Hybrid electric vehicles offer significant fuel economy benefits, because battery and fuel can be used as complementing energy sources. This paper presents the use of dynamic programming to find the optimal blend of power sources, leading to the lowest fuel consumption and the lowest level of harmful emissions. It is found that the optimal engine behavior differs substantially to an on-line adaptive control system previously designed for the Lotus Evora 414E. When analyzing the trade-off between emission and fuel consumption, CO and HC emissions show a traditional Pareto curve, whereas NOx emissions show a near linear relationship with a high penalty. These global optimization results are not directly applicable for online control, but they can guide the design of a more efficient hybrid control system.
Funding
We would like to thank Lotus for the generous support in preparing this work and this publication. Without their diligent work on the design and modelling of hybrid vehicles, this publication would not have been possible.
History
School
Aeronautical, Automotive, Chemical and Materials Engineering
Department
Aeronautical and Automotive Engineering
Published in
SAE World Congress
Citation
KNAPP, J. ... et al, 2015. Optimal control inputs for fuel economy and emissions of a series hybrid electric vehicle. Presented at: SAE 2015 World Congress and Exhibition: Leading Mobility Innovation, 21st-23rd April 2015, Detroit, USA.