File(s) not publicly available

Reason: This item is currently closed access.

The influence of geometric and aerodynamics boundary conditions on fuel injector feed and external aerodynamics for lean burn combustors

conference contribution
posted on 05.04.2019 by Yan-Ling Li, Paul Denman, Duncan Walker
Lean burn combustion is currently a preferred technology to meet the future low emission requirements faced by aero gas turbines. Previous work has shown that the increased air mass flow and size of lean burn fuel injector alters the necessary redistribution of the airflow leaving the high-pressure compressor. This can lead to flow field non-uniformities in the feed to combustor annuli and the fuel injectors which have the potential to impact the overall performance of the combustion system. This paper presents a systematic assessment of the effect of several aerodynamic parameters on the air flow feed to the fuel injectors and the external combustion system aerodynamics for a generic lean burn system. This includes the effect of changes to the flow splits between various combustor cooling features and annulus flows and the effect of a biased compressor exit profile. Flow field data are generated using an isothermal RANS CFD model which is validated against test rig data. The data show that changes in the flow split between the annuli modified the flow uniformity and loss to both the combustor annuli and the fuel injector feed. Changes in the compressor exit profile have a larger effect introducing more notable variations in both flow uniformity and loss. Changes to the angle of the flame tube did not greatly affect the pre-diffuser but did modify annulus loss. Further analysis showed that changes to the combustor annulus flow split, compressor exit profile and flame tube angle modified the location, at compressor exit, of the flow captured by the annuli or each fuel injector passage. The loss to each of these depends on the flow quality (total pressure and uniformity) and from the source more than the flow uniformity delivered.

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Aeronautical and Automotive Engineering

Published in

Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition (GT2019)

Volume

4B: Combustion, Fuels, and Emissions

Citation

LI, Y., DENMAN, P.A. and WALKER, A.D., 2019. The influence of geometric and aerodynamics boundary conditions on fuel injector feed and external aerodynamics for lean burn combustors. Presented at the ASME International Gas Turbine and Aeroengine Congress and Exposition, Phoenix, AR, USA, June 17 – 21.

Publisher

ASME

Version

AM (Accepted Manuscript)

Rights holder

© Rolls Royce

Publisher statement

This paper was accepted for publication in the Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition (GT2019) and the definitive published version is available at https://doi.org/10.1115/GT2019-92037.

Acceptance date

23/02/2019

Publication date

2019-11-05

Copyright date

2019

Notes

This paper is in closed access.

ISBN

9780791858622

Book series

ASME paper;GT2019-2037

Other identifier

Paper No: GT2019-92037, V04BT04A056

Language

en

Location

Phoenix, Arizona, USA

Event dates

17th June 2019 - 21st June 2019

Exports

Logo branding

Keyword(s)

Exports