File(s) under embargo
Reason: Publisher requirement.
1
year(s)10
month(s)10
day(s)until file(s) become available
High-temperature creep of cast irons
Cast irons are a family of ferrous alloys with carbon content ranging from 2.5 to 5%. They have a wide range of applications in automotive, industrial, agriculture, and construction industries. Primary classification of cast irons is based on the graphite morphology, which can be in the form of flakes, vermicular, or spheroidal. Mechanical properties of cast irons depend on matrix microstructure and graphite morphology; different alloying elements can be added to improve their high-temperature mechanical performance. Creep is an important deformation mechanism for high-temperature applications of cast irons. A literature review covering models and studies of creep in cast irons are presented in this chapter. The review highlights limited research on the creep behaviour of cast irons especially for compacted graphite iron (CGI). Original results from tensile and compression creep tests on CGI are also presented, which emphasize a significant difference in creep behaviour under tensile and compressive loading.
History
School
- Mechanical, Electrical and Manufacturing Engineering