Final System Paper.pdf (443.89 kB)
Download file

Managing loads on aircraft generators to prevent overheat in-flight

Download (443.89 kB)
conference contribution
posted on 07.10.2015, 08:58 by James H. Graham, Roger Dixon, Peter HubbardPeter Hubbard, Ian Harrington
On future UAVs it is envisaged that the power requirements of all on-board electrical systems will increase. In most flight (mission) situations the installed power generation will have adequate capacity to operate the aircraft. It is possible that during abnormal situations such as coolant blockage the generators on-board may be forced to operate under very high load conditions. The main failure mechanism for a generator is overheating and subsequent disintegration of windings, hence the research problem being addressed here is to manage the loads upon the generator to prevent overheats. The research presented here summarizes the modeling of the generator and formation of the load management system. Results are presented showing the system reallocating loads after a fault during flight, preventing overheat of the generators and successfully completing the mission.



  • Mechanical, Electrical and Manufacturing Engineering

Published in

SAE 2014 Aerospace Systems and Technology Conference


GRAHAM, J.H. ... et al., 2014. Managing loads on aircraft generators to prevent overheat in-flight. SAE Technical Paper 2014-01-2195, doi:10.4271/2014-01-2195.


© SAE International


SMUR (Submitted Manuscript Under Review)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at:

Publication date



Copyright © 2015 SAE International. This paper is posted on this site with permission from SAE International, and is for viewing only. Further use or distribution of this paper is not permitted without permission from SAE.

Book series

SAE Technical Paper;2014-01-2195




Cincinnati, Ohio, USA

Usage metrics