978-0-262-32621-6-ch073.pdf (1.49 MB)
Download filePOET: an evo-devo method to optimize the weights of a large artificial neural networks
conference contribution
posted on 2015-03-18, 13:34 authored by Alessandro Fontana, Andrea SoltoggioAndrea Soltoggio, Borys WrobelLarge search spaces as those of artificial neural networks are difficult to search with machine learning techniques. The large amount of parameters is the main challenge for search techniques that do not exploit correlations expressed as patterns in the parameter space. Evolutionary computation with indirect genotype-phenotype mapping was proposed as a possible solution, but current methods often fail when the space is fractured and presents irregularities. This study employs an evolutionary indirect encoding inspired by developmental biology. Cellular proliferations and deletions of variable size allow for the definition of both regular large areas and small detailed areas in the parameter space. The method is tested on the search of the weights of a neural network for the classification of the MNIST dataset. The results demonstrate that even large networks such as those required for image classification can be effectively automatically designed by the proposed evolutionary developmental method. The combination of real-world problems like vision and classification, evolution and development, endows the proposed method with aspects of particular relevance to artificial life.
Funding
This work was supported by the Polish National Science Center (project BIOMERGE, 2011/03/B/ST6/00399). This work was also partially supported by the European Communitys Seventh Framework Programme FP7/2007-2013, Challenge 2 Cognitive Systems, Interaction, Robotics under grant agreement No 248311 - AMARSi.
History
School
- Science
Department
- Computer Science
Published in
Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems (ALIFE XIV). Cambridge, MA: MIT Press, 2014Pages
1 - 8Citation
FONTANA, A., SOLTOGGIO, A. and WROBEL, B., 2014. POET: an evo-devo method to optimize the weights of a large artificial neural networks. IN: Artificial Life 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems (ALIFE XIV). Cambridge, MA: MIT Press, pp. 447-454.Publisher
MIT PressVersion
- VoR (Version of Record)
Publisher statement
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/Publication date
2014Notes
This is a conference paper.Publisher version
Language
- en