions of component states, transitions, and a combination of events. The

finite state machine for the element adopted by S.M. Lee [11] is as follows:

F element = f (X, @, E)]

Where F ¢ement = the output state of an element
X = the set of all states in the finite state machine
o = the transition (eg. retracted to extending)
E =the set of events {E input (Ei), E ouput (E0)}

f = the designed control function of machine components

E.g. Eo = Transfer arm state AND Part sensor state
Ei= Local Limit sensors of transfer arm units
a = The transition state from retracted to extending

X = Other associated unit states

f = When {(X AND o) ==1 OR (E ==0)} then action; discrete functions

This approach enables the generic operation of devices to be pre-programmed and
encapsulated in the component. The system operation can be configured by interlocking
the event condition of the control elements through its states and the states of other
elements, as specified in the function [1]. The composed functionality of a component
has been developed to support the development of generic control functions of the

system, system installation and independent reconfiguration without any prior

knowledge of the application.

CHAPTER 4: Middleware Server 77

In general terms, the component can physically be seen as the controller device, with its
own physical resource (sensors and actuators) and the control application to perform
manufacturing tasks. The functional constituent of such a component has the capability
to interface, in order to process applications such as device binding, simulation tools, on-
site and remote monitoring. This is achieved by manipulating the component data
obtained from output state variables of the encapsulated function entities. Furthermore,
the basic operation of devices may be pre-programmed by the component suppliers and
encapsulated into the component, in order to hide away the abstract functionalities and

complexity from users. This “black-box’ implementation approach allows changes with

minimal disruption to the system [73].

In the building of a component-based automation system, the component has predefined
physical resources within the component boundary and is not accessible across
components i.e. the component is independent of other components [11]. This increases
the flexibility of the system as shown in Figure 4-10/b) in which components with their

own applications (A, B, C) are distributed across the system and communicate via the
black board state.

4.7 Middleware Servers

With the adoption of distributed objects and the heterogeneous nature of computing
systems over the past few years, the middleware programming architecture has evolved
to provide support. Middleware is the key engine of development which that acts as the
glue to connect diverse computer systems. In the history of object-based programming,
Microsoft’s Component Object Model (COM) and the Common Object Request Broker
Architecture (CORBA) from the Object Management Group (OMG) were two leading
distributed-object technologies that were widely used. A comparison of these two

middleware approaches can be found in [g4].

Extensive reviews on agent-based manufacturing, including the holonic approach
(section 4.8.1), have shown that most researchers favoured the CORBA middleware, due
to its wide use and acceptance. Therefore, in the literature review section, the CORBA

middleware will be compared with an emerging middleware technology of Service-
oriented architecture (SOA).

CHAPTER 4: Middleware Server 78

4.7.1 CORBA

The concise mechanism of the object-oriented invocation in CORBA is summarised in
this section, with full details to be found in [g4, g5]. CORBA can be conceptualized as a
communication bus for client-server objects, and, since CORBA is a three-tier
distributed objected mechanism, the terminology “Client-Server” is applied within the

context of a specific request, as in Figure 4-11.

Presentation Business Objects Data
Interaction
& o Waeb Server Front & Back

Office
S | 4O N2
e

Cbgects CORBA/ 1OP
R + ROBMS
HTML Java HTTPICGI + OODBMS
\ . o Fie System
L] HOII\.GOMI
HTML CGI
Pages Programs

Figure 4-11: Three Tier e-Business Architecture [g4]

The first tier in the architecture is the presentation and interaction layer; for example, a
web browser or a client. The middle tier consists of the application logic, which can be
constructed from multiple components, such as web and application servers. The final
tier includes data repositories such as object-oriented databases. With the growing need
to integrate multiple heterogeneous systems in many areas, such as businesses and

manufacturing, CORBA is increasingly used as the platform for integrating distributed
objects [g4].

A client invokes a method on a server through the interface and object request broker
(ORB). Exported server interfaces must be specified in the CORBA standard Interface
Definition Language (IDL). IDL is part of the CORBA standard and permits interfaces to
objects to be defined, independent of an object’s implementation. IDL is used as input to
an IDL compiler that produces source code. Source code can be compiled and linked
with an object implementation and its clients, which enable a program or object written
in one language communicate with another unknown programming language. IDL also
enables distributed applications to invoke operations transparently on remote networked

hosts. IDL files are similar to C header files, except for the actual code implementation

CHAPTER 4: Middleware Server 79

(behind the IDL definitions) being located on a host remote to the caller (see [83, 87] for
details).

An IDL interface description is mapped, using IDL complier, to native language
bindings such as Java, C++ and others. This allows each programmer to write source

code independently in the most appropriate language [g5].

(6)| Native Language Client

mﬁé’r‘nﬁ‘ﬁﬁ] compile

client side
server side
DL Interface @
operations compile
@ Native Language
Interface
“methods]
Native Lanquage
implementation
©) Implementation

Repository

Figure 4-12: The CORBA Client/Server Invocation Methods [g5]

Central to the CORBA architecture is the Object Request Broker (ORB). The ORB
serves as an object bus that transparently handles all client-server interactions between
objects. The ORB is responsible for locating the object, establishing a communication

channel, invoking the request, and managing the reply on the behalf of the client [g4], as
shown in Figure 4-12. (Steps 8-9)

The details of CORBA invocations as presented in “4 CORBA Primer”, Segue [g5] are
Step 1: Identify an IDL interface
Step 2: An IDL compiler is used to generate a server stub, a client stub that gets linked to

a program wishing to invoke statically a server method through the associated

interface.
Step 3: Implement the server

Step 4: Compile the server program and link to a server stub to generate the executable

server program that can be invoked via a CORBA method

CHAPTER 4: Middleware Server 80

Step 5: Register the server in the implementation repository.
Step 6: Server object method calls as if they are local.
Step 7: Compile the client program and link in the client stub

Step 8-9: ORB binding to the server object and obtain a reference for the client to invoke

the method call.

The CORBA developer group has attempted to advance CORBA components, so that
they seamlessly fit into the standard infrastructure provided by the web. There are some
deployments that use JavaBeans implemented with CORBA as the standard for

component objects, to enable an open and independent operating system.

The internet Inter-ORB Protocol (IIOP) is the COBRA standard that guarantees
interoperability between ORB implementations, as well as allowing applications built

with different vendors’ ORBs to communicate and share objects for distributed object

invocations.

4.7.2 SOA Middleware

SOAP is a protocol for the key Web Service standards, WSDL and UDDI (see Figure 4-
13) (Chapter 6- section 6.7.1). These are all based on the XML messaging format that is
used to send information from one application to another. SOAP allows the integration
of application-to-application transactions over the web. Unlike previous middleware
technologies (e.g., DCE, CORBA, DCOM, MOM), SOAP middleware is available on

any platform and it supports many programming languages.

WSDL | soApP o]
Definitions * i Client b

Content

Registries s’ Internal
~ Public or Private | ’ ’ Systems
% » “Yellow Pages” 7
= B0 ; oo
j iﬂ i \ UDDI Specifications b ’ I K-Mq ;
Relational " Mo [UoDI ’ @ |-

h S, r 828

. SOAP §] | soAP |
i | Messages ame— | Messages

= - : ~ [

o | L BSTRRSSows | 4

] ; s -

el G e 4
Legacy > / = | Y % Browser
Applications g i
7 ~
’ s b

Databases

LF‘-L] | XML+HTTP+Standards=SOAP | !{g‘\l
ng.cy " . . S

Applications Wireless

Figure 4-13: SOA Client —Server Middleware Model

CHAPTER 4: Middleware Server 81

SOAP defines a framework for message structure and a message processing model. It
does this by providing an XML-based messaging framework that is: 1) extensible, 2)

usable over a variety of underlying networking protocols and 3) independent of

programming models.

SOAP also defines a set of encoding rules for serializing data and a convention for
making remote procedure calls (RPC) [gl]. SOAP provides a rich and flexible
framework for defining higher-level application protocols that offer increased
interoperability in distributed, heterogeneous environments. The extensibility features
built into SOAP allow the various Web Services protocols to be integrated individually

and incrementally, as well as to be improved and versioned in isolation, without

affecting the rest of the protocol stack [9].

oo\
| Registry |
Service description ‘ |
using WSDL & ——| Query response
i using WSDL
=
=T SOAP b 3
A Messages
/ /
Service | 4) Callinvoke [Service
. Provider | « | Requester |

>

Response (5

\ WSDL Interface /

(1) (1)
Service descriptions
Operations

Figure 4-14: Providing SOAP with XML, WSDL and UDDI in Web Service [49]

The mechanisms of SOAP, WSDL and UDDI are detailed below.

UDDI service registries enable two basic functions in the Web Services model. Firstly,
they allow application developers to find services and to develop code that relies on
those services. Secondly, they enable just-in-time integration of service components. In
UDD], technical specifications like WSDL descriptions can be registered and then used

to qualify the registry description of a compliant service [g19].

CHAPTER 4: Middleware Server 82

The Web Services provider registers its applications and links by subscribing them to
UDDI registry at the time of development. At the client site, the Web Services requester
can look up the services from providers by using WSDL file, in order to find out the
location of the service, the function calls, and how to access them. Web Services
mechanism relies on the SOAP message on HTTP protocol in this service invocation

method. The practical implementation of this WS model can be viewed in [88].

The SOAP protocol is XML-based and consists of three parts:

1) A SOAP envelope for describing the message content and how to process it:

The envelope element is always the root element of a SOAP message. This makes it easy
for applications to identify "SOAP messages" by simply looking at the name of the root
element. Applications can also determine the version of SOAP being used by inspecting
the envelope element's namespace name. The envelope element contains an optional
“header element”, followed by a mandatory “body element”, as shown in Chapter 9-
section 9.2.1 and Appendix C. This body element is a generic container in that it can

contain any number of elements from any namespace. |

2) A set of encoding rules for expressing instances of application-defined data types:
The SOAP specification defines a set of encoding rules for exactly this purpose. The

SOAP encoding rules outline how to map commonly used data structures (like structs

and arrays) to a common XML format.

3) A convention for representing remote procedure calls and responses:

Although the SOAP specification has evolved away from objects, it still defines a
- convention for encapsulating and exchanging RPC calls using the messaging framework
described above. Defining a standard way to map RPC calls to SOAP messages makes it
possible for the infrastructure to translate automatically between method invocations and

SOAP messages at runtime, without redesigning the code around the Web Services
platform [g6].

To conclude, SOAP defines a simple and extensible XML messaging framework that can
be used over multiple protocols with a variety of different programming models,

although the specification codifies how to use SOAP with HTTP and RPC invocations.

CHAPTER 4: Middleware Server 83

SOAP also defines a complete processing model that outlines how messages are
processed as they travel through a path. In general, SOA middleware and SOAP message
processing can be affiliated with other development tools such that Microsoft .NET
Framework, Visual Studio.NET, C/C++ tools, Java, so as to support the development of

Web Services applications.

4.7.3 Debate: CORBA VS, SOA Middleware

It has been an ongoing debate as to which of these middleware technologies is better
suited for business-to-business and business-to-shop floor integration. Having studied
and reviewed a number of papers, there is no Straightforward and convincing answer to
this question. Selection depends on opinions and experience. It is hard to justify the
answers, especially without a specific scope for comparison. In this respect, the author
has scoped the discussion by considering the relevant content to agility features required

in manufacturing systems, as addressed in Chapter 3. The assessment of both

middlewares is presented below.

Assessment of CORBA and SOA in the Requirement of Agile Manufacturing

Systems

(O) Open standards and the pervasiveness of these middlewares in vendor solutions

SOA CORBA
[Advantages] ([g22]) [Advantages]
e SOA-WS are based on emerging standards, | ¢ Promotes interoperability
and SOAP, WSDL, UDDI, have achieved | [Disadvantages]
broad acceptance in the industry. e Although CORBA has been implemented
e WSDL also fully supports transport on various platforms, the reality is that any
neutrality, as it allows separate solution built on these protocols will be

specifications of the abstract service dependent on a single vendor’s
interfaces and their bindings for each implementation. In the case of CORBA,
specific transport protocol. every node in the application environment

o SOAP is the key to supporting a transport- would need to run the same ORB product
neutral infrastructure for the actual | ([g21]).
production and consumption of messages,
as it supports binding to different
transports.

Points: For SOA and WS, heterogeneous applications running on different platforms are
allowed to interoperate through a consistent, well-defined interface.

CHAPTER 4: Middleware Server

84

(Q) Requirements from an IT and Business perspective — widely distributed and highly
integrated, loosely coupled and yet manageable applications

SOA

CORBA

[Advantages]

e SOA is mainly for integrating existing
systems in a decoupled way [g23].

¢ The service interfaces are defined in WSDL
(which is itself an XML application), and
XML technologies can be applied to
interrogate the service capabilities and
integrate discovered functions such as Web
Services orchestrations. Web Services
provide a semantically rich integration
environment: they make it much easier to
build business process management
solutions that “orchestrate” multiple
business functions from disparate
applications and allow the system to apply

“business rules” dynamically, e.g.,, for

content-based routing of messages. They

also provide semantic mappings between

multiple XML business documents in a
declarative fashion [g22].

[Disadvantages]
e With CORBA, the focus is on Object

Request Brokering. This results in tight
coupling to well-defined interfaces, a
broker infrastructure and multi-language
mappings. These types of coupling are
needed for almost the same reasons as
Java-Interfaces for compile-time checking,
implementation hiding, richly typed
interface and easy client-programming
[g25].

CORBA can be distributed with different
sets of interfaces if any prove too
cumbersome for the task. It was difficult to
manage different versions of CORBA
interfaces, and these interfaces consumed
excessive computing overheads [g26].

existing applications.

Points: From this viewpoint, CORBA as OO needs more effort to commission than SOA,
which provides consistent API's and homogeneous technology with loose coupling between

(Q) Integration of applications from business services and partners

SOA CORBA
[Advantages] (g22) [Advantages] ([96])
e SOA will enable faster application | e The CORBA environment is best suited for

integration using the WS standard (WSDL,
UDDI and XML message types) and widely
used SOAP protocols compatible with
HTTP. WSDL also fully supports transport
neutrality, as it allows separate
specifications of the abstract service
interfaces and their bindings for each
specific transport protocol.

e SOAP is the key to supporting a transport-
neutral infrastructure for the actual
production and consumption of messages,
as it supports binding to different transports.

o The self-describing XML documents and
SOAP messages make it possible to build a
loosely coupled, document-style integration
environment.

applications developed and controlled by
itself, in which all or most of the
programming language is C, C++, or
Smalltalk.

A bridge between the Java environment
and CORBA has been available for a
significant period of time.

It is a mature technology that still has its
use in high-volume, highly secure, object-
oriented applications within an enterprise.

[Disadvantages]
e CORBA has failed on the Internet and it is

not used for public integration amongst
companies. Rather, CORBA is typically
used for communication among application
components developed by the same team,
but it is not used by companies to offer a

public remote API that anyone could utilize
[g23].

Points: In regards to business programming, CORBA is best suited to tightly coupled

transactional systems requiring high security.

CHAPTER 4: Middleware Server 85

(O) Cross-platform and cross-programming language interoperability

SOA l CORBA

Points: Both CORBA and Web Services provide interoperability across programming

languages, operating systems, and hardware platforms.

[Advantages] [Disadvantages]

e Web Services are based on several [¢ Regarding to interoperability, CORBA
(emerging and de facto) standard assumes that all interacting entities
technologies, primarily SOAP, WSDL, and conform to a standardized object model.
UDDIL ‘

e SOAP-XML is neutral with respect to the
network access protocols, and so these data
types and service interfaces can be mapped
to different languages and middleware
interfaces, thereby providing
language/platform neutrality. Web Services
standardize the messages exchanged by the
interacting entities, which can then be
mapped to an arbitrary object model.

e WSDL also fully supports transport
neutrality as it allows separate
specifications of the abstract service
interfaces and their bindings for each
specific transport protocol [g22].

(Q) Integrated middleware in embedded control devices

SOA | CORBA

Points: As reported by Roy Bell [g27], CORBA is 3 times bigger than the SOA middleware on
the device, and about 6 times faster.

[Advantages] [Advantages]
¢ Smaller memory footprints e Faster processing speed
[Disadvantages] [Disadvantages]
e Slower processing speed, thus require more | ¢ CORBA is still a heavyweight solution for
powerful processor specifications many smaller embedded systems, since the
- overhead of C++ was overcome by a
combination of careful use and cheaper
computing power [g24].

(Q) Engineering tools and manufacturing application integration

SOA | CORBA
Points: Regarding this point, there are no real advantages or disadvantages. Both middleware

integrations have been implemented in the same manner. CORBA uses IDL for the application
interface, whilst SOA uses WSDL.

CHAPTER 4: Middleware Server 86

Overall, it has been addressed by Sayjay [g22] that CORBA is better suited for building
distributed applications in controlled environments. Such environments make it possible
to share a common object model among all distributed entities, there are no restrictions
on the granularity or volume of the communications between distributed entities, and
deployment is more or less permanent, so that the system may find a benefit in mapping
the network add_resses directly to object references. However, the integration scenarios

described above require a loose coupling, where CORBA may not be the best fit.

The definition of SOA includes the usage of technologies such as WSDL, UDDI, SOAP
and XML technologies. With these technologies, developers can build applications in
business domains or automation domains for control devices, using these standards to
build components in the form of Web Services. In addition, Web Services semantics are

standardized in the form of message definitions and service interfaces, promoting a

wider variety of new applications [g22].

However, there are some concerns in implementing SOA and Web Services on the

automation systems including;:

1. Methodology and reliability of discovering the required services (discussed in
Chapter 6B)

Providing acceptable performance (discussed in Chapter 9)

Messaging reliability and missing packet recovery (discussed in Chapter 9)

Security (addressed future work)

“oRs W

Fault handling, in order to maintain the reliability of the transaction whenever the

service is unavailable due to changes or being closed (discussed in Chapter 9)

In this research, these issues need to be taken into consideration and resolved by

experimentation and investigation on the implemented industrial test rig,

CHAPTER 4: Agent-Based Manufacturing System 87

4.8 Agent-Based Manufacturing System

A distributed system consists of a number of components, which are loosely coupled
and capable of performing simple local operations, such as data conditioning and local
feedback controls without a master controller. The components are connected by some
sort of communication medium, such as fieldbus or Ethernet, and applications are
executed by using a number of processes in the different component systems. These
processes communicate and interact to achieve productive work within the application.
It is envisioned that by removing the need for a master controller and enabling local

computing and control capabilities within each intelligent device, there would be no

need to develop rigid conventional control programs.

There is considerable research proposing hypotheses in the domain of distributed open
control system design (i.e. [6], [12], [70], [84], [85], [118]). However, many approaches
are similar in concepts and key enabling technologies. In general, the key methodology

to enable such an environment can be broadly classified into two approaches:

1.) Object-Orientated architecture

2). Service-Orientated architecture and Web Services

4.8.1 Object-Orientated Architecture (OOA)

This approach was proposed as a new distributed manufacturing control paradigm,
presenting distributed structures based in autonomous and co-operative entities that
have the ability to respond promptly and correctly to external changes. This differs from
conventional approaches, in that there is an inherent capability to adapt to change
without external intervention [15]. The concept of this approach is centred around the
development of control software, based on a formal modelling of the entities involved
in a cell. Regarding interactions, the cell controller takes care of co-ordination and

synchronization issues, while individual objects are responsible for their own activities
[16].

A significant development in the object-oriented concept has attracted many research
consortiums and institutions. The Holonic approach, which is based on multi-agent

technology, has been presented as the best outcome of machine controls, shop floor

CHAPTER 4: Agent-Based Manufacturing System 88

controls, scheduling and planning, by means of autonomous, distributed decision

making smart entities called “holons”. These entities interact via co-operation protocols
within the manufacturing cell to perform their responsible tasks, in order to support the

runtime reconfiguration demanded by shop floors. A typical holonic framework is seen

in Figure 4-15.

Agent

Sensor
|
I— Executer

gy Interface

x|
. 1§"
| |

~ Agent ‘

[Condition | |

Information | ! Holon Structure
Table | Model

Information Process

Knowledge |
" > %
@
f \ =)
R

Decision Making

Outer Environment

Schedullng Duagnosns Holon
Holon Holon Funotion

Figure 4-15: Holonic Framework via Mobile Agent (adopted from [17], [50])

The manufacturing cell (the so called “holon™) consists of a number of individual
mobile agent units corresponding to specific functionalities in the physical

configuration. Each holon is a dynamic system with input, processor, output and a
controller. Structurally, a holon has:

a) A physical processing part that is associated with an item of shop-floor
machinery to process artifacts

b) An information processing part that handles knowledge management and
executes software algorithms pertaining to the holon’s control system

specifications [18]. An example of the holon architecture can be seen in Figure
4-16

CHAPTER 4: Agent-Based Manufacturing System 89

£ B
Machine Feature based Common Database

Design System

' Machining
Product Data Feature
M
Machini
Product Planning and Control C:;albnillir;?
System
Supervisory Planning 4_‘
Operation Planning
NC Code Generation Cutting
High-Level Execution Control Tool
e —
Machining
NC Data Technology
: R |

o
-J.—T Control Code Distribution ?—L

I-Machine I-Machine I-Machine
Controller - 1 Controller - 2 Controller - 3
(Distributed sensors, actuators, and other discrete /0)

Figure 4-16: Holon Structure [19]

After the substantial number of reviews regarding the practical implementation of the
Holonic design approach in the manufacturing control system design, many researchers
have adopted this approach in the domain of programming object-oriented software.
This has been implemented with standards of the emerging Function block-based
control IEC 6149, to enable flexible, reconfigurable automation systems. The practice
of using holonic manufacturing systems demonstrates how holons act autonomously
and co-operatively through the interaction of the software components inside its
software and mobile agents. This automatically produces function block applications

that implement the desired manufacturing service within the scope of the IEC 61499
architecture [18].

However, it is the author’s point of view, and indeed other researchers such as Frangois
Jammes and Harm Smit [9], that the Holonic approach has not made significant inroads

in manufacturing plants, due to a lack of widely accepted standards, proprietary

standards and complexities of the approach.

CHAPTER 4: Services-Oriented Architecture (SOA) and Web Services for Manufacturing 90
Systems

4.9 Service-Oriented Architecture (SOA) and Web Services for

Manufacturing Systems

4.9.1 SOA Basic Definitions

There are many definitions of the concept of a service-oriented architecture (SOA).

Each definition differs considerably, as indicated below:

“A service-orientated architecture (SOA) is a set of architecture tenets for building
autonomous yet interoperable systems.” [9]

“SOA can be defined as an architectural style promoting the concept of business-
aligned enterprise services as the fundamental unit of designing, building, and
composing enterprise business solutions. At its core, SOA is about factoring
functionality into shared, reusable services, and applications are built by assembling
those services into automated business processes.” [20]

“Service-oriented-architecture is a philosophy of design described as ‘“the software
equivalent of Lego bricks,” where a toolset of mix-and-match units (“services”), each
performing a well-defined task, can reside on different machines (including
geographically separated ones), ready to be used when needed.” [21]

P o -l >, Interoperability with Key
. Partners

- - - ——

Enterprise Application
Integration Interoperability across
Multiple Companies

Figure 4-17: Business Ecosystems [g1]

As depicted in Figure 4-17, the service-orientated architecture in the global aspect may
be seen as integrated applications within the generic enterprise, in order to extend the

reach of businesses to partners and customers. This creates business efficiencies and

exposes companies to new sources of revenue.

CHAPTER 4: Services-Oriented Architecture (SOA) and Web Services for Manufacturing 91
Systems

As reported in [gl], the adaptation of this technology would split the business

ecosystems into three tiers:
Tierl- Enterprise Application Integration

This is the starting point for most companies. It allows them to expose legacy

applications to business applications in heterogeneous environments, without having to

rewrite large amounts of applications code.
Tier2- Interoperability with Key Partners

Required to integrate the business in association with key partners. SOA has been
implemented because it allows for interoperability among applications across

communication mediums, such as the public Internet.

Tier3- Interoperabi'lity across Multiple Companies

Companies want to extend their computing out to more partners and customers, in order

to build business ecosystems.

4.9.2 Web Services: The SOA Connection
With regards to the concept of intra and inter-enterprise integration, the main question

is what available solutions can be effectively implemented in SOA to connect

ubiquitous services?

Considering the fundamental requirements of the industrial automation system and the
business enterprise integration (as outlined in Chapter 2, section 2.3.4), the evolution of
the device networking systems will pave the way for cost-effective communication
paradigms, down to the level of basic field devices like sensors and actuators. As a
consequence, the upcoming SOA and Web Services for manufacturing systems would

bring the following requirements and challenges [9]:

Interoperability: Automation system shall be implemented independent of any

vendor specific operating systems or programming languages, thus maximizing use
of resources.

Reduced complexity: Devices shall make the automation system simple and easy to
commission and diagnose by non-expert persons.

CHAPTER 4: Services-Oriented Architecture (SOA) and Web Services for Manufacturing 92
Systems

Ease of installation and preparation: WS shall enable efficient plug-and-play
connectivity.

Reusability: The design of WS enabled devices shall enable the programming code
to be reused at different architecture levels and in different devices.

Seamless integration: A device shall present a high-level management interface

(typically graphical) in order to facilitate configuration, monitoring, fault diagnosis

and maintenance.

In these sets of end-user requirements, as shown in Figure 4-18, the utilization of Web
Services within the manufacturing system should facilitate the integrated sets of
applications through the standard Web Services interface (discussed in Chapter 6B)

These will be used by various interested parties to support production throughout the

manufacturing lifecycle.

Based on this framework, the modularization of the production system depends on the
decomposition of the present “control-orientated structure” into function modules, with
a “manufacturing-task-orientated structure” [117]. At the automation level, the /O
states of the component (i.e. events variables) and the device functionality is exposed to
the manufacturing process as values and services, that can respectively be used and
managed by higher level applications. Dynamic service discovery and composition of

the manufacturing process tasks are achieved by Service orchestration engine (Chapter
8- section 8.5.2).

Process p @& Control sy
Common database ERP system g 3 . - -
s e TR e B
}
Drawing - Engineering tools g 3
(SIFSES. et b OV i

Design time
HMI template.

Simulation/3D VRML % E3

CB Wbrary I

EL i ¥ AT gx ” st Tl

Worary \ MES control system i
Local HMI g 3 W
_‘::i ' Ethernet LAN AT *L e
Secure ot B e g e i T R
connection 1[!— ‘! Processes
Inter-connection /x(mm-" — — W
Manutacturing Integration 5
and Management 1 2 EY
Business partner system Remote supports (=1 [=1) 1Ou
Customer service system Supplier system

Figure 4-18: SOA Web Services Structure in Manufacturing Systems

CHAPTER 4: Services-Oriented Architecture (SOA) and Web Services for Manufacturing 93
Systems ‘

As presented in [9], the core Web Services architecture required to achieve the above
requirements (i.e. the Devices Profile for Web Services (DPWS)) is shown in Figure 4-
19 and contains the following protocols and capabilities. The details of SOAP, UDDI
and WSDL were presented in section 4.7.2.

WS-Discovery WS-Eventing

WS-Addressing
WS-Metadata Exchange
WS-Policy
WS-Security

SOAP 1.2
WSDL 1.1, XML Schema

HTTP 1.1
TCP

UDP

IPv4/IPv6

Figure 4-19: Devices Profile for Web Services (DPWS) Protocol Stack. [9]
XML Schema

The XML Schema is the definition of the data formats constructed that allow

developers to create precise descriptions used for the message addressed to and

received from services [g13].
WS-Discovery

This defines a multicast protocol to search and locate plug-and-play discovery, the
so- called target service. In the context of Web Services protocol stack, a target
service is a device. In the search of the device, the primary mode of service
discovery is a multicast probe, in which devices matching the probe send a
confirmation/probe as an acknowledged response. Devices can also be localized by

name, through a protocol exchange. Once it has been discovered, a device exposes

the services it provides. Full details can be found in [23].
WS-Eventing

This mechanism for registering interest in events is needed in relation to the set of
Web Services regarding the receiving of messages. The specification defines a

protocol for one Web Services (called a “subscribe”) to register interest (a

CHAPTER 4: Services-Oriented Architecture (SOA) and Web Services for Manufacturing 94
Systems

“subscription”) with another Web Services (an “event source”) in receiving
messages about events (“notifications” or “event messages”). The subscriber may
manage the subscription by interacting with a Web Services (“subscription

manager”’) designated by the event source [24].

WS-Eventing is intended to enable the implementation of a range of applications,

from device-oriented to enterprise-scale publish-subscribe systems [9].

WS-Addressing

This mechanism provides transport-neutral methods for addressing Web Services
and messages. Specifically, this defines XML (Extensible Markup Language)
elements to identify Web Services endpoints and to secure end-to-end endpoint
identification in messages. This specification enables messaging systems to support
message transmission through networks which include processing nodes, such as

endpoint managers, firewalls, and gateways in a transport-neutral manner (i.e.
HTTP, SMTP, TCP, UDP) [25].

WS-Metadata Exchange

Web Services use metadata to describe what other endpoints are required (e.g.
description, schema, and policy) in order to interact with them, thus providing a
web service introspection mechanism. The interactions defined in the WS-Metadata
Exchange are intended for the retrieval of metadata only. They are not intended to
provide a general purpose query or retrieval mechanism for other types of data

associated with a service, such as state data, properties and attribute values [26].

WS-Policy

WS-Policy gives generic instructions of how senders and receivers can specify

their requirements and capabilities in the form of policy assertions [9].

WS-Security

WS-Security provides quality of protection through message integrity, message
confidentiality, and authentication. These mechanisms can be used to accommodate
a wide variety of security models and encryption technologies. WS-Security also

provides a general-purpose mechanism for associating security tokens with

CHAPTER 4: Services-Oriented Architecture (SOA) and Web Services for Manufacturing 95
Systems

messages. No specific type of security token is required by WS-Security. It is
designed to be extensible, in order to support multiple security token formats. A

client might provide proof of identity and proof that they have a particular business

certification [g2].

The introduction of DPWS paves the way for the use of a unique technology base, via
Web Services, across the entire heterogeneous enterprise applications, from the sensors/
actuators level up into ERP/MES level [9]. However, the use of Web Services needs to
be carefully considered in the deterministic real-time performances of automation

systems and the security on the open network, as shown in the following section.

4.9.3 Web Services Consideration Issues

Although Web Services satisfy most of the manufacturing requirements, there are major

concemns in implementing Web Services based on SOA solutions, as follows:

a) Security: integrating business applications outside companies with partners and
customers over the internet requires secure connections that prevent hackers spam,
viruses, and unauthorized users gaining access to an operation terminal. Sufficient

tools need to be implemented effectively, in order to secure the system completely

in a cost effective way.

b) Reliability: Characteristics of internet technologies are time delays and uncertain

responses. Developers need to take this into account; how can they maintain the

integrity of transactions over the internet?

c) Performance: Every packet must be counted on sending and receiving data with

regards to the impact on performance degradation, as a result of overheads and

bandwidths by concurrent users using the network.

Initial solutions to some of the issues mentioned have been presented, but more detailed

solutions will be discussed throughout the course of this thesis.

CHAPTER 4: Conclusion 96

For example, the network connectivity can be secured by encrypting and decrypting
each data transmission, using private networks with access protection as a secure token
for remote login, as reported in [74]. In addition, the reliability and performance of
implementing Web Services for device synchronisation is another factor that needs to
be taken into consideration for connecting real-time communication between devices. If
the delay associated with Web Services message exchange is too long for a hard real-
time application, then the implementing of Web Services in this automation system
needs to be scoped accordingly. However, for the work undertaken in this thesis, further
investigation of the specification of device communications and time constraints was
carried out with the project collaborators, in order to identify the suitability of Web

Services as a low-level message exchanging for typical automotive automation systems.

4.10 Conclusion

The conceptual framework of agile manufacturing has been presented and the
manufacturing requirements in relation to the automotive domain have been addressed
frorﬁ a survey of a primary collaborative car manufacturer, Ford. In addition, the
general needs of advanced control equipment and approaches to agile manufacturing
have been identified and chosen as appropriate, based on the reviews and discussions of
other researchers. Suitable technologies for the development of automation systems
have been selected, based upon the measures associated with the industrial requirements
and the needs of agile manufacturing. The constituent web-services technologies for

automation systems required to support the requirements of agile manufacturing are
illustrated in the Table below.

It is predicted that the development of Web Services, when combined with Ethernet
networking and other developing programming applications at all levels of the
manufacturing system (i.e. from business enterprises down to automation devices), can

result in a new way of building and integrating automation systems to higher control
levels.

CHAPTER 4: Conclusion 97

The derivation of distributed control technologies and paradigms is summarised as

follows:

Table 4-8: Summary of Distributed Enabling Technologies Appraisal

Distributed enabling technologies A i i Networking

A distributed application

Industrial requirements SOA 00A SOAP CORBA Ethernet Fieldbus IEC 61499 CB design

Tools

A high degree of reusability (software/hardware) \j \l \I \l \l \/ -\/

A high degree of flexibility (software/hardware) \/ \j \j

Seamless integration at enterprise level \/ \j \j

Non-proprietary control solutions \I -\l \/ \/

A distributed, heterogeneous control architecture \A N VA \ \ \ N

An encapsulation and abstraction for re-configurability '\l
Visual modelling and simulation prior to installation . -\/ \/\j
Integrated support capabilities and expert assistance \l \] \/
Ease of installation and reconfiguration \l
Low development cost ') 7 7 7 \/
Data logging and Diagnosis \l \j \j -\/\/ \j ‘j \j
Research implementation SOA SOAP Ethernet CB design tools
o Not applicable to the industrial requirements
\ ‘I Advantage choice over ‘/ in the same category if both are marked

(Note that * O’ does not imply it does not meet the industrial requirements, but that it is less suitable in comparison)

CHAPTER §

Research Focus and Design

In this chapter, the problems and end-user requirements in the control system are
outlined. The discussion will also focus on state of the art literature derived from
relevant research works in automation platforms and business-shop floor integration.
The research objective and area of work are identified with regards to the SOA’s web

services approach within distributed automation systems (see Chapter 4).

5.1 Problem Statement |

The broad scope of the automotive manufacturing problem has been outlined and
discussed in detail in Chapter 1-3. However, this chapter is focused on the narrower
problem domain and set of requirements of the end user’s (FORD Motor Company)

manufacturing systems, in relation to their production strategy and management. The

main research questions can be stated as follows:

1. What are the main obstacles that prevent the development and installation time

of the automotive powertrain production system being achieved within the

required time scale of 40-42 weeks? _
2. Which state of the art agile manufacturing systems, implemented for real

industrial manufacturing applications, could contribute to the research focus?

5.2 Problem Definition and End-User Requirements

The current global market intense competition and manufacturing trends towards
mass customisation, driven by customer demand, were discussed in Chapter 2. These
conditions have forced manufacturers to produce various types of products for the
market in a shorter time-span. In the automotive sector, the usual development time
for the production machinery of car engines (i.e. powertrain) is about 53 weeks. End
users and competitive pressures are demanding that this be reduced to 40-42 weeks
[104]. Traditional manufacturing systems cannot deliver the required time to market,

for the reasons discussed in Chapter 2. The problems within the manufacturing

domain, and particularly for the automation control system can be summarised as:

CHAPTER 5: Problem Definition and End-User Requirements 99

¢ Rigid control system structure with centralised control

e Lack of re-usability and re-configurability in the control system

¢ Experience based design

e Lack of remote support and diagnostic systems

e Late verification and change after system design

e Lack of process simulation
The requirements of next generation manufacturing systems to support agility
concepts have been presented in Chapter 2. The key enablers for agile manufacturing
systems focused on automation systems have been reviewed and discussed in term of
technologies and limitations. The author has proposed the use of a Web Services-
based automation system which could better support the development of agile
manufacturing systems. However, the proposed solution also needs to encompass the
industrial requirements from the end-users in the automotive industry i.e. at the FORD
Company. The major industrial requirements that have been identified are:

e Remote expert assistance for fault diagnosis and troubleshooting /
maintenance support

o Data logging and monitoring

e Tools to support machine reconfigurations

e Data collection for business planning / plant to enterprise integration

e User friendly machine systems, with simple visual aids for operators

e Early evaluation and validation of control system design

e Low cost of automation design and build

¢ Ease of maintenance and upgrade

The summary of problems, requirements and key agile enablers can be seen in

Chapter 3- section 3.8.

There is a large amount of previous research, from both the academic and industrial
perspectives, working on these requirements, such as the distributed control system,
the component-based design approach, business-process application integration and

the development of process engineering tools. The relevant background research is
outlined in the following section.

CHAPTER 5: Related Automation Research 100

5.3 Related Automation Research

The state of the art in the context of key enabling collaborative manufacturing
systems, using object-orientated approaches, agent-based technologies and service-
orientated architectures are outlined in this section. Ongoing projects are reviewed in
detail to highlight major achievements and major obstacles. Work from consortia and
organisations have provided a great deal of background knowledge in developing the

manufacturing system for the future summarised in the following:

ITEA SIRENA (collaborative project with Schneider Electric Company) proposed a
novel approach using'Web Services, based on a SOA standard, to create an open,
flexible and agile environment with “plug-and-play” connectivity. This project
applied the XML-based Web Services paradigm for interconnecting distributed
heterogeneous applications through Ethermnet TCP/IP, which demonstrated the
possibility of a universal, platform, and language-neutral connectivity. ITEA SIRENA
proposed the idea of building advanced functionality, embedded into devices, to

enable new distributed application paradigms based on self-reliant smart devices [9].

The PABADIS (Plant Automation Based on Distributed Systems) consortium was
interested in developing a dynamic structured design of automation systems by
implementing agent-based technologies to enhance the flexibility and re-
configurability of business enterprises and production sites. The main contribution of
PABADIS was centred on a methodology for establishing information streams
between office level and field level systems by using mobile software agents as the
communicators. The implementation framework was focused on developing loosely
coupled agents in the distributed environment. Integrated Manufacturing Execution
Systems (MES) were designed to facilitate the plant activities, composed of diverse
control system technologies such as HMI’s, remote monitoring and motion control.
The PABADIS approach used XML message passing between plant agents and ERP
functionality for sending and receiving manufacturing orders. In addition, the project
has demonstrated a measure of flexibility at the automation level, with a simple
lookup service developed on JINI middleware for “Plug-and-Play” device discovery.

The full description of this approach can be found in [g14].

CHAPTER 5: Related Automation Research 101

Tampere University in Finland, has continuously contributed to the development of
agent-based distributed automation, remote configuration, and wireless
communication in control systems mainly within the electronics-manufacturing
domain. With regards to agent-based research, the group has designed modular
structures of software agents and used generic XML formats for messages, in order to
simplify automation system flexibility and reusability. Their design framework
provides access to the data source used to create business processes (e.g. data analysis
functionality and modeling), and the group’s area of expertise falls within the using of

wireless communication, bluetooth, WAP, and wireless LAN to support maintenance

and remote machine diagnostic systems.

The OMG (Object Management Group) has been progressively working on Data
Distributed Services (DDS) for Real-Time Systems Specification by developing
modern software standards, including CORBA and UML. The new DSS standard
[114] addresses the communication needs of real-time systems via a network
middleware that allows computer programs to communicate and readily exchange
information over the network, based on publish-subscribe technology. DDS achieves
flexibility and precision through the pervasive use of Quality of Services (QoS)
parameters, in which information flow between these nodes is specified. It has been
suggested by [71] that DDS is well suited for heterogeneous networks, as it handles
format conversion across operating systems, processor architectures and programming
languages, hence supporting interoperability amongst different distributed enterprises.
It also provides a state propagation model that allows nodes to update only when they
change state in the global data space. The OMG middleware platform is CORBA,
which includes the OMG IDL and the protocol IIOP, used for real-time systems with

both large applications or small embedded systems from various vendors.

Rockwell Automation (RA) has focused on developing a flexible and reconfigurable
distributed platform with plug-and-play automation systems, based on agent-based
technologies [41, 51]. The agent-based approach is implemented with real-time
control agents and information transfer (i.e. data from sensors, diagnostic
subsystems,) between agents implemented on PLC’s (ControlLogix ™y The
developed platform follows object-oriented principles, in which agents are responsible

for local control of particular manufacturing equipment. These agents are

CHAPTER 5: Related Automation Research 102

implemented in object-orientated languages like C++ and Java. The group developed
the Autonomous Co-operative System (ACS) with C++ based agents that are executed
on the PLC’s. The agent management is responsible for registration and services look
up, and ensures the transport of messages among agents. Recently, RA has considered
Java as an alternative to C++, due to the portability of Java programs between
different hardware platforms, operating systems and web-browsers [75]. This opens

up the chance of integrating more applications on the platform, including real-time

monitoring, process simulation, and device simulation.

The MSI Research Institute at Loughborough University has focused on the
lifecycle support of distributed automation systems by replacing centralised PLC
controllers with distributed control nodes (LonWork controllers) and a component-
based (CB) design approach, where the control functionality is embedded into the
component modules [123]. The finite state machines and CB design have been
implemented and evaluated in real industrial automation systems, in order to create
the design of generic and modular device components and determine industrial
feedback on performance and capability [72]. The implemented distributed
automation system has been conceived as a key approach towards an agile and
responsive manufacturing system. The work has contributed to an improvement in
flexibility, reusability and ease of use in the control domain. The COMPAG project
has also contributed to next generation distributed automation systems in improving

performance via improvements in visualization, remote support, diagnosis and HMI’s.

Recently, the implementation of a service-orientated architecture (SOA) and Web
Services in automation systems have gained attention, promising enhanced support
for connectivity with high-level applications (e.g. for remote configuration and data
acquisition). In addition, object-orientated architectures have been intensively
researched with agent-based approaches and CORBA middleware, similar to the SOA
deployment. However, the object-orientated approach has not had a si gnificant impact
in manufacturing, due to the complexity of its implementation and the diverse range
of tools that need to be supported ([9], [118]). Novel service focused solutions are
focused on the implementation of a SOA and Web Services with smart embedded

devices and the Ethernet network (used to replace proprietary fieldbus networks).

CHAPTER §: Research Objectives 103

In the author’s opinion the success in the development of these approaches will
greatly benefit industry, in that businesses and processing entities will become more

integrated, adaptable and agile.

5.4 Research Objectives

The main objective of the research outlined in this thesis is the design,
implementation, test and critical evaluation of conceptual framework of Web Services
for the automotive domain. This framework has been proposed as the result of a
survey of requirements at Ford Motor Company in order to identify the needs of end

users of plant controllers and related business management applications.

Remote Expert

Assistant
Web services (SOAP/UDDI/WSDL) e
HTTP transport T e
. 1
RSNV St INDUSTRIAL TEST RIG
ml-; s §' Ethernet TCP/IP
o~ g . communication
o g Web services
8 £ i enabled controller
= <o e ! @ Web services component
© _()(?— - ey e
Manufacturing E v |-7'*/' :‘:'!.I.:"’?
control system Firewall Y W Fundtion
m . I’:nvmd Sevice
Ever
l):-
| RTOS Tasks

Design time /Runtime
Reconfigurable component HMI operator console 3D process
based design visualisation
i o s SRy

Figure 5-1: A Conceptual Model of the Test Rig used in this Thesis with Web

Services

As depicted in Figure 5- 1, the focus of this research is the development of a web-
services and component-based design methodology focused on an industrially

specified portable test rig located at the university. The purpose of this is to facilitate:

CHAPTER 5: Research Objectives 104

(i) design, (it) business and control application integration and (iii) lifecycle support

of automation systems in the agile manufacturing business.

The supporting research objectives have been defined as follows:

1) To design, specify, implement and test a service-oriented architecture and
Web Services within the design framework of component-based control
methodologies.

2) To build a modular automation platform that effectively facilitates other areas
of development, such as remote monitoring and support applications, data
acquisition and process planning,

3) To implement Web Services on embedded devices. In order to provide the set
of desired services, units needed to compose manufacturing tasks.

4) To implement Ethernet as the communication network used in control
systems.

5) To enhance integration of the automation into the manufacturing and business
domains via consistent Web Services interfaces.

6) To assess the suitability of adopting Web Services in distributed control
systems, based on soft real-time responses, re-configurability, flexibility and
integration within business and manufacturing control levels.

7) To ease control device installation through a device self-discovery approach

enabled by Web Services.

In this research, the university based automation test rig (referred to as the FORD-
FESTO rig) has been used as the test-bed for the research proof of concept and
industrial demonstrations. The control system of the test rig is scalable to real
machine applications, and is used by FORD to demonstrate the capability of novel
control systems prior to implementation on real powertrain assembly machines. It
enables a true demonstration of machine sequences and steps, with a machine
controller for processing (i.e. transferring, buffering, checking position and drilling)

vehicle parts. The result of this research on this rig is therefore considered applicable

to real manufacturing applications.

CHAPTER 5: Research Objectives 105

5.4.1 The Area of Development and Novel Contributions

The general overview of the manufacturing system integration is shown in Figure 5-2
including a model framework implementing a SOA architecture with Web Services
technologies for both the enterprise entities and real-time control device levels. This
approach has the potential to have substantial benefits to many companies throughout
the lifecycle of their production systems. In addition, the local control functionality
and the device management information are collected and passed to the on-site
diagnostics server, which mimics the activities of maintenance engineers in accurately
monitoring, documenting, and analyzing the causes of machine breakdowns. All
diagnostic information i.e. device types, error codes, device status and fault symptoms
are stored in the local database and can be retrieved by local engineers or remote

expert assistants for the purposes of proactive and reactive maintenance.

Research focus

Pl Factory Side _ _ _ _ ___ .
|

_________ - : Management Enterprise |
{ Remote Expert | : :
' |
: Assistant SOA Middleware services | Data Acquisition :
| . (SOAP/WSDL/UDDI) | ERP On-sit; Engineering |
! ! upport |
1 |
: valo,:es : Firewall ; : @ & @ :
ervi | (: | 1 1
| { (Internet) ’ ' Wi 1 Web |
Interface | ! i ‘ eb e
: ne‘ 18- TP | i : Service | Services | :
| o7 L_HTTP | Interface | Interface | |
! Intranet L) Fing PN w :
l . k / T
__________ . — S TG LAN '
Supplier | ; Service Broker | _ | :
B B { soarxmL (epsesors) : Ethernet/ SOAP :
%2 \M S o s e S SRS T e S IR
s 3§ thirs U777 Ememevsoar
: (N | erne |
Povder) @“f y - ﬁ :
O ! | t !
_{\/HTTP r|m|EeR8 N :
g gl ras ettt | 1 — e b bd D 1
: a Firewall : : Device controllers :
) R A e el oes IS TR W QPR N O BRI 0. : S W . e .
: : Figure 5.3 Plant
¢ I
: |
{ 1
s 1
1 Machine System |
1

Information

Supplier Il

Figure 5-2: SOA-Web Services Integration Framework [adopted from 29)

CHAPTER 5: Research Objectives 106

Site Manager/ Business Application
_____________ A

Ethernet Network

Service binding

l Status (SOAP)
oLV I R 2

Discovery and T T s
Subscription . i - >

| Web Services | Web Services

| invocation | i

invocation

P2p i ::.ic‘k'x.!x:h;tl.ﬂ
L [

Y
i

—] PR TSR
o o
Device controller 1 Device controller 2

Distributed Automation System
Figure 5-3: Peer-to-Peer Web Services Enabled Control System

Within this automation model, the Web Service codes are embedded into the devices
for object (or services) discovery and invocation, using peer-to-peer communication
architecture between devices (as depicted in Figure 5-3). In addition, the logical
component (i.e. device I/O configuration) is encapsulated within the low level
programming of the devices allowing developers to concentrate on the high level
system functionality and interactions between devices. The devices themselves are
acting as either a client or as a server, as every device has the functionality for

synchronisation (i.e. publishing and subscribing processing data).

In this research, the implementation of the service-orientated architecture utilising
Web Services and Ethernet TCP/IP network, within the component-based design
framework at Loughborough has made a novel contribution towards agile
collaborative manufacturing systems. After reviewing the literature and relevant
ongoing project consortia, the author has determined that there is a lack of research
regarding the combination of smart embedded devices and component-based designs
with Web Services technologies. An adaptation, extension and evaluation of these
technologies need to be further developed, as they are not mature enough to realise
the full benefits in the domain of automation and business systems. To summarise the

design of the research programme follows the structure outlined below:

CHAPTER 5: Conclusion 107

5.4.2 Research Design

1) Review the current technology regarding the design of distributed control
systems and integration frameworks with middleware technologies for agile
automation: limitations and subsequent solutions are outlined.

2) Develop a component based design methodology, in order to support the
design of Web Services based components and to derive the distributed control
system on the test rig system.

3) Develop the SOA enterprise integration framework, which involves the
adoption of WS in automation systems.

4) Commission the distributed control system test rig to conduct the experiment
on the component based design.

5) Outline control system specification and implement DPWS, RTOS and
TCP/IP stack on the embedded device, as per the industrial case study.

6) Conduct testing on control system performance regarding real time response
‘and cycle time, ease of system design, application integration and changes to
control system re-configurability. All of these evaluations are compared with

the standard commercial PLC system.

5.5 Conclusion

The general problems and requirements of manufacturing systems have been derived
from a review of the literature and previous MSI research group’s case studies at the
Ford Motor Company. The state of the art in distributed automation systems and
enterprise integration within this domain has been studied in order to determine a

position on the key enabling technologies and limitations of implementing
approaches.

The concept of a Web Services- based framework, capable of connecting various
heterogeneous platforms and diverse equipments so that they may be integrated into a
unified system and interact in a co-operative way, has been outlined in this chapter.
The concept of utilising the Web Services protocol stack offers the potential for
manufacturing automation fo evolve, enabling a new paradigm of open standard,

technology neutral and interoperability components from various device vendors. The

CHAPTER 5: Conclusion . | 108

development of device descriptions, embedded into the component and the driving of
system intelligence down to the device level, ultimately offers the potential to
eliminate the need for system integrators to undertake low level programming. The

focus is on shifted towards building higher-level control applications and improving

efficiency.

It is a novel contribution by the author in proposing Web Services on the CB
automation system using standard embedded microprocessor controllers to effectively
improve manufacturing system agility (presented in Chapter 3). The aim of this work
is also to investigate the configurability, and re-usability of control systems and

seamless integration to business levels, thus enabling companies to become more

agile and collaborative.

CHAPTER 6

A Web Services Component-Based Automation Design

This chapter is divided into two parts:

The concept of the component-based (CB) software design methodology in support of the
COMPAG framework is discussed in Part 1. The role of machine users, builders and
component suppliers is defined, based upon the design of reconfigurable automation systems
and the design methodology of a CB automation system for the power train assembly
machine is presented. The design is considered in accordance with the needs and required
performance of automation systems from an end user perspective and based upon a
requirements study with the Ford Motor Company Ltd. In order to utilise Web Services-

based component interaction the component-based (CB) design approach of previous

research needs to be redefined.

The concept of enterprise integration in a heterogeneous environment using Web Services is
explored in Part II. The key function of Web Services technology is captured and adopted
for building industrial control systems including control application integration. The selected
Web Services toolkit provides a lightweight code generation technique, designed for C/C++
embedded microcontrollers to enable XML Web Services-based device communication and

service discovery to be embedded in industrial control systems.

6.1 Problem Statement

This research is focused on the modular design of the control system, enabled by the
component-based (CB) design approach to allow reconfigurable and reusable automation
platforms, as one of the key requirements of agile automation (Chapter 3- section
3.2).The CB approach has previously been researched at MSI (via the COMPAG
project), and the objective of this research is to apply Web Services to the design of CB
automation, in order to enhance the degree of modularity and integration capability of the

automation devices. The research questions relating to the adoption of Web Services
within CB automation design are as follows:

CHAPTER 6: Component-Based (CB) System Development 110

1. What is the design framework of a component-based approach to enable reusable
and reconfigurable automation systems? How do associated parties (i.e. machine
builders, component builders and end-users) interact to undertake component

design and reconfiguration?

2. How are modular designs achieved within the CB approach for automation
devices?
3. What are the issues with applying Web Services in the automation domain?

4, What is the most effective way of mapping the WS to component functionality?

Part I- Distributed CB Automation Systems

Modularity is typically introduced into a manufacturing system to increase flexibility,
both in terms of functionality and also provide an ability to be easily reconfigured [115].
Within this context, modularity is focused on the intelligent, autonomous and loosely
coupled entities that are distributed throughout the subsystem. Modularity concepts can
be found in many related areas in manufacturing, for example: reconfigurable
manufacturing systems, agent-based manufacturing systems and holonic manufacturing
systems. All these have adopted the modular design approach, particularly within

automation systems, to increase the responsiveness of the manufacturing process to both

external and internal disruption.

A number of researchers, (see [72], [95], [100], and [115]), have developed modular
manufacturing production approaches, focusing on rapidly adaptable and reusable
machine systems to support their lifecycle needs. The automation system is dissected into
a set of mechatronic modules for the intended application domain. This approach aids the
modular decomposition / composition of the control system. In contrast to proprietary
object-orientated programming paradigms, this simplistic integration approach is
effective in supporting distributed application development, particularly suitable when
composing a set of distributed control functionalities to match the required physical

modularity of machines [72]. The basic concepts behind the CB software development

process are outline in the next section.

CHAPTER 6: Component-Based (CB) System Development 111

6.2 Component-Based (CB) System Development

The basic idea in component based software development is to structure a desired system
around components, a well-defined component framework, interfaces and an appropriate
contract to ensure proper system construction and operation. It is reported by [110] that
the software component-based design contributes to increases in software productivity by
reducing the amount of effort needed to develop, update and maintain systems. Régarding
development of control applications in this research, the component-based software
engineering (CBSE) provides the development platform that facilitates an evolving

automation system during the manufacturing lifecycle.

In the following section, the framework and component software interfaces are outlined,
in order to enable system integration. The objective is to enable the development of
reusable control applications, considering not only the creation of components but also

the lifecycle management of such reusable software units as part of an evolving

automation system.

6.2.1 Component-based Construction Principles

In order to build software application systems from subsystems/components, such
components or subsystems must be integrated through well-defined infrastructures. This
infrastructure incorporates components from different sources to form the required
system [33]. The materials used in the construction of a component-based design can
vary widely in character, but may be classified into four main categories (i.e. Component,

Component framework, Interface and Contract) based on [g36] and [107] and shown in

Figure 6-1.

CHAPTER 6: Component-Based (CB) System Development 112

Implements interface
Component and usage contract Encapsulated

specifications \ / realisation contract
s e

Component
implementation

Pulg-points

P e éﬁj
| ~/
/

Component Interface for other
Framework components or frameworks

Figure 6-1: The Component-based Design Principle

A component is a piece of software or software design with a well-defined interface
and hidden internals. The component is based on a concept that is recognisable and
of value for its user which may be another component, a software system or a
human user [g36]. It provides specific services to its environment across interfaces.
In the software engineering discipline, a component is a self-contained part or
subsystem that can be used as a reusable building block in the design of a larger
system or so-called “construction”. A component may be integrated with other
components or users through its interface, which contains e.g. services, attributes,
events and times to show what the component can deliver [110]. In component-
based software engineering, a component package may contain lists of provided and

required interfaces, executable codes, validation codes and design documentation.

A component framework is a pre-built assembly platform of components, together
with the “logical glue” that binds them together. The framework is designed to be
extended. Frameworks are also defined as units for sharing and reusing

architectures i.e. a framework can be viewed as the reusable component and also the
platform for component integration.

CHAPTER 6: Component-Based (CB) System Development 113

A framework offers an interface to other components and also has “plug-points”, at
which other frameworks or components can join. A plug-point defines the roles and
development rules that a component or framework must conform to in order to
integrate. The component framework can also be seen as the execution platform that
facilitates components in running the application. For example, within the Visual
Basic (VB) development environment, applications are built by adding components

to an originally empty form. Here, the developer adds variants to component
behaviour through the VB programming language.

An interface defines the access points to components. To be precise, an interface is
a collection of operations used to specify the services of a component, and these
operations, or actions, are defined through a set of software codes that can
communicate with each other. Components can export or offer one or more
interfaces to other components, which use or import these interfaces. The
component that offers an interface is responsible for realising the action of that
interface, while the component that uses the action of an interface only needs to
know what the action achieves, not how it is achieved. In addition, a component
interface consists of a signature part describing the name of operations, together

with the parameters and types provided by a component and a behaviour part that
describes the components’ behaviour [97, 98].

A contract is a construct for explicitly specifying interaction among objects.
Contracts formalise these collaborations and behaviour relationships. In component-
based software design, the contract can be classified into two categories [97]: the
first type of contract is a realisation contract, used during the design of the
component to describe the component specifications such as quality of service,
functionality, interaction methods and behaviours. This helps developers understand
components, in order to use them. The second type of contract is a usage contract.
Once the implementation of component specifications has been done, the usage

contract defines the interaction amongst components during run time execution.

CHAPTER 6: Component-Based (CB) System Development 114

For the definition of these component software elements in the context of automation
systems, this research maps component software functionalities into automation terms
used by the control system. The component is considered as an encapsulated unit of
machine operation software, which contains the operational interface, the contract, and
the low level programming elements for actuator and sensor tasks. The control algorithms
are implemented in programming languages, such as IEC 61133 (Function block
diagram, structure text for example), C/C++, or JAVA, for the execution of I/O devices.
For the purpose of reusability as well as re-configurability, the component needs to be
implemented in a generic manner, so that it may be reused for building other components
without changing the internal control algorithms. A major benefit of the component-
based approach is that the developer does not need to have specific knowledge or
experience in dealing with an encapsulated low-level device program. Rather, a
knowledge of altering the behavior of the system through well-defined interfaces and

contracts, as illustrated in Figure 6-2, is employed.

by T SR I SNSRI Y ISR i) Variable
Input "._Output
D Usage Contract
Command, . i Command

Input D

Output

Operation
Mode D

Encapsulated
Control
Algorithms

Ui

Realisation
Contract

Input Interface
Output Interface

Figure 6-2: Automation Software Component Construction

In the control system, interaction between components is achieved through the
interlocking of the devices’ state variables, in terms of the input and output interfaces
(see Figure 6-2). The interaction in this case is described by the usage contract. In
addition, the realisation contract is the unit used to define component behaviors and the
quality of device services (e.g. device parameters, I/O trigger delay time, memory

registers and task priorities). In the design of the control application on the component,

CHAPTER 6: Component-Based (CB) System Development 115

device control logic in terms of I/O operations and state sequences are encapsulated and

exposed to component users through the component interface.

Based on the CBSE construction in the control system, this research proposes the
platform of the component integration to embody the novel development of the
component-based design approach for automation systems. As illustrated in Figure 6-3,

the component-based design framework in the automation domain shows the required

component functionalities that aim to facilitate the design and integration of

reconfigurable machine applications.

Framework
Software Components: Machine applications
Control Management Service Data Model & Storage
) Device discovery > Component library ‘
) Uploading/Downloading) Machine application ‘ ‘
compiled software to control repository H § i } § i
devices s & £ 3
) Programming object &library
) Component software ’§ o | intertock [interiock »
debugging& compiling ystem interface Omd gl Co'w;m ® o c....;.....‘ A
) Data logging Mig e J ’M-v | M:" |
Standard High Level Editor Functonality
Interface for control and) Create new components e
Visualisation
y HMI) Modify existing components ‘ i § i § § g
for reuse |
) 3D modellin |
9) Assembly components e [wosok >
> Logic monitoring) Creating interface for cmi b porant |- g 9] Componens |- O
) Web services integration control applications | Moo ¥) : T [> g

Interface to other frameworks
or high level applications

Figure 6-3: The Component-based Design Framework for Automation Systems

The CB design framework provides components with the platform to enable process
editor functionality, data storage for system data logging and the component library, an
interface to support manufacturing applications and control component design & build.
Within this framework, the component developer is able to create the new component
(software) and store it in the containment library for future (re)use. The control

components for device operations, as well as the supported application interfaces (e.g.

CHAPTER 6: Component-Based (CB) System Development 116

HMI and Web Services integration), are debugged and downloaded to the target device
by the component user or the control system integrator. The control system integrator is
only concerned with building the control apf)lication through component interfaces that
allow the integration of components with other supported applications, such as 3D
modeling visualisation, HMI, and control configuration data for machine operations. This
machine application, built by the system integrator, can be saved and reused for later
changes in new machine configurations. The engineering roles associated with this design

and use of the component are detailed in section 6.2.2.

The aim of this research is to further develop the CB approach and to define how such
interaction between components is best implemented within a SOA utilizing Web

Services. Note: The implementation of Web Services within a component-based

approach is presented in Part II of this chapter.

The following section will represent the component lifecycle development concept that

has been further developed for the management of control software in automation

systems.

6.2.2 Component-based Software Development Process and Lifecycle

Many models exist for software development processes and lifecycles, such as the
Waterfall, V model and iterative models such as the spiral model. Lifecycle models may
be described by a set of phases or stages common to all lifecycles [99]. The generic

lifecycle of a component-based system can be shown at different phases, as depicted in
Figure 6-4.

Component
reconfiguration
J

Derive component (Reused, (T
specification and Newly developed Buid, Test and Release Component
conceptual dasign component maintenance

lRequirement Design Implementation | Integration | Evaluation Operation

Figure 6-4: A Generic Component-based Lifecycle (adopted from [9])

CHAPTER 6: Component-Based (CB) System Development 117

Frequently, in the initial development phase, organisations perform the same activities
in each evolution cycle. Thus, an existing software product will evolve into the next
version by repeating the same sequence of phases. Regarding the process of component
implementation, existing software components may be reused to build new components.

These will be stored in a common data storage area, where they can be retrieved for
future use.

The relationship between component and control system design is illustrated in Figure 6-
5. A major development of the CB control system involves the retrieval of components
for system integration. This process follows a similar procedure but deals with more
integration units (e.g. hardware, HMI, high level engineering tool editor). Since the
components (i.e. device control software) are separated from other units such as
mechanical units, electrical wiring and I/O devices and controller modules, the process

of building the component and the control system progresses in a concurrent and

independent manner.

8.

[] @ .= °"J =

‘-\ (v on'y Imaommn

..—‘
Evnlucuon
=) |] L ’@
¢ ont Inlegr-uon
Oevelopment @
Evaluation Comwmm
and Machine

I Operation Assessment

Figure 6-5: The Parallel Process of Component-based Development [99]

This parallel process development [9], allows component design and system development
to be carried out independently of each other. A new component may be built a adapting

a similar component, if available, and then adding to the component repository. This

CHAPTER 6: Component-Based (CB) System Development 118

component database system bridges the process in which components are subjected to
searching and verifying, in the initiation of the system development process. Likewise,
the component being developed will be provided with the based component, as related to

requirements, by searching the component repository.

Framework

Components

¢
Framework Component Application
Developer Developer Developer

Application

2N
;

End User

) 4
\ 4

Builds

Figure 6-6: Various Developers and End User Roles in a Component-based Framework
(adopted from [107])

To support the concurrent design of component-based applications, all developers and
users can access the component assessment to search for and build components and
systems related to their roles and requirements as shown in the basic model in Figure 6-6.
The framework is provided by component builder tools. Component developers then
build new components and load them into the component projecf. The application
developer then customises these components, in order to produce a custom application as
expected by the end user. In this model, the CB application is developed concurrently
with new components (and the framework if required by the application / control system
integrator) and the complexity of the software component is hidden from the application
developer who only integrates these components to build the control system through a
well-defined component interface. In addition, the component developer is able to reuse
component code via constructs of the component development language, such as
inheritance, or templates provided by component building tools to develop new

components. The application developer employs the framework’s meta-data mechanisms,

CHAPTER 6: Component-Based (CB) System Development 119

provided by process engineering tools, to reuse components for building new machine

applications (for further discussion, see section 6.3).

6.2.3 Component-based Development Design Issues
In adopting component-based technology for manufacturing automation systems, careful
consideration needs to be given to the industrial systems requirements e.g. real time

performance, safety issues and operating environment.

In addition, the design of current component-based technologies for distributed
automation systems needs to be considered in the light of the constraints on automation
devices, particularly small embedded devices which could have limited processing unit
capacity and restrictions on communication bandwidth and memory space. To resolve
these issues in the context of automation systems, the concept of component-based
software needs to be redefined to fit into the automation domain, enabling real-time

system engineering technologies.

In the following section, a hierarchical structure for mechatronic systems is addressed,
and the development of component-based automation systems using the methodology of

composing encapsulated software components to form the machine operations is also

outlined.

CHAPTER 6: A Component-Based Design for Manufacturing Systems 120

6.3 A Component-Based Design for Manufacturing Systems

The pervasive adoption of component-based software has benefited developers and users
by reducing development costs, system maintenance provision and the time taken to
market and the realisation of more reusable systems. However, in the automation domain,
the adoption of component-based approaches has been limited by the commonly-used
technology in the domain. This technology is largely based on ad-hoc software design

and manual coding techniques for control applications and has resulted in very limited

reuse. Additionally the process is extremely time consuming.

Previous research [33] on the COMPAG project at the MSI Research Institute proposed
the implementation of the reusable and reconfigurable control component (software) for
automation devices (see Chapter 4- section 4.6.3). It is important to note that the

adoption of Web Services to the automation domain inherits the proposed CB approach

for the design of control applications.

6.3.1 Encapsulated Industrial Component Based Systems
In CB manufacturing systems, machine functions are defined from prefabricated
components with known and validated properties. The system integrator does not need to

have any knowledge of the internal design and implementation of the components.

Each component in the automation system needs to possess functionalities to support the
production system effectively. The component functionality for the development of
control systems in this research has been established: (i) in response to the user
requirements obtained from the Ford Motor Company Ltd. (see section 6.4), and (ii)
published academic papers regarding the design of component-based automation systems

[95]. Components in automation systems can be viewed as:

* A Unit of Service Provision. A component encapsulates its manufacturing
function, defined during the component design process, and this service
functionality can be accessed through well-defined interfaces. The user does not

know the internal implementation, only the service it provides. For instance, a

CHAPTER 6: A Component-Based Design for Manufacturing Systems 121

“feeder” actuator component could have only two encapsulated services: extend and

retract.

e A Unit for Validation. The operation of the component can be properly
evaluated prior to deployment. For example, simulation of the component in the
control application may be viewed with a virtual modelling tool. In this case, the
component needs to provide the modelling tool with the appropriate service i.e.

providing operating information (i.e. the device state information) and its interface.

e A Unit of Error Containment. All errors that occur inside a component must be
detected before the consequences of these errors propagate to other components in

the system [14]. Component developers must implement the unit of codes needed to

detect and handle the error internally.

e A Unit of Reuse. As a result of the generic design of component functionality,
other components in the system that provide the same service/function can re-use
generic function codes. For instance, in industrial programming (i.e. IEC 61131),
the control function block of one unit that provides simple extend and retract

functions may be used for another actuator component, as long as it is defined by
the same functionality.

¢ A Unit of Design and Maintenance. Machine system design comprises sub-
systems built from components that are independent of each other. Hence the
upgrade and maintenance of separate components in the sub-system has no direct

impact on the others. The management of the machine lifecycle is enhanced through

the reduction of time needed to deploy the system.

The implementation of these components is detailed later. In order to support the
development of a component-based approach for industrial control systems, the
framework supporting CB integration has been studied to identify the tasks of each

stakeholder in building and integrating encapsulated components. Each individual

CHAPTER 6: A Component-Based Design for Manufacturing Systems 122

stakeholder, such as the end-user, machine builder and component supplier, has their own

distinct role in the development of CB manufacturing systems, as shown in Figure 6-7.

) Uses system e Operating, Maintenance
End User [» e Reconfiguration

Composes o Composing machines
Machine system e Control applications
builder [» (Machine sequencing) |
e Visualisation systems, etc
e Upgrading [|
Builds

| ® Physical devices
Component _ e Encapsulated [
i | ¥ Software (Low level | |
supplier 9 e chiss ‘

components

Figure 6-7: Stakeholder Roles Constituted in the COMPAG Project Framework

In the component-based design automation system, component suppliers (i.c. the
component developer), supply automation parts to the machine builder and may be
involved in training system developers on how to integrate components for required
control functionality. Component suppliers develop the encapsulated control functionality
and the low-level programming required by system integrators. Machine builders
perform the role of system integrator. Instead of developing a component from scratch,
the focus on developing applications for automation systems by configuring components
and logically coupling them, in order to create the required control functionality for the
end-user. The End-user operates, monitors and maintains the system. In the lifecycle
management of the control system, upgrading may be performed by machine builders or

component developers, without any effects on the integrity of the system.

The implementation of the CB approach to support stakeholder roles, as described in this
section, has recently been developed for the FORD- FESTO test-rig assembly machine at
Loughborough University. The development of the components for the test-rig
considered the roles of component supplier, the machine builder and the end-user, and the

generic component function blocks (as done by the component supplier) for each control

CHAPTER 6: A Component-Based Design for Manufacturing Systems 123

unit were developed. The components were later integrated to complete the automation
system, including the HMI (as specified by the machine builder). The end user operates

the system, as well as changing machine configurations. Details of the development are

presented in Chapter 7- case study 1.

6.3.2 Specification of a Component-based Automation System

The scope of component-based approaches for automation systems has been identified
for: (i) the design concepts and management (sections 6.2.1-6.2.2), (ii) the development
issues (section 6.2.3), and (iii) the required functionalities (section 6.3.1). The design
specification of the component-based system in this research, described later in this

chapter, includes the component design information (see section 6.4).

Machine systems are decomposed into subsystems, which are composed of modules
(components) and organised hierarchically when adopting the CB architecture. Each
module can be seen as a group of components, which contain elements at the atomic level
that describe the state of the manufacturing environment (i.e. sensors/ actuators).

[

“ Complete Machine |

|
|

Machine [Machine 1 l Machine
subsystem 1 subsystem 2 subsystem n
J 1
MagXfer Sensor
Module 1....n [Ejector
e \ ‘ | (e e
| | Mechanical | Logical || Sofware | | | '
| | component || component | | component | | G b 2 5 : 9
‘ e | Bl e
I\ 1 | avens < !L::::m t
Element { ”
: I ' ‘ | s
|| sensors | | Logical | | user |
|| Actustors | i element | ‘ Interface | | Apgel

)

Magazine Sensor

v

[tmy ©

T
Loglcal
Element

Figure 6-8: Component-based Machine Control Hierarchy

CHAPTER 6: A Component-Based Design for Manufacturing Systems 124

In this research each module comprises mechanical components, electrical components,
logical control components, software components (e.g. 3D VRML modelling component)
and other ancillary components relating to the machine system, as shown in Figure 6-8.
In addition, the integration and configuration of these components is achieved with the
Process Definition Editor (PDE), part of an engineering toolkit which manages the

lifecycle of control systems.

In the design of component-based manufacturing systems with distributed control

devices, an automation system will be composed of three main units:

1) The physical control unit,
2) The control activity and
3) The control function block.

Actustor Sensor
1 3
Controller Operator
vi
node Acmity Station
4
®) o h-]
- 50 o 55
2
23| |83 23 L
3 o Q - Q
Communication line = E E 8

abessaw
ndino
abessaw
nduy
abesssw
ndin0
abessow
induy

Controller Controller
node Activity node

Actustor Sensor Actustor Sensor

Figure 6-9: Structure of the Distributed Component- based Automation System

The Physical Control Unit within the distributed automation system is composed of
control functions (elements), built from four broad classes: device control, process
control, operator control station and service control (machine safe guard), as

depicted in Figure 6-9.

CHAPTER 6: A Component-Based Design for Manufacturing Systems 125

All elements within the control function unit interact by exchanging messages as
state variables (i.e. state transitions, positions, pressure) within various types of
distributed transactions, such as producer-consumer and client-server interactions.
Signals or state variables are exchanged through a suitable distributed

communication protocol, typically achieved via Ethernet or a suitable fieldbus.

The Control Activity is the defined activity that reacts to internal and external
events, in order to trigger such events. External events, such as input to the activity
unit are obtained from signals provided by sensors. The control function activity, as
shown in Figure 6-10/a, encapsulates the formal rules that define the output
reactions by invoking sets of low-level programmed function blocks.

In the design of discrete automation systems, the behaviour of the component is
defined by a set of transformational rules, invoked in response to the changes of

state of corresponding event-driven mechanisms within finite state machines.

The Control Function Block, shown in Figure 6-10/b, contains information such as
input variables, output variables (through state variables) and internal variables.
Function blocks are used to specify the properties of a user defined function, such
as START(), STOP(), EXTEND() and RETRACTY(), in a generic way that may be
used by other components. To form the state behavior of each component, function
blocks need to be connected in sequence, to define the relation of the input/output
state variables. This is normally done via variable reference (e.g. ejector_retracted
allocated to %emw110.1 in the PLC memory) in the application tool, using pointers

to allocate the corresponding variables to the memory addresses at the time of
design.

CHAPTER 6: A Component-Based Design for Manufacturing Systems 126

Activity block

Component

External/internal Function block Input signals
state variables | | e e -

Input signals

y
[EXTENDED | |

e

,.._,,\l o &
|

Pl

|

|

|

|

: RETRACTING l

| T | Intemal
| SRS G ok
Hhi

|

|

|

|

| ‘ retracten | |
{

)

| Activation
LAt s

<
|
|
|

EXTENDING :
Output signals

Y | Intemal
External/internal ['—'A | | event

state variables

a) The Control Activity b) The Control Function Block

Figure 6-10: The State Transition Diagram in the Activity Function Block

6.3.3 The CB Control Design Model

In the design of the component-based automation system, components do not only exist
as software functions in the development environment. They also form an integrated part
of the mechatronic deployed system, where each component has a software-based logical
implementation and a physical integration unit. Component implementation is
encapsulated through a set of control elements that expose the abstracted control
behaviour through state transition diagrams. The interlocking nature of a component may
be implemented via this state transition diagram, in order to define control behaviour for
the system. The interlocks are designed and tested with the debugging tool and the high-

level logic simulation during design time. The control applications are then downloaded

to the runtime component.

In the design of component-based automation systems, a design pattern is categorised
into four different layers: (i) mechatronic layer, (ii) application layer, (iii) resource layer,
and (iv) mechanical process layer. Details of each layer are based on the composition and

specification of mechatronic modules, as depicted in Figure 6-11.

CHAPTER 6: A Component-Based Design for Manufacturing Systems 127

Analysis » Design » Implementation » Testing * Releasing

Mechatronic Layer

Model integration

Application Layer

e A
/ %) //f//f////
/ // _(// /"_'

Resource' Layer

+ Mechanical Process Layer

>
Model evolution

Figure 6-11: A Component-based Design Model

At the top level, the mechatronic-layer is projected onto the three sub-layers: the system
application, the component resource and the mechanical process layer. In the design of
mechatronic systems machine subsystems are derived from the units of electrical,
mechanical and software components. These units, formed in the mechatronic-layer, are
derived from customer requirements (interpreted by product processing, cycle charts,
machine operations and specifications) and then mapped onto the required machine

operation.

CHAPTER 6: Design Specification for Powertrain Assemble Machines 128

The application layer is used to form the controlling applications for system development
by building the state transition diagrams of components for the subsystems. The resource
layer defines the interconnection of components to constitute the logical connection of
the control system, and the final design space of the mechanical process layer is the
integration of mechatronic resources (physical, mechanical, and electronic parts and

controlling software), derived from previous layers to form the runtime manufacturing

environment.

6.4 Design Specification for Powertrain Assembly Machines

The design of CB automation machines must have a certain level of performance, in
order to meet the end-user requirements of the system, as defined in Table 6-1. The
derived requirements are based on the typical assembly machines at Ford, which contain
10 to 40 machine components and an average machine cycle time) of 30-35 seconds.
Typical components are clamps, motor drives, RF tag readers and separators. Individual
component /O response time (see Chapter 9- section 9.2.3) needs to meet soft real-time
criteria under 30 ms. However, it may be noted that the design of a CB system in this
research is based on the embedded device, which needs to meet these machine timing
specifications as well as the additional requirements from the end users (e.g. process
description, reuse, reconfiguration, pre-programming, configurability, intelligence, ease
of build / use, high level representations, unified interfaces, cheaper than competition,

standardised technologies, effective solutions for reconfiguration, agility) detailed in
Table 6.1.

(6)- An average product processing time in each machining process derived from time of the input to
the next output stage

CHAPTER 6: Design Specification for Powertrain Assemble Machines 129

Table 6-1: FORD Requirements of the Component- based Automation System

End-user requirements

CB specification

Description

Process description and
reuse of components to
build and (re)configure

machining systems

Supports well defined machine

components and finite state

transitions

In the event-based automation system,
the component operation desires to
operate on the changing state of other
components defined in the device
interlock during design time. Building of
machine applications from well defined
components helps integrators directly
relate to the previous design and

resource for reuse.

Meeting the target
production cycle-time
and response time to

supported production

Real-time communication

The response time of /O devices needs
to meet the soft real time requirements
and hard real time conditions in critical

tasks, such as safety and alarm systems.

system The implementation of RTOS (kernel
OS) at the device required for the CB
system,

Support for pre- Hide the complexity of low

programming and
configurability of system

modules

level coding

Low- level program of devices is pre-
fabricated and encapsulated in the
hardware components, ready to be
integrated by the application builder and
end users. They can then focus on
building and reconfiguring automation

from high- level control applications.

Smart component
modules for immediate
and automated warning

system

Self error-diagnostic

Diagnostic error checking routine need
to be designed and pre-built in the device
by the component builder for the end
user. The error diagnostic routine helps
the user in the automated monitoring of

the device for active maintenance.

CHAPTER 6: Design Specification for Powertrain Assemble Machines

130

Design simplicity, ease of

installation and use

Device discovery and

initialisation

Automatic device discovery and
installation to ease device installation
within the system. The CB development
platform needs to support the device
discovery and dynamically allocates the
port location for the device. There is no
requirement to amend the hard code
device

programme for manual

installation.

High level process
description with unified

application interface

Exposure of abstract device

functionality

Ease of integrating the manufacturing
system. The components will provide
basic instructions on how to activate the
interface for device communication and
interaction. It does not require custom
interfaces for

every integrated

application.

Cost equivalent to or
cheaper than the current

control devices

Embedded controller design
with light-weight memory
consumption and CPU

resource

The compiled binary code of the control
application, including RTOS and
protocol stack, should be compact for the
embedded device. The code should scale
effectively in kByte rather than MByte ,

due to limited memory side of devices.

Standardised technologies
and interface for

heterogeneous devices

A unified and language -

neutral framework

The component based design needs to
support the interoperable on various
devices. Low- level component coding is
in the form of chosen devices, but will
need to support interoperability and
interaction among different devices
through a unified interface (Web

Services interface).

CHAPTER 6: The CB System Model

131

Effective solution to build | High level machine

and re-configure configuration using Process
automation systems in the | Engineering Editor Tools that
lifecycle, taking into support virtual engineering
consideration cheap costs, | and control logic simulation

short development time,

and early error detection

In the design of machine applications
and operations, it is foreseen that the
current automation integration tools are
not the most easy to use in current
industrial practices. Control engineers
are still dealing with the logic,
sequencing and timing of components at
the base level of programming, and a
more user-friendly tool should be used in
the presence of complexity in the
commissioning production process.
Editor engineering tools in compliance
with the CB design are needed, which
are capable of managing complexity
during their lifecycle.

High degree of agility for | Loosely coupled among other

system reconfiguration components

Regarding system reconfiguration,
changing one component in the software
or hardware units will not affect other
components, It is desirable to have the
device coupling defined through a more

flexible device interlocking approach.

6.5 The CB System Model

A UML class diagram of the CB system model as defined for this research is shown in

Figure 6-12. The diagram illustrates the activity of component actors operating in a

design time and runtime environment. These component actors are the required modules

needed to compose a flexible and reconfigurable automation system.

Each component has been implemented to support a lookup service for automatic device

discovery and initialisation, in association with the TCP/IPv4 port connection during the

design time. The component functionality, programmed in native code (i.e. C/C++ is the

language used in this project due to the wide support on embedded hardware), includes
cach devices ID (i.e. TCP/IP and MAC address), execution commands, VO port

CHAPTER 6: The CB System Model 132

specification and operating interface in order to work with other actors. During design
time, the operation logic of the component (i.e. machine operation sequences, device
interlocking and contract parameters) is achieved with a high- level graphical drag- and-

drop tool. The operational logic then downloaded to the target component through an I/O

mapping interface.
Lookup services 11O mapping interface
+ Device discovery snd + Component state
subscription transition condition
+ Device ad