Loughborough University

File(s) under permanent embargo

Reason: This item is currently closed access.

Impact of upstream boundary conditions on fuel injector performance in a low TRL reacting flow experimental facility

conference contribution
posted on 2018-11-02, 16:40 authored by M.A. Williams, Jon CarrotteJon Carrotte, John MoranJohn Moran, Duncan WalkerDuncan Walker
It has been known for a sometime that the compressor exit profile can have a significant effect on the overall performance of the fuel injector. This effect has been increased recently with the advent of larger leaner injection systems. With a modern gas turbine combustion system the fuel injectors are presented with a non-uniform feed generated by the upstream compressor and OGV/pre-diffuser assembly. For generic lean burn combustion systems previous experimental and numerical work highlighted a complex interaction between the compressor efflux and the upstream diffuser. Circumferential non-uniformities in the flow presented to the fuel injector can amount up to ±10% of the mean velocity. Previous investigations examined only the isothermal flow field and the effects of this level of non-uniformity on reacting performance are not known. There are potential impacts on local fuel atomisation, air/fuel mixing and hence emissions performance. The main aim of this paper is to observe and assess the effect of these upstream conditions using a reacting flow test facility. In the initial design phases reacting flow experiments are generally conducted in simple, single sector plenum fed test facilities. Since this does not capture the effects of non-uniformities modifications were made to the facility to produce an aerodynamically representative feed. CFD was used in the design process to ensure that the aerodynamic features present in engine geometries would be faithfully reproduced by the test rig modifications. The CFD also highlighted changes in the downstream isothermal flow field. This included differences in the overall effective area of the fuel injector and, importantly, a redistribution of mass flow between the various fuel injector passages. Additionally, the cone angle, and the flow structure downstream was observed to change. Back-to-back tests were then conducted in a reacting flow test facility for various pilot-mains fuel flow splits and air-to-fuel ratios. Visualisation of the flame showed notable qualitative differences in the structure and stability of the flame. Quantitative measurements indicated that, compared to a plenum feed, a representative feed produced changes in the production of carbon monoxide, unburned hydrocarbons and oxides of nitrogen. Emission results were used to calculate the extent of the mass flow redistribution between passages. From this a correction was applied to the estimated AFRs. This correction did not fully collapse the emissions data, suggesting that while the mass flow redistribution contributes to the change in emissions it is not fully responsible. Covered in this paper are initial observations. However, further work is required to fully understand how the changes to the aerodynamic flow field alter the emissions performance, but it is clear that having a representative fuel injector feed is important in low TRL testing.


This research was undertaken at Loughborough University within the Rolls-Royce University Technology Centre (UTC) in Combustion System Aero Thermal Processes. It was funded by Rolls-Royce as of the EPSRC Centre for Doctoral Training in Gas Turbine Aerodynamics.



  • Aeronautical, Automotive, Chemical and Materials Engineering


  • Aeronautical and Automotive Engineering

Published in

ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition Proceedings of the ASME Turbo Expo




WILLIAMS, M.A. ... et al, 2018. Impact of upstream boundary conditions on fuel injector performance in a low TRL reacting flow experimental facility. Presented at the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Oslo, Norway, 11-15 June 2018, Vol. 4A: Combustion, Fuels, and Emissions, Paper No. GT2018-75621, pp. V04AT04A049.


ASME The American Society of Mechanical Engineers © Rolls-Royce plc


  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date



This paper is closed access.



Book series

ASME paper;GT2018-75621


  • en


Oslo, Norway

Usage metrics

    Loughborough Publications


    Ref. manager