posted on 2021-01-15, 08:44authored byYiting Zuo, Xusen Cheng, Ying Bao, Alex Zarifis
Online learning has been expanding for some time but the forced move to it due to the outbreak of COVID-19 has created new issues. This study set out to investigate the impact mechanism of online learning user satisfaction from the perspective of cognitive load in the era of COVID-19 and explore ways to optimize cognitive load in teaching practice. Semi-structured interviews were conducted for the empirical analysis. The coding process of the interviews yielded several antecedents of cognitive load in the online learning process. We also proposed a theoretical model based on the literature review and data analysis. Findings of the qualitative analysis indicate that the antecedents of cognitive load are multi-dimensional and the user's satisfaction with the online learning platform mainly consists of the expected confirmation of the information system and the perceived usefulness. These findings can help us think backward about optimizing user satisfaction with online learning in the context of COVID-19 breakout.
Funding
National Natural Science Foundation of China (Grant No. 72061147005, 71571045)
History
School
Business and Economics
Department
Economics
Published in
Proceedings of the 54th Hawaii International Conference on System Sciences
Pages
1139 - 1148
Source
54th Hawaii International Conference on System Sciences (HICSS)
This is an Open Access Article. It is published by the University of Hawaii at Manoa under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (CC BY-NC-ND 4.0). Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/