This paper aims to evaluate damage in an arterial wall and plaque caused by percutaneous coronary intervention using a finite-element (FE) method. Hyperelastic damage models, verified against experimental results, were used to describe stress-stretch responses of arterial layers and plaque in the lumen; these models are capable to simulate softening behaviour of the tissue due to damage. Abaqus CAE was employed to create the FE models for an artery wall with two constituent layers (media and adventitia), a symmetric uniform plaque, a bioresorbable polymeric stent and a tri-folded expansion balloon. The effect of percutaneous coronary intervention on vessel damage was investigated by simulating the processes of vessel pre-dilation, stent deployment and post-stenting dilation. Energy dissipation density was used to assess the extent of damage in the tissue. Overall, the plaque experienced the most severe damage due to its direct contact with the stent, followed by the media and adventitia layers. Softening of the plaque and the artery due to the pre-dilation-induced damage can facilitate the subsequent stent-deployment process. The plaque and artery experienced heterogeneous damage behaviour after the stent deployment, caused by non-uniform deformation. The post-stenting dilation was effective to achieve a full expansion of the stent but caused additional damage to the artery. The computational evaluation of artery damage can be also potentially used to assess the risk of in-stent restenosis after percutaneous coronary intervention.
Funding
British Heart Foundation (Grant number: FS/15/21/31424; Title: Towards controlling the mechanical performance of polymeric bioresorbable vascular scaffold during biodegradation) and the UK Royal Society (Grant number: IE160066; Title: Evaluating the Performance of Additively Manufactured
Endovascular Scaffolds).
History
School
Mechanical, Electrical and Manufacturing Engineering
Published in
ECF22 - Loading and Environmental Effects on Structural Integrity
Procedia Structural Integrity
Volume
13
Pages
187 - 191
Citation
HE, R. ... et al, 2018. Computational evaluation of artery damage in stent deployment. Procedia Structural Integrity, 13, pp.187-191.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Publication date
2018
Notes
This is an Open Access article. It is published by Elsevier under the Creative Commons Attribution 4.0 International Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/. This is part of special issue: ECF22 - Loading and Environmental effects on Structural Integrity edited by Aleksandar Sedmak, Zoran Radaković and Marko Rakin.