posted on 2018-10-17, 10:49authored byVaruna De Silva, Jamie Roche, Xiyu ShiXiyu Shi, Ahmet Kondoz
Personal robots are set to assist humans in their daily tasks. Assisted living is one of the major applications of personal assistive robots, where the robots will support health and wellbeing of the humans in need, especially elderly and disabled. Indoor environments are extremely challenging from a robot perception and navigation point of view, because of the ever-changing decorations, internal organizations and clutter. Furthermore, human-robot-interaction in personal assistive robots demands intuitive and human-like intelligence and interactions. Above challenges are aggravated by stringent and often tacit requirements surrounding personal privacy that may be invaded by continuous monitoring through sensors. Towards addressing the above problems, in this paper we present an architecture for "Ambient Intelligence" for indoor
intelligent mobility by leveraging IoTs within a framework of Scalable Multi-layered Context Mapping Framework. Our
objective is to utilize sensors in home settings in the least invasive manner for the robot to learn about its dynamic surroundings and interact in a human-like manner. The paper takes a semi-survey approach to presenting and illustrating preliminary results from our in-house built fully autonomous electric quadbike.
History
School
Loughborough University London
Published in
The 3rd IEEE Cyber Science and Technology Congress
Citation
DE SILVA, V. ... et al, 2018. IoT driven ambient intelligence architecture for indoor intelligent mobility. IN: 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech), Athens, Greece, 12-15 August 2018, pp.451-456.