Loughborough University
Browse

File(s) under permanent embargo

Reason: This item is currently closed access.

Measurement of in-cylinder friction using the floating liner principle

conference contribution
posted on 2012-05-18, 09:03 authored by Michael Gore, S.J. Howell-Smith, Paul KingPaul King, Homer Rahnejat
The regime of lubrication changes in a transient manner in many load bearing conjunctions. This is particularly true of any conjunction which is subjected to changes in contact kinematics as the result of stop-start or motion reversals and loading. One such conjunction in the IC engine is the piston-bore contact. A repercussion of these transient events under otherwise perceived steady operating condition is the underlying changes in the mechanisms giving rise to engine efficiency, such as parasitic losses, mainly due to friction. Understanding the nature of these losses is the prelude to any form of palliation. A single cylinder motocross motorbike engine’s cylinder barrel is redesigned to accept wet liners with various incorporated instrumentation. The paper describes one such barrel which incorporates an instrumented floating liner for the purpose of measurement of in-cylinder friction. The principle and design of the floating liner is described. A series of tests are carried out in order to ensure the operational integrity and repeatability of the device. The basic test includes motorised running of the engine without the cylinder head installed. This renders simplified motion of the liner, subject to resistance by friction only. In a sense, under this type of motion, the liner should undergo a form of simple harmonic motion, which is verified using a number of suitably positioned accelerometers. Some more representative tests are reported under motorised conditions with the cylinder head installed. Thus, the effect of chamber pressure is introduced. However, with no combustion pressure, heat output and resulting side forces, a better understanding of tribological conditions is accrued owing to the reduced physical interactions. The results show the dominance of a mixed regime of lubrication at the dead centre reversals.

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Citation

GORE, M. ... et al., 2012. Measurement of in-cylinder friction using the floating liner principle. IN: Proceedings of the ASME 2012 Internal Combustion Engine Division Spring Technical Conference (ICES 2012), 6 - 9 May, Torino, Italy.

Publisher

© ASME

Version

  • AM (Accepted Manuscript)

Publication date

2012

Notes

This conference paper [© ASME] is Closed Access. For more information on how to obtain this article please visit the ASME Digital Library, http://www.asmedl.org

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC