posted on 2009-07-06, 13:04authored byG.P. McTaggart-Cowan, S.R. Munshi, S.N. Rogak, P.G. Hill, W.K. Bushe
Combining hydrogen with natural gas as a fuel for internal
combustion engines provides an early opportunity to introduce
hydrogen into transportation applications. This study
investigates the effects of fuelling a heavy-duty engine with a
mixture of hydrogen and natural gas injected directly into the
combustion chamber. The combustion system, developed for
natural gas fuelling, is not modified for blended hydrogen
operation. The results demonstrate that hydrogen can have a
significant beneficial effect in reducing emissions without
affecting efficiency or requiring significant engine
modifications. Combustion stability is enhanced through the
higher reactivity of the hydrogen, resulting in reduced emissions
of unburned methane. The fuel’s lower carbon:energy ratio also
reduces CO2 emissions. These results combine to significantly
reduce tailpipe greenhouse gas (GHG) emissions. However, the
effect on net GHG’s, including both tailpipe and fuelproduction
emissions, depends on the source of the hydrogen.
Cleaner sources, such as electrolysis based on renewables and
hydro-electric power, generate a significant net reduction in
GHG emissions. Hydrogen generated by steam-methane
reforming is essentially GHG neutral, while electrolysis using
electricity from fossil-fuel power plants significantly increases
net GHG emissions compared to conventional natural gas
fuelling.
History
School
Mechanical, Electrical and Manufacturing Engineering
Citation
MCTAGGART-COWAN, G.P. ... et al, 2007. Hydrogen-methane blend fuelling of a heavy-duty, direct-injection engine. IN: Proceedings of IMECE2007, 2007 ASME International Mechanical Engineering Congress and Exposition, November 11-15, 2007, Seattle, Washington, USA