Loughborough University
Browse

Hydrogen-methane blend fuelling of a heavy-duty, direct-injection engine

Download (316.39 kB)
conference contribution
posted on 2009-07-06, 13:04 authored by G.P. McTaggart-Cowan, S.R. Munshi, S.N. Rogak, P.G. Hill, W.K. Bushe
Combining hydrogen with natural gas as a fuel for internal combustion engines provides an early opportunity to introduce hydrogen into transportation applications. This study investigates the effects of fuelling a heavy-duty engine with a mixture of hydrogen and natural gas injected directly into the combustion chamber. The combustion system, developed for natural gas fuelling, is not modified for blended hydrogen operation. The results demonstrate that hydrogen can have a significant beneficial effect in reducing emissions without affecting efficiency or requiring significant engine modifications. Combustion stability is enhanced through the higher reactivity of the hydrogen, resulting in reduced emissions of unburned methane. The fuel’s lower carbon:energy ratio also reduces CO2 emissions. These results combine to significantly reduce tailpipe greenhouse gas (GHG) emissions. However, the effect on net GHG’s, including both tailpipe and fuelproduction emissions, depends on the source of the hydrogen. Cleaner sources, such as electrolysis based on renewables and hydro-electric power, generate a significant net reduction in GHG emissions. Hydrogen generated by steam-methane reforming is essentially GHG neutral, while electrolysis using electricity from fossil-fuel power plants significantly increases net GHG emissions compared to conventional natural gas fuelling.

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Citation

MCTAGGART-COWAN, G.P. ... et al, 2007. Hydrogen-methane blend fuelling of a heavy-duty, direct-injection engine. IN: Proceedings of IMECE2007, 2007 ASME International Mechanical Engineering Congress and Exposition, November 11-15, 2007, Seattle, Washington, USA

Publisher

© ASME

Version

  • VoR (Version of Record)

Publication date

2007

Notes

This conference paper was published in Proceedings of IMECE2007 [© ASME]. Further details of the conference can be found at: http://www.asmeconferences.org/Congress07/

Book series

IMECE2007;41373

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC