Loughborough University
PID4112793.pdf (815.56 kB)

Conductive microfluidic interconnects to enable scalable 3D manufacturing of wearable electronics

Download (815.56 kB)
conference contribution
posted on 2016-06-09, 10:20 authored by Jonny Flowers, Changqing LiuChangqing Liu, Sean MitchellSean Mitchell, Andy HarlandAndy Harland, Dale EsligerDale Esliger
This paper investigates the geometry and surface finish of channels machined into polydimethylsiloxane using a continuous wave CO2 laser. In order to investigate the various mechanisms, that could affect the channel geometry, both the laser power and trace speed were varied in conjunction with the use of a fixed focal size to allow comparison between configurations. It was discovered that as the power level increases, repeatability decreases while dimensional variability of the channel along its length and multiple iterations increases. It was found that the power output of the laser has a greater effect on the dimensions of the channels than the total energy input into the material. Varying configurations were used when creating these channels resulting in a strong correlation between both power and speed with regard to depth. However, at higher energy levels this relationship appears to break down and the depth of the cut reduces when compared to similar laser configurations at a lower power level.



  • Sport, Exercise and Health Sciences

Published in

ECTC: IEEE Electronic Components and Technology Conference


FLOWERS, J. ... et al., 2016. Conductive microfluidic interconnects to enable scalable 3D manufacturing of wearable electronics. IN: Proceedings of ECTC: IEEE Electronic Components and Technology Conference, Las Vegas, Nevada USA, May 31 - June 3, 2016, pp. 2140-2145.




  • AM (Accepted Manuscript)

Acceptance date


Publication date



© IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.




  • en


Las Vegas, Nevada USA