Chen_20248_2016-01-0804.pdf (1.87 MB)

Experimental study on the burning rate of Methane and PRF95 dual fuels

Download (1.87 MB)
conference contribution
posted on 08.02.2016 by Sotiris Petrakides, Dongzhi Gao, Rui Chen, Daniel Butcher, Haiqiao Wei
Natural gas as an alternative fuel offers the potential of clean combustion and emits relatively low CO2 emissions. The main constitute of natural gas is methane. Historically, the slow burning speed of methane has been a major concern for automotive applications. Literature on experimental methane–gasoline Dual Fuel (DF) studies on research engines showed that the DF strategy is improving methane combustion, leading to an enhanced initial establishment of burning speed even compared to that of gasoline. The mechanism of such an effect remains unclear. In the present study, pure methane (representing natural gas) and PRF95 (representing gasoline) were supplied to a constant volume combustion vessel to produce a DF air mixture. Methane was added to PRF95 in three different energy ratios 25%, 50% and 75%. Experiments have been conducted at equivalence ratios of 0.8, 1, 1.2, initial pressures of 2.5, 5 and 10 bar and a temperature of 373K. At stoichiometric conditions, experiments in an SI engine have been also performed. It has been found that methane and all DFs have their fastest burning rate at stoichiometric conditions whereas PRF95 at rich conditions (Φ=1.2). At lean conditions (Φ=0.8), all DFs resulted in faster combustion than PRF95, whereas methane is the slowest of all. At rich conditions, DF75 and DF50 are slower than methane. The transition mechanism between the constant volume combustion experiments and those in the engine environment resulted in a larger increase in the burning speed of methane and all DFs in comparison to that of the liquid fuel.



  • Aeronautical, Automotive, Chemical and Materials Engineering


  • Aeronautical and Automotive Engineering

Published in

SAE 2016 World Congress and Exhibition




PETRAKIDES, S. al., 2016. Experimental study on the burning rate of Methane and PRF95 dual fuels. SAE International Journal of Engines, 9 (2), SAE Paper 2016-01-0804.


© SAE International


NA (Not Applicable or Unknown)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at:

Publication date



This paper was accepted for publication in the journal SAE International Journal of Engines and the definitive published version is available at




Detroit, Michigen, USA


Logo branding