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ABSTRACT 

Undoubtedly, tight links between space and number processing exist. Usually, findings of 

Spatial-Numerical Associations (SNA) are interpreted causally, i.e., that spatial capabilities aid 

or are even a fundamental cornerstone of mathematical skill. In this book chapter, we question 

this seemingly ubiquitous assumption. 

To start with, there is no robust and prevalent correlation between SNA in general and math 

abilities. After presenting an extended taxonomy for different SNA subtypes, we show that only 

some SNA subtypes correlate with math abilities, whereas others do not. We argue that these 

correlations are not conclusive for several reasons. (i) Their correlations vary (i.e., stronger SNA 

sometimes is related to better math ability, and sometimes to poorer math ability). (ii) The 

correlations might not show a genuine relation between space and number; rather mediator 

variables might explain the correlations. For instance, SNA tasks often involve an interference 

component tapping cognitive control functions (as in multi-digit number processing) or some 

relatively advanced reasoning skills or strategies. (iii) Finally, the direction of causality (if it 

exists) is far from resolved. While conventional theories suggest that spatial-numerical abilities 

underlie arithmetic skill, we argue that vice versa arithmetic abilities instead underlie 

performance in some spatial-numerical tasks used to assess spatial-numerical representations. 

On the other hand, benefits conferred by SNA trainings on math abilities seem to reinforce the 

claim that SNA underlies math abilities. We contend that tasks used in such trainings may tap 

several cognitive operations required in arithmetic, but not built-up fixed SNAs themselves. 

Therefore, we argue that using space is a powerful tool, especially for instructing and learning 

multi-digit numbers; however, this does not necessarily imply an internalized fixed mental 

number line. 

https://psyarxiv.com/3vg9p/
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Numbers and space – a long-lasting relationship 

The idea that numerical magnitudes could be represented on a directed mental line appeared 

very early in the history of mathematics. Dating back to the Greek philosophers of Aristotle’s 

era, it was known that numerical magnitudes may be represented by a geometric line. In the 

Middle Ages, Campanus of Novara argued that a ratio found in one type of continuum can also 

be found in another. Subsequently, the medieval mathematician Nicole Oresme became a 

pioneer of quantifying space in terms of a multi-axis coordinate system (see Grant, 1972). That 

idea was later popularized and developed by René Descartes, after whom the widely-used 

perpendicular coordinate system was named.  

The mathematical concept of the number line (and coordinate systems in particular) and the 

possibility to transfer abstract numerical quantities onto space substantially influenced the 

development of mathematics. Nevertheless, the mapping of numbers onto space (and 

quantifying space by means of numbers) is not a totally abstract or arbitrary invention. There is 

little doubt that spatial and numerical representations can be tightly and bidirectionally 

associated; there are numerous examples that this can happen both voluntarily and relatively 

automatically (e.g., Shaki & Fischer, 2014). It was also demonstrated that non-numerical spatial 

abilities and math abilities are correlated (Mix et al., 2016), which may also indicate common 

underlying cognitive mechanisms.  

In the present book chapter, we use the term Spatial-Numerical Associations (SNAs; see 

Cipora, Patro, & Nuerk, 2015, for elaboration) to refer to a broad range of different behavioral 

phenomena (see Box 1). We shall see that there is no agreement about the origins of SNAs, 

i.e., whether they are innate or shaped by culture (including exposure to conventional 

representations of numbers on rulers, graphs and so on). Here, we argue that one possible 

reason for such disagreements is that SNAs consist of different phenomena, differing in their 

origins, their general characteristics and their propensity to be changed by situated influences. 

https://psyarxiv.com/3vg9p/
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We also discuss how particular SNAs are related to school math achievement and outline that 

some SNAs are not predictive of later arithmetic performance, whereas others are 

fundamentally necessary. SNA trainings have been shown to transfer to other arithmetic skills; 

we will discuss why this may be the case, and in particular, whether a spatial-numerical 

representation per se is improved by training, or whether such training use space and its 

potential to be associated with number as a powerful tool to train other numerical skills and 

representations. For each SNA type, we discuss whether and how it informs math education 

with regard to trainings and other possibilities for intervention. 

Space and numbers live next to each other 

One of the first scientific inquiries on how humans represent numbers revealed that thinking of 

numbers includes some spatial components, at least in some people. In a paper published in 

1880, Sir Francis Galton (Charles Darwin’s cousin) described several reports of individuals who 

claimed to possess very vivid spatial visualizations of numbers (Galton, 1880). These usually 

took complex curvilinear forms, and according to the reports of people who experienced them, 

specific number representations remained precise and stable over time. Such explicit spatial 

number forms (i.e., directly available in self-reports) are pronounced in a considerable 

proportion of the general population (estimates vary from 2.2 % to 29.0 % of the population), 

and are referred to as synaesthetic visuo-spatial forms (e.g., Simner, Mayo, & Spiller, 2009). 

Nevertheless, number-space synaesthetes (and their variable visualizations) are to some 

degree exceptional, and there has been a debate as to how far their spatial-numerical 

representations can inform us about the general population (e.g., Cohen Kadosh & Henik, 

2007).  

Moyer and Landauer (1967) were the first to describe the numerical distance effect (see Box 1). 

This effect refers to the behavioral finding of shorter response times on a comparison task, 

when the numerical difference increases between the target stimulus (e.g., the numbers 1 or 4) 

https://psyarxiv.com/3vg9p/
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and the referent number (e.g., 5, to which 1 or 4 are compared). The authors explained their 

finding with the claim that numerical magnitudes are converted to analogue magnitudes, which 

are then compared (and thus it takes longer to compare numbers that are closer together). 

While the distance effect has been interpreted in a spatial framework, the assumption of a 

spatial organization of number magnitude is not necessary to account for the effect. Following 

up on Moyer and Landauer’s (1967) work, Restle (1970) developed the concept of the Mental 

Number Line (MNL) as an analog system, which organizes the representation of all numbers by 

distinctive markers placed on a visual line. Making numerical judgment requires the participants 

to “zoom in” on the MNL close enough so that numbers to be compared are located in different 

regions. Thus, the smaller the difference between numbers to be compared, the more “zooming 

in” operations need to be carried out. Restle’s concept of the number line has seen 

differentiations and extensions. For instance it was suggested that multiple number lines are 

activated for multi-symbol numbers and not only one analog number line (Nuerk, Moeller, & 

Willmes, 2015). 

SNA – not a single melting pot 

Space is not only related to number magnitude representation, but also to other mathematical 

representations (numerical intervals, ordinality, mathematic functions; see M. H. Fischer & 

Shaki, 2014). However, it seems that the SNA term describes a relatively general property of 

cognition, which needs to be further specified. Although the vast majority of studies have been 

sound and conclusive, their results unfortunately cannot be combined easily to provide the big 

picture of how numbers are associated with space. Furthermore, the very general yet 

reasonable question of whether and to which extent SNAs are important for arithmetic (or even 

more broadly mathematics) learning is highly dependent on the type of SNA under study. 

Differences in SNAs will be elaborated on in detail in subsequent parts of the chapter. 

<Insert Box 1 here> 

https://psyarxiv.com/3vg9p/
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Numbers and space: Fundamental principles and questions 

An overview of tasks used to measure SNAs is provided in Box 2. Tight relationships between 

space and number can be observed in varied tasks, age groups, and even species. 

Grounded, Embodied and Situated Influences on SNA 

One implicit assumption about SNAs is that they change during development, but are rather 

stable across different situations (i.e., similar to personality characteristics). However, an 

increasing amount of evidence converges to show that SNAs may also be subject to situated 

influences (see M. H. Fischer, 2012 for theoretical justification and introduction to this term; 

Wasner, Moeller, Fischer, & Nuerk, 2014 for applications in other areas).  

The common assumption regarding embodied (in a general sense) influences is that sensory 

and motor experiences present during the acquisition of knowledge (such as semantic number 

magnitude) are re-activated during retrieval and when operations are performed.  

Within these general embodied influences, according to Fischer (2012), SNAs can be influenced 

by grounded, embodied, and situated influences, which we will briefly explain in the following 

section: 

 Grounded principles are reflected in universal rules of number semantics such as the 

fact that larger numerosities imply physically “more” of something, including parts of 

smaller numerosities (M. H. Fischer, 2012), or the vertical association of larger 

numerosities with higher physical space (Wiemers, Bekkering, & Lindemann, 2017).  

 Embodied influences (in a narrower sense) refer to bodily influences and cultural 

sensorimotor experiences that influence cognition even though they might not be 

immediately relevant to a situation. For instance, the SNARC effect (see Box 1) is 

moderated by the reading direction of a language (e.g., Shaki, Fischer & Petrusic, 2009).  

https://psyarxiv.com/3vg9p/
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 Situated influences are nested in the empirical context or experimental situation: For 

instance, situated influences on SNAs are shown when the SNARC effect in bilinguals 

changes from one experimental situation in which words are presented in a left-to-right 

written language, to another experimental situation in which words are presented in a 

right-to-left written context (M. H. Fischer, Shaki, & Cruise, 2009). In a similar vein, finger 

counting habits (generally considered a directional embodied influence) were remarkably 

different for participants that were simply told to either use their fingers for counting, to 

hold their hands in front of them to count aloud, or to indicate their counting habits 

themselves in a questionnaire (i.e., their hands were occupied; Wasner, Moeller, 

Fischer, & Nuerk, 2014). The difference between embodied and situated influences is 

that embodied influences are culturally learnt and may not be induced by the 

experimental situation, but nevertheless modulate cognition between different cultural 

groups. Situated influences are specific to the particular experimental or empirical 

situation in which an effect or an underlying representation is assessed. 

It is important to note that situated influences can be further distinguished (Cipora, Patro, 

& Nuerk, in press). A more exhaustive overview and a taxonomy on situated influences 

on SNA is beyond the scope of this chapter. 

Several empirical studies have tested grounded, embodied and situated modulations of the 

directional SNAs from brief interventions to long-term trainings, either to study their fundamental 

features and demonstrate their underlying mechanisms or to study potential interventions. In 

fact, several factors allow for re-training the shape of SNAs, yet the impact of these 

interventions or training on arithmetic is unclear. Notably, effects of embodied cultural 

differences due to reading direction have been established in different experimental studies 

(Moeller, Shaki, Göbel, & Nuerk, 2015; Shaki, Fischer, & Petrusic, 2009), which indicate that 

https://psyarxiv.com/3vg9p/
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culturally experienced sensorimotor interactions with the environment, such as eye movements 

in reading a language, can shape SNAs. 

Correlations of SNA and arithmetic skill and potential underlying mechanisms 

The question of whether SNAs are related to arithmetic skill is in our view much too broad to be 

answered adequately, since it depends on which SNA is considered. Some studies report that 

stronger or more adequate SNAs are related to better math skills (e.g., Siegler & Ramani, 

2009). Other studies indicate no such effects (Cipora & Nuerk, 2013), whereas a third category 

of studies show that stronger SNAs are related to poorer math skills (Hoffmann, Mussolin, 

Martin, & Schiltz, 2014). With such varied results, it seems essential to consider different SNA 

types separately. Furthermore, mediating variables, such as domain general cognitive factors 

(Hohol, Cipora, Willmes, & Nuerk, 2017) and knowledge of formal principles of math should be 

taken into account. 

First of all, several SNA types can equally be considered compatibility effects (see Box 1). Like 

compatibility effects, the SNA indexes the extent to which irrelevant information influences 

processing of the currently relevant numerical or spatial information. In order to successfully 

perform the task, one in fact needs to refrain from processing the interfering information in half 

of the trials. Therefore, domain-general processes (see Box 1) need to be involved to inhibit the 

irrelevant aspect of the stimuli/response, such as physical size, distance between numbers, or 

implicit mapping of numerical magnitudes onto space. 

Some of these operations seem to be governed especially by executive functions, which 

themselves have been shown to correlate with math skill level (Cragg & Gilmore, 2014; Nemati 

et al., in press) or with directional SNA (Hoffmann, Pigat, & Schiltz, 2014). Thus, it seems that 

interference-based SNA should either not correlate or correlate negatively with math 

achievement. In fact, this view is supported by several studies (see Cipora et al. 2015 for 

review). 

https://psyarxiv.com/3vg9p/
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Knowledge of formal rules of math may not only influence arithmetic skill directly, but also 

mediate the relationship between SNA and arithmetic skill. SNAs related to explicit counting 

direction in children can serve as an example: Through numerical development, it is very 

important that the child realizes and understands that the direction of counting elements is in 

fact irrelevant to the counting operation (Gelman & Gallistel, 1978). Namely, this means that it 

does not matter where the sequence is started for counting. Thus, successful acquisition and 

use of numerical knowledge in fact require a cognitive flexibility that would undermine the SNAs 

related to a particular direction. Sometimes the formal knowledge counters SNA in ways that are 

even more specific. When solving calculation problems, the physical size of digits does not 

directly influence their meaning. On the other hand, in problems such as “25 + 52 = ?“, 

differences in physical sizes carry arbitrary semantic information. Namely, the smaller size of 

the superscript does not mean that these numbers are either numerically smaller or less 

important, but instead provides information about the required operation. In that case, proper 

calculation requires (1) knowledge of the arbitrary rule on power notation and (2) inhibition of 

SNA, which would misleadingly associate smaller extension in the superscript with smaller 

number magnitude. 

On the contrary, the potential correlation between performance in explicit number line estimation 

tasks (see Box 2) and arithmetic seems theoretically justified. The accurate mapping of 

numbers onto spatial locations requires an understanding of numerical magnitude and relations 

between numbers. In this case, the SNA is not reflected by the interference effect and does not 

go against formal math knowledge. On the other hand, such correlation is not very surprising 

because the very strategies that underlie good number line estimation rely on arithmetic skills 

(Barth, Starr, & Sullivan, 2009; Link, Huber, Nuerk, & Moeller, 2014; Link, Nuerk, & Moeller, 

2014). 

https://psyarxiv.com/3vg9p/
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Even if correlations are observed, one still needs to be cautious in their interpretation. This is 

particularly the case in children’s studies, because developmental changes can naturally 

produce changes in both arithmetic and NLE abilities separately. Especially in studying 

predictors of later arithmetic achievement, it is thus essential to include multiple measures and 

control variables in order to avoid flagging a correlation as meaningful, when it is actually driven 

by shared covariation due to age or another aspect of development. For example, 

improvements in two conceptually unrelated abilities such as the speed of running and math 

ability would both increase from grade 1 to grade 2 of schooling. Thus, if both measures were 

assessed at grade 1 and grade 2, a positive correlation would reflect shared variance due to 

age (being a mediating variable), but would not indicate that running speed could predict later 

achievements in mathematics. Of course, the same mediation of a correlation by another 

variable would be more critical to assess in potentially meaningful predictors of arithmetic 

achievement, such as counting abilities, working memory, or something else. Thus, a correlation 

is mediated if it is explained (partialled out) by another variable, which correlates with both 

variables of the original correlation. 

To sum up, there is no general and consistent pattern of correlations between SNA and 

arithmetic skill, as some SNAs are consistently related to arithmetic skill (number line 

estimation) while others (SNARC) are not consistently related to arithmetic skill. In the following 

sections we present evidence for relationships (or lack thereof) between particular SNA types 

and arithmetic skill. 

Causal relations: What can be derived from training studies? Implications and 

caveats 

Apart from practical implications, the development of efficient trainings can also shed light on 

underlying theories and causal relationships as well. Namely, the fact that a given training is 

https://psyarxiv.com/3vg9p/
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efficient provides evidence for a causal nature of relations between constructs of interest. 

However, some caveats apply.  

Even if a training is successful, it often consists of several modules or representations. For 

instance, in spatial-numerical trainings, one might enhance spatial representations and 

processes, numerical representations and processes, or their relations. Even within numerical 

cognition, it might not be trivial to pinpoint the aspects that directly or indirectly relate to 

arithmetic abilities. What is more, additional variables such as gender or socioeconomic status 

may render trainings more effective in different learners. Thus, training programs may be 

tailored to a particular group: for instance, embodied trainings might be successful for typically 

developing children, but may not function for children with learning disabilities, because the 

instructions for the motor action in embodied training place too high a demand on working 

memory or other cognitive resources. Or vice versa, an embodied training might not further help 

typically developing children, but may facilitate learning in disabled children for whom normal 

instruction is not sufficient. In sum, causal implications from successful or unsuccessful trainings 

are not as straightforward as one might presume. 

In this chapter, we focus on spatial-numerical trainings. However, we wish to make explicit that 

these are not the only successful numerical trainings. Training on other tasks, such as the MNL 

task or non-symbolic magnitude comparison, could also change mathematical performance 

either directly or indirectly by improving domain-general abilities.  

By introducing the fundamental principles and questions in SNA research, we have now laid the 

groundwork for a new and extended taxonomy for SNAs. 

<Insert Box 2 here> 

https://psyarxiv.com/3vg9p/
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A new taxonomy for SNAs: How different SNAs have to be 

differentiated 

Patro et al. (2014) outlined the first proposal of a systematic SNA taxonomy, which considered 

only phenomena that can be observed in preliterate children. Subsequently, Cipora et al. (2015) 

extended this taxonomy by including SNAs observed in adults. Here we partially clarify and 

extend it further by adding place-value processing as an instance of directional SNA considering 

both implicit and explicit coding components. The graphic summary of the taxonomy is 

presented in Figure 1.  

<insert Figure 1 here> 

The taxonomy will be discussed in the following paragraphs together with results demonstrating 

relationships (or a lack thereof) between particular SNA types and arithmetic skill. Furthermore, 

wherever such evidence exists, we will discuss situated influences on a given SNA type. In line 

with Cipora et al. (in press), we will classify manipulations of situated influences into categories 

depending on which stage of information processing was affected (perceptual, representational, 

action) and when the manipulation was applied (pre-experimental or intra-experimental). Note 

that this taxonomy does not consider the numerical distance effect or the size effect. Assuming 

the analog system of numerical magnitude does not necessarily imply existence of a spatial 

component. The MNL does not need to be spatially mapped / oriented in order to explain the 

numerical distance effect or the size effect (see Bonato, Fabbri, Umiltà, & Zorzi, 2007; Cipora et 

al., 2015). These two fascinating phenomena fall outside the scope of the taxonomy. 

 

https://psyarxiv.com/3vg9p/
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Overview of the taxonomy 

The primary taxonomy proposal introduced by Patro et al. (2014) includes the distinction 

between extension SNA and directional SNA. Within extension SNA there are two 

subcategories: (a) approximate (formerly cardinality) and (b) exact (formerly interval). Cipora et 

al. (2015) further subdivided directional SNAs into two categories: (1) SNAs related to implicit 

coding of numerical magnitude, and (2) those related to explicit coding. Within each 

subcategory, Patro et al. (2014) differentiated SNA types related to cardinality and ordinality, 

and Cipora et al. (2015) added a third category of functions. 

Category Extension SNA: subcategory approximate 

Type and paradigms 

This SNA type might be observed very early in development (e.g., de Hevia & Spelke, 2011), in 

non-human animals (Tudusciuc & Nieder, 2007) as well as in adults (Henik & Tzelgov, 1982). 

For example, the size congruity effect is present when numerals of different physical sizes are 

shown, and responses are facilitated if semantic and physical size information are matched 

(Henik & Tzelgov, 1982). A more exhaustive overview of experimental paradigms is presented 

in Box 2. Importantly, the relationship between space and numbers is bidirectional. Spatial 

aspects of the stimuli also affect numerical judgments (e.g., widely spaced numbers are judged 

to be more numerically distant; Lonnemann, Krinzinger, Knops, & Willmes, 2008). Interference 

between space and numbers seems not to be restricted to simple numerical judgment, but also 

affects calculation efficiency. Facing problems like “2*2 + 2” vs. “2* 2+2” (i.e., the problem is 

identical but spacing differs), participants are faster and more accurate in the first problem as 

the spatial arrangement corresponds to proper operation order (Landy & Goldstone, 2010). We 

have previously called this category cardinality, but now term it approximate, because the above 

examples are not about exact relations between the physical and numerical space (like intervals 

in the number line estimation task described further on), but rather about larger magnitudes in 

https://psyarxiv.com/3vg9p/
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one dimension being related to magnitudes or functions in another dimension, while the exact 

relationship is usually not important and unspecified. 

Terming this subcategory approximate was also inspired by our proposal to take studies of the 

approximate number system (ANS, see Box 1) into this subcategory. ANS studies are not 

usually considered a SNA; however, based on more recent research, we postulate that 

approximate extension SNAs are in fact an important factor which needs to be considered when 

analyzing results of these studies (Dietrich, Huber, & Nuerk, 2015; Gebuis & Reynvoet, 2012). 

In ANS studies, non-symbolic sets are judged and spatial parameters such as extension, 

density, size, and others have been found to interfere with numerosity (see e.g. Leibovich & 

Henik, 2013). Thus, visual properties of the stimuli presented in the typical ANS task are either 

positively or negatively correlated with the actual number of elements present within each set. 

This means that larger spatial extension (or another parameter) is either consistent with larger 

numerosity or interferes with it. If the association is consistent, performance is usually better 

(Szűcs, Nobes, Devine, Gabriel, & Gebuis, 2013). 

Situatedness 

Studies on situated influences on this SNA category are rather scarce. Usually, researchers 

were interested in demonstrating the phenomena and sometimes in looking for correlations 

between SNAs and other cognitive characteristics. One notable exception is the experiment by 

Fornaciai et al. (2016), which documented that numerosities of dot collections are systematically 

underestimated when the dots are connected by task-irrelevant lines. This result is supported by 

different patterns of psychometric functions of numerosity that adapt depending on whether the 

lines are present or not in the display. Nevertheless, this field requires further exploration. 

Correlations with arithmetic skill 

https://psyarxiv.com/3vg9p/
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The relationship between approximate extension SNA and arithmetic skill has mostly been 

looked at with ANS studies. The general rationale is that an understanding of non-symbolic 

magnitude, e.g., of set sizes in visual dot patterns, would constitute the deep basis of any 

magnitude-related activities, including formal mathematics (Feigenson, Dehaene, & Spelke, 

2004). Despite these strong theoretical foundations, usually the observed correlations were 

either non-existent (e.g., Sasanguie & Reynvoet, 2014), or very small, around r = .2, and 

decrease with age (Schneider et al., 2017 for meta-analysis). 

Even these relatively low (but theoretically sound) correlations need to be treated with caution. 

As we mentioned above, when one has to compare two sets of dots, apart from numerosity they 

also differ by spatial features (Szűcs et al., 2013). In so-called compatible trials, physical 

features (e.g., convex hull, overall area covered by the elements, size of elements) correlate 

with the number of elements. In so-called incompatible trials, the visual features correlate 

negatively with the number of elements. In this case, if the task is to judge numerosities, strong 

SNA would be beneficial for compatible trials but detrimental in incompatible trials. In some 

studies, the correlation between performance in non-symbolic comparison and arithmetic skill 

was not present any more when the interference component was controlled for (Cragg & 

Gilmore, 2014). In fact, children seem to be often misguided by spatial components when 

solving numerical tasks (Stavy & Tirosh, 2000) such that they tend to follow the principle “More 

A – More B”. Despite being useful in everyday life (i.e., physical and temporal properties of 

objects are usually correlated with numbers, for instance a larger pile comprises more elements 

than a smaller one), formal mathematics requires abstracting from physical properties, e.g., 

despite having the same physical size, numbers refer to different magnitudes (Bueti & Walsh, 

2009). 

Contemporary conceptions of the ANS include the multimodal processing of spatial and quantity 

information (Leibovich, Katzin, Harel, & Henik, 2017), although it is important to highlight that 

https://psyarxiv.com/3vg9p/
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one should always expect interactions between domain-general factors and a domain-specific 

factor such as the ANS (Hohol et al., 2017). 

There are no genuine correlations between other instances of this SNA type and the arithmetic 

skill level as well. In particular, there were no correlations between the size congruity effect and 

math performance (Bugden & Ansari, 2011; Rodic et al., 2015). Lonneman et al. (2008) 

observed that boys (8- to 9-year-olds) who exhibited stronger SNA in judging numerical and 

spatial distances performed math better. However, this effect was not present in girls. In 

general, it seems that this SNA category is not genuinely (or only weakly) correlated with 

arithmetic skill. 

Trainings 

Studies that use non-symbolic ANS tasks as training yield inconsistent results. Positive effects 

have been reported: for instance, two experiments on training in non-symbolic addition and 

subtraction improved performance in symbolic operations (Park & Brannon, 2013). Another 

positive outcome was observed for children that engaged primitive quantities on exact arithmetic 

problems (Hyde, Khanum, & Spelke, 2014). However, no such cross-over effect was observed 

in another large-scale study with children randomly assigned to different groups including 

training on exact numerosities (Obersteiner, Reiss, & Ufer, 2013). Another recent study 

corroborated this negative result that extensive arithmetic training and substantial improvements 

in arithmetic performance were not reflected in matching ANS acuity changes (Lindskog, 

Winman, & Poom, 2016). A possible indication of these inconsistent results would be to focus 

on the processes involved in mathematical operations and not only on the assumed numerical 

representation. 

Category Extension SNA: Subcategory Exact 

Type and paradigms 

https://psyarxiv.com/3vg9p/
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Previously, we called this subcategory “Intervals”. However, the difference between 

”approximate” and “exact” categories is the requirement of an exact (vs. approximate) match 

between spatial interval or a specific magnitude and the numerical interval of the magnitude. 

Performance is usually measured as a deviation from the exact match. 

The number line estimation (NLE) task (see Box 2) involves associating number intervals with 

respective exact spatial extensions. The task itself is very easy to explain to the participants, 

including small children (e.g., 5- to 6-year-olds; Siegler & Booth, 2004), which itself can be 

treated as an argument that mapping numerical magnitude onto spatial extensions is natural. 

This can be illustrated in a classical example where children always think that numerical 

magnitude maps onto spatial extension, and cannot detach from mapping extension to 

numerical quantity when distinct objects are presented; i.e., the Piagetian Number Conservation 

experiment (Gelman & Gallistel, 1978). Performance in the NLE task has been linked to the 

internal representation of numerical magnitude (e.g., Siegler, 2009). It was claimed that with 

training, internal magnitude representation changes from a logarithmic format (i.e., large 

magnitude numbers are compressed) into a linear one (with equal distances between numbers). 

Nevertheless, the log-to-linear change in mental representation of the magnitude (Siegler & 

Opfer, 2003) was challenged. It was shown that improvement of proportional judgment skill may 

explain the results better (i.e., typical bounded NLE is in fact solved by means of proportional 

judgment; Barth & Paladino, 2011). The other challenging view was that performance in the task 

instead reflects place-value integration Moeller, Pixner, Zuber, Kaufmann, & Nuerk, 2011), 

which will be discussed in subsequent parts of this chapter, or the ability to integrate familiar 

and unfamiliar numerical ranges (Ebersbach, Luwel, Frick, Onghena, & Verschaffel, 2008). In 

general, these alternative explanations of non-linear response pattern in the NLE refer to some 

lack of thorough understanding of the numerical magnitude. 
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To identify the processes underlying the NLE, another version of the task was developed – the 

unbounded NLE (Cohen & Blanc-Goldhammer, 2011; see Box 2). This task variant was 

proposed to eliminate the proportional judgment component as well as more complex reasoning 

which also plays a role in case of bounded NLE (one might set up virtual anchor points in the 

middle of the line, then at quartile points, and adjust the exact estimation relative to these points 

e.g., to mark 77 one divides the line into halves and quarters and puts the estimation a little bit 

to the right of the virtual division point marking 75). Interestingly, the link between number line 

performance and arithmetic skill seems stronger for the bounded version of the task than for the 

unbounded one. 

However, recently, Kim and Opfer (2017) argued that the log-to-linear change in the 

representation can provide a unifying framework for NLE. They used both bounded and 

unbounded NLE tasks. The mixed log-linear model (i.e., both components were included in one 

model) accounted for performance in both bounded and unbounded NLE. Performance in both 

tasks was strongly correlated (r = .73). Interestingly, the overall performance accuracy was 

higher in bounded NLE compared to the supposedly easier (i.e., allowing summation strategy 

only) unbounded task. According to their interpretation, these results seem to support the log-to-

linear shift. However, they are not in line with divergent validities, because the bounded number 

line correlates with arithmetic skill, while the unbounded number line does not (Link et al., 

2014a,b). Link and colleagues (2014) suggested that bounded NLE allows the participants to 

use a wider range of available strategies. Undoubtedly, this issue is far from being resolved and 

we can expect intense discussion on the topic. 

Finally, it is often observed in developmental studies that a linear correlation between numerical 

magnitude and space in the number line tasks takes different shapes in children, typical adults, 

and math-deficient adults. More precisely, children and math-deficient adults often assign larger 

inter-digit distances to magnitude steps in smaller ranges, which leads to a different shape of 
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the correlation (Moeller et al., 2009). Often, it has been assumed that this behavior reflects a 

shift from logarithmically compressed number representations to a linear representation, 

mimicking one model fit for these patterns of results. However, it may be also possible that the 

behavior of children and math-deficient adults stems from a certain strategy for solving the task 

(Nuerk, Weger, & Willmes, 2001). More precisely, the logarithmic pattern observed in the 

correlation (see Figures 1 and 2 in Moeller et al., 2009) can also be almost perfectly accounted 

for by two linear regressions, i.e., a bilinear fit for single- vs. multi-digit processing. In any case, 

proportional reasoning is always required, and thus we can infer that a benefit to other 

mathematical operations (that also often include proportional judgment) is also derived from this 

moderator variable. When solving the task and assigning space to numbers, such bilinear 

patterns would result from different strategies for mapping number magnitudes up to a certain 

point (e.g., 10) and then assigning the remaining space of the visually presented line to the 

remaining number magnitudes (e.g., up to 100). Educated adults that are asked to assign 

spatial distances on the number line task from 1 thousand to 1 billion (incorrectly) assign the 

half of the line to a landmark for 1 million (Landy, Silbert, & Goldin, 2013), which reflects the 

bilinear strategy observed in children and points to a purely verbal (but not logarithmic 

compressed) strategy. 

The representations underlying different task types of the NLE are still under heavy debate. 

Contradictory to many previous studies, Dietrich et al. (2016) argue that NLE might not be 

related to a spatial representation of numbers. The authors suggest that place-value 

understanding of the MNL task is most probably driven by the relationship between MNL and 

arithmetic performance (Booth & Siegler, 2006). In line with this finding, a discontinuity of the 

MNL in very large numbers was reported, which was interpreted as reflecting a limitation of the 

magnitude perception system in humans (Landy, Charlesworth, & Ottmar, 2014, 2017). All in all, 

although NLE is probably the task most frequently cited as providing evidence for the 
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relationship between space and arithmetic, recent studies have started to cast doubt on this 

relationship and suggest some mediator processes between them. 

Situatedness 

Huber et al. (2014) demonstrated that providing feedback after each response may successfully 

train participants to perform the NLE task according to one of several models (linear, 

exponential, logarithm, sigmoid, inverted sigmoid). The training for each mapping consisted of 

only 30 trials. All participants participated in all conditions in counterbalanced order. Thus, it 

seemed as if that brief training successfully influenced NLE performance without changing the 

participants’ numerical long-term representation (i.e., involving such a change for five times 

within one experimental session). Astonishingly, the follow up study detected a general deficit in 

adults with developmental dyscalculia (severe math impairments) with less precision in the NLE 

irrespective of the underlying shape (Huber, Sury, Moeller, Rubinsten, & Nuerk, 2015). 

Individuals with developmental dyscalculia had severe problems using benchmark points in this 

non-linear, but bounded NLE, again corroborating the idea that performance in the NLE is not 

only driven by spatial representation of number, but also by arithmetic strategies. 

Correlations with arithmetic skill 

The vast majority of studies on the relationship between this SNA type and arithmetic skill have 

reported zero order correlations (i.e., without an additional control variable partialled out). 

However, the overall picture gets much more complicated when one aims to investigate the 

nature of this relationship in a more detailed way. The extent to which linear function reflects a 

child’s performance is correlated with his/ her math skill (see Siegler, Thompson, & Opfer, 2009 

for an overview). Lefevre et al. (2013) used a longitudinal experimental design to investigate the 

causality of these correlations. Their results showed that NLE performance could not predict 

future arithmetic performance better than arithmetic performance could predict future NLE 
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performance. However, number system knowledge predicted future NLE performance. Thus, as 

the authors conclude, NLE is more related to math than to spatial performance. 

Link et al. (2014) observed that only performance in the bounded NLE correlated significantly 

with arithmetic performance in fourth graders. This might suggest that fluency in making 

proportional judgments (i.e., relatively complex math reasoning) correlates with arithmetic 

performance. In other words, the results of the bounded NLE suggest that one type of math 

understanding correlates with another type of math understanding, which is in fact not very 

surprising. On the other hand, SNA itself (indexed with the unbounded task) seems not to be 

genuinely correlated with arithmetic performance. 

In sum, we tend to agree with the conclusion of Dackermann et al. (2017) that the correlation 

between NLE and arithmetic skills may not mean that SNAs assessed by the NLE are (causally) 

important for arithmetic skills, but that vice versa, good arithmetic skills are causally important 

for good performance and application of helpful strategies in the NLE. 

Trainings 

Opfer and Siegler (2007) showed that presenting feedback rapidly and strongly improves NLE 

performance in second graders. Providing a single instance of feedback on accuracy in the task 

led to considerable improvements in performance (i.e., a log-to-linear change). 

Potential beneficial effects of NLE tasks and training on numerical learning and arithmetic skill 

were obtained in respective studies. For instance, playing a board game designed to resemble 

the MNL for only 1h improved the numerical understanding of low-income preschoolers (Siegler 

& Ramani, 2009). More precisely, when children were assigned to play a linear board game – 

as opposed to either a circular board game or a numerical control condition (including number 

counting, object counting, and number naming) – the researchers observed a steeper and more 

linear performance in the NLE task, more accurate performance in magnitude comparison 
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tasks, and in addition problems. Additional experimentation showed the potential of extending 

the number board game to the 1-100 range, and that positive effects are distinct from those of 

control training with mere counting (Laski & Siegler, 2014). The training is also effective in small 

group teaching setups (e.g., classroom context) and without extensive training of the teachers 

themselves (Ramani, Siegler, & Hitti, 2012). 

Throughout the last decade, several board games and computerized games targeting the link 

between number and space were developed and reported upon in different studies. Some 

aspects of instruction principles (e.g., adaptive increase of difficulty depending on recent 

performance) proved highly relevant to target the individual level of arithmetic skill, especially in 

computerized tasks (A. J. Wilson et al., 2006). In contrast, other aspects such as constructivism 

and intrinsic feedback are yet to be fully explored (Laurillard, 2016). Such interventions – 

including the renowned scientific games Rescue Calcularis (Kucian et al., 2011), The Number 

Race, and The Number Catcher1 – are particularly thought to improve numerical skills in 

neurodevelopmental disorders such as dyscalculia (Kucian et al., 2011). Finally, finger-tracking 

technologies can be used to study number line mappings (e.g., Pinheiro-Chagas, Dotan, 

Piazza, & Dehaene, 2017) or place-value structures (Bloechle, Huber, & Moeller, 2015), which 

may allow for better targeting and investigation of the relevant cognitive processes underlying 

different number-space mappings. 

Regarding evaluations, the most comprehensive evaluation of a single number training game to 

date was performed in a randomized controlled trial on the Number Race (Sella, Tressoldi, 

Lucangeli, & Zorzi, 2016). In this trial, children were randomly assigned to play either the 

Number Race or an alternative computer-based activity, so that the comparison group was 

active in a different scope. Interestingly, Sella et al. (2016) observed large improvements in 

                                                

1 www.thenumberrace.com; http://www.thenumbercatcher.com/ 
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mental calculation, number-space mappings, and smaller improvements in semantic processes, 

rendering an optimistic view on the training validity. In another study, when a more recent tablet 

version of the NLE game was contrasted with a comparison training in kindergarten children, 

both training methods elicited distinct and common learning effects (Maertens, De Smedt, 

Sasanguie, Elen, & Reynvoet, 2016). 

Accumulating evidence supports the broad theoretical notion that cognitive processes are 

embedded in corporeal experiences. This includes very basic interactions such as pointing and 

grasping objects and attributing numerical distance to spatial distance, as well as the use of 

finger counting. With accumulating sensory and motor interactions and learning transitions 

between these immediate physical experiences and the concepts of numerosity and magnitude, 

a rich and multimodal network evolves to allow for flexible representations and arithmetical 

procedures. 

By implication, providing active opportunities for physical interactions could foster the 

development of abstract numerical or even arithmetic abilities. Some first evidence is available 

to support the embodied learning approach. For example, an intervention with first-graders 

included a NLE task with full-body involvement, i.e. walking to an estimated location displayed 

on the floor. Children showed more improvements with this intervention than a control group of 

children who solved the task without full-body involvement, not only in number line 

representations, but also in non-trained math-related tasks (Link, Moeller, Huber, Fischer, & 

Nuerk, 2013). Furthermore, in kindergarten children, and compared to another numerical 

training without an active component, specific improvements were documented in embodied 

magnitude training (U. Fischer, Moeller, Bientzle, Cress, & Nuerk, 2011). In this training study, 

full-body movements were incorporated for mathematical learning by use of a digital dance mat 

in magnitude classification tasks. The control group also performed magnitude comparisons in 

the training sessions with the same stimuli, but there was no presentation of a spatial number 
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line and they solved the task on a tablet PC. Results showed enhanced mathematical 

performance following the active sensorimotor training mediated by mental number line 

representations. Such studies show the promising potential of vivid spatial-numerical activities 

for the acquisition of numerical concepts. Nevertheless, more research is required to particularly 

compare the novel training intervention to default procedures in large groups. 

Category: Directional SNA with implicit coding: Subcategory cardinalities 

Type and paradigms 

In this SNA category the link between space and number is not highlighted in any instruction, 

and is not relevant to the task itself. Most often, space and numbers are highlighted separately 

in respective tasks, for instance, when magnitude classifications are indicated by left-hand vs. 

right-hand key presses.  

The most important phenomenon that falls into this category is the SNARC effect (Spatial-

Numerical Associations of Response Codes; Dehaene et al., 1993; see Box 1) which refers to 

the faster speed of responses with the left hand than the right hand for small vs. large single-

digit numbers. 

Over past 24 years, the SNARC effect has been replicated numerous times and tested with 

varied participant groups (healthy individuals and clinical samples, of varied age), stimuli sets 

(both symbolic and non-symbolic), tasks (response criterion either referring or not referring to 

numerical magnitude), and response formats (see M. H. Fischer & Shaki, 2014 for a current 

review; Wood, Willmes, Nuerk, & Fischer, 2008 for a meta-analysis). Another SNA within this 

category is revealed by biases in random number generation (the participant is asked to 

generate random numbers) caused by either head (Loetscher, Schwarz, Schubiger, & Brugger, 

2008) or whole body movements (Schroeder & Pfister, 2015; Shaki & Fischer, 2014), and 

biases in numerical estimations caused by changes in body posture (Eerland, Guadalupe, & 
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Zwaan, 2011). Cultural influences such as reading habits in right-to-left reading Arabic countries 

can produce reverse effects (Shaki et al., 2009), although this was not observed in native 

speakers of Hebrew (but see Zohar-Shai, Tzelgov, Karni, & Rubinsten, 2017). 

Situatedness 

Contextual cues that signal a different space-to-number assignment can modulate the SNARC 

effect (M. H. Fischer et al., 2010), but also previous episodes of responding with the incongruent 

mapping can instantly reduce regular SNAs in the next trial (Pfister et al., 2013). It is also 

possible to establish regular or reversed direction of SNARC effects by targeted training in 

children. For instance, children were asked to play a non-numerical spatial game on a touch 

screen, containing a frog that was moved across a pond either towards the left or right side of 

the screen (Patro et al., 2016). The direction of a SNARC effect depended on the direction of 

the training. This finding demonstrates that simple activities that are not necessarily related to 

numerical knowledge still impact associations between numbers and space. Conversely, this 

and related findings from situated numerical cognition, showing flexibility of SNAs in adults (e.g., 

Pfister et al., 2013), advise us to carefully gauge the value of exploring SNARC effects for 

arithmetic skill or as an effect of lifelong culturally dependent practice. 

Correlations with arithmetic skills 

Several positions exist in the contemporary literature concerning the relationship between 

SNARC and arithmetic skill in adults and children. It was suggested that adults skilled in math 

can be characterized by a weaker SNARC effect; however, the several results did not reach 

statistical significance (Dehaene et al., 1993, Exp. 1; Bonato et al., 2007; Bull et al., 2013; 

Cipora & Nuerk, 2013). On the other hand, a relationship was found when individuals with math 

difficulties (Hoffmann et al., 2013) and professional mathematicians (Cipora et al., 2016) were 

considered. The SNARC effect seemed to decrease with increasing math proficiency. It 
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suggests that differences in the SNARC effect get more pronounced in the case of extreme 

math skill groups but are either nonexistent or very weak at a typical math skill level.  

The same seems to be true in the case of children (Gibson and Maurer, 2016) and adolescents 

(Schneider et al., 2009). On the other hand, Georges et al. (2017) reported a correlation. 

Interestingly, contrary to tendencies in adult studies, children who were characterized as having 

a stronger SNARC effect scored higher on a standardized math ability test. Bachot and 

colleagues (2005) observed that 7- to 12-year-olds with visuospatial disorder and 

developmental dyscalculia, contrary to a control group, do not reveal the SNARC effect. On the 

other hand, Crollen and Noël (2015) did not find such an effect in fourth graders with poor 

visuospatial abilities. 

Together, these findings suggest that there is no consistent and genuine relationship between 

directional implicitly coded SNA for cardinalities and arithmetic or math, and the possible 

direction of the relationship is not consistent across development. However, one must take into 

account that across different studies math skill was operationalized in varied ways, ranging from 

performance in (speeded) calculation tests to categorical descriptions of individuals’ field of 

study / occupation. This is important because of double dissociations between calculation 

proficiency and math expertise (Pesenti, 2005). According to Cipora et al. (2016), professional 

mathematicians who do not demonstrate the SNARC effect deal mostly with highly abstract 

constructs and for that reason their SNAs may be either non-existent or highly flexible. 

To the best of our knowledge, there have been no studies investigating the relationship between 

math skill and other forms of this SNA subcategory. In our view, this should also be pursued in 

future studies. 

Trainings 
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To the best of our knowledge there have been no training studies aimed at using this SNA type 

in order to improve math skills. 

Category: Directional SNA with implicit coding: Subcategory – ordinalities 

Type and paradigms 

Directional SNAs can emerge due to the quantity present in numerical cardinality as well as due 

to the ordinal structure in numerical and non-numerical stimuli (such as series of objects, or 

sequentially arranged structures such as weekdays). Thus, with number symbols in the SNARC 

effect described above, it is ambiguous whether cardinal or ordinal information becomes 

spatially arranged. Complementing the influence of reading habits in left-to-right and right-to-left 

directed Western (English) and Eastern (Hebrew) languages, researchers tested these 

interrelations by means of ambiguous symbols that depict both ordinal series and quantity. For 

different tasks, either type of information was considered relevant, but interestingly, only the 

SNARC effect based on ordinality was found to follow participants’ right-to-left reading direction. 

When the task emphasized the symbols’ cardinality, a regular left-to-right direction was 

observed in the Hebrew-speaking participants (Shaki & Gevers, 2011). In recent experiments, 

this apparent dissociation of spatial associations that are based on number and order was 

further investigated in Western culture. First, it was observed that the correlation between 

different SNARC effects was remarkably low for different cardinal (1-5) and ordinal stimuli 

(Monday-Friday sequence; Schroeder, Nuerk, & Plewnia, in press) but also for the same 

numerical stimuli in different magnitude and parity classification tasks (Georges, Hoffmann, & 

Schiltz, in press). Finally, spatial associations of ordinal and cardinal nature were clearly 

dissociated with transcranial brain stimulation (Schroeder, Nuerk, & Plewnia, 2017). Thus, it is 

important to differentiate ordinal and cardinal aspects of SNAs also with respect to other 

behavioral and neurocognitive studies (Huber, Klein, Moeller, & Willmes, 2016) and multiple 

cognitive processes seem to underlie the emergence of spatial associations (Schroeder, Nuerk, 
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& Plewnia, 2017). Nevertheless, the current data converge in that ordinal SNAs represent a 

separable and distinct directional SNA category. 

Situatedness 

In principle, it is plausible that situated influences can shape the direction and intensities of 

SNAs based on ordinality and cardinality alike. Memorizing a sequence of elements (i.e., 

ordinality information) evokes SNARC-like effects. When the participants were instructed to 

memorize randomized sequences of numbers (e.g., 9,2,5,6,3) and then performed parity 

judgments to classify these numbers, the SNARC effect reflected the order of numbers in a 

sequence, not their magnitudes (van Dijck & Fias, 2011). Namely, elements from the beginning 

of the list were associated with the left hand side and those from the end, with the right hand 

side. Thus, it seemed that situated influence (memorizing a sequence carrying ordinal 

information) may cover up the (long-term or short-term) SNA related to cardinality of numbers 

constituting the sequence. Nevertheless, subsequent studies showed that in the case of number 

sequences, the SNARC effect can depend on both number magnitude and a position in a 

sequence (Huber, Klein, et al., 2016). 

Correlations with arithmetic skill 

So far, there no studies have demonstrated correlations of this SNA type with arithmetic skill. 

Nevertheless, it could be explored whether serial order working memory and ordinality deficits 

constitute different types of math deficit (e.g., Rubinsten & Sury, 2011). Focusing on this area 

could help disambiguate between contradictory findings on the relationship between cardinal 

SNA and arithmetic skill, as in most cases both ordinal and cardinal properties of numbers are 

tightly connected. 

Trainings 
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To the best of our knowledge there have been no training studies aimed at using this SNA type 

in order to improve math skills. 

Category: Directional SNA with implicit coding: Subcategory operations 

Type and paradigms 

Not only basic numerical concepts are associated with space: so are arithmetic operations such 

as addition and subtraction. Even single “-“ and “+” signs are related to the left and right sides 

(operation sign spatial association - OSSA; Pinhas, Shaki, & Fischer, 2014), but the spatial 

association also holds for entire arithmetic operations (see Box 1). This was described at 

different levels such as movements along the number line (Pinhas & Fischer, 2008), eye 

movements (Klein, Huber, Nuerk, & Moeller, 2014; Masson, Letesson, & Pesenti, in press), 

attentional shifts (Masson & Pesenti, 2014), and arm movements (Wiemers, Bekkering, & 

Lindemann, 2014). This collection of phenomena is referred to as Operational Momentum. 

However, this term initially referred only to over- / under-estimation of the results of addition, 

multiplication / subtraction, division (McCrink, Dehaene, & Dehaene-Lambertz, 2007).  

Situatedness 

To date, studies on spatial biases in mental arithmetic focused on demonstrating its various 

forms depending on modality (symbolic vs. non-symbolic) and type of spatial bias. To the best 

of our knowledge there have been no studies demonstrating situated influences on this effect. 

Correlations with arithmetic skill 

We are also not aware of studies demonstrating a relationship between spatial associations with 

arithmetic functions/operations and arithmetic skill level. 

Trainings 
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To the best of our knowledge, there have been no specific training studies taking advantage of 

SNA related to implicit coding of arithmetic operations. 

Category Directional SNA with explicit coding: Subcategory – ordinalities  

Type and paradigms 

This SNA set refers to biases evoked explicitly by the task instruction. In tasks measuring this 

SNA type, participants are asked to count objects from a predetermined set. The direction is the 

dependent measure. Objects may be arranged linearly (either in a horizontal or vertical line) 

thus providing only two possibilities (e.g., Shaki, Fischer, & Göbel, 2012) or objects may form an 

array providing more possibilities (e.g., Göbel, 2015). A special case pertains to finger counting 

(Lindemann, Alipour, & Fischer, 2011). 

In several instances such studies demonstrated that the counting direction was influenced by 

reading habits in a given culture. Moreover, culture-driven preference patterns become more 

pronounced during reading acquisition (Shaki et al., 2012). In general, in Western cultures both 

children and adults prefer counting from left to right. Individuals who use right-to-left script (e.g., 

Arab speakers) count from right to left. This suggests that both explicit and implicit SNAs are 

culturally modulated and subject to embodied moderations. 

Situatedness 

This SNA type is very prone to situated influences. In Cantonese (a Chinese language), 

speakers can use either vertical or horizontal script. Reading a short paragraph written vertically 

may affect Cantonese participants’ counting directions (Göbel, 2015). Moreover, remarkably 

different proportions of right-starters (i.e., participants starting the finger counting sequence from 

their right hand) vs. left-starters emerged depending on whether participants were (a) asked to 

spontaneously count, (b) presented with a schematic drawing of hands, or (c) asked when their 
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dominant hand was occupied (Wasner et al., 2014). All these results suggest that there is huge 

space for situated influences in this SNA category (at least for finger counting). 

Correlations with arithmetic skill 

To the best of our knowledge, there is no data showing correlations between this SNA type and 

arithmetic skill. Studies showing a relationship between finger gnosis and arithmetic skill in 

children (e.g., Penner-Wilger & Anderson, 2013) are not instructive on this issue because they 

only demonstrate that an adequate representation of fingers seems to be related to arithmetic 

performance. 

Trainings 

Interventions indirectly related to this SNA type are hard to find. Of course, some finger counting 

interventions were related to finger gnosis, counting or cardinality (Gracia-Bafalluy & Noël, 

2008, but see J. P. Fischer, 2010 for a methodological critique). Improvement of finger gnosis or 

finger cardinality or finger counting was related to improvements in arithmetic skill. However, 

since these interventions were not aiming at SNAs, nor was the spatially organized finger 

counting routine exclusively trained, they cannot be considered directly related to SNAs. 

Category Directional SNA and explicit coding: Subcategory cardinalities and operations 

The taxonomy proposed by Cipora et al. (2015) postulated the existence of those two SNA 

types, but nevertheless, they have not been reported in empirical studies so far. 

SNA with multi-digit numbers 

For operations on symbolic numbers, it may be intuitive to simply extend the concept of SNA. 

However, as we show in the following section, additional processes need to be considered. 

These processes may include parallel computation or even show distinct effects of integrating 

the values and their perceptual positions in place-value processing (Nuerk, Moeller, Klein, 

Willmes & Fischer, 2011). Usually, multi-symbol number processing is not seen as a SNA. 
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However, in the Arabic place-value processing, in fact it is one by many definitions. Therefore, 

we will discuss multi-symbol number processing in the remainder of this chapter from the SNA 

perspective. 

Multi-symbol processing as an integration of space and 

magnitude 

The ability to understand multi-digit numbers such as 83, 5729, and 1000000 involves 

understanding the digits and the values imposed by their spatial positions. However, numbers 

are not only comprised of different digits, but also of other symbols like the “-“ sign for negative 

number, the “.” for decimal numbers, or the “/” or “_“ for fractions (Huber, Nuerk, Willmes, & 

Moeller, 2016). Because we also refer to such numbers, which are comprised of digits and other 

symbols in certain spatial positions, we refer to multi-symbol numbers. It is important to note 

that not only the spatial positions of digits (29 vs. 92), but also the spatial positions of symbols 

(e.g., 2.93 vs. 29.3) change the value of the multi-symbol number. While this may appear 

obvious at first to educated adults, the perceptual and cognitive consequences of these highly 

overlearned characteristics can be even more informative regarding multi-digit processing. In 

the following, we will explain the relationship between the spatial and multi-symbol processing 

and domain-specific factors as a part of mathematics. 

Place-value system 

Multi-digit Arabic numbers rely on both value (number magnitude), e.g., 9 is larger than 4, and 

place (unit, decade, hundred, etc.), e.g., 4 as a decade is larger than 9 as a unit. Therefore, in 

order to process multi-digit numbers, one needs to integrate the value and the place (see Nuerk 

et al., 2015). 

The place-value system simplifies calculation and allows fast, automatic calculation using typical 

algorithms. Based on the place-value system, Nuerk and colleagues (2015) suggested a new 
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theoretical framework for multi-digit number processing, which comprises three distinctions: 

place identification, place-value activation, and place-value computation (cf. Box 1). In the 

following, we will discuss these three steps along with language influence, which is essential in 

multi-digit number processing. 

Place identification 

The first perceptual step in multi-digit number processing is to correctly identify the position of 

digits and symbols. As mentioned above, digits are arranged in a specific manner in multi-digit 

Arabic numbers, which leads to a differentiation between the two magnitudes in different places 

(unit, decade, hundred, etc.). Therefore, this processing level does not include semantic 

processing of the digits. However, language properties facilitate or interfere with place 

identification (Nuerk et al., 2015, for overview). For instance, Miura et al. (1994) observed that 

Japanese, Chinese, and Korean children, perform better in distinguishing units and decades 

compared to their counterparts from Western countries, i.e., the US, Sweden, and France. This 

difference is because Asian children learn Arabic multi-digit numbers based on a transparent 

number-word system (e.g., 38 is three ten eight), in contrast to Western children. Furthermore, 

interference between the place identification and the syntactic structure of number-words across 

languages may worsen performance (Nuerk et al., 2005). For example, in the German 

language, decade and unit digits are stated inversely (38 is read or said as “eight and thirty”), 

which leads to transcoding errors in half of the German-speaking 7-year-olds (Zuber, Pixner, 

Moeller, & Nuerk, 2009). This might be even more pronounced in three-digit numbers, which are 

read in the order of hundreds (left digit), units (right digit) and then decades (middle digit). This 

observation exemplifies how verbal representation, as a linguistic feature, influences place 

identification. 

Place-value activation 
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In the next step of multi-digit number processing, the integration of places and magnitudes of 

the digits is highlighted. For instance, in order to successfully compare two-digit numbers, 

individuals need to know to first compare the decades, which requires processing of both place 

and value (Nuerk et al., 2001). The unit-decade compatibility effect (cf. Box 1) in symbolic multi-

digit number comparison is an index of place-value activation. In unit-decade compatible pairs 

(e.g., 21_89) in a symbolic number comparison task, the unit comparison leads to the same 

response as the decade comparison. However, in unit-decade incompatible pairs (e.g., 29_93), 

the unit comparison leads to an error. Therefore, the place-value system has a critical influence 

on incompatible trials. Depending on the unit-decade compatibility, the place-value activation 

might have a more or less important influence on performance (Miura et al., 1994). It is 

important to note that the unit magnitude does not have to be processed when two two-digit 

numbers are to be compared. However, the compatibility effect automatically interferes with 

processing a digit when its identity and magnitude are irrelevant for the comparison in question. 

Linguistic features such as inversion also influence the unit-decade compatibility effect, which 

leads to a more pronounced effect for instance in German speakers. Pixner and colleagues 

(2009) observed that the interference effect of unit magnitude is larger in German-speaking 

children compared to Italian-speaking children. 

Furthermore, the interaction of the unit-decade compatibility effect with decade distance and 

unit distance requires place-value activation as well (Nuerk et al., 2001). What is important is 

that the distance effect (cf. Box 1) for two-digit numbers may be a better diagnostic marker than 

the distance effect for single-digit numbers. For instance, Ashkenazi, Mark-Zigdon & Henik 

(2009) observed that dyscalculic children differed from controls in two-digit distance effects, but 

not in the single-digit distance effect. A possible reason is that single-digit numbers are highly 

overlearned, so that their processing does not differentiate between groups at different skill 

levels. Another explanation is that compared to single-digit numbers, multi-digit numbers involve 
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SNAs and automatic place-value activation, which differ between dyscalculics and controls. 

However, while some studies have observed that number magnitude, i.e., a larger decade 

distance effect, negatively correlated with arithmetic performance (e.g., De Smedt, Verschaffel, 

& Ghesquière, 2009), other studies documented a paradoxical positive relationship between the 

numerical distance effect and arithmetic performance (e.g., Moeller et al., 2011). 

While most of the studies regarding three levels of place-value system involve explicit coding – 

for instance, all of the above-mentioned studies – very few studies have investigated implicit 

place-value activation. In the study by Kallai and Tzelgov (2012), while participants were 

explicitly asked to compare only the value of two numbers including several zeros (e.g., 050 vs. 

007), the place-value activation was documented. In another study, Ganor-Stern, Tzelgov, and 

Ellenbogen (2007) observed that the place-value activation interacts with the size congruency 

effect, while participants were not explicitly asked to decide about both place and value. The 

size congruency effect is related to processing of the (irrelevant) magnitude dimension when the 

task is to compare the (relevant) physical dimension of the decades. They suggested that the 

compatibility effect is automatic as it interacts with the size congruency effect. 

Place-value computation 

Place-value computation is one step further beyond place identification and place-value 

activation in multi-digit number processing. It refers to a manipulation of place-values, such as in 

carry operations. For instance, to solve 28 + 65, the added magnitude of the units needs to be 

carried over to the decades (80 + 13). Hence, the magnitudes of the units and decades in 

relation to each other and to their places need to be taken into account. Surprisingly, language 

has an influence on this higher level of place-value computation as well. Göbel and colleagues 

(2014) investigated addition problems with and without carry operations in German-speaking 

and Italian-speaking children. They reported a larger carry effect in the language with inversion 

(German) than without (Italian). As might be expected, because the added magnitude of the 
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units needs to be kept in working memory, working memory mediated the carry effect. 

Complementary to these findings, Colome and colleagues (2010) reported the role of full base-

20 in the Basque number word system. Basque participants responded faster to the addition 

problems containing 20 and a teen number (e.g., 37 is said “20 + 17”) rather than any other 

addition problems with similar results but other summands than 20. Altogether, we conclude that 

understanding different levels of the place-value system is essential for multi-digit number 

processing and therefore, for numerical and arithmetic development. 

Training multi-digit numbers and predicting future performance 

Multi-digit number processing is a special case regarding trainings, because in contrast to other 

SNAs, its understanding is an explicit goal in education. As one of the basic numerical 

competencies, the place-value system develops during childhood and is clearly related to math 

achievement. In a longitudinal study, Moeller et al. (2011) observed that place-value 

understanding in first grade was a reliable predictor of arithmetic performance in third grade and 

suggested that it should be understood as a developmental process. Ho and Cheng (1997) 

observed that place-value training improved arithmetic performance in first graders. Altogether, 

place-value processing, which is the spatial arrangement of the digits in multi-digit numbers that 

leads to different evaluation of a digit in different places, helps us to learn and apply 

mathematical knowledge in multi-digit numbers in a less effortful way. 

Conclusions 

The leading question of this chapter was: is space a cornerstone or a powerful tool for learning 

and for understanding arithmetic? As often in science, there is no simple unitary answer on this 

question. First, there is not “THE” spatial-numerical association, but there are multiple SNAs, 

which differ in their spatial dimensions (e.g., extension, directionality) and their numerical 

dimensions (cardinality, ordinality, operations, place-value integration etc.). For some of them, 
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stable correlations with arithmetic skill have been reported (e.g., extension, interval-scaled like 

in the NLE, place-value processing), while for others correlations are low, scarce and 

inconsistent (e.g., SNARC effect). Although exceptions apply, a general rule of thumb seems to 

be that SNAs related to the directionality in space (e.g., small numbers left, large numbers right) 

are usually not important for arithmetic skill. 

However, when it comes to specific SNAs related to exact extension or (place-value) position, 

the picture is different. For both extension and positions, we see relatively stable correlations 

with arithmetic skill and indications that training these processes and representations 

successfully transfers to other arithmetic skills. It is unclear whether the spatial-numerical 

representation of numbers per se is trained (e.g., linear or logarithmic) or whether spatial-

numerical tasks are a powerful tool to train associated number representations like magnitude 

representations or the internal power system underlying our base-10 place-value notation in 

Arabic numbers.  

Here, we want to add a disclaimer in order not to be misunderstood. In our view, it is absolutely 

essential to have a functioning magnitude representation and a functioning representation of the 

base-10-system. There is no doubt that these systems can be mapped to space and that 

participants skillful in mathematics can use space as a powerful tool to facilitate their 

performance. Furthermore, there is convincing evidence that spatial visualizations are a 

powerful tool to train more complex internal mathematical representations. All these points are 

essentially undisputed. The reasons and the causality for these findings, however, are disputed. 

We still question whether a particular spatial-numerical representation is trained, which 

underlies all our mathematical understanding, or whether a spatial mapping can enhance our 

numerical representations and skills. 

Our point can be illustrated by comparing spatial-numerical mappings to mnemonic techniques 

and methods in memory research. There is no question that they work, or that people who 
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perform well in memory tasks can usually use them; there are training studies showing that they 

can improve memory performance. But does this mean that mnemonic representations underlie 

our memory system? Of course, every analogy has its limitations, but here we illustrate the 

general point that correlations and successful trainings do not automatically indicate an 

underlying representation. This is an open question for us. 

Nevertheless, there is no doubt that space is at least an extremely powerful tool for learning and 

understanding arithmetic and probably the most important association with numbers and 

arithmetic besides language. We believe that it is impossible to fully understand arithmetic 

without understanding its relation to space in learning and operating numerical skills. So, 

although we believe that the case of particular underlying spatial representations is not as 

straightforward as it is sometimes assumed in the literature, we are convinced that SNAs 

deserve much more thorough and in-depth research in the future. However, in our view, the 

direction should be to understand the nature and impact of each different SNA rather than to 

demonstrate yet another SNA without particular reference to its function and impact. 
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BOX 1 

A. Key terms and concepts of experimental psychology used in this chapter 

Attention (see Raz & Buhle, 2006). Attention is a mechanism of information selection. One of 

the most influential models of attention outlined by Posner (see: Petersen & Poster, 2012) 

postulates three independent networks: alerting, orienting, and executive. The alerting system 

controls the arousal level and sustained vigilance. The orienting system prioritizes sensory input 

from a particular sensory modality and / or location in space. Executive attention is responsible 

for inhibition of irrelevant responses, conflict monitoring, and switching between tasks. In this 

chapter, two components of attention are of particular importance. Orienting (related to spatial 

shifts of attentional focus) and executive, especially components related to inhibition and conflict 

monitoring, will be discussed in the context of the role the domain-general factors play in SNAs. 

Compatibility effect (see Kornblum et al., 1990). This term describes the fact that some tasks 

are easier or more difficult depending on stimuli and response sets used. For instance, it is 

easier to respond if a meaning of the stimulus (e.g., left/right pointing arrow) corresponds to the 

required response (e.g., left/right located key) than when it does not (stimulus-response 

compatibility). Task difficulty also differs depending on the meaning of objects being presented 

(stimulus-stimulus compatibility; e.g., Verbruggen et al., 2005). Namely, the task is easier if 

irrelevant stimuli presented together with the target stimulus are associated with the same 

response, than when they are associated with another response. Differences in task difficulty 

are reflected in reaction times, reaction time variances, error rates (all larger for incompatible 

trials), as well as in neural correlates of cognitive processing (differences in electrical or 

metabolic brain responses). This is because in case of incompatible trials, competing cognitive 

processes involved in initiating different responses need to be resolved by cognitive control. 

Compatibility effects are widely used in the domain of numerical cognition in investigating 

Spatial Numerical Associations (SNAs) or the multi-digit number processing. 
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Domain-specific and domain-general processes (see Hohol et al., 2017). Domain-general 

processes can be viewed as mental general-purpose tools, which can be used to process a very 

broad range of information (e.g., numerical, spatial, verbal, and so on). On the contrary, domain-

specific processes are those specialized in processing particular type of information (e.g., 

quantity). One of the most important debates in numerical cognition is the interplay and mutual 

relationships between these two types of processes and the roles they play. 

B. Key terms and phenomena investigated within numerical cognition 

Estimation (see Gallistel & Gelman, 2000). The ability to provide an approximate number of 

elements in a collection, possessed by humans and several other species. The cognitive system 

responsible for this process is called the Approximate Number System (ANS). The accuracy of 

estimation decreases with an increasing number of elements; however, the minimal ratio 

enabling successful discrimination between sets is constant within an individual (the Weber 

fraction; see Piazza & Izard, 2009). In other words, the larger is the absolute size of the set, the 

greater the absolute difference between sets must be (so that this ratio remains constant) in 

order to enable successful discrimination. 

Mental Number Line (MNL; Restle, 1970). A theoretical construct or a metaphor on how 

numbers are mentally represented. According to this view, numbers are represented as the 

points on a directional number line. It is claimed that the MNL is logarithmically compressed 

(i.e., distances between small numbers are larger than distances between large numbers). 

Numerical distance effect (Moyer & Landauer, 1967). This term denotes the observation that 

the time required to perform number comparisons increases with a decreasing difference 

between the numbers to be compared. It can be observed for both non-symbolic (dot patterns) 

and symbolic (e.g. Arabic numbers) notation. The numerical distance effect can be split into 

absolute (e.g., in 85_53, is 85 - 53 = 32), decade (e.g., in 85_53, is 8 - 5 = 3), and unit distance 
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(e.g., in 85_53, is 5 - 3 = 2) aspects. Importantly, similar effects in the context of comparing 

physical objects (e.g., line length) were described earlier in classical Gestalt psychology 

literature (see Cohen Kadosh et al., 2008). 

Ratio effect (see Lyons et al., 2015). This term denotes the relationship between numerical 

ratio (i.e., the ratio of numbers to be compared) and comparison task performance: the 

performance decreases as the ratio approaches “1”. The ratio effect is very similar to the 

distance effect; however, it considers the absolute magnitude of numbers to be compared. 

Thus, to some extent the ratio effect takes into account both distance and size effects. 

Size effect (see Brysbaert, 1995). It denotes the observation that the time needed to make 

numerical judgments increases with increasing magnitude. As in the case of the numerical 

distance effect, the size effect was first observed in tasks requiring comparison of physical 

properties of objects. 

Spatial-Numerical Association of Response Codes (SNARC; Dehaene et al., 1993). 

SNARC denotes an observation that numerical magnitudes are associated with space: in left-to-

right readers, small magnitude numbers are associated with the left hand side, whereas large 

magnitude numbers are associated with the right hand side. 

Spatial-Numerical Associations (SNA; see Cipora et al., 2015). A broad range of 

phenomena demonstrating that numbers (especially their magnitudes) are bidirectionally 

associated with space. Can be observed by means of behavioral or neural signatures. 

Subitizing (see Piazza et al., 2002). From the Latin word subitius (sudden). An elementary 

capacity to quickly and effortlessly determine the number of elements in small sets (i.e., no 

larger than 4 elements) possessed by humans and other species. 

Unit-decade compatibility effect (Nuerk et al., 2001. Denotes the fact that while comparing 

two two-digit numbers, responses are faster and more accurate if the number of units in the 
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numerically larger number is larger than the number of units in the numerically smaller number 

(compatible trial, e.g., 23_69), than in a situation when the number of units in the larger number 

is smaller than in the smaller number (incompatible trial, e.g., 29_63). 

Place-value processing (Nuerk et al., 2015). The place-value concept refers to the value of a 

digit according to its position within a sequence of digits in the Arabic number system. The value 

of a digit increases by a power of 10 (base-10 system) with each step going from the right digit 

to the left digit in a multi-digit Arabic number (e.g., 257 = [2] × 102 + [5] × 101 + [7] × 100). Nuerk 

et al. (2015) proposed a three-level categorization of componential processing for place-value 

understanding: place identification, place-value activation, and place-value computation. 

BOX 2 – Measuring Spatial-Numerical Associations 

Several tasks have been developed in order to tap how humans associate numbers with space. 

They will be briefly discussed below. This overview shows that numbers seem to be inherently 

associated with space, irrespective of the type of task used to measure it. 

Extension SNA – Approximate: 

Interference tasks measuring the size congruity effect (Henik & Tzelgov, 1982). The 

participants are presented with pairs of numbers differing both in physical size and numerical 

magnitude. The participant’s task is to indicate either the physically or numerically larger one. 

Difference in reaction times between congruent (physically larger number is also numerically 

larger) and incongruent (physically larger number is numerically smaller) trials are measured. 

Following cardinality across modalities (de Hevia & Spelke, 2010). Used in infant studies. 

Children are familiarized with either ascending or descending sequences of one type of stimuli 

(e.g., a line becoming longer and longer). Subsequently, the test probe (either an ascending or 

descending sequence of another type of stimuli e.g., an increasing number of dots) is 
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presented. Looking times are compared between trials in which the order in the test probe was 

familiar or novel. 

Line bisection task (Fischer, 2001). Participant’s task is to indicate the midpoint of the line. 

The line is either constructed out of numbers (e.g. 99999999999999; M. H. Fischer, 2001) or 

flanked with numbers presented either in symbolic or nonsymbolic format (e.g., 2-----------7; de 

Hevia & Spelke, 2009). In the first case midpoint is biased to the left/right when line is built of 

small/large magnitude numbers. In the second case, the midpoint is located closer to the larger 

magnitude number. 

Spatial arrangement of operation order (Landy & Goldstone, 2010). Participants are 

presented with arithmetic operations in which following the operation order is essential. The 

physical spacing between numbers can be either congruent (e.g., 2*2  +  2) or incongruent (e.g., 

2  *  2+2) with the operation order. Reaction times are compared between conditions. 

Extension SNA - Exact 

Number line estimation (Siegler & Opfer, 2003). There are two major variations of this task, 

namely bounded and unbounded versions (Cohen & Blanc-Goldhammer, 2011). In the bounded 

number line estimation the participant is presented with a line marked with numbers on both of 

its ends (e.g., 0 and 100). In the unbounded task, only the left side of the number is marked with 

a number. Additionally there is another short line indicating one unit. In both cases the task is to 

mark the position of a given number on the line. Recently another variation of the task was 

developed in which touchscreen technology is used not only to track the response given by the 

participant but also the exact movement trajectory. 

Directional SNA – implicit coding - cardinality 

Parity judgment task (e.g. Dehaene et al., 1993). The participant is to make binary decisions 

on whether the presented number is odd or even. Two lateralized response keys are used. In 
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the mid-experiment, the response-to-key assignment is switched so that both right- and left-

hand responses are collected for each number. 

Magnitude classification task (see Wood et al., 2008). The participant is to make binary 

decisions on whether the presented number is smaller or larger than a criterion value (which is 

constant across the experiment). Two lateralized response keys are used. Similarly to parity 

judgment, response-to-key assignment is flipped in the mid-experiment. 

Magnitude comparison task (see Wood et al., 2008). The criterion value according to which 

the numerical value of the target number is compared changes from trial to trial. 

Other binary decisions on numerical magnitude (e.g. Fias et al., 2001). The participants are 

deciding on other characteristics of the number (e.g., whether it contains a particular phoneme 

or whether it is written upright or with italics). 

Directional SNA – implicit coding – place-value 

Physical comparison task (Ganor-Stern et al., 2007): A variation of a typical two-digit number 

comparison task. While one number is shown in large font, the other is shown in small font, 

irrelevant to the magnitude of the numbers. In half of the trials the magnitude and physical size 

of the number pairs are compatible but not in the other half. Participants are to decide which 

number is physically larger, while ignoring numerical magnitudes. 

Directional SNA – implicit coding – ordinality 

Parity judgment task with working memory load. This is a variation of the typical parity 

judgment task in which the participant is first asked to memorize a sequence of numbers and 

then performs the typical parity task. The participant is to react only to numbers, which were 

present in the sequence. After a block of such trials, it is checked whether the participant can 

correctly recall the sequence. 
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Directional SNA – implicit coding - functions 

Spatial biases in mental arithmetic (Knops et al., 2009). Participants are to perform 

operations (additions and subtractions) on either symbolic or nonsymbolic material. It is tested 

whether performing such operations influences concurrent spatial activity (directional hand 

movements, oculomotor activity, lateral attentional shifts). 

Arithmetic sign and space (Pinhas et al., 2014). The participants decide whether the 

presented sign is “+” or “-“ using two response keys. 

Directional SNA – explicit coding – place value 

Two-digit number comparison (Nuerk, et al., 2001): Two two-digit numbers are presented 

simultaneously on the screen with the same font size, while they differ in magnitude. 

Participants are asked to select the numerically larger number.   

Directional SNA – explicit coding - ordinality 

Counting tasks (e.g. Shaki et al., 2012). Such tasks are used mostly in cross cultural 

children’s studies. Participants are presented with a row or a matrix of tokens and are asked to 

count them. The direction of counting is checked. 

The tasks may involve several response formats. Binary decisions can be made bimanually, 

unimanually using two different fingers or with a single finger in a pointing task. Responses may 

also be given using feet or directional eye movements. In other setups responses may be given 

orally, by pointing, grasping, or the whole movement trajectory can be measured (Fischer & 

Shaki, 2014 for review).
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Fig 1. Overview of the Spatial-Numerical Associations (SNAs) taxonomy. 

https://psyarxiv.com/3vg9p/

