Loughborough University
Browse
- No file added yet -

Deformation of a liquid film by an impinging gas jet: modelling and experiments

Download (709.17 kB)
conference contribution
posted on 2019-07-02, 10:25 authored by Chinasa J. Ojiako, Radu Cimpeanu, Hemaka BandulasenaHemaka Bandulasena, Roger Smith, Dmitri TseluikoDmitri Tseluiko
We consider liquid in a cylindrical beaker and study the deformation of its surface under the influence of an impinging gas jet. Analyzing such a system not only is of fundamental theoretical interest, but also of industrial importance, e.g., in metallurgical applications. The solution of the full set of governing equations is computationally expensive. Therefore, to obtain initial insight into relevant regimes and timescales of the system, we first derive a reduced-order model (a thin-film equation) based on the long-wave assumption and on appropriate decoupling the gas problem from that for the liquid and taking into account a disjoining pressure. We also perform direct numerical simulations (DNS) of the full governing equations using two different approaches, the Computational Fluid Dynamics (CFD) package in COMSOL and the volume-of-fluid Gerris package. The DNS are used to validate the results for the thinfilm equation and also to investigate the regimes that are beyond the range of validity of this equation. We additionally compare the computational results with experiments and find good agreement.

History

School

  • Science

Department

  • Mathematical Sciences

Published in

THE 6th NTERNATIONAL CONFERENCE ON FLUID FLOW, HEAT AND MASS TRANSFER Proceedings of the 6th International Conference on Fluid Flow, Heat and Mass Transfer (FFHMT'19)

Citation

OJIAKO, C.J. ... et al, 2019. Deformation of a liquid film by an impinging gas jet: modelling and experiments. IN: Proceedings of the 6th International Conference on Fluid Flow, Heat and Mass Transfer (FFHMT'19), Ottawa, Canada, 18-19 June 2019, Paper No. FFHMT 171.

Publisher

Avestia Publishing

Version

  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Acceptance date

2019-06-01

Publication date

2019

Notes

This is a conference paper.

ISBN

9781927877593

Language

  • en

Location

ottawa

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC