Loughborough University
Browse

Break up of silica nanoparticle clusters using ultrasonication

Download (567.36 kB)
conference contribution
posted on 2018-09-28, 10:26 authored by James Bacon, Chris Rielly, Gul Ozcan-TaskinGul Ozcan-Taskin
This study is concerned with the deagglomeration of hydrophilic silica nanoparticle clusters (Aerosil® 200V) in water using an ultrasonicator operated in batch mode. An impeller was also present in the tank to ensure homogeneity. The effect of power input was studied in the range of 18 to 77 W (9 to 39 kW m-3) on the kinetics and mechanisms of deagglomeration and the dispersion fineness. The effect of particle concentration was also studied in the range of 1 to 15% wt. The process was monitored through the evolution of particle size distribution (PSD), which indicated erosion as the dominant mechanism of breakup. The smallest attainable particle size was found to be independent of power input and solid concentration. Faster break up kinetics were noted as the power input was increased whereas increasing the solids concentration to 15% wt. slowed the process. It could also be shown that processing concentrated dispersions can be beneficial as the break up rate assessed on the basis of energy per unit mass of solids was faster for increased particle concentration.

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Chemical Engineering

Published in

16th European Conference on Mixing

Citation

BACON, J., RIELLY, C.D. and OZCAN-TASKIN, N.G., 2018. Break up of silica nanoparticle clusters using ultrasonication. Presented at the 16th European Conference on Mixing (Mixing 16), Toulouse, France, 9-12 September 2018.

Version

  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2018

Notes

This is a conference paper.

Language

  • en

Location

Toulouse France

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC