Loughborough University
Browse
FMGM2015_DIXON_An_acoustic_emission_slope.pdf (2 MB)

An acoustic emission slope displacement rate sensor — case studies

Download (2 MB)
conference contribution
posted on 2015-10-14, 09:38 authored by Neil Dixon, Daniela Codeglia, Alister Smith, Gary Fowmes, Philip Meldrum
Research over a period of 20 years has resulted in development of a battery operated unitary acoustic emission (AE) sensor which, when used with a standard active waveguide installation, can quantify soil slope displacement rates continuously and in near real‐time. The active waveguide is installed in a borehole through existing or anticipated shear zones, and comprises a steel tube with granular soil surround. The AE sensor is located at ground level and with the waveguide is encased in a cover. Deformation of the slope strains the granular backfill, which generates AE through rearrangement of the particles. The AE propagate as stress waves along the steel tube to the ground surface where they are detected and quantified by the sensor, which is used to provide alert text messages if pre‐determined thresholds are exceeded. The use of a reproducible waveguide allows standard interpretation of the generated AE to provide information on soil slope displacement rates, and the granular soil backfill generates measureable AE when the system is installed in slopes formed in ‘quiet’ fine grained soils. The approach monitors AE at high frequencies to exclude environmental background noise and hence ensure that false alarms are not generated. In rock slopes, the grouted waveguide is passive, with measured AE generated by rock deformation mechanisms. The sensors have been deployed on multiple sites in the UK and in Italy, Austria and Canada. At all sites performance of the AE sensors has been compared with traditional deformation monitoring instrumentation including ShapeAccelArray, inclinometer, extensometer and time‐domain reflectometry. Measurements from these field studies have demonstrated that generated AE are proportional to slope displacement rates. This paper outlines the AE measurement and the interpretation techniques developed, and presents field comparisons of measured AE trends and slope displacement rates obtained from extended trials at several sites. It is concluded that the AE technique can be used as a reliable early warning system for soil slope instability. Applications in rock slopes are promising but further work is required to link detected AE to rock deformation mechanisms and hence to derive thresholds as a basis for early warnings.

Funding

The Engineering and Physical Sciences Research Council (EPSRC), UK, funded much of the Slope ALARMS research and development. Thanks are also due to CNR IRPI for funding the instrumentation and monitoring at Passo della Morte. Meldrum publishes with the permission of the Executive Director of the British Geological Survey (NERC).

History

School

  • Architecture, Building and Civil Engineering

Published in

Ninth International Symposium on Field Measurements in Geomechanics

Pages

743-756

Citation

DIXON, N. ... et al., 2015. An acoustic emission slope displacement rate sensor — case studies. IN: Dight, P.M. (ed.) Ninth International Symposium on Field Measurements in Geomechanics (FMGM), Sydney, Australia, 9-11 September, pp. 743-756.

Publisher

© Australian Centre for Geomechanics (ACG), The University of Western Australia. All rights reserved. No part of any ACG publication or course proceeding may be reproduced, stored or transmitted in any form without the prior permission of the Australian Centre for Geomechanics, The University of Western Australia.

Version

  • VoR (Version of Record)

Publication date

2015

Notes

This conference paper is deposited with kind permission of the Australian Centre for Geomechanics (ACG), The University of Western Australia.

ISBN

9780992481025

Language

  • en

Location

Sydney

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC