posted on 2020-04-01, 08:39authored byOuhao Chen, Slava Kalyuga
In classroom, student learning is affected by multiple factors that influence information processing. Working memory with its limited capacity and duration plays a key role in learner ability to process information and, therefore, is critical for student performance. Cognitive load theory, based on human cognitive architecture, focuses on the instructional implications of relations between working memory and learner knowledge base in long-term memory. The ultimate goal of this theory is to generate effective instructional methods that allow managing students' working memory load to optimize their learning, indicating the relations between the form of instructional design and the function of instructional design. This chapter considers recent additions to the theory based on working memory resources depletion that occurs after exerting significant cognitive effort and reverses after a rest period. The discussed implications for instructional design include optimal sequencing of learning and assessment tasks using spaced and massed practice tasks, immediate and delayed tests.
History
School
Science
Department
Mathematics Education Centre
Published in
Form, Function, and Style in Instructional Design: Emerging Research and Opportunities