Introduction: Hypoid gear pairs are some of the most highly loaded components of the differential unit in modern
automobiles. Prediction of wear rate and generated friction require determination of lubricant film thickness.
However, only very few investigations have addressed the issue of thin elastohydrodynamic films in hypoid
gear pairs. The main reason for dearth of analysis in this regard has been the need for accurate determination of
transient contact geometry and kinematics of interacting surfaces throughout a typical meshing cycle.
Furthermore, combined gear dynamics and lubrication analysis of any pairs of simultaneous meshing teeth pairs
is required. Simon [1] was among the first to deal with these issues. He used Tooth Contact Analysis (TCA) in
order to calculate the instantaneous contact geometry and load for any teeth pair during their meshing cycle.
However, in his study, the load carried by the hypoid pair was quite low, making the application of the results
limited and not entirely suitable for real life operating conditions of typical hypoid gear pairs of vehicular
differentials, which is of interest in the current paper.
Xu and Kahraman [2] performed numerical prediction of power losses and consequently the film thickness for
highly loaded hypoid gear pairs. However, in their study only the one-dimensional Reynolds equation was
employed. Consequently, the effect of lubricant side leakage in the passage through the contact was ignored. A
more recent study by Mohammadpour et al. [3] employed realistic gear geometry data (through the use of TCA)
for calculation of film thickness time history through mesh. The two-dimensional Reynolds equation,
accounting for the side leakage of the lubricant, was solved numerically. It was shown that the side leakage
component of the entraining velocity can significantly influence the film thickness.
With regard to hypoid gear dynamics, several studies should be mentioned. Wang and Lim [4] studied the
dynamic response of hypoid gear pairs under the influence of time varying meshing stiffness. Yang and Lim [5]
created a model able to predict the dynamic response of a hypoid gear pair by taking into account the lateral
translations of their shafts due to the compliance of the supporting bearings. Karagiannis et al. [6-7] studied the
dynamics of automotive differential hypoid gear pairs by taking into account the velocity dependent resistive
torque at the gear caused by aerodynamic drag and tyre-road rolling resistance. The study integrated the gear
dynamics with the generated viscous and boundary conjunctional friction.
Funding
The authors would like to express their gratitude to Lubrizol Ltd. for the financial support of this project.
History
School
Mechanical, Electrical and Manufacturing Engineering
Published in
70th STLE Annual Meeting & Exhibition
Citation
PAOURIS, L.I. ... et al, 2015. Film thickness investigation in heavily loaded hypoid gear pair elastohydrodynamic conjunctions. 70th STLE Annual Meeting & Exhibition, Dallas, TX, USA, 17th-21st May 2015.
Publisher
STLE
Version
VoR (Version of Record)
Publisher statement
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/