Loughborough University
Browse

Gesture recognition from bio-signals using hybrid deep neural networks

Download (563.94 kB)
conference contribution
posted on 2020-09-21, 10:48 authored by Baao Xie, James Meng, Baihua LiBaihua Li, Andy HarlandAndy Harland
Surface electromyogram (sEMG) provides a promising means to develop a non-invasive prosthesis control system. In the context of transradial amputees, it allows a limited but functionally useful return of hand function that can significantly improve patients’ quality of life. In order to predict users’ motion intention, the ability to process multichannel sEMG signals generated by muscle is required. We propose an attention-based Bidirectional Convolutional Gated Recurrent Unit (Bi-CGRU) deep neural network to analyse sEMG signals. The two key novel aspects of our work include: firstly, novel use of a bi-directional sequential GRU to focus on the inter-channel relationship between both the prior time steps and the posterior signals. This enhances the intra-channel features extracted by an initial one-dimensional CNN. Secondly, an attention component is employed at each GRU layer. This mechanism learns different intra-attention weights, enabling focus on vital parts and corresponding dependencies of the signal. This increases robustness to feature noise to further improve accuracy. The attention-based Bi-CGRU is evaluated on the Ninapro benchmark dataset of sEMG hand gestures. The electromyogram signals of 17 hand gestures from 10 subjects from the database are tested. The average accuracy achieved 88.73%, outperforming the state-of-the-art approaches on the same database. This demonstrates that the proposed attention based Bi-CGRU model provides a promising bio-control solution for robotic prostheses.

History

School

  • Science
  • Mechanical, Electrical and Manufacturing Engineering

Department

  • Computer Science

Published in

2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)

Pages

493 - 499

Source

2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)

Publisher

IEEE

Version

  • AM (Accepted Manuscript)

Rights holder

© IEEE

Publisher statement

Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Publication date

2020-09-01

Copyright date

2020

ISBN

9781728170053

Language

  • en

Location

Dalian, China

Event dates

27th June 2020 - 29th June 2020

Depositor

Dr Baihua Li (Deposit date: 16 September 2020

Usage metrics

    Loughborough Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC