APN (almost perfect nonlinear) functions over finite fields of even characteristic are interesting and have many applications to the design of symmetric ciphers resistant to differential attacks. This notion was generalized to GAPN (generalized APN) for arbitrary characteristic p by Kuroda and Tsujie. In this paper, we completely classify GAPN monomial functions xd for the case when the exponent d has exactly two non-zero digits when represented in base p; these functions can be viewed as generalizations of the APN Gold functions. In particular, we characterise all the monomial GAPN functions over Fp2 . We also obtain a new characterization for certain GAPN functions of degree p using the multivariate algebraic normal form.
Funding
Royal Society through the Newton Mobility Grant NI170158
History
School
Science
Department
Computer Science
Source
7th International Workshop on Boolean Functions and their Applications (BFA 2022)