Loughborough University
Browse
- No file added yet -

Computational evaluation of artery damage in stent deployment

Download (748.71 kB)
conference contribution
posted on 2019-04-16, 15:27 authored by Ran He, Liguo Zhao, Vadim SilberschmidtVadim Silberschmidt, Yang LiuYang Liu, Felix Vogt
This paper aims to evaluate damage in an arterial wall and plaque caused by percutaneous coronary intervention using a finite-element (FE) method. Hyperelastic damage models, verified against experimental results, were used to describe stress-stretch responses of arterial layers and plaque in the lumen; these models are capable to simulate softening behaviour of the tissue due to damage. Abaqus CAE was employed to create the FE models for an artery wall with two constituent layers (media and adventitia), a symmetric uniform plaque, a bioresorbable polymeric stent and a tri-folded expansion balloon. The effect of percutaneous coronary intervention on vessel damage was investigated by simulating the processes of vessel pre-dilation, stent deployment and post-stenting dilation. Energy dissipation density was used to assess the extent of damage in the tissue. Overall, the plaque experienced the most severe damage due to its direct contact with the stent, followed by the media and adventitia layers. Softening of the plaque and the artery due to the pre-dilation-induced damage can facilitate the subsequent stent-deployment process. The plaque and artery experienced heterogeneous damage behaviour after the stent deployment, caused by non-uniform deformation. The post-stenting dilation was effective to achieve a full expansion of the stent but caused additional damage to the artery. The computational evaluation of artery damage can be also potentially used to assess the risk of in-stent restenosis after percutaneous coronary intervention.

Funding

British Heart Foundation (Grant number: FS/15/21/31424; Title: Towards controlling the mechanical performance of polymeric bioresorbable vascular scaffold during biodegradation) and the UK Royal Society (Grant number: IE160066; Title: Evaluating the Performance of Additively Manufactured Endovascular Scaffolds).

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Published in

ECF22 - Loading and Environmental Effects on Structural Integrity Procedia Structural Integrity

Volume

13

Pages

187 - 191

Citation

HE, R. ... et al, 2018. Computational evaluation of artery damage in stent deployment. Procedia Structural Integrity, 13, pp.187-191.

Publisher

Elsevier BV © The Authors

Version

  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2018

Notes

This is an Open Access article. It is published by Elsevier under the Creative Commons Attribution 4.0 International Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/. This is part of special issue: ECF22 - Loading and Environmental effects on Structural Integrity edited by Aleksandar Sedmak, Zoran Radaković and Marko Rakin.

ISSN

2452-3216

Language

  • en

Location

Belgrade, Serbia

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC