DJO-InterNoise2016_V5.pdf (552.33 kB)
Download file

Automotive tyre cavity noise modelling and reduction

Download (552.33 kB)
conference contribution
posted on 23.09.2016, 13:36 authored by Daniel O'BoyDaniel O'Boy, Stephen Walsh
Noise and vibration in automotive vehicles relates to a feeling of luxury. Noise, Vibration and Harshness engineers spend significant time tuning designs to achieve this. Low noise must be achieved against a requirement to reduce weight, installation time, manufacturing complexity, achieve a carbon reduction and an increase in fuel economy. One particularly annoying noise originates in the pressurised air cavity bounded by the metal wheel and tyre rubber surfaces and is referred to as “tyre cavity noise”. It is a particularly problematic resonance due to the low frequency (approximately 200 - 250Hz) and the low loss factor of air, causing high amplitude sound. Traditionally, this is addressed through the careful choice of suspension natural frequencies to avoid coupling resonances and addition of mass damping layers to the cabin and transmission paths. In this paper, a numerical model of the tyre cavity is shown with passive resonators to reduce the noise. Complications that arise due to wheel loading, speed, temperature changes and manufacturing durability are discussed, with an optimisation routine used to obtain tuned Helmholtz resonators for inclusion in wheel spokes. A stationary experimental rig is introduced as a validation tool, with an array of microphones used to find the actual sound pressures.

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Aeronautical and Automotive Engineering

Published in

Internoise 2016

Citation

O'BOY, D. and WALSH, S.J., 2016. Automotive tyre cavity noise modelling and reduction. IN: Kropp, W., von Estorff, O. and Schulte-Fortkamp, B. (eds.) Proceedings of the 45th International Congress on Noise Control Engineering: Towards a Quieter Future (Internoise 2016), Hamburg, Germany, Aug 21-24th.

Publisher

German Acoustical Society (DEGA)

Version

AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Acceptance date

06/07/2016

Publication date

2016

Notes

This is a conference paper.

ISBN

9783939296119

ISSN

0105-175x

Language

en

Location

Hamburg, Germany