Loughborough University
Angelino_AIAA_2018.pdf (5.01 MB)

Adaptive wall-modelled large eddy simulation of jet noise in isolated and installed configurations

Download (5.01 MB)
conference contribution
posted on 2018-07-16, 11:00 authored by Matteo Angelino, Hao XiaHao Xia, Gary PageGary Page
The study of jet acoustics is crucial for future aeroengine designs. Although the highbypass ratio of modern turbofans can have a shielding effect on the core jet noise, there is an increased potential of interaction of the jet flow with wing and flap, and its effects on noise need to be thoroughly investigated. Wall-Modelled Large-Eddy Simulation (WMLES) is a powerful method to study the installation effects on jet noise, as it does not have strict near-wall requirements, allowing for a more uniform mesh for better noise propagation and a saving in computational cost. An adaptive wall model is here introduced and validated on channel flow, on the MD-30P/30N high-lift multi-element airfoil, and on the NASA High-Lift Common Research Model (HL-CRM). WMLES simulations, combined with the Ffowcs Williams and Hawkings (FW-H) sound extrapolation method, are performed on turbulent coaxial jets in isolated and installed configurations. Computed flow field and sound spectra present favourable agreement with experimental results, confirming key features of the installation effects on jet noise.


The work on the isolated co-axial jet was conducted under the Innovate UK SILOET II project 13 (reference number 113013), in collaboration with Rolls-Royce plc. The geometry was produced under the EU 6th Framework Project CoJeN, contract number AST3-CT-2003-502790. The installed case is part of the ongoing Innovate UK ACAPELLA project (reference number 113086), in collaboration with Rolls-Royce plc. Geometry and experimental data were produced under the Innovate UK SYMPHONY project (reference number 100539) and provided by Rolls-Royce plc. The authors acknowledge the support from the UK Turbulence Consortium (UKTC), under grant number EP/L000261. CPU time and IT support from ARCHER, HPC Midlands and Loughborough University are greatly appreciated.



  • Aeronautical, Automotive, Chemical and Materials Engineering


  • Aeronautical and Automotive Engineering

Published in

24th AIAA/CEAS Aeroacoustics Conference


ANGELINO, M., XIA, H. and PAGE, G.J., 2018. Adaptive wall-modelled large eddy simulation of jet noise in isolated and installed configurations. Presented at the 24th AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, USA, 25-29 June 2018.


© American Institute of Aeronautics and Astronautics (AIAA)


  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Acceptance date


Publication date



This paper was presented at the 24th AIAA/CEAS Aeroacoustics Conference and the definitive published version is available at https://doi.org/10.2514/6.2018-3618.


  • en


Atlanta, GA, USA

Usage metrics

    Loughborough Publications


    Ref. manager